
	 1

Interfacing with Multithreading
Patterns prior to the TPL and
C# 6.0

From Chapter 18, readers will recall that multithreading patterns
are used to address the multithreading complexities of monitoring an

asynchronous operation, thread pooling, avoiding deadlocks, and imple-
menting atomicity and synchronization across operations and data access.
In the ten years prior to the introduction of .NET 4.5 and C# 5.0, there were
six versions of the .NET Framework and four versions of the C# language,
and a similar number of corresponding multithreading patterns emerged.
During that time, however, there were numerous improvements in mul-
tithreading and—as is frequently the case with frameworks and even
languages—some patterns from those earlier versions were suboptimal.
Suboptimal or not, as a C# developer you are likely to encounter these
patterns either because you are developing for a .NET/C# version prior to
.NET 4.5/C# 5.0 or because you are using an API from another framework
that exposes one of the earlier patterns. The purpose of this additional
“chapter” is to discuss these patterns. If you are lucky enough to be work-
ing solely with C# 5.0 or better, consider this an Advanced Topic, reading
it simply to gain familiarity with the details of multithreading in the past.
Alternatively, if you are still programming without the Task Programming
Library (TPL) and the Task-based Asynchronous Pattern (TAP) and its
async/await keywords, treat the remaining topics as an important part of

C

	 2	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

the multithreading API available to you. Perhaps most importantly, this
content describes how to effectively interact with the earlier patterns using
the TPL and C# 5.0 and above.

Throughout these examples, exception handling has been eliminated for
the purposes of elucidation.

Asynchronous Programming Model
One particularly prominent pattern established prior to the TPL is the
Asynchronous Programming Model (APM) pattern. Given a long-running
synchronous method X(), the APM pattern uses a BeginX() method to
start X() equivalent work asynchronously and an EndX() method to con-
clude it. (Henceforth we will name these methods X, BeginX, and EndX.)

Using the APM Pattern
Listing C.1 demonstrates the pattern by using the System.Net.WebRequest
class to download a web page. The functionality is the same as that found
in the section titled “The Task-Based Asynchronous Pattern” in Chapter 18;
however, this time we assume that the TPL and TAP are not available, and
instead use the APM pattern. To maintain backward compatibility prior
to TPL-related asynchronous methods being added, WebRequest also sup-
ports the APM pattern with the methods BeginGetResponse() (BeginX)
and EndGetResponse() (EndX)—that is, asynchronous versions of the syn-
chronous GetResponse() (X) method.

Listing C.1:  Using the APM Pattern with WebRequest

using System;
using System.IO;
using System.Net;
using System.Linq;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.IntelliTect.com";
 if (args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);

	 3Appendix C: Inter facing with Multithreading Patterns

 WebRequest webRequest =
 WebRequest.Create(url);

 IAsyncResult asyncResult =
 webRequest.BeginGetResponse(null, null);

 // Indicate busy using dots; ideally (at least in a non-Console
 // implementation) should use a callback rather than a wait.
 while (
 !asyncResult.AsyncWaitHandle.WaitOne(100))
 {
 Console.Write('.');
 }

 // Retrieve the results when finished downloading.
 WebResponse response =
 webRequest.EndGetResponse(asyncResult);
 using (StreamReader reader =
 new StreamReader(response.GetResponseStream()))
 {
 // Note: ReadToEnd() is blocking. A production implementation
 //should offload this to another thread.
 int length = reader.ReadToEnd().Length;
 Console.WriteLine(FormatBytes(length));
 }
 }

 static public string FormatBytes(long bytes)
 {
 string[] magnitudes =
 new string[] { "GB", "MB", "KB", "Bytes" };
 long max =
 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",
 magnitudes.FirstOrDefault(
 magnitude =>
 bytes > (max /= 1024))?? "0 Bytes",
 (decimal)bytes / (decimal)max).Trim();
 }
}

The results of Listing C.1 appear in Output C.1.

Output C.1

http://www.IntelliTect.com..........29.36 KB

As mentioned, the key aspect of the APM pattern is the pair of BeginX
and EndX methods with well-established signatures. The BeginX method
returns a System.IAsyncResult object providing access to the state of the

	 4	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

asynchronous call so it knows whether to wait or poll for completion. The
EndX method then takes this return as an input parameter. This pairs up the
two methods so that it is clear which BeginX method call pairs with which
EndX method call. The APM pattern requires that for all BeginX invocations,
there must be exactly one EndX invocation; thus multiple calls to EndX for
the same IAsyncResult instance should not occur.

In Listing C.1, we also use the IAsyncResult’s WaitHandle to determine
when the asynchronous method completes. As we iteratively poll the
WaitHandle, we print out periods to the console indicating that the down-
load is running. Following that, we call EndGetResponse().

The EndX method serves four purposes. First, calling EndX will block fur-
ther execution until the work requested completes successfully (or an error
occurs and throws an exception). Second, if method X returns data, this data
is accessible from the EndX method call. Third, if an exception occurs while
performing the requested work, the exception will be rethrown on the call to
EndX, ensuring that the exception is visible to the calling code as though it had
occurred on a synchronous invocation. Finally, if any resource needs cleanup
due to X’s invocation, EndX will be responsible for cleaning up these resources.

APM Signatures
Together, the combination of the BeginX and EndX APM methods should
match the synchronous version of the signature. Therefore, the return
parameter on EndX should match the return parameters on the X method
(GetResponse() in this case). Furthermore, the input parameters on the
BeginX method also need to match. In the case of WebRequest.GetResponse()
there are no parameters, but let’s consider a fictitious synchronous method,
bool TryDoSomething(string url, ref string data, out string[] links).
The parameters map from the synchronous method to the APM methods,
as shown in Figure C.1.

System.IAsyncResult BeginTryDoSomething(
 String url, ref string data, out string[] links,

object state)

bool EndTryDoSomething (ref string data, out string[] links,
 System.IAyncResult result);

bool
 string url, ref string data, out string[] links)

 System.AsyncCallback callback,

 TryDosomething(

Figure C.1:  APM Parameter Distribution

	 5Appendix C: Inter facing with Multithreading Patterns

All input parameters map to the BeginX method. Similarly, the return
parameter maps to the EndX return parameter. Also, notice that since the
ref and out parameters return results, they are included in the EndX method
signature. In contrast, url is just an input parameter, so it is not included
in the EndX method.

Continuation Passing Style with AsyncCallback
There are two additional parameters on the BeginX method that were
not included in the synchronous method: the callback parameter (a
System.AsyncCallback delegate to be called when the method completes)
and a state parameter of type object. Listing C.2 demonstrates how they
are used. (The output is the same as Output C.1.)

Listing C.2:  Invoking an APM Method with Callback and State

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.intelliTechture.com";
 if (args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);
 WebRequest webRequest = WebRequest.Create(url);
 WebRequestState state =
 new WebRequestState(webRequest);
 IAsyncResult asyncResult =
 webRequest.BeginGetResponse(
 GetResponseAsyncCompleted, state);

 // Indicate busy using dots.
 while (
 !asyncResult.AsyncWaitHandle.WaitOne(100))
 {
 Console.Write('.');
 }
 state.ResetEvent.Wait();
 }

	 6	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 // Retrieve the results when finished downloading.
 private static void GetResponseAsyncCompleted(
 IAsyncResult asyncResult)
 {
 WebRequestState completedState =
 (WebRequestState)asyncResult.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)completedState.WebRequest
 .EndGetResponse(asyncResult);
 Stream stream = response.GetResponseStream();
 StreamReader reader = new StreamReader(stream);
 // Note: ReadToEnd() is blocking. A production implementation
 //should offload this to another thread.
 int length = reader.ReadToEnd().Length;

 Console.WriteLine(FormatBytes(length));
 completedState.ResetEvent.Set();
 completedState.Dispose();
 }
 // ...
}

class WebRequestState : IDisposable
{
 public WebRequestState(WebRequest webRequest)
 {
 WebRequest = webRequest;
 }
 public WebRequest WebRequest { get; private set; }
 private ManualResetEventSlim _ResetEvent =
 new ManualResetEventSlim();
 public ManualResetEventSlim ResetEvent
 { get { return _ResetEvent; } }

 public void Dispose()
 {
 ResetEvent.Dispose();
 GC.SuppressFinalize(this);
 }
}

In Listing C.2, we pass data for both of the parameters on
BeginGetResponse(). The first parameter is a delegate of type System
.AsyncCallback that takes a single parameter of type System.AsyncResult.
The AsyncCallback identifies the code that will execute once the asynchro-
nous call completes. Registering a callback enables a fire-and-forget call-
ing pattern called continuation passing style (CPS), rather than placing
the EndGetResponse() and Console.WriteLine() code sequentially below

	 7Appendix C: Inter facing with Multithreading Patterns

BeginGetResponse(). With CPS, we can “register” the code that will execute
upon completion of the asynchronous method. Note that it is still necessary
to call EndGetResponse(), but by placing it in the callback we ensure that
it doesn’t block the main thread while the asynchronous call completes.

Passing State between APM Methods
The state parameter is used to pass additional data to the callback when
it executes. Listing C.2 includes a WebRequestState class for passing ad-
ditional data into the callback, and it includes the WebRequest itself in this
case so that we can use it to call EndGetResponse(). One alternative to
the WebRequestState class itself would be to use an anonymous method
(including a lambda expression) with closures for the additional data, as
shown in Listing C.3.

Listing C.3:  Passing State Using Closure on an Anonymous Method

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading;

public class Program
{
 public static void Main(string[] args)
 {
 string url = "http://www.intelliTechture.com";
 if (args.Length > 0)
 {
 url = args[0];
 }

 Console.Write(url);
 WebRequest webRequest = WebRequest.Create(url);
 ManualResetEventSlim resetEvent =
 new ManualResetEventSlim();
 IAsyncResult asyncResult =
 webRequest.BeginGetResponse(
 (completedAsyncResult) =>
 {
 HttpWebResponse response =
 (HttpWebResponse)webRequest.EndGetResponse(
 completedAsyncResult);
 Stream stream =
 response.GetResponseStream();
 StreamReader reader =
 new StreamReader(stream);
 int length = reader.ReadToEnd().Length;

	 8	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 Console.WriteLine(FormatBytes(length));
 resetEvent.Set();
 resetEvent.Dispose();
 },
 null);

 // Indicate busy using dots.
 while (
 !asyncResult.AsyncWaitHandle.WaitOne(100))
 {
 Console.Write('.');
 }
 resetEvent.Wait();
 }

 // ...
}

Regardless of whether we pass the state via closures, notice that we
are using a ManualResetEvent to signal when the AsyncCallback has com-
pleted. This is somewhat peculiar because IAsyncResult already includes
a WaitHandle. The difference, however, is that IAsyncResult’s WaitHandle
is set when the asynchronous method completes but before AsyncCallback
executes. If we blocked on only IAsyncResult’s WaitHandle, we would be
likely to exit the program before AsyncCallback has executed. For this rea-
son, we use a separate ManualResetEvent.

Resource Cleanup
Another important APM rule is that no resource leaks should occur, even
if the EndX method is mistakenly not called. Since WebRequestState owns
the ManualResetEvent, it specifically owns a resource that requires such
cleanup. To handle this task, the state object uses the standard IDisposable
pattern with the IDispose() method.

Calling APM Methods Using the TPL
Even though the TPL greatly simplifies making an asynchronous call on a
long-running method, it is generally better to use the API-provided APM
methods than to code the TPL against the synchronous version. The rea-
son for this is that the API developer best understands what is the most
efficient threading code to write, which data to synchronize, and which
type of synchronization to use. Fortunately, there are special methods on
the TPL’s TaskFactory that are designed specifically for invoking the APM

Begin 4.0

	 9Appendix C: Inter facing with Multithreading Patterns

methods. As a result, if you have access to the TPL but are using APM-
related APIs, you can still use the TPL to invoke them.

APM with the TPL and CPS
The TPL includes a set of overloads on FromAsync for invoking APM meth-
ods. Listing C.4 provides an example. The same listing expands on the
other APM examples to support downloading of multiple URLs; see Out-
put C.2.

Listing C.4:  Using the TPL to Call the APM

using System;
using System.IO;
using System.Net;
using System.Linq;
using System.Threading.Tasks;

public class Program
{
 static private object ConsoleSyncObject =
 new object();

 public static void Main(string[] args)
 {
 string[] urls = args;
 if (args.Length == 0)
 {
 urls = new string[]
 {
 "http://www.habitat-spokane.org",
 "http://www.partnersintl.org",
 "http://www.iassist.org",
 "http://www.fh.org",
 "http://www.worldvision.org"
 };
 }

 Task[] tasks = new Task[urls.Length];
 for (int line = 0; line < urls.Length; line++)
 {
 tasks[line] = DisplayPageSizeAsync(
 urls[line], line);
 }

 while (!Task.WaitAll(tasks, 50))
 {
 DisplayProgress(tasks);
 }
 Console.SetCursorPosition(0, urls.Length);
 }

4.0

	 10	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 private static Task<WebResponse>
 DisplayPageSizeAsync(string url, int line)
 {
 WebRequest webRequest = WebRequest.Create(url);
 WebRequestState state =
 new WebRequestState(webRequest, line);
 Write(state, url + " ");
 return Task<WebResponse>.Factory.FromAsync(
 webRequest.BeginGetResponse,
 GetResponseAsyncCompleted, state);
 }

 private static WebResponse GetResponseAsyncCompleted(
 IAsyncResult asyncResult)
 {
 WebRequestState completedState =
 (WebRequestState)asyncResult.AsyncState;
 HttpWebResponse response =
 (HttpWebResponse)completedState.WebRequest
 .EndGetResponse(asyncResult);
 Stream stream =
 response.GetResponseStream();
 using (StreamReader reader =
 new StreamReader(stream))
 {
 int length = reader.ReadToEnd().Length;
 Write(
 completedState, FormatBytes(length));
 }
 return response;
 }

 private static void Write(
 WebRequestState completedState, string text)
 {
 lock (ConsoleSyncObject)
 {
 Console.SetCursorPosition(
 completedState.ConsoleColumn,
 completedState.ConsoleLine);
 Console.Write(text);
 completedState.ConsoleColumn +=
 text.Length;
 }
 }

 private static void DisplayProgress(
 Task[] tasks)
 {
 for (int i = 0; i < tasks.Length; i++)
 {
 if (!tasks[i].IsCompleted)
 {

4.0

	 11Appendix C: Inter facing with Multithreading Patterns

 DisplayProgress(
 (WebRequestState)tasks[i]
 .AsyncState);
 }
 }
 }

private static void DisplayProgress(
 WebRequestState state)
 {
 lock (ConsoleSyncObject)
 {
 int left = state.ConsoleColumn;
 int top = state.ConsoleLine;
 if (left >= Console.BufferWidth -
 int.MaxValue.ToString().Length)
 {
 left = state.Url.Length;

 Console.SetCursorPosition(left, top);
 Console.Write("".PadRight(
 Console.BufferWidth –
 state.Url.Length));

 state.ConsoleColumn = left;
 }

 Write(state, ".");
 }
 }

 static public string FormatBytes(long bytes)
 {
 string[] magnitudes =
 new string[] { "GB", "MB", "KB", "Bytes" };
 long max =
 (long)Math.Pow(1024, magnitudes.Length);

 return string.Format("{1:##.##} {0}",
 magnitudes.FirstOrDefault(
 magnitude =>
 bytes > (max /= 1024))?? "0 Bytes",
 (decimal)bytes / (decimal)max).Trim();
 }
}

class WebRequestState
{
 public WebRequestState(
 WebRequest webRequest, int line)
 {
 WebRequest = webRequest;

4.0

	 12	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 ConsoleLine = line;
 ConsoleColumn = 0;
 }
 public WebRequestState(WebRequest webRequest)
 {
 WebRequest = webRequest;
 }
 public WebRequest WebRequest { get; private set; }
 public string Url
 {
 get
 {
 return WebRequest.RequestUri.ToString();
 }
 }
 public int ConsoleLine { get; set; }
 public int ConsoleColumn { get; set; }
}

Output C.2

http://www.habitat-spokane.org ..9.18 KB
http://www.partnersintl.org14.74 KB
http://www.iassist.org ...17.12 KB
http://www.fh.org35.09 KB
http://www.worldvision.org54.56 KB

Connecting a Task with the APM method pair is relatively easy.
The overload used in Listing C.4 takes three parameters. First, there
is the BeginX method delegate (webRequest.BeginGetResponse). Next
is a delegate that matches the EndX method. Although the EndX method
(webRequest.EndGetResponse) could be used directly, passing a delegate
(GetResponseAsyncCompleted) and using the CPS allows additional comple-
tion activity to execute. The last parameter is the state parameter, similar
to what the BeginX method accepts.

One of the advantages of invoking a pair of APM methods using the
TPL is that we don’t have to worry about signaling the conclusion of the
AsyncCallback method. Instead, we monitor the Task for completion. As a
result, WebRequestState no longer needs to contain a ManualResetEventSlim.

Using the TPL and ContinueWith() to Call an APM Method
Another option when calling TaskFactory.FromAsync() is to pass the
EndX method directly and then to use ContinueWith() for any follow-up

4.0

	 13Appendix C: Inter facing with Multithreading Patterns

code. The result is that you have a single object to represent any kind of
asynchronous operation and, therefore, you can start composing task-
based operations together, even if the underlying implementation is APM-
based. In addition, you can query the continue-with-Task parameter (see
continueWithTask in Listing C.5) for the result (continueWithTask.Result)
rather than storing a means to access the EndX method via an async-state
object or using closure and an anonymous delegate (we store WebRequest
in Listing C.4).

Listing C.5:  Using the TPL to Call an APM Method Using ContinueWith()

// ...

 private static Task
 DisplayPageSizeAsync(string url, int line)
 {
 WebRequest webRequest = WebRequest.Create(url);
 WebRequestState state =
 new WebRequestState(webRequest, line);
 Write(state, url + " ");
 return Task<WebResponse>.Factory.FromAsync(
 webRequest.BeginGetResponse,
 webRequest.EndGetResponse, state)
 .ContinueWith(
 (antecedent, antecedentState) =>
 {
 Stream stream =
 antecedent.Result.
 GetResponseStream();
 using (StreamReader reader =
 new StreamReader(stream))
 {
 int length =
 reader.ReadToEnd().Length;
 Write(state,
 FormatBytes(length).ToString());
 }
 }, state);
 }

// ...

Notice that for the state to be passed into the Task returned from Continue
With(), the ContinueWith() call explicitly includes antecedentState in the
delegate in addition to having it as a parameter.

End 4.0

	 14	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

Using TAP to Call an APM Method
Given that TAP is essentially designed for handling the continuation tasks,
an obvious enhancement (albeit one depending on C# 5.0) is to use async/
await rather than ContinueWith(), as shown in Listing C.6.

Listing C.6:  Using TAP to Call the APM

// ...

 private async static Task
 DisplayPageSizeAsync(string url, int line)
 {
 WebRequestState state =
 new WebRequestState(url, line);
 Write(state, url + " ");
 WebRequest webRequest = WebRequest.Create(url);
 WebResponse webResponse =
 await Task<WebResponse>.Factory.FromAsync(
 webRequest.BeginGetResponse,
 webRequest.EndGetResponse, state);
 Stream stream =
 webResponse.GetResponseStream();
 using (StreamReader reader =
 new StreamReader(stream))
 {
 int length = reader.ReadToEnd().Length;
 Write(state,
 FormatBytes(length).ToString());
 }
 }

// ...

	 B E G I N N E R T O P I C

Synchronizing Console Using lock
In Listing C.4, we repeatedly change the location of the console’s cursor
and then proceed to write text to the console. Since multiple threads are
executing that are also writing to the console, possibly changing the cursor
location as well, we need to synchronize changes to the cursor location
with write operations so that together they are atomic.

Listing C.4 includes a ConsoleSyncObject of type object as the syn-
chronization lock identifier. Using it within a lock construct whenever we

Begin 5.0

End 5.0

n
n

n
n

	 15Appendix C: Inter facing with Multithreading Patterns

are moving the cursor or writing to the console prevents an interim update
between the move and write operations to the console. Notice that even one-
line Console.WriteLine() statements are surrounded with lock. Although
they will be atomic, we don’t want them to interrupt a different block that
is not atomic. To ensure this outcome, all console changes require the syn-
chronization as long as there are multiple threads of execution.

Asynchronous Delegate Invocation
One specific implementation of the APM pattern is “asynchronous del-
egate invocation,” which leverages special C# compiler-generated code on
all delegate data types. Given a delegate instance of Func<string, int>,
for example, there is an APM pair of methods available on the instance:

System.IAsyncResult BeginInvoke(
 string arg, AsyncCallback callback, object @object)
int EndInvoke(IAsyncResult result)

The result is that you can call any delegate (and therefore any method)
synchronously just by using the C# compiler-generated methods.

Unfortunately, the underlying technology used by the asynchronous
delegate invocation pattern is an end-of-further-development technology
for distributed programming known as remoting. Although Microsoft still
supports the use of asynchronous delegate invocation and for the foresee-
able future it will continue to function as it does today, the performance
characteristics are suboptimal given other approaches—namely, Thread,
ThreadPool, and the TPL. Given this reality, developers should favor one
of these alternatives rather than implementing new development using the
asynchronous delegate invocation API. Further discussion of this pattern
is included in the Advanced Topic text that follows so that developers who
encounter it will understand how it works.

	 A D V A N C E D T O P I C

Asynchronous Delegate Invocation in Detail
With asynchronous delegate invocation, you do not code using an explicit
reference to Task or Thread. Instead, you use delegate instances and the

n
n

n
n

	 16	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

compiler-generated BeginInvoke() and EndInvoke() methods—whose
implementation requests threads from the ThreadPool. Consider the code
in Listing C.7.

Listing C.7:  Asynchronous Delegate Invocation

using System;

public class Program
{
 public static void Main(string[] args)
 {
 Console.WriteLine("Application started....");

 Console.WriteLine("Starting thread....");
 Func<int,string> workerMethod =
 PiCalculator.Calculate;
 IAsyncResult asyncResult =
 workerMethod.BeginInvoke(500, null, null);

 // Display periods as progress bar.
 while(!asyncResult.AsyncWaitHandle.WaitOne(
 100, false))
 {
 Console.Write('.');
 }
 Console.WriteLine();

 Console.WriteLine("Thread ending....");
 Console.WriteLine(
 workerMethod.EndInvoke(asyncResult));

 Console.WriteLine(
 "Application shutting down....");
 }
}

The results of Listing C.7 appear in Output C.3.

Output C.3

Application started....
Starting thread....
.........................
Thread ending....
3.14159265358979323846264338327950288419716939937510582097494459230781
6406286208998628034825342117067982148086513282306647093844609550582231
7253594081284811174502841027019385211055596446229489549303819644288109
7566593344612847564823378678316527120190914564856692346034861045432664
8213393607260249141273724587006606315588174881520920962829254091715364
3678925903600113305305488204665213841469519415116094330572703657595919
5309218611738193261179310511854807446237996274956735188575272489122793
818301194912
Application shutting down....

	 17Appendix C: Inter facing with Multithreading Patterns

Main() begins by assigning a delegate of type Func<int, string> that
is pointing to PiCalculator.Calculate(int digits).

Next, the code calls BeginInvoke(). This method starts the PiCalculator
.Calculate() method on a thread from the thread pool and then re-
turns immediately. This allows other code to run in parallel with the
pi calculation. In this example, we print periods while waiting for the
PiCalculator.Calculate() method to complete.

We poll the status of the delegate using IAsyncResult.AsyncWaitHandle
.WaitOne() on asyncResult—the same mechanism available on APM. As a
result, the code prints periods to the screen each second during which the
PiCalculator.Calculate() method is executing.

Once the wait handle signals, the code calls EndInvoke(). As with all
APM implementations, it is important to pass to EndInvoke() the same
IAsyncResult reference returned when calling BeginInvoke(). In this ex-
ample, EndInvoke() doesn’t block because we poll the thread’s state in the
while loop and call EndInvoke() only after the thread has completed.

The example in Listing C.5 passed an integer and received a string—the
signature of Func<int, string>. The key feature of asynchronous delegate
invocation, however, is that passing data in and out of the target invocation
is trivial; it just lines up with the synchronous method signature as it did
in the APM pattern. Consider a delegate type that includes out and ref
parameters, as shown in Figure C.2. (Although commonly encountered, this
example intentionally doesn’t use Func or Action because generics don’t
allow ref and out modifiers on type parameters.)

System.IAsyncResult UpdateHandler.BeginInvoke(
 Object[] data, ref object value, out string text
 AsyncCallback callback, object @object);

delegate bool UpdateHandlerFunc
 object[] data, ref object value, out string text);

bool UpdateHandler.End
 ref object value, out text);

Invoke(

Figure C.2:  Delegate Parameter Distribution to BeginInvoke() and EndInvoke()

The BeginInvoke() method matches the delegate signature except for the
additional AsyncCallback and object parameters. Like the IAsyncResult

	 18	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

return, the additional parameters correspond to the standard APM parame-
ters specifying a callback and passing state object. Similarly, the EndInvoke()
method matches the original signature except that only outgoing parameters
appear. Since object[] data is only incoming, it doesn’t appear in the
EndInvoke() method. Also, since the EndInvoke() method concludes the
asynchronous call, its return matches the original delegate’s return.

Because all delegates include the C# compiler-generated BeginInvoke()
and EndInvoke() methods used by the asynchronous delegate invocation
pattern, invoking any method synchronously—especially given Func and
Action delegates—becomes relatively easy. Furthermore, it is a simple mat-
ter for the caller to invoke a method asynchronously regardless of whether
the API programmer explicitly implemented it.

Before the TPL became available, the asynchronous delegate invocation
pattern was significantly easier to use than the alternatives—a factor that
encouraged programmers to use it when an API didn’t provide explicit
asynchronous calling patterns. However, apart from support for .NET 3.5
and earlier frameworks, the advent of the TPL diminished the need to use
the asynchronous delegate invocation approach, if it is necessary at all.

The Event-Based Asynchronous Pattern1

Thus far we’ve made the assumption that an asynchronous method will re-
turn a task; the caller is notified that the asynchronous work is completed
when the status and result of the task become set. Doing so may, in turn,
cause completions of the task to execute asynchronously as well. Although
this pattern is common and powerful, it is not the only option for dealing
with asynchrony. Notably, the Event-based Asynchronous Pattern (EAP)
is often used for long-running asynchronous work.

A method that uses the EAP typically has a name that ends in Async,
returns void, and has no out parameters. EAP methods also typically take
an object or generic parameter that contains caller-determined state that is
associated with the asynchronous work, and sometimes they take a cancel-
lation token if the asynchronous work is cancellable. For example, if we had

1.	 See Concurrent Programming on Windows by Joe Duffy (Addison-Wesley, 2009), pp. 421–426,
for more information.

	 19Appendix C: Inter facing with Multithreading Patterns

an EAP method that computes a given number of digits of pi and returns
them in a string, the signature of the method might be

 void CalculateAsync(int digits)

or
 void CalculateAsync(
 int digits, object state, CancellationToken ct)

What is clearly missing from these signatures is the result. The asynchro-
nous methods we’ve seen so far would return a Task<string> that could
be used to fetch the asynchronously computed value after the computation
has finished. In contrast, the EAP methods have no return value.

We have not yet seen the “event” part of the Event-based Asynchro-
nous Pattern. The method is associated with an event; the caller of the EAP
method registers an event handler on the associated event and then calls the
method. The method starts the asynchronous work and returns; when the
asynchronous work completes, the event is fired and the handler executes.
The event arguments passed to the handler contain the computed string
and any other information that the asynchronous method assumes would
be useful to the listener, such as the caller-provided state, information about
any exceptions or cancellations that occurred during the asynchronous op-
eration, and so on. (Unsurprisingly, the exact information that would be
available on a task object is instead made available in the event handler
arguments.)

In Listing C.8, we show one way to use task-based asynchrony
as an implementation detail of an EAP method. The EAP method
CalculateAsync<TState>() has associated with it the CalculateCompleted
event. The asynchronous method creates a task (which, by default, will
run on a thread obtained from the thread pool) to do the calculation. The
continuation of that task triggers the event when the task completes.

Listing C.8:  Event-Based Asynchronous Pattern

using System;
using System.ComponentModel;
using System.Threading;
using System.Threading.Tasks;
using AddisonWesley.Michaelis.EssentialCSharp.Shared;

partial class PiCalculation
{

	 20	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 public void CalculateAsync<TState>(
 int digits,
 CancellationToken cancelToken
 = default(CancellationToken),
 TState userState
 = default(TState))
 {
 SynchronizationContext.
 SetSynchronizationContext(
 AsyncOperationManager.
 SynchronizationContext);
 // Ensure the continuation runs on the current thread, so that
 // the event will be raised on the same thread that
 // called this method in the first place.
 TaskScheduler scheduler =
 TaskScheduler.
 FromCurrentSynchronizationContext();
 Task.Run(
 () =>
 {
 return PiCalculator.Calculate(digits);
 }, cancelToken)
 .ContinueWith(
 continueTask =>
 {
 Exception exception =
 continueTask.Exception == null ?
 continueTask.Exception :
 continueTask.Exception.
 InnerException;
 CalculateCompleted(
 typeof(PiCalculator),
 new CalculateCompletedEventArgs(
 continueTask.Result,
 exception,
 cancelToken.IsCancellationRequested,
 userState));
 }, scheduler);
 }

 public event
 EventHandler<CalculateCompletedEventArgs>
 CalculateCompleted = delegate { };

 public class CalculateCompletedEventArgs
 : AsyncCompletedEventArgs
 {
 public CalculateCompletedEventArgs(
 string value,
 Exception error,

	 21Appendix C: Inter facing with Multithreading Patterns

 bool cancelled,
 object userState) : base(
 error, cancelled, userState)
 {
 Result = value;
 }
 public string Result { get; private set; }
 }
}

In Listing C.8, as with the async/await approach, we wish to ensure that
the continuation that fires the event is always run on the same thread on
which the original asynchronous method was run. To achieve this goal, we
request the synchronization context from the TaskScheduler class. As this
is a console application, the current thread has no synchronization (causing
it to depend on the thread pool by default), so Listing C.8 shows creation
of the default context first.

As mentioned earlier, EAP methods are often used for long-running
asynchronous operations. Long-running operations frequently provide not
only notification when the task completes, fails, or is canceled, but also occa-
sional progress updates. This sort of information is particularly useful when
the user interface displays the progress of the long-running asynchronous
operation with some sort of progress bar or other indicator. The standard
way to do so in an EAP method is to associate the method with a second
event named ProgressChanged of type ProgressChangedEventHandler.

The EAP method and its associated event (or events, if the method pro-
duces progress updates) are typically instance members, not static members.
This makes it easier to support multiple concurrent operations because each
separate operation can be associated with a different instance.

Background Worker Pattern
Another pattern that provides operation status and the possibility of can-
cellation is the background worker pattern, a specific implementation of
EAP. The .NET Framework 2.0 (or later) includes a BackgroundWorker class
for programming this type of pattern.

Listing C.9 is an example of this pattern—again calculating pi to the
number of digits specified.

Begin 2.0

	 22	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

Listing C.9:  Using the Background Worker API

using System;
using System.Threading;
using System.ComponentModel;
using System.Text;

public class PiCalculator
{
 public static BackgroundWorker calculationWorker =
 new BackgroundWorker();
 public static AutoResetEvent resetEvent =
 new AutoResetEvent(false);

 public static void Main()
 {
 int digitCount;

 Console.Write(
 "Enter the number of digits to calculate:");
 if (int.TryParse(
 Console.ReadLine(), out digitCount))
 {
 Console.WriteLine("ENTER to cancel");
 // C# 2.0 syntax for registering delegates.
 calculationWorker.DoWork += CalculatePi;
 // Register the ProgressChanged callback.
 calculationWorker.ProgressChanged +=
 UpdateDisplayWithMoreDigits;
 calculationWorker.WorkerReportsProgress =
 true;
 // Register a callback for when the calculation completes.
 calculationWorker.RunWorkerCompleted +=
 new RunWorkerCompletedEventHandler(
 Complete);
 calculationWorker.
 WorkerSupportsCancellation = true;

 // Begin calculating pi for up to digitCount digits.
 calculationWorker.RunWorkerAsync(
 digitCount);

 Console.ReadLine();
 // If cancel is called after the calculation
 // has completed, it doesn't matter.
 calculationWorker.CancelAsync();
 // Wait for Complete() to run.
 resetEvent.WaitOne();
 }
 else
 {
 Console.WriteLine(
 "The value entered is an invalid integer.");

2.0

	 23Appendix C: Inter facing with Multithreading Patterns

 }
 }

 private static void CalculatePi(
 object sender, DoWorkEventArgs eventArgs)
 {
 int digits = (int)eventArgs.Argument;

 StringBuilder pi =
 new StringBuilder("3.", digits + 2);
 calculationWorker.ReportProgress(
 0, pi.ToString());

 // Calculate rest of pi, if required.
 if (digits > 0)
 {
 for (int i = 0; i < digits; i += 9)
 {
 // Calculate next i decimal places.
 int nextDigit =
 PiDigitCalculator.StartingAt(
 i + 1);
 int digitCount =
 Math.Min(digits - i, 9);
 string ds =
 string.Format("{0:D9}", nextDigit);
 pi.Append(ds.Substring(0, digitCount));

 // Show current progress.
 calculationWorker.ReportProgress(
 0, ds.Substring(0, digitCount));

 // Check for cancellation.
 if (
 calculationWorker.CancellationPending)
 {
 // Need to set Cancel if you want to
 // distinguish how a worker thread completed--
 // i.e., by checking
 //RunWorkerCompletedEventArgs.Cancelled.
 eventArgs.Cancel = true;
 break;
 }
 }
 }

 eventArgs.Result = pi.ToString();
 }

 private static void UpdateDisplayWithMoreDigits(
 object sender,
 ProgressChangedEventArgs eventArgs)

2.0

	 24	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 {
 string digits = (string)eventArgs.UserState;

 Console.Write(digits);
 }

 static void Complete(
 object sender,
 RunWorkerCompletedEventArgs eventArgs)
 {
 // ...
 }
}

public class PiDigitCalculator
{
 // ...
}

Establishing the Pattern
The process of hooking up the background worker pattern is as follows:

1.	Register the long-running method with the BackgroundWorker

.DoWork event. In this example, the long-running task is the call to
CalculatePi().

2.	To receive progress or status notifications, hook up a listener to
BackgroundWorker.ProgressChanged and set BackgroundWorker.

WorkerReportsProgress to true. In Listing C.9, the UpdateDisplay
WithMoreDigits() method takes care of updating the display as more
digits become available.

3.	Register a method (Complete()) with the BackgroundWorker

.RunWorkerCompleted event.

4.	Assign the WorkerSupportsCancellation property to support cancella-
tion. Once this property is assigned the value true, a call to Background
Worker.CancelAsync will set the DoWorkEventArgs.CancellationPending
flag.

5.	Within the DoWork-provided method (CalculatePi()), check the
DoWorkEventArgs.CancellationPending property and exit the method
when it is true.

2.0

	 25Appendix C: Inter facing with Multithreading Patterns

6.	Once everything is set up, start the work by calling BackgroundWorker
.RunWorkerAsync() and providing a state parameter that is passed to
the specified DoWork() method.

When you break it into steps, the background worker pattern is
relatively easy to follow and, true to EAP, it provides explicit support
for progress notification. The drawback is that you cannot use it arbi-
trarily on any method. Instead, the DoWork() method must conform to a
System.ComponentModel.DoWorkEventHandler delegate, which takes argu-
ments of type object and DoWorkEventArgs. If this isn’t the case, a wrapper
function is required—something fairly trivial using anonymous methods.
The cancellation- and progress-related methods also require specific signa-
tures, but these are in control of the programmer setting up the background
worker pattern.

Exception Handling
If an unhandled exception occurs while the background worker thread
is executing, the RunWorkerCompletedEventArgs parameter of the
RunWorkerCompleted delegate (Completed’s eventArgs) will have an Error
property set with the exception. As a result, checking the Error property
within the RunWorkerCompleted callback in Listing C.10 provides a means
of handling the exception.

Listing C.10:  Handling Unhandled Exceptions from the Worker Thread

 // ...
 static void Complete(
 object sender, RunWorkerCompletedEventArgs eventArgs)
 {
 Console.WriteLine();
 if (eventArgs.Cancelled)
 {
 Console.WriteLine("Cancelled");
 }
 else if (eventArgs.Error != null)
 {
 // IMPORTANT: check error to retrieve any exceptions.
 Console.WriteLine(
 "ERROR: {0}", eventArgs.Error.Message);
 }
 else
 {
 Console.WriteLine("Finished");

2.0

	 26	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 }
 resetEvent.Set();
 }
 // ...

It is important that the code check eventArgs.Error inside the
RunWorkerCompleted callback. Otherwise, the exception will go unde-
tected—it won’t even be reported to AppDomain.

Dispatching to the Windows UI
One other important threading concept relates to user interface develop-
ment using the System.Windows.Forms and System.Windows namespaces.
As already discussed in the UI-related content of Chapter 18, the Microsoft
Windows suite of operating systems uses a single-threaded, message-
processing–based user interface. As a consequence, only one thread at
a time should access the user interface, and code should marshal any
alternative thread interaction via the Windows message pump. Fortu-
nately, thanks to the fact that TAP uses the synchronization context when
executing the continuation task, calls following an await expression call
can freely invoke the UI API without concern for dispatching invocations
to the UI thread. Unfortunately, in prior versions of C#, this was not the
case. Instead, invoking a UI method on the UI thread required special in-
vocation logic both for Windows Forms and for the Windows Presentation
Framework API, as we discuss in the following sections.

Windows Forms
When programming against Windows Forms, the process of checking
whether UI invocation is allowable from a thread involves calling a com-
ponent’s InvokeRequired property to determine whether marshalling is
necessary. If InvokeRequired returns true, marshalling is necessary and
can be implemented via a call to Invoke(). Internally, Invoke() will check
InvokeRequired anyway, but it can be more efficient to do so beforehand
explicitly. Listing C.11 demonstrates this pattern.

Listing C.11:  Accessing the User Interface via Invoke()

using System;
using System.Drawing;

End 2.0

	 27Appendix C: Inter facing with Multithreading Patterns

using System.Threading;
using System.Windows.Forms;

class Program : Form
{
 private System.Windows.Forms.ProgressBar _ProgressBar;

 [STAThread]
 static void Main()
 {
 Application.Run(new Program());
 }

 public Program()
 {
 InitializeComponent();
 // Use Task.Factory.StartNew for .NET 4.0.
 Task task = Task.Run((Action)Increment);
 }

 void UpdateProgressBar()
 {
 if (_ProgressBar.InvokeRequired)
 {
 MethodInvoker updateProgressBar =
 UpdateProgressBar;
 _ProgressBar.BeginInvoke(updateProgressBar);
 }
 else
 {
 _ProgressBar.Increment(1);
 }
 }

 private void Increment()
 {
 for (int i = 0; i < 100; i++)
 {
 UpdateProgressBar();
 Thread.Sleep(100);
 }

 if (InvokeRequired)
 {
 // Close cannot be called directly from a non-UI thread.
 Invoke(new MethodInvoker(Close));
 }
 else
 {
 Close();
 }
 }

	 28	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

 private void InitializeComponent()
 {
 _ProgressBar = new ProgressBar();
 SuspendLayout();

 _ProgressBar.Location = new Point(13, 17);
 _ProgressBar.Size = new Size(267, 19);

 ClientSize = new Size(292, 53);
 Controls.Add(this._ProgressBar);
 Text = "Multithreading in Windows Forms";
 ResumeLayout(false);
 }
}

This program displays a window containing a progress bar that auto-
matically starts incrementing. Once the progress bar reaches 100 percent,
the dialog box closes.

In Listing C.11, notice that you have to check InvokeRequired twice,
and then the marshal calls across to the user interface thread if it returns
true. In both cases, the marshalling involves instantiating a MethodInvoker
delegate that is then passed to Invoke(). Since marshalling across to another
thread could be relatively slow, an asynchronous invocation of the call is
also available via BeginInvoke() and EndInvoke().

Invoke(), BeginInvoke(), EndInvoke(), and InvokeRequired constitute
the members of the System.ComponentModel.ISynchronizeInvoke interface
that is implemented by System.Windows.Forms.Control, from which Win-
dows Forms controls derive.

Windows Presentation Foundation
Achieving the same marshalling check on the Windows Presentation
Foundation (WPF) platform involves a slightly different approach. WPF in-
cludes a static member property called Current of type DispatcherObject
on the System.Windows.Application class. Calling CheckAccess() on the
dispatcher serves the same function as InvokeRequired on controls in Win-
dows Forms.

Listing C.12 demonstrates this approach with a static UIAction object.
Whenever a developer wants to call a method that might interact with the
user interface, she simply calls UIAction.Invoke() and passes a delegate
for the UI code she wishes to call. This, in turn, checks the dispatcher to see
if marshalling is necessary and responds accordingly.

	 29Appendix C: Inter facing with Multithreading Patterns

Listing C.12:  Safely Invoking User Interface Objects

using System;
using System.Windows;
using System.Windows.Threading;

public static class UIAction
{
 public static void Invoke<T>(
 Action<T> action, T parameter)
 {
 Invoke(() => action(parameter));
 }
 public static void Invoke(Action action)
 {
 DispatcherObject dispatcher =
 Application.Current;
 if (dispatcher == null
 || dispatcher.CheckAccess()
 || dispatcher.Dispatcher == null
)
 {
 action();
 }
 else
 {
 SafeInvoke(action);
 }
 }

 // We want to catch all exceptions here so we can rethrow them.
 private static void SafeInvoke(Action action)
 {
 Exception exceptionThrown = null;
 Action target = () =>
 {
 try
 {
 action();
 }
 catch (Exception exception)
 {
 exceptionThrown = exception;
 }
 };
 Application.Current.Dispatcher.Invoke(target);
 if (exceptionThrown != null)
 {
 // Use ExceptionDispatchInfo.Throw() for .NET 4.5+.
 throw exceptionThrown;
 }
 }
}

	 30	

n
n 	 Appendix C: Interfacing with Multithreading Patterns

One additional feature in the UIAction of Listing C.12 is the marshalling
of any exceptions on the UI thread that may have occurred. SafeInvoke()
wraps all requested delegate calls in a try/catch block; if an exception is
thrown, it saves the exception and then rethrows it once the context returns
to the calling thread. In this way, UIAction avoids throwing unhandled
exceptions on the UI thread.

