
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134195445
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134195445
https://plusone.google.com/share?url=http://www.informit.com/title/9780134195445
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134195445
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134195445/Free-Sample-Chapter

Learning WatchKit
Programming

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning WatchKit
Programming

A Hands-On Guide to Creating
Apple Watch Applications

Wei-Meng Lee

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015940909

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechan-
ical, photocopying, recording, or likewise. To obtain permission to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, 200 Old
Tappan Road, Old Tappan, New Jersey 07675, or you may fax your request to (201) 236-3290.

Apple, the Apple logo, Apple TV, Apple Watch, Cocoa, Cocoa Touch, eMac, FaceTime, Finder,
iBook, iBooks, iCal, Instruments, iPad, iPad Air, iPad mini, iPhone, iPhoto, iTunes, the iTunes
logo, iWork, Keychain, Launchpad, Lightning, LocalTalk, Mac, the Mac logo, MacApp, MacBook,
MacBook Air, MacBook Pro, MacDNS, Macintosh, Mac OS, Mac Pro, MacTCP, the Made for
iPad logo, the Made for iPhone logo, the Made for iPod logo, Metal, the Metal logo, the Monaco
computer font, MultiTouch, the New York computer font, Objective-C, OpenCL, OS X, Passbook,
Pixlet, PowerBook, Power Mac, Quartz, QuickDraw, QuickTime, the QuickTime logo, Retina,
Safari, the Sand computer font, Shake, Siri, the Skia computer font, Swift, the Swift Logo, the
Textile computer font, Touch ID, TrueType, WebObjects, WebScript, and Xcode are trademarks
of Apple, Inc., registered in the United States and other countries. OpenGL and the logo are
registered trademarks of Silicon Graphics, Inc. Intel, Intel Core, and Xeon are trademarks of
Intel Corp. in the United States and other countries.

ISBN-13: 978-0-13-419544-5
ISBN-10: 0-13-419544-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2015

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Development Editor
Sheri Cain

Managing Editor
John Fuller

Full-Service
 Production Manager
Julie B. Nahil

Copy Editor
Stephanie Geels

Indexer
Jack Lewis

Proofreader
Anna Popick

Technical Reviewers
Mark H. Granoff
Chaim Krause
Niklas Saers

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
CIP Group

❖

I dedicate this book with love to my family, and to my dearest wife,
who has had to endure my irregular work schedule and take care

of things while I was trying to meet writing deadlines!

❖

This page intentionally left blank

Contents at a Glance

Preface xiii
Acknowledgments xvii
About the Author xix

 1 Getting Started with WatchKit Programming 1

 2 Apple Watch Interface Navigation 17

 3 Apple Watch User Interface 45

 4 Interfacing with iOS Apps 99

 5 Displaying Notifications 149

 6 Displaying Glances 179

 Index 195

This page intentionally left blank

Contents

Preface xiii
Acknowledgments xvii
About the Author xix

 1 Getting Started with WatchKit Programming 1
Specifications of the Apple Watch 1
Getting the Tools for Development 2
Understanding the WatchKit App Architecture 3

Deploying Apple Watch Apps 4
Interaction between the Apple Watch and iPhone 4
Communicating with the Containing iOS App 5

Types of Apple Watch Applications 6
Hello, World! 6

Creating an iPhone Project 6
Adding a WatchKit App Target 8
Examining the Storyboard 11
WatchKit App Lifecycle 12
Modifying the Interface Controller 13
Running the Application on the Simulator 14

Summary 16

 2 Apple Watch Interface Navigation 17
Interface Controllers and Storyboard 17

Lifecycle of an Interface Controller 19
Navigating between Interface Controllers 22

Hierarchical Navigation 23
Page-Based Navigation 27
Passing Data between Interface Controllers 28
Customizing the Title of the Chevron
or Cancel Button 34
Navigating Using Code 35
Presenting a Series of Pages 38
Changing the Current Page to Display 40

Summary 43

x Contents

 3 Apple Watch User Interface 45
Responding to User Interactions 45

Button 46
Switch 59
Slider 62

Displaying Information 65
Labels 65
Images 65
Table 71

Gathering Information 82
Getting Text Inputs 82
Getting Emojis 85

Laying Out the Controls 86
Force Touch 91

Displaying a Context Menu 91
Adding Menu Items Programmatically 97

Summary 98

 4 Interfacing with iOS Apps 99
Localization 99

Localizing the User Interface 102
Creating Localizable Strings 106
Using the Date Control 112

Communicating between the WatchKit App
and the Extension 113

Location Data 114
Displaying Maps 123
Accessing Web Services 126
Sharing Data 130

Summary 148

 5 Displaying Notifications 149
What Is a Notification? 149
Types of Notifications on the Apple Watch 152

Implementing the Short-Look Interface 153
Implementing the Long-Look Interface 167

Summary 178

xiContents

 6 Displaying Glances 179
What Is a Glance? 179

Implementing Glances 180
Customizing the Glance 182
Testing the Glance 186

Making the App Useful 186
Creating a Shared App Group 187
Implementing Background Fetch 188

Updating the Glance 192
Summary 194

 Index 195

This page intentionally left blank

xiii

Preface

Welcome to Learning WatchKit Programming!
This is an exciting time to be a programmer, as we are witnessing a new era of wear-

ables. While the Apple Watch is not the first wearable device in the market, its launch
signified the intention of Apple to enter the wearable market in a big way. After success-
fully changing various industries—music, computer, phone, and mobile computing—
Apple looks set to change the wearable industry. And nobody is taking this lightly.

As with the iPhone, much of the usefulness and functionality of the Apple Watch
device actually come from the creativity of the third-party developers. In the early days
of the iPhone, Apple restricted all third-party apps to web applications, as they wanted to
retain the monopoly on developing natively for the device. However, due to the over-
whelming protests of developers, Apple finally relented by releasing an SDK to support
third-party apps. It was this decision that changed the fate of the iPhone; the iPhone
would never have been so successful without the ability to support third-party apps.

When the Apple Watch was announced, Apple was quick to learn its lesson and real-
ized that the success of the Apple Watch largely depends on the availability of apps that
support it. Hence, before the release of the Apple Watch, the SDK was made available
to developers to have a hand in developing Apple Watch apps.

The book you are holding in your hands right now (or reading on your phone or
tablet) is a collection of tutorials that help you navigate the jungle of Apple Watch
programming. This book contains all of the fundamental topics that you need to get
started in Apple Watch programming. As this is a book on Apple Watch programming,
I am going to make a couple of assumptions about you, the reader:

 n You should already be familiar with the basics of developing an iOS application.
In particular, concepts like outlets and actions should not be new to you.

 n You should be comfortable with the Swift programming language. See the next
section on how to get started with Swift if you are new to it.

What You’ll Need
To get the most out of this book:

 n You need a Mac, together with Xcode.
 n Your Mac should be running at least Mac OS X Yosemite (v10.10), or later.

xiv Preface

 n You can download the latest version of Xcode from the Mac App Store. All the
code samples for this book are tested against Xcode 6.3.

 n If you plan to test your apps on a real device, you need to register to become a
paid iOS developer (https://developer.apple.com/programs/ios/). The program
costs $99/year for individuals. Once registered, you can request a certificate to
sign your apps so that they can be deployed onto your devices. To install your
apps onto your devices, you also need to create provisioning profiles for your
devices. Obviously, you also need an Apple Watch, which should be paired to
your iPhone. The Apple Watch can only work with iPhone 5, iPhone 5c,
iPhone 5s, iPhone 6, and iPhone 6 Plus.

 n All code samples in this book can be tested and run on the iPhone Simulator
without the need for a real device or Apple Watch. However, for some code
examples, you need access to the iOS Developer Program and a valid provision-
ing profile in your applications before they can work. Hence, even if you do not
have an Apple Watch and you do not intend to test the apps on a real device,
you still need to have access to a paid iOS developer account to test some of the
examples in this book.

 n A number of examples in this book require an Internet connection in order
to work, so ensure that you have an Internet connection when trying out the
examples.

 n All of the examples in this book are written in Swift. If you are not familiar with
Swift, you can refer to my book Beginning Swift Programming (Wrox, 2014) for a
jumpstart, or download my Swift Cheat Sheets at http://weimenglee.blogspot.sg/
2014/11/swift-cheat-sheets-download-today.html.

How This Book Is Organized
This book is styled as a tutorial. You will be trying out the examples as I explain the
concepts. This is a proven way to learn a new technology, and I strongly encourage you
to type in the code as you work on the examples.

 n Chapter 1, Getting Started with WatchKit Programming: In this chapter,
you learn about the architecture of Apple Watch applications and how they tie
in with your iOS apps. Most importantly, you get your chance to write a simple
Apple Watch app and deploy it onto the simulator.

 n Chapter 2, Apple Watch Interface Navigation: In this chapter, you dive
deeper into how your Apple Watch application navigates between multiple
screens. You get to see how data is passed between screens and how to customize
the look and feel of each screen.

 n Chapter 3, Apple Watch User Interface: Designing the user interface
(UI) for your Apple Watch application is similar to designing for iPhone apps.

https://developer.apple.com/programs/ios/
http://weimenglee.blogspot.sg/2014/11/swift-cheat-sheets-download-today.html
http://weimenglee.blogspot.sg/2014/11/swift-cheat-sheets-download-today.html

xvPreface

However, space is at a premium on the Apple Watch, and every millimeter on the
screen must be put to good use in order to convey the exact intention of your app.
In this chapter, you learn how to use the various UI controls in the Apple Watch
to build your application.

 n Chapter 4, Interfacing with iOS Apps: This chapter shows all the exciting
features that you can add to your Apple Watch applications. You learn how to
localize your apps, how to communicate between the watch app and the contain-
ing iOS app, how to call web services, and more!

 n Chapter 5, Displaying Notifications: In this chapter, you learn how to dis-
play notifications on your Apple Watch. Notifications received by the iPhone are
sent to the Apple Watch, and you have the chance to customize the notifications
so that you can display the essence of the notifications quickly to the user.

 n Chapter 6, Displaying Glances: Glances on the Apple Watch provide the user
a quick way to gather information from apps. For example, Instagram’s glance
on the Apple Watch may show the most recently shared photo, while Twitter
may show the latest trending tweets. In this chapter, you learn how to implement
glances for your own apps.

About the Sample Code
The code samples in this book are written to provide the simplest way to understand
core concepts without being bogged down with details like beautifying the UI or
detailed error checking. The philosophy is to convey key ideas in the simplest manner
possible. In real-life apps, you are expected to perform detailed error handling and to create
a user-friendly UI for your apps. Although I do provide several scenarios in which a
certain concept is useful, it is ultimately up to you, the reader, to exercise your creativity
to put the concepts to work, and perhaps create the next killer app.

Getting the Sample Code
To download the sample code used in this book, visit the book’s web page on
Informit.com at informit.com/title/9780134195445 and click the Extras tab.

Contacting the Author
If you have any comments or questions about this book, please drop me an email at
weimenglee@learn2develop.net, or stop by my web site at learn2develop.net.

This page intentionally left blank

xvii

Acknowledgments

Writing a book on emerging technology is always an exciting and perilous journey.
On one end, you are dealing with the latest developments, going where not many have
ventured, and on the other end you are dealing with many unknowns. To endure this
journey you need a lot of help and family support. And I would like to take this oppor-
tunity to thank the people who make all this happen.

I am indebted to Trina MacDonald, senior acquisitions editor at Addison-Wesley/
Pearson Education, for giving me the chance to work on this book. She has always
been supportive of my proposals for new titles, and I am really glad that we have the
chance to work together on this project. Thank you very much for the opportunity
and guidance, Trina! I hope I did not disappoint you.

I would like to thank the many heroes working behind the scene: copy editor
 Stephanie Geels, production editor Julie Nahil, and technical reviewers Mark H. Granoff,
Chaim Krause, and Niklas Saers for turning the manuscript into a book that I am
proud of!

Last but not least, I want to thank my family for all the support that they have always
given me. Without their encouragement, this book would never have been possible.

This page intentionally left blank

xix

About the Author

Wei-Meng Lee is a technologist and founder of Developer Learning Solutions
(learn2develop.net), a technology company specializing in hands-on training on the
latest web and mobile technologies. Wei-Meng speaks regularly at international con-
ferences and has authored and coauthored numerous books on .NET, XML, Android,
and iOS technologies. He writes extensively for informIT.com and mobiForge.com.

This page intentionally left blank

2
Apple Watch Interface

Navigation

It’s really hard to design products by focus groups. A lot of times,
people don’t know what they want until you show it to them.

Steve Jobs

In Chapter 1, “Getting Started with WatchKit Programming,” you learned about the
various specifications and features of the Apple Watch. You also had the chance to use
Xcode to create a simple iPhone project that supports the Apple Watch. You then used
the Apple Watch Simulator to test the application. In this chapter, you dive into how
your Apple Watch application navigates between multiple screens.

Interface Controllers and Storyboard
As you learned in Chapter 1, the user interface of your Apple Watch application is
encapsulated in a storyboard file. Within the storyboard file, you have an Interface
Controller that represents a screen on the Apple Watch. In this section, let’s create a
project so that we can examine the storyboard in more detail:

 1. Using Xcode, create a Single View Application project and name it LifeCycle.

 2. Add the WatchKit App target to the project. Uncheck the option Include Notifi-
cation Scene so that we can keep the WatchKit project to a bare minimum.

Note
If you are not sure how to add the WatchKit App target to the existing project, refer
to Chapter 1.

 3. Once the target is added to the project, select the Interface.storyboard file located
within the LifeCycle WatchKit App group (see Figure 2.1). This opens the file
using the Storyboard Editor.

18 Chapter 2 Apple Watch Interface Navigation

 4. Select the Interface Controller and view its Identity Inspector window (see
Figure 2.2). The Class is set to InterfaceController, which means that it is
represented by a Swift class named InterfaceController.

Figure 2.1 Editing the storyboard file

Figure 2.2 The Interface Controller is represented by a
Swift class named InterfaceController

19Interface Controllers and Storyboard

 5. View its Attributes Inspector window and observe that the Is Initial Controller
attribute is checked (see Figure 2.3). This attribute indicates that, when the appli-
cation is loaded, this is the default Interface Controller that will be displayed.

Figure 2.3 The Is Initial Controller attribute indicates that the current
Interface Controller will be displayed when the application loads

Lifecycle of an Interface Controller
As you have seen in the previous section and in Chapter 1, an Interface Controller is
connected to a Swift class located in the WatchKit Extension group of the project. In
this example, this Swift class is named InterfaceController.swift. It has the following
content:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 }

 override func willActivate() {

 // This method is called when watch view controller is about to

 // be visible to user

 super.willActivate()

 }

20 Chapter 2 Apple Watch Interface Navigation

 override func didDeactivate() {

 // This method is called when watch view controller is no longer visible

 super.didDeactivate()

 }

}

Specifically, it has three key methods:

 n awakeWithContext:—The system calls this method at initialization time, pass-
ing it any contextual data from a previous Interface Controller. You should use
this method to initialize and to prepare your UI for display, as well as to obtain
any data that is passed to it from another Interface Controller (you will learn how
this is done in the later section on passing data).

 n willActivate—This method is called by the system when the Interface Control-
ler is about to be displayed. You should use this method to make some last-min-
ute changes to your UI and to refrain from performing any tasks that initialize
the UI—these should be done in the awakeWithContext method.

 n didDeactivate—This method is called when the Interface Controller is no
longer onscreen. You should use this method to perform cleanup operations
on your Interface Controller, such as invalidating timers or saving state-related
information.

Besides the three methods just discussed, you can also add an initializer to the
 Interface Controller class:

 override init() {

 super.init()

 }

You can also perform initialization for your Interface Controller in this initializer,
but you should leave the bulk of the UI initialization to the awakeWithContext
method.

Let’s try an example to better understand the use of the various methods:

 1. Add the following statements in bold to the InterfaceController.swift file:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 override init() {

 super.init()

 println("In the init initializer")

 }

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

21Interface Controllers and Storyboard

 // Configure interface objects here.

 println("In the awakeWithContext event")

 }

 override func willActivate() {

 // This method is called when watch view controller is about to be

 // visible to user

 super.willActivate()

 println("In the willActivate event")

 }

 override func didDeactivate() {

 // This method is called when watch view controller is no longer

 // visible

 super.didDeactivate()

 println("In the didDeactivate event")

 }

}

 2. Run the application on the iPhone 6 Simulator. When the application is loaded
onto the Apple Watch Simulator, you should see the statements printed out in
the Output Window in Xcode, as shown in Figure 2.4. Observe that the init,
awakeWithContext:, and willActivate methods are fired when the Interface
Controller is loaded.

Note
If you are not able to see the Output Window, press Command-Shift-C in Xcode.

Figure 2.4 Examining the events that are fired when an Interface Controller is loaded

22 Chapter 2 Apple Watch Interface Navigation

 3. With the Apple Watch Simulator selected, select Hardware | Lock to lock
the Apple Watch. Observe the output in the Output window (see Figure 2.5).
Observe that the didDeactivate method is now executed.

Note
The didDeactivate method will also be fired when an Interface Controller tran-
sits to another Interface Controller.

Figure 2.5 Examining the event that is fired when an Interface Controller is deactivated

Note
To unlock the Apple Watch Simulator, unlock the iPhone Simulator by selecting
Hardware | Home, and then by swiping from left to right.

Navigating between Interface Controllers
The basic unit of display for an Apple Watch app is represented by an Interface Con-
troller (of type WKInterfaceController). Depending on the type of application
you are working on, there are times where you need to spread your UI across multiple
Interface Controllers. In Apple Watch, there are two ways to navigate between Interface
Controllers:

 n Hierarchical: Pushes another Interface Controller on the screen. This model is
usually used when you want the user to follow a series of related steps in order to
perform a particular action.

 n Page-based: Displays another Interface Controller on top of the current Inter-
face Controller. This model is usually used if the information displayed on each

23Navigating between Interface Controllers

Interface Controller is not closely related to other Interface Controller. You can
also use this model to display a series of Interface Controllers, which the user can
select by swiping the screen.

Similarities to iPhone Development
The page-based navigation method is similar to presenting a modal View Controller in
iPhone, whereas the hierarchical navigation method is similar to using a navigation control-
ler in iPhone.

Hierarchical Navigation
A hierarchical interface always starts with a root Interface Controller. It then pushes
additional Interface Controllers when a button or a control in a screen is tapped.

 1. Using Xcode, create a Single View Application project and name it UINavigation.

 2. Add a WatchKit App target to the project. Uncheck the option Include Notifica-
tion Scene so that we can keep the WatchKit project to a bare minimum.

 3. In the UINavigation WatchKit App group, select the Interface.storyboard file to
edit it in the Storyboard Editor.

 4. Drag and drop another Interface Controller object onto the editor, as shown in
Figure 2.6. You should now have two Interface Controllers.

Figure 2.6 Adding another Interface Controller to the storyboard

 5. In the original Interface Controller, add a Button control (see Figure 2.7) and
change its title (by double-clicking it) to Next Screen.

24 Chapter 2 Apple Watch Interface Navigation

 6. Control-click the Next Screen button and drag and drop it over the second
Interface Controller (see Figure 2.8).

Figure 2.8 Control-click the Button control and drag
and drop it over the second Interface Controller

 7. You will see a popup called Action Segue. Select push (see Figure 2.9).

Figure 2.9 Creating a push segue

Figure 2.7 Adding a Button control to the first Interface Controller

25Navigating between Interface Controllers

 8. A segue will now be created (see Figure 2.10), linking the first Interface Controller
to the second.

Figure 2.10 The segue that is created after performing the action

 9. Select the segue and set its Identifier to hierarchical in the Attributes Inspector
window (see Figure 2.11). This identifier allows us to identify it programmati-
cally in our code later.

Figure 2.11 Naming the Identifier for the segue

 10. Add a Label control to the second Interface Controller, as shown in Figure 2.12.
Set the Lines attribute of the Label control to 0 in the Attributes Inspector win-
dow so that the Label can wrap around long text (used later in this chapter).

26 Chapter 2 Apple Watch Interface Navigation

 11. You are now ready to test the application. Run the application on the iPhone 6
Simulator and, in the Apple Watch Simulator, click the Next Screen button and
observe that the application navigates to the second Interface Controller contain-
ing the Label control (see Figure 2.13). Also, observe that the second Interface
Controller has a < icon (known as a chevron) displayed in the top-left corner.
Clicking it returns the application to the first Interface Controller.

Figure 2.13 Navigating to another Interface Controller using hierarchical navigation

Note
At this point, the Label control on the second Interface Controller is still displaying the
default text “Label.” In later sections in this chapter, you learn how to pass data from the
first Interface Controller to the second and then how to display the data in the Label control.

Figure 2.12 Adding a Label control to the second Interface Controller

27Navigating between Interface Controllers

Page-Based Navigation
You can also display an Interface Controller modally. This is useful if you want to
obtain some information from the user or get the user to confirm an action.

 1. Using the same project created in the previous section, add another Button con-
trol to the first Interface Controller, as shown in Figure 2.14. Change the title of
the Button to Display Screen.

Figure 2.14 Adding another Button control to the first Interface Controller

 2. Create a segue connecting the Display Screen button to the second Interface
Controller. In the Action Segue popup that appears, select modal. Set the Identifier
of the newly created segue to pagebased (see Figure 2.15).

Figure 2.15 Creating a modal segue connecting the two Interface Controllers

 3. Run the application on the iPhone 6 Simulator and, in the Apple Watch Simulator,
click the Display Screen button and observe that the second Interface Controller
appears from the bottom of the screen. Also, observe that the second Interface
Controller now has a Cancel button displayed in the top-left corner (see
Figure 2.16). Clicking it hides the second Interface Controller.

28 Chapter 2 Apple Watch Interface Navigation

Figure 2.16 Displaying another Interface Controller modally

Passing Data between Interface Controllers
In the previous sections, you saw how to make your Apple Watch application transit
from one Interface Controller to another, using either the hierarchical or page-based
navigation method. One commonly performed task is to pass data from one Interface
Controller to another. In this section, you do just that.

 1. Using the UINavigation project that you used in the previous section, right-click the
UINavigation WatchKit Extension group and select New File… (see Figure 2.17).

Figure 2.17 Adding a new file to the project

29Navigating between Interface Controllers

 2. Select the Cocoa Touch Class (see Figure 2.18) template and click Next.

Figure 2.18 Selecting the Cocoa Touch Class template

 3. Name the Class SecondInterfaceController and make it a subclass of
 WKInterfaceController (see Figure 2.19). Click Next.

Figure 2.19 Naming the newly added class

30 Chapter 2 Apple Watch Interface Navigation

 4. A file named SecondInterfaceController.swift will now be added to the
 UINavigation WatchKit Extension group of your project.

 5. Back in the Storyboard Editor, select the second Interface Controller and set its
Class (in the Identity Inspector window) to SecondInterfaceController
(see Figure 2.20).

Figure 2.20 Setting the class of the second Interface Controller

 6. Select the View | Assistant Editor | Show Assistant Editor menu item to
show the Assistant Editor. Control-click the Label control and drag and drop it
onto the Code Editor (as shown in Figure 2.21).

Figure 2.21 Creating an outlet for the Label control

31Navigating between Interface Controllers

 7. Create an outlet and name it label (see Figure 2.22).

Figure 2.22 Naming the outlet for the Label control

 8. An outlet is now added to the code:

import WatchKit

import Foundation

class SecondInterfaceController: WKInterfaceController {

 @IBOutlet weak var label: WKInterfaceLabel!

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 }

 override func willActivate() {

 // This method is called when watch view controller is about to be

 // visible to user

 super.willActivate()

 }

 override func didDeactivate() {

 // This method is called when watch view controller is no longer

 // visible

 super.didDeactivate()

 }

}

32 Chapter 2 Apple Watch Interface Navigation

 9. Add the following statements in bold to the InterfaceController.swift file:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 }

 override func willActivate() {

 // This method is called when watch view controller is about to be

 // visible to user

 super.willActivate()

 }

 override func didDeactivate() {

 // This method is called when watch view controller is no longer

 // visible

 super.didDeactivate()

 }

 override func contextForSegueWithIdentifier(segueIdentifier: String) ->

 AnyObject? {

 if segueIdentifier == "hierarchical" {

 return ["segue": "hierarchical",

 "data":"Passed through hierarchical navigation"]

 } else if segueIdentifier == "pagebased" {

 return ["segue": "pagebased",

 "data": "Passed through page-based navigation"]

 } else {

 return ["segue": "", "data": ""]

 }

 }

}

The contextForSegueWithIdentifier: method is fired before any of the
segues fire (when the user taps on one of the Button controls). Here, you check
the identifier of the segue (through the segueIdentifier argument). Specifi-
cally, you return a dictionary containing two keys: segue and data.

 10. Add the following statements in bold to the SecondInterfaceController.swift file:

import WatchKit

import Foundation

33Navigating between Interface Controllers

class SecondInterfaceController: WKInterfaceController {

 @IBOutlet weak var label: WKInterfaceLabel!

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 var dict = context as? NSDictionary

 if dict != nil {

 var segue = dict!["segue"] as! String

 var data = dict!["data"] as! String

 self.label.setText(data)

 }

 }

When the second Interface Controller is loaded, you retrieve the data that is
passed into it in the awakeWithContext: method through the context argu-
ment. Since the first Interface Controller passes in a dictionary, you can typecast
it into an NSDictionary object and then retrieve the value of the segue and
data keys. The value of the data key is then displayed in the Label control.

 11. Run the application on the iPhone 6 Simulator and in the Apple Watch Simulator,
click the Next Screen button, and observe the string displayed in the second
Interface Controller (see Figure 2.23).

Figure 2.23 Displaying the data passed through the hierarchical navigation

 12. Click the < chevron to return to the first Interface Controller and click the
Display Screen button. Observe the string displayed in the second Interface
Controller (see Figure 2.24).

34 Chapter 2 Apple Watch Interface Navigation

Customizing the Title of the Chevron or Cancel Button
As you have seen in the previous section, a chevron is displayed when you push an
Interface Controller using the hierarchical navigation method. A default Cancel button
is displayed when you display an Interface Controller modally. However, the chevron
or Cancel button can be customized.

 1. Add the following statements in bold to the SecondInterfaceController.swift file:

import WatchKit

import Foundation

class SecondInterfaceController: WKInterfaceController {

 @IBOutlet weak var label: WKInterfaceLabel!

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 var dict = context as? NSDictionary

 if dict != nil {

 var segue = dict!["segue"] as! String

 var data = dict!["data"] as! String

 self.label.setText(data)

 if segue == "pagebased" {

 self.setTitle("Close")

 } else {

 self.setTitle("Back")

 }

 }

 }

Figure 2.24 Displaying the data passed through the page-based navigation

35Navigating between Interface Controllers

 2. Run the application on the iPhone 6 Simulator and in the Apple Watch Simulator,
click the Next Screen button, and observe the string displayed next to the
 chevron (see Figure 2.25).

Figure 2.25 Displaying a string next to the chevron

 3. Click the <Back chevron to return to the first Interface Controller and click
the Display Screen button. Observe that the Cancel button is now displayed as
Close (see Figure 2.26).

Figure 2.26 Modifying the button for a modal Interface Controller

Navigating Using Code
Although you can link up Interface Controllers by creating segues in your storyboard,
it is not versatile. In a real-life application, the f low of your application may depend on

36 Chapter 2 Apple Watch Interface Navigation

certain conditions being met, and hence, you need to be able to decide during runtime
which Interface Controller to navigate to (or display modally).

 1. Using Xcode, create a new Single View Application project and name it
NavigateUsingCode.

 2. Add a WatchKit App target to the project. Uncheck the option Include Notifica-
tion Scene so that we can keep the WatchKit project to a bare minimum.

 3. Click the Interface.storyboard file located in the NavigateUsingCode
 WatchKit App group in your project to edit it using the Storyboard Editor.

 4. Add two Button controls to the first Interface Controller and then add another
Interface Controller to the storyboard. In the second Interface Controller, add a
Label control, as shown in Figure 2.27.

Figure 2.27 Populating the two Interface Controllers

 5. Select the second Interface Controller and set its Identifier attribute (in the
Attributes Inspector window) to secondpage, as shown in Figure 2.28.

Figure 2.28 Setting the Identifier for the second Interface Controller

37Navigating between Interface Controllers

 6. In the first Interface Controller, create two actions (one for each button) and
name them as shown here in the InterfaceController.swift file. You should create
the actions by control-dragging them from the storyboard onto the Code Editor:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 @IBAction func btnNextScreen() {

 }

 @IBAction func btnDisplayScreen() {

 }

 7. Add the following statements to the two actions in the InterfaceController.swift
file:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 @IBAction func btnNextScreen() {

 pushControllerWithName("secondpage", context: nil)

 }

 @IBAction func btnDisplayScreen() {

 presentControllerWithName("secondpage", context: nil)

 }

Observe that the first button uses the pushControllerWithName:context:
method to perform a hierarchical navigation. The first argument to this method
takes in the identifier of the Interface Controller to navigate to (which we had
earlier set in Step 5). The context argument allows you to pass data to the target
Interface Controller, which in this case we simply set to nil. For the second
button, we use the presentControllerWithName:context: method to per-
form a page-based navigation. Like the pushControllerWithName:context:
method, the first argument is the identifier of the Interface Controller to display,
whereas the second argument allows you to pass data to the target Interface
Controller.

 8. Run the application on the iPhone 6 Simulator. Clicking either button brings you
to the second Interface Controller (see Figure 2.29).

38 Chapter 2 Apple Watch Interface Navigation

Returning to the Previous Screen
Although you can return to the previous screen by tapping either the chevron or the
Cancel button, you can also programmatically return to the previous screen. If you navi-
gate to an Interface Controller using the pushControllerWithName:context:
method, you can programmatically return to the Interface Controller using the corre-
sponding popController method. If you display an Interface Controller using the
 presentControllerWithName:context: method, you can dismiss the current
Interface Controller using the corresponding dismissController method.

Presenting a Series of Pages
For page-based applications, you can display more than one single Interface Controller
modally—you can display a series of them.

 1. Using the same project created in the previous section, add a third Interface Con-
troller to the storyboard and add a Label control to it. Set the Label text to Third
Page (see Figure 2.30).

 2. Set the Identifier attribute of the third Interface Controller to thirdpage in the
Attributes Inspector window (see Figure 2.31).

 3. Add the following statements in bold to the InterfaceController.swift file:

 @IBAction func btnDisplayScreen() {

 //presentControllerWithName("secondpage", context: nil)

 presentControllerWithNames(["secondpage", "thirdpage"], contexts: nil)

 }

Instead of using the presentControllerWithName:context: method, we
now use the presentControllerWithNames:context: method. The only
difference between the two methods is that the latter takes in an array of string in
the first argument. This array of string contains the identifiers of Interface Con-
trollers that you want to display.

Figure 2.29 Navigating the Interface Controllers programmatically

39Navigating between Interface Controllers

Figure 2.30 Adding the third Interface Controller

Figure 2.31 Setting the Identifier for the third Interface Controller

 4. Run the application on the iPhone 6 Simulator and click the Display Screen
button on the Apple Watch simulator. This time, you see that the second

40 Chapter 2 Apple Watch Interface Navigation

Interface Controller is displayed with two dots at the bottom of the screen. Swip-
ing from right to left reveals the third Interface Controller (see Figure 2.32).

Figure 2.32 The user can slide between the two Interface Controllers

Changing the Current Page to Display
In the previous section, you saw that you could display a series of Interface Controllers
that the user can swipe through. What if you want to programmatically jump to a
particular page? In this case, what if you want to display the Third Page instead of the
Second Page? Let’s see how this can be done.

 1. Add two WKInterfaceController classes to the NavigateUsingCode WatchKit
Extension group of the project and name them SecondInterfaceController.swift
and ThirdInterfaceController.swift, respectively. Figure 2.33 shows the loca-
tion of the files.

Figure 2.33 Adding the two Swift files to the project

41Navigating between Interface Controllers

 2. Populate the SecondInterfaceController.swift file as follows:

import WatchKit

import Foundation

class SecondInterfaceController: WKInterfaceController {

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 println("SecondInterfaceController - awakeWithContext")

 }

 override func willActivate() {

 // This method is called when watch view controller is about to be

 // visible to user

 super.willActivate()

 println("SecondInterfaceController - willActivate")

 }

 override func didDeactivate() {

 // This method is called when watch view controller is no longer

 // visible

 super.didDeactivate()

 println("SecondInterfaceController - didDeactivate")

 }

}

 3. Populate the ThirdInterfaceController.swift file as follows:

import WatchKit

import Foundation

class ThirdInterfaceController: WKInterfaceController {

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 println("ThirdInterfaceController - awakeWithContext")

 }

 override func willActivate() {

 // This method is called when watch view controller is about to be

 // visible to user

 super.willActivate()

42 Chapter 2 Apple Watch Interface Navigation

 println("ThirdInterfaceController - willActivate")

 }

 override func didDeactivate() {

 // This method is called when watch view controller is no longer

 // visible

 super.didDeactivate()

 println("ThirdInterfaceController - didDeactivate")

 }

}

 4. In the Interface.storyboard file, set the Class property of the second Interface Control-
ler to SecondInterfaceController (see Figure 2.34). Likewise, set the Class
property of the third Interface Controller to ThirdInterfaceController.

Figure 2.34 Setting the class for the second Interface Controller

 5. Run the application on the iPhone 6 Simulator and click the Display Screen
button on the Apple Watch simulator. Observe the statements printed in the
 Output window (see Figure 2.35). As you can see, the awakeWithContext
method is fired for both the second and third Interface Controllers, even though
only the second Interface Controller is visible initially.

43Summary

 6. If you want the third Interface Controller to load instead of the second, you can use
the becomeCurrentPage method. Calling this method in an Interface Controller
brings it into view. Because both the second and third Interface Controllers fire the
awakeWithContext method when you click the Display Screen button, you
can call the becomeCurrentPage method in the awakeWithContext method.
Hence, add the following statement in bold to the ThirdInterfaceController.swift
file:

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 becomeCurrentPage()

 println("ThirdInterfaceController - awakeWithContext")

 }

 7. Run the application on the iPhone 6 Simulator and click the Display Screen
button on the Apple Watch simulator. This time, you see that after the second
Interface Controller is displayed, it will automatically scroll to the third one.

Summary
In this chapter, you delved deeper into how Interface Controllers work in your
Apple Watch application. You learned

 n The lifecycle of an Interface Controller
 n How to navigate between Interface Controllers
 n The different methods of displaying an Interface Controller
 n How to programmatically display an Interface Controller
 n How to display a series of Interface Controllers

Figure 2.35 Both Interface Controllers fire the awakeWithContext method

This page intentionally left blank

195

Symbols
– (minus) button, on Slider control, 62, 64–65
+ (plus) button, on Slider control, 62, 64–65
< (chevron)

customizing title of, 34–35
in hierarchical navigation, 26

A
Accessing web services, 126–130
Action buttons

destructive, 151–152, 163
displaying multiple, 161–163
handling, 163–167
for notif ications, 150–152
types of, 150, 163

Action Segue
modal selection, 27
push selection, 24

Animation, performing, 69–71
Apple Developer Program, 131–132
Apple Watch apps. See also Application(s)

icons for, 159–160
localization of. See Localization
modifying display name of, 158
sharing files with iOS app, 143–148
testing, 14–15
tools for, 2
types of, 6

Apple Watch Simulator
app tested on, 14
Button tested on, 47
dictation and, 85
emojis and, 86
glance displayed on, 186
location data displayed on, 123
notification displayed on, 156
temperature displayed on, 130
unlocking, 22

Apple Watch specifications, 1–2
ApplicationGroupContainerIdentif ier key, 142
application:handleActionWithIdentifier:

forLocal-Notification: method, 163–167
application:handleActionWithIdentifier:

forRemote-Notification: method, 163–167
Application(s)

adding target to, 8–11
Apple Watch. See Apple Watch apps
creating iPhone, 6–8

Archive button, for notif ications, 150–151
Attributed strings

customizing fonts with, 52–55
displaying, 51

Attribute(s)
Background, 59
for customizing glances, 185
Identif ier, 25, 27, 36–39, 75
Image control, 79, 95, 145–146
Label control, 73
Lines, 156–157
Menu Item control, 93–94
Mode, 70
Selectable, 75, 81
Slider control, 63–64
Steps, 64–65
Vertical, 73

Attributes Inspector window
Background attribute in, 59
changing Button title in, 46–47
changing sash/title color in, 177
Glance Interface Controller in, 182–183
hierarchical setting in, 25
of Interface Controller, 18

awakeWithContext method
changing page displayed, 41–43
initializing Interface Controller, 13, 20–22
passing/retrieving data, 32–33

Index

196 Index

B
Background action button

function of, 163
for notif ications, 150

Background fetch, implementing, 188–192
Background image

Button control, 56–59
setting Interface Controller, 65–67
on Static Interface Controller, 160–161

becomeCurrentPage method, for changing display
page, 43

body key, 174
Button control

adding to Interface Controller, 46–47, 83, 86–87
attributed strings and, 51
changing background image, 56–59
changing title dynamically, 50
creating outlet for, 49–50
creating/naming action for, 47–49, 114, 126
custom fonts and, 52–55
duplicating, 88
features of, 46
hierarchical navigation and, 23–24
localization and, 100–101
moving into Group control, 88–90
in navigating using code, 36–37
page-based navigation and, 27

Buttons project, 46–47

C
Cancel button

customizing title of, 34–35
page-based navigation and, 27–28

Chevron (<)
customizing title of, 34–35
in hierarchical navigation, 26

Color change for sash/title, 177
Controls (views)

Button. See Button control
Date, 112–113
Group, 86–91
Image. See Image control
Label. See Label control
Map, 123–125
Menu, 91–92
Menu Item, 91, 93–94, 97–98
Slider, 62–65
Switch, 59–61
Table. See Table control

CoreLocation.framework, for location data, 115–116
currentDateToString method, in background

fetch, 189, 191

Custom fonts
getting names of, 55–56
using, 52–55

Customization
chevron/cancel button, 34–35
Date control, 112–113
font, 52–55
glance, 182–185

D
Data

passing between controllers, 28–33
retrieving, 138–139
saving in shared app group, 135–138

dataToPhone dictionary, passing data and, 127
dataToWatch dictionary

accessing web services, 129–130
for current location data, 119–120

Date control
customizing, 112–113
in different languages, 113

dateStringToDate: method of accepting
information, 193–194

Device-specific images, 56–57
Dictation, inputs via, 84–85
Dictionary

accessing web services, 127–130
location data via, 115, 119–120

didDeactivate method
changing page displayed, 41–42
initializing Interface Controller, 13, 20–22
passing data to controllers, 32

didReceiveLocalNotification:

withCompletion: method, for long-look
interface, 172

didReceiveRemoteNotification:

withCompletion: method, for long-look
interface, 172

Digital Crown, 2
Dismiss button, for Static Interface Controller, 154,

156, 157
Displaying information

Image control for. See Image control
Label control for, 65
Table control for. See Table control

DisplayingGlances project, 180–194
downloadImage: method, in sharing files,

144–145
Dynamic Interface Controller

changing sash/title color for, 177
for long-look interface, 154, 168–173
setting/displaying icons, 159–160

197Index

showing new notif ications, 176
simulating delays in displaying, 178

E
Edit Scheme… menu item, 175
Emoji inputs, 85–86

F
Files, selecting/creating in localization, 103–104
First Button item

on Apple Watch notif ication, 156
multiple action buttons and, 161–162

First Interface Controller
Button control added to, 23–24, 27
passing data from, 28–33
returning to, 26
segue connecting, 25, 27

Fonts
customizing, 52–55
getting names of, 55–56

ForceTouch project, 91–97
Force Touch

adding images to project, 95
adding Label control with, 96
adding Menu control with, 91–92
definition of, 2
displaying context menu, 94, 97
Image control added with, 95
setting Menu item attributes with, 93–94

Foreground action button
function of, 163
for notif ications, 150

G
Gathering information

dictation for, 84–85
emojis for, 85–86
text inputs for, 82–84

GetCurrentLocation class, 117–120
GetLocation project, 114–123
getLocationWithCompletion: method, for

location data, 119–120
GlanceController class, 182
Glance Interface Controller

Attributes Inspector window of, 182–183
displaying information in, 192–194
implementing glances, 180–182

Glances
customizing, 182–185
implementing, 180–182
modifying for usefulness, 187–192

overview of, 6, 179
testing, 186
updating, 192–194

Gmail notif ications, 150–152
Group control

adding/modifying Button for, 86–87
centralizing, 90
duplicating Button for, 88
implementing, 90–91
moving Buttons into, 88–89

H
handleActionWithIdentifier:

forLocalNotification: method, 163–166
handleActionWithIdentifier:

forRemoteNotification: method, 163–166
HelloAppleWatch project, 6–14
Hierarchical navigation

customizing chevron in, 34–35
displaying data passed via, 33
between Interface Controllers, 22, 23–26

Horizontal attribute, for Label control, 73

I
Icons, for Apple Watch apps, 159–160
Identif ier attribute

of Interface Controller, 25, 27, 36–39
of Table Row Controller, 75

Identity Inspector window
Class attribute in, 12, 30, 169
of Interface Controller, 18

Image control
adding to Interface Controller, 67, 145–146
adding to Table control, 78
connecting outlet to, 79–80
creating outlet for, 146
for long-look interface, 168–169
performing animations via, 69–71
programmatically setting, 68–69
setting attributes for, 79
setting background for, 65–67
setting/testing, 68
uses of, 65

Images
adding to WatchKit app, 169
animation, 69–71
changing background, 56–59, 65–67
project, 65–71
setting background, 160–161
Table control displaying, 78–81

Impact font, 52–55

198 Index

Include Glance Scene option, 180
Include Notification Scene option, in short-look

interface, 153
Info.plist f ile, adding key to, 120
Information inputs

dictation, 84–85
emojis, 85–86
text inputs for, 82–84

Initialization methods for Interface Controller, 13,
19–22

Interactive notif ications, 150–151
InterfaceController class

content of, 12–13
selecting, 11–12

Interface Controller(s)
action button launching, 166
of Apple Watch app, 11–12
Attributes Inspector window, 18
Button control added to, 46–47, 83, 86–87
changing background of, 65–67
changing page displayed, 40–43
connected to Swift class, 18–19
Date control added to, 112–113
deactivating, 22
displaying series of, 37–38
Glance Interface Controller with, 180–181
Group control added to, 88–90
hierarchical navigation, 23–26
Image control added to, 67–69, 145–146
initialization methods for, 19–20
Label control added to, 13, 60, 63, 83, 96
loading, 20–21
Map control added to, 124
Menu control added to, 91–92
navigating using code, 35–38
navigation between, 22–23
page-based navigation, 27–28
passing data between, 28–33
Slider control added to, 62–65
Switch control added to, 59
Table control added to, 72

iOS app
adding WatchKit app and, 9–11
bundle, 4
communicating with, 5–6
consuming web services on, 126–130
getting user location, 115–120, 122
interfacing with. See Localization
performing background fetch in, 188–192
shared app groups and. See Shared app group
sharing files with watch app, 143–148

iOS notif ications, 149–152. See also Notifications
iPhone

adding target to app, 8–11
Apple Watch interaction with, 4–5
creating app for, 6–8

iPhone Simulator
Apple Watch app on, 142
changing language on, 105
displaying downloaded image, 147–148
resetting to English, 112
selecting country on, 137–138
testing app on, 14–15
unlocking, 22

L
Label control

adding to Interface Controller, 13, 60, 63, 83, 96
adding to Table control, 72
connecting outlet to, 75
creating outlet for, 30, 114, 126, 164
features of, 65
in hierarchical navigation, 25–26
Lines attribute of, 156–157
localizing, 102–106
for long-look interface, 168–169
naming outlet for, 31
in navigating using code, 36
setting attributes for, 73
for Static Interface Controller, 154
typing text into, 14

Languages
Date control and, 112–113
localization and, 102–106, 109–111

Layouts project, 86–91
Lifecycle of Interface Controller, 19–22
LifeCycle project, 17–19
Lines attribute, setting, 156–157
Local notif ications, 149
Localization

adding string file, 107
changing language and, 105
displaying title in, 106
file selection/addition for, 103–104
language selection for, 102, 109
for multiple languages, 99–101
naming string file and, 108
project, 100–113
of string files, 110–112
string literals used in, 104

Location data
adding Button/Label controls for, 114

199Index

adding new key for, 120
adding Swift f ile for, 117–118
displaying maps with, 123–125
displaying on Apple Watch, 123
displaying on Label control, 121–122
implementing code for, 118–119, 121
obtaining permission to access, 122
openParentApplication: method in, 115
preparing/adding new framework, 115–116

Long-look interface for notif ications
features of, 167
implementing, 168–173

Lower group selections, in customizing glances,
184–185

M
Map control, for location data, 123–125
Menu control, 91–92
Menu Item controls

adding programmatically, 97–98
displaying image, 91, 93, 97
setting attributes for, 93–94

Minus (–) button on Slider control, 62, 64–65
Mode attribute, of Image control, 70

N
NavigateUsingCode project, 36–43
Navigation, of Interface Controller

hierarchical, 23–26
overview of, 22–23
page-based, 27–28
using code, 35–38

NotificationController class, 169–172
Notification Simulation File, 173
Notifications

action buttons for, 163–167
on Apple Watch, 152–153
customizing, 156–157
definition of, 149
long-look interface for, 167–172
other payloads for simulating, 173–176
overview of, 6
overview of iOS, 150–152
project, 153–178
setting background image for, 160–161
short-look interface for, 153–156
types of, 149–150

NSLocationAlways-UsageDescription key, 120–122
NSURLConnection class, downloading images and,

144–145
NSURLSession class, connecting to web service,

129–130

NSUserDefaults setting
in background fetch, 187, 189–191
saving data and, 135–137, 193

O
openParentApplication: method, passing data

to iOS app, 115, 120, 127–129
Options button, for notif ications, 151–152

P
Page-based navigation

changing page displayed and, 40–43
customizing Cancel button in, 34–35
displaying data passed via, 33–34
displaying series of pages and, 38–40
between Interface Controllers, 22–23, 27–28

parseJSONData: method
connecting to web service, 129–130
extracting data, 189–190

Picker view, saving data and, 135–137
Plus (+) button on Slider control, 62, 64–65
presentControllerWithName:context: method

displaying series of pages, 38–40
in page-based navigation, 37–38

presentTextInputControllerWith Suggestions:
method

for emojis, 85–86
for text inputs, 82–84

Push notifications, 149
pushControllerWithName:context: method, in

hierarchical navigation, 37–38
PushNotificationPayload.apns file, 154–156,

161–163
PushNotificationPayload-delayed.apns file, 173–176

R
Remote notif ications

definition of, 149
with multiple action buttons, 161–163

Reply button, for notif ications, 150–151
replyDataFromPhone dictionary, 127–128
Resolutions, of Apple Watch sizes, 1–2
Root.plist f ile, 141–142

S
Sash color, changing, 177
Second Interface Controller

Cancel button on, 27–28
Label control added to, 25
passing data to, 28–33

Segue, in hierarchical navigation, 24–25, 32–33
Selectable attribute, of Row controller, 75, 81

200 Index

setImageNamed: method, 68–69
setMinimumBackgroundFetchInterval method,

190–191
Shared app group

adding to WatchKit Extension, 187–188
creating/adding to iOS project, 187
development team/app group for, 133
enrolling in Apple Developer Program, 131–132
entering Apple ID/password, 132
for extension target, 134–135
naming new container for, 133–134
retrieving data from, 138–139
saving data in, 135–138
sharing files and, 143–148
turning on Capabilities feature, 131
viewing newly created app group, 134

Short-look interface for notif ications
implementing, 153–156
with multiple action buttons, 161–163

Single View Application, creating, 6–7
Slider control

adding/testing, 62
creating outlet for, 63
setting attributes for, 63–64
Steps attribute and, 64–65

Sliders project, 62–65
Specifications, Apple Watch, 1–2
Static Interface Controller

changing sash/title color for, 177
customizing notif ications on, 156–157
displaying action buttons, 161–163
modifying display name on, 158
reverting back to, 178
setting background image for, 160–161
setting/displaying icons, 159–160
for short-look interface, 154

Steps attribute, for Slider control, 64–65
Stock prices

background fetch of, 188–190
retrieving, 193

Storyboard Editor, examining, 11–12
Storyboard file

adding Interface Controllers to, 23, 154
background image in, 59
drag/drop Button onto, 46
editing, 18
selecting, 17

String files
adding, 107
language selection for, 109
localization of, 110–112
naming, 108

Swift class
adding to project, 73
assigning Table control to, 74
for current location data, 117–118

Switch control
adding to Interface Controller, 59
changing title of, 59–60
creating outlet for, 60
testing, 61

Switches project, 59–62

T
Table control

adding to Interface Controller, 71–72
adding/assigning to Swift class, 73–74
connecting image outlet in, 79–80
creating outlet for, 76
displaying images in rows, 81
displaying list of items, 77
features of, 71
Image control added to, 78
Image control attributes and, 79
Label control added to, 72
selecting items via, 81–82
setting Table Row Controller Identif ier, 75

Table Row Controller
adding Image control to, 78
Identif ier attribute for, 75
selecting, 74

table:didSelectRowAtIndex: method,
81–82

Tables project, 71–82
Taptic Engine, 2
TextInputs project, 83–85
Text inputs, 82–85
timeIntervalSinceDate: method, of retrieving

information, 193–194
Title color, changing, 177

U
UI (user interface) controls

Button. See Button control
Date, 112–113
Group, 86–91
Image. See Image control
Label, 65
obtaining inputs and, 82–86
overview of, 45
Slider, 62–65
Switch, 59–61
Table. See Table control

UI (user interface) localizations, 102–106

201Index

UINavigation project, 23–34
Upper group selections, in customized glances, 183
User interaction response controls

Button. See Button control
overview of, 45
Slider, 62–65
Switch, 59–61

UserInfo argument
in accessing web services, 128, 130
passing data to iOS app, 118, 120

V
Vertical attribute, for Label control, 73
View Controller, saving data and, 135–137
Views. See Controls (views)

W
WatchKit app

adding images to, 169
adding to iPhone app, 8–11
adding/naming font file in, 52–54
deploying, 4
function of, 3–4
interaction with WatchKit Extension, 3–4
lifecycle of, 12–13
modifying name of, 158
overview of, 6
Settings app for, 140–143

WatchKit Extension
adding shared app group to, 187–188
adding to iPhone app, 10–11
adding/naming font file in, 52–53

function of, 3–4
interaction with WatchKit app, 3–4

WatchKit framework
types of applications, 6
understanding, 3–6

WatchKit Settings Bundle
adding items to, 142
naming/viewing file in, 141
selecting, 140

Weather information access, 126–130, 138–139
Web service access, 126–130
WebServices project, 126–148
willActivate method

changing page displayed, 41–42
initializing Interface Controller, 13, 20–22
passing data to controllers, 32
updating glances, 182

WKInterfaceController class
GlanceController class extending, 182
naming subclass of, 29
subclassing, 12–13

X
Xcode

for Apple Watch apps, 2
background fetch and, 191, 192
creating iPhone app in, 6–8
Output Window in, 21–22
in testing app, 14

Y
Yahoo web service connection, 188–190

This page intentionally left blank

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

	Contents
	Preface
	Acknowledgments
	About the Author
	2 Apple Watch Interface Navigation
	Interface Controllers and Storyboard
	Lifecycle of an Interface Controller

	Navigating between Interface Controllers
	Hierarchical Navigation
	Page-Based Navigation
	Passing Data between Interface Controllers
	Customizing the Title of the Chevron or Cancel Button
	Navigating Using Code
	Presenting a Series of Pages
	Changing the Current Page to Display

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

