

Assignments and
Hints

Pearson LiveLessons

• This downloadable file contains Assignments and Hints, which are
referenced to the appropriate sub-lesson number.

• The purpose of an Assignment is to ask you some questions and set you
exercises to help you explore and reinforce the subjects covered by a
particular sub-lesson.

• The purpose of Hints is to remind you of some techniques that are
particularly useful in considering how to apply the ideas covered by a
particular sub-lesson.

• This material also contains a glossary of terms used in the video
course.

• The Requirements Knowledge Model is reproduced in full.
• The table of contents for the Volere Requirements Specification

Template is also reproduced.
• We should also mention our book, Mastering the Requirements Process –

Getting Requirements Right, 3rd edition, published by Addison Wesley.
• You can read articles about requirements at www.volere.co.uk
• We have a discussion forum at the Volere Requirements LinkedIn

grouphttp://goo.gl/NHGwT

Copyright © 2016 Pearson Inc. 2

1.1 Assignment: Establish your requirements process
Consider the following questions and mentally answer them. These are
here to reinforce the sub-lesson about requirements processes.
1. What is a requirements process?
2. Why do you need a requirements process?
3. Why do requirements processes vary from project to project?

2.1 Assignment: Lay the foundations
1. What are the three elements that you want to get into balance?
2. What is the difference between the scope of the work and the scope of

the product?
3. How will you identify the appropriate stakeholders for the work you

need to study?
4. How do you know if you have a well-defined goal?
5. What can you count at the end of your blastoff to help make decisions

about the project?

2.2 Assignment: Scope the problem
1. What is a rich picture?
2. Sketch a rich picture to show all the elements you consider relevant to

cooking a meal.
3. Try another rich picture to show all the elements for planning a

holiday.

Copyright © 2016 Pearson Inc. 3

2.3 Assignment: Context diagram
1. What are the 3 components of a work context diagram?
2. What is the purpose of drawing a work context diagram?
3. Try sketching a work context diagram for a piece of your work.
4. How would you use a work context diagram to communicate with

other people?
5. What advantages do you get from setting the scope of the work?
6. What problems do you foresee?

3.1 Assignment: Event partitioning
1. Choose a piece of work with which you are familiar.
2. Identify a business event: The name of the event, the input, the

output(s).
3. Define the data content of the input and output data flows for your

event.
4. Write a one-sentence summary of the business use case (the work’s

response to the event).
5. Add the inputs and outputs to a context diagram and then return to

point 1 and identify another business event.
6. Identify as many business events as you can and add each one to your

context diagram.

3.2 Assignment: Listen to stakeholders
1. What is the difference between hearing and listening? Try to explain

this difference to a colleague.
2. Why do you need a variety of techniques for discovering the

requirements?
3. What is the difference between the two techniques: apprenticing and

interviewing?

Copyright © 2016 Pearson Inc. 4

3.3 Hints: Discovery techniques
• Use the data to guide you to ask relevant questions.
• Use a variety of trawling techniques to elicit, discover and invent

requirements.
• Record everything. Use a notebook, whiteboard, camera, phone, etc.
• The dictionary is the basis for formalising your requirements.
• When you explore the problem it is likely that you will discover

changes in the work context, treat this as a success.
• If someone tells you “it is obvious” be sure to write it down, it won’t be

obvious to everyone.

3.4 Assignment: Data dictionary
1. How does the data help you explore the problem?
2. When would you start your data dictionary?
3. Who is responsible for defining the data?
4. Why is a simple notation recommended for the data dictionary?
5. How can you improve data definitions in your projects?

3.9 Assignment: Get to the essence
1. What are the four viewpoints identified by the brown cow model?
2. What is the benefit of getting to the essence?
3. What is a key skill to enable you to discover the essence?

4.1 Hints: Generate ideas
Innovation Triggers provide inspiration for innovation. Think of it as a
guide to some facet of your business that needs an innovation. One problem
with the triggers is that they sound too general, and perhaps too obvious.

Copyright © 2016 Pearson Inc. 5

Well, they are obvious, but they belong to that category of things that are obvious once they
are pointed out.
We humans are not good at having ideas without some kind of aid, but once
given a direction, a problem to solve or some other influence, we are very
good at having ideas. In other words, we are better at improving things than
we are at coming up with something from scratch.

The innovation triggers are:

• Information
• Participation
• Speed
• Convenience
• Differentiation

And some others we did not talk about in the course:
• Service
• Connections
• Green
• Responsible

Information: Your customers already have lots of information, and expect
more of it. Moreover, not giving information is often taken to mean that you
(the organization not providing the information) have something to hide.
People need information to make their decisions. For example, Amazon is a
successful seller of a wide range of products, and part of this succe2ss is down
to the amount of information that Amazon provides about its products.
Additionally, customer reviews provide useful information. On numerous
occasions I have bought an alternative product to the one I first looked at
because of unfavorable customer reviews. So even bad news is good
information.
Think about the eventual users of your product. Spend some time thinking
about the information that if provided, would make it easier or more
convenient to do whatever task they use your product for.

Copyright © 2016 Pearson Inc. 6

Participation: People want to be more involved in their transactions, and
do more of the work themselves. We go online to buy things and arrange
their delivery, we book our flights, download our boarding passes to our
phones, check ourselves out of supermarkets, track our parcels, and do much
of the work that used to be done for us.
This is participating in the business, and we seem to like it. The attitude is
that by doing things ourselves, we are not dependent on others, and
whatever it is that we want, we will get it more conveniently and more
quickly, if we do it ourselves.
The question that you, the business analyst, must ask is, “What can we do to
have our customers participate more in our business?” “What facilities can
we provide that allow customers to become more a part of our business?”

Speed. We have become accustomed to things being done quickly. And
despite things being faster now than they were yesterday, we want them to
be even faster. For example, how have your expectations about speed
changed over the last five years? Probably quite considerably.
We want things to happen more quickly. This means that whatever system
or service you are building, it must make the customer or user think that
they are getting something quickly. It does not actually have to be faster, but
the end user must think he/she is getting something more quickly than
before.
So think about speed: what is it that your product or system can do to be
faster in the eyes of its users? Can you change a process to eliminate a few
steps and get something to the customer more quickly? Can you change the
product so that the customer does some of the work himself? By doing the
work themselves, customers usually think it is faster Think about speed –
people love it.

Convenience is probably the important of the innovation triggers. We
value convenience, and are prepared to pay for it. I know it sounds obvious,
but our systems are not always as convenient as they can be, and the more
convenient they are, the more likely they are to be used, and the more
people will use them.
Consider recorded music, and how it has changed over the years. The vinyl
album gave way to cassettes, these were overtaken by the compact disc,
which in turn is being supplanted by streamed music. These were not

Copyright © 2016 Pearson Inc. 7

necessarily advances in the quality of the music (good vinyl on a high-quality
turntable still outperforms them all) but each was more convenient than its
predecessor. We bank online because it is more convenient than going to the
bank and standing in line for the teller. Home delivery is more convenient
than going to the store and buying it oneself. The newspaper on the iPad is
more convenient than the paper version bought at the corner kiosk.
You have to ask, “Is this product / service / system as convenient as I can
make it?” Is there something – anything—that you can do to make it more
convenient for its user? Convenience attracts customers and users. Spend
five minutes and generate an idea that makes your product more convenient.

Differentiation is not the same as being different. Differentiation is the
separation of your product from your competitions’. You can make a
telephone different by painting it yellow, but to differentiate your telephone
from other telephones you need to change it so that it gives you directions
when you are walking around an unknown city. The differentiation is
important when you consider consumers who will have to switch from
whatever they have at the moment. The differentiation must overcome their
reluctance to switch, or it must provide enough of a benefit to overcome the
dominant design.
It is useful to keep in mind that the greater the differentiation, the greater the
benefit to you. Producing a “me too” product rarely means success.
Producing the breakthrough product – the iPod, the flat screen, the Internet,
mobile payments, etc. – almost always results in a runaway success.
So consider the system you are developing. Is it merely following the herd?
Or can you make it one that will lead the herd in a new direction?

Service means understanding the business you are in, and thereby knowing
what your customers want from it. Each day, companies go out of business
because they do not provide the service that their customers want. Each day,
new companies are successful because they have understood what their
customers really want. This is service at its most basic.
Think of service from your customers’ viewpoint. What are they trying to do,
and what could your organization do to make it easier for them? What extra
service can you provide that your customers will value?
Think particularly about the help and support your customers need. Think
about making something more convenient (mentioned above). Think about

Copyright © 2016 Pearson Inc. 8

yourself as a customer or user of the system you are building. What service
can it provide to make your life perfect?

You can use Connections as a trigger for innovation. We love to be
connected – note the popularity of mobile phones, Facebook, and other
social networks, messaging apps, and the annoying people who walk while
texting. People crash their cars to answer their phones, and step into the
path of oncoming traffic while checking messages; such is the need to be
connected. (By the way, I am not exaggerating here. People have really been
killed by their blind desire to stay connected.)
Coming back to your systems and services, your customers measure you by
the way you respond to them: how you answer their questions, how you
support them, how you keep them informed of your products and services.
This response is the active part of connecting to the customer.

Green. People want to be green, or at least, they want to feel green or seen
to be green. This often translates into wanting to buy from companies, or use
services or products they feel are green, or have been produced in a green
way.
Green pays—many companies have ridden to success on the green
credentials, or they are currently adopting green polices. Look at how British
Petroleum, known as BP, stresses its greenness despite being an oil company.
Many airlines sell customers offsets for the carbon emissions from their flight.
This does not necessarily bring in a flood of new customers, but it might well
retain customers who want to be green. And let’s face it, with so much
attention (finally) being paid to the environment, being green is great
advertising.

Responsible following on from greenness is responsibility. Companies can
advertise their civic responsibilities and become attractive to the same
audience that is attracted by greenness. Responsibility might have the added
benefit that it could well be cheaper to be responsible than it is to be green.
The intention of using it as a trigger is that organizations can innovate
products and services that display a civic responsibility. Ben&Jerry’s Ice
Cream was one of the pioneers at this. It bought them a lot of custom from
the socially aware.

Copyright © 2016 Pearson Inc. 9

The simple (but not simplistic) question is, “How can my organization
appear more responsible?”

The innovation triggers seem obvious. Yet it is remarkable how many
projects forget these things when it is so easy to run through the list of
triggers and for each one ask, “What can we do to provide better
information / speed / convenience / etc.?”

4.3 Assignment: Understand the people
1. What is the difference between the two views: “What Now” and

“Future What”?
2. What is the benefit of inventing a persona?
3. Work with a colleague to invent a persona who you think would be

helpful in your environment.

4.4 Assignment: Define future work
1. What are the different skills of a business analyst and a user experience

designer?
2. What is the difference between information design and visual design?

4.5 Hints: Choose technological solution
• There is always more than one possible solution, usually different

people have their own favourite – there is no one right answer.

• You need to make the different solutions visible so that you can
compare them and make a choice.

• Project constraints are helpful in guiding solution choices.
• Keep track of why you have chosen a particular solution – design

rationale. This will help you to make future changes and help new
people understand the design.

Copyright © 2016 Pearson Inc. 10

5.3 Assignment: Functional requirements

Book Loan Agreement =
Borrower Name + Borrower Id + Library Id + Book ISBN +
Loan Start Date + Loan Expiry Date
Chosen Book = Borrower Id + Book ISBN

1. Use the definitions given for Chosen Book and Book Loan

Agreement and write some functional requirements.
2. For each requirement, write Requirement ID, Description, Rationale and Fit

Criterion on a Volere snow card (included in downloads).

5.4 Assignment 1: Non-functional requirements
1. Consider a project from your own work
2. Rank the non-functional requirements in order of importance for your

project and organization. Importance is business need or potential for
failure if missed.

Copyright © 2016 Pearson Inc. 11

3. Write a non-functional requirement for each of your top three
categories. Include requirement type, description and rationale.

NON-FUNCTIONAL REQUIREMENTS
 10. Look and Feel Requirements
 11. Usability Requirements
 12. Performance Requirements
 13. Operational Requirements
 14. Maintainability Requirements
 15. Security Requirements
 16. Cultural and Political
 17. Compliance Requirements

5.4 Assignment 2: Non-functional requirements
1. Why are non-functional requirements important?
2. Who are the sources of non-functional requirements?
3. How do you discover the non-functional requirements?
4. Which type/s of non-functional requirements are the most difficult to

discover – and why?
5. What are the non-functional requirements for a bathroom tap?

5.4 Hints: Non-functional requirements
• Use the Volere table of contents checklist to identify non-functional

requirements to support specific functional requirements.
• Write requirement description to summarize the intention of the

requirement.
• Write the rationale to explain why the requirement is important.
• Identify solutions disguised as requirements by analysing the rationale.
• Write the fit criterion to make the requirement testable.
• Add definitions of new terms to your data dictionary.

Copyright © 2016 Pearson Inc. 12

• Involve only the stakeholders appropriate for the type of requirement.

5.5 Assignment: Atomic requirements
1. What does it mean to say a requirement is “atomic”?
2. Why is it useful to have different types of requirements?
3. Do you always have requirements of every type?
4. Why do you identify the functional requirements before the non-

functional requirements?
5. What is the reason for the requirement rationale?

5.5 Hints: Atomic requirements
• Keep your own list of verbs and use them consistently within your

project.
• When writing requirements use exactly the same data names as the

ones you have on the context diagram and in the data dictionary.
• Give each requirement a unique identifier.
• Write a description, rationale and fit criterion for each requirement.
• Make sure that the terms you use in each requirement have been

defined in your data dictionary.
• Use the Volere snow card as a checklist for writing your atomic

requirements.

Copyright © 2016 Pearson Inc. 13

5.5 Hints: Volere snow card

6.2 Assignment: Discover relevant deviations
Consider the following scenario for checking a passenger onto a flight.
Identify the exceptions and alternatives that you consider most
relevant in this situation:

1. Get the passenger’s ticket or record locator.
2. Check this is the correct passenger, flight and destination.
3. Check the passport is valid and belongs to the passenger.
4. Record the frequent flyer number.
5. Find a seat.
6. Ask security questions.
7. Check the baggage onto the flight.
8. Provide boarding pass and bag tags.

Copyright © 2016 Pearson Inc. 14

7.1 Assignment: Making requirements testable
1. Why have a fit criterion as part of an atomic requirement?
2. Who do you think should write the fit criteria?
3. What advice would you give another business analyst about how to

write fit criteria?
4. Who are all the people who use the fit criteria?
5. Why does an atomic requirement have more than one attribute?
6. How is the Quality Gateway implemented in your project(s)?

8.1 Assignment: Requirements strategy
1. How can you ensure that your project uses a common language for

communicating requirements knowledge?
2. What are the variables that influence your requirements strategy?

Copyright © 2016 Pearson Inc. 15

Glossary of the terms used in this course
Adjacent system — a system that provides information to, or receives
information from, the work. We study the adjacent system to understand
why and how it communicates, as well as understanding the reason that it
communicates with our work.
Agile – this term generally means developing systems using iteration,
prioritization, and discovering the requirements in a “just in time” manner.
This is also referred to in this course as “iterative”.
Apprenticing — the business analyst learns the work or business that the
end-user does by doing the work under the end-user’s supervision.
Association — a business link between classes. It’s also known as a
relationship.
Attribute — an element of stored data. Also see data element.
Atomic Requirement — a measurable, testable requirement that does not
need further decomposition. See also: Functional Requirement, Non-
functional Requirement.
Brainstorming — a group of interested, bright people who try to generate
as many ideas as possible for the product by feeding off one another’s ideas.
Business analyst — the person in, most organizations, responsible for
discovering and recording the requirements. It’s also called requirements
analyst, requirements engineer or systems analyst.
Business event — something that happens and causes the work to
respond. Business events happen either outside the work in the adjacent
systems, or because it is time for the work to produce some service. Business
events are such things as Customer pays an invoice, Truck reports all roads have been
treated, Time to read electricity meters, Viewer wants to watch TV.
Business use case (BUC) — the response that the work or business
makes to a business event. Think of this as a self-contained amount of
functions and data that are activated in their own discrete time frame.
Class — a collection of data attributes about a single subject relevant to the
work.
Client — the person who pays for the development of the product. This can
be someone in your organization, or someone outside for whom you are
building the product. It’s also known as Sponsor. See also customer.

Copyright © 2016 Pearson Inc. 16

Constraint — a pre-existing restriction that limits the solution you can
provide. This can be a design constraint (the product shall run on a mobile
telephone) or a project constraint (the product shall be available three
months from now). A constraint is a type of requirement.
Context diagram — a diagram showing the work to be studied
encapsulated as one process, and the data connections to the outside world
represented as adjacent systems.
Context —the subject matter, people and organizations that might have an
impact on the requirements for the product. The context of study, or the
work context, identifies the work that is to be studied, and the adjacent
systems that interact with this work. The product context identifies the scope
of the product and its interactions with users and other systems.
Cooperative adjacent system — an adjacent system that provides an
immediate and predictable service to the work or product. It is usually an
automated system with a database containing information used by the work.
Customer — the person who buys the product. See also client.
Data element — an individual item of data that is not subdivided for
requirements purposes. It’s also known as attribute.
Data flow — data that moves from one process to another, usually
represented by a named arrow.
Data store—a repository of data. It’s used as a generic name for file,
database, etc.
Design — the act of crafting a solution to fit the requirements.
Developer — usually refers to someone who builds the resultant system.
It’s also known as programmer.
Entity — see class.
Eventual owner — the person or organization that will ultimately own the
developed product or system. This could be an organization that develops a
system for in-house use, or a customer who buys the finished product.
Fit criterion — a quantification or measurement of the requirement so
that you are able to determine if the delivered product satisfies the
requirement.
Function point — a measure of functionality. This is used in requirements
projects to measure the work area in order to project the amount of effort
needed to study it and write the requirements.

Copyright © 2016 Pearson Inc. 17

Functional requirement — something that the product must do.
Functional requirements are part of the fundamental processes or the
essence of the product.
Non-functional requirement — a property, or quality that the product
must have, such as an appearance, or a speed or accuracy property. Non-
functional requirements specify how well the functionality must be carried
out.
Product — that which you are about to build, and for which the
requirements are written. Product usually means a software product, but the
requirements can be for any kind of product, system or service.
Product use case (PUC) — part or all of a business use case. The
product use case is an amount of functionality allocated to the product.
Requirements are written for the PUC.
Project sociology analysis — the act of identifying all the stakeholders
for the requirements project.
Prototype — a simulation of the product using either software prototyping
tools, or lo-fidelity whiteboard or paper mock-ups. The purpose of the
prototype is to aid the gathering of requirements. It is not used here to mean
a design prototype.
Requirement — something that the product must do, or a property that
the product must have.
Requirements analyst — see business analyst.
Requirements knowledge model — a class diagram showing the
information that is typically gathered by the requirements activity.
Requirements Specification — a document that contains the
requirements. The specification defines the product, and may be used as a
contract to build the product.
Requirer — anyone who has requirements. This is also referred to as a
stakeholder.
Snow card — an 8 by 5 inch card with the components of the requirement
printed on it. It is used as a low-tech way of writing requirements.
Stakeholder — a person with some interest in the product. For example,
the client for the development, a user, or somebody who builds the product.
Some stakeholders are remote, for example an auditor, a safety inspector, a

Copyright © 2016 Pearson Inc. 18

company lawyer. Stakeholders as used here are not necessarily financial
stakeholders.
Story — simple description of a capability from the point of view of the
person who needs the new capability. It’s used in agile development as the
basis for deriving atomic requirements.
System — any combination of humans, hardware technology, software
technology or materials that carries out a defined purpose. It is best qualified
to explain the type of system under discussion. This could be a socio-
technical system that involves people and technology, a computer system
that involves a mixture of hard and soft technology, a software system that
involves soft technology, or a social system that just involves human beings.
System in this course never means just the computer, or the software system.
Systems analysis — the craft of modeling the system’s functions and data.
Use case — this term is elastic and should be qualified as either: a business
use case (BUC), product use case (PUC) or system use case (SUC).
User — the person, or system, that has a direct connection with the
product. It’s also known as end-user.
Volere – Volere is the name given to the collection of techniques, courses,
templates, books, etc. created by Suzanne and James Robertson. More at
www.volere.co.uk.
Work — the business area that eventually will include the product. The
work is the part of the world that it is necessary to study in order to discover
the requirements for the product. The work contains people, existing
computer systems, business processes, roles, business rules and anything else
that affects the decision about what to build or change, and whether it will fit
into the world.

Copyright © 2016 Pearson Inc. 19

Volere Requirements Specification Template
The Volere Requirements Specification Template is intended for use as a
basis for your requirements specifications. The template provides sections for
each of the requirements types appropriate to today's software systems.
The following is the table of contents only. It is intended to give you an idea
of the scope and depth of this d document. You may download the complete
template from the Volere site www.volere.co.uk and adapt it to your
requirements gathering process and requirements tool. The template can be
used with Requisite, DOORS, Caliber RM, IRqA, Yonix and other popular
tools. There is a review of requirements tools at www.volere.co.uk/tools.htm.

The template is copyright © 1995 – 2015 the Atlantic Systems Guild Limited.

Table of Contents

1. The Purpose of the Project
1a. The User Business or Background of the Project Effort
1b. Goals of the Project

2. The Stakeholders
2a. The Client
2b. The Customer
2c. Other Stakeholders
2d. The Hands-On Users of the Product
2e. Personas
2f. Priorities Assigned to Users
2g. User Participation
2h. Maintenance Users and Service Technicians

Copyright © 2016 Pearson Inc. 20

3. Constraints
3a. Solution Constraints
3b. Implementation Environment of the Current System
3c. Partner or Collaborative Applications
3d. Off-the-Shelf Software
3e. Anticipated Workplace Environment
3f. Schedule Constraints
3g. Budget Constraints
3h. Enterprise Constraints

4. Naming Conventions and Terminology
4a. Glossary of All Terms, Including Acronyms, Used by Stakeholders
Involved in the Project
5. Relevant Facts and Assumptions
5a. Relevant Facts
5b. Business Rules
5c. Assumptions

6. The Scope of the Work
6a. The Current Situation
6b. The Context of the Work
6c. Work Partitioning
6d. Specifying a Business Use Case (BUC)

7. Business Data Model and Data Dictionary

7a. Business Data Model
7b. Data Dictionary

8. The Scope of the Product
8a. Product Boundary

Copyright © 2016 Pearson Inc. 21

8b. Product Use Case Table
8c. Individual Product Use Cases

9. Functional Requirements

9a. Functional Requirements

Non-functional Requirements

10. Look and Feel Requirements
10a. Appearance Requirements
10b. Style Requirements

11. Usability and Humanity Requirements
11a. Ease of Use Requirements
11b. Personalization and Internationalization Requirements
11c. Learning Requirements
11d. Understandability and Politeness Requirements
11e. Accessibility Requirements

12. Performance Requirements
12a. Speed and Latency Requirements
12b. Safety-Critical Requirements
12c. Precision or Accuracy Requirements
12d. Reliability and Availability Requirements
12e. Robustness or Fault-Tolerance Requirements
12f. Capacity Requirements
12g. Scalability or Extensibility Requirements
12h. Longevity Requirements

13. Operational and Environmental Requirements
13a. Expected Physical Environment

Copyright © 2016 Pearson Inc. 22

13b. Wider Environment Requirements
13c. Requirements for Interfacing with Adjacent Systems
13d. Productization Requirements
13e. Release Requirements
13f. Backwards Compatibility Requirements

14. Maintainability and Support Requirements
14a. Maintenance Requirements
14b. Supportability Requirements
14c. Adaptability Requirements

15. Security Requirements

15a. Access Requirements
15b. Integrity Requirements
15c. Privacy Requirements
15d. Audit Requirements
15e. Immunity Requirements

16. Cultural Requirements

16a. Cultural Requirements

17. Compliance Requirements

17a. Legal Compliance Requirements
17b. Standards Compliance Requirements

Project Issues

18. Open Issues
19. Off-the-Shelf Solutions
19a. Ready-Made Products
19b. Reusable Components

Copyright © 2016 Pearson Inc. 23

19c. Products That Can Be Copied

20. New Problems
20a. Effects on the Current Environment
20b. Effects on the Installed Systems
20c. Potential User Problems
20d. Limitations in the Anticipated Implementation Environment
That May Inhibit the New Product
20e. Follow-Up Problems

21. Tasks
21a. Project Planning
21b. Planning of the Development Phases

22. Migration to the New Product

22a. Requirements for Migration to the New Product
22b. Data That Has to Be Modified or Translated for the New
Product

23. Risks

24. Costs

25. User Documentation and Training
25a. User Documentation Requirements
25b. Training Requirements

26. Waiting Room

27. Ideas for Solutions

Copyright © 2016 Pearson Inc. 24

Volere Stakeholder Map

Copyright © 2016 Pearson Inc. 25

Volere Requirements Knowledge Model
The requirements knowledge model provides a language for collecting and
communicating the information that you discover during requirements-
related activities. We present it here as a guide to the information you need
to consider, and as a tool for communication between the various
stakeholders on your project.
The model also serves as a planning tool; you construct it to guide the
requirements team as to what information should be gathered. Your own
process must define who gathers which information, to what degree of detail
and how it will be packaged and reviewed. The model below shows the links
between the various classes of knowledge. Typically it is necessary to
maintain these links for traceability purposes.
The numbers on the classes provide a cross reference to the relevant
section(s) of the Volere template.

Copyright © 2016 Pearson Inc. 26

The knowledge model identifies the classes of knowledge concerned with
requirements and the relationships between them.
The notation used is UML class diagram. If you are not familiar with this
notation, it is read as follows:

• The rectangle represents a class or entity of knowledge, the name of
the class is written in the rectangle

• The line joining rectangles represents a relationship or
association between two or more classes

• Multiplicity or cardinality is represented by 1 (one) and * (many).

Copyright © 2016 Pearson Inc. 27

Definitions of Requirements Knowledge Classes and
Relationships
It is not enough to have just names for classes of knowledge, you also need to
have a common agreement of what those names mean. For example, if you
have a class on your knowledge model called Atomic Requirement then your
understanding of what that means should be identical to that of the rest of
your team. In other words you need a dictionary to support the model you
use. The following are definitions of the classes of knowledge and their
associations. First we have listed the classes in alphabetical order and then
the relationships in alphabetical order.

Knowledge Classes:

Atomic Requirement
Purpose: A Requirement specifies a business need or want. A requirement
has a number of attributes as listed below.
Attributes:

Requirement Number
Requirement Description
Requirement Rationale
Requirement Type
Requirement Fit Criterion
Requirement Source
Customer Satisfaction
Customer Dissatisfaction
Conflicting Requirements
Dependent Requirements
Supporting Material
Version Number

Considerations: Also see the subtypes of requirement, namely Constraint,
Functional requirement, Non-functional requirement, Technological
requirement.
Suggested Implementation: Sections 9 through 17 of the Template.
There are various automated tools available; these allow team access to the
requirements.

Copyright © 2016 Pearson Inc. 28

Business Event
Purpose: A Business Event is a happening outside the work scope that is in
effect a demand for some service provided by the work. For example, a
motorist passes an electronic tollbooth, a customer orders a book, a doctor
asks for the scan of a patient, a pilot lowers the landing gear.
Business events can also happen because of the passage of time. For
example, if a customer’s bill is not paid in 30 days, then it is time for the
work to send a reminder. Or it is two months before an insurance policy is
due to expire.
Attributes:

Business Event Name
Business Event Adjacent Systems/Actors
Business Event Summary

Considerations: It is important to recognize the business event. Its nature,
the circumstances that exist at the time the event happens, the activity of the
adjacent system at the time of the business event are all important indicators
of the appropriate response.
Suggested Implementation: This is in section 6 of the Volere
Requirements Specification Template. A list of the business events and their
associated input and output flows will suffice. It is practical to give each
business event a unique identifier.

Business Use Case
Purpose: A Business Use Case (often referred to as a BUC) is the processing
done in response to a business event. For example, a policyholder decides to
make a claim is a business event. The business use case is all the processing
done by the work to approve or deny the claim. Also see Product Use Case.
Attributes:

Business Use Case Name
Business Use Case Description
Business Use Case Input
Business Use Case Outputs
Business Use Case Rationale
Business Use Case Priority
Normal Case Scenario
Exception Case Scenarios

Copyright © 2016 Pearson Inc. 29

Preconditions
Post or exit conditions

Considerations: Business use cases are self-contained portions of the work,
and can be studied independently. For this reason they are an important unit
that project leaders can use to structure the analytical work.
Suggested Implementation: Also section 6 of the Volere Requirements
Specification Template. An automated tool that allows sharing of the
business use case attributes is advisable. BUCs can be represented using any
combination of Business process models, sequence diagrams, activity
diagrams, scenarios or any other representation that is acceptable to the
people involved – providing the BUC is within the boundaries declared for
the Business Event.

Constraint
Purpose: A constraint is a type of requirement. It is a constraint on the
design of the product, or a constraint on the project itself, such as budget or
time restrictions.
Considerations: We treat them as a type of requirement that must be met.
However, we highlight them, as it is important that you and your
management are aware of them.
Suggested Implementation: Section 3 of the Template. Design
constraints should be recorded in the same way as the other requirements.
See the knowledge class Requirement for the attributes.

Fact/Assumption
Purpose: An assumption states an expectation on which decisions about the
project are based. For example, it might be an assumption that another
project will be finished first, or that a particular law will not be changed or
that a particular supplier will reach a specified level of performance. If an
assumption turns out not to be true, then it indicates that there might be far
reaching and unknown effects on the project.
A Fact is some knowledge that is relevant to the project and affects its
requirements and design. A Fact can also state some specific exclusion from
the product and the reason for that exclusion.
Fact/Assumption is a global class and could have an association with any of
the other classes in your knowledge model.

Copyright © 2016 Pearson Inc. 30

Attributes:
Description of the Assumption/Fact
Reference to people and documents for more details

Considerations: Assumptions indicate a risk. For this reason they should
be highlighted and all affected parties made aware of the assumption. You
could consider installing a mechanism to resolve all assumptions before
implementation starts.
Suggested Implementation: Section 5 of the Template; these can be
written in free text. They should be regularly circulated to management and
the project team.

Functional Requirement
Purpose: A functional requirement is something that the product must do.
For example, calculate the fare, analyze the chemical composition, record
the change of name, find the new route. Functional requirements are
concerned with creating, updating, referencing and deleting the essential
subject matter within the context of the study.
Attributes: This is a sub-type of Atomic Requirement and inherits its
attributes.
Suggested Implementation: Section 9 of the Template. See the
Knowledge class Atomic Requirement for the attributes.

Implementation Unit
Purpose: The unit for packaging your implementation.
Attributes:

Implementation Unit Name
Considerations: This could be what your customers refer to as a
“feature”, or if your product is a consumer item then it is possibly called a
“function”. The choice of implementation unit is driven by a combination of
your implementation technology and your implementation process. When
you tailor this part of the knowledge model you might find that you replace
implementation unit with several classes. The important issue is that you can
unambiguously trace your implementation unit back to the relevant
requirements.

Copyright © 2016 Pearson Inc. 31

Naming Conventions & Data Dictionary
Purpose: A dictionary that defines the meaning of terms used within the
requirements. This dictionary will be added to throughout the project to
include terms that are related to the implementation. This is a global class
and could have an association with any of the other classes in your
knowledge model. Consistent use of the same terminology – as defined in the
dictionary- helps to minimize misunderstandings.
Attributes:

Name of the Term
Definition of the Term

Suggested Implementation: Section 4 of the Template; this should be in
the form of a glossary. Along with the work context and the product
context this provides a good introduction for new team members. In Section
7 of the Template; there is a formal dictionary that defines all of the data
in the inputs, outputs and attributes within the scope of the work and the
scope of the product. The dictionary provides a mechanism for connecting
business terminology and implementation terminology.

Non-functional Requirement

Purpose: A Non-functional requirement is a quality that the product must
have. For example it must be fast, attractive, secure, customizable,
maintainable, portable, etc. Non-functional requirements types are Look and
Feel, Usability, Performance and Safety, Operational Environment,
Maintainability and Portability, Security, Cultural and Political, Legal. For
more about non-functional requirements refer to the Volere requirements
template at http://www.volere.co.uk
Attributes: This is a sub-type of Atomic Requirement and inherits its
attributes.
Considerations: The non-functional properties are important if the user
or buyer is to accept the product.
Suggested Implementation: Sections 10 through 17 of the Template. It
is vital that you give all non-functional requirements the correct fit criterion.

Copyright © 2016 Pearson Inc. 32

Product Scope
Purpose: The product scope identifies the boundaries of the product that
will be built. The scope is a summary of the boundaries of all the product use
cases.
Attributes:

User Names
User Roles
Other Adjacent Systems
Interface descriptions

Suggested Implementation: Section 8 of the Template. This should
preferably be a diagram, either a use case diagram or a product scope model
supported by a product use case summary table. Some interface descriptions
might be supported by prototypes or simulations.

Product Use Case
Purpose: A Product Use Case (PUC) is a functional grouping of
requirements that will be implemented by the product. It is that part of the
business use case that you decide to build as a product.
Attributes:

Product Use Case Name
Product Use Case Identifier
Product Use Case Description
Product Use Case Users
Product Use Case Inputs
Product Use Case Outputs
Product Use Case Stories
Product Use Case Scenarios
Product Use Case Fit Criterion
Product Use Case Owner
Product Use Case Benefit
Product Use Case Priority

Suggested Implementation: Section 8 of the Template. The product use
cases are a good mechanism for communication within the extended project
team. PUC’s might take the form of models, user stories, scenarios or
anything else that suits the people involved. Whatever the type of

Copyright © 2016 Pearson Inc. 33

representation the details of the PUC should be within the boundaries
declared by the PUC inputs and outputs.

Project Goal

Purpose: To understand why the company is making an investment in
doing this project.
Attributes:

Project Goal Description
Business Advantage
Measure of Success

Note that there might be several project goals.
Suggested Implementation: Section 1 of the Template. This is the basis
for making decisions about scope, relevance and priority. It is the guiding
light for the project. Ideally this should be defined as part of the project
initiation. The project goals should be unambiguously defined and agreed
before putting effort into discovering detailed requirements.

Stakeholder

Purpose: Identifies all the people, roles, organizations who have an interest
in the project. This covers the project team, direct users of the product, other
indirect beneficiaries of the product, specialists with technical skills needed to
build the product, external organizations with rules or laws pertaining to the
product, external organizations with specialist knowledge about the product's
domain, opponents of the product, producers of competitive products.
Attributes:

Stakeholder Role
Stakeholder Name
Types of Knowledge
Necessary Participation
Appropriate Trawling Techniques
Contact information e.g. email address.

Suggested Implementation: Section 2 of the Template. Use the
stakeholder map and stakeholder analysis template to define the attributes
for each stakeholder.

Copyright © 2016 Pearson Inc. 34

Story
Purpose: A Story is a grouping of requirements that reflect a need from the
point of view of a particular stakeholder. Stories are used as an alternative to
product use cases. If you are working in an agile environment then it is likely
that you will be using stories. Stories, like product use cases, provide a
functional grouping for detailed atomic requirements – the difference is that
stories are at a lower level of granularity.
Attributes:

Role of Stakeholder
Something the Stakeholder needs to be able to do
The reason for wanting this functionality

Suggested Implementation:
As a [Name of Stakeholder]
I can [Something I need to be able to do]
So that [The reason/rationale behind the need]

System Architecture Component
Purpose: A piece of technology, software, hardware or abstract container,
that influences, facilitates and /or places constraints on the design.

Technological Requirement

Purpose: A technological requirement exists because of the technology
chosen for the implementation. These requirements are there to serve the
purposes of the technology, and are not originated by the business.
Attributes: This is a sub type of Atomic Requirement and inherits its
attributes.
Considerations: The technological requirements should only be
considered when you know the technological environment. They can be
recorded alongside the business requirements, but it must be clear which is
which.

Copyright © 2016 Pearson Inc. 35

Test
 Purpose: The design for test is the result of a tester reviewing a
requirement's fit criterion (precise measure) and designing a cost effective test
to prove whether or not a solution meets the fit criterion.
Considerations: You might consider having your testing people write the
test cases as the requirements are being written. Also consider that the
requirement’s fit criterion is the basis of the test case.

Work Scope
Purpose: Defines the boundary of the investigation necessary to discover,
invent, understand and identify the requirements for the product.
Attributes:

Adjacent Systems
Input Dataflows
Output Dataflows
Work Context Description

Considerations: This should be recorded publicly as our experience is that
it is the most widely referenced document. A context model is an effective
communication tool for defining the work context.
Suggested Implementation: Section 7 of the Template. The work scope
is best illustrated with a context model.

Associations

Business boundary
Purpose: To partition the work context according to the functional reality
of the business.
Multiplicity:

For each Business Event there is one Work Context.
For each Work Context there are potentially many Business Events.

Copyright © 2016 Pearson Inc. 36

Business relevancy
Purpose: To ensure that there are relevant business connections between
the scope of the investigation, the project purpose and the
stakeholders.Multiplicity:
The trinary Relationship is as follows:

For each instance of
 one Work Context and
 one Stakeholder there are one or more Project Purposes.
For each instance of
 one Project Purpose and
 one Stakeholder there is one Work Context.
For each instance of
 one Project Purpose and
 one Work Context there are potentially many Stakeholders.

Business responding
Purpose: To reveal which business use cases are used to respond to the
business event.
Multiplicity:

For each Business Event there is usually one, but could be more than
one, Business Use Cases.
For each Business Use Case there can only be one triggering Business
Event.

Business tracing

Purpose: To keep track of which requirements are generated by which
business use cases. Note that this is a many-to-many Relationship because a
given requirement might exist in more than one business use case.
Multiplicity:

For each Business Use Case there are potentially many Atomic
Requirements.

Copyright © 2016 Pearson Inc. 37

For each Atomic Requirement there are potentially many Business
Use Cases.

Implementing

Purpose: To keep track of which product use cases are implemented in
which implementation units.
Multiplicity:

For each Product Use Case there are potentially many
Implementation Units.
For each Implementation Unit there are potentially many Product
Use Cases.

Owning
Purpose: To keep track of which stakeholders are the source of which
requirements. The idea of “ownership” is to identify a person who takes the
responsibility for helping to get answers to questions about the requirement.
Multiplicity:

For each Requirement there is one Stakeholder.
For each Stakeholder there are potentially many Requirements.

Product partitioning
Purpose: All the product use cases together form the complete scope of the
product. The product scope is partitioned into a number of product use
cases.
Multiplicity:

For each Product Use Case there is one Product Scope.
For each Product Scope there are potentially many Product Use
Cases.

Product tracing

Purpose: To keep track of which requirements are contained in which
product use cases for the purpose of traceability and dealing with change.
Multiplicity:

Copyright © 2016 Pearson Inc. 38

For each Requirement there are potentially many Product Use Cases.
For each Product Use Case there are potentially many Atomic
Requirements.

Supporting

Purpose: To keep track of which systems architecture components support
which implementation units for the purpose of tracking tests and assessing
impact of change.
Multiplicity:

For each System Architecture Component there are potentially many
Implementation Units.
For each Implementation Unit there are potentially many System
Architecture Components.

Testing
Purpose: To keep track of which atomic requirements or PUC related
groups of atomic requirements are covered by which tests.
Multiplicity:

For each Test there are potentially many Atomic Requirements.

Copyright © 2016 Pearson Inc. 39

Bibliography
Ackoff, Russell, and Herbert Addison. Systems Thinking for Curious Managers:

With 40 New Management f-Laws. Triarchy Press, 2010.
Alexander, Ian and Ljerka Beus-Dukic. Discovering Requirements: How to Specify

Products and Services. Wiley, 2009. §
Alexander, Ian, Neil Maiden, et al. Scenarios, Stories, Use Cases Through the

Systems Development Life-Cycle. John Wiley, 2004.
Alexander, Ian, and Richard Stevens. Writing Better Requirements. Addison-

Wesley, 2002.
Beyer, Hugh, and Karen Holtzblatt. Contextual Design: Defining Customer-

Centered Systems. Morgan Kauffmann, 1998.
Blais, Steven. Business Analysis – Best Practices for Success. IIL/Wiley, 2012.
Boehm, Barry, and Richard Turner. Balancing Agility and Discipline: A Guide for

the Perplexed. Addison-Wesley, 2004.
Booch, Grady, James Rumbaugh, and Ivar Jacobson. Unified Modeling

Language User Guide, second edition. Addison-Wesley, 2005.
Brooks, Fred. The Design of Design. Addison-Wesley, 2010.
Buzan, Tony, and Chris Griffiths. Mind Maps for Business: Revolutionise Your

Business Thinking and Practise. BBC Active, 2009.
Checkland, Peter, and J. Scholes. Soft Systems Methodology in Action. John Wiley

& Sons, 1991.
Cockburn, Alastair. Agile Software Development: The Cooperative Game. Addison-

Wesley, 2006.
Cockburn, Alistair. Writing Effective Use Cases. Addison-Wesley, 2001.
Cohn, Mike. User Stories Applied: For Agile Software Development. Addison-

Wesley, 2004.
Cooper, Alan. The Inmates Are Running the Asylum: Why High Tech Products Drive

Us Crazy and How to Restore the Sanity. Sams Publishing, 2004.
Cooper, Alan, Robert Reimann, and David Cronin. About Face 3: The

Essentials of Interaction Design, third edition. Wiley, 2007.
Davis, Alan. Just Enough Requirements Management. Dorset House, 2005.

Copyright © 2016 Pearson Inc. 40

DeMarco, Tom, Peter Hruschka, Tim Lister, Steve McMenamin, James
Robertson, and Suzanne Robertson. Adrenaline Junkies and Template
Zombies: Patterns of Project Behaviour. Dorset House, 2009.

Ferdinandi, Patricia. A Requirements Pattern: Succeeding in the Internet Economy.
Addison-Wesley, 2001.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling
Language, third edition. Addison-Wesley, 2003.

Garmus, David, and David Herron. Function Point Analysis: Measurement
Practices for Successful Software Projects. Addison-Wesley, 2000.

Gause, Donald, and Gerald Weinberg. Are Your Lights On? How to Figure out
What the Problem Really Is. Dorset House, 1990.

Gause, Donald, and Gerald Weinberg. Exploring Requirements: Quality Before
Design. Dorset House, 1989.

Gilb, Tom. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage.
Butterworth-Heinemann, 2005.

Gottesdiener, Ellen. Requirements by Collaboration: Workshops for Defining Needs.
Addison-Wesley, 2002.

Highsmith, James. Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House, 2000.

Holtzblatt, Karen, Jessamyn Burns Wendell, and Shelley Wood. Rapid
Contextual Design: A How-to Guide to Key Techniques for User-Centered Design.
Morgan Kaufmann, 2004.

Hull, Elizabeth, Ken Jackson, and Jeremy Dick. Requirements Engineering,
second edition. Springer, 2005.

International Institute of Business Analysts. The Agile Extension to the BABOK
Guide. IIBA, Canada, 2015.

International Institute of Business Analysts. The Business Analysis Body of
Knowledge BABOK Version 3. IIBA, Canada, 2015.

Jackson, Michael. Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley, 2001.

Jones, Capers. Applied Software Measurement. McGraw-Hill, 1991.
Kruchten, Philippe. The Rational Unified Process: An Introduction, third edition.

Addison-Wesley, 2003.

Copyright © 2016 Pearson Inc. 41

Laplante, Phillip. Requirements Engineering for Software and Systems. Auerbach
Publications, 2009.

Lauesen, Soren. Software Requirements: Styles & Techniques. Addison-Wesley,
2002.

Lawrence-Pfleeger, Shari. Software Engineering: Theory and Practice, fourth
edition. Prentice Hall, 2009.

Leffingwell, Dean. Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley, 2011.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements: A Use Case

Approach, second edition. Addison-Wesley, 2003.
Maiden, Neil, and Suzanne Robertson. Integrating Creativity into Requirements

Processes: Experiences with an Air Traffic Management System. International
Conference on Software Engineering, May 2005.

McMenamin, Steve, and John Palmer. Essential Systems Analysis. Yourdon
Press, 1984.

Meadows, Donella. Thinking in Systems: A Primer. Chelsea Green Publishing,
2008.

Miller, Roxanne. The Quest for Software Requirements. MavenMark Books, 2009.
Pfleeger, Charles, and Shari Lawrence Pfleeger. Security in Computing, fourth

edition. Prentice Hall, 2006.
Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell. O’Reilly, 2005.
Podeswa, Howard. The Business Analyst's Handbook. Course Technology, 2008.
Pohl, Klaus. Requirements Engineering: Fundamentals, Principles, and Techniques.

Springer, 2010.
Pohl, Klaus and Chris Rupp. Requirements Engineering Fundamentals: A Study

Guide for the Certified Professional for Requirements Engineering. Rocky Nook,
2015.

Pullen, Penny and James Archer (editors). Business Analysis and Leadership –
Influencing Change. Kogan Page, 2013.

Robertson, James, and Suzanne Robertson. Complete Systems Analysis: The
Workbook, the Textbook, the Answers. Dorset House, 1994.

Robertson, Suzanne, and James Robertson. Mastering the Requirements Process,
second edition. Addison-Wesley, 2006.

Copyright © 2016 Pearson Inc. 42

Robertson, Suzanne, and James Robertson. Requirements-Led Project
Management: Discovering David’s Slingshot. Addison-Wesley, 2005.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. Unified Modeling
Language Reference Manual, second edition. Addison-Wesley, 2004.

Seddon, John, Systems Thinking in the Public Sector. Triarchy Press, 2010.
Senge, Peter. The Fifth Discipline: The Art and Practice of the Learning Organization,

revised edition. Crown Business, 2006.
Sommerville, Ian, and Pete Sawyer. Requirements Engineering: A Good Practice

Guide. John Wiley & Sons, 1998.
Spolsky, Joel. Joel on Software: And on Diverse and Occasionally Related Matters That

Will Prove of Interest to Software Developers, Designers, and Managers, and to
Those Who, Whether by Good Fortune or Ill Luck, Work with Them in Some
Capacity. Apress, 2004.

Tockey, Steve. Return on Software: Maximizing the Return on Your Software
Investment. Addison-Wesley, 2004.

Tufte, Edward. The Visual Display of Quantitative Information, second edition.
Graphics Press, 2010.

Van Lamsweerde, Axel. Requirements Engineering. John Wiley & Sons, 2009.
Wiegers, Karl. More About Software Requirements: Thorny Issues and Practical

Advice. Microsoft Press, 2006.
Weigers, Karl and Joy Beatty. Software Requirements, third edition. Microsoft

Press, 2013.
Weinberg, Jerry. Quality Software Management. Volume 1: Systems Thinking. Volume

2: First-Order Measurement. Volume 3: Congruent Action. Volume 4:
Anticipating Change. Dorset House, 1992–1997.

Wiley, Bill. Essential System Requirements: A Practical Guide to Event-Driven Methods.
Addison-Wesley, 1999.

Yayici, Emrah. Business Analyst's Mentor Book : With Best Practice Business Analysis
Techniques and Software Requirements Management Tips. Kindle Edition,
2013.

