
Boisy G. Pitre

DEVELOP AND DESIGN

Swift for
Beginners

SECOND EDITION

DEVELOP AND DESIGN

Swift for
Beginners
SECOND EDITION

Boisy G. Pitre

PEACHPIT PRESS
WWW.PEACHPIT.COM

HTTP://WWW.PEACHPIT.COM

Swift for Beginners: Develop and Design, Second Edition
Boisy G. Pitre

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com.

Peachpit Press is a division of Pearson Education.

Copyright © 2016 by Boisy G. Pitre

Editor: Connie Jeung-Mills
Production editor: David Van Ness
Development editor: Robyn G. Thomas
Copyeditor and proofreader: Scout Festa
Technical editor: Steve Phillips
Compositor: Danielle Foster
Indexer: Valerie Haynes Perry
Cover design: Aren Straiger
Interior design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

Trademarks
Apple, Cocoa, Cocoa Touch, Objective-C, OS X, Swift, and Xcode are registered trademarks of Apple Inc., registered in the
U.S. and other countries. Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the
trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-13-428977-9
ISBN-10: 0-13-428977-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com

To the girls: Toni, Hope, Heidi, Lillian, Sophie, and Belle

This page intentionally left blank

Acknowledgments v

ACKNOWLEDGMENTS
When Peachpit’s executive editor Cliff Colby approached me about writing a second edition
of Swift for Beginners, I readily agreed for several reasons. First, Apple has continued
to evolve the Swift language to the point where a book update was necessary—the first
edition was already outdated with respect to Swift 2 language enhancements and Xcode
improvements. Second, I was eager to work with the same great team of people who were
part of the first edition.

Shortly after the project started, Cliff left Peachpit and moved on to another adventure,
but not before introducing me to Connie Jeung-Mills, who took over as executive editor.
She brought together the original team from the first edition: Robyn Thomas as editor and
Steve Phillips as technical editor. Rounding out the team was an addition, Scout Festa, who
provided additional editorial support. Each one of them was indispensable and critical to the
process, and I want to thank them for their assistance.

On the technical side, I continue to draw inspiration from the works of a number of
friends who are authors in the iOS and Mac OS developer community: Chris Adamson, Bill
Cheeseman, James Dempsey, Bill Dudney, Daniel Steinberg, and Richard Warren. Thanks go
to MacTech’s Ed Marczak and Neil Ticktin, as well as CocoaConf maestro Dave Klein, for the
writing and speaking opportunities that they have provided me at those venues. My friends
at Dave et Ray’s Camp Jam/Supper Club always serve as inspiration for several of the coding
examples I used in this edition. I also would like to thank Troy Deville for contributing the
source code for his game Downhill Challenge.

Thanks also go to the minds at Apple for creating and enhancing Swift, currently in
its second major release. The language has solidified since its introduction just over a year
ago, and has already reached a popularity that is uncharacteristic for a computer language
so young.

Lastly, my family and my wife, Toni, deserve special mention for the patience and
encouragement they’ve shown while I worked on yet another book.

This page intentionally left blank

About the Author vii

ABOUT THE AUTHOR
Boisy G. Pitre is Mobile Visionary and lead iOS developer at Affectiva, the leading emotion
technology company and a spin-off of the MIT Media Lab. His work there has led to the cre-
ation of the first mobile SDK for delivering emotions to mobile devices. Prior to that he was
a member of the Mac Products Group at Nuance Communications, where he worked with a
team of developers on Dragon Dictate.

He also owns Tee-Boy, a software company focusing on Mac and iOS applications for
the weather and data-acquisition markets, and he has authored the monthly “Developer to
Developer” column in MacTech magazine.

Along with Bill Loguidice, Boisy co-authored the book CoCo: The Colorful History of
Tandy’s Underdog Computer (2013), published by Taylor & Francis.

Boisy holds a Master of Science in Computer Science from the University of Louisiana
at Lafayette, is working toward his doctorate in computer science, and resides in the quiet
countryside of Prairie Ronde, Louisiana. Besides Mac and iOS development, his hobbies and
interests include retro-computing, ham radio, vending machine and arcade game restora-
tion, farming, and playing the French music of South Louisiana.

This page intentionally left blank

contents ix

CONTENTS
Introduction . xvi

Welcome to Swift . xviii

Section i THE BASICS . 2

chapter 1 INTRODUCING SWIFT . 4

Evolutionary Yet Revolutionary . 6

Preparing for Success . 6

Tools of the Trade . 7

Interacting with Swift . 7

Ready, Set… . 8

Diving into Swift . 9

Help and Quit . 10

Hello, World! . 10

The Power of Declaration . 11

Constants Are Consistent . 13

This Thing Called a Type . 15

Testing the Limits . 16

Can a Leopard Change Its Stripes? . 16

Being Explicit . 18

Strings and Things . 19

Stringing Things Together . 19

Characters Have Character . 20

Math and More . 21

Expressions . 22

Mixing Numeric Types . 22

Numeric Representations . 23

True or False . 24

The Result . 24

Printing Made Easy . 26

Using Aliases . 27

Grouping Data with Tuples . 28

Optionals . 29

Summary . 31

x contents

chapter 2 WORKING WITH COLLECTIONS . 32

The Candy Jar . 34

Birds of a Feather… . 37

Extending the Array . 38

Replacing and Removing Values . 39

Inserting Values at a Specific Location . 40

Combining Arrays . 41

The Dictionary . 42

Looking Up an Entry . 43

Adding an Entry . 45

Updating an Entry . 46

Removing an Entry . 46

Arrays of Arrays? . 47

Starting from Scratch . 50

The Empty Array . 50

The Empty Dictionary . 51

Iterating Collections . 52

Array Iteration . 52

Dictionary Iteration . 54

Summary . 55

chapter 3 TAKING CONTROL . 56

For What It’s Worth . 58

Counting on It . 58

Inclusive or Exclusive? . 59

For Old Time’s Sake . 61

Writing Shorthand . 62

It’s Time to Play . 63

Making Decisions . 66

The Decisiveness of “If” . 66

When One Choice Is Not Enough . 70

Switching Things Around . 72

While You Were Away… . 75

Inspecting Your Code . 77

Give Me a Break! . 80

Summary . 81

contents xi

chapter 4 WRITING FUNCTIONS AND CLOSURES . 82

The Function . 84

Coding the Function in Swift . 84

Exercising the Function . 86

More Than Just Numbers . 87

Parameters Ad Nauseam . 89

Functions Fly First Class . 92

Throw Me a Function, Mister . 94

A Function in a Function in a… . 96

Default Parameters . 98

What’s in a Name? . 100

When It’s Good Enough . 102

To Use or Not to Use? . 102

Don’t Change My Parameters! . 103

The Ins and Outs . 105

Bringing Closure . 106

Summing It Up . 109

Stay Classy . 109

chapter 5 ORGANIZING WITH CLASSES AND STRUCTURES 110

Objects Are Everywhere . 112

Swift Objects Are Classy . 113

Knock, Knock . 114

Let There Be Objects! . 115

Opening and Closing the Door . 116

Locking and Unlocking the Door . 117

Examining the Properties . 120

Door Diversity . 120

Painting the Door . 123

Inheritance . 124

Modeling the Base Class . 125

Creating the Subclasses . 128

Instantiating the Subclass . 130

Convenience Initializers . 136

Enumerations . 138

Structural Integrity . 141

Value Types vs. Reference Types . 143

Looking Back, Looking Ahead . 145

xii contents

chapter 6 FORMALIZING WITH PROTOCOLS AND EXTENSIONS 146

Following Protocol . 148

Class or Protocol? . 148

More Than Just Methods . 151

Adopting Multiple Protocols . 153

Protocols Can Inherit, Too . 155

Delegation . 156

Extending With Extensions . 159

Extending Basic Types . 161

Using Closures in Extensions . 166

Summary . 167

Section ii DEVELOPING WITH SWIFT . 168

chapter 7 WORKING WITH XCODE . 170

Xcode’s Pedigree . 172

Creating Your First Swift Project . 173

Diving Down . 174

Interacting with the Project Window . 176

It’s Alive! . 178

Piquing Your Interest . 178

Making Room . 179

Building the UI . 180

Tidying Up . 182

Class Time . 183

Hooking It Up . 188

You Made an App! . 189

chapter 8 MAKING A BETTER APP . 190

It’s the Little Things . 192

Show Me the Money . 192

Remember the Optional? . 195

Unwrapping Optionals . 195

Looking Better . 196

Formatting: A Different Technique . 196

Compounding . 201

Hooking Things Up . 202

Testing Your Work . 205

contents xiii

When Things Go Wrong . 205

Where’s the Bug? . 206

At the Breaking Point . 206

The Confounding Compound . 210

The Value of Testing . 210

The Unit Test . 211

Crafting a Test . 211

When Tests Fail . 215

Tests That Always Run . 215

Wrapping Up . 217

chapter 9 GOING MOBILE WITH SWIFT . 218

In Your Pocket vs. on Your Desk . 220

How’s Your Memory? . 220

Thinking About Gameplay . 221

Designing the UI . 221

Creating the Project . 222

Building the User Interface . 224

Creating the Buttons . 225

Running in the Simulator . 227

Setting Constraints . 228

The Model-View-Controller . 230

Coding the Game . 231

The Class . 236

Enumerations . 236

The View Objects . 237

The Model Objects . 237

Overridable Methods . 238

Game Methods . 238

Winning and Losing . 242

Back to the Storyboard . 245

Time to Play . 247

xiv contents

chapter 10 BECOMING AN EXPERT . 248

Memory Management in Swift . 250

Value vs . Reference . 250

The Reference Count . 251

Only the Strong Survive . 252

Put It in a Letter . 253

The Test Code . 254

Breaking the Cycle . 256

Cycles in Closures . 257

Thanks for the Memories . 259

Thinking Logically . 259

To Be or NOT to Be… . 260

Combining with AND . 261

One Way OR the Other . 261

Generics . 263

Overloading Operators . 264

Equal vs. Identical . 267

Error Handling . 268

Throwing an Error . 268

Catching the Error . 270

Scripting and Swift . 272

Creating the Script . 273

Setting Permissions . 274

Executing the Script . 275

Examining How It Works . 275

Calling S.O.S. . 278

Game Time . 279

chapter 11 HEADING DOWNHILL . 280

Gaming the System . 282

GameKit . 282

SpriteKit . 282

It Starts with an Idea . 283

Heading Downhill . 283

Social Connectivity . 283

Ready, Set… . 284

contents xv

How the Game Plays . 284

Take It for a Spin . 285

Inspecting the Project . 287

Classes . 288

Assets . 288

Scenes . 289

Touring the Source . 289

The Home Scene . 289

The Game Scene . 293

Game View Controller . 298

Taking It All In . 300

You Did It! . 301

Study Apple’s Frameworks . 301

Join Apple’s Developer Program . 301

Become a Part of the Community . 301

Never Stop Learning . 302

Bon Voyage! . 302

Index. 303

xvi IntroductIon

INTRODUCTION
Welcome to Swift for Beginners! Swift is Apple’s new language for developing apps for iOS
and Mac OS, and it is destined to become the premier computer language in the mobile
and desktop space. As a new computer language, Swift has the allure of a shiny new car—
everybody wants to see it up close, kick the tires, and take it for a spin down the road. That’s
probably why you’re reading this book—you’ve heard about Swift and decided to see what
all the fuss is about.

The notion that Swift is an easy language to use and learn certainly has merit, especially
when compared to the capable but harder-to-learn programming language it’s replacing:
Objective-C. Apple has long used Objective-C as its language of choice for developing soft-
ware on its platforms, but that is changing with the introduction of Swift.

WHO IS THIS BOOK FOR?
This book was written with the beginner in mind. In a sense, we’re all beginners with Swift
because it’s such a new language. However, many of those who want to learn Swift as a first
or second computer language haven’t had any exposure to Objective-C or to the related lan-
guages C and C++.

Ideally, the reader will have some understanding and experience with a computer
language; even so, the book is styled to appeal to the neophyte who is sufficiently motivated
to learn. More experienced developers will probably find the first few chapters to be review
material and light reading because the concepts are ubiquitous among many computer
languages but nonetheless important to introduce Swift to the beginner.

HOW TO USE THIS BOOK
Like other books of its kind, Swift for Beginners is best read from start to finish. The material
in subsequent chapters tends to build on the knowledge attained from previous ones. How-
ever, with a few exceptions, code examples are confined to a single chapter.

The book is sized to provide a good amount of material, but not so much as to over-
whelm the reader. Interspersed in the text are a copious number of screenshots to guide the
beginner through the ins and outs of Swift as well as the Xcode tool chain.

HOW YOU WILL LEARN
The best way to learn Swift is to use it, and using Swift is emphasized throughout the book
with plenty of code and examples.

Each chapter contains code that builds on the concepts presented. Swift has two interac-
tive environments you will use to test out concepts and gain understanding of the language:
the REPL and playgrounds. Later, you’ll build two simple but complete apps: a loan calcula-
tor for Mac OS and a memory game for iOS. In the final chapter, you will be introduced to the
source code for a complete 2D game that uses several Apple gaming technologies.

IntroductIon xvii

Swift concepts will be introduced throughout the text—classes, functions, closures, and
more, all the way to the very last chapter. You’re encouraged to take your time and read each
chapter at your leisure, even rereading if necessary, before moving on to the next one.

Source code for all the chapters is available at www.peachpit.com/swiftbeginners2. You
can download the code for each chapter, which cuts down considerably on typing; nonethe-
less, I am a firm believer in typing in the code. By doing so, you gain insight and comprehen-
sion you might otherwise miss if you just read along and rely on the downloaded code. Make
the time to type in all of the code examples.

For clarity, code and constructs such as class names are displayed in monospace font.

Highlighted code identifies the portions of the code that are intended for you to type:

 1> let candyJar = [“Peppermints”, “Gooey Bears”, “Happy Ranchers”]

candyJar: [String] = 3 values {

 [0] = “Peppermints”

 [1] = “Gooey Bears”

 [2] = “Happy Ranchers”

}

 2>

Bold code identifies an error returned from the REPL:

 8> x = y

repl.swift:8:5: error: cannot assign a value of type ‘Double’
p to a value of type ‘Int’

x = y

 ^

 8>

You’ll also find notes containing additional information about the topics.

WHAT YOU WILL LEARN
Ultimately, this book will show you how to use Swift to express your ideas in code. When
you complete the final chapter, you should have a good head start, as well as a solid under-
standing of what the language offers. Additionally, you’ll have the skills to begin writing an
app. Both iOS and Mac OS apps are presented as examples in the later chapters.

What this book does not do is provide an all-inclusive, comprehensive compendium
on the Swift programming language. Apple’s documentation is the best resource for that.
Here, the emphasis is primarily on learning the language itself, with various Cocoa and
CocoaTouch frameworks introduced to facilitate examples.

note: Dictionary keys are not necessarily placed in alphabetical order. Swift
will always use the order that is the most efficient for retrieval and access.

http://www.peachpit.com/swiftbeginners2

xviii welcome to swIft

WELCOME TO SWIFT
Swift is a fun, new, and easy-to-learn computer language from Apple.
With the knowledge you’ll gain from this book, you can begin writing
apps for iOS and Mac OS. The main tool you’ll need to start learning Swift
is the Xcode integrated development environment (IDE). Xcode includes
the Swift compiler, as well as the iOS and Mac OS software development
kits (SDKs) that contain the infrastructure required to support the
apps you develop.

THE TECHNOLOGIES
The following technologies are all part of your journey into the
Swift language.

SWIFT 2

Swift 2 is the language
you’ll learn in this book.
Swift is a modern lan-
guage designed from the
ground up to be easy to
learn as well as powerful.
It is the language that
Apple has chosen to fuel
the continued growth of
the apps that make up
their iOS, watchOS, tvOS,
and Mac OS ecosystems.

XCODE 7

Xcode is Apple’s premier
environment for writing
apps. It includes an editor,
a debugger, a project
manager, and the com-
piler tool chain needed to
take Swift code and turn
it into runnable code. You
can download Xcode from
Apple’s Mac App Store.

LLVM

Although it works behind
the scenes within Xcode,
LLVM is the compiler
technology that powers
the elegance of the Swift
language and turns it
into the digestible bits
and bytes needed by the
processors that power
Apple devices.

welcome to swIft xix

THE REPL

The Read-Eval-Print-Loop (REPL) is a command-line tool
you can use to try out Swift code quickly. You run it
from the Terminal application on Mac OS.

PLAYGROUNDS

Their interactivity and immediate results make Xcode’s
playgrounds a great way to try out Swift code as you
learn the language.

CHAPTER 4

Writing Functions
and Closures

I’ve covered a lot up to this point in the book: variables, constants,

dictionaries, arrays, looping constructs, control structures, and

the like. You’ve used both the REPL command-line interface and

now Xcode’s playgrounds feature to type in code samples and

explore the language.

Up to this point, however, you have been limited to mostly

experimentation: typing a line or three here and there and

observing the results. Now it’s time to get more organized with

your code. In this chapter, you’ll learn how to tidy up your Swift

code into nice clean reusable components known as functions.

Let’s start this chapter with a fresh new playground file.

If you haven’t already done so, launch Xcode and create a new

playground by choosing File > New > Playground, and name it

Chapter 4.playground. You’ll explore this chapter’s concepts with

contrived examples in similar fashion to earlier chapters.

83

THE FUNCTION
Think back to your school years again. This time, remember high school algebra. You were
paying attention, weren’t you? In that class your teacher introduced the concept of the func-
tion. In essence, a function in arithmetic parlance is a mathematical formula that takes one
or more inputs, performs a calculation, and provides a result, or output.

Mathematical functions have a specific notation. For example, to convert a Fahrenheit
temperature value to the equivalent Celsius value, you would express that function in this way:

The important parts of the function are:

 J Name: In this case the function’s name is f.

 J Input, or independent variable: Contains the value that will be used in the function.
Here it’s x.

 J Expression: Everything to the right of the equals sign.

 J Result: Considered to be the value of f(x) on the left side of the equals sign.

Functions are written in mathematical notation but can be described in natural language.
In English, the sample function could be described as:

A function whose independent variable is x and whose result is the difference of the
independent variable and 32, with the result being multiplied by 5, with the result being
divided by 9.

The expression is succinct and tidy. The beauty of functions is that they can be used over
and over again to perform work, and all they need to do is be called with a parameter. So
how does this relate to Swift? Obviously I wouldn’t be talking about functions if they didn’t
exist in the Swift language. And as you’ll see, they can perform not just mathematical calcu-
lations but a whole lot more.

CODING THE FUNCTION IN SWIFT
Swift’s notation for establishing the existence of a function is a little different than the
mathematical one you just saw. In general, the syntax for declaring a Swift function is:

func funcName(paramName : type, ...) -> returnType

Take a look at an example to help clarify the syntax. Figure 4.1 shows the code in the
Chapter 4.playground file, along with the function defined on lines 7 through 13. This is the
function discussed earlier, but now in a notation that the Swift compiler can understand.

84 Chapter 4 Writing Functions and closures

Start by typing in the following code.

func fahrenheitToCelsius(fahrenheitValue : Double) -> Double {

 var result : Double

 result = (((fahrenheitValue - 32) * 5) / 9)

 return result

}

As you can see on line 7, there is some new syntax to learn. The func keyword is Swift’s
way to declare a function. That is followed by the function name (fahrenheitToCelsius),
and the independent variable’s name, or parameter name, in parentheses. Notice that the
fahrenheitValue parameter’s type is explicitly declared as Double.

Following the parameter are the two characters ->, which denote that this function is
returning a value of a type (in this case, a Double type), followed by the open curly brace,
which indicates the start of the function.

On line 8, you declare a variable of type Double named result. This will hold the value
that will be given back to anyone who calls the function. Notice that it is the same type as
the function’s return type declared after the -> on line 7.

The actual mathematical function appears on line 10, with the result of the expres-
sion assigned to result, the local variable declared in line 8. Finally on line 12, the result is
returned to the caller using the return keyword. Anytime you wish to exit a function and
return to the calling party, you use return along with the value being returned.

The Results sidebar doesn’t show anything in the area where the function was typed.
That’s because a function by itself doesn’t do anything. It has the potential to perform some
useful work, but it must be called by a caller. That’s what you’ll do next.

FIGURE 4.1 Tempera-
ture conversion as a
Swift function

the Function 85

EXERCISING THE FUNCTION
Now it’s time to call on the function you just created. Type in the following two lines of code,
and pay attention to the Results sidebar in Figure 4.2.

var outdoorTemperatureInFahrenheit = 88.2

var outdoorTemperatureInCelsius = fahrenheitToCelsius(outdoorTemperature
p InFahrenheit)

On line 15, you’ve declared a new variable, outdoorTemperatureInFahrenheit, and set
its value to 88.2 (remember, Swift infers the type in this case as a Double). That value is then
passed to the function on line 16, where a new variable, outdoorTemperatureInCelsius, is
declared, and its value is captured as the result of the function.

The Results sidebar shows that 31.222222 (repeating decimal) is the result of the func-
tion, and indeed, 31.2 degrees Celsius is equivalent to 88.2 degrees Fahrenheit. Neat, isn’t it?
You now have a temperature conversion tool right at your fingertips.

Now, here’s a little exercise for you to do on your own: Write the inverse method,
celsiusToFahrenheit, using the following formula for that conversion:

Go ahead and code it up yourself, but resist the urge to peek ahead. Don’t look until
you’ve written the function, and then check your work against the following code and in
Figure 4.3.

FIGURE 4.2 The result
of calling the newly
created function

86 Chapter 4 Writing Functions and closures

func celsiusToFahrenheit(celsiusValue : Double) -> Double {

 var result : Double

 result = (((celsiusValue * 9) / 5) + 32)

 return result

}

outdoorTemperatureInFahrenheit = celsiusToFahrenheit(outdoorTemperature
p InCelsius)

The inverse function on lines 18 through 24 simply implements the Celsius to Fahrenheit
formula and returns the result. Passing in the Celsius value of 31.22222 on line 26, you can
see that the result is the original Fahrenheit value, 88.2.

You’ve just created two functions that do something useful: temperature conversions.
Feel free to experiment with other values to see how they change between the two
related functions.

MORE THAN JUST NUMBERS
The notion of a function in Swift is more than just the mathematical concept I have
discussed. In a broad sense, Swift functions are more flexible and robust in that they can
accept more than just one parameter, and even accept types other than numeric ones.

Consider creating a function that takes more than one parameter and returns something
other than a Double (Figure 4.4).

FIGURE 4.3 Declaring
the inverse function,
celsiusToFahrenheit

the Function 87

func buildASentenceUsingSubject(subject : String, verb : String, noun : String)
p -> String {

 return subject + “ “ + verb + “ “ + noun + “!”

}

buildASentenceUsingSubject(“Swift”, verb: “is”, noun: “cool”)

buildASentenceUsingSubject(“I”, verb: “love”, noun: “languages”)

After typing in lines 28 through 33, examine your work. On line 28, you declared a new
function, buildASentence, with not one but three parameters: subject, verb, and noun, all
of which are String types. The function also returns a String type as well. On line 29, the
concatenation of those three parameters, interspersed with spaces to make the sentence
readable, is what is returned.

To demonstrate the utility of the function, it is called twice on lines 32 and 33, resulting
in the sentences in the Results sidebar.

If you are familiar with the C language and how parameters are passed to functions,
the notation on lines 32 and 33 may appear confusing at first. Swift enforces the notion of
named parameters on all but the first parameter of a function. The names that were declared
in the function on line 28 (verb and noun) are specified on this line right alongside the actual
string values.

FIGURE 4.4 A multi-
parameter function

88 Chapter 4 Writing Functions and closures

Swift enforces the notion of named parameters, which is a legacy of Objective-C. Named
parameters bring clarity to your source code by documenting exactly what is being passed.
From the code, you can clearly see that the verb and noun are the second and third param-
eters, respectively.

Feel free to replace the parameters with values of your own liking and view the results
interactively.

PARAMETERS AD NAUSEAM
Imagine you’re writing the next big banking app for the Mac, and you want to create a way
to add some arbitrary number of account balances. Something so mundane can be done a
number of ways, but you want to write a Swift function to do the addition. The problem is
you don’t know how many accounts will need to be summed at any given time.

Enter Swift’s variable parameter passing notation. It provides you with a way to tell Swift,
“I don’t know how many parameters I’ll need to pass to this function, so accept as many as
I will give.” Type in the following code, which is shown in action on lines 35 through 48 in
Figure 4.5.

FIGURE 4.5 Variable
parameter passing in
a function

the Function 89

// Parameters Ad Nauseam

func addMyAccountBalances(balances : Double...) -> Double {

 var result : Double = 0

 for balance in balances {

 result += balance

 }

 return result

}

addMyAccountBalances(77.87)

addMyAccountBalances(10.52, 11.30, 100.60)

addMyAccountBalances(345.12, 1000.80, 233.10, 104.80, 99.90)

This function’s parameter, known as a variadic parameter, can represent an unknown
number of parameters.

On line 36, your balances parameter is declared as a Double followed by the ellipsis (...)
and returns a Double. The presence of the ellipsis is the clue: It tells Swift to expect one or
more parameters of type Double when this function is called.

The function is called three times on lines 46 through 48, each with a different number of
bank balances. The totals for each appear in the Results sidebar.

You might be tempted to add additional variadic parameters in a function. Figure 4.6
shows an attempt to extend addMyAccountBalances with a second variadic parameter, but it
results in a Swift error.

This is a no-no, and Swift will quickly shut you down with an error. Only one parameter
of a function may contain the ellipsis to indicate a variadic parameter. All other parameters
must refer to a single quantity.

Since we’re on the theme of bank accounts, add two more functions: one that will find
the largest balance in a given list of balances, and another that will find the smallest balance.
Type the following code, which is shown on lines 50 through 75 in Figure 4.7.

FIGURE 4.6 Adding
additional variable
parameters

90 Chapter 4 Writing Functions and closures

func findLargestBalance(balances : Double...) -> Double {

 var result : Double = -Double.infinity

 for balance in balances {

 if balance > result {

 result = balance

 }

 }

 return result

}

func findSmallestBalance(balances : Double...) -> Double {

 var result : Double = Double.infinity

 for balance in balances {

 if balance < result {

 result = balance

 }

 }

 return result

}

findLargestBalance(345.12, 1000.80, 233.10, 104.80, 99.90)

findSmallestBalance(345.12, 1000.80, 233.10, 104.80, 99.90)

FIGURE 4.7 Functions
to find the largest and
smallest balance

the Function 91

Both functions iterate through the parameter list to find the largest and smallest balance.
Unless you have an account with plus or minus infinity of your favorite currency, these func-
tions will work well. On lines 74 and 75, both functions are tested with the same balances
used earlier, and the Results sidebar confirms their correctness.

FUNCTIONS FLY FIRST CLASS
One of the powerful features of Swift functions is that they are first-class objects. Sounds
pretty fancy, doesn’t it? What that really means is that you can handle a function just like
any other value. You can assign a function to a constant, pass a function as a parameter to
another function, and even return a function from a function!

To illustrate this idea, consider the act of depositing a check into your bank account,
as well as withdrawing an amount. Every Monday, an amount is deposited, and every Friday,
another amount is withdrawn. Instead of tying the day directly to the function name of the
deposit or withdrawal, use a constant to point to the function for the appropriate day.
The code on lines 77 through 94 in Figure 4.8 provides an example.

var account1 = (“State Bank Personal”, 1011.10)

var account2 = (“State Bank Business”, 24309.63)

func deposit(amount : Double, account : (name : String, balance : Double)) ->
p (String, Double) {

 let newBalance : Double = account.balance + amount

 return (account.name, newBalance)

}

func withdraw(amount : Double, account : (name : String, balance : Double)) ->
p (String, Double) {

 var newBalance : Double = account.balance - amount

 return (account.name, newBalance)

}

let mondayTransaction = deposit

let fridayTransaction = withdraw

let mondayBalance = mondayTransaction(300.0, account: account1)

let fridayBalance = fridayTransaction(1200, account: account2)

92 Chapter 4 Writing Functions and closures

For starters, you create two accounts on lines 77 and 78. Each account is a tuple consist-
ing of an account name and balance.

On line 80, a function named deposit is declared, and it takes two parameters: the
amount (a Double) and a tuple named account. The tuple has two members: name, which is of
type String, and balance, which is a Double that represents the funds in that account. The
same tuple type is also declared as the return type.

At line 81, a variable named newBalance is declared, and its value is assigned the sum of
the balance member of the account tuple and the amount variable that is passed. The tuple
result is constructed on line 82 and returned.

The function on line 85 is named differently (withdraw) but is effectively the same, save
for the subtraction that takes place on line 86.

On lines 90 and 91, two new constants are declared and assigned to the functions
respectively by name: deposit and withdraw. Since deposits happen on a Monday, the
mondayTransaction is assigned the deposit function. Likewise, withdrawals are on Friday,
and the fridayTransaction constant is assigned the withdraw function.

Lines 93 and 94 show the results of passing the account1 and account2 tuples to the
mondayTransaction and fridayTransaction constants, which are in essence the functions
deposit and withdraw. The Results sidebar bears out the result, and you’ve just called the
two functions by referring to the constants.

FIGURE 4.8 Demon-
strating functions as
first-class types

the Function 93

THROW ME A FUNCTION, MISTER
Just as a function can return an Int, Double, or String, a function can also return another
function. Your head starts hurting just thinking about the possibilities, doesn’t it? Actually,
it’s not as hard as it sounds. Check out lines 96 through 102 in Figure 4.9.

func chooseTransaction(transaction: String) -> (Double, (String, Double)) ->
p (String, Double) {

 if transaction == “Deposit” {

 return deposit

 }

 return withdraw

}

On line 96, the function chooseTransaction takes a String as a parameter, which it uses
to deduce the type of banking transaction. That same function returns a function, which
itself takes a Double, and a tuple of String and Double, and returns a tuple of String and
Double. Phew!

FIGURE 4.9 Return-
ing a function from a
function

94 Chapter 4 Writing Functions and closures

That’s a mouthful. Let’s take a moment to look at that line more closely and break it
down a bit. The line begins with the definition of the function and its sole parameter,
transaction, followed by the -> characters indicating the return type:

func chooseTransaction(transaction: String) ->

After that is the return type, which is a function that takes two parameters—the Double,
and a tuple of Double and String—as well as the function return characters ->:

(Double, (String, Double)) ->

And finally, the return type of the returned function, a tuple of String and Double.
What functions did you write that meet these criteria? The deposit and withdraw func-

tions, of course! Look at lines 80 and 85. Those two functions are bank transactions that
were used earlier. Since they are defined as functions that take two parameters (a Double and
a tuple of String and Double) and return a tuple of Double and String, they are appropriate
candidates for return values in the chooseTransaction function on line 96.

Back to the chooseTransaction function: On line 97, the transaction parameter, which is a
String, is compared against the constant string “Deposit” and if a match is made, the deposit
function is returned on line 98; otherwise, the withdraw function is returned on line 101.

OK, so you have a function which itself returns one of two possible functions. How do
you use it? Do you capture the function in another variable and call it?

Actually, there are two ways this can be done (Figure 4.10).

FIGURE 4.10 Calling
the returned function
in two different ways

the Function 95

// option 1: capture the function in a constant and call it

let myTransaction = chooseTransaction(“Deposit”)

myTransaction(225.33, account2)

// option 2: call the function result directly

chooseTransaction(“Withdraw”)(63.17, account1)

On line 105 you can see that the returned function for making deposits is captured in
the constant myTransaction, which is then called on line 106 with account2 increasing its
amount by $225.33.

The alternate style is on line 109. There, the chooseTransaction function is being
called to gain access to the withdraw function. Instead of assigning the result to a constant,
however, the returned function is immediately pressed into service with the parameters
63.17 and the first account, account1. The results are the same in the Results sidebar: The
withdraw function is called and the balance is adjusted.

A FUNCTION IN A FUNCTION IN A…
If functions returned by functions and assigned to constants isn’t enough of an enigma
for you, how about declaring a function inside another function? Yes, such a thing exists.
They’re known as nested functions.

Nested functions are useful when you want to isolate, or hide, specific functionality that
doesn’t need to be exposed to outer layers. Take, for instance, the code in Figure 4.11.

// nested function example

func bankVault(passcode : String) -> String {

 func openBankVault(_: Void) -> String {

 return “Vault opened”

 }

 func closeBankVault() -> String {

 return “Vault closed”

 }

 if passcode == “secret” {

 return openBankVault()

 }

 else {

 return closeBankVault()

 }

}

print(bankVault(“wrongsecret”))

print(bankVault(“secret”))

96 Chapter 4 Writing Functions and closures

On line 112, a new function, bankVault, is defined. It takes a single parameter, passcode,
which is a String, and returns a String.

Lines 113 and 116 define two functions inside the bankVault function: openBankVault
and closeBankVault. Both of these functions take no parameter and return a String.

On line 119, the passcode parameter is compared with the string “secret” and if a match
is made, the bank vault is opened by calling the openBankVault function. Otherwise, the
bank vault remains closed.

INTO THE VOID

On line 113 you’ll notice a new Swift keyword: Void. It means exactly what you might
think: emptiness. The Void keyword is used mostly as a placeholder when declaring
empty parameter lists, and is optional in this case. The underscore that precedes it is
known as an “unnamed parameter,” which is essentially an anonymous variable name.
On line 116, you declare the closeBankVault function without any parameter, which
assumes Void. In any case, functions that have no parameters can simply be declared
without any parameters, and they’re used here only for illustrative purposes. In fact, both
function definitions on line 113 and 116 are equivalent for all practical purposes.

FIGURE 4.11 Nested
functions in action

the Function 97

Lines 127 and 128 show the result of calling the bankVault method with an incorrect
and correct passcode. What’s important to realize is that the openBankVault and
closeBankVault functions are “enclosed” by the bankVault function, and are not
known outside of that function.

If you were to attempt to call either openBankVault or closeBankVault outside of the
bankVault function, you would get an error. That’s because those functions are not in scope.
They are, in effect, hidden by the bankVault function and are unable to be called from the
outside. Figure 4.12 illustrates an attempt to call one of these nested functions.

In general, the obvious benefit of nesting functions within functions is that it prevents
the unnecessary exposing of functionality. In Figure 4.12, the bankVault function is the sole
gateway to opening and closing the vault, and the functions that perform the work are iso-
lated within that function. Always consider this when designing functions that are intended
to work together.

DEFAULT PARAMETERS
As you’ve just seen, Swift functions provide a rich area for utility and experimentation. A lot
can be done with functions and their parameters to model real-world problems. Functions
provide an interesting feature known as default parameter values, which allow you to
declare functions that have parameters containing a “prefilled” value.

FIGURE 4.12 The result
of attempting to call a
nested function from a
different scope

98 Chapter 4 Writing Functions and closures

Let’s say you want to create a function that writes checks. Your function would take two
parameters: a payee (the person or business to whom the check is written) and the amount.
Of course, in the real world, you always want to know these two pieces of information, but
for now, think of a function that would assume a default payee and amount in the event the
information wasn’t passed.

Figure 4.13 shows such a function on lines 130 through 132. The writeCheckTo function
takes two String parameters, the payee and amount, and returns a String that is simply a
sentence describing how the check is written.

func writeCheckTo(payee : String = “Unknown”, amount : String = “10.00”) ->
p String {

 return “Check payable to “ + payee + “ for $” + amount

}

writeCheckTo()

writeCheckTo(“Donna Soileau”)

writeCheckTo(“John Miller”, amount : “45.00”)

Take note of the declaration of the function on line 130:

func writeCheckTo(payee : String = “Unknown”, amount : String = “10.00”) ->
p String

FIGURE 4.13 Using
default parameters in a
function

the Function 99

What you haven’t seen before now is the assignment of the parameters to actual values
(in this case, payee is being set to “Unknown” by default and amount is being set to “10.00”).
This is how you can write a function to take default parameters—simply assign the param-
eter name to a value!

So how do you call this function? Lines 134 through 136 show three different ways:

 J Line 134 passes no parameters when calling the function.

 J Line 135 passes a single parameter.

 J Line 136 passes both parameters, with the second parameter following its parameter
name amount.

In the case where no parameters are passed, the default values are used to construct the
returned String. In the other two cases, the passed parameter values are used in place of the
default values, and you can view the results of the calls in the Results sidebar.

Recall that Swift enforces the requirement that the parameter name must be passed for all
but the first parameter. On line 135, only one parameter is used, so the name is not passed:

writeCheckTo(“Donna Soileau”)

On line 136, two parameter names are used, and the parameter name is specified prior to
the amount string:

writeCheckTo(“John Miller”, amount : “45.00”)

Default parameters give you the flexibility of using a known value instead of taking the
extra effort to pass it explicitly. They’re not necessarily applicable for every function out
there, but they do come in handy at times.

WHAT’S IN A NAME?
As Swift functions go, declaring them is easy, as you’ve seen. In some cases, however, what
really composes the function name is more than just the text following the keyword func.

As I touched on earlier, each parameter in a Swift function has the parameter name pre-
ceding the parameter. This gives additional clarity and description to a function name. Up
to this point, you’ve been told that it must be passed when calling the function. Although it
is good practice, it is not entirely necessary. When declaring a function, an implicit external
parameter name can be notated with an underscore preceding the parameter name. Con-
sider another check writing function in Figure 4.14, lines 138 through 140.

func writeCheckFrom(payer : String, _ payee : String, _ amount : Double) ->
p String {

 return “Check payable from \(payer) to \(payee) for $\(amount)”

}

writeCheckFrom(“Dave Johnson”, “Coz Fontenot”, 1_000.0)

100 Chapter 4 Writing Functions and closures

FIGURE 4.14 A function with an implicit external parameter name

FIGURE 4.15 A function called with parameter names

This function is different from the earlier check writing function on lines 130 through
132 in two ways:

 J An underscore and a space precede the parameters named payee and amount

 J There are no default parameters

On line 142, the new writeCheckFrom function is called with three parameters: two
String values and a Double value. From the name of the function, its purpose is clearly to
write a check. When writing a check, you need to know several things: who the check is
being written for, who is writing the check, and the amount the check is for. A good guess is
that the Double parameter is the amount, which is a number. But without actually looking at
the function declaration itself, how would you know what the two String parameters actu-
ally mean? Even if you were to deduce that they are the payer and payee, how do you know
which is which, and in which order to pass the parameters?

Swift’s default behavior of insisting on the use of parameter names solves this problem
and makes the intent of your code easier to understand; it makes very clear to anyone read-
ing the calling function what the intention is and the purpose of each parameter. Figure 4.15
illustrates this.

func writeBetterCheckFrom(payer : String, payee : String, amount : Double) ->
p String {

 return “Check payable from \(payer) to \(payee) for $\(amount)”

}

writeBetterCheckFrom(“Fred Charlie”, payee : “Ryan Hanks”, amount : 1350.0)

On line 144, you declare a function, writeBetterCheckFrom, which takes the same num-
ber of parameters as the function on line 138. However, each of the parameters in the new
function omits the underscore.

The extra bit of typing pays off when the writeBetterCheckFrom function is called.
Looking at that line of code alone, the order of the parameters and what they indicate is
clear: Write a check from Fred Charlie to Ryan Hanks for a total of $1350.

the Function 101

WHEN IT’S GOOD ENOUGH
Parameter names bring clarity to functions, as you’ve just seen. In addition, Swift allows
external parameter names to decorate a function declaration. This can be useful if you want
to bring additional clarity to your function.

Line 150 of Figure 4.16 shows this in action. The new method, writeBestCheck has dropped
the From in the name. Instead, it has moved to the first parameter as an external parameter name.
Other external parameter names in this function declaration are to and total.

On line 154, the parameter names are used as external parameter names to call the func-
tion, and the use of those names clearly shows what the function’s purpose and parameter
order is: a check written from Bart Stewart to Alan Lafleur for a total of $101. Note that when
using external parameter names, the first parameter also requires the parameter name to be
passed. This is different from what you saw earlier when your earlier functions weren’t using
external parameter names.

func writeBestCheck(from payer : String, to payee : String,
p total amount : Double) -> String {

 return “Check payable from \(payer) to \(payee) for $\(amount)”

}

writeBestCheck(from: “Bart Stewart”, to: “Alan Lafleur”, total: 101.0)

TO USE OR NOT TO USE?
Parameter names bring clarity to functions, but they also require more typing on the part of
the coder who uses your functions. Since they are optional parts of a function’s declaration,
when should you use them?

In general, if the function in question can benefit from the additional clarity of having
parameter names provided for each parameter, by all means use them. The check writing
example is such a case. Avoid parameter ambiguity in the cases where it might exist. On the
other hand, if you’re creating a function that just adds two numbers (see lines 156 through
160 in Figure 4.17), parameter names add little to nothing of value for the caller. You can just
use the underscore (recall implicit external parameter names) and avoid passing the param-
eter name altogether.

func addTwoNumbers(number1 : Double, _ number2 : Double) -> Double {

 return number1 + number2

}

addTwoNumbers(33.1, 12.2)

102 Chapter 4 Writing Functions and closures

FIGURE 4.16 Using the external parameter name syntax

DON’T CHANGE MY PARAMETERS!
Functions are prohibited from changing the values of parameters passed to them, because
parameters are passed as constants and not variables. Consider the function cashCheck on
lines 162 through 169 in Figure 4.18.

func cashCheck(from : String, to : String, total : Double) -> String {

 if to == “Cash” {

 to = from

 }

 return “Check payable from \(from) to \(to) for $\(total) has been cashed”

}

cashCheck(“Jason Guillory”, to: “Cash”, total: 103.00)

The function takes the same parameters as your earlier check writing function: who the
check is from, who the check is to, and the total. On line 163, the to variable is checked for the
value “Cash” and if it is equal, it is reassigned the contents of the variable from. The rationale
here is that if you are writing a check to “Cash,” you’re essentially writing it to yourself.

Notice the error: Cannot assign to value: ‘to’ is a ‘let’ constant. Swift is saying
that the parameter to is a constant, and since constants cannot change their values once
assigned, this is prohibited and results in an error.

FIGURE 4.17 When
parameter names are
not necessary

FIGURE 4.18 Assigning
a value to a parameter
results in an error.

the Function 103

FIGURE 4.19 A potential workaround to the parameter change problem

FIGURE 4.20 Using variable parameters to allow modifications

To get around this error, you could create a temporary variable, as done in Figure 4.19.
Here, a new variable named otherTo is declared on line 163 and assigned to the to variable,
and then possibly to the from variable on line 165, assuming the condition on line 164 is met.
This is clearly acceptable and works fine for your purposes, but Swift gives you a better way.

With a var declaration on a parameter, you can tell Swift that the parameter is intended
to be variable and can change within the function. All you need to do is add the keyword
before the parameter name (or external parameter name in case you have one of those).
Figure 4.20 shows a second function, cashBetterCheck, which declares the to parameter
as a variable parameter. Now the code inside the function can modify the to variable
without receiving an error from Swift, and the output is identical to the workaround
function above it.

func cashBetterCheck(from : String, var to : String, total : Double) ->
p String {

 if to == “Cash” {

 to = from

 }

 return “Check payable from \(from) to \(to) for $\(total) has been cashed”

}

cashBetterCheck(“Ray Daigle”, to: “Cash”, total: 103.00)

104 Chapter 4 Writing Functions and closures

FIGURE 4.21 Using the inout keyword to establish a modifiable parameter

THE INS AND OUTS
As you’ve just seen, a function can be declared to modify the contents of one or more of its
passed variables. The modification happens inside the function itself, and the change is not
reflected back to the caller.

Sometimes having a function change the value of a passed parameter so that its new
value is reflected back to the caller is desirable. For example, in the cashBetterCheck func-
tion on lines 172 through 177, having the caller know that the to variable has changed to
a new value would be advantageous. Right now, that function’s modification of the vari-
able is not reflected back to the caller. Let’s see how to do this in Figure 4.21 using Swift’s
inout keyword.

func cashBestCheck(from : String, inout to : String, total : Double) ->
p String {

 if to == “Cash” {

 to = from

 }

 return “Check payable from \(from) to \(to) for $\(total) has been cashed”

}

var payer = “James Perry”

var payee = “Cash”

print(payee)

cashBestCheck(payer, to: &payee, total: 103.00)

print(payee)

Lines 181 through 186 define the cashBestCheck function, which is virtually identical to
the cashBetterCheck function on line 172, except the second parameter to is no longer a
variable parameter—the var keyword has been replaced with the inout keyword. This new
keyword tells Swift that the parameter’s value can be expected to change in the function and

the Function 105

that the change should be reflected back to the caller. With that exception, everything else is
the same between the cashBetterCheck and cashBestCheck functions.

On lines 188 and 189, two variables are declared: payer and payee, with both being
assigned String values. This is done because inout parameters must be passed a variable.
A constant value will not work, because constants cannot be modified.

On line 190, the payee variable is printed, and the Results sidebar for that line clearly
shows the variable’s contents as “Cash”. This is to make clear that the variable is set to its
original value on line 189.

On line 191, you call the cashBestCheck function. Unlike the call to cashBetterCheck
on line 179, you are passing variables instead of constants for the to and from parameters.
More so, for the second parameter (payee), we are prepending the ampersand character (&) to
the variable name. This is a direct result of declaring the parameter in cashBestCheck as an
inout parameter. You are in essence telling Swift that this variable is an inout variable and
that you expect it to be modified once control is returned from the called function.

On line 193, the payee variable is again printed. This time, the contents of that variable do
not match what was printed on line 190 earlier. Instead, payee is now set to the value “James
Perry”, which is a direct result of the assignment in the cashBestCheck function on line 183.

BRINGING CLOSURE
Functions are great, and in the earlier code you’ve written, you can see just how versa-
tile they can be for encapsulating functionality and ideas. Although the many contrived
examples you went through may not give you a full appreciation of how useful they can be
in every scenario, this will change as you proceed through the book. Functions are going to
appear over and over again both here and in your code, so understand them well. You may
want to re-read this chapter to retain all the ins and outs of functions.

I’ve got a little more to talk about before I close this chapter, however. Your tour of func-
tions would not be complete without talking about another significant and related feature of
functions in Swift: closures.

In layman’s terms, a closure is essentially a block of code, like a function, that “closes in”
or “encapsulates” all the “state” around it. All variables and constants declared and defined
before a closure are “captured” in that closure. In essence, a closure preserves the state of the
program at the point that it is created.

Computer science folk have another word for closures: lambdas. In fact, the very notion
of the function you have been working with throughout this chapter is actually a special
case of a closure—a function is a closure with a name.

So if functions are actually special types of closures, then why use closures? It’s a fair
question, and the answer can be summed up this way: Closures allow you to write simple
and quick code blocks that can be passed around just like functions, but without the over-
head of naming them.

106 Chapter 4 Writing Functions and closures

In essence, closures are anonymous blocks of executable code.
Swift closures have the following structure:

{ (parameters) -> return_type in

 statements

}

This almost looks like a function, except that the keyword func and the name is missing,
the curly braces encompass the entire closure, and the keyword in follows the return type.

Let’s see closures in action. Figure 4.22 shows a closure being defined on lines 196 through
201. The closure is being assigned to a constant named simpleInterestCalculationClosure.
The closure takes three parameters: loanAmount, interestRate (both Double types), and
years (an Int type). The code computes the future value of a loan over the term and returns
it as a Double.

// Closures

let simpleInterestCalculationClosure = { (loanAmount : Double,
p var interestRate : Double, years : Int) -> Double in

 interestRate = interestRate / 100.0

 var interest = Double(years) * interestRate * loanAmount

 return loanAmount + interest

}

func loanCalculator(loanAmount : Double, interestRate : Double, years :
p Int, calculator : (Double, Double, Int) -> Double) -> Double {

 let totalPayout = calculator(loanAmount, interestRate, years)

 return totalPayout

}

var simple = loanCalculator(10_000, interestRate: 3.875, years: 5, calculator:
p simpleInterestCalculationClosure)

FIGURE 4.22 Using
a closure to compute
simple interest

Bringing closure 107

The formula for simple interest calculation is:

futureValue = presentValue * interestRate * years

Lines 203 through 206 contain the function loanCalculator, which takes four parameters:
the same three that the closure takes, and an additional parameter, calculator, which is a clo-
sure that takes two Double types and an Int type and returns a Double type. Not coincidentally,
this is the same parameter and return type signature as your previously defined closure.

On line 208, the function is called with four parameters. The fourth parameter is the
constant simpleInterestCalculationClosure, which will be used by the function to com-
pute the total loan amount.

This example becomes more interesting when you create a second closure to pass to the
loanCalculator function. Since you’ve already computed simple interest, you can now write
a closure that computes the future value of money using the compound interest formula:

futureValue = presentValue (1 + interestRate)years

Figure 4.23 shows the compound interest calculation closure defined on lines 210
through 215, which takes the exact same parameters as the simple calculation closure on line
196. On line 217, the loanCalculator function is again called with the same parameters as
before, except the compoundInterestCalculationClosure is passed as the fourth parameter.
As you can see in the Results sidebar, compound interest yields a higher future value of the
loan than simple interest does.

let compoundInterestCalculationClosure = { (loanAmount : Double,
p var interestRate : Double, years : Int) -> Double in

 interestRate = interestRate / 100.0

 var compoundMultiplier = pow(1.0 + interestRate, Double(years))

FIGURE 4.23 Adding
a second closure that
computes compound
interest

108 Chapter 4 Writing Functions and closures

 return loanAmount * compoundMultiplier

}

var compound = loanCalculator(10_000, interestsRate: 3.875, years: 5,
p calculator: compoundInterestCalculationClosure)

On line 212 you may notice something new: a reference to a function named pow. This
is the power function, and it is part of Swift’s math package. The function takes two Double
parameters: the value to be raised and the power to raise it to. It returns the result as a
Double value.

SUMMING IT UP
I’ve spent the entire chapter discussing functions and their use. Toward the end, you learned
about closures and how they are essentially nameless functions that can be passed around to
do useful work. As I indicated earlier, functions and closures are the foundations on which
Swift apps are written. They appear everywhere and are an integral part of the development
process. Knowing how they work and when to use them is a skill you will acquire over time.

In fact, there are even more things about functions and closures that I didn’t touch on in
this chapter. There’s no need to overload you on every possible feature they have; I’ll cover
those extras later in the book. For now, you have enough of the basics to start doing useful
programming.

Also, feel free to work with the code in the playground for this chapter. Change it, modify
it, add to it, and make a mess of it if you want. That’s what playgrounds are for, after all!

STAY CLASSY
With functions and closures covered, I’ll turn your attention to the concept of the class. If
you are familiar with object-oriented programming (OOP), Swift’s notion of a class is similar
to that of Objective-C and C++. If you’re new to the idea of objects and OOP, don’t worry—
I’ll explain all that terminology in the next chapter.

Meanwhile, feel free to take a break and review the notes and code in this chapter, as well
as experiment with your playground file. When you’re ready, proceed to Chapter 5, and I’ll
get down and dirty with classes.

stay classy 109

INDEX 303

INDEX

NUMBERS
2 × 2 matrix, 264–266

600 × 600 view space, 224

SYMBOLS
./ prefix, using with shell scripts, 275

..< syntax, using, 59

-> characters, using with functions, 85

+ (addition) operation, performing, 21

&& (AND) logical operator, 261

: (colon), using with variables and
constants, 18

, (commas), using with arrays, 35

// (comments), converting lines into, 209

/ (division) operation, performing, 21–22

. (dot) notation, using with methods, 117

== (double equal) sign, 67–69

= (equal to) comparison, 24

! (exclamation mark)

ending strings with, 10

using with optionals, 195

in Xcode, 186

> (greater than) comparison, 24, 69

>= (greater than or equal) comparison,
24, 69

< (less than) comparison, 24, 69

<= (less than or equal) comparison, 24, 69

* (multiplication) operation, performing,
21–22

! (NOT) logical operator, 260

!= (not equal to) comparison, 24, 69

% (modulo) operation, performing, 21

| | (OR) logical operator, 261–262

.. (periods), using with for-in loops, 58–59

+ (plus sign) operator, using with strings, 19

? (question mark), using with
dictionaries, 43

− (subtraction) operation, performing, 21

_ (underscore)

using with numeric representations, 23

using with parameter names, 100–101

using with Void keyword, 97

A
action methods, using in Xcode, 187.

See also methods

actions and outlets, connecting, 188–189

addition (+) operation, performing, 21

addition and multiplication code, 266

advanceGame method, 242

aliases, using, 27

analyzing tools in IDE, 172

AND (&&) logical operator, 261

animateWithDuration method, 239–240

AppDelegate.swift file, 288

AppDelegate.swift source file, 176–177

append method, using with extensions,
163–164

Apple

Developer Program, 301

Game Center, 283

applicationDidFinishLaunching
method, 176

304 INDEX

arguments parameter, including in shell
scripts, 276

arrays. See also empty array

adding values to, 36

combining, 41–42

dictionaries of, 47–50

extending, 38–39

including in candy jar, 34–36

interrogating for values, 35–36

iterating, 52–54, 60

mutability, 37

removing values, 39–40

replacing values, 39–40

reviewing contents of, 40

using commas (,) with, 35

value types, 37

Attributes inspector. See also properties

“Shows touch on highlight” option, 246

using with buttons, 225–226

B
backgroundColor property, 239–240

balances, finding in banking app, 91

bank account, depositing check into, 92–94

banking app, 89–92

bankVault function, 97–98

base class, modeling, 125–128.
See also classes

Bash shell, 272

bayWindow object, 130–131

binary notation, 23

/bin/sh in pathlist, 274

Bool type, 15, 24–26, 159.
See also someCondition Boolean
expression

Boolean expressions, comparing, 261

Bourne shell, 274

break statement, 73, 80–81

breakpoints

encountering, 207, 256–257

setting, 206, 259

bugs. See also debug area in Xcode

analyzing calculate method, 206

asking questions about, 205

locating, 206

setting breakpoints, 206–209

button sequence, highlighting, 239

buttonByColor method, 238–239

buttons for FollowMe game.
See also randomButton method

creating, 226–227

duplicating, 226

keeping centered on screen, 228–230

positioning, 226–227

resizing, 226

selecting, 226

using Attributes inspector with, 225–226

C
C (Celsius), computing, 162–163

calculate method, analyzing, 206

Calculate Simple button, naming, 202

candy jar example

arrays, 34–36

as container, 34

let keyword, 35

String constants, 35

values, 34–35

cashBestCheck function, 105–106

INDEX 305

cashBetterCheck function, 104–106

cashCheck function, 103

catching errors, 270–272

celsiusToFahrenheit method, 86–87

Character type, 15, 20

checkValidPassword() function, 269–271

chooseTransaction function, 94

class keyword, defining objects with, 115

class methods, 239

classes. See also base class; superclasses
and subclasses

components of, 113

creating for interest calculator, 183–188

vs. protocols, 148–151

vs. structures, 142

turning into objects, 115–116

using, 252

closeBankVault function, declaring, 97

closures

using, 252

using in extensions, 166–167

using with functions, 106–109

Cocoa frameworks, availability of, 197

CocoaConf, 301

code, inspecting, 77–80

Coin.atlas folder, 288

ColaMachine class, 159–161

collections

iterating, 52–55

iterating through, 60

non-ordinal traversal, 61

colon (:), using with variables and
constants, 18

color, changing for newBackDoor object,
123–124

colorTouched constant, 241

CombinationDoor class, 132–135

commands

:help, 10

let, 14

:quit, 10

referencing, 9

retyping automatically, 10

commas (,), using with arrays, 35

comments (//), converting lines into, 209

comparisons, making, 24, 67–68

compiler errors, resource for, 302

compiler in IDE, 172

compound interest, checking calculation
of, 210

compoundButtonClicked method, 203–204

compoundInterestCalculationClosure, 108

compoundInterestCalculator method, 203

computed properties, 162.
See also properties

concatenating strings, 19–20

connecting

actions and outlets, 188–189

buttons, 203

constants

on cases, 74

using, 13–14

versus variables, 14

constraints, setting for FollowMe game,
228–230

container, candy jar as, 34

convenience initializers, 136–138.
See also init method

copyVar structure, 144

currency format, displayed, 196

306 INDEX

D
data, grouping with tuples, 28–29

debug area in Xcode, 175, 207, 256.
See also bugs

debug toolbar, 208

debugger in IDE, 172

declarations

making, 11–13

using long forms of, 51

decrement, post, 63

default keyword, 73

default parameter values, 98–100

deinit method, 254

delegation design pattern, using with
protocols, 156–159

deposit function, declaring, 93

design patterns, 230

Developer Program, joining, 301

dictionaries. See also empty dictionary

? (question mark) used with, 43

adding entries, 45

of arrays, 47–50

declaring and ordering, 43

invalid values, 44

iterating, 54–55

keys, 42–43

looking up entries, 43–44

names and values, 42–43

nil values, 44

order of content, 55

placing entries in, 42–43

removing entries, 46–47

updating entries, 46

didReceiveMemoryWarning method, 238

division (/) operation, performing, 21–22

Door object

close and open methods, 116–117

creating, 114–115

instantiating, 116

lock and unlock methods, 117–120, 134

dot (.) notation, using with methods, 117

do/try/catch construct, 270

double equal (==) sign, 67–69

Double type, 12–13, 15, 20, 193–194

Downhill Challenge game.
See also gameplay

Assets group, 288

Classes group, 288

contents of folder, 284

Game Over scene, 286

Game scene, 286, 293–298

gameplay, 284–285

GameViewController.swift class,
298–300

going through source code, 300

Home scene, 286, 289–293

Leaderboard scene, 286, 291

playing, 285–286

premise, 283

project files, 287

running in simulator, 285–286

Scenes group, 289

SKNode class, 298

snowman player, 283–284

social connectivity, 283

viewOldLoad() function, 299

INDEX 307

E
editor area in Xcode, 175, 198

editor in IDE, 172

else clause, executing, 68

empty array, declaring, 50–51.
See also arrays

empty dictionary, creating, 51–52.
See also dictionaries

enumerate() method

using with arrays, 54

using with dictionaries, 54–55

enumerations, 138–141, 236

equal vs. identical objects, 267–268

equality, testing for, 68

error type, 268–269

errors

auto correcting, 231

catching, 270–272

do/try/catch construct, 270

throwing, 12, 268–270

exclamation mark (!)

ending strings with, 10

using with optionals, 195

in Xcode, 186

exiting loops, 80–81

extending types, 161–165

extensions

append method, 163–164

computed properties, 162

Double type, 193–194

for extending Int type, 161

form of, 160

prepend method, 163–164

String type, 163

temperature units, 162–163

using closures in, 166–167

external parameter names, 102

F
F (Fahrenheit), computing, 162–163

fahrenheitToCelsius function, 85

false and true values, 24

first-class objects, functions as, 92–94.
See also objects

firstClassLetter object, 254

Float type, 15

floating point number, 11–12

FollowMe game. See also gameplay

600 × 600 view, 224

adjusting difficulty, 247

advanceGame method, 242

animateWithDuration method, 239–240

backgroundColor property, 239–240

buttonByColor method, 238–239

ButtonColor enumeration, 236

buttons, 225–227

buttonTouched action method, 246

coding, 231–235

colorTouched constant, 241

constraints, 228–230

container view, 228

creating, 222–223

didReceiveMemoryWarning method, 238

enumerations, 236

game methods, 238–242

highlightColor variable, 239

highlighting button sequence, 239

importing UIKit, 236

308 INDEX

FollowMe game (continued)

improving playability, 247

index for next button, 237

iPhone 5s simulator, 227

keeping track of turns, 237

Main.storyboard file, 224, 245

model objects, 237

optional chaining, 241

overridable methods, 238

playing, 247

playSequence method, 239–240, 244

randomButton method, 244

randomness, 243

restarting, 244

rounds, 237, 244

switch/case construct, 238–239

UI design, 224–230

UIButton tag property, 241

view objects, 237

winning and losing, 242–244

winningNumber variable, 237

for loop, variation of, 61

for-in loops

as enumeration mechanism, 58–59

nesting, 55

frontDoor object, 116–117

func keyword, 85, 100

functions. See also methods

-> characters used with, 85

calling, 86–87

calling within parameter names, 101

closures, 106–109

coding, 84–86

as first-class objects, 92–94

mathematical notation, 84

with multiple parameters, 87–88

naming, 100–101

nesting, 96–98

results of calling, 86

returning values of types, 85

returning from functions, 94

G
Game Center, 283

game methods, 238–242

Game Over scene, 286

Game scene, 286, 293–298

didBeginContact() method, 295

didEvaluateActions() method, 297–298

didMoveToView() method, 294–295

GameLogic object, 293

NewObject class, 293

score and help nodes, 294

setPlayer() method, 295

snowmanAnimate() method, 295

update() method, 296–297

GameKit framework, 282

GameLogic.swift class, 288

GameOverScene.swift class, 288

gameplay. See also Downhill Challenge
game; FollowMe game

button arrangement, 221–222

elements, 221

losing, 221

play flow, 221

playability, 221

INDEX 309

randomness, 221

UI design, 221–222

winning, 221

GameScene.swift class, 288

GameViewController.swift class, 288

SKNode class, 298–299

SKView class, 300

generic method, 263–264. See also methods

{ get set }, using with protocols, 152–153

gigabytes (gb), converting Int to, 161–162

Go menu, 8

greater than (>) comparison, 24, 69

greater than or equal (>=) comparison,
24, 69

gutter, clicking lines in, 206

H
hash bang syntax, 274–276

Hello, World! 10–11

:help command, typing, 10

Help menu in Xcode, 278

hexadecimal notation, 23

highlightColor variable, 239

Home scene, 286, 289–293

homeMailBox object, 254

HomeScene.swift class, 288

House constant, 150

HUD (heads-up display) window,
appearance of, 188

I
@IBAction tag, appearance of, 188

@IBOutlet tag, appearance of, 188

IDE (integrated development environment),
components of, 172

identical vs. equal objects, 267–268

if statements

comparing numbers in, 69

multiple, 70–72

using, 66–70

using in playground, 67

immutable String values, 36–37

implicit external parameter name, 100–101

implicitly unwrapped optional, 186–187.
See also optionals

import statement

in shell scripts, 276

using in Xcode, 177, 184–185

increment, post, 63

inheritance

and protocols, 155–156

superclasses and subclasses, 124–125

init method, 116, 121–123, 136, 159, 253, 290.
See also convenience initializers

inout keyword, using to modify
parameters, 105

input leniency, 200

insert() method, using with arrays, 41

inspecting code, 77–80

inspector icons, locating, 225

instantiation, 115–116

NiceDoor class, 131

subclasses, 130–136

310 INDEX

Int type, 15–16, 20

converting, 161–162

explained, 11

extending, 161–162

optionals, 29–30

interactivity, benefits of, 7

interest calculator. See also simple interest

adding Result label, 182–183

Calculate Simple button, 202

compoundButtonClicked method,
203–204

compoundInterestCalculator
method, 203

creating classes, 183–188

displaying in editor area, 198

encountering bugs, 205–210

file types, 184

formatted input, 199

inputs and outputs, 179

labels, 181

optimizing window size, 183

Push Button element, 180

renaming button title, 182

SimpleInterest class, 184–185

testing, 205

text fields, 182

UI (user interface), 180–182

interestRate variable, 208–209

iOS apps. See FollowMe game

iPhone

5s simulator, 227

aspect ratio, 222

iterating collections, 52–55

K
K (Kelvin), computing, 162–163

kilobytes (kb), converting Int to, 161–162

L
labels, creating for interest calculator, 181

lambdas, using with functions, 106–109

large number notation, 23

launch method, using with shell scripts,
276–277

LaunchScreen.xib file, 288

lazy property, 258. See also properties

Leaderboard scene, 286, 291

Left Arrow key, using, 10

leniency, turning on, 200

less than (<) comparison, 69

less than or equal (<=) comparison, 69

let command

in candy jar example, 35

using, 14

Letter class, 253–254

limits, upper and lower, 16

lines in gutter

clicking, 206

converting to comments, 209

stepping over, 208

LLDB debugger, typing commands in,
207–208

LLVM (low level virtual machine), 250

loanCalculator function, 108

lock and unlock methods, 117–120, 134, 150

INDEX 311

logical operators, 259–260

AND (&&), 261

OR (| |), 261

NOT (!), 260

loops, exiting, 80–81

M
MacTech Conference, 301

Mailbox class, 253–254

MailChecker class, 257–258

MainMenu.xib file, 179

Main.storyboard file, 224, 245, 288

math

binary notation, 23

expressions, 22

hexadecimal notation, 23

large number notation, 23

mixing numeric types, 22

numeric representations, 23

octal notation, 23

operations, 21

scientific notation, 23

matrix addition and multiplication
code, 266

megabytes (mb), converting Int to, 161–162

memory address, 250

memory leaks, 251–252

memory management

LLVM (low level virtual machine), 250

value vs. reference, 250–251

methods, 113. See also action methods;
functions; generic method;
type methods

specifying as mutating, 164–165

using dot (.) notation with, 117

.minor and .max, adding to types, 16

mobile app. See FollowMe game

modulo (%) operation, performing, 21

multiplication (*) operation

and addition code, 266

performing, 21–22

mutable array

creating, 37

using, 38

mutating, specifying methods as, 164–165

MVC (model-view-controller), 230–231, 237

MyFirstSwiftApp project, 175, 184

N
navigator area in Xcode, 175

nested functions, 96–98

nesting for-in loops, 55

newBackDoor object, changing color of,
123–124

newBalance variable, declaring, 93

NewDoor class, 117–118

init method, 121–123

self keyword, 122

newFrontDoor object, properties of, 120

NewLockUnlockProtocol, 152

NiceDoor class

creating, 128–129

instantiating, 131

NiceWindow class, creating, 128–129

nil value, 29–30, 186, 194–195

NOT (!) logical operator, 260

not equal to (!=) comparison, 24, 69

notifications, using in Cocoa, 177

312 INDEX

NSNumberFormatter class, 192, 194,
196–197, 208

Attributes inspector, 199

locating, 198

NSString method, 20

NULL value, 29

number formatting.
See NSNumberFormatter class

numbers, comparing in if statements, 69

numeric representations, 23

numeric types

mixing, 22

upper and lower limits, 16

O
objects. See also first-class objects

defining with class keyword, 115

equal vs. identical, 267–268

properties and behaviors, 112

testing for identity, 268

turning classes into, 115–116

Object.swift class, 288

octal notation, 23

OOP (object-oriented programming), 112

base class, 125–128

inheritance, 124

subclasses, 128–136

operator overloading, 264–266

optional chaining, 241

optional Int, 29–30

optionals. See also implicitly unwrapped
optional

explained, 186

unwrapping, 195

OR (| |) logical operator, 261–262

outlets and actions, connecting, 188–189

override keyword, 134

P
parameter names

best practices, 102–103

external, 102

implicit external, 100–101

parameter values, prohibited changing of,
103–105

parameters. See also unnamed parameter

defaults, 98–100

passing to functions, 88–89

setting values for, 100

using temporary variables with, 104–105

variadic, 90

passcode parameter, 97

passwords, checking and trying, 270–272

peppers example. See dictionaries

periods (.), using with for-in loops, 58–59

playground

Timeline pane, 167

using in Xcode, 64–65

playSequence method, 239–240, 244

plus sign (+) operator, using with strings, 19

Portal class, 125–128, 148

post increment and decrement, 63

prepend method, using with extensions,
163–164

print method, using, 26–27, 35

print() method, using, 10–11

profiling tools in IDE, 172

project manager in IDE, 172

INDEX 313

project window in Xcode, 174–178

projects

MyFirstSwiftApp, 175

saving in Xcode, 174

properties, 112. See also Attributes
inspector; computed properties;
lazy property

protocols

adding variables to, 151

adopting multiple, 153–154

vs. classes, 148–151

delegation design pattern, 156–159

and inheritance, 155–156

using, 151–153

Push Button element, creating for interest
calculator, 180

Q
question mark (?), using with

dictionaries, 43

:quit command, typing, 10

quitting REPL, 34

R
$R3? temporary variable, 25

randomButton method, 244.
See also buttons for FollowMe game

randomness, including in games, 243

raw values, using with enumerations, 139.
See also values

Rectangle structure, using with
protocols, 154

reference cycle

breaking, 256–257

in closures, 257–259

explained, 252

firstClassLetter object, 254–256

homeMailBox object, 254–256

Letter and Mailbox classes, 253–254

MailChecker class, 257–258

test code, 254–256

reference types vs. value types, 143–145,
250–252

repeat-while loop, 76–77

REPL (Read-Eval-Print-Loop) tool

commands, referencing, 10

quitting, 34

temporary variable, 25

Results sidebar, contents of, 77–80

returned functions, calling, 94–96

S
safety, emphasis on, 36

saving projects in Xcode, 174

scientific notation, 23

Scoville units, 42

securityDoor object, 134

self keyword, 122, 162

setLabel() method, calling for Home
scene, 291

shell scripts

./ prefix, 275

arguments parameter, 276

/bin/sh, 274

creating, 272–274

executing, 275

hash bang syntax, 274–276

import statement, 276

launch method, 276–277

314 INDEX

shell scripts (continued)

permissions, 274–275

type methods, 276

waitUntilExit method, 277

showLeaderboard() method, 291–292

Simon electronic game, 220

simple interest, computing, 209.
See also interest calculator

SimpleInterest class, creating, 184–185

simpleInterestCalculationClosure
constant, 107–109

SKNode class, 298–299

Snowball.atlas folder, 288

snowman in Downhill Challenge, 283–284

Snowman.atlas folder, 288

SnowMass.sks file, 289

SnowParticle.sks file, 289

Snow.sks file, 289

someCondition Boolean expression, 76–77.
See also Bool type

Spotlight, using, 8

SpriteKit framework, 282–283

stackoverflow.com, 302

storyboard file

locating for FollowMe game, 224

revising, 245–246

strcat() function, 20

String type, 15, 20

in candy jar example, 35

extending, 163–164

immutability of, 36–37

stringFromNumber method, 194–196

strings

casting into Ints and Doubles, 17

comparing, 70

concatenating, 19–20

declaring, 19

testing equality of, 25

stringWithFormat:, using for
concatenation, 20

strong references, 252

structures, 141–142

subclasses

creating, 128–129

instantiating, 130–136

subtraction (−) operation, performing, 21

sunRoomDoor object, 130–131

superclasses and subclasses, 124–125.
See also classes

Swift app, running, 178

switch/case construct, 72–75, 78–79,
238–239

system requirements, 7

T
<T> generic placeholder, 263–264

tag property

setting for red button, 245

using with UIButton, 241

targets in Xcode, 175

technology conferences, attending, 301–302

temperature conversion, 85

temperature units, extending, 162–163

temporary variable, 25. See also variables

INDEX 315

Terminal application

launching, 8

typing commands in, 9

test subsystem in IDE, 172

testing

importance of, 210

interest calculator, 205

unit tests, 211–212

text fields, creating for interest
calculator, 182

throwing errors, 268–270

Timeline pane, displaying in playground, 167

toolbar in Xcode, 174

touchesBegan() method, calling for Home
scene, 292

Tractor class, convenience initializers in,
136–138

TriangleProtocol, 156

triple function, 165

TruckParticle.sks file, 289

true and false values, 24

tryPassword function, 270

tuples, grouping data with, 28–29

type aliases, using, 27

type conversion, 17

type methods, 239, 276. See also methods

type promotion, 22

types

adding .minor and .max to, 16

associating with variables, 15

extending, 161–165

interactions between, 16–18

upper and lower limits, 16

U
UIButton tag property, 241

UInt types, 15–16

underscore (_)

using with numeric representations, 23

using with parameter names, 100–101

using with Void keyword, 97

unit tests

creating, 211–214

forcing failure of, 215

invoking, 215–216

passing, 214

unlock and lock methods, 117–120, 134, 150

unnamed parameter, 97. See also parameters

unsigned integers, 16

utilities area in Xcode, 175

V
value types

including in arrays, 37

vs. reference types, 143–145, 250–252

values. See also raw values

adding to arrays, 36

in candy jar example, 34–35

inserting at locations, 40–41

removing from arrays, 39–40

replacing in arrays, 39–40

var declaration, using on parameters, 104

variables. See also temporary variable

adding numbers to, 62–63

adding to protocol definitions, 151

assigning values to, 12

316 INDEX

variables (continued)

versus constants, 14

declaring, 11

declaring as implicitly unwrapped
optionals, 187

declaring explicitly, 18–19

naming, 13

parameter passing notation, 89–92

subtracting numbers from, 62–63

types, 15

using temporarily with parameters,
104–105

variadic parameters, 90

Vehicle structure, 142, 150

vending machine, modeling, 157–159

VendingMachineProtocol, 159

ViewController.swift file, replacing
contents of, 231–235

viewOldLoad() function, 299

Void keyword, 97

W
waitUntilExit method, using with shell

scripts, 277

weak references, 257

while loops, 75–79

withdraw function, declaring, 93

writeBetterCheckFrom function, 101

writeCheckFrom function, 101

writeCheckTo function, 99

X
Xcode, playground, 64–65

Xcode IDE (integrated development
environment), 172

! (exclamation mark), 186

action methods, 187

AppDelegate.swift source file, 176

applicationDidFinishLaunching
method, 176

context-sensitive help, 197

Continue Program Execution button, 256

debug area, 175, 207

documentation browser, 278–279

editor area, 175, 198

Help menu, 278–279

implicitly unwrapped optional, 186–187

import statement, 177

inspector icons, 225

launching, 173

MainMenu.xib file, 179

navigator area, 175

optionals, 186

project window, 176–178

releases of, 172

saving projects, 174

shell scripts, 272–274

targets, 175

toolbar, 174

utilities area, 175

This page intentionally left blank

Apple Pro Training Series
Apple offers comprehensive certification programs for creative and
IT professionals. The Apple Pro Training Series is both a self-paced
learning tool and the official curriculum of the Apple Training and
Certification program, used by Apple Authorized Training Centers
around the world.

To see a complete range of Apple Pro Training Series books, videos
and apps visit: www.peachpit.com/appleprotraining

APT_1PageAd.indd 1 11/4/15 3:18 PM

http://www.peachpit.com/appleprotraining

	Contents
	Introduction
	Welcome to Swift
	CHAPTER 4 WRITING FUNCTIONS AND CLOSURES
	The Function
	Coding the Function in Swift
	Exercising the Function
	More Than Just Numbers
	Parameters Ad Nauseam
	Functions Fly First Class
	Throw Me a Function, Mister
	A Function in a Function in a…
	Default Parameters
	What’s in a Name?
	When It’s Good Enough
	To Use or Not to Use?
	Don’t Change My Parameters!
	The Ins and Outs
	Bringing Closure
	Summing It Up
	Stay Classy

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

