
Mark Goody
Maurice Kelly

DEVELOP AND DESIGN

Build
watchOS Apps

This page intentionally left blank

Develop and Design

Build
watchOS Apps

This page intentionally left blank

Develop and Design

Build
watchOS Apps

Mark goody
Maurice Kelly

PeachPit Press
www.peachpit.com

HTTP://WWW.PEACHPIT.COM

Build watchOs apps: Develop and Design
Mark Goody and Maurice Kelly

Peachpit Press
www.peachpit.com

To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2016 by Mark Goody and Maurice Kelly

Editor: Connie Jeung-Mills
Production editors: Maureen Forys and Lisa Brazieal
Development editor: Robyn G. Thomas
Compositor: Kim Scott, Bumpy Design
Technical editor: Stepan Hruda
Copyeditor: Scout Festa
Proofreader: Liz Welch
Indexer: James Minkin
Cover design: Mimi Heft
Interior Design: Mimi Heft

Notice of rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting
permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in
the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the
computer software and hardware products described in it.

trademarks
Apple, Objective-C, OS X, iOS, watchOS, Swift, CocoaTouch, and Xcode are registered trademarks of Apple Inc., registered
in the U.S. and other countries. Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the
trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-13-417517-1
ISBN-10: 0-13-417517-4

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

http://www.peachpit.com

To my darling wife, Rebecca, and our sons,
Reuben and Joel, who give us so much joy. Thank you for your love, patience,

and support as I kept disappearing to “work on the book” at what
turned out to be a particularly busy time in our family’s life.

The three of you are my world.

—Mark Goody

I am ever grateful once more to my beautiful wife, Fiona,
who showed me so much support in getting through another

one of these books, and for giving us our sensitive angel Aoibhínn,
and our cheeky little monkey Caoimhe.

—Maurice Kelly

Acknowledgments
We would like to thank the engineering management chain at our employers, ShopKeep Inc.,
particularly Joshua Vickery, Duncan Grazier, Jason Ordway, and Miriam Kerbache. They sup-
ported this endeavor by giving us the permission and space to work on it, and by giving us an
enjoyable and progressive engineering environment to return to. They also gave us access to
Stepan Hruda, one of the most awesome engineers we’ve worked with and a fearsome force
when it comes to reviewing code as our tech editor. We also can’t forget our fellow iOS engi-
neers in ShopKeep: Robert and Team Charlie (Kieran, Wes, Zack, and Jordan) in Belfast, as
well as James and Gabe in New York City. You all make us much better developers.

Once again, we have had the utmost pleasure in working with Robyn Thomas on this
book. This time, we ganged up on Robyn and tried to force the UK/US English matter, but
she along with our copyeditor, Scout Festa, held firm. We sympathise greatly with them.

This time around, we had a new project editor: Connie Jeung-Mills. We’re very pleased
to have had the opportunity to work with Connie and extremely grateful that she was able
to wrangle us some more pages when we couldn’t stick to our page budget. Thanks also to
 Clifford Colby for starting the project off (twice, actually); we miss you in our weekly confer-
ence calls, though you still owe Robyn an Apple Watch.

vi Acknowledgments

About the Authors
Mark Goody spends most of his time writing software, concentrating on Apple platforms—
though he can be tempted to experiment with most things. He lives just outside Belfast,
Northern Ireland, with his wife and two sons. They look after him by making sure he
remembers to step away from his computer from time to time. Mark blogs sporadically at
marramgrass.org.uk and more reliably tweets as @marramgrass.

Maurice Kelly has been engineering software since leaving university in 2001. After
spending many years working on server software for mobile telecoms, he took a change of
direction to work at the user-facing end by becoming an iOS developer. He has a love for
synthesizers and music, and still dreams of owning a Land Rover Defender someday. He lives
with his wife and children just outside Dromara, a small village in Northern Ireland.

About the Authors vii

contents
Introduction . xiii

Welcome to watchOS . xvi

Part I Getting Started
chapter 1 creatiNg a WatchKit PrOject . 3

Lifelong Companions . 4

Adding Code to Your WatchKit App . 5
Updating the Watch Interface . 5

Writing Code for the Watch App . 7

“I’m Sorry, But I Don’t Have a Watch” . 10
What Do You Want to Test? . 10

Trying Out HelloWrist! . 14

Wrapping Up . 14

chapter 2 aNatOmy Of a WatchOs aPP . 15
Apps and Extensions . 16
What Is a WatchKit App? . 16

What Is a WatchKit Extension? . 16

Why Do We Need This Convoluted System? . 18

WatchKit App Project Layout . 18

Creating WatchKit Apps and Extensions . 19
Using Project Templates . 19

Using Target Templates . 21

Using Old-School Techniques . 24

Wrapping Up . 24

chapter 3 imPLemeNtiNg NavigatiON . 25
Navigating the Apple Watch . 26

Navigation Types . 26
Page-based Navigation . 27

Hierarchical Navigation . 30

The WKInterfaceController . 31
The Circle of Life . 31

Supporting Navigation . 33

The Context Menu . 36

And So Much More . 38

Wrapping Up . 38

viii contents

chapter 4 exPLOriNg cONtrOLs . 39
House Rules . 40

WatchKit Controls . 40
Simple Display Controls . 41

Interactive Controls . 43

Structural Controls . 45

User Input . 56

Wrapping Up . 56

Part II Creating Apps
chapter 5 DesigNiNg yOur aPP’s user iNterface 59

Thinking About Design . 60

Meeting the Challenge . 61
“Phenomenal Cosmic Power, Itty-Bitty Living Space” 61

Tap Targets, Fat Fingers, and Small Screens . 64

Bringing a Little Color . 64

Be Prepared . 65

Gesture and Touch . 66

Wrapping Up . 66

chapter 6 BuiLDiNg yOur aPP’s user iNterface . 67
Laying Out the User Interface . 68
Grouping Interface Objects Together . 71

Handling the Different Screen Sizes . 72

Images and Animation . 74
Content vs. Chrome . 74

Getting Images onto the Watch . 74

Displaying Images . 75

Controlling Animation . 76

Picker-Linked Animation . 80

The Settings Interface . 82

Accessibility . 83
Why Accessibility? . 84

Dynamic Type . 84

VoiceOver . 85

Wrapping Up . 86

chapter 7 WOrKiNg With cOmPLicatiONs . 87
Introducing Complications . 88
Timelines and Time Travel . 88

contents ix

Complicated Arrangements . 89

Adding Complications . 93
Including a Complication in a New App . 93

Adding a Complication to an Existing App . 96

Including Image Assets . 99

ClockKit . 101
Timeline Settings . 101

Complication Timeline Entries . 104

Providing Timeline Entries . 105

Testing Complications . 110
Creating the Test Scheme . 110

Running the Test Scheme . 111

Triggering Complication Updates . 113
Update Methods . 113

Budgeting . 115

Wrapping Up . 115

chapter 8 WOrKiNg With gLaNces . 117
What Is a Glance? . 118

Manufacturing a Glance . 119
Creating a Glance in a New Project . 119

Adding a Glance to an Existing Project . 120

Developing the Glance . 123
Visual Customization . 123

Working with WKInterfaceController . 127

Sneaking a Glance . 131

Wrapping Up . 132

chapter 9 WOrKiNg With NOtificatiONs . 133
What Are Notifications? . 134
iPhone Notifications . 134

Watch Notifications . 135

Creating a Notification Scene . 137
Creating a Notification in a New Project . 137

Adding a Notification to an Existing Project . 138

Designing Your Notifications . 139
Notification Layout . 139

Static Notifications . 141

Dynamic Notifications . 142

The WKUserNotificationInterfaceController . 143

Testing Notifications . 146
Notification Payloads . 146

Notification Test Schemes . 151

x contents

Actioning Notifications . 154
Tapping the Notification . 154

Text Responses . 156

Local Notifications . 158

Wrapping Up . 158

Part III Making the Most of the Platform
chapter 10 cOmmuNicatiNg With the OutsiDe WOrLD 161

Network Requests with NSURLSession . 162
The Watch and the Network . 162

Making the Request . 163

Handling Premature Deactivation . 169

Talking to the Phone with WatchConnectivity . 171
Background Transfer . 172

Live Message Transmission . 173

Making the Most of Inter-Device Communication 181

Continuing User Activity with Handoff . 181

Wrapping Up . 183

chapter 11 accePtiNg user iNPut . 185
Speech to Text . 186

The Text Input Controller . 186
Input Types . 187

Trying Out the Interface . 188

Preparing Suggestions . 191

Input from Notifications . 192

Wrapping Up . 192

chapter 12 PLayiNg aND recOrDiNg meDia . 193
Working with Media . 194
Media Types and Encodings . 194

Storing Media . 194

Foreground Playback . 195
Using WKInterfaceMovie . 195

Presenting a Player Programmatically . 197

Background Audio Playback . 199

Audio Recording . 203
Making a Recording . 204

Handling Recorded Audio . 208

Wrapping Up . 209

contents xi

chapter 13 DePLOyiNg tO PhysicaL Devices . 211
Managing Devices . 212

Configuring Provisioning Profiles . 213
Automagic Setup . 213

Manual Setup . 215

Deploying to a Device . 219

Wrapping Up . 221

chapter 14 usiNg harDWare aPis . 223
Using Sensor Data . 224
Accessing Heart Rate Data via HealthKit . 224

Reading Accelerometer Data with CoreMotion . 233

Providing Haptic Feedback . 237
Playing with Haptics . 238

Tap Carefully . 240

Wrapping Up . 241

chapter 15 shiPPiNg yOur WatchKit aPP . 243
Preparing Your App for Distribution . 244
Device Support . 244

Icons and Image Resources . 244

Back to the Developer Center . 249

iTunes Connect . 253
Creating an App Record . 253

Uploading Your App . 253

Distributing the App . 254
TestFlight Distribution . 255

App Store Distribution . 257

Wrapping Up . 257

Index. 259

xii contents

IntroductIon
For some, the idea of a smartwatch is characterized by the wrist-borne communicator
devices in Dick Tracy cartoons, but for a child of the eighties few pop-culture memories
remain as vivid as seeing Michael Knight communicating with his car K.I.T.T. through his
wristwatch. The idea of being able to see information that had been beamed to your wrist, to
talk with an intelligent car, and to sport such a perm was to remain a symbol of the future for
many children who grew up as fans of the TV show Knight Rider.

the Watch Of Our Dreams
The announcement that Apple had been working on a watch that could respond to voice
commands and also run apps and communicate with the Internet via an iPhone set the Mac
and iOS developer community alight. Not only did it signal the potential for yet another app
gold rush, but it tickled the imaginations of those former children for whom the wristwatch
was the perfect device on which to control your digital life.

Sure, the iPhone was revolutionary, but it was still just a phone, and we’ve always had
phones (depending on your age, of course). The iPad has changed the face of personal
computing, but it’s still just a computer, albeit a lot smaller than the ones we had when we
were kids.

The Apple Watch is different. We never needed the other devices in the same way that we
wanted the ability to talk to our watches. We dreamed of being able to tap the watch face and
have it respond to the commands. We yearned for the day that critical information would
arrive directly to our wrists.

the aPPLe Watch Of Our reaLities
As developers, we have been spoiled by what we can achieve using iOS. The first
iPhones were not accessible to developers (at least not officially), but with the release of
 iPhoneOS 2.0 in 2008, Apple gave third-party developers the ability to create fully fledged
apps that took advantage of the full hardware of the devices.

In many ways, watchOS has followed the same pattern; the first release of watchOS
(which wasn’t even called watchOS at the time) provided a somewhat restricted subset of
functionality. Rather than running full apps, the watch ran iOS app extensions that were
much more restricted in the level of processing they could do and the range of interactivity
available to them.

watchOS 2 is the release that developers have really been waiting for. We now get access
to fully native apps that run directly on the watch and have access to much more in the way
of software APIs and hardware features.

IntroductIon xiii

aBOut this BOOK
In this book, we aim to get you up to speed on how to create and design watchOS apps. We’ll
guide you through the process of creating apps and illustrate how to visualize and interact
with user interfaces for the Apple Watch using storyboards. We delve into communications
between the Apple Watch and the iPhone and how to present quick summaries of informa-
tion to the user using glances.

This book is not an introduction to iOS or CocoaTouch programming and is instead
aimed at existing developers who want a guide to the features available in watchOS. We’ll
also be presenting most of our code samples in Apple’s new Swift programming language.
In many cases, it will be apparent what the code is doing and how it can be re-implemented
in Objective-C if necessary. If you have not yet delved into the world of Swift, you may find
Swift Translation Guide for Objective-C Developers (also published by Peachpit) to be a help-
ful companion.

hOW tO use this BOOK
Writing and distributing watchOS apps requires that you have a solid foundation in iOS
development. We assume that you have intermediate knowledge of iOS development as well
as of provisioning and configuring iOS devices in the Apple Developer Center.

OrganIzatIOn
We have split this book into three main sections:

Part 1, “Getting Started”
We start with a quick example project before taking the time to examine the structure of
watchOS apps in more detail, and then we provide an overview of the main user interface
controls available to your apps.

Part 2, “Creating Apps”
This section begins a deeper examination of what you can do with WatchKit, and it offers
guidance on how to design and optimize the interface of your app, as well as how to entice
your users through glances, complications, and notifications.

Part 3, “Making the Most of the Platform”
In the third section, we go deeper into the platform and look at how to take advantage of the
hardware and software features that make watchOS the most compelling developer platform
that Apple has produced in many years.

COde SamPleS
Many of the chapters feature short example projects that you can follow along with in order
to gain a better understanding of the material. We have published the source code reposito-
ries to the GitHub account that accompanies the book, at github.com/bwa-book. Each chap-
ter that has a sample project has a companion repository, and we have endeavored to make
the commits to the repositories logically follow the progress in the book.

xiv IntroductIon

text FOrmatS
Code samples that you should enter will be marked as follows:

@IBAction func saySomething() {

 messageLabel.setText(“Hello Wrist!”)

}

Highlighted code identifies changes to a snippet of code or is meant to draw your atten-
tion to specific sections of code:

@IBAction func buttonTapped() {

 spinnerImage.startAnimating()

}

You’ll also find notes containing additional information about the topics:

SOFtware VerSIOnS
All the code samples have been tested with watchOS 2.0 and iOS 9.0. To follow along with
the examples in the book, you should ensure that you are using at least Xcode 7.0. Where
there are incompatibilities with future versions of watchOS, we will endeavor to post correc-
tions to our website, http://watchosapps.build.

note: the Utility face (and others) actually features a fourth complication
when you enter its customization mode. It corresponds to the date display in
Figure 7.3, and we won’t consider it here because it can show only the
date (in a number of styles) or be turned off. It is not yet open to third-
party developers.

IntroductIon xv

http://watchosapps.build

welcome to wAtchos
Apple’s watchOS could be its most exciting new operating system since the intro-
duction of iOS in 2007. It introduces new ways for users to interact with your
applications and provides you with new and improved methods of getting
up-to-date information in front of your users.

glanCeS

present critical informa-
tion to your users at a
glance. a summary of
everything they need to
know is just a swipe away.

COmPlICatIOnS

Display small pieces of
information directly on
the main watch face.
complications also
provide a compelling way
to quickly launch your
application.

nOtIFICatIOnS

with a push notification
service, you can send the
latest data directly to
your users. with a flick
of their wrist they can
see, and even act upon,
the information as they
receive it.

Hardware
IntegratIOn

New apis allow for
interaction with watch
hardware features, such
as the accelerometer, the
heart rate sensor, and the
taptic feedback engine.

xvi welcome to wAtchos

chapter 4

Exploring Controls

iOS has always had a place for innovative custom UIs, but it’s

often a good idea to start with the standard controls provided

by the platform. On Apple Watch, standard controls are (for

now) the only option—but as we take a tour of the available

interface elements, you’ll see that there’s still plenty to work

with on the new platform.

39

house rules
As we take a look through the Object Library and the APIs, almost everything has a simi-
lar and direct analog available on the larger iOS devices. But let’s pause for a moment and
review some small but important differences in the Watch environment (which we are
sure will be no trouble to an intelligent, creative, and insightful developer such as you,
dear reader).

 J The user interface and the controls it contains are defined during development using
the storyboard editor. In contrast to iOS, you can’t create the UI in code. If you are one
of those developers who prefer to avoid the visual editor, then you’ll find it’s time to dip
your proverbial toe in its waters.

 J Even so, some properties of the controls can be set at run time (how else would you
update a label to give your user information that you didn’t have at build time?), but only
some. Others can be set only in the storyboard editor. We’ll identify which properties on
each control can be dynamically updated as we examine each.

 J Where values can be set to controls, they cannot be read by your Watch app. For
example, you can set a switch to on from your interface controller, but you cannot read
from it whether it is on or off. Instead, you must wire up the switch’s change event to an
 @IBAction method in your controller and keep track of state changes in a property.

This might sound like the Watch presents an even more restrictive environment than
we’re used to as developers for iOS platforms, but as you saw when exploring the available
navigation options (Chapter 3), you can do a lot with what’s available.

wAtchkIt controls
All interface objects (what we refer to as “controls”) in WatchKit are subclasses of
 WKInterfaceObject. Apps are limited to using and configuring the standard controls, so
we can’t work with our own subclasses of WKInterfaceObject—or of any of its subclasses
(which are the controls in the following sections). Any configuration is done in the story-
board editor or via @IBOutlet properties in your interface controllers.

WKInterfaceObject provides common methods for hiding and showing the control,
changing its size, and setting its accessibility attributes. We’ll refer to hiding, showing, and
changing size methods as you learn about the available controls, and we’ll look in detail at
the accessibility options in Chapter 6.

40 CHaPter 4 exPlorIng controls

simPLe DisPLay cONtrOLs
The following controls are for displaying data to the user. They do not accept user
interaction.

labelS
Where would we be without labels in our user interfaces? The humble label is the first
option to display text to the user in any iOS app, and it’s the first option in your Watch app
as well.

The WKInterfaceLabel is analogous to UILabel and is configurable in some of the same
ways: text (of course), text color, font, minimum scale and maximum number of lines (to
handle long text values), and alignment. Additionally, text color can be set at run time with
the label’s setTextColor(_:) method. The text displayed by the label can be updated with
the setText(_:) and setAttributedText(_:) methods. The latter, as you’d expect, allows
configuration of the text’s style.

WKInterfaceDate and WKInterfaceTimer (Figures 4.1 and 4.2) are two special label
classes that are a new idea to WatchKit.

figure 4 .1 WKInterfaceDate figure 4 .2 WKInterfaceTimer

WKInterfaceDate always displays the current date, the current time, or both. The story-
board editor is used to configure the format of the displayed date–time information, using
setTextColor(_:), setTimeZone(_:), and setCalendar(_:), which are available at run
time. This control makes it trivial to display the current date and time in your app.

WKInterfaceTimer is equally specialized. It manages, displays, and updates a count-
down timer, with the format and displayed units configurable in the storyboard editor. The
Enabled check box in the Timer (Figure 4.3) specifies whether the timer starts counting
down immediately when the interface is initialized.

figure 4 .3 The timer’s
Enabled setting

The timer label is managed programmatically using its setDate(_:), setTextColor(_:),
start(), and stop() methods. Once started, the timer will count down to its target date
without any further management from your app.

tip: Your app receives no notification or callback when the timer
reaches zero. If your app needs to take any action when the
timer is up, you should run an NSTimer object set to the same
target date. remember that your interface control has no way
to communicate with the code running in your watchKit extension.

wAtchkIt controls 41

ImageS
The WKInterfaceImage is used to display an image, or an animation made up of a series
of images, in your Watch app’s interface. Use the storyboard editor to configure the initial
image, its content mode, the tint color for template images, and whether the control is able
to animate. At run time, a number of methods are available to set the image or images, to set
the tint color, and to start and stop animation.

As has been the case since the early days of the web (on iOS and other platforms), the
humble image control is a very powerful tool for setting the look and feel of your app, com-
municating information, or even adding a little whimsy or delight for the user. We’ll spend
significant time in Chapters 5 and 6 looking at how to get the best out of WKInterfaceImage.

maPS
The WKInterfaceMap control (Figure 4.4) takes much of the pain out of displaying a map to
the user. Its output is essentially a specialized image—the map is not interactive. However,
you can configure it to launch the Maps app to the location in the map control—simply set it
to Enabled in the storyboard editor.

figure 4 .4 WKInterfaceMap

The Enabled property is the only configuration available in the storyboard editor—all
other configuration must be made at run time from your interface controller.

The area covered by the map is set either with its setVisibleMapRect(_:) method or
with setRegion(_:). Which you use depends on how your app defines its areas—with an
MKMapRect or with an MKCoordinateRegion. In either case, the map control adjusts the area
it displays and its zoom level to make sure the area specified is visible.

It is also possible to add image annotations to the map (addAnnotation(_:withImage:
centerOffset:) and addAnnotation(_:withImageNamed:centerOffset:)) or to add pins
(addAnnotation(_:withPinColor:)). The method removeAllAnnotations() does what it
says, clears the map of annotations.

note: remember that the map will not display if the user’s phone doesn’t
have a network connection. as with the maps apps on iPhone and on the

watch, map data is downloaded as needed.

42 CHaPter 4 exPlorIng controls

iNteractive cONtrOLs
Displaying information to the user is, of course, only half the story. WatchKit offers buttons,
switches, and sliders for all your users’ tapping needs.

bUttOnS
WKInterfaceButton is a tappable control that should be connected to an @IBAction method
in an interface controller. The signature of this method is slightly different from the equiva-
lent on iOS, taking no parameters:

@IBAction func buttonTapped()

The other notable difference is that a button can contain multiple other interface objects,
acting as a group (see the “Control Groups” section later in this chapter for a discussion of
WKInterfaceGroup), as well as the expected single text label. This is configured using the
Content property in the storyboard editor.

You can configure buttons with different fonts, text colors, background colors, and
background images, as well as with the title text itself. You may also enable or disable the
button. These properties can be set programmatically as well as in the storyboard—title
color and font being managed via the setAttributedTitle(_:) method, whereas the
background is updated using the setBackgroundColor(_:), setBackgroundImage(_:),
 setBackgroundImageData(_:), and setBackgroundImageNamed(_:) methods. Figure 4.5
shows examples of how a button can be configured.

figure 4 .5 Examples of differently
configured buttons

SwItCHeS
WKInterfaceSwitch is a control that displays the familiar on/off switch with a label beside it.
The class and its properties manage both the switch itself and the label for you (Figure 4.6).

Because it’s not possible to query controls for their state, the switch’s action method
takes the following form:

@IBAction func switchSwitched(value: Bool)

When the method is called, your interface controller should stash the state of the switch
in a property if necessary. When creating the switch in the storyboard editor, you may con-
figure its initial state, the color of the switch’s On state, whether it is initially enabled, and
the text, color, and font for the switch’s label.

figure 4 .6 A switch
and its title

wAtchkIt controls 43

At run time you can use setTitle(_:) or setAttributedTitle(_:) to update the
switch’s label, setOn(_:) and setEnabled(_:) to update its state and whether it’s active, and
setColor(_:) to update its On color.

SlIderS
WKInterfaceSlider allows the user to select a value within a defined range—think of the
volume slider in iPhone’s Music app or the volume control in the Watch’s Now Playing glance
(Figure 4.7).

figure 4 .7 The slider in the
Now Playing glance

The minus and plus buttons visible in Figure 4.7 are provided by default. They can
be replaced with custom images, which must be part of the WatchKit App bundle when
distributed.

The value of the slider is represented as a Float and is delivered to your interface con-
troller via an action method with the following signature:

@IBAction func sliderSlid(value: Float)

As with the switch control, your interface controller should store the state value as
necessary.

The slider presents quite a number of configuration options, most of which must be
managed in the storyboard editor:

 J The value of the slider is initially set in the storyboard and can be updated at run time
with the setValue(:_) method.

 J The minimum and maximum possible values.

 J The number of steps the slider recognizes between those two values. This can also be set
in code with setNumberOfSteps(_:).

 J Whether the slider displays as a continuous, solid bar or as a row of segments.

 J The color of the slider bar, also configurable with the setColor(_:) method at run time.

 J Custom min image and max image for the slider’s minus and plus buttons.

 J Whether or not the slider is enabled. You can update this state at run time with
setEnabled(_:).

44 CHaPter 4 exPlorIng controls

mOVIeS
Your app can play video via a WKInterfaceMovie control. This control displays a poster image
and a play button for the video file (Figure 4.8); tapping the play button plays the video in a
modal presentation.

figure 4 .8 A WKInterfaceMovie control

We‘ll demonstrate using WKInterfaceMovie when exploring the media capabilities of
Apple Watch in Chapter 12.

structuraL cONtrOLs
A WKInterfaceController’s user interface is arranged quite differently from a view hier-
archy on iOS in that it takes a series of controls and flows them down the screen. If you’ve
ever written HTML for a webpage, this might feel familiar. As with HTML, there are options
(although not nearly as many as on the web) for managing this flow by using some structure
controls.

COntrOl grOUPS
WKInterfaceGroup is an interface object designed to contain other interface objects, and
although it may not sound very exciting (it’s a box!), this control enables a great deal of cus-
tomization for how its members are displayed (Figure 4.9).

figure 4 .9 An interface group in
the storyboard

Figure 4.10 shows the configuration options available for an interface group. A group can
display a background of a solid color or an image—the image can even be animated! If used,
the background has a default corner radius of 6 points. Modifying the group’s edge insets
and spacing will vary how much of the background is visible around and between items in

wAtchkIt controls 45

the group. The interface group’s layout can also be configured to flow its contained items
horizontally or vertically.

figure 4 .10 Interface
group configuration

The properties that can be updated at run time are

 J Background color, with setBackgroundColor(_:).

 J Background image, with setBackgroundImage(_:), setBackgroundImageData(_:),
and setBackgroundImageNamed(_:).

 J Corner radius, with setCornerRadius(_:).

 J Background image animation can be controlled with methods that mirror those on
WKInterfaceImage: startAnimating(), startAnimatingWithImagesInRange(_:
duration:repeatCount:), and stopAnimating().

SeParatOrS
After the whirl of options available on an interface group, WKInterfaceSeparator is delight-
fully simple. It’s a horizontal line to separate controls, and you can set its color in the story-
board editor and in code via its setColor(_:) method. That’s it.

tableS
Working with table views is the bread and butter of many iOS developers. WKInterfaceTable
is different enough from UITableView that we’ll take some time to work with it and its API.

1. In Xcode, create a new iOS project, and add a WatchKit App target.

2. In the WatchKit App’s storyboard, add a table to the interface controller scene
(Figures 4.11 and 4.12).

figure 4 .11 The table in
the storyboard editor

figure 4 .12 The table in the inter-
face controller scene

46 CHaPter 4 exPlorIng controls

3. Add the source file for a class named RowController to the WatchKit extension. It should
be a subclass of NSObject (Figure 4.13).

4. Update the contents of RowController.swift to the following:

import WatchKit

class RowController: NSObject {

 @IBOutlet weak var listLabel: WKInterfaceLabel! {

 didSet(oldValue) {

 listLabel.setTextColor(UIColor.greenColor())

 }

 }

}

5. In the WatchKit App’s Interface.storyboard, select the table’s table row controller in
the left sidebar. Open the Identity inspector and set the table row controller’s Class set-
ting to RowController (Figure 4.14). The Module setting will update automatically.

figure 4 .14 Setting the table row
controller’s class

6. Open the table row controller’s Attribute inspector, and set its Identifier to
RowController.

figure 4 .13 Creating a
row controller

wAtchkIt controls 47

7. Add a label to the row controller’s group, and connect it to the row controller’s listLabel
property (Figure 4.15).

figure 4 .15 The interface controller’s
hierarchy of interface objects

8. Replace the contents of InterfaceController.swift with the following:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 @IBOutlet weak var listTable: WKInterfaceTable!

}

9. Connect the table in the storyboard to the @IBOutlet you have just defined.

10. Add the following two methods to the InterfaceController class:

override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 updateTableItems()

}

func updateTableItems() {

 let listOfThings = [

 “Apple”, “Banana”, “Pear”, “Orange”, “Lemon”,

 “Guava”, “Melon”, “Starfruit”, “Grape”

]

 let numberOfThings = listOfThings.count

 listTable.setNumberOfRows(numberOfThings, withRowType: “RowController”)

 for i in 0..<numberOfThings {

 let rowController = listTable.rowControllerAtIndex(i) as!
RowController

 rowController.listLabel.setText(listOfThings[i])

 }

}

48 CHaPter 4 exPlorIng controls

11. Add the following method to the same class:

override func table(table: WKInterfaceTable, didSelectRowAtIndex rowIndex:
Int) {

 let rowController = listTable.rowControllerAtIndex(rowIndex) as!
RowController

 rowController.listLabel.setTextColor(UIColor.redColor())

}

12. Run the WatchKit App, you should see a list of fruit (Figure 4.16). Tapping a row will turn
its label red.

figure 4 .16 The table in the
Watch simulator

This example demonstrates the basics of setting up and populating a WKInterfaceTable.
Note the following details of using a table:

 J The table is populated all at once when the data is available. This is in contrast to the
approach taken on iOS, where the UITableView asks its data source for each cell to dis-
play in turn as needed.

 J Access to an individual row, perhaps to update some property of its UI, is simple using
rowControllerAtIndex(_:).

 J The idea of a “row controller” is implemented in two parts. First, in the storyboard, the
row controller is created and its UI is defined. Then, it’s necessary to create a custom
class (RowController in our example) to associate with that UI. Instances of this class
are how you interact with the interface items of a given row. The table identifies the row
controller types by their Identifier properties and instantiates them according to their
Class settings.

In this example, we have used only a single type of row in the table. However, you can
define multiple row controllers on a table by increasing its Rows attribute in the storyboard
editor. Interface controller code can then reference the different row controller types by their
differing Identifier attributes.

tip: In the storyboard, a table’s rows attribute represents the number of
different row controllers, whereas the actual number of rows in the
table at run time is provided by your interface controller.

wAtchkIt controls 49

Three methods on WKInterfaceTable allow you to specify which row types to use:

 J setNumberOfRows(_:withRowType:), the method used in the example, specifies the
number of rows in the table and assigns the same row type to each of them.

 J setRowTypes(_:) takes an array of strings that are the identifiers for the row controllers.
The array should contain one string for each row that should be displayed in the table.

 J insertRowsAtIndexes(_:withRowType:) takes the identifier of the row controller to use
for the inserted rows.

In each case, as seen in the example, you access the row controller object for a given row
using the table’s rowControllerAtIndex(_:) method.

It’s possible to add and remove table rows without re-creating the row set for the
whole table. This is done using the methods insertRowsAtIndexes(_:withRowType:) and
removeRowsAtIndexes(_:). The interface controller can trigger a scroll to a specified row by
calling scrollToRowAtIndex(_:) on the table.

Finally, it’s possible to define segues in the storyboard that are triggered by taps
on table rows. (This will be familiar to you if you’ve ever configured a UITableView
to trigger a segue on iOS.) When one of these segues is triggered, the table’s inter-
face controller receives one of the table segue callbacks asking for the context to be
received by the incoming interface controller’s awakeWithContext(_:) method. These
callback methods are contextForSegueWithIdentifier(_:inTable:rowIndex:) and
 contextsForSegueWithIdentifier(_:inTable:rowIndex:). Which is called depends on
the target and type of the segue, the latter being the method called when transitioning to a
modal presentation of paged interface controllers.

PICKerS
One of the features of Apple Watch most talked about when it was announced was its
digital crown, which provides a smooth, intuitive hardware interface for the user to
scroll onscreen content. Developer access to the digital crown’s scrolling action is via the
 WKInterfacePicker control.

WKInterfacePicker allows your app to define a series of options (represented by
instances of the class WKPickerItem), providing text, an image, or both for each. The user
selects the picker by tapping it. They can then use the digital crown to scroll through the
available options, and then tap the control again to select the current option.

There are three types of picker your app can use:

 J The List picker (Figure 4.17) displays a list of options and allows the user to scroll
through them and select one. Each item may have an accessory image, a title, both an
accessory image and a title, or a content image.

 tip: Interacting with pickers in the apple watch simulator is delight-
fully intuitive. Simply click the picker to give it focus (if it is not already

focused), then use your normal scrolling action via the trackpad or
mouse to simulate the movement of the digital crown.

50 CHaPter 4 exPlorIng controls

 J The Stacked picker animates through a virtual stack of cards, displaying one at a time
onscreen, with a whimsical transition between items. Each item should be assigned a
content image.

 J The Image Sequence picker cycles through a series of images according to the user’s
scrolling of the digital crown, displaying one at a time. The images are supplied via
the picker items’ contentImage properties. This picker type differs from the behavior
of the Stacked picker in that the transition isn’t animated. If the picker’s focus high-
light (the green outline visible in Figure 4.17) is disabled and the sequence of images
is constructed with care, this option might give you all kinds of ideas for custom UI.
(See Chapter 6 for another approach to using a picker to control an animation: with its
 setCoordinatedAnimations(_:) method.)

figure 4 .17 A List picker with a
focus highlight

Note that the Stacked and Image Sequence pickers (Figures 4.18 and 4.19) look identical.
The difference is in the transition—or lack of transition, in the Image Sequence picker—
between the items.

figure 4 .18 A Stacked
picker with a focus highlight

figure 4 .19 An Image
Sequence picker with a focus
highlight

Each type of picker is configurable in two ways in the storyboard editor:

 J The Focus property of the picker in the storyboard editor controls whether the picker is
outlined to show when it is in focus (responding to digital crown input), whether it shows
its caption in addition to its focus ring (Figure 4.20), or whether there is no indication
that the picker has focus.

wAtchkIt controls 51

 J The Indicator property specifies whether or not the picker gives an indication of its cur-
rent display in the list of items. The indicator can be seen in Figure 4.17, and is reminis-
cent of UIScrollView’s scroll indicators on iOS.

figure 4 .20 A List picker with a caption

As with other controls, WKInterfacePicker has a setEnabled(_:) method to set
whether or not it is available for the user to interact with. It can be given focus programmati-
cally with a call to its regally named focusForCrownInput() method.

The picker’s items are set via its setItems(_:) method, which accepts an array of
WKPickerItem instances. The currently selected item is specifiable by its index, via the
 setSelectedItemIndex(_:) method. Each picker item has the following properties available
for configuration:

 J contentImage is available to all three types of picker: it’s the only property used by
Stacked and Image Sequence pickers, and if it’s set in the WKPickerItems to be consumed
by a List picker, then the other properties should not be set.

 J title is the text used by a List picker.

 J accessoryImage is the small image used by a List picker, displayed next to its title.

 J caption is the text used in the picker’s caption area, if it’s enabled (Figure 4.20).

Finally, to let your app respond to the changing selection of the picker, the picker can
send an action method to its interface controller. The method takes the form @IBAction func
pickerAction(index: Int) and receives the index of the picker item selected by the user.

alertS
It’s possible to display an alert, with options for the user, in much the same way as using
UIAlertController (or the older, deprecated API UIAlertView) on iOS. Although alerts
don’t involve subclasses of WKInterfaceObject, we include them here because they are a
natural fit in our tour of UI controls.

note: the images accepted by WKPickerItem’s image properties are of the
type WKImage. these can be created from instances of UIImage by calling

WKImage’s init(image:) initializer.

52 CHaPter 4 exPlorIng controls

An alert is triggered with a call to WKInterfaceController’s method
presentAlertControllerWithTitle(_:message:preferredStyle:actions:).
The actions parameter takes an array of WKAlertAction instances.

To see the alerts in action, carry out the following steps:

1. Create a new iOS App with WatchKit App project (File > New > Project).

2. In the WatchKit App’s Interface.storyboard, add a button as shown in Figure 4.21.

figure 4 .21 The DANGER! button

3. Update your InterfaceController.swift file to have an empty implementation,
as follows:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

}

The button will be updated depending on the option chosen by the user when the alert is
presented.

4. Add the following enum and property inside (since Swift allows nested types,
and this enum is of interest only inside the class—yay!) the curly brackets of the
 InterfaceController class:

enum ButtonState {

 case OutOfDanger, Danger, Exploded

}

var buttonState = ButtonState.Danger

wAtchkIt controls 53

5. Create the following @IBAction and @IBoutlet in InterfaceController, and connect
both to the button in the storyboard:

@IBOutlet var dangerButton: WKInterfaceButton!

@IBAction func dangerTapped() {

 presentAlertControllerWithTitle(“Danger!”,

 message: “What will you do?”,

 preferredStyle: .Alert,

 actions: alertActions())

}

We then need to define the actions for the alert.

6. Define the method referenced in the previous call:

func alertActions() -> [WKAlertAction] {

 return [

 WKAlertAction.init(title: “Deal with it”,

 style: .Default) {self.buttonState = .OutOfDanger},

 WKAlertAction.init(title: “Ignore it”,

 style: .Cancel) {self.buttonState = .Danger},

 WKAlertAction.init(title: “Explode it”,

 style: .Destructive) {self.buttonState = .Exploded}

]

}

Next, the button needs to be updated according to the value of the buttonState property.
The time to do this is in the willActivate() method.

7. Add the following code to the interface controller:

override func willActivate() {

 super.willActivate()

 updateButton()

}

func updateButton() {

 switch buttonState {

 case .OutOfDanger: outOfDanger()

 case .Danger: danger()

 case .Exploded: exploded()

 }

}

54 CHaPter 4 exPlorIng controls

8. Add the following three methods to set the different button states:

func outOfDanger() {

 dangerButton.setTitle(“Phew”)

 dangerButton.setEnabled(false)

}

func danger() {

 dangerButton.setTitle(“DANGER!”)

 dangerButton.setEnabled(true)

}

func exploded() {

 dangerButton.setTitle(“BOOM!”)

 dangerButton.setBackgroundColor(.redColor())

 dangerButton.setEnabled(false)

}

9. Run the app and tap the button. You should see the alert appear, as in Figure 4.22.

figure 4 .22 An alert, asking the
important question

tip: the InterfaceController class here uses an enumeration to
track the state of the button and update the UI accordingly
because the interface controller will be deactivated while the
alert is shown. this means the button will not respond to the
calls to its setters in the alert handlers, and needs to be updated
when willActivate() is called on the controller. to save future-you
some debugging pain, you might want to remember this moment.

wAtchkIt controls 55

The preferredStyle parameter in the call to presentAlertControllerWithTitle(_:
message:preferredStyle:actions:) in step 5 is a case of the WKAlertControllerStyle
enumeration. The available cases are

 J Alert dispays a simple, flexible alert with a variable number of actions. This is the style
used in the example.

 J SideBySideButtonsAlert accepts only two actions and displays their buttons side by
side (Figure 4.23).

 J ActionSheet accepts either one or two custom actions and comes with a standard Cancel
button in its top corner (Figure 4.24).

As an exercise, we suggest you try modifying the previous example to display alerts
matching those in Figures 4.23 and 4.24.

figure 4 .23 An alert of style
SideBySideButtonsAlert

figure 4 .24 An alert of style
ActionSheet

user iNPut
You might have noticed that none of the interface objects is anything like our old friends
UITextField or UITextView from iOS. Textual input on the Watch is a very different proposi-
tion from other devices. We’ll look at it in detail in Chapter 11.

wrAppIng up
This chapter skimmed over all the interface controls available from WatchKit. Knowing the
blocks from which you build your user interface is only part of the story. Designing UI for
the Watch is a very different prospect from doing so for larger devices. Read on to Chapter 5
to learn how to effectively combine these pieces in your app.

56 CHaPter 4 exPlorIng controls

This page intentionally left blank

Index

a
about this book, xiv–xv
accelerometer data, 233–237

pedometer data, 235–237
reading raw, 233–235

accessibility features, 83–86
Dynamic Type, 84–85
reason for adding, 84
VoiceOver, 85–86

action buttons, 155
action methods, 8
actioning notifications, 154–157

tapping notifications, 154–155
text responses, 156–157

actions
archive, 252
notification, 149

ActionSheet alert, 56
activateCommands(stop:continue:) method, 130
afterDate parameter, 107
alert property, 147
alerts, 52–56
Alignment options, 69–70, 175
anchors, queries with, 230
animateWithDuration() method, 80

animation, 76–82
controlling, 76–80
picker-linked, 80–82

App Group identifier, 205
app identifiers, 249–250
app records, 253
App Store

distributing your app via, 257
uploading your app to, 253–254

App Transport Security, 162
Apple Developer Center, 215
Apple Push Notification Service (APNS), 134
Apple Watch

deploying apps to, 219–220
device management, 212–213
distributing apps for, 243–257
Human Interface Guidelines, 60
iPhone communications, 171–183
model diversity, 10
network connectivity, 162
screen sizes, 10, 61, 72
storage limitations, 194, 208
uniqueness of, xiii

Index 259

images and animation, 74–82
laying out the interface, 68–73
settings interface, 82–83
See also designing the user interface

Bundle Identifier option
project template, 20
target template, 22

Button element, 7–8
buttons, 43
buttonTapped() method, 78–79

c
category property, 147–148
Certificate Signing Request (CSR), 216
chrome vs. content, 62, 74
Circular complications, 91, 92
CLKComplicationDataSource protocol, 94, 101
CLKImageProvider, 104
CLKTextProvider, 104
ClockKit framework, 88, 101–109

placeholder templates, 109
timeline entries, 104–109
timeline settings, 101–103

CMMotionManager class, 234
CMPedometer class, 235
Cocoa URL loading system, 162
code samples, xiv–xv
color

background, 43, 46
global tint, 64–65

Color watch face, 91
communications, 161–183

inter-device, 171–183
network request, 162–171

complication parameter, 102, 107
ComplicationController.swift file, 17, 94, 98
ComplicationDataSource class, 98
ComplicationManager.swift file, 177–178, 179, 180
complications, xvi, 87–115

adding to existing apps, 96–99
budgeting related to, 115
ClockKit framework for, 88, 101–109

application context updates, 172–173
application delegate methods, 182–183
applicationDidBecomeActive() method, 17
applicationDidFinishLaunching() method, 17
applicationWillResignActive() method, 17
aps property, 147–148
Archive action, 252
asset catalogs, 246
Assets.xcassets file, 17, 76, 100
assistant editor, 8
Attributes inspector, 7, 68–70

Alignment options, 69–70
Image Set options, 247, 248
Size options, 70
View options, 69

audio
background playback of, 199–203
encoding recommendations, 194
handling recorded, 208
recording, 203–208
resource for free, 200
storage of, 194, 208
See also media

awakeWithContext(_:) method, 32, 50, 80

B
background audio playback, 199–203
background color, 43, 46
background images, 46, 75, 76
background loading, 65
background transfer, 172–173

application context updates, 172–173
file transfer, 173
user info transfer, 173

beforeDate parameter, 107
best practices, 61–67
beta testing, 254, 255–257
Bluetooth connection, 162
Boolean properties, 9
budgeting, 115
building the user interface, 67–86

accessibility features, 83–86

260 Index

deploying apps
device management and, 212–213
overview of process for, 219–220
provisioning profiles for, 213–219

designing the user interface, 59–66
challenges related to, 61–66
points to consider for, 60–61
See also building the user interface

destructive property, 148
Developer Center

app identifiers, 249–250
development certificates, 215–216
production certificates, 250–251
provisioning profiles, 213–219, 251–252

development certificates, 215–216
development teams, 213, 253–254
Device Manager, 212–213
devices

communication between, 171–183
deploying apps to, 219–220
ensuring app support on, 244
managing in Device Manager, 212–213
registering new, 216
See also Apple Watch; iPhone

Devices option, 21
dictation button, 188
dictation input, 186, 188, 191
didActivate() method, 32, 33
didAppear() method, 33
didReceiveLocalNotification() method, 136, 143
didReceiveRemoteNotification() method, 136, 143
Dismiss button, 148, 154
dismissController() method, 35
dismissMediaPlayerController() method, 199
dismissTextInputController() method, 187
display controls, 41–42

images, 42
labels, 41
maps, 42

distributing your app, 243–257
App Store used for, 257
creating an app record for, 253
Developer Center requirements for, 249–252

configuration process for, 94–96
data layouts for, 91–92
explanation of, 88
families of, 89–92
image assets in, 99–101
including in new apps, 93–96
placeholder templates for, 109
testing, 110–113
Time Travel mode, 88–89
timeline entries for, 104–109
update methods for, 113–114

Complications Group setting, 96
configuring provisioning profiles, 213–219

automatic setup for, 213–215
manual setup for, 215–219

constraints
Apple Watch, 26
layout, 175–176

content vs. chrome, 62, 74
context menu, 36–37
contextForSegueWithIdentifier(_:) method, 35, 50
continue reserved word, 130
Continuity feature set, 181
control groups, 45–46
controls, 40–56

display, 41–42
interactive, 43–45
rules for using, 40
structural, 45–56

CoreMotion, 233–237
pedometer data, 235–237
raw accelerometer data, 233–235

createLocationAndRegionFromCoordinate()
method, 145

D
data

caching of, 65
sensor, 224–237

Data Source Class setting, 95
date label, 41
deactivation issues, 169–171

Index 261

getPrivacyBehaviorForComplication(_:

withHandler:) method, 103
getTimelineEntriesForComplication(_:) methods,

107, 108
GitHub API, 166, 168, 171
glance commander, 125–127
Glance Interface Controller, 12, 121
GlanceController class, 128
GlanceController.swift file, 17, 130
glances, xvi, 117–132

adding to existing projects, 120–122
controlling, 129–130
creating in new projects, 119–120
customizing commands for, 127–129
explanation of, 118–119
glance commander and, 125–127
layout options for, 123–124
notifications vs., 118
seeing in action, 131–132
simulating updates for, 131–132
strict controls for, 124–125
visual customization of, 123–127
WKInterfaceController and, 127–130

global tint color, 64–65
Grand Central Dispatch (GCD), 131
grouping interface objects, 71–72
groups, app, 205–206

h
H.264 video format, 194
handleActionWithIdentifier(_:) methods,

17, 149, 155
handler parameter, 102, 107
handleUserActivity(_:) method, 17, 182
handoff coordination, 17
Handoff feature, 181–183
haptic feedback engine, 237–241

careful use of, 240–241
experimenting with, 238–240
feedback styles, 238

hardware APIs, xvi, 223–241
CoreMotion, 233–237
haptic feedback engine, 237–241

distributing your app (continued)
iTunes Connect process for, 253–254, 257
preparation process for, 244–252
TestFlight distribution and, 255–257
upload process for, 253–254

distribution provisioning profiles, 251–252
dynamic notifications, 137, 138, 142–143, 147
Dynamic Type system, 84–85

e
Embed in Companion Application option, 23
emoji

input handling, 190–191
list project example, 163–168
source code using, 228

encoding media, 194
error handler, 174
ethical issues, 84
expired parameter, 170
ExtensionDelegate.swift file, 17, 179
extensions. See WatchKit extensions
external TestFlight testers, 255

f
families, complication, 89–91
file transfer, 173
Fixed sizing, 70
flow-layout system, 7
Focus property, 51
focusForCrownInput(_:) method, 52
fonts, Dynamic Type, 84–85
foreground media playback, 195–199
freemusicarchive.com website, 200

g
generic text responses, 157
gestures, 66, 85
getCurrentTimelineEntryForComplication(_:

withHandler:) method, 106
getPlaceholderTemplateForComplication(_:

withHandler:) method, 109

262 Index

init() method, 32
inline-text response screen, 156
input. See text input
insertRowsAtIndexes(_:withRowType:) method, 50
interactive controls, 43–45

buttons, 43
movies, 45
sliders, 44
switches, 43–44

inter-device communication, 171–183
background transfer for, 172–173
Handoff feature for, 181–183
live message transmission for, 173–181
making the most of, 181

interface. See user interface
interface animations, 76
interface controllers

context menu and, 36–37
hierarchical navigation and, 30–31
page-based navigation and, 28–29
See also WKInterfaceController class

interface groups, 45–46
Interface.storyboard file, 5, 27, 121
InterfaceController.swift file, 8, 17, 34, 180
internal TestFlight testers, 255
invalidateUserActivity() method, 182
iOS 9.0 software, xv, 171, 244
iOS App Store. See App Store
iOS Development certificate, 215–216
iOS projects

creating new, 4
development certificate, 215–216

iOS simulator, 13
iPhone

communicating with, 171–183
deploying apps to, 219–220
device management, 212–213
network connections via, 162
notifications received on, 134

iTunes App Store. See App Store
iTunes Connect, 253–254, 257

Health app, 224
HealthKit, 224–233

preparing the user interface, 224–226
responding to heart rate updates, 230–233
setting up access, 226–230

heart rate sensor, 224–233
HelloWrist WatchKit App scheme, 14
HideOnLockScreen value, 103
hiding objects, 69
hierarchical navigation, 26, 30–31, 33–34
HKAnchoredObjectQuery, 229, 230
horizontal alignment, 69
Human Interface Guidelines (HIG), 60

i
icons, watchOS app, 245–246
Identity inspector, 121
Image Sequence picker, 51
image-based animations, 76
images, 74–76

background, 46, 75, 76
complication, 99–101
displaying, 42, 75–76
getting onto the watch, 74–75
methods for working with, 76
placeholders for WatchOS-specific, 247
preparing for distribution, 246–249
principles for using, 75
two ways of using, 74

Include Complication option
project template, 21
target template, 23

Include Glance Scene option
project template, 21
target template, 23, 119

Include Notification Scene option
project template, 21
target template, 23

Include UI Tests option, 21
Include Unit Tests option, 21
Indicator property, 52
Info.plist file, 96, 200

Index 263

messages
receiving WatchConnectivity, 177–179
sending WatchConnectivity, 179–181

modal presentation code, 35
Modular complications, 89–90, 91–92
movies. See video
music. See audio

N
navigation, 25–38

context menu, 36–37
hierarchical, 26, 30–31
page-based, 26, 27–29
WKInterfaceController, 31–35

network connections, 162–171
Apple Watch and, 162
dictation input and, 186
maps display requiring, 42
premature deactivation and, 169–171
requests made for, 163–169

Notification Controller Scene, 12
Notification Interface Controller, 139
Notification Simulation File option, 149–150
notificationAlertLabel outlet, 140
NotificationController class, 17, 143
NotificationController.swift file, 17, 138, 143
notifications, xvi, 133–158

actioning, 154–157
adding to existing projects, 138–139
creating in new projects, 137–138
designing, 139–143
dynamic, 137, 138, 142–143, 147
explanation of, 134–137
glances vs., 118
interface controller, 143–145
iPhone, 134
layout for, 139–141
local, 134, 158
location, 142–143, 153–154
payloads for, 146–151
protocol for handling, 17
remote, 134, 158

K
Keychain Access application, 216

L
Label element, 6–7
labels, 41, 69
Language option

project template, 20
target template, 23

laying out the user interface, 68–73
grouping interface objects together, 71–72
handling different screen sizes, 72–73

layout options
for complications, 91–92
for glances, 123–124
for notifications, 139–141

limit parameter, 107, 108
List picker, 50
live message transmission, 173–181

preparing the iPhone app, 175–177
receiving WatchConnectivity messages, 177–179
sending WatchConnectivity messages, 179–181

local notifications, 134, 158
location notifications, 142–143, 153–154
locationReplyAction button, 156
Log Navigator, 124
long-look interface, 136–137

m
Manage Schemes dialog, 11
maps

display controls for, 42
glance restrictions on, 124

media, 193–209
audio recording, 203–208
background playback of, 199–203
foreground playback of, 195–199
storing video and audio, 194, 208
types and encodings, 194
See also audio; video

264 Index

placeholders, watchOS image, 247
planning the user interface, 59–66

challenges related to, 61–66
points to consider for, 60–61
See also building the user interface

playHaptic(_:) method, 238
PNG image format, 75
popController() method, 33
popToRootController() method, 33
premature deactivation, 169–171
pre-release checklist, 244–252
presentAudioRecorderControllerWithOutputURL(_:

preset:options:completion:) method, 203
presentControllerWithName(_:context:) method, 35
presentControllerWithNames(_:context:) method, 35
presentMediaPlayerControllerWithURL(_:

options:completion:) method, 198, 199
presentTextInputControllerWithSuggestions(_:

allowedInputMode:completion:) method, 187
presentTextInputControllerWithSuggestionsFor

Language(_:allowedInputMode:completion:)
method, 187

processData(_:error:) method, 168
Product Name option

project template, 20
target template, 22

production certificates, 250–251
project layout, WatchKit app, 18–19
Project option, target template, 23
project templates, 4, 19–21, 93
providers, 104–105
provisioning profiles, 213–219

automatic setup of, 213–215
distribution profiles, 251–252
manual setup of, 215–219

pushControllerWithName(_:context:) method, 33
PushNotificationPayload.apns file, 17, 146

r
reachability, 174
readiness of apps, 65
receiving WatchConnectivity messages, 177–179

short vs. long look, 136–137, 147
static, 136, 138, 141–142, 147
status update, 141–142
tapping, 154–155
testing, 146–154
text responses to, 156–157, 192
Watch, 135–137

Now Playing glance, 199, 200
NSURLSession networking API, 162–171
NSURLSession.sharedSession method, 163
NSURLSessionConfiguration object, 163
NSURLSessionDataTask, 162–171
NSURLSessionTask, 163, 171

O
Objective-C programming language, xiv, 20, 23
old-school programming techniques, 24
Organization Identifier option

project template, 20
target template, 22

Organization Name option, 20

P
page-based navigation, 26, 27–29, 35
payloads, notification, 146–151
PCalc app, 245–246
pedometer data, 235–237
performExpiringActivityWithReason(_:usingBlock:)

method, 169, 170
physical devices

communication between, 171–183
deploying apps to, 219–220
ensuring app support on, 244
managing in Device Manager, 212–213
registering new, 216
See also Apple Watch; iPhone

pickers, 50–52
animation linked to, 80–82
configuration of, 51–52
types of, 50–51

placeholder templates, 109

Index 265

setCoordinatedAnimations(_:) method, 51, 80
setDate(_:) method, 41
setEnabled(_:) method, 52
setIsAccessibilityElement(_:) method, 85
setIsAccessibilityHint(_:) method, 86
setIsAccessibilityIdentifier(_:) method, 86
setIsAccessibilityLabel(_:) method, 85
setIsAccessibilityRegions(_:) method, 86
setIsAccessibilityTraits(_:) method, 86
setIsAccessibilityValue(_:) method, 86
setItems(_:) method, 52
setLoops(_:) method, 195
setMovieURL(_:) method, 195
setNumberOfRows(_:withRowType:) method, 50
setNumberOfSteps(_:) method, 44
setPosterImage(_:) method, 195
setRegion(_:) method, 42
setRowTypes(_:) method, 50
setSelectedItemIndex(_:) method, 52
setText(_:) method, 9, 41
setTextColor(_:) method, 41
setTimeZone(_:) method, 41
Settings interface, 82–83
setTintColor(_:) method, 75
setTitle(_:) method, 34
setValue(_:) method, 44
setVideoGravity(_:) method, 195
setVisibleMapRect(_:) method, 42
shipping your app. See distributing your app
short-look interface, 136
ShowOnLockScreen value, 103
SideBySideButtonsAlert, 56
simulators, 11, 13, 14, 213, 219
size constraints, 176
sizing behaviors, 70
sliders, 44
smartwatches, 162
software versions, xv
speech

quality options for recording, 204
speech-to-text input, 186
See also audio

Stacked picker, 51

recording audio, 203–208
project development for, 204–208
speech quality options, 204

Relative to Container sizing, 70
reloadRootControllersWithNames(_:contexts:)

method, 35
remote notifications, 134, 158
removeAllAnnotations(_:) method, 42
removeRowsAtIndexes(_:) method, 50
renaming complications, 112
Render As Template Image setting, 75
replay handler, 174
requestData() method, 170
restorationHandler block, 183
restoreUserActivityState(_:) method, 183
Root.plist file, 82–83
row controllers, 49–50
rowControllerAtIndex(_:) method, 49, 50
Run action, 152

s
saySomething method, 9
schemes, 11–13
screen size differences, 72–73
screenshots of app, 257
scrollToRowAtIndex(_:) method, 50
segues

creating relationships between, 28
methods for responding to, 35

sending WatchConnectivity messages, 179–181
sendMessage() method, 174
sendMessageData() method, 174
sensor data, 224–237

accelerometer, 233–237
heart rate, 224–233

separators, 46
setAttributedText(_:) method, 41
setAttributedTitle(_:) method, 43
setBackgroundColor(_:) method, 43, 46
setBackgroundImage(_:) method, 43, 46
setCalendar(_:) method, 41
setColor(_:) method, 44, 46

266 Index

TestFlight, 255–257
accessing, 255
build types, 255
tester guidance, 255–257

testing
beta, 254, 255–257
complications, 110–113
notifications, 146–154
on-device, 219–220, 221, 254
TestFlight builds, 255–257
WatchKit app code, 10–13

text input, 185–192
modal controller for, 186–192
notifications and, 156–157, 192
preparing suggestions for, 191
speech to text, 186
types of, 186, 187–188

text input controller, 186–192
input types, 187–188
interface exploration, 188–191
methods for invoking, 186–187
suggested responses, 191

Thomson, James, 245
Time Travel mode, 88–89
timelines, 88–89, 104–109
timer label, 41
title property, 147
touch system. See haptic feedback engine
transferFile(_:metadata:) method, 173
transferUserInfo(_:) method, 173
transparency option, 69
type, Dynamic, 84–85

u
UIFont class, 84
UIFontDescriptor class, 85
UILabel class, 6
UILocalNotification object, 158
UIViewController class, 31
updateApplicationContext(_:) method, 172
updateCommands() method, 131

stage change monitoring, 17
Static Interface Controller Scene, 12
static notifications, 136, 138, 141–142, 147, 152–153
status update notifications, 141–142
statusNotification property, 151
statusReplyAction button, 156
storing media, 194, 208
storyboard editor, 68–73
storyboard file, 5–6
structural controls, 45–56

alerts, 52–56
control groups, 45–46
pickers, 50–52
separators, 46
tables, 46–50

stylePicked(_:) method, 240
suggestionHandler block, 187
suggestionsForResponseToActionWithIdentifier(_:)

methods, 144, 157
super.init() method, 32
Supported Families setting, 96
Swift programming language, xiv, 20, 23, 27
Swift Translation Guide for Objective-C Developers, xiv
switches, 43–44

t
table views, 35
tables

exploring controls for, 46–50
glance restrictions on, 124

tap targets, 64
tapping notifications, 154–155
Taptic Engine, 240
target templates, 21–24
tasks, NSURLSession, 163
templates

placeholder, 109
project, 4, 19–21
target, 21–24

test schemes
for complications, 110–113
for notifications, 151–154

Index 267

updates
application context, 172–173
complication, 113–114
glance, 131–132
status, 141–142

updateUserActivity(_:userInfo:webpageURL:)
method, 182

uploading your app, 253–254
user info transfer, 173
user input. See text input
user interface

accessibility features, 83–86
building process, 67–86
designing/planning, 59–66
images and animation, 74–82
laying out, 68–73
screen size issues, 72–73
settings interface, 82–83

userInfo dictionary, 182
Utilitarian complications, 90–91, 92
Utility watch face, xv, 90–91

v
vertical alignment, 69
vibration system. See haptic feedback engine
video

control for playing, 45, 195–197
encoding recommendations, 194
foreground playback of, 195–199
storage of, 194
See also media

video player interface, 195
View options, Attributes inspector, 69
ViewController.swift file, 178, 179
VoiceOver system, 85–86

W
wall-to-wall user interface, 61–62
Watch device. See Apple Watch
watch faces, 89–91

Color, 91
Modular, 89–90
Utility, 90–91

Watch simulators, 11, 13, 14
WatchConnectivity framework, 171–183

background transfer, 172–173
communication methods, 172
iPhone app preparation, 175–177
live message transmission, 173–181
receiving messages, 177–179
sending messages, 179–181

WatchKit apps
adding code to, 5–10
creation of, 19–24
deployment of, 219–220
explanation of, 16
interface updates for, 5–7
project layout for, 18–19
project templates for, 19–21
shipping, 243–257
target templates for, 21–24
testing code for, 10–13
WatchKit extensions and, 16–17, 19–24
writing code for, 7–10

WatchKit class template, 97
WatchKit extensions

creating apps and, 19–24
explanation of, 16–17

WatchKit Simulator Actions property, 148–149
watchOS 2.0 software, xiii, xv, 4, 171, 244
watchOS apps

split nature of, 4
terminology used for, 16
See also WatchKit apps

WCSessionDelegate protocol, 171
wearable devices, 66
Wi-Fi networks, 162
willActivate() method, 32, 33, 55
willDisappear() method, 33
WKAudioFileAsset initializer, 203
WKAudioRecorderPreset enumeration, 204
WKExtensionDelegate protocol, 17, 135
WKHapticType enum, 238
WKImageAnimatable protocol, 80
WKInterfaceButton control, 7, 8, 43

WKInterfaceTimer class, 41
WKUserNotificationInterfaceController class,

143–145
WML (Wireless Markup Language), 118

x
Xcode

Organizer window, 252
provisioning profiles, 213–219, 252
schemes, 11–13
simulators, 11, 13
software versions, xv
storyboard editor, 68–73

WKInterfaceController class, 31–38
context menu, 36–37
lifecycle callbacks, 31–33
navigation methods, 33–35

WKInterfaceDate class, 41
WKInterfaceGroup control, 45–46, 71–72
WKInterfaceImage control, 42, 75, 80
WKInterfaceLabel element, 6, 41
WKInterfaceMap control, 42
WKInterfaceMovie control, 45, 194, 195–197
WKInterfacePicker control, 50–52
WKInterfaceSeparator control, 46
WKInterfaceSlider control, 44
WKInterfaceSwitch control, 43–44
WKInterfaceTable control, 46–50

Index 269

HOW TO REGISTER YOUR PRODUCT
• Go to peachpit.com/register.
• Sign in or create an account. (If you are creating a new account, be sure to

check the box to hear from us about upcoming special offers.)
• Enter the 10- or 13-digit ISBN of your product.

BENEFITS OF REGISTERING
• A 35% off coupon to be used on your next purchase—valid for 30 days

(Your code will be available in your Peachpit cart for you to apply during
checkout. You will also find it in the Manage Codes section of your
Account page.)

• Access to bonus chapters, product updates, and/or workshop files when
available

• Special offers on new editions and related Peachpit products
(Be sure to check the box to hear from us when setting up your account or
visit peachpit.com/newsletters.)

Benefits for registering vary by product. Benefits will be listed on your Account page under
Registered Products.

Discount may not be combined with any other offer and is not redeemable for cash. Discount code
expires after 30 days from the time of product registration. Offer subject to change.

REGISTER THIS PRODUCT

SAVE 35%
ON YOUR NEXT PURCHASE

http://www.peachpit.com/register
http://www.peachpit.com/newsletters

Apple Pro Training Series
Apple offers comprehensive certification programs for creative and
IT professionals. The Apple Pro Training Series is both a self-paced
learning tool and the official curriculum of the Apple Training and
Certification program, used by Apple Authorized Training Centers
around the world.

To see a complete range of Apple Pro Training Series books, videos
and apps visit: www.peachpit.com/appleprotraining

http://www.peachpit.com/appleprotraining

	Contents
	Introduction
	Welcome to watchOS
	CHAPTER 4 EXPLORING CONTROLS
	House Rules
	WatchKit Controls
	Simple Display Controls
	Interactive Controls
	Structural Controls
	User Input
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

