MODELS AND APPLICATIONS IN THE DECISION SCIENCES
This page intentionally left blank
MODELS AND APPLICATIONS IN THE DECISION SCIENCES

Best Papers from the 2015 Annual Conference

Edited by Merrill Warkentin
Mississippi State University
Decision Sciences Institute
I dedicate this third volume of DSI research to all of my co-authors and mentors, from whom I have learned so much.
Contents

Foreword .. xiii
Acknowledgments ... xv
About the Author .. xvii
Introduction .. xxi

Research Related to IT Design and Use

Chapter 1 Central Role of Knowledge Update in the ERP Training 1
MEHDI DARBAN, HONGYAN LIANG, DONG-HEON (AUSTIN) KWAK, AND MARK SRITET
Abstract ... 1
Introduction .. 1
Theoretical Background 3
Expectation-Confirmation Model 4
Perceived Knowledge Update 4
Research Model and Hypotheses 5
Method ... 9
Discussion and Conclusion 13
References .. 15
About the Authors 19

Chapter 2 An Evaluation of the Relationship Between
ERP-enabled Integration and ERP Benefit 21
JOSEPH K. NWANKPA AND YAMAN ROUMANI
Abstract ... 21
Introduction .. 21
Theoretical Development 23
Research Model and Hypotheses Development 26
Research Methods 31
Discussion and Implications 38
References ... 42
Contents

| Appendix A | .. | 46 |
| About the Authors | .. | 48 |

Chapter 3 Adopter-based Determinants of Effort in Mobile App Information Search ... 49

Fengkun Liu, Alan A. Brandberry, Mary Hogue, Greta Politis, and Tuo Wang

- Abstract .. 49
- Background .. 49
- Research Question and Motivation .. 54
- Research Model .. 55
- Hypothesis Development .. 55
- Method .. 58
- Results .. 60
- Conclusions .. 64
- References .. 65
- About the Authors .. 67

Human Resource Management Research

Chapter 4 Absenteeism Outcomes in Rapport with Hostile Environment: Sexual Harassment 69

Albi Alikaj, Prity Patel, Jacqueline Mayfield, and Milton Mayfield

- Abstract .. 69
- Introduction .. 69
- Literature Review .. 71
- Effect of Hostile Environment: Sexual Harassment on Absenteeism .. 74
- Methodology .. 77
- Results .. 81
- Discussion .. 83
- Research and Managerial Implications .. 83
- Limitations and Areas for Future Research .. 84
- Conclusion .. 84
- Appendix 1: Scale Measures .. 84
- References .. 88
- About the Authors .. 89
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>The Rapport Between Perceived Organizational Support for Development and Worker Outcomes</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAU NGOC NGUYEN, JACQUELINE MAYFIELD, AND MILTON MAYFIELD</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Literature Review</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Methodology</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Discussion and Conclusions</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Appendix 1</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>About the Authors</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Employee Change Perceptions and Turnover Intentions: Is Cynicism the Culprit?</td>
<td>111</td>
</tr>
<tr>
<td>Anju Mehta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Theoretical Background and Hypotheses Development</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Implications for Research and Practice</td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>Scope and Boundary Conditions</td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>About the Author</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Exploring Human Resource Management Systems and Lean Transformation</td>
<td>129</td>
</tr>
<tr>
<td>David A. Marshall and Thomas J. Goldsby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Theoretical Background and Hypotheses Development</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>Methodology</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>Discussion and Conclusion</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>About the Authors</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>
Ethics and Culture

Chapter 8 Corporate Ethical Values and Firm Performance

Kuo-Ting Hung, Chanchai Tangpong, and Jin Li

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>145</td>
</tr>
<tr>
<td>Introduction</td>
<td>145</td>
</tr>
<tr>
<td>Theoretical Arguments and Hypotheses</td>
<td>146</td>
</tr>
<tr>
<td>Research Methods</td>
<td>148</td>
</tr>
<tr>
<td>Data Analyses and Results</td>
<td>149</td>
</tr>
<tr>
<td>Discussion and Conclusion</td>
<td>150</td>
</tr>
<tr>
<td>References</td>
<td>151</td>
</tr>
<tr>
<td>About the Authors</td>
<td>153</td>
</tr>
</tbody>
</table>

Chapter 9 A Global Sourcing Perspective of Ethical Consumption in the United States

Robert L. Bregman and Xiaosong (David) Peng

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>155</td>
</tr>
<tr>
<td>Introduction</td>
<td>155</td>
</tr>
<tr>
<td>Research Foundations</td>
<td>156</td>
</tr>
<tr>
<td>Research Proposition and Hypotheses</td>
<td>157</td>
</tr>
<tr>
<td>Research Design</td>
<td>160</td>
</tr>
<tr>
<td>Discussion of Results</td>
<td>162</td>
</tr>
<tr>
<td>Conclusions and Directions for Future Research</td>
<td>166</td>
</tr>
<tr>
<td>References</td>
<td>167</td>
</tr>
<tr>
<td>About the Authors</td>
<td>170</td>
</tr>
</tbody>
</table>

Chapter 10 Quality Management Practices Must Culturally Fit

Canchu Lin and Anand S. Kunnathur

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>171</td>
</tr>
<tr>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>Literature Review</td>
<td>172</td>
</tr>
<tr>
<td>Propositions</td>
<td>176</td>
</tr>
<tr>
<td>Conclusion</td>
<td>179</td>
</tr>
<tr>
<td>References</td>
<td>180</td>
</tr>
<tr>
<td>About the Authors</td>
<td>185</td>
</tr>
</tbody>
</table>
Healthcare Management

Chapter 11 Predicting the Occurrence of Diabetes Using Analytics
RAVI S. BEHARA, ANKUR AGARWAL, VINAYA RAO, AND CHRISTOPHER BAECHLE

Abstract 187

Introduction 187

Literature Review 188

Model Development 190

Results and Discussion 190

Conclusions 192

References 192

About the Authors 193

Chapter 12 Dimensions of Patient Care Quality: An Empirical Framework
SUBHAJIT CHAKRABORTY AND HALE KAYNAK

Abstract 195

Introduction 195

Literature Review 196

Methods 197

Results 200

Discussion and Conclusions 205

References 207

About the Authors 210

Chapter 13 Sharing Clinical Knowledge Among Physicians in the Same Specialty Practice Group
YULONG LI AND JOHN LOWE

Abstract 213

Introduction 213

Theoretical Development and Research Model 216

Planned Research Method 220

Conclusion 220

References 220

About the Authors 221
It is with great pleasure that I write this foreword to a collection of best papers from the 2015 DSI global conference. The Decision Sciences Institute (DSI) has long prided itself as a leader in cross-disciplinary research, spanning diverse areas in analytics, information systems and technology, supply chain operations management, and other business disciplines. This volume contains the best and most insightful research articles from more than 1,000 submissions to this year’s conference. Consistent with both the charter and heritage of the DSI, the papers herein cover a rich diversity of topics in business, with a focus on decision-making at strategic, tactical, and operational levels.

Please enjoy these excellent contributions. I trust that you will find them to be interesting, thought-provoking, and helpful to your own practice and research endeavors.

Morgan Swink, Ph.D.
2015 President of DSI
This page intentionally left blank
Acknowledgments

I want to acknowledge all the authors who contributed to this second annual volume of research in the decision sciences. Their scholarly activities form the foundation of our community and of the contributions of our Institute to solving tough problems in business, industry, and society. These authors exemplify the excellence of DSI research, and their work has been honored by DSI as the best of this year’s conference.

I also want to thank the reviewers of these manuscripts who provided valuable input into the authors’ work and facilitated further improvements in the manuscripts. I also want to thank Shawnee Vickery, Natasa Christodoulidou, and Stephen Ostrom for helping me identify the candidate pool for this volume. Marc Schniederjans (2014 DSI President) and Morgan Swink (2015 DSI President) have been supportive of this project that honors the excellence of our DSI scholars. All the staff at the DSI Home Office in Houston are wonderful—thanks for your support.

I have acknowledged other important individuals in the last two DSI volumes—my parents, students, and others. But I also want to specifically thank my Department Head, Jim Chrisman, who helps create an environment at Mississippi State University that is conducive to engaging in our primary role as active researchers. I’m proud of our entire group and its productivity, and I appreciate the friendships we share.

My final acknowledgment again goes to my wonderful wife of over 30 years. Kim is the best life partner I could imagine, and I owe so much to her. Thank you!
About the Author

Merrill Warkentin, Volume Editor

Merrill Warkentin is Professor of MIS and the Drew Allen Endowed Fellow in the College of Business at Mississippi State University, where he is also a member of the research staff of the Center for Computer Security Research (CCSR) and the Distributed Analytics and Security Institute (DASI). He has published over 250 manuscripts, including 60 peer-reviewed journal articles, plus 10 research volumes or books. His work has been cited almost 9,000 times and his H-index is 25, according to Google Scholar in 2015. He has been ranked among the top 100 IS scholars in the world based on rankings of authors publishing in the AIS Senior Scholar's basket of leading MIS journals. His research, on the impacts of organizational, contextual, situational, and dispositional factors on individual user behaviors in the context of information security and privacy, addresses security policy compliance and violation and social media use, and has appeared in such journals as MIS Quarterly, Decision Sciences, Journal of the AIS, European Journal of Information Systems, Decision Support Systems, Information & Management, Information Systems Journal, Communications of the ACM, Communications of the AIS, The DATABASE for Advances in Information Systems, Computers & Security, Information Resources Management Journal, Journal of Organizational and End User Computing, Journal of Global Information Management, and others.

Dr. Warkentin is currently an Associate Editor (AE) of MIS Quarterly, Information & Management, Information Resources Management Journal, and the Journal of Information Systems Security, and has previously served as an AE of Decision Sciences, Information Systems Research, European Journal of Information Systems, and other journals. He is the Eminent Area Editor for MIS for Decision Sciences and Senior Editor of AIS Transactions on Replication Research. He is Program Co-Chair for AMCIS2016 and has held leadership positions for numerous international IS conferences, including Track Chair for Security and Privacy at AMCIS2015 (Puerto Rico), ICIS2013 (Milan), ECIS2012 (Barcelona), and DSI2008; Program Chair for WISE2007 and WISP2009; Program Chair for the 2009 IFIP Workshop on IS Security Research; AE at ICIS four times (Security Track); Track Chair at DSI three times (Security Track in 2008); and Program Committee member of over twenty international conferences (IFIP, WISP, WEB, WITS, ICEIS, etc.).

Dr. Warkentin is the Chair of the UN-sponsored IFIP Working Group on Information Systems Security Research (WG8.11/11.13) and the AIS Security Coordinator. He has guest-edited several journal special issues, including two issues of EJIS. He has served
as Special SE for manuscripts at MISQ. He also currently serves on several additional journal editorial boards.

Dr. Warkentin has served as a consultant to numerous companies and organizations, and has been a featured speaker at almost two hundred industry association meetings, executive development seminars, and academic conferences. He has been a Lecturer at the Army Logistics Management College and was named a “National Distinguished Lecturer” by the Association for Computing Machinery (ACM). He has been a visiting professor or an invited speaker at over 25 universities around the world, including Georgia State, Indiana, LSU, Florida State, Clemson, USF, Copenhagen Business School, McMaster, Fudan, Oulu, Jyväskylä, Zhejiang, Cape Town, and others. He has earned various recognitions for his teaching at every level from introductory courses to doctoral research seminars—his primary focus has been teaching Systems Analysis classes and Research Design seminars. His research has been funded by the UN, NSF, IBM, NSA, DoD, US Navy, Homeland Security, and others. He was previously on the faculty at George Mason University and held the Reisman Research Professorship at Northeastern University in Boston, where he was also the Director of MIS and eCommerce programs at both the graduate and undergraduate levels. Professor Warkentin’s Ph.D. in MIS is from the University of Nebraska–Lincoln. He can be reached at m.warkentin@msstate.edu.

The Decision Sciences Institute, Sponsor

The Decision Sciences Institute (DSI) is an independent nonprofit educational multidisciplinary professional organization of academicians and practitioners interested in the application of quantitative and behavioral approaches to all managerial decision-making in business, government, and society.

Through national, international, and regional conferences; competitions; and publications, DSI provides an international forum for presenting and sharing research in the study of decision processes across disciplines. DSI also plays a vital role in the academic community by offering professional development activities and job placement services.

Five regional subdivisions in the United States, as well as regions representing Europe, Mexico, Asia-Pacific, and the Indian subcontinent, operate independently within DSI. Each region has its own elected officers and holds annual meetings.

DSI’s members specialize in functional areas such as information systems, finance, marketing, management, accounting, manufacturing/service management, supply chain management, and decision support processes, as well as institutional areas such as healthcare, public administration, resource management, and higher education. They
use leading rigorous research techniques, including experimental designs, empirical quantitative analysis, optimization, simulation, surveys, and other scientific methods, while also valuing innovative methodological horizons.

DSI’s goals are to:

1. Enrich the diverse disciplines of the decision sciences
2. Integrate these disciplines into bodies of knowledge that are effectively utilized for decision-making
3. Develop theoretical bases for such fundamental processes as implementation, planning, and design of decision systems
4. Improve educational programs in the decision sciences
Introduction

This is the second *Annual Volume of Research in the Decision Sciences*, which is the third scholarly book sponsored by the Decision Sciences Institute (DSI). It represents a range of leading-edge research projects conducted within the multi-disciplinary fields of decision sciences. Decision sciences scholars and practitioners apply a range of rigorous quantitative and behavioral approaches, frameworks, and methodologies to support and solve decision challenges experienced by individuals, organizations, and societies. They draw from functional areas such as information systems, manufacturing management, service operations management, supply chain management, finance, marketing, management, accounting, and decision support, as well as institutional areas such as health care, public administration, resource management, and higher education. Decision sciences scholars employ leading rigorous research techniques, including experimental designs, empirical quantitative analysis, optimization, simulation, surveys, and other scientific methods, while also valuing innovative methodological horizons. This volume will provide decision makers with a set of practical and successful approaches to address the decision challenges they face.

The authors of these manuscripts submitted their work to be considered for the Annual Conference held in Seattle, Washington, during November 2015. The reviewers selected a subset of all the submitted papers to be considered for “Best Paper” awards, and these chapters are drawn from that subset. The authors have further refined their work for this annual volume. We encourage the members of DSI to submit their best work to future conferences.

Together, these manuscripts represent outstanding analyses and solutions that are not only very interesting, but which offer promise to real-world individuals and organizations who face important decision challenges. Please enjoy this set of interesting and valuable research manuscripts!

Merrill Warkentin, Volume Editor
Central Role of Knowledge Update in the ERP Training

Mehdi Darban, Kent State University
Hongyan Liang, Kent State University
Dong-Heon (Austin) Kwak, Kent State University
Mark Srite, University of Wisconsin-Milwaukee

Abstract
This study explores the mediating role of knowledge update in the context of an enterprise resource planning (ERP) simulation game, that is, a gamified ERP training. Drawing on the expectancy-confirmation model, this study suggests relationships among individual effort, perceived knowledge update, and involvement, which finally influence willingness to learn ERP systems. The hypotheses were tested using 166 subjects who participated in an SAP ERP simulation game. This study finds the significant effects of individual effort on perceived knowledge update and involvement. Also we find that perceived knowledge update significantly influences involvement and willingness to learn ERP systems.

Introduction
The implementation of an enterprise resource planning (ERP) system is one of the more popular and radical organizational changes that can result in significant modifications to nearly 30% of key routines in contemporary firms (Davenport & Beck, 2013; Herold, Fedor, & Caldwell, 2007). Some other estimates also show high adoption rates of ERP systems, such as 75% among service-oriented companies, 60% in medium-to-large manufacturing firms, and 80% among Fortune 500 firms (Phelan, 2014). Prior studies have found that ERP systems result in multiple benefits including lowering costs and reducing inventories, enhancing firm’s productivity (Olson, 2003), improving in operational efficiency (Häkkinen & Hilmola, 2008), gaining competitive advantage (Beard & Sumner, 2004), and promoting internal resources’ restructuring (Stratman, 2007). In addition,
past research highlights the critical role of ERP systems as organizational resources and indicates their importance in designing the information system (IS) of a company (Ko, Kirsch, & King, 2005; Xu & Tian, 2014).

To maximize the benefits of implemented ERP systems, it is crucial to enhance individuals’ expertise and skills in employing such systems by providing proper training (Gardiner, Hanna, & LaTour, 2002) because ineffective utilization of systems is mainly due to insufficiency of training (Henriksen & Andersen, 2008). Training has been of importance because of its significant effect on the success of IS (Chou, Chang, Lin, & Chou, 2014). In the case of ERP systems, users have to learn both a new package, and also a totally novel way of conducting business. In a recent study, Sykes, Venkatesh, and Johnson (2014) found support for this argument contending that for maximal benefit, organizations could design training interventions and support services so that the early focus is on the technical side of the systems, with later stages focusing on routines and processes.

In the last decade, researchers have encouraged the use of simulation games for the purpose of learning and instruction (Hainey, Connolly, Stansfield, & Boyle, 2011; Kebritchi, Hirumi, & Bai, 2010). Anecdotal and empirical findings suggest that computer-based simulation games are effective for enhancing employees’ skill sets. Companies such as Canon and Cold Stone Creamery developed simulation games to teach their employees various technical and managerial skills. Employees who played the game obtained 5% to 8% higher training assessment scores than those trained with older techniques, such as manuals (Sitzmann, 2011). Learning the concepts and developing competencies underlying an ERP system is a difficult task. Researchers found that adopting a learning-by-doing approach through employing simulation games to train ERP users is an effective method (Léger et al., 2011). This process focuses on guiding the learning experience in a situated context through a series of realistic and potentially complex open-ended problems. Such problem-based learning motivates the participant to gain a set of competencies by actively resolving the task (Merrill, 2007).

The ERP simulation game (ERPsim) has been designed based on the concept of situated cognition. Prior research suggests that such a realistic learning environment is associated with higher levels of learner involvement and motivation, which leads to higher understanding and better knowledge transfer (Lave & Wenger, 1991). An active learner is highly involved and plays a dynamic and self-motivated role in how and what needs to be learned (Trigwell, Ellis, & Han, 2012). Prior research has found that simulation games improve the learning process of individuals by promoting their psychological involvement (Anderson & Barnett, 2011). However, the complexity of ERP systems limits the amount of knowledge those users can absorb before they actually use an ERP system (Yi & Davis, 2003). Users have to continue to learn to obtain the knowledge and skills required for effective ERP usage.
The key objective of the study is to examine the shift of individual’s knowledge perceptions from the pre-training to the post-training stage to understand the change in user’s belief. In doing so, the study highlights that limited attention has been given to users’ perceptions of knowledge update offered by the IT artifact in prior longitudinal studies. We defined perceived knowledge update as individuals’ perceptions of their improved abilities to perform their daily work using the ERP system after taking the relevant training programs. Although perceived knowledge and training were found to promote an individual’s ability in performing challenging tasks (Torkzadeh, Pflughoeft, & Hall, 1999), there has been little research on how updated knowledge leads to continuous learning intentions and what determines individual’s perception of knowledge update in ERPsim setting. In other words, the difference between an individual’s knowledge about ERP before attending an ERPsim training session and after that, as we argue, has positive relationship with learning behaviors.

Given the research gaps mentioned previously, our study answers the following questions: What influences a user’s perception of knowledge update? What are the consequences of perceived knowledge update? To answer the research questions, our model is based on the expectation-confirmation model (ECM) (Bhattacherjee, 2001), which was used as an analytical lens to explain how an individual’s judgment of his/her improved knowledge affects his/her involvement, which in turn influences continuance intention. As ECM highlights the prominence of both pre- and post-behaviors of individuals in their subsequent usage behaviors, we recognize the variance of pre-training and post-training knowledge levels and test the levels’ central role in learner’s post-training behavior.

The chapter is organized as follows: First, we provide the theoretical background for the study. Next, we present the research hypotheses and methodology for our research followed by the analysis and the results. Finally, we conclude with a discussion of research findings and implications for theory and practice.

Theoretical Background

In the early stage of an ERP implementation, that is, acceptance of system phase, employees begin to learn and understand how to apply the new technology to the updated work practices. Through the accumulation of relevant skills in early stages, individuals are able to use the system in a more sophisticated manner. A successful learning process provides them with the ability to exploit the fullest potential of the ERP, and to innovate with the system to meet existing needs and apply them to new job demands—in the later stages of ERP usage. Highlighting the importance of the learning outcome of ERP, this study explores the importance of knowledge update and identifies its antecedent and consequences in the context of an ERP simulation game.
Expectation-Confirmation Model

Individuals are likely to engage with a new technology if they perceive that the new system has benefits for them. If potential users understand that the technology is useful for them, they will more likely accept and use it in the future (Bhattacherjee, 2001). In the literature, the intent to adopt again is referred to as continuance intention. The ECM has been widely used to examine continuance intention. Originally, ECM was drawn upon expectation-confirmation theory (Oliver, 1980), the technology acceptance model (TAM; Davis, 1989; Davis, Bagozzi, & Warshaw, 1989), and the theory of planned behavior (TPB; Ajzen & Fishbein, 1980). The aforementioned theories focus on the motivations of users in accepting a new technology, instead of continual usage of that technology. Deriving from these theories and consumer behavior literature, ECM focuses on three main variables—expectation, satisfaction, and confirmation in determining continued usage intention (Bhattacherjee, 2001). This model suggests that initial use does not automatically result in continued use, which has a more vital role in determining the success of a system than initial use. Confirmation indicates a cognitive belief that is salient to IS usage. It is defined as the degree to which an individual's initial expectation about the performance of a system is being confirmed after having an experience with the system (Bhattacherjee, 2001). Confirmation describes individual's affective state and is the consequence of a cognitive assessment of the potential discrepancy between initial expectation and experienced performance. Individuals in the later stage form a level of satisfaction based on their degree of confirmation and expectation on which that confirmation was established. Finally, all these interactions may lead to continued and repeated usage of a system. In sum, the difference between expectations (pre-usage) and perceived benefits (post-usage) determines the confirmation or disconfirmation level, which consequently affects satisfaction and usage continuance behavior.

The ECM and its adaptations have been applied to various technology-related contexts (Brown, Venkatesh, & Goyal, 2012; Stone & Baker-Eveleth, 2013). Moreover, the ECM has been used to improve our understanding of the role of the technology on learning and adoption. For example, Limayem and Cheung (2008) included IS habits in ECM and studied their interaction with continuance intentions in context of Internet-based learning technologies. In an e-learning context, Chiu et al. (2005) found that the components of perceived performance, usability, quality, and value influence satisfaction and consequently intention to continuance and ultimately intention in an e-learning environment. On realizing the earlier mentioned applications of the ECM from the literature, we adopted and contextualized the main relationships of ECM elements into our study’s setting, an ERP simulation game.

Perceived Knowledge Update

The critical issue pertains to the assessment of how user perceptions about knowledge of a new system evolve over time. Prior studies on IS acceptance have relied on TAM and
ECM to understand the change in user perceptions. They have highlighted the belief change process as the core theme and proposed that a better understanding of how user beliefs evolve from the pre-usage to the post-adoption stage is critical (Kim & Malhotra, 2005). TAM-related studies show that the influence of perceived usefulness on intention to use persists at the post-adoption stage (Venkatesh & Davis, 2000). ECM delves deeper into the belief change process and proposes confirmation as an intermediate process between pre-usage and post-adoption perceptions regarding IS (Bhattacherjee & Premkumar, 2004). In the context of learning the confirmation can be assessed by evaluating the difference between individual’s knowledge improvement perceptions. In fact confirmation happens when people’s perceptions on their post-knowledge have been improved considerably compared to their prior training/usage knowledge perceptions. In other words, after the users gain firsthand experience by using ERPsim, their succeeding knowledge perceptions are revised to achieve better alignment between initial expectations, formed by their levels of effort, and beliefs after the actual use experience.

In the same vein, Kim and Malhotra (2005) suggested that the belief change process may be established through a sequential updating mechanism, which is grounded on the premise that a user’s perceptions are updated in the context of prior perceptions. The sequential updating mechanism proposes that post-adoption perceptions are a function of pre-adoption perceptions. The basic beliefs are updated based on new information that is now available.

The literature review highlights two important gaps. First, special attention needs to be given to user knowledge perceptions regarding IS features that further determine intentions of users. Most prior studies focused on aggregate usefulness perceptions. The approach proposed in the study offers a more granular assessment of perceived knowledge as an influential determinant of individual learning behaviors in the context of ERPsim. Second, limited research focuses on how users’ perceptions change over time as they gain experience in utilizing a system. Therefore, by defining perceived knowledge update as the difference between pre-training and post-training knowledge levels of a learner, we attempt to investigate the mechanism, which leads from perceived knowledge update to repeated learning behaviors.

Research Model and Hypotheses

Drawing on the background literature reviewed, we provide the research model underlying our study in Figure 1.1. The specific hypotheses are discussed later. Adapting ECM into the context of an ERP simulation game, we may observe similar patterns and relationships. As the learners put effort into engaging with the system, they build some levels of expectations about the impact of the simulation game on their skills. In the case of perceived improvement (confirmation) in their knowledge to use ERP systems, they will be satisfied, as
ECM posits. In our setting, such satisfaction will be translated into the involvement of learners, which results in continuance learning of the system by the individuals.

According to Maclnnis and Jaworski (1989) there are several levels of cognitive efforts in information processing, which demonstrate the degree of cognitive effort on the side of the individual. At higher levels of motivations to process information, users employ more cognitive capacity and try to integrate their own prior knowledge and experience to the message (that is, training in our context); also they add positive or negative attributes to it, which activates a more effortful route of processing the message. We can apply the elaboration likelihood model (ELM; Petty & Cacioppo, 1986) to describe how individuals who spend more cognitive resources and capabilities are likely to experience higher levels of knowledge update. As the ELM posits, the nature of the message determines the strength and persistence of its consequences. In the case of higher individual effort, an individual’s information-processing mechanism activates higher cognitive levels by going beyond simply paying attention or comprehending the argument in the message. Such elaborative processes involve generating updated judgments in response to the information to which the learner is exposed.

In the context of ERPsim training and adapting the ELM, we argue that individuals with motivation and ability put more effort to process the external information. Likewise, they consider and evaluate the details of the arguments presented to them during the learning process, which results in creation of evaluative perceptions on the acquired knowledge through central processing. Whereas, those who engage in the training because of lack of time or resources may use lower levels of their cognitive capacity to treat the information and arguments. In this case, they will rely on their judgments on the peripheral route, which is less stable, less persistent, more prone to counterinfluence, and less predictive of long-term behaviors (Petty & Cacioppo, 1986).
Contextualization of these notions to the setting of our study, we argue that if learners invest the necessary effort to adequately scrutinize and evaluate the provided information, which reflects their level of effort in learning the new skills, they will view the acquired knowledge as being relevant and important to the target behavior and they will more likely to have higher perceived knowledge improvement.

H1: Individual effort will be positively associated with perceived knowledge update.

Past studies found that simulation games improve the learning process of individuals by promoting their psychological involvement (Anderson & Barnett, 2011). Moreover, higher levels of involvement in the learning process positively impact individual’s understanding and promote knowledge transfer (Lave & Wenger, 1991). By applying the ELM and ECM, we attempt to describe the association between the effort invested by a person on acquiring new skills and the psychological involvement in the learning process.

According to the ELM, information recipients can vary widely in their ability and motivation to elaborate on an argument’s central merits, which in turn may constrain how a given influence process impacts their attitude formation or change. Thoughtful evaluation of information activates the central processing route (Petty & Cacioppo, 1986), in which the learner processes the relevant information at higher cognitive levels. Activated central processing requires that a larger portion of the cognitive capacity of an individual needs to be engaged in scrutinizing the arguments and information. This mechanism generally results in more stable and enduring attitudes. Relating this notion to the ERPsim, we need to underscore its design specifications, which are based on the concept of situated cognition.

By focusing on realistic and situated context, ERPsim provides a learning process in which individuals can identify more relevancies of communicated information. As they invest more cognitive effort to process the information, the probability that they find more connections between the arguments and prior experience and knowledge is higher, which in turn can increase the participant’s involvement (that is, motivation factor in the ELM) in the process of learning. An active learner is emotionally and cognitively involved, and plays a dynamic and self-motivated role in how and what needs to be learned (Trigwell et al., 2012).

According to the ECM, user expectation is positively related to user satisfaction. The model contends that expectation is another determinant of satisfaction because expectation provides the reference level or baseline for individuals to form evaluative judgments about the focal product or service (Bhattacherjee, 2001). ECM posits that a high baseline level or expectation tends to enhance an individual’s satisfaction whereas low expectation shrinks resulting satisfaction. Similarly, marketing studies found that apart from the association between expectation and perceived performance, which determines confirmation, expectations (that is, individual effort) also affect customer satisfaction (Spreng & Chiou, 2002). Drawing on this argument, a recent study of multimedia Web sites found that extensive effort leads users to involve and interact more with the content of Web sites.
Thus, involvement can be seen in relation to the level of motivation of the individual in putting effort into learning a new skill.

H2: *Individual effort will be positively associated with involvement with the ERP simulation game.*

Research on behavior changes (Bandura, 1997) posits that individuals' behavior is affected by their judgments of their skills and capabilities to perform a given task. It discusses that psychological procedures alter expectations of personal perceptions of abilities. Moreover, it describes the procedure of determining what actions to take, how long to preserve, and what strategies to apply when individuals attempt to balance their abilities with the challenges of a task. Consistent with Bandura's self-efficacy theory, when individuals feel a sense of mastery in a domain, they tend to believe that they can achieve a desired performance level. Hence, higher perceptions of knowledge improvement can lead to higher degrees of perceived capability for ERPsim players. This argument has been validated by empirical studies in various contexts including IS and acceptance of technology (Agarwal & Karahanna, 2000). In the context of IS, researchers (Mun & Hwang, 2003) suggest that individuals with higher degrees of self-efficacy usually form more positive perceptions of IT and have higher levels of pleasure, which lead to subjective perceptions of positive affects and satisfaction (Lim, Pan, & Tan, 2005). By finding the difference between self-efficacy levels of learners at two different times, that is, before and after conducting the ERPsim, we created a perceived knowledge improvement construct, which represents the confirmation notion of ECM.

H3: *An individual's perceived knowledge update will be positively associated with their involvement with the ERP simulation game.*

The difference stemming from different levels of self-efficacy is all the more apparent in the ERP context because the renowned complexity of an ERP system makes users feel that it is difficult to learn. Whereas, individuals with higher degrees of belief in their abilities tend to both have a higher intention of using an IS and actually use the IS more frequently (Compeau, Higgins, & Huff, 1999). In a learning context, it was found that self-efficacy motivates individuals' learning intentions through the self-regulatory processes, such as self-evaluation, goal setting, and self-monitoring (Zimmerman, 2000). Similarly, in a recent study of the role of self-efficacy in ERP learning, Chou et al. (2014) found that post-training self-efficacy significantly facilitates ERP learning outcomes; in particular, they identified that higher self-efficacy increased learning willingness and learning capability.

Furthermore, Bandura (1982) indicated that self-efficacy influences individuals' choice of activities and skill acquisition strategies. Put differently, an individual with high self-efficacy will be more willing to work harder in a committed way to acquire a skill and also will be emotionally more stable in case of any obstacle (Bandura, 1997). Translating those findings into the setting of this study, we claim that those with high perceptions of knowledge improvement and ability (that is, a greater difference between pre- and
post-ERPsim self-efficacies) will exhibit more tendencies to learn challenging concepts in a more persistent way. In contrast, individuals with lower perceptions of knowledge improvement will experience more anxiety and frustration, and consequently exhibit less determination in learning a challenging task (that is, ERP system) and will consequently have lower levels of learning intentions.

H4: An individual's perceived knowledge update will be positively associated with their willingness to learn.

User involvement is found to be a strong predictor of continuance intention (Shiau & Luo, 2010). Empirical evidence in the simulation game field suggests that players who experience higher levels of involvement during a game will have increased learning (Sitzmann, 2011). Likewise, in the ERP setting, involvement is posited to be positively related to usage intention (Amoako-Gyampah, 2007). In the same vein, previous research suggested a direct connection between affective and cognitive dimensions of attitude and intention to use (Lee, Chen, & Ilie, 2012; Van der Heijden, 2004). The theory of reasoned action (Fishbein & Ajzen, 1975) and the TAM (Davis, 1989) also supported these relationships. Moreover, in the IS learning setting, some recent studies found that learning intention is increased by the large amount of time spent navigating in the software as well as by the high level of motivation and involvement in the activity displayed by learners (Wrzesien & Raya, 2010).

H5: An individual's involvement with the ERP simulation game will be positively associated with their willingness to learn.

Method

Sample and Procedure

An experimental study in a controlled environment was chosen to simulate an authentic integrated business process supported by a real ERP system (that is, SAP). Students who took an introductory level of IS class at a large Midwestern public university participated in this game as a part of the course requirements. A total of 166 undergraduate students from 6 classes participated. In each class, the participants were randomly assigned to eight teams of two to four students. The sample was composed of approximately 38% females, and the average age of the participants was 20.5 years.

The research methodology involved the use of simulation game called ERPsim (Léger, 2006; Léger et al., 2011), designed to recreate a realistic business context and manage the main business processes of an organization using the ERP system SAP. Several similar studies have used this ERP simulation (for example, Caya, Léger, Grebot, & Brunelle, 2014). Within this overall product (ERPsim), there are several different ERP simulation games (for example, distribution game, logistics game, and manufacturing game). We chose the Distribution Game (or Water Bottle Game) because student participants...
had little previous knowledge of or experience with ERP systems. Because of this lack of experience and because all subjects attended the same ERP training session, we were able to isolate the effect of prior experience of individuals on the relationships, which we were testing. One week before the experiment, the participants were asked to complete the pretest survey that measured their prior knowledge about ERP systems.

A threat to internal validity may occur when we assigned different participants to different teams, with different team sizes, and in different classes, which could produce groups of individuals with noticeably different characteristics. Hence, we checked assignment bias to rule out this possible confounding effect and found that there were no significant differences in knowledge of ERP systems across the six classes ($F = .537, p = .780$) and team sizes ($F = .761, p = .469$), suggesting there was no assignment bias.

Construct Measurement

The measurement items used in this study were adapted from previous studies as shown in Table 1.1.

<table>
<thead>
<tr>
<th>Table 1.1 Measurement Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual effort (adapted from Hong, Thong, & Tam, 2004; Oh and Jasper, 2006)</td>
</tr>
<tr>
<td>IE1</td>
</tr>
<tr>
<td>IE2</td>
</tr>
<tr>
<td>IE3</td>
</tr>
<tr>
<td>Pre- and post-knowledge (adapted from Bhattacherjee and Sanford, 2006)</td>
</tr>
<tr>
<td>KN1</td>
</tr>
<tr>
<td>KN2</td>
</tr>
<tr>
<td>KN3</td>
</tr>
<tr>
<td>Involvement with the simulation game (adapted from Bhattacherjee and Sanford, 2006)</td>
</tr>
<tr>
<td>INV1</td>
</tr>
<tr>
<td>INV2</td>
</tr>
<tr>
<td>INV4</td>
</tr>
</tbody>
</table>
Table 1.1 Continued
Willingness to learn ERP systems (adapted from Davis et al., 1989)
Seven-point scales anchored with "strongly disagree" and "strongly agree"

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL1</td>
<td>I intend to learn about ERP systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL2</td>
<td>I predict that I will learn about ERP systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL3</td>
<td>I am willing to learn about ERP systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Analysis and Results

We used structural equation modeling (SEM) to analyze the proposed model. SEM is a flexible technique, applicable to both experimental and nonexperimental data (Kline, 2011). To conduct SEM, we used AMOS 22.0 because it enables us to simultaneously calculate the model parameters and it also takes into account measurement errors for each indicator, which improves its accuracy (Kline, 2011).

Measurement Model

Before analyzing the structural model, a confirmatory factor analysis (CFA) was conducted, in AMOS, to check the reliability and validity of the constructs. Composite reliability (CR) is commonly used to check the internal validity of the construct. Table 1.2 shows the CR values of the measurement items in the research model. All have CRs greater than .7, which is the normally agreed upon minimum value (Hair, Black, Babin, & Anderson, 2010). As shown in Table 1.2, average variance extracted (AVE) values are greater than .5, indicating that the model has convergent validity (Fornell & Larcker, 1981). Discriminant validity was assessed by the square root of AVE for each construct exceeding the construct’s correlations with other constructs (Chin, 1998). As demonstrated in Table 1.2, the construct’s discriminant validity can be concluded as acceptable.

Table 1.2 Confirmatory Factor Analysis Results

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Mean</th>
<th>SD</th>
<th>CR</th>
<th>AVE</th>
<th>Factor Loading Ranges</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Individual Effort</td>
<td>5.94</td>
<td>.97</td>
<td>.93</td>
<td>.81</td>
<td>.72–.86</td>
<td>.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Knowledge Update*</td>
<td>1.31</td>
<td>1.70</td>
<td>.85</td>
<td>.65</td>
<td>.88–.95</td>
<td>.44</td>
<td>.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Involvement</td>
<td>5.33</td>
<td>1.35</td>
<td>.94</td>
<td>.85</td>
<td>.87–.94</td>
<td>.33</td>
<td>.29</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td>(4) Willingness to Learn</td>
<td>5.01</td>
<td>1.46</td>
<td>.93</td>
<td>.81</td>
<td>.87–.94</td>
<td>.67</td>
<td>.34</td>
<td>.37</td>
<td>.90</td>
</tr>
</tbody>
</table>

*Knowledge Update = Difference between post-knowledge and pre-knowledge.

Bold values represented diagonally are square root of AVE.
To evaluate the results of the CFA, we checked several commonly used goodness-of-fit indices (Table 1.3). As can be seen in Table 1.3, all tested indices of the model for both measurement and structural models were satisfactory (Hair et al., 2010).

Table 1.3 Goodness-of-Fit Indices

<table>
<thead>
<tr>
<th></th>
<th>χ^2(DF)</th>
<th>χ^2/DF</th>
<th>GFI</th>
<th>AGFI</th>
<th>NFI</th>
<th>CFI</th>
<th>SRMR</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Model Fit Ranges</td>
<td></td>
<td><3.0</td>
<td>>.90</td>
<td>>.80</td>
<td>>.90</td>
<td>>.90</td>
<td><.09</td>
<td><.08</td>
</tr>
<tr>
<td>Measurement Model</td>
<td>64.08(48)</td>
<td>1.34</td>
<td>.94</td>
<td>.91</td>
<td>.96</td>
<td>.99</td>
<td>.036</td>
<td>.045</td>
</tr>
<tr>
<td>Structural Model</td>
<td>117.32(79)</td>
<td>1.19</td>
<td>.92</td>
<td>.88</td>
<td>.93</td>
<td>.98</td>
<td>.066</td>
<td>.054</td>
</tr>
</tbody>
</table>

Structural Model

We tested the hypothesized causal relationships among the constructs of the model. The created model yielded a good fit to the data (see Table 1.3). Figure 1.2 shows the path diagram for the model as well as the estimated standardized parameters for the causal paths, the square multiple correlations, and the level of significance of the constructs. The findings of this study support the conceptual model where all the hypotheses were supported.

On the path from individual effort to perceived knowledge update the coefficient is .30 ($p < .001$); to involvement the coefficient is .38 ($p < .001$). These coefficients, thus, support H1 and H2. The results indicate that knowledge update has significant effect on involvement ($\beta = .21; p < .01$) and on willingness to learn ($\beta = .20; p < .01$), which support H3 and H4. And finally, the relationship between involvement and willingness to learn is also significant with a positive coefficient of .58 ($p < .001$), supporting H5.
The structural model shows that individual effort explains 8.8% of the variance in perceived knowledge update, and those two variables together explain 23.9% of the variance in involvement. Lastly, 47.5% of the variation in willingness to learn was jointly explained by perceived knowledge update and involvement.

Discussion and Conclusion

Implications for Research

The results of this study contain several implications for researchers. The empirical findings demonstrate that employing perceived knowledge update and individual involvement would be a worthwhile extension of the ECM, as both were found to be influential in predicting behavioral intention of further learning. Specifically, alongside IS users’ belief (that is, perceived knowledge update), individual involvement has a strong influence on intentions.

Our findings add to the concept of belief updating by defining a new construct, which measures the variance between pre- and post-training knowledge. This way we recognize the role of knowledge update in the process of ERPsim training. Hence, a primary contribution of this study is that it extends the temporal notion of user’s perceptions, through defining and empirically testing the new concept of perceived knowledge update. Such an addition provides insights on the temporal change in user’s cognitions, as ECM discusses.

We made reference to the ELM to explain the effect of individual’s motivation and ability in processing the external information. By testing individual effort as the antecedent of knowledge update and involvement, we provide insight on how individuals who spend more cognitive resources and capabilities are likely to experience higher levels of knowledge update and involvement. These two constructs have been used in the study to represent the concept of elaboration likelihood, which suggests that people add something of their own to the specific information provided in the communication (Petty & Cacioppo, 1986).

Implications for Practice

ERP systems are typically complex in nature; hence, their users have to acquire new knowledge and skills to perform their jobs, presenting them with more challenges than those presented in legacy systems (Morris & Venkatesh, 2010). As a result, it is desirable for managers to encourage individuals with higher cognitive competencies to interact more with the system. On the basis of our findings, managers may consider adapting specific incentives and rewards for their target employees to motivate them to use higher levels of effort in learning the new systems. Higher effort will boost their self-knowledge perceptions and depth involvements, which in turn results in repeated learning and usage of the ERP system.
Further, to get the users excited about the new system and ensure its sustainability, it is important to design proper training courses that maximize the gap between learner’s pre- and post-knowledge about a new system at the post-adoption stage. In other words, recognizing the role of knowledge update, managers should expose employees to the levels of information, which considerably increases their post-training knowledge perceptions to enhance both involvement and continual usage behaviors. For example, by offering more customized and timely training courses for individuals who are classified based on their prior knowledge levels, through reactivation of cognitive effort, learners will experience a higher level of knowledge update and involvement intensities.

In the effectiveness of simulation game in learning, this study shows that ERP simulation could be a useful tool to develop interventions that improve user’s perceptions and attitudes. As the number of schools using ERP to integrate their business curricula is increasing (Cronan, Léger, Robert, Babin, & Charland, 2012), designers of similar simulation games should emphasize the features of the game that infuse high positive perceptions and beliefs, the factors that affect the success of a new system implementation in industry.

Limitations

Some limitations of the study should be noted. The study may lack external validity in the subjects and setting. We used student subjects from a large public university and conducted controlled lab experiments. Although student subjects likely represent the target population of the phenomenon being examined, additional studies with actual customers in real e-business environments are required to strengthen the generalizability of our findings. Second, we used self-reported measures to assess acquired knowledge and skills, which might be affected by self-presentation bias. However, such measures are frequently used in prior research mainly for practical reasons. Future research can use both perceived knowledge and objective knowledge (for example, examination) to measure knowledge. Third, we used Distribution Game because our sample had little knowledge of ERP systems. Future research might want to test our proposed model in other types of simulation game (for example, Beer Distribution Game).

Concluding Remarks

ERP systems hold great promise for generating organizational value, and simulation games play an important role in improving implementation outcome of such systems. However, our understanding of the process of knowledge change resulting from the training with the ERPsim games is still in its nascent stages. This work represents a step toward a better understanding of how and why the perceptions of knowledge update leverage success of ERP systems by encouraging individuals to continue learning it. Users may show more involvement in further learning if organizations design their trainings in a
way that the positive change between pre- and post-training knowledge levels maximizes. We hope that this research will contribute to efforts made to gain insight into design of IS training, their use, and ultimately their contribution to organizational success.

References

About the Authors

Mehdi Darban is a doctoral candidate in the area of Information Systems at Kent State University. His research interests are in IS Training, Enterprise Systems and Gamification, and human behavior in technology acceptance. mdarbanh@kent.edu.

Hongyan Liang is a doctoral candidate in the area of Operation Management at Kent State University. Her research interests are in Supply Chain Management, Inventory Management, Learning Curve Models, and Statistical Modeling of Production Systems. hliang@kent.edu

Dong-Heon (Austin) Kwak is an assistant professor of Management and Information System at Kent State University. He received his Ph.D. from University of Wisconsin-Milwaukee in 2014. His research and teaching interests are in Online Helping Behaviors, Charity Website Design, Persuasion, and Enterprise Systems and Gamification. dkwak@kent.edu

Mark Srite is an associate professor of Information Technology Management at University of Wisconsin-Milwaukee. His research is focused in the areas of technology acceptance across national cultures, the influence of emotions on group decision-making, and quantitative issues in information systems. He has taught courses on database management systems, telecommunications, quantitative methods, and information technology for managers. msrite@uwm.edu
Index

A

Absenteeism
- hostile environment and, 70, 74–77
 - data, 81–82
 - discussion, 83
 - *Lazarus Theory* and, 74–75
 - literature review, 71–74
- perceived organizational support for development (POSD) and, 96

Acquisti, A., 76

Administrative quality in PCQ, 196

Adopters, mobile app
- characteristics, 51–54, 62–63
- experience of, 55, 57–58
- information search effort, 53–57
- innovativeness, 52, 56, 62–63
- perceived complexity and, 57–58, 63–64
- research model, 55
- research questions and motivation, 54
- research results, 60–64
- resource constraint, 52, 56, 62–63
- survey methodology, 58–60
- technology self-efficacy, 53, 57, 62–63

Affective commitment, 91, 95–96, 99, 100–102

Agency for Healthcare Research and Quality, 196

Ahmad, S., 131

Ajzen, I., 52, 216

Allen, N. J., 95

Anderson, M. A. B., 214

Anderson, R. E., 35

Android, 50, 59. See also Mobile apps

Ante, S. E., 50

Antecol, H., 71

Apple app store, 50–51, 59. See also Mobile apps

Apple Watch, 49

Apps, mobile. See Mobile apps

Aral, S., 30

Area under receiver operating curve (AUC), 190–191

Armitage, G., 161

Assets, federal, 224–226

Attitudes toward behavior, 216–217

Average variance extracted (AVE), 11–12, 35–36, 37, 60–61, 137

Aycan, Z., 102

B

Bagozzi, R. P., 4, 57

Bandura, A., 8

Baron, R. M., 120, 149, 150

Barsade, S., 214

Bayesian information criterion (BIC), 161, 162

Bayesian networks (BNs), 187, 188, 190–191

Beaumont, P., 132

Becker, B. E., 93, 102, 129–130

Bedard, J. C., 174

Belief change process, 5

Bertolino, M., 102

Bhattacherjee, A., 29, 32

Bias, potential response and common method, 34

Bird, M. M., 157

Black, W. C., 35

Blackberry, 50. See also Mobile apps

BNs. See Bayesian networks (BNs)

Bootstrapping test, 120

Boudreau, J. W., 70, 96

Boundaryless career concept, 95–96

Bovey, W. H., 116

Bravo, J., 94, 101, 102

Bregman, R. L., 157

Brynjolfsson, E., 30

Bundy, Sandra, 72

Bundy v. Jackson, 72

Burlington Industries, Inc. v. Ellerth, 73–74

Burns, J. O., 157
Data

area under receiver operating curve (AUC), 190–191
average variance extracted (AVE), 11–12, 35–36, 37, 60–61, 137
Bayesian information criterion (BIC), 161, 162
cluster analysis, 155, 156, 161, 166
collection on mobile apps, 59–60
common method variance (CMV), 206
composite reliability (CR), 11–12, 35, 37
confirmatory factor analysis (CFA), 11–12, 200, 204
correct validity, 35
corporate ethical values, 148–150
Cronbach’s alpha, 80, 99, 199
discriminant validity, 35, 60
employee perceptions of organizational change, 119–120
ERP simulation game systems, 9–13
ERP systems integration, 31–38
exploratory factor analysis (EFA), 149, 203
hostile environment: sexual harassment, 78–82
Hunt-Vitell model, 162–166
instrument development and review, 58–59, 132–134
internal consistency reliability (ICR), 137
latent variable (LV) correlations, 60–61
Likert scales, 59, 133
marker-variable test, 118–119
measurement models, 34–36, 37
mobile app survey, 58–64
multilayer perceptron (MLP) networks, 187, 188, 189, 190–191
multiple regression analysis, 149, 150
National Health and Nutrition Examination Survey (NHANES), 190
operationalization of constructs of, 32–33
organizational change, 117–119
partial least square (PLS) analysis, 34, 136–138
path analysis, 81–82, 100–101
Pearson correlations, 200
perceived organizational support for development (POSD), 100–101
pilot tests, 199
potential response and common method bias, 34
Q-sort method, 133
reliability, 11–12, 35, 37, 60
root mean squared error (RMSE), 190
S&P 500 forecasting, 224–236
structural equation modeling (SEM), 11, 161, 164–165, 198
variance inflation factor (VIF), 35, 61
Davis, D., 214
Dean, J. W., Jr., 173
Deci, E. L., 95
Decision-making, ethical. See Ethical values, corporate
Deis, D. R., 174
Deming, E., 174
Deming, W. E., 196
DeSarbo, W. S., 161
Detert, J. R., 176
Development, employee, 131
Developmental culture, 178
Diabetes occurrence analytics
clinical decision support system (CDSS) and, 189
conclusions, 192
introduction to, 187–188
literature review, 188–189
model development, 190
results and discussion, 190–191
Dickson, M. A., 160
Dillman, D. A., 58, 60, 132
Discriminant validity, 35, 60
Dlay, S. S., 189
Dolan, C. V., 161
Dolvin, S., 224
Dowling, P. J., 132
Drasgow, F., 71

E

ECM. See Expectation-confirmation model (ECM)
E-commerce. See Mobile apps
Edmondson, A. C., 214
EFA. See Exploratory factor analysis (EFA)
Elaboration likelihood model (ELM), 6–7
implications for research, 13
Ellison, Kerry, 72–73
Ellison v. Brady, 72–73
ELM. See Elaboration likelihood model (ELM)
Employee development, 131
Employee evaluation, 131
Employee rewards, 131
Enron, 145
Enterprise resource planning (ERP) simulation game
 benefits of, 2
 construct measurement, 10
 contingent resource-based theory and, 23–24
 coordination improvement with, 29–30
 current performance, 28
 data analysis and results, 11
 discussion and conclusion, 13–15
 expectation-confirmation model (ECM) and, 3, 4
 individual effort positively associated with involvement with, 8
 introduction to, 1–3
 perceived knowledge update with, 4–5, 8–9
 research method, 9–13
 research model and hypotheses, 5–9
 structural model, 12–13
 task efficiency, 27
 theoretical background, 3
 willingness to learn and, 9
Enterprise resource planning (ERP) systems integration
 benefits of, 22–23, 24–25
 contingent resource-based theory and, 23–24
 control variables, 31
 coordination improvement with, 29–30
 current ERP performance and, 28
 data analysis and results, 34
 defined, 25–26
 discussion and implications, 38–42
 extent of ERP implementation and, 28–29
 impact on overall ERP benefit, 28–29
 introduction to, 21–23
 measurement model, 34–36, 37
 operationalization of constructs in studying, 32–33
 potential response and common method bias in studying, 34
 research methods, 31–38
 research model and hypotheses development, 26–31
 sample, 31–32
 structural model, 37–38
 task efficiency and, 27
 theoretical development, 23–26
Environmental conduct in global sourcing, 156–157, 164
Environmental quality in PCQ, 196–198, 199, 202, 203
Equal Employment Opportunity Commission (EEOC), 69–70, 71
Erez, M., 102
ERP. See Enterprise resource planning (ERP) simulation game
Ethical consumption
 conclusions and directions for future research, 166–167
 discussion of results, 162–166
 introduction to, 155–156
 research design, 160–161
 research foundations, 156–157
 research proposition and hypotheses, 157–160
Ethical values, corporate
 discussion and conclusion, 150–151
 firm performance and, 145
 introduction to, 145–146
 mediating effect of strategic flexibility on, 147
 mediating effect of top management’s leadership competence on, 147–148
 research methods, 148–149
 theoretical arguments and hypotheses, 146–148
 variables and measurements, 148–149
Evaluation, employee, 131
Evidence-based medicine, 215
EXP. See Experience (EXP)
Expectation-confirmation model (ECM), 3, 4
 implications for research, 13
 research model and hypotheses, 5–9
Expected cross-validity index (ECVI), 35
Experience (EXP), 62–63
 of adopters, 55, 57–58
 negative relationship between information search effort and, 55
 negative relationship between perceived complexity and, 57–58
 positive relationship between technical self-efficacy and, 57
Exploratory factor analysis (EFA), 149, 203–204

F
Facebook, 50
Faragher v. City of Boca Raton, 73–74
Federal assets, 224–226
Fedor, D. B., 1, 112, 118
Ferreira, A., 131
Fisher, C., 132
Fit perspective in quality management, 172–173
Fitzgerald, L. F., 71
Fletcher, B., 75
Flexibility, strategic, 147
Folkman, S., 115–116, 121
Forecasts, S&P 500 Index
data, 224–226
discussion and conclusions, 234–236
federal assets and, 224–226
impact of each variable in, 226–233
introduction to, 223–224
models and results, 226–233, 233–234
mortgage rates and, 224–226, 234–235
10-year notes in, 224–226, 234–235
training set used in, 228, 230–231, 235
Fraccaroli, F., 102
Fygenson, M., 52–53, 56
Gagliardi, A. R., 214
Gal, A., 214
Garnham, J., 132
Gartner Report, 21
Gattiker, T. F., 25, 27, 29, 39
Gelb, B. D., 161
Gelfand, M. J., 71, 102
General systems theory, 130
Gilbert, F. W., 160
Glick, W. G., 116
Global sourcing ethics
conclusions and directions for future research, 166–167
discussion of results, 162–166
introduction to, 155–156
research design, 160–161
research foundations, 156–157
research proposition and hypotheses, 157–160
Gohmann, S. F., 70
Goldstein, S. M., 131, 174–175
Goodhue, D. L., 25, 27, 29, 39
Google app store, 50, 59. See also Mobile apps
Google Glasses, 49
Gosling, S. D., 97
Grabski, S., 24–25
Gradous, D. B., 130
Gray, S., 72–73
Griffin, M. A., 116
Group culture, 176–177
Hair, J. F., Jr., 35
Han, Y., 224
Hardy, C., 73, 74
Harman, H. H., 148
Harrison, D., 116
Harris, Teresa, 73, 74
Harris v. Forklift Systems, Inc., 73, 74
Hede, A., 116
Herold, D. M., 1, 112, 118
Herscovitch, L., 100
Hicks, W. D., 93
Hierarchical culture, 177
Hoffman, D. L., 55
Hoppock job satisfaction measure, 100
Hostile environment: sexual harassment (HE:SH)
absenteeism and, 70, 74–77
discussion, 83
introduction to, 69–71
literature review, 71–74
research and managerial implications, 83–84
research methodology, 77–81
research results, 81–82
study limitations and areas for future research, 84
HRPM. See Human resource performance management (HRPM)
Hsu, M.-H., 4
Hu, Q., 34
Huber, G. P., 116
Huff, C., 77
Human capital, 92–93
Human resource performance management (HRPM)
data analysis, 136–138
data collection, 134–136
discussion and conclusion, 139–140
instrument and scale development, 132–134
introduction to, 129–130
measurement system transformation, 131–132
research methodology, 132–138
theoretical background and hypotheses development, 130–132
Hunt, S. D., 148, 157
Hunt-Vitell (H-V) framework, 156–166

I
Implementation of ERP systems
application integration and, 25–26
challenges, 22
expectation-confirmation model (ECM) and, 5–9
extent of, 28–29
immediate benefits from, 24–25
perceived knowledge and, 4–5, 8–9
Incremental approach to change, 113–114
Information search effort (ISE), 53–54
negative relationship between experience and, 55
negative relationship between innovativeness and, 56
negative relationship between risk tolerance and, 56–57
negative relationship between technical self-efficacy and, 57
positive relationship between perceived complexity and, 57
positive relationship between resource constraint and, 56
Innovativeness, 52, 62–63
negative relationship between information search effort and, 56
Integration, ERP-enabled. See Enterprise resource planning (ERP) systems integration
benefits of, 22–23, 24–25
contingent resource-based theory and, 23–24
control variables, 31
coordination improvement with, 29–30
current ERP performance and, 28
data analysis and results, 34
defined, 25–26
discussion and implications, 38–42
extent of ERP implementation and, 28–29
impact on overall ERP benefit, 30–31
introduction to, 21–23
measurement model, 34–36, 37
operationalization of constructs in studying, 32–33
potential response and common method bias in studying, 34
research methods, 31–38
research model and hypotheses development, 26–31
sample, 31–32
structural model, 37–38
task efficiency and, 27
theoretical development, 23–26
Internal consistency reliability (ICR), 137
Interpersonal quality in PCQ, 196, 197, 198, 199, 202, 203
IPhone, 50. See also Mobile apps
ISE. See Information search effort (ISE)

J
Jagpal H. S., 161
Jaworski, B. J., 6
Jedidi, K., 161
Jenkins, J. G., 174
Job satisfaction, 95–96. See also Perceived organizational support for development (POSD)
John, C. R., 111
Johnson, J. L., 2

K
Karahanna, E., 53
Karimi, J., 29, 32
Kaynak, H., 198
Kenny, D. A., 120, 149, 150
Ketchen, D. J., 93
Kiecker, P., 157
Kim, S. S., 5
Kitchell, S., 148
Klimoski, R. J., 93
Knowledge perceptions, 3
belief change process, 5
elaboration likelihood model, 6–7
individual effort associated with update to, 7, 8–9
self-efficacy theory and, 8
structural model, 12–13
updates with ERP, 4–5
willingness to learn and, 9
Knowledge sharing, clinical
attitudes toward, 216–217
conclusion, 220
evidence-based medicine and, 215
Oncale v. Sundowner Offshore Services, Inc., 73
Oracle e-business suites, 26
O'Reilly, C. A., 172–173
Organ, D. W., 34
Organizational change theories, 113–114
Organizational culture, 174–175
developmental, 178
group, 176–177
hierarchical, 177
market, 179
Otley, D., 131
Outsourcing industry, 122–123
Ovum Consulting, 50

P
Partial least square (PLS) analysis, 34, 136–138
Path analysis, 81–82, 100–101
Patient care quality (PCQ)
defined, 197
environmental quality in, 196–198, 199, 202, 203
introduction to, 195–196
literature review, 196–197
measures, 198, 199
pilot test, 199
research methods, 197–200
statistical analyses, 200
study discussion and conclusions, 205–206
study methods, 197–200
study results, 200–205
Patient-centered care, 216
Pavlou, P. A., 52–53, 56
PCQ. See Patient care quality (PCQ)
Pearson correlations, 200
Peer, E., 77, 97
Peng, D. X., 157
Pennsylvania State Police v. Suders, 74
Peralta, M., 55
Perceived behavioral control, 217
Perceived career opportunity (PCO), 94
Perceived complexity (CX), 57–58
mediating effects of, 63–64
Perceived ease of use (PEOU), 57
Perceived organizational support for
development (POSD)
benefits, 94
boundaryless career concept and, 95–96
discussion and conclusions, 101–103
formal training and development and its
limitations and, 93–94
human capital and, 92–93
introduction to, 91–92
literature review, 92–96
materials and procedures, 98–100
social exchange theory and, 95–96
study methodology, 96–100
study results, 100–101
theoretical development model, 95–96
Performance, ethical values and corporate, 145
Personorganization, 172
Pfeffer, J., 131
Pilot test, patient care quality, 199
Planned approach to change, 113
Podsakoff, P. M., 34
POSD. See Perceived organizational support for
development (POSD)
Poston, R., 24–25
Potential response bias, 34
Principal component analysis, 149
Project lifecycle management, 26
Psychological stressors, 74–75
Punctuated equilibrium model of change, 114
Pyles, M., 224

Q
QM. See Quality management (QM)
Q-sort method, 133
Quality management (QM)
competing values framework (CVF) and, 175
conclusions, 179–180
cultural fit and, 172–173
customer-focused, 179
high rate of failure in, 173
introduction to, 171–172
literature review, 172–175
organizational culture and, 174–175
practices fitting developmental culture, 178
practices fitting group culture, 176–177
practices fitting hierarchical culture, 177
practices fitting market culture, 179
propositions, 176–179
Quantitative easing, 223–224, 226
Quinn, R. E., 175
R
Rafferty, E. R., 116
Rao, A. A., 189
RC. See Resource constraint (RC)
Real-time information processing, 27
“Reasonable person” standard, 72–73
Reidenbach, R. E., 161
Reliability, composite, 11–12, 35, 37, 60
Resource constraint (RC), 52, 62–63
 negative relationship between risk tolerance and, 56
 positive relationship between information search effort and, 56
Rewards, employee, 131
Rhodes, R., 214
Risk tolerance (RT), 52–53, 62–63
 negative relationship between information search effort and, 56–57
 negative relationship between resource constraint and, 56
Roberts, J. A., 158, 160
Robin, D. P., 161
Robinson v. Jacksonville Shipyards, 73, 75
Rogers, E. M., 52, 57, 64
Rohrbaugh, J., 175
Root mean squared error (RMSE), 190
Root mean square error of approximation (RMSEA), 204
Roper Organization, 158
Ross, W. T., Jr., 161
RT. See Risk tolerance (RT)
Ryan, R. M., 95

S
Salesforce.com, 50
SAP ERP 6.0, 26
Saraf, N., 34
Schneider, B., 172
Schroeder, R. G., 131, 174–175, 176
Schwarz, G., 161
Seddon, P. B., 25
Seibert, S. E., 94, 101, 102
Selective hiring, 131
Self-efficacy theory, 8
 technology and, 53, 57, 62–63
Serfling, M., 224
Service-oriented architecture (SOA), 26
Sessa, V. I., 93
Sexual harassment. See Hostile environment:sexual harassment (HE:SH)
Shang, R., 161
Shang, S., 25
Sharing, knowledge. See Knowledge sharing, clinical
Sherbet, G. V., 189
Simulation game. See Enterprise resource planning (ERP) simulation game
Singhapakdi, A., 157
Sirgy, M., 157
Situated cognition, 2, 7
Six Sigma, 173–174
Skewness, 226
Smollan, R. K., 117
Smyth, J. D., 58, 60
Snell, S. A., 173
Sobel test, 120
Social exchange theory, 95–96
Somers, T. M., 29, 32
Soni, A., 25
Sourcing ethics. See Global sourcing ethics
S&P 500. See Forecasting, S&P 500
S&P 500 Index. See Forecasts, S&P 500
Spencer, B. A., 176
Spreitzer, G. M., 175
Sridhar, G. R., 189
Stanley, D. J., 100, 117
Stein, P., 161
Stressors, 74–75
Structural equation modeling (SEM), 11, 161, 164–165, 198
Subjective norms, 217
Suders, N., 74
Suls, J., 75
Sun, P.-C., 4
Sun, S.-Y., 4
Supply chain management (SCM), 26
 current ERP performance and, 26
 global sourcing ethics and, 167
Supply chains, global. See Ethical consumption
Sutcliffe, K. M., 116
Swanson, R. A., 130
Sykes, T. A., 2
TAM. See Technology acceptance model (TAM)
Task efficiency, 27
Task-technology fit (TTF) model, 56–57
Tatham, R. L., 35
Taylor, S., 52
TCE. See Transaction cost economics (TCE)
Technical quality in PCQ, 195, 196, 197, 198, 199, 200, 202, 203
Technical self-efficacy (TS), 53, 62–63
mediating effects of, 63–64
negative relationship between information search effort and, 57
negative relationship between perceived complexity and, 57–58
Technology acceptance model (TAM), 4–5, 9, 57
10-year notes, 224–226, 234–235
Teo, T. S. H., 32
Thacker, R. A., 70
Theory of cognitive appraisal, 74–75
Theory of planned behavior (TPB), 52, 216, 217–218
Theory of reasoned action, 9, 52, 217
Thomas, J. L., Jr., 157, 160
Thong, J. Y. L., 157, 159
Todd, P. A., 52
Todd, S. Y., 93
Top management leadership competence, 147–148
Topolnytsky, L., 100, 117
Total quality management (TQM), 174
TPB. See Theory of planned behavior (TPB)
Training. See also Perceived organizational support for development (POSD)
formal, 93–94
simulation (See Enterprise resource planning (ERP) simulation game)
Transaction cost economics (TCE), 54
Truxillo, D. M., 102
TS. See Technical self-efficacy (TS)
Tucker-Lewis index (TLI), 204
Turnover intentions, 115, 116–117

U
Ubiquity of hostile environment. See Hostile environment:sexual harassment (HE:SH)
Uryasev, S., 224

V
Valentine, M. A., 214
Validity
construct, 35
covariance, 35, 60
discriminant, 35, 60
Van der Maas, H. L. J., 161
Variance inflation factor (VIF), 35, 61
Vasquez-Parraga, A. Z., 157
Venkataramanan, M. A., 25
Venkatesh, V., 2
VIF. See Variance inflation factor (VIF)
Vinson, M., 72
Vitell, S. J., 157
Vosgerau, J., 77

W
Warshaw, P R., 4, 57, 76
Wayne, S. J., 94, 101, 102
Wei, C. C., 28
Williams v. Saxbe, 72
Williamson, O. E., 54
Willis, T. H., 28, 30
Willis-Brown, A. H., 28, 30
Windows phone, 50. See also Mobile apps
Woo, W. L., 189
Wood, V. R., 148
Wright, F. C., 214
Wu, D. J., 30

X
Xu, P., 224
Xu, S. X., 27
Xue, Y., 34

Y
Yahoo Finance, 224
Yang, J., 224
Yap, C., 157, 159

Z
Zhang, H., 24