
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134120034
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134120034
https://plusone.google.com/share?url=http://www.informit.com/title/9780134120034
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134120034
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134120034/Free-Sample-Chapter

Learning Core Data
for iOS with Swift

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

Mexico City • São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

 Learning Core Data
for iOS with Swift

 Tim Roadley

 Editor-in-Chief

Mark Taub

 Senior Acquisitions Editor

Trina MacDonald

 Senior Development Editor

Chris Zahn

 Development Editor

Michael Thurston

 Managing Editor

Kristy Hart

 Project Editor

Elaine Wiley

 Copy Editor

Geneil Breeze

 Proofreader

Leslie Joseph

 Technical Reviewers

Carl Brown
Niklas Saers
Ash Furrow

 Publishing Coordinator

Olivia Basegio

Cover Designer

Chuti Prasertsith

 Compositor

Nonie Ratcliff

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

 Learning Core Data for iOS with Swift is an independent publication and has not
been authorized, sponsored, or otherwise approved by Apple Inc.

 AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV,
Aqua, Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode,
Finder, FireWire, iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod,
iPod touch, iTunes, the iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-
Touch, Objective-C, Quartz, QuickTime, QuickTime logo, Safari, Snow Leopard,
Spotlight, and Xcode are trademarks of Apple, Inc., registered in the United
States and other countries. OpenGL and the logo are registered trademarks of
Silicon Graphics, Inc. The YouTube logo is a trademark of Google, Inc. Intel, Intel
Core, and Xeon are trademarks of Intel Corp. in the United States and other
countries.

 The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales

 international@pearsoned.com

 Library of Congress Control Number: 2013946325
 Visit us on the Web: informit.com/aw
 Copyright © 2016 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

 ISBN-13: 978-0-134-12003-5
 ISBN-10: 0-134-12003-4

 Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.

 First printing: December 2015

❖

 The more I learn, the more I learn I need to learn more.

 I dedicate this book to my wonderful wife, Tracey, who has
given up many nights and weekends with me to help make

this book a reality. Finally, we can sit back and relax together
again! I’m sure Tyler & Taliah will let us....

❖

vi Contentsvi Contents

 Contents at a Glance

 Preface xv

 1 Your First Core Data Application 1

 2 Managed Object Model Basics 17

 3 Managed Object Model Migration 43

 4 Managed Object Model Expansion 73

 5 Table Views 91

 6 Views 121

 7 Picker Views 151

 8 Preloading Data 177

 9 Deep Copy 201

 10 Performance 221

 11 Background Processing 249

 12 Search 265

 13 iCloud 271

 14 Taming iCloud 283

 15 CloudKit Sync: Uploading Objects 307

 16 CloudKit Sync: Downloading Changes and Handling
Deletions 337

 A Preparing the Groceries Application 369

 B Finalizing the Groceries Application 377

viiContents viiContents

 Table of Contents

Preface xv

 1 Your First Core Data Application 1

What Is Core Data? 1

Persistent Store Coordinator 2

Managed Object Model 4

Managed Object Context 4

When to Use Core Data 5

Introducing the Groceries Application 5

Adding Core Data to an Existing Application 6

Implementing the Core Data Helper 7

Adding Paths 10

Adding the Core Data Stack 10

Adding the Setup Section 12

Adding the Saving Section 13

Adding a Managed Object Model File 14

Summary 15

Exercises 15

 2 Managed Object Model Basics 17

What Is a Managed Object Model? 17

Entities 18

Attributes 20

Integer 16/32/64 21

Float and Double 22

Decimal 23

String 23

Boolean 23

Date 23

Binary Data 23

Transformable 24

Attribute Settings 25

Subclassing NSManagedObject 27

Scalar Properties for Primitive Data Types 28

Introducing the Demo Function 29

viii Contentsviii Contents

Creating a Managed Object 29

Backend SQL Visibility 31

Fetching Managed Objects 34

Sorting Fetch Requests 36

Filtering Fetch Requests 36

Fetch Request Templates 38

Deleting Managed Objects 41

Summary 41

Exercises 42

 3 Managed Object Model Migration 43

Changing a Managed Object Model 43

Adding a Model Version 45

Lightweight Migration 47

Default Migration 50

Migration Manager 54

Introducing MigrationVC.swift (Migration View
Controller Code) 56

Introducing CDMigration.swift (Core Data
Migration Code) 59

Summary 71

Exercises 71

 4 Managed Object Model Expansion 73

Relationships 73

Delete Rules 79

Introducing CDOperation.swift (Core Data
Operation) 80

Delete Rule Testing 83

Entity Inheritance 87

Summary 89

Exercises 89

 5 Table Views 91

Table View Basics 91

Core Data Table Views 93

Introducing CDTableViewController 93

Expanding CDTableViewController 96

DATASOURCE: UITableView 98

ixContents ixContents

DELEGATE: NSFetchedResultsController 99

CDTableViewController Subclasses 101

Enhancing PrepareTVC 105

Preparing Test Data 107

Deletion and Cell Selection for PrepareTVC 109

Interaction for PrepareTVC 110

Introducing ShopTVC 114

Cell Selection for ShopTVC 116

INTERACTION for ShopTVC 116

Summary 118

Exercises 119

 6 Views 121

View Basics 121

The Target View Hierarchy 122

Introducing ItemVC 123

Keeping Reference to a Selected Item 123

Passing a Selected Item to ItemVC 124

Configuring the Scroll View and Text Fields 125

Implementing ItemVC 129

DELEGATE: UITextField 130

The VIEW Section 131

Adding Functionality to NSManagedObject
Subclasses 133

Units, Home Locations, and Shop Locations 136

Adding and Editing Units 138

Implementing UnitsTVC 141

Implementing UnitVC 143

Segueing from UnitsTVC to UnitVC 145

Adding and Editing Home or Shop Locations 146

Configuring the Home Location Views 147

Configuring the Shop Location Views 148

Summary 150

Exercises 150

x Contentsx Contents

 7 Picker Views 151

Picker View Basics 151

Introducing CDPickerTextField 152

Introducing UnitPickerTF 157

Creating the Unit Picker 159

Connecting the Unit Picker 160

Configuring ItemVC for the Unit Picker 161

Introducing LocationAtHomePickerTF 165

Introducing LocationAtShopPickerTF 167

Using the Location Pickers 168

Connecting the Location Pickers 169

Configuring ItemVC for the Location Pickers 170

Picker-Avoiding Text Field 173

Summary 176

Exercises 176

 8 Preloading Data 177

Including Default Data 177

Indicating Whether an Import Is Required 178

Importing from XML 182

Creating an Import Context 184

Preventing Duplicate Default Data 185

Triggering a Default Data Import 186

Finding or Creating Managed Objects 188

Mapping XML Data to Entity Attributes 192

Importing from a Persistent Store 195

Using the Default Data Store as the Initial Store 196

Summary 199

Exercises 200

 9 Deep Copy 201

The Deep Copy Process 201

Configuring a Source Stack 204

Configuring the Source Coordinator 204

Configuring the Source Context 205

Configuring the Source Store 205

xiContents xiContents

Enhancing CDImporter 206

Identifying Unique Attributes 207

Object Info 207

Copying a Unique Object 208

Establishing a To-One Relationship 210

Establishing a To-Many Relationship 211

Establishing an Ordered To-Many Relationship 212

Copying Relationships 213

Deep Copy Entities 215

Triggering a Deep Copy 216

Summary 219

Exercises 219

 10 Performance 221

Identifying Performance Issues 221

Implementing the Camera 222

Implementing the Image Picker Controller
Delegates 224

Generating Test Data 228

Merge Policies 230

Measuring Performance with SQLDebug 232

Measuring Performance with Instruments 233

Improving Performance 236

Model Optimization 238

Handling Large Objects 239

Cleaning Up 246

Summary 246

Exercises 247

 11 Background Processing 249

Implementing Background Save 249

Configuring an Import Context Parent 253

Faulting Objects 254

Generating Thumbnails 257

Summary 261

Exercises 261

xii Contentsxii Contents

 12 Search 265

Updating CDTableViewController 266

Updating PrepareTVC 268

Search Optimization 269

Summary 270

Exercises 270

 13 iCloud 271

iCloud Basics 271

Enabling iCloud 273

Updating CDHelper for iCloud 274

Adding an iCloud Store 275

Handling iCloud Notifications 277

The Debug Navigator 280

Summary 281

Exercises 282

 14 Taming iCloud 283

De-Duplication 283

Identifying Duplicates 284

Deleting Duplicates 286

Triggering De-Duplication 291

Seeding 292

Preparing Seed Variables 293

Adding Seed Helper Functions 295

Developing with a Clean Slate 300

Configurations 302

Summary 303

Exercises 303

 15 CloudKit Sync: Uploading Objects 307

Introducing CloudKit 307

CloudKit Database Synchronization Limitations 309

Introducing CDCloudSync 309

Public Data Groups 311

Cache Status 316

CloudKit Building Blocks 320

xiiiContents xiiiContents

Uploading New Records and Relationships 325

Adding Synchronization Logic 327

Preparing the Managed Object Model for Sync 331

Summary 335

Exercises 335

 16 CloudKit Sync: Downloading Changes and Handling

Deletions 337

CloudKit Building Blocks (Continued) 337

Change Synchronization 342

Deletion Synchronization 350

Quality Assurance 354

Testing the Network 357

Updating Synchronization Logic 359

Adding CDCloudSync to Your Own Applications 361

Summary 367

Exercises 367

Thank You! 367

 A Preparing the Groceries Application 369

New Xcode Project 369

Storyboard Design 370

App Icons and Launch Images 373

Introducing GenericVC 374

 B Finalizing the Groceries Application 377

New Features 377

Photo Library and Photo Deletion Support 378

Favorites 380

Icon Badge 384

Location De-Duplication Logic 385

 Acknowledgments

 A resounding thank-you first goes out to Trina MacDonald for giving me the opportunity to
write this book originally and again for Swift. Her guidance throughout the whole process has
been invaluable, as has the assistance of Michael Thurston and the technical reviews from
Ash Furrow, Carl Brown, and Niklas Saers. You guys saved this book from a few bugs that
crept through on those late nights and also provided some great insight and coding technique
suggestions with Swift.

 About the Author

 Tim Roadley is a family man with strong technical focus in career and personal goals. From
managing IT infrastructure to developing apps and writing books, if it’s complex, he’s in his
element. He currently works for TKH Group, primarily focused on system integration software
used by large clients such as Westfield. Prior roles include implementations of various IT
systems at government departments and major banks, most notably the implementation
of a payments switch that drives the RediATM network in Australia. In his downtime, he
enjoys spending time with his wonderful wife, Tracey (when he can pull her away from her
Thermomix), and two lovely children, Tyler and Taliah.

xv

 Preface

 Every day, millions of Apple devices run applications, or apps, that rely on Core Data. This has
led to a mature, stable, and incredibly fast platform for apps to access their data. Core Data
itself is not a database. In fact, Core Data is a framework that, among other things, automates
how you interact with a database. Instead of writing SQL code, you work with managed objects.
All the associated SQL you would otherwise have to write yourself is generated automatically.
This leaves you with all the benefits of a relational database without the headache of writing,
testing, and optimizing SQL queries within your code. The SQL code generated automatically
“under the hood” is the product of years of refinement and optimization by Apple’s masterful
engineers. Using Core Data not only speeds up your own application development time, it also
significantly reduces the amount of code you have to write.

 Here are some notable features of Core Data:

 ■ Change management (undo and redo)

 ■ Relationships

 ■ Data model versioning and migration

 ■ Efficient fetching (through batching and faulting)

 ■ Efficient filtering (through predicates)

 ■ Data consistency and validation

 With this book, you are introduced to Core Data features and best practices. As you progress
through the chapters, you also build a fully functional Core Data iPhone app from scratch.
Each key piece of information is explained in succinct detail so you can apply what you’ve
learned straight away. The sample application built throughout this book has been especially
designed to demonstrate as many aspects of Core Data as possible. At the same time it is a
completely real-world application available on the App Store today. This should make it easier
to absorb concepts as you relate them to real-life scenarios.

 The arrival of iOS 9 offers major improvements in the speed, reliability, and simplicity of
Core Data integration with iCloud and introduction of CloudKit. I encourage anyone who has
previously given up on this technology to give it another go, because you will be pleasantly
surprised.

 If you have feedback, bug fixes, corrections, or anything else you would like to contribute to a
future edition, please contact me at timroadley@icloud.com . Finally, thank you for taking an
interest in this book. If you like it, please tweet or post to Facebook about it! I have put a lot of

xvi Preface

effort into meticulously crafting it, so I truly hope it helps you on your way to mastering this
brilliant technology.

 —Tim Roadley (@TimRoadley), September 2015

 Who Is This Book For?

 This book is aimed at Swift programmers who want to learn how to efficiently manage data in
their iOS apps. Prior experience with databases may help you pick up some topics faster, yet
is not essential knowledge. As old habits die hard, some SQL programmers may find it more
difficult to wrap their heads around some topics.

 Beyond the basics, the closing chapters explain how to build a CloudKit solution for sharing
data with multiple users. This is something previously impossible with old iCloud technology.

 Whatever your scenario, don’t worry. Every step is explained and demonstrated clearly.

 What You’ll Need

 As a Swift programmer, it is expected that you already have a reasonably modern Mac or
MacBook running Xcode 7 or above. You should also be familiar with Xcode and have an iOS
device to test with. This is particularly true once you reach Chapter 10 , “Performance,” which
is all about device performance.

 Swift is new to everyone, so it’s likely you’ll encounter code and techniques you haven’t seen
before. Fortunately, you’ll be guided step-by-step through the entire process of creating a real-
world Swift Core Data application for iOS, so your experience with Swift will grow throughout.

 The following resources are suggested as an accompaniment to this book:

 ■ Swift, by Apple (search iBooks Store within the iBooks App)

 ■ Learning Swift Programming , by Jacob Schatz (search amazon.com)

 How This Book Is Organized

 This book takes you through the entire process of building the Groceries application, which
is available from the App Store today. The Groceries implementation throughout the book
demonstrates Core Data integration with iCloud and CloudKit. Each chapter in this book builds
on the last, so you’re introduced to topics in the order you need to implement them. Along
the way you build helper classes that simplify redeployment of what you’ve learned into your
own applications. In fact, the exercises at the end of the iCloud and CloudKit chapters guide
you through this redeployment of the helper classes into a brand new app. Using this as an
example you can integrate Core Data, iCloud, and CloudKit into your own applications in
no time!

xviiPreface

 Here’s a brief summary of what you find in each chapter:

 ■ Chapter 1 , “Your First Core Data Application”— The groundwork is laid as the
fundamental concepts of Core Data are introduced. You learn what Core Data is, and
just as importantly, what it isn’t. In addition, Core Data integration with an existing
application is demonstrated as the CDHelper class is implemented.

 ■ Chapter 2 , “Managed Object Model Basics”— Data models are introduced as parallels
are drawn between traditional database schema design and Core Data. You learn how
to configure a basic managed object model as entities and attributes are discussed,
along with accompanying advice on choosing the right data types. Inserting, fetching,
filtering, sorting, and deleting managed objects are also covered and followed up with an
introduction to fetch request templates.

 ■ Chapter 3 , “Managed Object Model Migration”— Experience lightweight migration,
default migration, and using a migration manager to display migration progress. You
learn how to make an informed decision when deciding between migration options for
your own applications and become comfortable with the model-versioning capabilities of
Core Data.

 ■ Chapter 4 , “Managed Object Model Expansion”— The true power of a relational
data model is unlocked as different types of relationships are explained and added to
Groceries. Other model features such as abstract and parent entities are also covered,
along with techniques for dealing with data validation errors.

 ■ Chapter 5 , “Table Views”— The application really comes to life as Core Data is used
to drive memory-efficient and highly performing table views with a fetched results
controller. Of course, most of the generic legwork is put into a reusable table view
controller subclass called CDTableViewController . By dropping this class into your own
applications, you can easily deploy Core Data–driven table views yourself.

 ■ Chapter 6 , “Views”— Working with managed objects takes a front seat as you’re shown
how to pass them around the application. Objects selected on a table view are passed to a
second view, ready for editing. The editing interface is added to Groceries, demonstrating
how to work with objects and then save them back to the persistent store.

 ■ Chapter 7 , “Picker Views”— As a nice touch, Core Data–driven picker views are added
to the editing views. Picker views allow the user to quickly assign existing items to a unit
of measurement, home location, or shop location. A special reusable text field subclass
called CDPickerTextField is introduced, which replaces the keyboard with a Core Data
picker view whenever an associated text field is tapped.

 ■ Chapter 8 , “Preloading Data”— Techniques for generating a persistent store full of
default data from XML are explained and demonstrated in this chapter as the generic
 CDImporter helper class is introduced. Once you have a persistent store to include with
a shipping application, you then see how to determine whether a default data import is
required or even desired by the user.

xviii Preface

 ■ Chapter 9 , “Deep Copy”— A highly flexible and fine-grained alternative to
 migratePersistentStore , deep copy enables you to copy objects and relationships
from selected entities between persistent stores. In this chapter, the CDImporter helper
class is enhanced with the deep copy capability.

 ■ Chapter 10 , “Performance”— Gain experience with Instruments as you identify and
eliminate performance issues caused by the common pitfalls of a Core Data application.
The camera functionality is introduced to highlight these issues and demonstrates just
how important good model design is to a well-performing application.

 ■ Chapter 11 , “Background Processing”— Top-notch performance requires intensive tasks
be offloaded to a background thread. You learn just how easy it is to run processes in
the background as the example of photo thumbnail generation is added with a generic
helper class called CDThumbnailer . You also learn how to keep memory usage low with
another helper class, called CDFaulter .

 ■ Chapter 12 , “Search”— This chapter shows you how to integrate a UISearchController
with Core Data as you implement efficient search in CDTableViewController .

 ■ Chapter 13 , “iCloud”— Enjoy the easiest, most reliable Core Data integration with
iCloud yet. You learn how to handle multiple accounts and varying preferences on using
iCloud without missing a beat.

 ■ Chapter 14 , “Taming iCloud”— Take iCloud integration to the next level with entity-
level seeding and unique object de-duplication. This chapter shows you how to emulate
first-time iCloud use by resetting ubiquitous content globally, the right way.

 ■ Chapter 15 , “CloudKit Sync: Uploading Objects”— This chapter shows you how to
leverage a public CloudKit database to keep a small data set synchronized across the
devices of a group of iCloud users. Part 1 lays the foundation for synchronization as the
capability to automatically upload new NSManagedObjects is added.

 ■ Chapter 16 , “CloudKit Sync: Downloading Changes and Handling Deletions”— The
synchronization implementation is finalized as deletion support and the capability to
download changed CloudKit records are added.

 ■ Appendix A , “Preparing the Groceries Application”— Every (non–Core Data) step
involved in preparing the starting-point application for Chapter 1 is documented here for
completeness.

 ■ Appendix B , “Finalizing the Groceries Application”— Every (non–Core Data)
step involved in finalizing the application for the App Store is documented here for
completeness.

 Getting the Sample Code

 The sample code built throughout this book is available for download from timroadley.com.
Links are given in each chapter, or you can use Table P.1 as a reference, which is arranged in
the order of implementation.

xixPreface

 Table P.1 Groceries Code

 Final Code Link

 Appendix A http://timroadley.com/LCDwS/Groceries-AfterAppendixA.zip

 Chapter 1 http://timroadley.com/LCDwS/Groceries-AfterChapter01.zip

 Chapter 2 http://timroadley.com/LCDwS/Groceries-AfterChapter02.zip

 Chapter 3 http://timroadley.com/LCDwS/Groceries-AfterChapter03.zip

 Chapter 4 http://timroadley.com/LCDwS/Groceries-AfterChapter04.zip

 Chapter 5 http://timroadley.com/LCDwS/Groceries-AfterChapter05.zip

 Chapter 6 http://timroadley.com/LCDwS/Groceries-AfterChapter06.zip

 Chapter 7 http://timroadley.com/LCDwS/Groceries-AfterChapter07.zip

 Chapter 8 http://timroadley.com/LCDwS/Groceries-AfterChapter08.zip

 Chapter 9 http://timroadley.com/LCDwS/Groceries-AfterChapter09.zip

 Chapter 10 http://timroadley.com/LCDwS/Groceries-AfterChapter10.zip

 Chapter 11 http://timroadley.com/LCDwS/Groceries-AfterChapter11.zip

 Chapter 12 http://timroadley.com/LCDwS/Groceries-AfterChapter12.zip

 Chapter 13 http://timroadley.com/LCDwS/Groceries-AfterChapter13.zip

 Chapter 14 http://timroadley.com/LCDwS/Groceries-AfterChapter14.zip

 Chapter 14 “Mini-project” http://timroadley.com/LCDwS/EZiCloud.zip

 Chapter 15 http://timroadley.com/LCDwS/Groceries-AfterChapter15.zip

 Chapter 16 http://timroadley.com/LCDwS/Groceries-AfterChapter16.zip

 Chapter 16 “Mini-project” http://timroadley.com/LCDwS/EZCloudKit.zip

 Appendix B “Final Project” http://timroadley.com/LCDwS/Groceries-AfterAppendixB.zip

 Helper classes, for your own
projects, with CloudKit support

 http://timroadley.com/LCDwS/Generic%20Core%20Data%20
Classes.zip

 Conventions Used in This Book

 Code Breaks

 Occasionally lines of code in the chapters are too long to fit on the printed page. Where that
occurs, a code-continuation arrow (➥) has been used to mark the continuation. For example:

 let _localStore = self.coordinator.addPersistentStoreWithType(NSSQLiteStoreType,
➥configuration: nil, URL: self.localStoreURL, options: options, error: &error)

http://timroadley.com/LCDwS/Groceries-AfterAppendixA.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter01.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter02.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter03.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter04.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter05.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter06.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter07.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter08.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter09.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter10.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter11.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter12.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter13.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter14.zip
http://timroadley.com/LCDwS/EZiCloud.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter15.zip
http://timroadley.com/LCDwS/Groceries-AfterChapter16.zip
http://timroadley.com/LCDwS/EZCloudKit.zip
http://timroadley.com/LCDwS/Groceries-AfterAppendixB.zip
http://timroadley.com/LCDwS/Generic%20Core%20Data%20Classes.zip
http://timroadley.com/LCDwS/Generic%20Core%20Data%20Classes.zip

xx Contents

 Sample Code Updates

 When it’s time to apply what you’ve learned to the sample application, the instructions are
preceded by the words “Update Groceries as follows”. You should apply the subsequent steps
to the sample application as instructed. The instructions make heavy use of bold formatting to
clarify the interface elements you can expect to interact with. For example:

 Update Groceries as follows to link to the Core Data Framework:

 1. Select the Groceries Target , as shown in Figure 1.2 .

 2. Click the + found in the Linked Frameworks and Libraries section of the General tab
and then link to the CoreData.framework , as shown in Figure 1.2 .

 We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every
message.

 When you write, please be sure to include this book’s title and author as well as your name and
phone number or email address. I will carefully review your comments and share them with
the author and editors who worked on the book.

 Email: trina.macdonald@pearson.com

Mail: Trina MacDonald
Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

Register your copy of Learning Core Data for iOS with Swift at inf ormit.com for convenient access
to downloads, updates, and corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product
ISBN 9780134120034 and click Submit. Once the process is complete, you will find any
available bonus content under “Registered Products.”

 3
 Managed Object Model

Migration

 Anyone who has never made a mistake has never tried anything new.

 Albert Einstein

 In Chapter 2 , “Managed Object Model Basics,” the fundamentals of managed object models
were introduced, yet you were constrained to just one entity and a few attributes. The next
logical step is to add to the model; however, this requires a number of preliminary steps to
prevent errors caused by these changes. This chapter shows how to add model versions and
model mappings, and it demonstrates different migration techniques you can choose when
upgrading a model.

 Changing a Managed Object Model

 As an application evolves, its managed object model probably needs to change, too. Simple
changes, such as attribute defaults, validation rules, and fetch request templates can be modi-
fied without consequence. Other more structural changes require that persistent stores be
migrated to new model versions. If a persistent store doesn’t have the appropriate mappings
and settings required to migrate data from one version to the next, the application throws a
“store is incompatible” error.

44 Chapter 3 Managed Object Model Migration

 Note

 To continue building the sample application, you need to have added the previous chapter’s
code to Groceries. Alternatively, you may download, unzip, and use the project up to this point
from http://www.timroadley.com/LCDwS/Groceries-AfterChapter02.zip . Any time you start
using an Xcode project from a ZIP file, it’s good practice to hold down option and click Product
> Clean Build Folder . This practice ensures there’s no residual cache from previous projects
using the same name. It is recommended that you use the iOS Simulator when following this
chapter so you can inspect the contents of the SQLite database files easily.

 Update Groceries as follows to generate a “store is incompatible” error:

 1. Run Groceries once to ensure the existing model has been used to create the persistent
store. You should see the file system location of the store printed to the console log.

 2. Select Model.xcdatamodeld in Xcode.

 3. Add a new entity and rename it to Measurement .

 4. Select the Measurement entity and add an attribute called abc . Set its type to String .

 5. Rerun the application and examine the console log. You should now have generated
arguably one of the most common Core Data errors, as shown in Figure 3.1 . If this error
has not appeared, delete the application and then click Product > Clean and retry from
step 1.

 Figure 3.1 Store incompatibility

 This error isn’t an issue when an application is in its initial development phase. To get past it,
you can just delete the application from the device and run it again from Xcode. When the
application is run for the first time after being deleted, the persistent store is created based on
the latest model. This makes the store compatible with the model, so the application won’t
throw the error anymore. However, it won’t have any old data in it. As such, this scenario is
unacceptable for any application already available on the App Store. There are a few approaches
to migrating existing persistent stores, and the migration path you choose is driven by the
complexity of the changes and whether you’re using iCloud. Whatever you do, you first need
to become familiar with model versioning.

http://www.timroadley.com/LCDwS/Groceries-AfterChapter02.zip

45Adding a Model Version

 Update Groceries as follows to revert to the original model:

 1. Select Model.xcdatamodeld .

 2. Delete the Measurement entity.

 3. Rerun the application, which now should not throw an error.

 Adding a Model Version

 To avoid the error shown in Figure 3.1 , you need to create a new model version before making
changes to the model. Ongoing, you should not remove old versions of a model. Old model
versions are needed to help migrate incompatible persistent stores to the current model version.
If there are no existing persistent stores on customer devices, you can ignore model versioning
until your application is on the App Store.

 Update Groceries as follows to add a model version:

 1. Select Model.xcdatamodeld .

 2. Click Editor > Add Model Version... .

 3. Click Finish to accept Model 2 as the version name.

 You should now have two model versions, as shown in Figure 3.2 .

 Figure 3.2 Multiple model versions

 The new model Model 2.xcdatamodel starts out as a replica of Model.xcdatamodel . This
unfortunately makes it easy to modify the wrong version unintentionally. Before you edit a
model, you should triple-check you have selected the correct one. You may want to get into the

46 Chapter 3 Managed Object Model Migration

habit of taking a snapshot, committing to source control, or even backing up the whole project
prior to editing a model. Note that the check mark in the green circle represents the current
model, which is the model version used at runtime.

 Update Groceries as follows to reintroduce the Measurement entity:

 1. Optionally take a snapshot or back up the Groceries project.

 2. Select Model 2.xcdatamodel .

 3. Add a new entity and rename it to Measurement .

 4. Select the Measurement entity and add an attribute called abc . Set its type to String .

 After you add the new model version, you still need to set it as the current version before it is
used by the application.

 Update Groceries as follows to change the current model version:

 1. Select Model.xcdatamodeld (not Model.xcdatamodel).

 2. Click View > Utilities > Show File Inspector (or press Option +⌘+ 1).

 3. Set the Current Model Version to Model 2 , as shown at the bottom of Figure 3.3 .

 Figure 3.3 Setting the current model

47Lightweight Migration

 Before you can successfully launch the application, you need to configure migration options to
tell Core Data how to migrate. Feel free to launch it again to generate the incompatible store
error in the meantime.

 Lightweight Migration

 Whenever a new model is set as the current version, existing persistent stores must be migrated
to use them. This is because the persistent store coordinator tries to use the current model
to open the existing store, which fails if the store was created using a previous version of the
model. The process of store migration can be handled automatically by passing an options
dictionary to a persistent store coordinator when a store is added:

 ■ When the NSMigratePersistentStoresAutomaticallyOption is true (1) and passed to
a persistent store coordinator, Core Data automatically attempts to migrate incompatible
persistent stores to the current model.

 ■ When the NSInferMappingModelAutomaticallyOption is true (1) and passed to a
persistent store coordinator, Core Data automatically attempts to infer a best guess
at what attributes from the source model entities should end up as attributes in the
 destination model entities.

 Using those persistent store coordinator options together is called lightweight migration and
is demonstrated in bold in Listing 3.1 . These options are set in an updated localStore variable
of CDHelper.swift . Note that if you’re using iCloud, this is your only choice for migration.

 Listing 3.1 The Local Store (CDHelper.swift localStore)

 // MARK: - STORE
 lazy var localStore: NSPersistentStore? = {
 let options:[NSObject:AnyObject] = [NSSQLitePragmasOption:["journal_
➥ mode":"DELETE"] ,
 NSMigratePersistentStoresAutomaticallyOption:1,
 NSInferMappingModelAutomaticallyOption:1]
 var _localStore:NSPersistentStore?
 do {
 _localStore = try self.coordinator.addPersistentStoreWithType
➥ (NSSQLiteStoreType, configuration: nil, URL: self.localStoreURL, options: options)
 return _localStore
 } catch {
 return nil
 }
 }()

48 Chapter 3 Managed Object Model Migration

 Update Groceries as follows to enable lightweight migration:

 1. Replace the existing localStore variable code in CDHelper.swift with the code from
 Listing 3.1 . The key change to be aware of is the introduction of the bold code.

 2. Rerun the application, which should not throw an error.

 From now on, any time you set a new model as the current version and lightweight migration
is enabled, the migration should occur transparently.

 Before other migration types can be demonstrated, some test data needs to be generated.
 Listing 3.2 contains code that generates managed objects based on the Measurement entity.
You may notice that this code blocks the user interface until it finishes because the context
runs on the main thread. More appropriate ways to insert test data in the background are
demonstrated later in the book.

 Listing 3.2 Inserting Test Measurement Data (AppDelegate.swift demo)

 func demo () {
 let context = CDHelper.shared.context
 for i in 0...50000 {
 if let newMeasurement = NSEntityDescription.insertNewObjectForEntityForName
➥ ("Measurement", inManagedObjectContext: context) as? Measurement {

 newMeasurement.abc = "-->> LOTS OF TEST DATA x\(i)"
 print("Inserted \(newMeasurement.abc!)")
 }
 }
 CDHelper.saveSharedContext()
 }

 Update Groceries as follows to generate test data:

 1. Create an NSManagedObject subclass of the Measurement entity. As discussed in
 Chapter 2 , this is achieved by first selecting the entity and then clicking Editor > Create
NSManagedObject Subclass... and following the prompts. When it comes time to
save the class file, don’t forget to save the file in the Data Model group and check the
 Groceries target.

 2. Replace the demo function in AppDelegate.swift with the code from Listing 3.2 .

 3. Run the application once. This inserts a lot of test data into the persistent store, which
you can monitor by examining the console log. This may take a little while, depending
on the speed of your machine. It’s important to have a fair amount of data in the
persistent store to demonstrate the speed of migrations later. Note that the table view
still remains blank because it has not yet been configured to display anything.

49Lightweight Migration

 The next step is to reconfigure the demo function to show some of what’s in the persistent
store. The code shown in Listing 3.3 fetches a small sample of Measurement data. Notice that
a new option is included that limits fetched results to 50. This is great for limiting how many
results are fetched from large data sets, and it is even more powerful when mixed with sorting
to generate a Top-50, for example.

 Listing 3.3 Fetching Test Measurement Data (AppDelegate.swift demo)

 func demo () {
 let context = CDHelper.shared.context
 let request = NSFetchRequest(entityName: "Measurement")
 request.fetchLimit = 50

 do {
 if let measurements = try context.executeFetchRequest(request) as?
➥ [Measurement] {
 for measurement in measurements {
 print("Fetched Measurement Object \(measurement.abc!)")
 }
 }
 } catch {
 print("ERROR executing a fetch request: \(error)")
 }
 }

 Update Groceries as follows to print a sample of the store contents to the console log:

 1. Replace the demo function in AppDelegate.swift with the code from Listing 3.3 .

 2. Run the application. The console log should show 50 rows of seemingly random
measurement objects.

 3. Examine the contents of the LocalStore.sqlite file using SQLite Database Browser ,
as explained previously in Chapter 2 . Figure 3.4 shows the expected results when viewing
the ZMEASUREMENT table, which is the data for the Measurement entity.

 Close the SQLite Database Browser before continuing.

50 Chapter 3 Managed Object Model Migration

 Default Migration

 Sometimes, you need more control than what lightweight migration offers. Let’s say, for
instance, you want to replace the Measurement entity with another entity called Amount . You
also want the abc attribute from the Measurement entity to end up as an xyz attribute in the
 Amount entity. Any existing abc data should also be migrated to the xyz attribute. To achieve
these requirements, you need to create a model mapping to manually specify what maps to
where.

 When the persistent store option NSInferMappingModelAutomaticallyOption is true (1),
Core Data still checks to see whether there are any model-mapping files it should use before
trying to infer automatically. It is recommended that you disable this setting while you’re
testing a mapping model. This way, you can be certain that the mapping model is being used
and is functioning correctly.

 Update Groceries as follows to disable automatic model mapping:

 1. Set the NSInferMappingModelAutomaticallyOption option in the localStore
variable of CDHelper.swift to false by changing the 1 to a 0 .

 Update Groceries as follows to add a new model in preparation for the migration from the
 Measurement entity to the Amount entity:

 Figure 3.4 Test data ready for the next parts of this chapter

51Default Migration

 1. Optionally take a snapshot or back up the project.

 2. Add a new model version called Model 3 based on Model 2 (Editor > Add Model
Version...).

 3. Set Model 3 as the current model version.

 4. Select Model 3.xcdatamodel .

 5. Delete the Measurement entity.

 6. Add a new entity called Amount with a String attribute called xyz .

 7. Create an NSManagedObject subclass of the Amount entity. When it comes time to
save the class file, don’t forget to save the file in the Data Model group and check the
 Groceries target.

 8. Replace the demo function of AppDelegate.swift with the code from Listing 3.4 .
Similar to the code being replaced, this code simply fetches a small sample of Amount
data instead of Measurement data.

 9. Run the application, which should throw the “Can’t find mapping model for migration”
error shown in Figure 3.5 .

 Listing 3.4 Fetching Test Amount Data (AppDelegate.swift demo)

 func demo () {
 let context = CDHelper.shared.context
 let request = NSFetchRequest(entityName: "Amount")
 request.fetchLimit = 50

 do {
 if let amounts = try context.executeFetchRequest(request) as? [Amount] {
 for amount in amounts {
 print("Fetched Amount Object \(amount.xyz!)")
 }
 }
 } catch {
 print("ERROR executing a fetch request: \(error)")
 }

 }

 To resolve the error shown in Figure 3.5 , you need to create a mapping model that shows
where attributes map. Specifically, the requirement is to map the old Measurement abc attri-
bute to the new Amount xyz attribute.

52 Chapter 3 Managed Object Model Migration

 Update Groceries as follows to add a new mapping model:

 1. Ensure the Data Model group is selected.

 2. Click File > New > File... .

 3. Select iOS > Core Data > Mapping Model and then click Next .

 4. Select Model 2.xcdatamodel as the Source Data Model and then click Next .

 5. Select Model 3.xcdatamodel as the Target Data Model and then click Next .

 6. Set the mapping model name to save as Model2toModel3 .

 7. Ensure the Groceries target is checked and then click Create .

 8. Select Model2toModel3.xcmappingmodel .

 You should now be presented with the model-mapping editor, as shown in Figure 3.6 .

 Figure 3.6 The model-mapping editor

 The mappings you’re presented with are a best guess based on what Core Data can infer on its
own. On the left you should see Entity Mappings , showing what source entities map to what

 Figure 3.5 A mapping model is required when mapping is not inferred

53Default Migration

destination entities. You should also see in Figure 3.6 how the source Item entity has already
inferred that it should map to the destination Item entity, which is a fair assumption. The
naming standard of an entity mapping is SourceToDestination . With this in mind, notice
the Amount entity doesn’t seem to have a source entity because it never existed in the source
model.

 Update Groceries as follows to map the old Measurement entity to the new Amount entity:

 1. Select the Amount entity mapping.

 2. Click View > Utilities > Show Mapping Model Inspector (if that’s not visible in the
menu system, press Option +⌘+ 3). You need to be able to see the pane shown on the
right in Figure 3.7 .

 3. Set the Source of the Amount entity mapping to Measurement . The expected result is
shown in Figure 3.7 .

 Figure 3.7 Custom entity mapping of MeasurementToAmount

 Because Measurement was selected as the source entity for the Amount destination entity, the
Entity Mapping Name was automatically renamed to MeasurementToAmount . In addition, the
mapping type changed from Add to Transform . For more complex implementations, you can
specify a custom policy in the form of an NSEntityMigrationPolicy subclass. By overriding
 createDestinationInstancesForSourceInstance in the subclass, you can manipulate the
data that’s migrated. For example, you could intercept the values of the abc attribute, set them
all to title case, and then migrate them to the xyz attribute.

 The Source Fetch option shown at the bottom right of Figure 3.7 allows you to limit the
migrated data to the results of a predicated (filtered) fetch. This is useful if you only want a
subset of the existing data to be migrated. The predicate format you use here is the same as the
format you would use when normally configuring a predicate, except you use $source vari-
ables. An example of a predicate that would filter out nil source data from the abc attribute is
 $source.abc != nil .

 Select the ItemToItem entity mapping shown previously in Figure 3.6 and examine its attribute
mappings. Notice how each destination attribute has a Value Expression set. Now examine the

54 Chapter 3 Managed Object Model Migration

 MeasurementToAmount entity mapping. Notice there’s no value expression for the xyz desti-
nation attribute. This means that the xyz attribute has no source attribute, and you need to set
one using the same format used in the ItemToItem entity mapping. The original requirement
was to map the abc attribute to the xyz attribute, so that’s what needs configuring here.

 Update Groceries as follows to set an appropriate value expression for the xyz destination
attribute:

 1. Set the Value Expression for the xyz destination attribute of the
 MeasurementToAmount entity mapping to $source.abc .

 2. Run the application. So long as the migration has been successful, you should see the
expected result in the console log, as shown in Figure 3.8 .

 Figure 3.8 Results of a successfully mapped model

 To verify the migration has persisted to the store, examine the contents of the
 LocalStore.sqlite file using the techniques discussed in Chapter 2 . The expected result is
shown in Figure 3.9 , which illustrates the new ZAMOUNT table (that is, Amount entity) with
the data from the old Measurement entity.

 Close the SQLite Database Browser before continuing.

 Migration Manager

 Instead of letting a persistent store coordinator perform store migrations, you may want
to manually migrate stores using an instance of NSMigrationManager . Using a migration
manager still uses a mapping model; however, the difference is you have total control over
the migration and the ability to report progress. To be certain that migration is being handled
manually, automatic migration should be disabled.

 Update Groceries as follows to disable automatic migration:

 1. Set the NSMigratePersistentStoresAutomaticallyOption option in the localStore
variable of CDHelper.swift to false by changing the 1 to a 0 .

55Migration Manager

 Reporting on the progress of a migration is useful for keeping the user informed (and less
annoyed) about a slow launch. Although most migrations should be fast, some large databases
requiring complex changes can take a while to migrate. To keep the user interface responsive,
the migration must be performed on a background thread. At the same time, the user interface
has to be responsive to provide updates to the user. The challenge is to prevent the user from
attempting to use the application during the migration. This is because the data won’t be ready
yet, so you don’t want the user staring at a blank screen wondering what’s going on. This is
where a migration progress view comes into play.

 Update Groceries as follows to configure a migration View Controller:

 1. Select Main.storyboard .

 2. Drag a new View Controller onto the storyboard, placing it above the existing
Navigation Controller.

 3. Drag a new Label and Progress View onto the new View Controller.

 4. Position the Progress View directly in the center of the View Controller and then
position the Label above it in the center.

 5. Widen the Label and Progress View to the width of the View Controller margins, as
shown in the center of Figure 3.10 .

 Figure 3.9 A successfully mapped model

56 Chapter 3 Managed Object Model Migration

 6. Configure the Label with Centered text that reads Migration Progress 0% , as shown in
the center of Figure 3.10 .

 7. Configure the Progress View progress to 0 .

 8. Select the View Controller and set its Storyboard ID to migration using Identity
Inspector (Option +⌘+3).

 9. Optionally configure the following layout constraints by holding down the control key
and dragging from the progress bar toward the applicable margin. You may skip this step
if you’re uncomfortable with constraints as it is not critical.

 ■ Leading Space to Container Margin

 ■ Trailing Space to Container Margin

 ■ Center Vertically In Container

 10. Optionally configure the following layout constraints by holding down the control key
and dragging from the progress label toward the applicable margin. You may skip this
step if you’re uncomfortable with constraints as it is not critical.

 ■ Leading Space to Container Margin

 ■ Trailing Space to Container Margin

 ■ Vertical Spacing from the progress bar

 Figure 3.10 Migration View Controller

 Introducing MigrationVC.swift (Migration View Controller Code)

 The new migration View Controller has UILabel and UIProgressView interface elements that
need updating during a migration. This means that a way to refer to these interface elements in
code is required. A new UIViewController subclass called MigrationVC should be created for
this purpose.

57Migration Manager

 Update Groceries as follows to add a MigrationVC file to a new group:

 1. Right-click the existing Groceries group and then select New Group .

 2. Set the new group name to View Controllers . This group will contain all of the view
controllers. As a side note, feel free to move ViewController.swift to the trash because
it is no longer required.

 3. Select the View Controllers group.

 4. Click File > New > File... .

 5. Create a new iOS > Source > Cocoa Touch Class and then click Next .

 6. Set the subclass to UIViewController and the filename to MigrationVC .

 7. Ensure the language is Swift and then click Next .

 8. Ensure the Groceries target is checked and that the new file will be saved in the
Groceries project directory; then click Create .

 9. Select Main.storyboard .

 10. Set the Custom Class of the new migration View Controller to MigrationVC using
 Identity Inspector (Option +⌘+3) while the View Controller is selected. This is in the
same place as where the Storyboard ID was set.

 11. Show the Assistant Editor by clicking View > Assistant Editor > Show Assistant Editor
(or pressing Option +⌘+ Return).

 12. Ensure the Assistant Editor is automatically showing MigrationVC.swift . The top-right
of Figure 3.11 shows what this looks like. If you need to, just click Manual or Automatic
while the migration View Controller is selected and select MigrationVC.swift .

 13. Hold down the control key while dragging a line from the migration progress label to
the code in MigrationVC.swift on the line before the viewDidLoad function. When
you let go of the mouse button, a pop-up appears. In the pop-up, set the Name to label
and ensure the Storage is set to Strong before clicking Connect . Figure 3.11 shows the
intended configuration.

 14. Repeat the technique in step 13 to create a linked UIProgressView variable from the
progress view called progressView .

 There should now be an @IBOutlet called label and an @IBOutlet called progressView in
 MigrationVC.swift . You may now switch back to the Standard Editor (⌘ + return).

 When a migration occurs, notifications that communicate progress need to be sent. For the
progress bar to reflect the progress, a new function is required in MigrationVC.swift . In
addition, this function needs to be called every time a progress update is observed. Listing 3.5
shows the new code involved in bold.

58 Chapter 3 Managed Object Model Migration

 Listing 3.5 Migration View Controller (MigrationVC.swift)

 import UIKit

 class MigrationVC: UIViewController {

 @IBOutlet var label: UILabel!
 @IBOutlet var progressView: UIProgressView!

 // MARK: - MIGRATION
 func progressChanged (note:AnyObject?) {
 if let _note = note as? NSNotification {
 if let progress = _note.object as? NSNumber {
 let progressFloat:Float = round(progress.floatValue * 100)
 let text = "Migration Progress: \(progressFloat)%"
 print(text)

 dispatch_async(dispatch_get_main_queue(), {
 self.label.text = text
 self.progressView.progress = progress.floatValue
 })
 } else {print("\(__FUNCTION__) FAILED to get progress")}
 } else {print("\(__FUNCTION__) FAILED to get note")}
 }

 override func viewDidLoad() {
 super.viewDidLoad()

 NSNotificationCenter.defaultCenter().addObserver(self, selector:
➥"progressChanged:", name: "migrationProgress", object: nil)
 }

 Figure 3.11 Creating storyboard-linked properties to MigrationVC.swift

59Migration Manager

 deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self, name:
"migrationProgress", object: nil)
 }
 }

 The progressChanged function simply unwraps the progress notification and constructs
a string with the migration completion percentage. It then updates the user interface with
this information. Of course, none of this can happen without first adding an observer of the
 migrationProgress variable in the viewDidLoad function. When the view deinitializes, it is
unregistered as an observer of the migrationProgress variable.

 Update Groceries as follows to ensure migration progress is reported to the user:

 1. Replace all code in MigrationVC.swift with the code from Listing 3.5 .

 The user interface is now positioned to report migration progress to the user. The next step is
to implement the code required to perform a manual migration.

 Introducing CDMigration.swift (Core Data Migration Code)

 To keep CDHelper.swift small, the code required to perform a managed migration is put in a
new class called CDMigration.swift . The starting point to this class is shown in Listing 3.6 .

 Listing 3.6 Migration View Controller Shared Instance (CDMigration.swift shared)

 import UIKit
 import CoreData

 private let _sharedCDMigration = CDMigration()
 class CDMigration: NSObject {

 // MARK: - SHARED INSTANCE
 class var shared : CDMigration {
 return _sharedCDMigration
 }
 }

 Just like CDHelper.swift , CDMigration.swift has a shared function that makes it easy to
use because you can call it from anywhere in the project via CDMigration.shared .

 Update Groceries as follows to implement CDMigration.swift :

 1. Select the Generic Core Data Classes group.

 2. Click File > New > File... .

 3. Create a new iOS > Source > Swift File and then click Next .

60 Chapter 3 Managed Object Model Migration

 4. Set the filename to CDMigration and ensure the Groceries target is checked.

 5. Ensure the Groceries project directory is open and then click Create .

 6. Replace the contents of CDMigration.swift with the code from Listing 3.6 .

 To handle migrations manually, three supporting functions are required. One function checks
that a given store exists and another checks that it needs migrating. A successful migration
generates a separate compatible store, so as soon as migration completes, this new store needs
to replace the incompatible one. The final supporting function does exactly that—it replaces
the incompatible store with the migrated store. Listing 3.7 shows the code involved with these
three supporting functions.

 Listing 3.7 Migration View Controller Supporting Functions (CDMigration.swift
storeExistsAtPath, store, replaceStore)

 // MARK: - SUPPORTING FUNCTIONS
 func storeExistsAtPath(storeURL:NSURL) -> Bool {
 if let _storePath = storeURL.path {
 if NSFileManager.defaultManager().fileExistsAtPath(_storePath) {
 return true
 }
 } else {print("\(__FUNCTION__) FAILED to get store path")}
 return false
 }
 func store(storeURL:NSURL, isCompatibleWithModel model:NSManagedObjectModel) -> Bool {

 if self.storeExistsAtPath(storeURL) == false {
 return true // prevent migration of a store that does not exist
 }

 do {
 var _metadata:[String : AnyObject]?
 _metadata = try NSPersistentStoreCoordinator.metadataForPersistentStoreOfType
➥(NSSQLiteStoreType, URL: storeURL, options: nil)
 if let metadata = _metadata {
 if model.isConfiguration(nil, compatibleWithStoreMetadata: metadata) {

 print("The store is compatible with the current version of the model")
 return true
 }
 } else {print("\(__FUNCTION__) FAILED to get metadata")}
 } catch {
 print("ERROR getting metadata from \(storeURL) \(error)")
 }
 print("The store is NOT compatible with the current version of the model")
 return false

61Migration Manager

 }
 func replaceStore(oldStore:NSURL, newStore:NSURL) throws {

 let manager = NSFileManager.defaultManager()

 do {
 try manager.removeItemAtURL(oldStore)
 try manager.moveItemAtURL(newStore, toURL: oldStore)
 }
 }

 The storeExistsAtPath function uses NSFileManager to determine whether a store exists at
the given URL. It returns a Bool indicating the result.

 The store:isCompatibleWithModel function first checks that a store exists at the given path.
If there is no store, true is returned because this prevents a migration from being attempted. If
a store exists at the given URL, it is checked for model compatibility against the given model.
To do this, the model used to create the store is drawn from the store’s metadata and then
compared to the given model via its isConfiguration:compatibleWithStoreMetadata
function.

 The replaceStore function uses NSFileManager to remove the incompatible store from the
file system and then replaces it with the compatible store.

 Update Groceries as follows to implement a new SUPPORTING FUNCTIONS section:

 1. Add the code from Listing 3.7 to the bottom of CDMigration.swift before the last
curly brace.

 When a migration is in progress, the value of the migration manager’s migrationProgress
variable is constantly updated. This is information that the user needs to see, so a function is
required to react whenever the migrationProgress value changes. Listing 3.8 shows a new
function that posts a notification whenever this value changes.

 Listing 3.8 Migration View Controller Progress Reporting (CDMigration.swift
observeValueForKeyPath)

 // MARK: - PROGRESS REPORTING
 override func observeValueForKeyPath(keyPath: String?, ofObject object: AnyObject?,
➥ change: [String : AnyObject]?, context: UnsafeMutablePointer<Void>) {

 if object is NSMigrationManager, let manager = object as? NSMigrationManager {

 if let notification = keyPath {
 NSNotificationCenter.defaultCenter().postNotificationName(notification,
➥ object: NSNumber(float: manager.migrationProgress))
 }
 } else {print("observeValueForKeyPath did not receive a NSMigrationManager
➥ class")}
 }

62 Chapter 3 Managed Object Model Migration

 Update Groceries as follows to implement a new PROGRESS REPORTING section:

 1. Add the code from Listing 3.8 to the bottom of CDMigration.swift before the last curly
brace.

 The next function is where the actual migration happens. Most of this function is used to
gather all the pieces required to perform a migration. Listing 3.9 shows the code involved.

 Listing 3.9 Migration (CDMigration.swift migrateStore)

 // MARK: - MIGRATION
 func migrateStore(store:NSURL, sourceModel:NSManagedObjectModel,
➥destinationModel:NSManagedObjectModel) {

 if let tempdir = store.URLByDeletingLastPathComponent {
 let tempStore = tempdir.URLByAppendingPathComponent("Temp.sqlite")
 let mappingModel = NSMappingModel(fromBundles: nil, forSourceModel:
➥sourceModel, destinationModel: destinationModel)
 let migrationManager = NSMigrationManager(sourceModel: sourceModel,
➥destinationModel: destinationModel)
 migrationManager.addObserver(self, forKeyPath: "migrationProgress", options:
➥NSKeyValueObservingOptions.New, context: nil)

 do {

 try migrationManager.migrateStoreFromURL(store, type: NSSQLiteStoreType,
➥ options: nil, withMappingModel: mappingModel, toDestinationURL: tempStore,
➥destinationType: NSSQLiteStoreType, destinationOptions: nil)
 try replaceStore(store, newStore: tempStore)

 print("SUCCESSFULLY MIGRATED \(store) to the Current Model")

 } catch {
 print("FAILED MIGRATION: \(error)")
 }
 migrationManager.removeObserver(self, forKeyPath: "migrationProgress")
 } else {print("\(__FUNCTION__) FAILED to prepare temporary directory")}
 }

 The migrateStore function needs to be given a store to migrate, a source model to migrate
from, and destination model to migrate to. The source model could have been taken from the
given store’s metadata; however, seeing as this step is performed first in another function, this
approach saves repeated code.

63Migration Manager

 The first thing migrateStore does is prepare four variables:

 ■ The tempdir variable holds the URL to the given store and is used to build a URL to a
temporary store used for migration.

 ■ The tempStore variable holds the URL to the temporary store used for migration.

 ■ The mappingModel variable holds an instance of NSMappingModel specific to the models
being migrated from and to. The migration will fail without a mapping model.

 ■ The migrationManager variable holds an instance of NSMigrationManager based on
the source and destination models. An observer is added for the migrationProgress
variable so that the observeValueForKeyPath function is called whenever the
 migrationProgress variable changes.

 All these variables are then used to make a call to the migrateStoreFromURL function, which
is responsible for migrating the given store to be compatible with the destination model. Once
this is complete, the old incompatible store is removed and the new compatible store is put in its
place.

 Update Groceries as follows to implement a new MIGRATION section:

 1. Add the code from Listing 3.9 to the bottom of CDMigration.swift before the final
closing curly brace.

 The migration code that has just been implemented needs to be called from a background thread
so that the user interface can be updated without freezing. This, along with the instantiation of
the progress view that the user sees, is shown in Listing 3.10 .

 Listing 3.10 Migration Progress (CDMigration.swift migrateStoreWithProgressUI)

 func migrateStoreWithProgressUI(store:NSURL, sourceModel:NSManagedObjectModel,
➥ destinationModel:NSManagedObjectModel) {

 // Show migration progress view preventing the user from using the app
 let storyboard = UIStoryboard(name: "Main", bundle: nil)

 if let initialVC = UIApplication.sharedApplication().keyWindow?.rootViewController
➥ as? UINavigationController {

 if let migrationVC = storyboard.instantiateViewControllerWithIdentifier
➥ ("migration") as? MigrationVC {

 initialVC.presentViewController(migrationVC, animated: false, completion: {
 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_
➥ BACKGROUND, 0), {
 print("BACKGROUND Migration started...")
 self.migrateStore(store, sourceModel: sourceModel,
➥ destinationModel: destinationModel)
 dispatch_async(dispatch_get_main_queue(), {

64 Chapter 3 Managed Object Model Migration

 // trigger the stack setup again, this time with the upgraded
➥ store
 let _ = CDHelper.shared.localStore
 dispatch_after(2, dispatch_get_main_queue(), {
 migrationVC.dismissViewControllerAnimated(false,
➥ completion: nil)
 })
 })
 })
 })
 } else {print("FAILED to find a view controller with a story board id of
➥'migration'")}
 } else {print("FAILED to find the root view controller, which is supposed to be a
➥ navigation controller")}
 }

 The migrateStoreWithProgressUI function uses a storyboard identifier to instantiate and
present the migration view. Once the view is blocking user interaction the migration can begin.
The migrateStore function is called on a background thread. Once migration is complete, the
 localStore is loaded as usual, the migration view is dismissed, and normal use of the applica-
tion can resume.

 Update Groceries as follows to implement the migrateStoreWithProgressUI function:

 1. Add the code from Listing 3.10 to the MIGRATION section at the bottom of
 CDMigration.swift before the last curly brace.

 The final piece of code required in CDMigration.swift is used to migrate the store if neces-
sary. This function is called from the setupCoreData function of CDHelper.swift , which is
run as a part of initialization. Listing 3.11 shows the code involved.

 Listing 3.11 Migration (CDMigration.swift migrateStoreIfNecessary)

 func migrateStoreIfNecessary (storeURL:NSURL, destinationModel:NSManagedObjectModel) {

 if storeExistsAtPath(storeURL) == false {
 return
 }

 if store(storeURL, isCompatibleWithModel: destinationModel) {
 return
 }

 do {
 var _metadata:[String : AnyObject]?
 _metadata = try NSPersistentStoreCoordinator.metadataForPersistentStoreOfType
➥ (NSSQLiteStoreType, URL: storeURL, options: nil)

65Migration Manager

 if let metadata = _metadata, let sourceModel =
➥ NSManagedObjectModel.mergedModelFromBundles([NSBundle.mainBundle()],
➥forStoreMetadata: metadata) {
 self.migrateStoreWithProgressUI(storeURL, sourceModel: sourceModel,
➥ destinationModel: destinationModel)
 }
 } catch {
 print("\(__FUNCTION__) FAILED to get metadata \(error)")
 }
 }

 Once it’s established that the given store exists, a model compatibility check is performed and
the store is migrated if necessary. The model used to create the given store is drawn from the
store’s metadata. This is then given to the migrateStoreWithProgressUI function.

 Update Groceries as follows to implement the migrateStoreIfNecessary function:

 1. Add the code from Listing 3.11 to MIGRATION section at the bottom of
 CDMigration.swift before the last curly brace.

 When CDHelper.swift initializes, a call is made to setupCoreData . This is an ideal time to
check that the localStore is compatible with the current model, before it’s needed. The new
code required in the setupCoreData is shown in bold in Listing 3.12 .

 Listing 3.12 Migration During Setup (CDHelper.swift setupCoreData)

 func setupCoreData() {

 // Model Migration
 if let _localStoreURL = self.localStoreURL {
 CDMigration.shared.migrateStoreIfNecessary(_localStoreURL, destinationModel:
➥ self.model)
 }

 // Load Local Store
 _ = self.localStore
 }

 Update Groceries as follows to ensure a manual migration is triggered as required:

 1. Replace the setupCoreData function of CDHelper.swift with the code from
 Listing 3.12 .

 Currently the localStore variable of CDHelper.swift always tries to return a store. If it tried
to return a store that wasn’t compatible with the current model, the application would throw
an error. To prevent this, a check is needed to see whether the store needs migrating before it
is loaded. This check is needed only when migration is handled manually, so the bold code in
 Listing 3.13 wouldn’t be required otherwise.

66 Chapter 3 Managed Object Model Migration

 Listing 3.13 Triggering Migration Manager (CDHelper.swift localStore)

 lazy var localStore: NSPersistentStore? = {

 let useMigrationManager = true
 if let _localStoreURL = self.localStoreURL {
 if useMigrationManager == true &&
 CDMigration.shared.storeExistsAtPath(_localStoreURL) &&
 CDMigration.shared.store(_localStoreURL, isCompatibleWithModel:
➥ self.model) == false {
 return nil // Don't return a store if it's not compatible with the model
 }
 }

 let options:[NSObject:AnyObject] = [NSSQLitePragmasOption:["journal_
➥ mode":"DELETE"],
 NSMigratePersistentStoresAutomaticallyOption:0,
 NSInferMappingModelAutomaticallyOption:0]
 var _localStore:NSPersistentStore?
 do {
 _localStore = try self.coordinator.addPersistentStoreWithType
➥(NSSQLiteStoreType, configuration: nil, URL: self.localStoreURL, options: options)
 return _localStore
 } catch {
 return nil
 }
 }()

 Update Groceries as follows to ensure a localStore is not returned when the migration
manager is used and a manual migration is required:

 1. Replace the localStore variable in CDHelper.swift with the code from Listing 3.13 .

 For progress to be shown to the user, the interface needs to be ready before a migration is trig-
gered. This means that the first call to anything Core Data related should be made from an
existing view after it has loaded. To demonstrate the migration process, a small amount of code
needs to be applied to the existing table view. The only table view in the application so far is
the Prepare table view, where the user adds items to the shopping list. Listing 3.14 shows the
minimal code involved that triggers a store model migration. Note that the table view won’t be
configured to display anything until later in the book.

 Listing 3.14 The Prepare Table View Controller (PrepareTVC.swift)

 import UIKit

 class PrepareTVC: UITableViewController {

 override func viewDidLoad() {

67Migration Manager

 super.viewDidLoad()
 }
 override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 // Trigger Demo Code
 if let appDelegate = UIApplication.sharedApplication().delegate as?
➥ AppDelegate {
 appDelegate.demo()
 }
 }
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }
 override func tableView(tableView: UITableView, numberOfRowsInSection section:
➥ Int) -> Int {
 return 0
 }
 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
 return 0
 }
 }

 The PrepareTVC.swift code is the bare minimum code required to show a table view. You
might notice that the view is configured to return no rows or sections, as the intent for the
moment is just to show model migration progress.

 Update Groceries as follows to implement PrepareTVC.swift :

 1. Right-click the existing Groceries group and then select New Group .

 2. Set the new group name to Table View Controllers .

 3. Select the Table View Controllers group.

 4. Click File > New > File... .

 5. Create a new iOS > Source > Swift File and then click Next .

 6. Set the filename to PrepareTVC and ensure the Groceries target is checked.

 7. Ensure the Groceries project directory is open and then click Create .

 8. Replace the contents of PrepareTVC.swift with the code from Listing 3.14 .

 9. Select Main.storyboard .

 10. Set the Custom Class of the Table View Controller to PrepareTVC using Identity
Inspector (Option +⌘+3) while the Table View Controller is selected.

 11. Remove the call to CDHelper.shared from the application:didFinishLaunching
WithOptions function of AppDelegate.swift . This code would otherwise trigger a
migration before the user interface was ready.

68 Chapter 3 Managed Object Model Migration

 12. Remove the call to demo() from the application:applicationDidBecomeActive
function of AppDelegate.swift . This code would otherwise trigger a migration before
the user interface was ready.

 Almost everything is in place to perform a manual migration; however, a new managed object
model and mapping model are required to show what attributes map to where.

 Update Groceries as follows to prepare the new model:

 1. Add a model version called Model 4 based on Model 3 .

 2. Set Model 4 as the current model.

 3. Select Model 4.xcdatamodel .

 4. Delete the Amount entity.

 5. Add a new entity called Unit with a String attribute called name .

 6. Set the default value of the name attribute to New Unit .

 7. Create an NSManagedObject subclass of the Unit entity. When it comes time to save
the class file, don’t forget to check the Groceries target and ensure that the Data Model
group is selected.

 8. Create a new mapping model with Model 3 as the source and Model 4 as the target.
When it comes time to save the mapping model file, don’t forget to check the Groceries
target and save the mapping model as Model3toModel4 .

 9. Select Model3toModel4.xcmappingmodel .

 10. Select the Unit entity mapping.

 11. Set the Source of the Unit entity to Amount and the Value Expression of the
 name destination attribute to $source.xyz . You should see the Unit entity mapping
automatically renamed to AmountToUnit , as shown in Figure 3.12 .

 Figure 3.12 Mapping model for AmountToUnit

69Migration Manager

 You’re almost ready to perform a migration; however, the fetch request in the demo function
still refers to the old Amount entity. Listing 3.15 shows an updated version of this function.

 Listing 3.15 Fetching Test Unit Data (AppDelegate.swift demo)

 func demo () {
 let context = CDHelper.shared.context
 let request = NSFetchRequest(entityName: "Unit")
 request.fetchLimit = 50

 do {
 if let units = try context.executeFetchRequest(request) as? [Unit] {
 for unit in units {
 print("Fetched Unit Object \(unit.name!)")
 }
 }
 } catch {
 print("ERROR executing a fetch request: \(error)")
 }
 }

 Update Groceries as follows to refer to the Unit entity instead of the Amount entity:

 1. Replace the demo function of AppDelegate.swift with the code shown in Listing 3.15 .
This code just fetches 50 Unit objects from the persistent store.

 The migration manager is finally ready! Run the application and pay close attention! You should
see the migration manager flash before your eyes, alerting you to the progress of the migration.
The progress is also shown in the console log (see Figure 3.13).

 Figure 3.13 Visible migration progress

70 Chapter 3 Managed Object Model Migration

 Examine the contents of the ZUNIT table in the LocalStore.sqlite file using the techniques
discussed in Chapter 2 . The expected result is shown in Figure 3.14 .

 Figure 3.14 Successful use of migration manager

 If you reproduced the results shown in Figure 3.14 , give yourself a pat on the back because
you successfully implemented three types of model migration! The rest of the book uses light-
weight migrations, so it needs to be re-enabled. Before you continue, close the SQLite Database
Browser.

 Update Groceries as follows to re-enable lightweight migration:

 1. Set useMigrationManager to false in the localStore variable of CDHelper.swift .

 2. Set the NSMigratePersistentStoresAutomaticallyOption option in the localStore
variable of CDHelper.swift to true by changing the 0 to a 1 .

 3. Set the NSInferMappingModelAutomaticallyOption option in the localStore
variable of CDHelper.swift to true by changing the 0 to a 1 .

 4. Comment out the call to migrateStoreIfNecessary from the setupCoreData function
of CDHelper.swift .

 5. Replace the code in the demo function of AppDelegate.swift with a call to
 CDHelper.shared . This ensures that the Core Data stack is set up without a reliance on
particular entities.

71Exercises

 The old mapping models and NSManagedObject subclasses of entities that don’t exist anymore
are no longer needed. Although you could remove them, leave them in the project for refer-
ence sake.

 Summary

 You’ve now experienced lightweight migration, default migration, and using a migration
manager to display progress. You should now be able to make an informed decision when
determining between migration options for your own applications. Don’t forget that the only
migration option for iCloud-enabled Core Data applications is lightweight migration. Adding
model versions should now be a familiar procedure because the model has changed several
times already.

 Exercises

 Why not build on what you’ve learned by experimenting?

 1. Set the current model version to Model 3 and run the application. It should not throw
an error because the downgrade of data is inferred automatically. Note that this is only
because NSInferMappingModelAutomaticallyOption has been re-enabled. In reality,
you would need a Model4toModel3 mapping model to map attributes properly.

 2. Examine the contents of the ZAMOUNT table in LocalStore.sqlite and you’ll notice
something critical: Where has all the data gone? There was no mapping model, so all the
ZUNIT data was lost during the downgrade!

 3. Set the current model to Model 4 and then run the application to trigger an automatic
lightweight migration. This should be fast because there is no data in the store.

This page intentionally left blank

	Table of Contents
	Preface
	3 Managed Object Model Migration
	Changing a Managed Object Model
	Adding a Model Version
	Lightweight Migration
	Default Migration
	Migration Manager
	Introducing MigrationVC.swift (Migration View Controller Code)
	Introducing CDMigration.swift (Core Data Migration Code)

	Summary
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

