
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134177434
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134177434
https://plusone.google.com/share?url=http://www.informit.com/title/9780134177434
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134177434
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134177434/Free-Sample-Chapter

AndroidTM

Concurrency

About the Android
Deep Dive Series

Zigurd Mednieks, Series Editor

The Android Deep Dive Series is for intermediate and expert developers who use
Android Studio and Java, but do not have comprehensive knowledge of Android
 system-level programming or deep knowledge of Android APIs. Readers of this series
want to bolster their knowledge of fundamentally important topics.

Each book in the series stands alone and provides expertise, idioms, frameworks, and
engineering approaches. They provide in-depth information, correct patterns and
 idioms, and ways of avoiding bugs and other problems. The books also take advantage
of new Android releases, and avoid deprecated parts of the APIs.

About the Series Editor

Zigurd Mednieks is a consultant to leading OEMs, enterprises, and entrepreneurial
ventures creating Android-based systems and software. Previously he was chief
architect at D2 Technologies, a voice-over-IP (VoIP) technology provider, and a
founder of OpenMSobile, an Android-compatibility technology company. At D2 he led
engineering and product definition work for products that blended communication
and social media in purpose-built embedded systems and on the Android platform.
He is lead author of Programming Android and Enterprise Android.

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

Mexico City • São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

AndroidTM

Concurrency

G. Blake Meike

Editor-in-Chief

Greg Wiegand

Executive Editor

Laura Lewin

Development Editor

Sheri Replin

Managing Editor

Sandra Schroeder

Project Editor

Lori Lyons

Project Manager

Ellora Sengupta

Copy Editor

Abigail Manheim
Bass

Indexer

Cheryl Lenser

Proofreader

Natarajan

Technical Reviewers

Joe Bowbeer
Thomas Kountis

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Graphics
Conversion

Vived Graphics

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
 publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
 omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions, custom cover designs, and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
 corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016937763

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
 reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
 permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Android is a trademark of Google, Inc.

ISBN-13: 978-0-13-417743-4
ISBN-10: 0-13-417743-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana
First printing: June 2016

http://www.pearsoned.com/permissions/

❖

This book is for my mother, Sally Ann Obermeyer Meike, who
encouraged me to be a snoot, long before David Foster Wallace

re-purposed the term

❖

This page intentionally left blank

NOTE: To register this product and gain access to bonus content, go to
www.informit.com/register to sign in and enter the ISBN. After you register the
product, a link to the additional content will be listed on your Account page,
under Registered Products.

Contents at a Glance

Preface xiii

About the Author xvi

Acknowledgements xvii

1 Understanding Concurrency 1

2 Java Concurrency 9

3 The Android Application Model 29

4 Async Tasks and Loaders 41

5 Looper/Handler 69

6 Services, Processes, and Binder IPC 91

7 Periodic Tasks 127

8 Concurrency Tools 167

 Bibliography 183

Index 185

http://www.informit.com/register

This page intentionally left blank

Table of Contents

Preface xiii

About the Author xvi

Acknowledgements xvii

1 Understanding Concurrency 1

Concurrency Made Hard 1

Concurrency in Software 2

Concurrency in Hardware 3

Concurrency Made Simple 4

Threads 4

Atomic Execution 5

Visibility 6

Summary 7

2 Java Concurrency 9

Java Threads 9

The Thread Class 10

Runnables 11

Synchronization 11

Mutexes 12

Common Synchronization Errors 15

Volatile 17

Wait and Notify 20

Wait 20

Notify 22

The Concurrency Package 23

Safe Publication 23

Executors 25

Futures 26

Summary 27

3 The Android Application Model 29

Lifecycles and Components 29

Process Priority 31

Component Lifecycles 33

Android Applications as Web Apps 35

x Contents

The Android Process 36

Application Startup 36

The Android Main Thread 38

Summary 40

4 Async Tasks and Loaders 41

Async Task Architecture 41

Async Task Basics 45

AsyncTask Execution 48

AsyncTask Completion 50

Using AsyncTasks 52

AsyncTask: Considered Dangerous 52

Getting It Right 58

Loaders and Cursor Loaders 59

AsyncTasks: What Went Wrong 67

Summary 68

5 Looper/Handler 69

Introducing the Looper/Handler 69

Basic Looper/Handler 71

Delegating Execution 73

Some Gory Details 81

Handlers and Messages 81

Starting a Looper 84

The Native Looper 86

Scheduling and the Sync-Barrier 87

Summary 88

6 Services, Processes, and Binder IPC 91

Service Basics 92

Started Service Essentials 93

Bound Service Essentials 95

Intents 96

The Intent Service 99

Bound Services 103

A Simple Bound Service 103

Binding A Service 105

xiContents

Unbinding A Service 106

Binding Multiple Services 107

Service Lifecycle 109

Priorities and Flags 111

A Local Bound Service 112

Inter-Process Communication 114

Parcelables 116

Messengers 116

Using AIDL 120

Creating Processes 123

Binder, Considered Briefly 125

Binder Threads 125

Binder Data Transfer Limits 126

Binding to Death 126

Summary 126

7 Periodic Tasks 127

Task Characteristics 127

Thread Safety 128

Lifecycle-Aware 128

Smart Use of Process Priority 128

Power-Thrifty 129

The Scorecard 130

Timer and TimerTask 130

Looper/Handler 130

Custom Service-based Scheduler 133

Alarm Manager and Intent Service 134

The Alarm Manager Service 135

Schedulable Tasks 139

Sync-Adapters 142

Defining a Sync-adapter 143

How Sync-adapters Work 145

Implementing the Sync-adapter 147

Scoring the Sync-adapter 152

xii Contents

The JobScheduler 155

Scheduling a Task 156

Running a Task 159

Task Implementation 161

Scoring the JobScheduler 165

Summary 166

8 Concurrency Tools 167

Static Analysis 167

Android Studio 168

Findbugs 169

Annotations 177

JCIR Annotations 177

Support Library Annotations 178

Assertions 179

Conclusion and Best Practices 180

Bibliography 183

Index 185

Preface

I have had the opportunity during my years in working in this industry, to see concurrency
in many contexts. When I was in school, it was a topic for dissertations. As a journeyman
developer, I saw a lot of concurrent code, nearly all of it Java, in distributed back-end systems.
Recently, I’ve had the opportunity to experience first-hand the turn to languages like Erlang
and Scala, in the hope of making concurrent code easier to design and write.

I recall early in my career, being coached by a very supportive interviewer into reinventing
double-checked locking. I certainly recall the furor, about a year later, when it was discovered
that the double-checked locking idiom was not safe, and soon after, the first sighting of
incorrect byte-code in the wild. Perhaps most surprising of all, though, I recently removed an
implementation of the double-checked locking idiom from a piece of code written in 2015.

The constant, over this time, is the mystery and debate surrounding the topic. Perfectly
competent novices suddenly balk or make naïve mistakes when concurrent code is necessary.
Developers who are otherwise entirely reasonable sometimes disagree—occasionally quite
vehemently—over the correctness of a particular piece of concurrent code. Their arguments,
which may go on for hours, inevitably end up hinging on minutiae so fragile that the
argument’s actual winner is irrelevant.

I readily admit to feeling some kind of glee when I walked out of that early interview after
having been led to double-checked locking. It was a shibboleth. I’d been initiated! Recently,
I think I’ve seen the same kind of excitement in the faces of lecturers and their audiences as
the lecturer passes on a secret: some fast and loose—and frequently downright incorrect—
concurrency trick.

A really clever algorithm and a good shot of glee are wonderful things. We would all write
better code, though, if we could strip some of the mystery and magic from concurrent
programming. It would be great if instead of being the realm of the wizard, the correctness of a
piece of concurrent code were something on which the opinions of two developers—even two
developers with wildly different interests—rapidly converged.

Who Should Read This Book

This book is intended for developers with some experience with Android development.

If you are a novice developer, you will probably find some of the terms and concepts here
unfamiliar. If you are a developer working on his or her very first Android app, you will
probably be more concerned with simply getting familiar with the Android framework.

There are some really good books for you, already in existence, if you fit into either of these two
categories. If that is the case, I encourage you to set this book aside for a while, enjoy the thrill
of the steep part of a learning curve, and to come back when you have one complete Android
app under your belt.

xiv Preface

While it may sound obvious, I intend this book for reading. It is neither a cookbook nor a
reference manual. I absolutely encourage you to try out the sample code. The examples are
just sandboxes for experiments. Extend them. Try new experiments with them. Build your own
personal understanding of the details of the Android OS. I hope, though, that you don’t have
to prop the book open next to your laptop to get value from it.

I was at one time bewitched by Perl. Looking back, I think that a major reason for that is that
it was so much fun to read the Camel book (not the pink one, the blue one: the 2nd edition).
I recall many enjoyable hours far from a keyboard and with no specific application in mind,
simply reading that book.

I do not compare myself to Larry Wall. I do not by any means compare Android to Perl. I do
hope, though, that you enjoy just reading this book. I hope that it is something that will make
good company, perhaps on a plane flight or a long commute.

How This Book Is Organized

The first three chapters of this book will be a review for the audience for whom the book is
intended.

I urge you not to skip Chapter 1, at least. It presents a model of concurrency that is somewhat
atypical and that is the basis for the discussion in the following chapters.

Chapters 2 and 3 are intentionally short. They are a refresher for some basic ideas and provide
an opportunity to reintroduce some common idioms. Experienced developers may choose to
skim them.

Chapter 4 is a cautionary tale.

The heart of the book is Chapters 5 through 7. These chapters are a deep dive into some of the
details of the Android operating system.

Chapter 8 is dessert: a bit of a how-to for some concurrency tools.

Example Code

Most of the code shown in examples in this book can be found on GitHub at
https://github.com/AndroidConcurrencyDeepDive. If you experiment with them and discover
something interesting or amusing, by all means submit a pull-request to share it with others.

Register your copy of Android Concurrency at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product
ISBN 9780134177434 and click Submit. Once the process is complete, you will find any
available bonus content under “Registered Products.”

https://github.com/AndroidConcurrencyDeepDive

xvConventions Used in This Book

Conventions Used in This Book

The following typographical conventions are used in this book:

 ■ Bold indicates new terms, URLs, email addresses, filenames, and file extensions.

 ■ Constant width is used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

 ■ Constant width bold shows commands or other texts that should be typed by
the user.

 ■ Constant width italic shows texts that should be replaced with the user-supplied
values or with the values determined by the context.

Note

A Note signifies a tip, suggestion, or general note.

About the Author

Blake Meike is a passionate engineer, architect, and code poet. As an author, speaker, and
instructor, he has taught thousands of people how to write Android apps that aren’t toys. He
has more than 20 years of coding experience, most of it with Java, building systems as large
as Amazon’s massively scalable AutoScaling service and as small as a pre-Android OSS Linux/
Java-based platform for cell phones. He is co-author of several other books, including O’Reilly’s
bestselling “Programming Android” and Wiley's “Enterprise Android.” Blake holds a degree in
Mathematics and Computer Science from Dartmouth College and was a founding member of
Twitter University. He lives in Oakland, CA, and works for Cyanogen Inc.

Acknowledgements

This book owes its existence to a long list of contributors. My longtime colleague, Zigurd
Mednieks, proposed it. Laura Lewin, Executive Editor at Pearson Technology Group, gave it a
green light, and Carol Jelen, Literary Agent at Jelen Publishing, put a deal together.

The production staff at Pearson deftly turned the manuscript into a book. Illustrator
Jenny Huckleberry cleaned up the figures and Development Editor Sheri Replin, Copy Editor
Abigail Manheim Bass, and Project Editor Lori Lyons cleaned up the drafts. Editorial Assistant
Olivia Basegio and Project Manager Ellora Sengupta kept us all together through the process.
My thanks to all of you.

A special “thank you” and my eternal gratitude go to Laura Lewin, Executive Editor. Her
patience with my complete inability to stick to any kind of schedule surely qualifies her for
immediate sainthood.

On this book, my first as a solo author, my technical editors Joe Bowbeer, Thomas Kountis,
and Zigurd Mednieks contributed so much that I am tempted to list them as co-authors. They
were everything that I could have hoped for in a technical review team. Each, a recognized
expert in the field, took the time to read carefully, understand, and then suggest changes as
small as rewording and as big as re-thinking. While any remaining errors are strictly my own,
any clarity and accuracy are due to them. I am incredibly lucky to have had their help.
Thanks, guys!

Finally and always, thanks to my wonderful wife, Catherine, who endured yet another year of
weekends with her husband on the couch, headphones on, incommunicado. That glitter heart
is still for you, babe!

This page intentionally left blank

1
Understanding Concurrency

We propose to use the delays τ as absolute units of time which can be relied
upon to synchronize the functions of various parts of the device.

John von Neumann

In order to build correct, concurrent Android programs, a developer needs a good model of
concurrent processes, how they work, and what they are for. Concurrency actually isn’t a big
deal for most normal humans. For any multi-celled animal—arguably even for viruses—it is just
normal existence. It is only those of us obsessed with computers that give a second thought to
the idea of walking and chewing gum at the same time.

Concurrency Made Hard

Walking and chewing gum isn’t easy in the strange world of Dr. John von Neumann. In his
1945 paper, “The First Draft Report on the EDVAC” (von Neumann 1954), he describes the
architecture of one of the very first electronic digital computers. In most ways, that architecture
has changed very little in the seventy years since. Throughout their history, digital computers
have been, roughly speaking, gigantic balls of state that are transformed, over time, by a
sequence of well-defined operations. Time and order are intrinsic parts of the definition of the
machine.

Most of computer science has been the discussion of clever sequences of operations that
will transform one machine state into another, more desirable, state. As modern machines
commonly have more than 1014 possible states, those discussions are already barely
 manageable. If the order in which transformations take place can vary, the discussion
 necessarily broadens to include all possible combinations of all possible states, and becomes
utterly impossible. Sequential execution is the law of the land.

2 Chapter 1 Understanding Concurrency

Concurrency in Software

Of course, computer languages are written for humans. They are intended to help us express an
algorithm (the sequence of instructions that transforms the machine state) efficiently, correctly,
and, perhaps, even in a way that future human readers can understand.

Early programming languages were, essentially, an extension of the hardware. Even today many
are reflections of the machine architecture they were originally designed to control. Nearly all
of them are procedural and consist of lists of instructions for changing (mutating) the state
of memory. Because it is simply too difficult to reason about all of the possible states of that
memory, languages have, over time, become more and more restrictive about the state changes
they allow a developer to express. One way to look at the history of programming language
design is as a quest for a system that allows developers to express correct algorithms easily, and
not express incorrect ones at all.

The very first languages were machine languages—code that translated, one-for-one, into
instructions for the computer. These languages were undesirable for two reasons. First,
 expressing even a very simple idea might take tens of lines of code. Second, it was much too
easy to express errors.

Over time, in order to restrict and manage the ways in which a program could change state,
languages have narrowed the choices. Most, for instance, restrict program execution from
arbitrarily skipping around between instructions to using now-familiar conditionals, loops, and
procedure calls. Modules and eventually OOP (Object-Oriented Programming) followed, as ways
of separating a program into small, understandable pieces and then limiting the way those
pieces can interact. This modularized, building-block approach makes modern languages more
abstract and expressive. Some even have well-developed type systems that help prevent errors.
Almost all of them, though, are still imperative: lists of instructions for changing machine state.

Functional Programming

While most computer research and development focused on doing more and more compli-
cated things, on bigger and faster hardware based on von Neumann architecture, a small but
 persistent contingent has pursued a completely different idea: functional programming.

A purely functional program differs from a procedural program in that it does not have mutable
state. Instead of reasoning about successive changes to machine state, functional languages
reason about evaluating functions at given parameters. This is a fairly radical idea and it takes
some thinking to understand how it could work. If it were possible, though, it would have
some very appealing aspects from a concurrency point of view. In particular, if there is no
mutable state, there is no implicit time or order. If there is no implicit order, then concurrency
is just an uninteresting tautology.

John McCarthy introduced Lisp, the first functional language, in 1958, only a year or two after
the creation of the first commonly accepted procedural language, Fortran. Since then, Lisp and
its functional relatives (Scheme, ML, Haskel, Erlang, and so on) have been variously dismissed
as brilliant but impractical, as educational tools, or as shibboleths for hipster developers. Now
that Moore’s law (Moore, 1965) is more likely to predict the number of processors on a chip

3Concurrency Made Hard

than the speed of a single processor, people are not dismissing functional languages anymore.
(By 1975, Moore formalized this concept when he revised his original thoughts, and said the
number of integrated circuit (IC) components would double every two years.)

Programming in a functional style is an important strategy for concurrent programming and
may become more important in the future. Java, the language of Android, does not qualify as
a functional language and certainly does not support the complex type system associated with
most functional languages.

Language as Contract

Functional or procedural, a programming language is an abstraction. Only a tiny fraction of
developers need to get anywhere near machine language these days. Even that tiny fraction is
probably writing code in a virtual instruction set, implemented by a software virtual machine,
or by chip firmware. The only developers likely to understand the precise behavior of the
instruction set for a particular piece of hardware, in detail, are the ones writing compilers for it.

It follows that a developer, writing a program in some particular language, expects to
 understand the behavior of that program by making assertions in that language. A developer
reasons in the language in which the program is written—the abstraction—and almost
never needs to demonstrate that a program is correct (or incorrect) by examining the actual
machine code. She might reason, for instance, that something happens 14 times because the
loop counter is initialized to 13, decremented each time through the loop, and the loop is
 terminated when the counter reaches 0.

This is important because most of our languages are imperative (not functional) abstractions.
Even though hardware, registers, caches, instructions pipelines, and clock cycles typically don’t
come up during program design, when we reason about our programs we are, nonetheless,
reasoning about sequence.

Concurrency in Hardware

It is supremely ironic that procedural languages, originally reflections of the architecture they
were designed to control, no longer represent the behavior of computer hardware. Although
the CPU of an early computer might have been capable of only a single operation per tick of
its internal clock, all modern processors are performing multiple tasks simultaneously. It would
make no sense at all to idle even a quarter of the transistors on a 4-billion gate IC while waiting
for some single operation to complete.

 Why Is Everything Sequential?

It is possible that sequential execution is just an inherent part of how we humans understand
things. Perhaps we first imposed it on our hardware design and then perpetuated it in our
 language design because it is a reflection of the way our minds work.

Hardware is physical stuff. It is part of the real world, and the real world is most definitely not
sequential. Modern hardware is very parallel.

4 Chapter 1 Understanding Concurrency

In addition to running on parallel processors, modern programs are more and more frequently
interacting with a wildly parallel world. The owners of even fairly ordinary feature-phones are
constantly multitasking: listening to music while browsing the web, or answering the phone
call that suddenly arrives. They expect the phone to keep up. At the same time, sensors,
 hardware buttons, touch screens, and microphones are all simultaneously sending data to
programs. Maintaining the illusion of “sequentiality” is quite a feat.

A developer is in an odd position. As shown in Figure 1.1, she is building a set of instructions
for a sequential abstraction that will run on a highly parallel processor for a program that will
interact with a parallel world.

Sequential
Program

Concurrent
Users

Concurrent
Hardware

Concurrent Concurrent

Figure 1.1 A sequential program in a concurrent world

Concurrency Made Simple

The purpose of the discussion, up to this point, has been to reframe the idea of concurrency.
Concurrency is not a way to make a program run faster. It is not a complex juggling trick that
ninja coders use to keep multiple balls in the air at one time. On the contrary, it is the apparent
sequential execution of a program that is the complex trick. Sequential execution is an illusion
maintained by a cabal of compiler writers and hardware architects. Concurrency is simply the
relaxation of a fabricated constraint.

Threads

In the developer’s environment, where time and order are rigid and implicit constraints,
“concurrency” is just another word for “order unspecified”—the way things are everywhere
else. A concurrent program is just one that announces to an already-concurrent world that
its correctness does not depend on the ordering of events that occur in separate components.
In a concurrent program, those separate, partially ordered components are called threads of
execution, or just threads. Within a thread, instructions are still executed in rigidly sequential
order. The order of execution of instructions in two separate threads, however, is completely
unspecified.

In the early days of computing, the choice of threads as a model for concurrency was not
obvious. Developers that needed out-of-order processing were forced to brew their own

5Concurrency Made Simple

 concurrency constructs. Both literature and code from the 1960s contain a wide variety of
models for asynchronous execution.

Threads probably originated in the late 1960s, with IBM’s OS/360. They were called “tasks,” and
were an OS-level service that saved developers the trouble of building their own concurrency
abstraction. In 1991 Java, called Oak at the time, adopted the thread model and supported it in
the language, even on operating systems that did not.

Even today, threads are not the only model for concurrency. Languages such as Erlang, Go, and
Clojure, for instance, each use an entirely different model.

Introducing threads into the programming model does not present an intrinsic problem.
Operating two cars in parallel causes no problems unless they both try to occupy the same
space at the same time. Similarly, operating two threads that are completely independent
is also perfectly safe. There are millions of programs, each concurrently running in its own
thread of execution on millions of separate computers, at this very moment. Most of these
programs don’t interact with each other in any way and their behavior is perfectly well defined.
The problems only arise when threads need to share state and resources.

Atomic Execution

When multiple threads change state that is accessible to both, the results can easily be
nondeterministic. Because there is no relationship between the order in which statements are
executed, subtle changes in timing can change the result of running the program.

Consider the following code:

executionCount++;
someTask();

Just by inspection, it seems likely that the variable executionCount is meant to count the
number of times that the function someTask is called. In a concurrent environment, however,
this code, as it stands, does not have deterministic behavior because the ++ operation is not
atomic—it is not a single, indivisible action. Table 1.1 demonstrates an execution sequence that
fails to record one execution.

Table 1.1 Non-Atomic Execution

executionCount = 4

Thread 1 Thread 2

read execution count (4) read execution count (4)

increment (5) increment (5)

store execution count (5) store execution count (5)

call someTask call someTask

6 Chapter 1 Understanding Concurrency

Synchronization is the basic mechanism through which multiple Java threads share state
in such a way that the result of the interaction is deterministic. In itself, synchronization is a
simple idea: a critical section of code is protected by a mutual-exclusion lock or mutex. When
a thread enters the critical section—that is, it begins executing instructions from it—it is said to
seize the mutex. No other thread can enter the section until the first thread leaves.

The previous code becomes deterministic if only a single thread is allowed to execute the
 critical section at any given time:

synchronized(this) {
 executionCount++;
 someTask();
}

Synchronization is the crux of creating correct concurrent Java programs, and is the basis for a
lot of things that are definitely not simple. Those things make up the content of the rest of this
book.

Visibility

There is one more thing, however, that is simple. Remember that the previous example is an
abstraction! It is written in a computer language—Java, in this case—and is, therefore, related
to the actual behavior of hardware only by the grace of compiler writers, JVM developers, and
hardware architects. Those two Java statements translate into hundreds of microinstructions,
many of them executed in parallel, over tens of hardware clock cycles. The illusion that there
are two statements, happening in order, is no more than an illusion.

Maintaining the illusion is not something that near-the-metal developers do naturally. On the
contrary, they find sequential programs naive, clumsy, and wasteful. They are only too happy
to fix them by re-ordering instructions, executing multiple instructions in parallel, representing
a single piece of program state as multiple copies, and so on. By doing so, they do their very
best to make optimal use of the immense power of the multiple processors that comprise even
the tiny devices we carry in our pockets.

In general, we’re glad to have them perform these optimizations. They make our programs
run faster, on multiple hardware platforms, using tricks in which application developers are
just not that interested. There is one important condition on this optimization, however:
They must not break the illusion of sequentiality! In other words, compilers and hardware
 pipelines can reorder and parallelize all they want to optimize the code, as long as developers
can’t tell that they did it.

In making a program concurrent, a developer clearly states that there is no sequential
dependency between the states controlled by different threads. If there is no sequential
dependency, a compiler should be free to perform all sorts of optimizations that would
otherwise have been unsafe. Without an explicit ordering between events in different threads,
the compiler is free to make changes in the execution sequence of one thread without any
consideration of the statements in any other.

7Summary

A correct concurrent program is one that abides by the contract for maintaining an illusion.
Negotiation between application programmers and hardware developers produce a language,
and that language is a contract. The application developers get their illusion of sequential
execution, something about which they can reason. The hardware developers get a toolbox of
clever tricks they can use to make programs run fast. In the middle is the contract.

In Java, that contract is called the memory model. On one side of the contract is the
 application programmer, reasoning about her program in a high-level language. On the
other side of the contract are the compiler writers, virtual machine developers, and hardware
 architects, moving everything that isn’t explicitly forbidden. Developers who talk about
 hardware when discussing concurrency are missing the point. A correct concurrent program is
not about hardware; it is about developers keeping their end of the contract.

Fortunately, in Java, the contract is easily stated. The following single sentence states it almost
completely:

Whenever more than one thread accesses a given state variable, and one of them
might write to it, they all must coordinate their access to it using synchronization.

(Göetz, et al. 2006)

A correct concurrent Java program is one that abides by this contract—no more, no less. Note
in particular that whether a thread reads or writes mutable state does not affect its need for
synchronization in any way.

Summary

Concurrency itself is nothing to be scared of. We all deal with it in the real world, all day, every
day. What is difficult is writing concurrent programs for computers based on mutable state. It is
difficult because the concept of order is such an important implicit basis for the way we reason
about our programs.

Concurrency is the relaxation of the rigid order inherent in imperative computer languages.
Java’s mechanism for doing this is the thread. A thread executes instructions in an order that
is not related to the order of execution of instructions in other threads. Developers use mutual
exclusion locks (mutexes) to control thread access to critical sections of code, thereby limiting
the number of ways that two different threads can execute instructions in the section.

Most of today’s computer languages manufacture an illusion of sequential execution. Behind
the scenes, however, they fiercely reorder, parallelize, and cache to make the best use of
 hardware. The only thing that prevents those optimizations from making a program behave
non-deterministically, is a contract. A correct program is one that abides by that contract.

No one ever said that concurrency was easy. It is, however, fairly simple. Just follow the
contract.

This page intentionally left blank

Index

A
abstractions, programming languages as, 3

accepting loader events (listing 4.18), 62

account type

definition (listing 7.6), 144

in sync-adapters, 143–144

Activities

in application model, 30–31

AsyncTask errors, 55–58

Services versus, 92–93

addOnFileDescriptorEventListener

method, 86

administrative fields in Messages,

81–83

AIDL (Android Interface Definition

Language), 120–123

AlarmManager, scheduling tasks with

IntentService, 134–142

AlarmManagerService, 135–139

constraints on schedulable tasks,
139–142

AlarmManagerService, 135–139

Android applications. See applications

Android Interface Definition Language

(AIDL), 120–123

Android model, web apps versus desktop

apps, 67–68

Android Studio

Findbugs, 169–175

static analysis tools, 168–169

186 annotations

annotations, 177

JCIP annotations, 177–178

support library annotations, 178–179

applications

component lifecycles, 29–31, 33–34

creating processes, 123–125

definition, 30

main thread, 36

process priority, 31–33

restrictions on, 29

startup, 36–38

web applications versus, 35

assertions, 179–180

asynchronous execution

AsyncTasks. See AsyncTasks

with closures, 41–45

cursor loaders, 59–66

with loopers. See Looper/Handler
framework

asynchronous messages, 87

AsyncTasks, 41

completion, 50–52

cursor loaders and, 59–66

doInBackground method, 45–48

errors

concurrency errors, 52–55

lifecycle errors, 55–58

execution, 48–49

as Services, 99–101

when to use

autonomous tasks, 59

cancellable tasks, 59

atomic execution, 5–6. See also

synchronization

single-threaded UIs, 39

volatile keyword, 19

autonomous tasks, AsyncTasks as, 59

B
background execution. See asynchronous

execution

best practices for concurrency, 180–181

Binders, 113, 125

data transfer limits, 126

process failure, reporting, 126

threads, 125

@BinderThread annotation, 178

binding

multiple Services, 107–108

Services, 105

bindService method, 104

bound Services, 95–96, 103–104

binding, 105

binding multiple Services, 107–108

flags, 111–112

local bound Services, 112–114

unbinding, 106–107

bulk inserts

initial example (listing 4.8), 51

interruptible (listing 4.9), 51–52

C
callbacks, futures versus, 26–27

cancelable tasks, AsyncTasks as, 59

canceling AsyncTasks, 50–52

cellular radio power management, 129–130

classes

Messenger, 116–119

Thread, 10–11

Timer, 130

TimerTask, 130

clock type in scheduling tasks, 136

Cloneable interface, 99

closures, 41–45

187errors

clustering tasks, 129–130

Collections.unmodifiable method, 54

communication. See inter-process

communication (IPC)

completion of AsyncTasks, 50–52

components

lifecycles of, 29–31, 33–34

AsyncTask errors, 55–58

list of, 29–30

concurrency

AsyncTask errors, 52–55

atomic execution, 5–6

best practices, 180–181

difficulty of, 1

in hardware, 3–4

illusion of sequential execution, 6–7

sequential execution versus, 4

in software

functional programming
languages, 2–3

languages as contracts, 3

procedural programming
languages, 2

threads, 4–5. See also threads

Concurrency package, 23

content authority in sync-adapters, 143

content provider definition

listing 7.7, 144

listing 7.13, 152

ContentProvider, 143

contracts

binding Services, 105

maintaining sequential execution
illusion, 6–7

programming languages as, 3

copy-on-write memory sharing, 36–38

createFromParcel method, 116

cross-task communication (listing 4.7), 49

cursor loaders, 59–66

custom service-based schedulers, 133

D
data transfer limits for Binders, 126

database query

with anonymous class (listing 4.4), 44

initial example (listing 4.1), 41–42

dataset change notification

initial example (listing 7.14), 154

for sync-adapters (listing 7.15), 155

deadlock, 16–17, 38–39

declaring Services (listing 6.1), 92

defining sync-adapters, 143–145

delayed animation

improved example (listing 5.2), 75–76

initial example (listing 5.1), 74

messaged example (listing 5.3), 79–80

dependency injection frameworks, 141

desktop applications versus web apps in

Android model, 67–68

doInBackground method, 45–48, 100

E
effective immutability, 23

enqueueing Messages in Looper/Handler

framework, 78

Enterprise Android (Mednieks, et al.), 143

epoll mechanism, 86

errors

in AsyncTasks

concurrency errors, 52–55

lifecycle errors, 55–58

in synchronization, 15–17

188 exclusion files

H
Handler framework. See Looper/Handler

framework

hardware, concurrency in, 3–4

High Performance Browser Networking

(Grigorik), 130

hints. See annotations

hybrid services, 93, 153

I
idealistic backgrounding (listing 4.2), 42

IllegalMonitorStateException

(listing 2.13), 21

@Immutable annotation, 178

immutable data, sharing between

threads, 23

implicit Intents, 97–98

initializing

loaders (listing 4.17), 61

threads as loopers, 84

inner class implementation

(listing 4.15), 57

Inspections in Android Studio, 168–169

intent filters, 97

Intents, 96–99

in application model, 30–31

explicit Intents, 96–97

implicit Intents, 97–98

IntentService, 99–103

scheduling tasks with AlarmManager,
134–142

AlarmManagerService, 135–139

constraints on schedulable tasks,
139–142

interfaces

Cloneable, 99

Parcelable, 99, 116

exclusion files, 177

execution

of AsyncTasks, 48–49

atomic execution. See atomic execution

executors

futures, 26–27

optimum number of threads,
25–26

explicit Intents, 96–97

F
fields in Messages, 81

administrative fields, 81–83

messaging fields, 83

remote fields, 84

Findbugs, 169

with Android Studio, 169–175

with Gradle, 175–177

“The First Draft Report on the EDVAC”

(von Neumann), 1

flag field (Messages), 83

flags on bound Services, 111–112

flash memory, limitations, 29

functional programming languages, 2–3

functions, passing closures to

(listing 4.3), 43

futures

callbacks versus, 26–27

definition, 26

G
garbage collection, process reaping

versus, 34

Göetz, Brian, 9, 21

Gradle, 175–177

Grigorik, Ilya, 130

@GuardedBy annotation, 178

189listings

Runnable, 11, 73–77

Serializable, 99

inter-process communication (IPC), 114–115

AIDL, 120–123

Messenger class, 116–119

optimizing, 112–114

Parcelable interface, 116

interruptions, 21

bulk inserts, 51–52

flag state, 51

to started Services, 94–95

IPC (inter-process communication). See

inter-process communication (IPC)

isCancelled method, 50–52

isIdle method, 86

J
Java Concurrency in Practice (Göetz and

Peierls, et al), 9, 23, 177–178

JCIP annotations, 177–178

JobSchedule Service (listing 7.16), 156

JobScheduler, 155–165

implementing tasks, 161–165

running tasks, 159–161

scoring, 165

K
keywords

synchronized, 12, 14–15

this, 13

volatile, 17–20

killing processes, 33

L
LARGE_TASK_EXECUTOR, 49

lifecycle awareness in task scheduling, 128

lifecycles

AsyncTask errors, 55–58

of components, 29–31, 33–34

process priority, 31–33

of Services, 109–111

linkToDeath method, 126

listings

accepting loader events, 62

account type definition, 144

AIDL definition, 120

AIDL-generated code, 120–122

Alarm Scheduler task execution, 140

Android support annotations, 179

AsyncTask Service, 100

AsyncTasks

concurrency errors, 52, 53, 54

execution, 48

initial example, 46

lifecycle errors, 56

local copies of mutable data
structures, 54–55

binding multiple Services to single
Context, 108

bound Service client, 103–104

bulk inserts

initial example, 51

interruptible, 51–52

content provider definition, 144, 152

cursor loaders

complete, 65–66

creating, 63

database query

with anonymous class, 44

initial example, 41–42

dataset change notification

initial example, 154

for sync-adapters, 155

190 listings

message enqueueing, 82

Messenger Service, 118–119

Messenger usage, 117–118

minimal bound Service, 109

mutex errors, 16

passing closures to functions, 43

periodic Looper task, 131–132

periodic scheduling with
AlarmManager, 134

reentrant monitors, 15

remote managed object usage, 123

safe publication, 24–25

Service injection, 114

simple account creation, 150–151

singleton bound Service, 111

skeleton Android application, 67

skeleton cursor list activity, 60

skeleton Java application, 67

spawning threads, 10

specifying component’s process,
124, 125

sync-adapter service

complete service, 148

implementation, 148–149

initial example, 145

sync-adapters

definition, 143

implementation, 149–150

synchronized methods, 14

synchronized static methods, 14–15

synchronizing on objects, 12

synchronizing on this, 13

threads with Runnable, 11

volatile keyword, 19

wait and notify methods, 22

loaders, 59–66

local bound Services, 112–114

deadlock, 17

declaring Services, 92

delayed animation

improved example, 75–76

initial example, 74

messaged example, 79–80

explicit Intents, 96–97

Findbugs

failure example, 174–175

filter, 177

in Gradle, 176

successful example, 173

idealistic backgrounding, 42

IllegalMonitorStateException, 21

incorrect cross-task communication, 49

incorrect synchronization (single
thread), 17–18

incorrect volatile usage, 20

initializing loaders, 61

inner class implementation, 57

IntentFilter, 97

IntentService helper method, 102–103

JobSchedule Service, 156

JobScheduler tasks

implementing, 161–163

scheduling, 157–158

local Service, 112–113

local Service client, 113

looper creation

with handler, 85

initial example, 84

without race condition, 85

low-power periodic scheduling with
AlarmManager, 137–138

managed object implementation,
122–123

manifest for low-power scheduler, 138

191methods

local processes, 124

locks, definition, 12. See also mutexes

loop method, 71

Looper/Handler framework, 69–71

Java classes in, 71

main thread as looper, 38–39, 74

Messages

administrative fields,
81–83

enqueueing, 78

fields in, 81

messaging fields, 83

remote fields, 84

method overloading, 78–80

native Looper, 86

Runnable interface, posting, 73–77

safe publication, 69–70

scheduling tasks, 130–133

starting loopers, 84–86

sync-barriers, 87–88

task execution example, 71–73

M
main thread, 9, 36

as looper, 38–39, 74

@MainThread annotation, 178

marshaling, 99

McCarthy, John, 2–3

McLuhan, Marshall, 167

memory leaks, 80

memory model, 7

copy-on-write memory sharing,
36–38

MessageQueue, 70

native Looper, 86

sync-barriers, 87–88

task execution example, 71–73

MessageQueue

.addOnFileDescriptorEventListener

method, 86

MessageQueue.isIdle method, 86

MessageQueue.postSyncBarrier

method, 87

MessageQueue

.removeOnFileDescriptorEventListener

method, 86

MessageQueue.removeSyncBarrier

method, 88

Messages

enqueueing in Looper/Handler
framework, 78

fields in, 81

administrative fields, 81–83

messaging fields, 83

remote fields, 84

method overloading and, 78–80

Message.setAsynchronous method, 87

messaging fields in Messages, 83

Messenger class, 116–119

methods

addOnFileDescriptorEventListener, 86

bindService, 104

createFromParcel, 116

doInBackground, 45–48, 100

isCancelled, 50–52

isIdle, 86

linkToDeath, 126

loop, 71

notify, 22–23

notifyAll, 22–23

onBind, 95, 104, 105

onCancelled, 50

onConnected, 95

onCreate, 74

onHandleIntent, 101

192 methods

synchronized methods, 14–15

this keyword, 13

wait method, 20–21

MVC (model-view-controller) pattern,

deadlock, 38–39

N
native Looper, 86

notify method, 22–23

notifyAll method, 22–23

@NotThreadSafe annotation, 178

O
onBind method, 95, 104, 105

onCancelled method, 50

onConnected method, 95

onCreate method, 74

onHandleIntent method, 101

onPause method, 76–77

onPostExecute method, 47, 50

onProgressUpdate method, 47

onServiceConnected method, 105

onStartCommand method, 93–95, 100–101

oom_adj attribute, 31–32

oom_score_adj attribute, 32

opportunistic suspension, 129

optimizing IPC (inter-process

communication), 112–114

optimum number of threads, 25–26

overloading methods, 78–80

P
packages, Concurrency, 23

Parcelable interface, 99, 116

passing closures to functions

(listing 4.3), 43

onPause, 76–77

onPostExecute, 47, 50

onProgressUpdate, 47

onServiceConnected, 105

onStartCommand, 93–95, 100–101

overloading, 78–80

postSyncBarrier, 87

publishProgress, 47

removeOnFileDescriptorEventListener, 86

removeSyncBarrier, 88

run, 76–77

setAsynchronous, 87

stopSelf, 101

stopService, 101

synchronized, 14–15

unbindService, 104, 106–107

unmodifiable, 54

wait, 20–21

writeToParcel, 116

minimal bound Service (listing 6.10), 109

model-view-controller (MVC) pattern,

deadlock, 38–39

monitors. See also mutexes

definition, 12

reentrant monitors, 15

Moore’s law, 2–3

multiple Services, binding, 107–108

Murphy, Mark, 59

mutable data

local copies of, 54

sharing between threads, 23–25

mutating state, 2

mutexes, 6

definition, 12

errors in, 15–16

example usage, 12–13

reentrant monitors, 15

193scheduling tasks

PendingIntents, 135

periodic tasks. See scheduling tasks

posting Runnable interface in Looper/

Handler framework, 73–77

postSyncBarrier method, 87

power usage in task scheduling, 129–130

priority of processes. See process priority

procedural programming languages, 2

process priority, 31–33

flags on bound Services, 111–112

for Services, 93

in task scheduling, 128–129

process reaping, garbage collection

versus, 34

processes

creating, 123–125

inter-process communication (IPC),
114–115

AIDL, 120–123

Messenger class, 116–119

optimizing, 112–114

Parcelable interface, 116

local, 124

remote, 124

reporting failure, 126

terminating, 33

programming languages

as contracts, 3

functional, 2–3

illusion of sequential execution, 6–7

procedural, 2

proxies, 115

publishProgress method, 47

R
race conditions, 13, 77

Receivers in application model, 30–31

reentrant monitors, 15

remote fields in Messages, 84

remote processes, 124

removeOnFileDescriptorEventListener

method, 86

removeSyncBarrier method, 88

run method, 10, 76–77

Runnable interface, 11, 73–77

running

JobScheduler tasks, 159–161

sync-adapters, 145–147, 153–154

runtime concurrency checks,

179–180

S
safe publication, 23–25, 69–70

scheduling tasks

AlarmManager and IntentService,
134–142

AlarmManagerService, 135–139

constraints on schedulable tasks,
139–142

characteristics of, 127–128

lifecycle awareness, 128

power usage, 129–130

process priority, 128–129

scorecard for, 130

thread safety, 128

custom service-based schedulers, 133

JobScheduler, 155–165

implementing tasks, 161–165

running tasks, 159–161

scoring, 165

Looper/Handler framework, 130–133

sync-adapters, 142–155

defining, 143–145

implementing, 147–152

194 scheduling tasks

scheduling tasks with
AlarmManager, 134–142

JobSchedule Service (listing 7.16), 156

lifecycle of, 109–111

process failure, reporting, 126

process priority, 32

started Services, 93–95

when to use, 91

setAsynchronous method, 87

sharing

data between threads, 23–25

memory, 36–38

single-threaded UIs, 38–39

singleton bound Service (listing 6.11), 111

singletons, 106

software, concurrency in

functional programming languages, 2–3

languages as contracts, 3

procedural programming languages, 2

spawning threads (listing 2.1), 10

start method, Thread class, 10

started Services, 93–95

starting

applications, 36–38

loopers, 84–86

starving threads, 19

static analysis tools, 167–168

Android Studio, 168–169

Findbugs, 169

with Android Studio, 169–175

with Gradle, 175–177

static methods, 14–15

stopSelf method, 101

stopService method, 101

stubs, 115

support library annotations, 178–179

running, 145–147, 153–154

scoring, 152–155

sync-barriers and, 87–88

Timer and TimerTask classes, 130

scheduling window size in scheduling

tasks, 136

scorecard (task scheduling

characteristics), 130

AlarmManager and IntentService, 141

custom service-based schedulers, 133

JobScheduler, 165

Looper/Handler framework, 132

sync-adapters, 155

Timer and TimerTask classes, 130

sequential execution

concurrency versus, 4

hardware versus software, 3–4

illusion of, 6–7

SERIAL_EXECUTOR, 48

Serializable interface, 99

Service injection (listing 6.14), 114

Services

Activities versus, 92–93

AlarmManagerService, 135–139

AsyncTasks as, 99–101

bound Services, 95–96, 103–104

binding, 105

binding multiple Services, 107–108

flags, 111–112

local bound Services, 112–114

unbinding, 106–107

custom service-based schedulers, 133

hybrid services, 93, 153

Intents, 96–99

explicit Intents, 96–97

implicit Intents, 97–98

IntentService, 99–103

195unbinding Services

switched messages, 83

sync-adapters, 142–155

defining, 143–145

implementing, 147–152

running, 145–147, 153–154

scoring, 152–155

sync-barriers, 87–88

synchronization, 6, 11

errors, 15–17

mutexes

definition, 12

example usage, 12–13

reentrant monitors, 15

synchronized methods, 14–15

this keyword, 13

notify and notifyAll methods, 22–23

volatile keyword, 17–20

wait method, 20–21

synchronized keyword, 12, 14–15

T
target field (Messages), 82

task clustering, 129–130

task scheduling. See scheduling tasks

terminating processes, 33

this keyword, 13

Thread class, 10–11

thread safety in task scheduling, 128

THREAD_POOL_EXECUTOR, 48–49

threads, 4–5

asynchronous execution with closures,
41–45

atomic execution, 5–6

Binder threads, 125

executors

futures, 26–27

optimum number of threads, 25–26

initializing as loopers, 84

interruptions, 51

main thread, 9, 36

as looper, 38–39, 74

Runnable interface, 11

sharing data, safe publication, 23–25

synchronization, 11

errors, 15–17

mutex usage, 12–13

notify and notifyAll methods,
22–23

reentrant monitors, 15

synchronized methods, 14–15

this keyword, 13

volatile keyword, 17–20

wait method, 20–21

Thread class, 10–11

@ThreadSafe annotation, 178

timed-wait, 86

Timer class, 130

TimerTask class, 130

tools

annotations, 177

JCIP annotations, 177–178

support library annotations,
178–179

assertions, 179–180

static analysis, 167–168

Android Studio, 168–169

Findbugs, 169–177

type-safe templates, 45

U
UI thread, 9, 36

as looper, 38–39, 74

@UIThread annotation, 178

unbinding Services, 106–107

196 unbindService method

unbindService method, 104, 106–107

unmarshaling, 99

unmodifiable method, 54

Updike, John, 41

V
varargs, 47

visibility, 17–20

volatile keyword, 17–20

von Neumann, John, 1

W
wait method, 20–21

wake-locks, 129, 137, 138–139

weak references, 57–58

web applications

Android applications versus, 35

in Android model, 67–68

when field (Messages), 82

Whyte, William H., 127

@WorkerThread annotation, 178

writeToParcel method, 116

Y
Yegge, Steve, 106

Z
Zygote, 36–38

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Preface
	About the Author
	Acknowledgements
	1 Understanding Concurrency
	Concurrency Made Hard
	Concurrency in Software
	Concurrency in Hardware

	Concurrency Made Simple
	Threads
	Atomic Execution
	Visibility

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

