Microwave Circuit Design
This page intentionally left blank
Microwave Circuit Design

A Practical Approach Using ADS

Kyung-Whan Yeom
To my wife Cho Soon-Duk (조순덕)
and son Yeom Jae-Hyung (염재형)
This page intentionally left blank
Contents

Preface xiii
Acknowledgments xv
About the Author xvii

Chapter 1 Microwave Integrated Circuits 1
 1.1 Classification of Microwave Integrated Circuits 1
 1.2 Microwave Circuits in a Communication System 6
 1.3 Summary 9

Chapter 2 Passive Devices 11
 2.1 Impedances 11
 2.2 Classification 12
 2.3 Equivalent Circuits 16
 2.3.1 Chip-Type Capacitors 16
 2.3.2 Chip-Type Inductors 19
 2.3.3 Chip-Type Resistors 21
 2.4 Impedance Measurements 22
 2.5 Summary 26

Chapter 3 Transmission Lines 29
 3.1 Introduction 29
 3.2 Parameters 30
 3.2.1 Phase Velocity 30
 3.2.2 Wavelength 35
 3.2.3 Characteristic Impedance 37
 3.2.4 Measurements 39
 3.3 Coaxial and Microstrip Lines 40
 3.3.1 Coaxial Line 40
 3.3.2 Microstrip Line 44
3.4 Sinusoidal Responses 50
3.4.1 Phasor Analysis 50
3.4.2 Reflection and Return Loss 52
3.4.3 Voltage Standing Wave Ratio (VSWR) 54
3.4.4 Smith Chart and Polar Chart 57

3.5 Applications 60
3.5.1 Short-Length Transmission Line 60
3.5.2 Resonant Transmission Line 60
3.5.3 Two-Port Circuit Application 69

3.6 Discontinuities 76
3.6.1 Open-End Microstrip 76
3.6.2 Step and Corner Discontinuities 78
3.6.3 T-Junction and Cross Junction 79

3.7 Summary 80

Chapter 4 S-parameters and Noise Parameters 87
4.1 S-parameters 87
4.1.1 Voltage S-Parameter Definition 88
4.1.2 Definitions and Properties of S-Parameters 95
4.1.3 Ports and S-Parameter Simulation 97
4.1.4 S-Parameter Conversion 99
4.1.5 Shift of Reference Planes 103
4.1.6 Insertion Loss and Return Loss 108
4.1.7 Input Reflection Coefficient 110

4.2 Noise Parameters 112
4.2.1 Expression of Internal Noise 112
4.2.2 Representation of Noise Signals 113
4.2.3 Noise Figure 122
4.2.4 Expression of Noise Parameters 124
4.2.5 Frii’s Formula 133
4.2.6 Measurement of Noise Figure and Noise Parameters 136

4.3 File Formats 140

4.4 Summary 142

Chapter 5 Introduction to Microwave Active Devices 149
5.1 Introduction 149
5.2 Field Effect Transistor (FET) 151
5.2.1 GaAs MESFET 152
5.2.2 Large-Signal Equivalent Circuit 154
5.2.3 Simplified Small-Signal Equivalent Circuit and S-Parameters 157
5.2.4 Package 159
5.2.5 GaAs pHEMT 161

5.3 Bipolar Junction Transistor (BJT) 162
5.3.1 Operation of an Si BJT 162
5.3.2 Large-Signal Model of a BJT 165
5.3.3 Simplified Equivalent Circuit and S-Parameters 168
5.3.4 Package 171
5.3.5 GaAs/AlGaAs HBT 172
Chapter 5 DC-Bias Circuits 173
 5.4.1 BJT DC-Bias Circuits 173
 5.4.2 FET DC-Bias Circuit Design 177
 5.4.3 S-Parameter Simulation 178

Chapter 5 Extraction of Equivalent Circuits 181
Chapter 5 Summary 195

Chapter 6 Impedance Matching 201
 6.1 Introduction 201
 6.2 Maximum Power Transfer Theorem 202
 6.3 Discrete Matching Circuits 205
 6.3.1 Series-to-Parallel Conversion 205
 6.3.2 L-Type Matching Circuit 207
 6.3.3 A π-Type Matching Circuit 212
 6.3.4 T-Type Matching Circuit 214
 6.3.5 Double L-Type Matching Circuit 216
 6.3.6 Matching Circuit Design for a General Source Impedance 217
 6.4 Transmission-Line Matching Circuits 219
 6.4.1 Single-Stub Tuner 219
 6.4.2 Impedance Inverter 223
 6.5 Summary 224

Chapter 7 Simulation and Layout 227
 7.1 Simulation in ADS 227
 7.2 Circuit Simulations 230
 7.2.1 Classification of Circuit Simulations 230
 7.2.2 DC Simulation 230
 7.2.3 Transient Simulation 234
 7.2.4 AC Simulation 237
 7.2.5 Harmonic Balance Simulation 239
 7.2.6 Multi-Tone Harmonic Balance 243
 7.2.7 Optimization 246
 7.3 Layout 248
 7.3.1 Layout Example 250
 7.3.2 Layer Preparation for Layout 250
 7.3.3 Layout Units and Grid Set 253
 7.3.4 Outline Setting 254
 7.3.5 Component Layout 256
 7.3.6 Layout Using Components 262
 7.4 Momentum 264
 7.4.1 Theory 264
 7.4.2 Settings and EM Simulation 267
 7.5 Summary 276

Chapter 8 Low-Noise Amplifiers 279
 8.1 Introduction 279
 8.2 Gains 281
 8.2.1 Definition of Input and Output Reflection Coefficients 281
8.2.2 Thevenin Equivalent Circuit 282
8.2.3 Power Gains 286
8.3 Stability and Conjugate Matching 292
 8.3.1 Load and Source Stability Regions 293
 8.3.2 Stability Factor 296
 8.3.3 Conjugate Matching 301
8.4 Gain and Noise Circles 306
 8.4.1 Gain Circles 306
 8.4.2 Noise Circles 308
8.5 Summary of Gains and Circles 311
 8.5.1 Summary of Gains 311
 8.5.2 Summary of Circles 312
8.6 Design Example 314
 8.6.1 Design Goal 314
 8.6.2 Active Device Model 314
 8.6.3 Device Performance 315
 8.6.4 Selection of Source and Load Impedances 319
 8.6.5 Matching Circuit Design 322
 8.6.6 DC Supply Circuit 330
 8.6.7 Stability 333
 8.6.8 Fabrication and Measurements 336
8.7 Summary 345

Chapter 9 Power Amplifiers 351
9.1 Introduction 351
9.2 Active Devices for Power Amplifiers 355
 9.2.1 GaN HEMT 356
 9.2.2 LDMOSFET 360
9.3 Optimum Load Impedances 361
 9.3.1 Experimental Load-Pull Method 362
 9.3.2 Load-Pull Simulation 365
9.4 Classification 374
 9.4.1 Class-B and Class-C Power Amplifiers 377
 9.4.2 Class-D Power Amplifiers 386
 9.4.3 Class-E Power Amplifiers 390
 9.4.4 Class-F Power Amplifiers 398
9.5 Design Example 410
 9.5.1 Optimum Input and Output Impedances 412
 9.5.2 Input and Output Matching Circuits 418
 9.5.3 Design of Matching Circuits Using EM Simulation 424
9.6 Power Amplifier Linearity 432
 9.6.1 Baseband Signal Modulation 434
 9.6.2 Envelope Simulation 438
 9.6.3 Two-Tone and ACPR Measurements 446
 9.6.4 EVM Simulation 453
Chapter 9 Composite Power Amplifiers 455
 9.7.1 Predistorters 455
 9.7.2 Feedforward Power Amplifiers (FPA) 461
 9.7.3 EER (Envelope Elimination and Restoration) 462
 9.7.4 Doherty Power Amplifier 462
9.8 Summary 473

Chapter 10 Microwave Oscillators 479
10.1 Introduction 479
10.2 Oscillation Conditions 480
 10.2.1 Oscillation Conditions Based on Impedance 481
 10.2.2 Oscillation Conditions Based on the Reflection Coefficient 492
 10.2.3 Start-Up and Equilibrium Conditions Based on Open-Loop Gain 500
10.3 Phase Noise 506
 10.3.1 Spectrum of an Oscillation Waveform 506
 10.3.2 Relationship between Phase Noise Spectrum and Phase Jitter 508
 10.3.3 Leeson’s Phase Noise Model 509
 10.3.4 Comparison of Oscillator Phase Noises 514
10.4 Basic Oscillator Circuits 515
 10.4.1 Basic Oscillator Circuits 515
 10.4.2 Conversion to Basic Forms 520
 10.4.3 Design Method 525
10.5 Oscillator Design Examples 534
 10.5.1 VCO for Mobile Communications 534
 10.5.2 Microstrip Oscillator 544
10.6 Dielectric Resonators 552
 10.6.1 Operation of Dielectric Resonator (DR) 552
 10.6.2 Extraction of the Equivalent Circuit of a DR Coupled to a Microstrip 557
10.7 Dielectric Resonator Oscillators (DRO) 560
 10.7.1 DRO Design Based on Replacement 560
 10.7.2 Dielectric Resonator Oscillator Design Using Feedback 562
 10.7.3 Comparison between the Two DRO Design Methods 576
10.8 Summary 576

Chapter 11 Phase-Locked Loops 581
11.1 Introduction 581
11.2 Configuration and Operation of a PLL 582
11.3 PLL Components 590
 11.3.1 Phase Detector 591
 11.3.2 Frequency Divider 600
11.4 Loop Filters 606
 11.4.1 Loop Filter 606
 11.4.2 Second-Order Loop Filters 608
 11.4.3 Implementation of a Second-Order Loop Filter 611
 11.4.4 Measurement of a PLL 612
 11.4.5 Higher-Order Loop Filters 616
<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>PLL Simulation in ADS</th>
<th>625</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5.1</td>
<td>Loop Filter Synthesis</td>
<td>626</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Phase Noise Simulation</td>
<td>627</td>
</tr>
<tr>
<td>11.5.3</td>
<td>Transient Response Simulation</td>
<td>630</td>
</tr>
<tr>
<td>11.6</td>
<td>Summary</td>
<td>634</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Mixers</th>
<th>639</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>639</td>
</tr>
<tr>
<td>12.2</td>
<td>Specifications</td>
<td>640</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Conversion Loss and 1-dB Compression Point</td>
<td>640</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Mixer Isolation and VSWR</td>
<td>642</td>
</tr>
<tr>
<td>12.3</td>
<td>Schottky Diodes</td>
<td>652</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Structure of the Schottky Diode</td>
<td>652</td>
</tr>
<tr>
<td>12.3.2</td>
<td>The Schottky Diode Package</td>
<td>656</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Operating Principle of the Schottky Diode</td>
<td>658</td>
</tr>
<tr>
<td>12.4</td>
<td>Qualitative Analysis</td>
<td>664</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Single-Ended Mixer (SEM)</td>
<td>667</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Single-Balanced Mixer</td>
<td>681</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Double-Balanced Mixer (DBM)</td>
<td>694</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Comparison of Mixers</td>
<td>703</td>
</tr>
<tr>
<td>12.5</td>
<td>Quantitative Analysis of the SEM</td>
<td>704</td>
</tr>
<tr>
<td>12.5.1</td>
<td>LO Analysis of a Mixer</td>
<td>704</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Small-Signal Analysis</td>
<td>707</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Calculation of Mixer Parameters</td>
<td>714</td>
</tr>
<tr>
<td>12.6</td>
<td>Summary</td>
<td>720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th>727</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Units</td>
</tr>
<tr>
<td>B.</td>
<td>Cascaded Structure</td>
</tr>
<tr>
<td>C.</td>
<td>Half-Wave Rectifier Analysis Using Mathcad</td>
</tr>
<tr>
<td>D.</td>
<td>Large-Signal Impedance and Reflection Coefficient</td>
</tr>
<tr>
<td>E.</td>
<td>Mathematical Analysis of Negative Resistance</td>
</tr>
<tr>
<td>F.</td>
<td>Oscillation Conditions Based on Reflection Coefficients</td>
</tr>
</tbody>
</table>

| Index | 759 |
Preface

This book primarily examines active microwave circuit design, an important part of microwave engineering. This subject has worldwide appeal given the incredible growth in mobile and satellite communications. In the past, the use of microwaves was limited to radars and weapon systems, and to remote sensing and relay systems. However, due to the rapid expansion of mobile and satellite communication systems in recent years, systems that use radio waves or microwaves can be found in almost every sphere of our lives. Thus, it is clear there is an increased need for educational materials about active microwave circuit designs. This text is intended as a guide for graduate students who have majored in electronic engineering and its related fields. It should also be useful to engineers and professionals working in these fields who want to update their knowledge through independent study.

In writing this guide, I make the assumption that readers have majored in electronics or related fields as undergraduate students. In particular, readers are assumed to have the prerequisite knowledge of circuit theory, electronic circuits, and electromagnetics, which are usually covered in mandatory courses at the undergraduate level.

Numerous books have been published on the subject of active microwave circuit design. However, many of these works do not present the hands-on approach required in modern curricula, making it difficult for readers who only have the basic prerequisite knowledge mentioned above, to understand and follow such texts. For these readers, practical design skills may be hard to acquire by simply reading a text that presents only theory based primarily on mathematical explanations. On the other hand, most people working in this field have become familiar with the prevalence of design software employed in active microwave circuit designs, such as the Advanced Design System (ADS) from Agilent Technologies and Advancing the Wireless Revolution (AWR) from AWR Corporation. The design environment for active microwave circuits has changed drastically with the continuous expansion of microwave applications into our daily lives. Recently, a variety of software design tools applicable to circuit design, system design, and electromagnetic analysis of passive structures has emerged. This has significantly reduced the need for analytical methods and specific design-oriented, in-house programs for the design of circuits and systems. With these advances, the rapid exchange of results between designers has facilitated independent study and experimentation with basic concepts using software tools and practical designs. Clearly, innovations in the field underscore the necessity for advanced education in active microwave circuit design and improvements to relevant software tools. The practical design skills for active microwave circuit designers can be effectively improved through hands-on practice with design software. More than ever, the importance of ongoing education to an engineer in this field cannot be overemphasized.
Given this perspective, it is my view that an education incorporating these features has become imperative. With more than 17 years of experience educating graduate students, I have written this guide to address the critical importance of this subject. With this book, readers will acquire the practical skills required for active microwave circuit design using the design software. The popular Advanced Design System (ADS) from Agilent Technologies is the design tool used in the book as it has the longest proven track record compared to other design software. However, since most features of ADS are also available in other, similar design software, I believe that selecting ADS as the design tool will not present any critical limitations to readers.

This book is primarily composed of two parts: basic concepts for active microwave circuit designs, and practical design examples such as low-noise amplifiers (LNA), power amplifiers (PA), microwave oscillators, phase-locked loops (PLL), and mixers. The designs of LNAs, PAs, oscillators, and mixers are essential in building various communication systems, radars, and other microwave transmitting and receiving systems. Additional components such as phase shifters, variable attenuators, and switches, although important, appear only in limited applications and are not used as frequently when compared to the previously mentioned set of components.

The basic concepts are concisely and clearly explained based on their physical characteristics. These concepts, essential in an introduction to an active microwave circuit design course, include passive devices, transmission-line theory, high-frequency measurement, and an introduction to active devices. For these basic concepts, this book focuses more on physical concepts and on understanding the meaning of calculated results rather than on exhaustive mathematical calculations. This is achieved by presenting critical concepts as clearly and succinctly as possible. In addition, complex calculations are avoided whenever possible and Agilent’s ADS is employed to replace them. The software is used to analyze or verify the basic concepts, enabling readers to achieve a deeper and more thorough understanding of them. Pertinent, real-world examples facilitate comprehension and independent study.

For the design of LNAs, PAs, oscillators, and mixers, readers are provided with practical design examples using ADS that they can subsequently use to design similar active microwave circuits. I am confident this book will provide readers with the practical skills necessary for active microwave circuit design. Finally, although the book is designed for graduate students, it can also be very helpful as source material for independent study or as a reference book for professionals.

The text is composed of materials that provide a two-semester course curriculum. Depending on the students, this can be reduced to a one-semester course when the foundation topics in the first part of the book are skipped or covered only briefly. For the design of LNAs, PAs, oscillators, and mixers, a project-style lecture may be useful. (After a brief explanation of the basic design components, students establish a lecture style and present their design.) A solution manual is available for instructors at Pearson’s Instructor’s Resource Center (IRC). I welcome and appreciate any corrections or suggestions for improvement to this content.

Register your book at informit.com/title/9780134086781 to access this book’s ADS examples and problems.

Kyung-Whan Yeom
April 2015
Acknowledgments

I am very grateful to my lab students for their efforts editing many of the figures and the contents of this textbook. Also, I would like to thank the Prentice Hall staff, and particularly Bernard Goodwin, for their support. I would especially like to express my deep appreciation to the reviewers for evaluating this text and offering valuable suggestions. Finally, I would like to thank my wife, Soon-Duk Cho, and son, Jae-Hyung Yeom, for their tolerance and support, which allowed me to write this book.

Reviewers
Professor Changzhi Li (Texas Tech University); Full text
Professor Jin Wang (University of South Florida); Full text
Dong-Wook Kim (Chungnam National University, Korea); Chapter 9, 10
Professor Matthew Radmanesh (California State University, Northridge); Chapter 9
Anonymous reviewer; Chapter 9

Translation
Abdul-Rahman Ahmed (Chungnam National University, Korea)

LNA Design Example
Hyun-Seok Oh (Agency for Defense Department, Korea) and Dong-Hyun Lee

Oscillator Design Example
Hae-Chang Jeong and Beom-Ik Son (Chungnam National University, Korea)

Mixer Simulation
Seong-Sik Yang (Samsung Thales, Korea)

Preparation of Manuscript and Figures
Hyun-Mi Kim(KOMSCO, Korea)
Man-Hee Lee (LIG Nex1, Korea)
Hyun-Seok Oh (Agency for Defense Department, Korea)
Yun-Seong Heo (Hanhwa, Korea)
Hae-Chang Jeong (Chungnam National University, Korea)
Beom-Ik Son (Chungnam National University, Korea)
Seok-Jeong Lee (Chungnam National University, Korea)
Kyung-Whan Yeom was born in Seoul, Korea, in 1957. He received a B.S. degree in electronics from Seoul National University in 1980 and M.S. and Ph.D. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 1982 and 1988, respectively.

From 1985 to 1991, he worked at LG Precision as a principal engineer. He worked on the MIC team as a team leader and was later involved in the military electronics division for EW Equipment. When he was at LG Precision, he received a technical achievement award for the ABEK program from Teledyne Microelectronics.

From 1991 to 1995, he worked at LTI on power amplifier modules for analog cellular phones. He joined the Chungnam National University as assistant professor in 1995 and is currently a professor in the Department of Radio Science and Engineering, Chungnam National University, Daejeon, Korea. His research interests are in the design of hybrid and monolithic microwave circuits and microwave systems.

Professor Yeom has been a member of the Korean Institute of Electromagnetic Engineering and Science (KIEES) and the Institute of Electrical and Electronics Engineers (IEEE) since 1995. He was the editor-in-chief of KIEES from 2004 to 2006. He received the IR-52 Jang Youg-Sil Prize from the Ministry of Science and Technology (MOST) of Korea for his work on cell phone power amplifiers in 1994. He received an academic award from KIEES for the design and fabrication of a novel 60 GHz GaAs pHEMT resistive double balanced star MMIC mixer in 2004. He also received the best paper award from the Korean Federation of Science and Technology Societies (KOFST) for his work, “A Novel Design Method of Direct Coupled Bandpass Filter Based on EM Simulation of Individual Resonator.”

1.1 CLASSIFICATION OF MICROWAVE INTEGRATED CIRCUITS

An active microwave circuit can be defined as a circuit in which active and passive microwave devices such as resistors, capacitors, and inductors are interconnected by transmission lines. At low frequencies, the transmission lines are a simple connection; however, at microwave frequencies they are no longer just simple connections and their operation becomes a complicated distributed circuit element. As a result, a microwave integrated circuit’s classification is based on the fabrication method of the transmission lines used for interconnection.

There are various types of transmission lines in microwave integrated circuits; some common examples are waveguides, coaxial, and microstrip lines. Figure 1.1 shows the transmission lines used in microwave circuits. Although there are special cases of microwave integrated circuits that are composed of coaxial lines and waveguides, in most cases the microwave integrated circuits are formed using planar transmission lines. Therefore, the content of this book is restricted to microwave integrated circuits formed using planar transmission lines, examples of which are microstrip, slot line, and co-planar waveguide (CPW), as shown in Figure 1.2. These planar transmission lines are frequently used in the large-scale production of microwave circuits and generally form the basic transmission lines for microwave circuits.
The implementation of planar transmission lines on substrates can be classified into two basic groups: monolithic and hybrid integrated circuits. In monolithic integration, the active and passive devices as well as the planar transmission lines are grown in situ on one planar substrate that is usually made from a semiconductor material called a wafer.

Figure 1.3 shows an example of monolithic integration. Figure 1.3(a) is a photograph of the top side of a wafer and Figure 1.3(b) shows a single monolithic microwave integrated circuit on the wafer (28 GHz GaAs pHEMT Gilbert cell up-converting mixer; refer to Chapter 12).
1.1 Classification of Microwave Integrated Circuits

circuit; the identical circuits are repeatedly produced on the wafer in Figure 1.3(a). The monolithic microwave integrated circuit in Figure 1.3(b) is found to contain active and passive devices, and planar transmission lines. The monolithic integration provides a compact-sized circuit and eliminates a significant amount of assembly when building a component or a system. Especially because size is of critical importance in most recent RF systems, monolithic integration is frequently employed to provide a compact component. An advantage of monolithic integration is that it is well suited for large-scale production, which results in lower costs. A disadvantage is that monolithic integration takes a long time to develop and fabricate, and small-scale production results in highly prohibitive costs.

Hybrid integration is a fabrication method in which the transmission lines are implemented by conductor patterns on a selected substrate with either printing or etching, and active and passive devices are assembled on the patterned substrate by either soldering or wire bonding. When implementing transmission lines by conductor patterns on a substrate, careful consideration must be given to the substrate material and the conductor material for the transmission lines because these materials can have significant effects on the characteristics of transmission lines. Hybrid integration is thus classified into three types based on the method by which the lines are formed on the substrate: a printed circuit board (PCB), a thick-film substrate, and a thin-film substrate.

Figure 1.4 shows an example of how connection lines are formed on a PCB substrate. Both sides of the dielectric material are attached with copper cladding that is then etched to obtain the desired conductor patterns. For PCB substrate materials, epoxy fiberglass (FR4), teflon, and duroid are widely used. FR4 substrate (a kind of epoxy fiberglass) can be used from lower frequencies to approximately 4 GHz, while teflon or duroid can be used up to the millimeter wave frequencies, depending on their formation. Generally, all these materials lend themselves to soldering while wire bonding for an integrated circuit assembly is typically not widely used. Furthermore, compared with other methods that will be explained later, a PCB can result in lower costs; its fabrication is easy and requires less time to produce. In addition, production on a small scale is possible without the use of expensive assembly machines; it is easy to fix and could also be used in large-scale production, and is thus widely used.

Figure 1.4 A photograph of epoxy fiberglass PCBs. The PCBs on the left are for the X-band and 2 GHz frequency synthesizers using the phase locked loop. The PCB on the right is for the VHF automatic identification system, which has a similar block diagram shown in Figure 1.7. The power amplifier is implemented in a separate block.
Thick-film substrates are produced by screen-printing techniques in which conductor patterns are formed by pushing conductive paste on a ceramic substrate through a patterned screen and then firing printed conductor patterns. The substrate is called thick film because the patterns formed by such techniques are generally much thicker than those formed using thin-film techniques. As a benefit of using screen-printing techniques, multiple screen printings are possible. Dielectric or resistor patterns can also be formed by similar screen-printing techniques using dielectric or resistor pastes. Using an appropriate order of multiple screen printings, it is also possible to form capacitors and resistors on the ceramic substrate. Since the ceramic substrate is more tolerant of heat, it is easy to assemble active devices in the form of chips. On the other hand, considering the lines and patterns formed by this process, the pattern accuracy of thick film is somewhat inferior compared to that of thin film. The costs and development time, on a case-by-case basis, are somewhere between those of the PCB and thin-film processes. Recently, however, the integration based on thick-film technology has become rare because its cost and pattern accuracy are between the PCB and thin-film technology, while thick film is widely used to build multifunction components. A typical example is the package based on LTCC (low-temperature co-fired ceramics) technology. Multilayer ceramics and structuring are possible in LTCC technologies. Figure 1.5 shows a photograph of thick-film patterned substrates fabricated using the thick-film process.

![Figure 1.5](image)

Figure 1.5 A photograph of substrates fabricated by the thick-film process. Identical circuits can be arrayed for efficient production. This circuit is for the mobile communication VCO presented in Chapter 10.

The thin-film technique is very widely used in the fabrication of microwave circuits for military and microwave communication systems. In the case of the thin-film process, a similar ceramic substrate material used in thick film is employed, but compared to the thick-film substrate, a fine surface-finish substrate is used. The most widely used substrate is 99% alumina (Al₂O₃). Other substrates such as fused silica, quartz, and so on are possible for conductor-pattern generation based on thin-film technologies. The pattern

formation on the substrate is created with a photolithographic process that can produce fine tracks of conductor patterns similar to those in a semiconductor process. Since the thin-film substrate is also alumina as in the case of a thick-film substrate, the assembly of semiconductor chips using wire bonding is possible. Thin film compared with PCB and thick film is more expensive, and due to the requirement of fine tracks, a mask fabrication is necessary and the process generally takes longer. Passive components such as resistors and air-bridge capacitors can be implemented using this process. In addition, integrated circuits produced by the thin-film process require special wire bonders and microwelding equipment for assembly. Compared to the monolithic integration process, the thin-film process tends to be cheaper in terms of cost, but compared to MMIC, the assembled circuit using the thin-film patterned substrate is difficult to characterize precisely because of unknown or poorly described parasitic circuit elements associated with the assembly methods such as wire bonding and die attach. Before the emergence of MMICs (monolithic microwave integrated circuits), thin-film technology was the conventional method for building microwave-integrated circuits (MICs). Figure 1.6 is a photograph of thin-film circuits fabricated with the thin-film technique.

Figure 1.6 A photograph of substrates produced by the thin-film process. From top left to bottom right, they are filter, phase shifter, power amplifier (presented in Chapter 9), path-switching circuit by assembly, power divider, and 50 Ω lines.

The choice of integration method depends on the application and situation, taking into account several factors mentioned previously, such as the operating frequency of the integrated circuit, the types of semiconductor components (chip or packaged), the forms of the passive components, large-scale fabrication costs, and method of assembly. These factors should all be considered when selecting the optimum method of integration. For a description of microwave-patterned substrate fabrication, assembly with wire bonding and soldering, and packaging, see reference 1 at the end of this chapter. The book provides general information about microwave-circuit fabrications. Table 1.1 provides a comparison of the hybrid integrations described previously.
Table 1.1 Comparison of hybrid integration

<table>
<thead>
<tr>
<th>Technology</th>
<th>Cost</th>
<th>Fabrication Time</th>
<th>Pattern Accuracy</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB</td>
<td>Low</td>
<td>Short</td>
<td>Low</td>
<td>Soldering</td>
</tr>
<tr>
<td>Thick film</td>
<td>Middle</td>
<td>Middle</td>
<td>Low</td>
<td>Soldering and wire bonding</td>
</tr>
<tr>
<td>Thin film</td>
<td>High</td>
<td>Long</td>
<td>Fine</td>
<td>Soldering and wire bonding</td>
</tr>
</tbody>
</table>

Now we will consider the application of the planar transmission lines such as microstrip, slot, and CPW to the monolithic and hybrid integration technologies. Microstrip lines are the most widely used transmission lines for both monolithic and hybrid integration technologies. In microstrip lines, the top conductor pattern is usually connected to the ground by a through hole or a via hole. Thus, the back-side process for the through-hole or via-hole fabrication is essential to building a circuit based on microstrip lines. This back-side process is inconvenient especially in the monolithic integration. In hybrid integration, the holes can be fabricated through simple mechanical drilling for a PCB case and through laser or ultrasonic drilling for thick- and thin-film cases. Then, plating the fabricated holes completes the fabrication of a through or via hole. However, to fabricate via holes in monolithic integration, a wafer that typically has a normal thickness of about 600 µm should be polished down to about 100 µm thickness. Current technology does not support via-hole fabrication beyond 100 µm. In Figure 1.2, we can see that the CPW and slot lines do not need the back-side metallic ground and they eliminate the need for any additional back-side metallization process. The CPW is very helpful in monolithic integration and is widely used to build MMICs without vias. However, the discontinuities of CPWs are not well understood compared to those of microstrip lines and the integration based on a CPW is not as popular as that based on a microstrip. The various discontinuities of microstrip and slot lines, CPWs, and planar transmission lines are covered in reference 2 at the end of this chapter.

1.2 MICROWAVE CIRCUITS IN A COMMUNICATION SYSTEM

Microwave integrated circuit classification has been discussed previously. The microwave integrated circuit was classified according to the method of implementing the planar transmission lines for the purpose of connecting active and passive devices. The functions of microwave integrated circuits vary greatly and we will now consider several important microwave integrated circuits, the designs of which will be discussed in later chapters. Some examples of these circuits are low-noise amplifiers (LNA), power amplifiers (PA), oscillators, mixers, directional couplers, switches, attenuators, and filters, among a host of other microwave-integrated circuits. Among these, directional couplers, switches, attenuators, filters, and so on, are basically passive microwave circuits, although they are very widely used. Thus, they are not covered in this book because they are considered to be outside its scope. In addition, although components such as switches, variable attenuators, phase shifters, and other control circuits are important and are composed of semiconductor devices, they are generally not regarded as the basic building blocks of a wireless communication system. Therefore, this book will only cover low-noise amplifiers, power amplifiers, oscillators, and mixers, which are the most widely used circuits in the
construction of wireless communication systems. The basic design theory of these circuits as well as the devices related to them will be explained in this book.

As an example of a wireless communication system, Figure 1.7 shows a block diagram of an analog cellular phone handset (Rx frequency is 869–894 MHz and Tx frequency is 824–849 MHz). A general transceiver used for the transmission and reception of analog signals (usually voice) has a similar block diagram that is shown in Figure 1.7. A weak RF signal with a typical power level of about −100 dBm (0.1 nW) received from an antenna first goes through a filter called a diplexer and the signal is received only in the receiver frequency band. The filtered signal is too weak for direct demodulation or signal processing, and a low-noise amplifier (LNA) with a gain of 20–30 dB is required to amplify the received signal. Too much gain may cause distortion and an LNA with a gain of 20–30 dB is usually employed. Chapter 8 provides a detailed explanation of the design of an LNA.

Next, because the received signal frequency is so high, the first mixer shown in Figure 1.7 translates the carrier frequency to a lower frequency band called first IF (intermediate frequency). A double-conversion superheterodyne receiver is more widely used than a single-conversion super heterodyne receiver in a communication system. The filter in front of the first mixer again suppresses both the image frequency signal and other signals at the outside of the receiving frequency band. Since multiple users in service are using the same frequency band, multiples of other user signals generally coexist with the signal in the first

Figure 1.7 A block diagram of an analog mobile phone handset (AMPS standard). Tx_EN stands for Tx enable and ALC stands for automatic level control. Tx_ and Rx_data are required to set the programmable frequency dividers in Tx and Rx synthesizers. LE stands for Load Enable. When LE is high, the digital channel data are loaded to the corresponding programmable frequency divider in PLL IC. Synthesizers are explained in Chapter 11. Lock signal indicates that the synthesizer using PLL is in a locked state.

2. Refer to AMPS (Advanced Mobile Phone System) standard.
Intermodulations among the multiple signals are one of the crucial issues in mixer design. Chapter 12 describes the typical topologies of various mixers for suppressing such spurious signals. In order to filter out possible spurious signals that appear at the first mixer output, the signal is passed through a narrow bandpass filter that has a bandwidth of about the signal bandwidth. The first IF filter removes many unwanted spurious signals although it may not be completely sufficient. The first IF output is converted again through the second mixing. Now the center frequency of the second IF is low enough, the highly selective filter is available, and the spurious signals can be sufficiently suppressed through the second IF filter. In addition, the signal frequency is low enough and can be demodulated for the recovery of the original signal. The demodulator is an FM demodulator and is almost the same as the FM demodulator that is commercially popular.

Note that the mixer requires the input signal from a local oscillator (LO) for the translation of the signal frequency to the IF. The two LO signals are supplied from the two Rx-synthesizers and each Rx-synthesizer consists of a voltage-controlled oscillator (VCO) and a commercial PLL (phase-locked loop) IC (integrated circuit). Since the frequency of most VCOs is not stable enough to be used in such communication systems, the frequency of a VCO must be stabilized using a stable crystal oscillator (XO in Figure 1.7) with a typical temperature stability of 2 ppm (parts per million) and a phase-locked loop (PLL). Furthermore, the LO frequency should be moved up and down according to the base station commands. Such frequency synthesis and stabilization can be achieved by a phase-locked loop (PLL). To build a frequency synthesizer using PLL, the VCO frequency as well as the crystal oscillator frequency must be divided by appropriate programmable frequency dividers in the PLL IC. The signals CLK, Rx_ChDATA, Rx_ChLE, and Rx_Lock, shown in Figure 1.7, are the digital signals between the PLL IC and the system controller. The clock signal CLK is used for the timing reference signal that is generated by the system controller using the crystal oscillator. Rx_ChDATA sent from the controller represents the digital data to set the programmable frequency dividers. The signal Rx_ChLE selects the corresponding programmable divider for Rx_ChDATA to be loaded among several frequency dividers in the PLL IC. When phase lock is achieved, the PLL IC sends the signal Rx_Lock to the system controller to inform the phase lock completion. The two Rx synthesizers are necessary for the double-conversion superheterodyne receiver. The commercial PLL IC generally includes the necessary components to achieve the phase lock for two VCOs in a single PLL IC. Thus, the LO signal for the second conversion is similarly synthesized using a single PLL IC. The design of the Tx and Rx VCOs in Figure 1.7 as well as the other microwave VCOs are described in Chapter 10, while the PLL’s operation is explained in Chapter 11.

In the transmission operation, the modulation input signal (usually voice) goes to the modulation input of a Tx synthesizer. The Tx synthesizer is similarly composed of a VCO and a PLL IC. Through the PLL IC, the desired carrier center frequency is similarly synthesized as in the Rx synthesizer. The digital signals CLK, Tx_ChDATA, Tx_ChLE, and Tx_Lock are similarly interpreted as in the Rx synthesizer. The modulation signal has a generally higher frequency than the PLL loop bandwidth and thus can modulate a VCO without the effects of a PLL. Therefore, the frequency-modulated (FM) signal appears at the Tx synthesizer output with the synthesized carrier frequency. The modulated signal then passes through the bandpass filter that removes unnecessary or spurious signals. The average output power level of the modulated signal is generally low; thus, in order to obtain the desired RF power output level, the signal must be amplified by a power amplifier (PA) whose typical maximum output power level is about 1W. The function ALC (Automatic Level Control) is generally built in to control the transmitting power level. When a user is close to the base station, the transmitting power level is set to low;
otherwise, it is set to high for a better quality of communication. The PA output signal is then passed through a diplexer without affecting the receiver and radiated via the antenna. A power amplifier is important in this type of communication system because it consumes most of the DC power supplied from a battery. Furthermore, because a power amplifier operates in large-signal conditions, significant distortion arises. In Chapter 9, we will discuss the design and linearity evaluation of a power amplifier.

Given the preceding discussion, the key circuits in building a communication system are a low-noise amplifier, a power amplifier, oscillators, and mixers. With that in mind, this book will discuss in detail the design and evaluation method of these circuits.

1.3 SUMMARY

- Microwave integrated circuits can be classified according to the fabrication method of the patterned substrate and in terms of monolithic and hybrid integration. Hybrid integration can be further classified into integrations based on PCB, thick film, and thin film. In the selection of integration, one type cannot be said to be superior to the other; the choice is made depending on the application and given situation, and by taking into consideration several factors such as cost, time, pattern accuracy, and assembly.
- Among active microwave circuits, the most commonly used building blocks for wireless communication systems or other systems, such as repeaters, transponders, and radars, are amplifiers, oscillators, and mixers.

REFERENCES

PROBLEMS

1.1 A waveguide generally has lower line loss than a microstrip. An SIW (substrate integrated waveguide) can be considered as the planar version of a waveguide. How is an SIW configured using a substrate?
1.2 Find the TR (transmission and receiving) module example built using a LTCC on the Web site www.barryind.com.
1.3 How is the ALC in Figure 1.7 constructed?
1.4 Refer to the FM demodulator IC SA605, which is used to demodulate an FM signal. Explain how the FM signal is demodulated using its block diagram.
1.5 Refer to the Web site of vendors of PLL IC such as Analog Devices Inc. or other companies. Explain the synthesizer data bus shown in Figure 1.7.
1.6 How can the PLL be modulated? Explain how to set the PLL loop bandwidth by taking the bandwidth of a bandlimited modulation signal into consideration.
This page intentionally left blank
Index

Numbers
0.33-μF chip tantal capacitors, 565
1-dB compression points of amplifiers, generally, 351–352
in cascaded structures, 729–735
conversion loss and, 640–642
1 pF broadband 0603 type 500S, 343
1608 chip resistors, 16, 256–257
2-bit counters, 603
28 V pulse inputs, 137
2SC4226 transistors, 538
3-dB bandwidth, 107
50 Ω (ohm) amplifier source/load at, 279–280, 311
capacitance circles at, 221–222
dielectric resonator oscillators at, 564–568, 573
internal resistance at, 286
matching circuits at, 327
power dividers and, 71–72
reference impedance at, 322
source/load impedance at, 353–356
VCOs at, 546–548
8–12 GHz frequency band (X-band), 314
8510 Network Analyzer, 89

A
A-counters, 602–603
ABCD parameters, 113, 466
AC
circuit simulations in, 237–239
input/output connectors in, 261
small-signal analysis in, 238
steady state in, 237
Accumulators, 603
ACPRs (adjacent channel power ratios). See Adjacent channel power ratios (ACPRs)
Active DC bias circuits, 176–177
Active devices
ATF-36077, 314
BJTs. See Bipolar junction transistors (BJTs)
DC bias circuits in, 173–180
extraction of equivalent circuits, 181–195
FETs. See Field effect transistors (FETs)
GaN HEMTs in, 356–359
introduction to, 149–151
large-signal, 314–315, 351–353
LDMOSFETs in, 360–361
LNAs. See Low-noise amplifiers (LNAs)
PAs. See Power amplifiers (PAs)
problem exercises on, 196–200
references on, 196
small-signal, 351–353
summary of, 195
Active load filters, 612
Active Snap Modes, 254
Admittance
in equilibrium conditions, 487–488
matrix of, 711
in oscillation conditions, 482–486
in parallel feedback oscillators, 522
ADS (Advanced Design System)
AC simulations in, 238–239
auto-layout utility in, 336, 339
characteristic impedance in, 43, 47–49
circuit simulations in, 230
Class-D PAs in, 388
common emitter amplifiers in, 250–251
components in, 256–264
DC simulations in, 230–234
DC supply circuits in, 330–333
DesignGuide in, 626–630
Doherty PAs in, 469
double-balanced mixers in, 698–699
effective permittivity in, 47–49
equilibrium conditions in, 488
fourth-order loop filters in, 624–625
Grid settings in, 253–254
half-wave current sources in, 381
HB simulations in, 241–243
HB1Tone_LoadPull.dsn of examples in, 372–373
ideal transmission line in, 37
impedance-based start-up conditions in, 487–491
L-type matching circuits in, 210–211
large-signal admittance of diodes in, 741
large-signal ports in, 98
large-signal reflection coefficients in, 743
Layer Editor in, 250–253
Layout Units in, 253–254
load-pull simulation in, 365
loop filter synthesis in, 626–627
low-noise amplifiers in, 314–319, 336–345
Main window in, 229–230
matching circuit design in, 322–329
mixer isolation in, 644–645
Murata capacitor library in, 24
negative resistance in, 748
noise parameters in, 127–133
ADS (Advanced Design System) (continued)
optimization controller in, 246–247
oscillation conditions in, 481, 752–754
OscPort in. See OscPort
OscTest in. See OscTest
Outline settings in, 254–256
parallel feedback oscillators in, 522
PDF functions in, 446
phase-locked loops in, 625–633
phase noise simulation in, 627–630
phasors in, 382
\(p \)-shaped equivalent circuits in, 74
S-parameter simulation in, 98–99
single-balanced mixers in, 689
single-ended mixers in, 671–672
single-stub tuners in, 221–222
\(\text{sm}_1(\text{S})/\text{sm}_2(\text{S}) \) in, 305
source/load impedances in, 319–321
stability of amplifiers in, 333–336
third-order loop filters in, 620–622
transient responses in, 630–633
transient simulation components in, 234
TriQuint and, 410
two-tone measurements in, 448, 451
VCO design in, 546, 550
VCVS in, 459
AGC (automatic gain control), 676
Agilent Technologies
E5052A signal source analyzers by, 570–571, 574–575
E8358A network analyzers by, 568–569
AlGaAs/GaAs HBTs, 172–173
introduction to, 149–151
large-signal model of, 165–168
packages of, 171
S-parameters and, 168–171, 179–180
Si, 149–150, 162–164
simplified equivalent circuits and, 168–171
Bit error rates (BERs), 434
Bit rates, 434–436
Bits, 437–438, 441–442
BJTs. See Bipolar junction transistors (BJTs)
Blocks, 248
Bode plots, 620–621
Bonding ribbons, 412
Bonding-wire inductance, 159–160, 657
Boolean Logical Operation, 260
Branch, 419–420
Branch-line couplers. See also Coupling, 457
Breakdown voltage, 356
Broadband matching circuits, 219
BW (bandwidth). See Bandwidth (BW)

C
CAD simulators, 512, 560
Calibration, defined, 104–105
Capacitance in GaAs FET packages, 161
in large-signal GaAs MESFETs, 154
in small-signal GaAs MESFETs, 152–153
in transmission lines, per unit length, 31–32, 39
Capacitors chip. See Chip capacitors in matching circuit simulations, 428–429
as passive devices, generally, 11–16
in RF decoupling, 175–176
in VCOs, 536–538
Carrier frequency, 507–508
Carriers, 439–440
Cascade101.xls, 733
Cascaded amplifiers, 133–136
Cascaded structures, 729–735
CB (collector-base) junctions, 162–169
CDMA (code division multiple access), 450–454, 460–463
C_{dv} 190
CE_Amp_Layout windows, 262–263
Cells, 266
Cellular phones
introduction to, 7–9
VCOs for. See Voltage-controlled oscillators (VCOs)
Center frequency, 507–508
Ceramic packages, 657
C_p/C_{gs} 190
Channel formation, 150
Characteristic impedance. See also Impedance, 37–39
Charge pumps, 596, 611, 616
Chip capacitors 0.33-uF-chip tantal, 565
High-frequency chip DC block, 330–331
introduction to, 16–18
in PAs, 363–364
in VCOs, 536–538
Chip-type components capacitors. See Chip capacitors diodes, 672
FETs, 190–193
GaAs FETS, 157
inductors, 19–21
passive components, generally, 12–14
resistors, 21–22
Circuit boards, 534–535
Circuit simulation. See also
Circuits
DC-bias. See DC bias circuits
equivalent. See Equivalent circuits feedback, 523–524, 560–561
half-wave rectifier, 242
load. See Load circuits
logic, 592–594
matching. See Matching circuits
MICs. See Microwave integrated circuits (MICs)
MMICs. See Monolithic microwave integrated circuits (MMICs)
oscillator. See Oscillator circuits parallel resonant, 557–558
PCBs. See Printed circuit boards (PCBs)
self-bias, 178
shunt stabilizing, 317–318
simulation of. See Circuit simulation
two-port, 523–524
CTI (Common Instrumentation Transfer and Interchange), 140, 142
Class-A power amplifiers (PAs), 355, 374–375
Class-AB/B/C operating points, 376–377
Class-B power amplifiers (PAs), 377–385, 464–466, 469–473
Class-C power amplifiers (PAs), 377–385, 464–467, 469–473
Class-D power amplifiers (PAs), 386–390
Class-E power amplifiers (PAs), 390–398
Class-F power amplifiers (PAs) design example of, 410–412
input/output impedances in, 412–418
input/output matching circuits in, 418–424
introduction to, 398–409
matching circuits using EM simulation in, 424–432
Classification of circuit simulations, 230
of microwave integrated circuits, 1–6
of passive devices, 12–15
of power amplifiers, generally, 374–377
Closed-loop dielectric resonator oscillators, 562–563
gains, 606–609
transfers, 584–585
CMOS (Complementary MOS), 151
Co-planar waveguide (CPW), 1–2, 6
Coaxial transmission lines. See also Transmission lines
adaptors for, 42
characteristic impedance of, 40, 43–44
Coaxial transmission lines
(continued)
connectors for, 41–42
introduction to, 2
phase velocity of, 40
Code division multiple access
(CDMA), 450–454, 460–463
Cold-FET measurements, 191–193
Cold states, 136–138
Collector-base (CB) junctions,
162–169
Collector efficiency, 354–355
Collector voltage
in Class-D PAs, 386
in Class-E PAs, 395–397
in Class-F PAs, 399–401, 407–409
in GaN HEMTs, 356
Colpitts oscillators
circuits in, 522, 525
introduction to, 504–505
negative resistance in, 744–751
oscillation conditions in, 755–757
Common Instrumentation
Transfer and Interchange
(CITI), 140, 142
Communications systems,
defined, 6–9
Comp layer, 249
Comparison signals (SIGs),
592–595
Complex-valued source/load,
217–219
Component Library, 262
Components, in layouts, 248–249
Composite PAs. See also Power
amplifiers (PAs)
Doherty, 462–473
EER in, 462
feedback, 461–462
introduction to, 455
predistorters in, 455–460
Compression points, 646–647
Cond layer, 269
Conductance, 489–490
Conduction
angles, 376
band energy, 658
in Class-B/Class-C PAs, 384–385
Conic sections, 745–747
Conjugate matching
of amplifier input/output,
203–204
gains and, generally, 311–312
in low-noise amplifiers, 292,
301–306
power gains and, generally,
291–292
Connectors, 42–43
Constant-conductance circles
in L-type matching circuits,
209–210, 213
in single-stub tuners, 220–221
Constant-resistance circles,
209–210, 213
Constellation plots
baseband signals and, 435–437
envelope simulation and,
442–444
EVM simulation and, 454
Contour plots, 372–374, 415
Conversion impedance matrix,
713–715
Conversion loss (CL)
in double-balanced mixers,
698–699
mixer isolation and, 645–646
mixer types and, 703
in mixers, generally, 640–642,
703, 714–720
in SBMs, 688–689, 696
in Schottky diodes, 664
in SEMs, generally, 667, 673
in SEMs using diodes, 668,
670–672
in SEMs using transistors, 675
Coordinate Entry windows,
255–258, 260
Coplanar strip (CPS) transmission
lines, 684–685
Copper plates, 248
Copy Relative pop-up
windows, 259
Corner discontinuities, 78–79
Coupling
branch-line couplers for, 457
in dielectric resonator
oscillators, 560–562
directional couplers for, 88
DRs to microstrips, 555–562
loops, 69
RF decoupling vs., 174–176
CPS (coplanar strip) transmission
lines, 684–685
CPW (co-planar waveguide),
1–2, 6
Cree, Inc., 358
Crests, 35
Cross junctions, 79–80
Crystal oscillators
introduction to, 581–582
phase-locked loops in, 585
phase noise and, 514–515,
598–599
Current
characteristic impedance and,
37–38
phase velocity of, 30–32
in two-port networks, 90
Curticie model, 155
Curtis, J., 513
Cut-off frequency, 665

D
Δ-ports (out-of-phase distribution
ports), 685, 690–692
DACs (data access components),
410–411
DACs (digital-to-analog
converters), 441
damping ratio, 607
Data access components (DACs),
410–411
Data devices, 140
Data directory, 227–228, 273–276
Dataset fields, 274
dB (decibels). See Decibels (dB)
DBMs. See Double-balanced
mixers (DBMs)
DC bias circuits
active, 176–177
in bipolar junction transistors,
173–177
in dielectric resonator
oscillators, 567
in field effect transistors,
177–180
introduction to, 173
in PAs, 363, 374–377
RF decoupling and, 174–176
S-parameter simulation and,
178–180
simulation of, 230–234
in VCOs, 546–548, 552
DC block capacitors
in bipolar junction transistors,
174–175
in Colpitts oscillators, 525
in dielectric resonator
oscillators, 566–567
EM simulations and, 550
oscillating transistors and, 538
parallel resonant circuits and, 489–490
in VCO load circuits, 546–548
DC voltage. See also Voltage
in Class-B/Class-C PAs, 377–383
in Class-D PAs, 386–389
in Class-E PAs, 391–395
in EER, 462
in low-noise amplifiers, 330–333
in single-ended mixers, 670
supply terminals for, 259
in VCOs, 536
*.dds (display data file), 229
Decibels (dB)
in cascaded structures, 729–735
defined, 727–729
Frii’s formula and, 134–136
Delivered power, 97–98
Depletion
capacitance, 168, 660–661, 710
channels, 150
FETs, 177
Design
of Class-F PAs. See Class-F
power amplifiers (PAs)
of discrete matching circuits, 217–219
of double-balanced mixers, 699–703
of DROs. See Dielectric
resonator oscillators (DROs)
of low-noise amplifiers. See Design of LNAs
of SBMs using diodes, 690–692
of SBMs using transistors, 692–694
of SEMs using diodes, 690–692
of SEMs using transistors, 692–694
Design of LNAs. See also Low-
noise amplifiers (LNAs)
active device models in, 314–315
DC supply circuits in, 330–333
device performance in, 315–319
example for, generally, 314
fabrication and, 336, 343–345
load impedance in, 319–321
lumped-element matching circuits in, 322–325
matching circuits in, generally, 322–329, 340–342
measurements in, 333–336, 343–345
source impedance in, 319–321
source inductors in, 338–339
stability in, 333–336
transmission-line matching circuits in, 325–329
DesignGuide, 626–630
Detuning, 390
Device performance, 315–319
Devices under test (DUTs)
introduction to, 23
noise figures in, 124, 136–140
reference planes in, 88, 104–105
Dielectric-filled microstrip lines, 45–46
Dielectric Loss Tangent, 267
Dielectric Permittivity, 267
Dielectric resonator
oscillators (DROs)
design of, generally, 560, 576
introduction to, 67–68
phase noise in, 514–515
using feedback, components, 565–568
using feedback, low phase noise, 573–575
using feedback, prototypes, 568–572
using feedback, theory, 562–565
using replacements, 560–562
Dielectric Resonators (DRs), 552–559
Dielectric Thickness options, 267
Diffusion capacitance, 168
Digital signal processing (DSP)
simulators, 453
Digital-to-analog converters (DACs), 441
Diodes
approaching as on/off switches, 664–667
in double-balanced mixers, 694–700
forward-biased, 654
Gunn, 149–151, 480–481, 525
I-V characteristics of, 654–655
IMPATT, 150–151, 480–481, 525
MBD101, 689, 698
in mixers, generally, 639–640
PIN, 149
quads of, 699–700
in SBMs, design of, 690–692
in SBMs, generally, 685–689
in SBMs, qualitative analysis of, 685–692
Schottky. See Schottky diodes
in SEMs, design of, 672–673, 690–692
in SEMs, LO analysis of, 704–707
in SEMs, quantitative analysis of, 664–672, 685–689
in SEMs, small-signal analysis of, 704
in SEMs, small-signal analysis of, 707–714
space-charge-region, 165–167
switching, 666–667
varactor, 149, 539–540, 567–568
Directional couplers. See also Coupling, 88
Discontinuities
corner, 78–79
cross junctions in, 79–80
open-end microstrip lines and, 76–78
step, 78–79
T-junctions in, 79
in transmission lines, generally, 76
Discrete format files, 410
Discrete matching circuits. See also Matching circuits
double L-type, 216–217
L-type, 207–212
p-type, 212–214
series-parallel conversion in, 205–207
source impedance and, 217–219
T-type, 214–216
Display data file (* .dds), 229
Display windows
in ADS, 227–228
efficiency in, 384
load-pull simulation in, 371–374
phase-locked loops in, 621
Doherty power amplifiers (PAs)
Class-B, 464–466, 469–473
Class-C, 464–467, 469–473
introduction to, 455, 462–473
Doping, 360
Double-balanced mixers (DBMs)
design examples of, 699–703
introduction to, 591, 640
qualitative analysis of, 694–699
using transistors, 700–703
Double L-type matching circuits,
216–217
Double-stub tuner matching
circuits, 222
Drain
in Class-B/Class-C PAs, 377–381
in Class-D PAs, 386–389
in Class-E PAs, 394
in Class-F PAs, 409, 410–413, 420
in Doherty PAs, 467–468, 472
in GaAs FET packages, 160
in large-signal GaAs MESFETs,
154–156
in LDMOSFETs, 360–361
in PA classification, 374–377
in small-signal equivalent
circuits of FETs, 157
in small-signal GaAs MESFETs,
152–153
DRD107UC048 resonators, 568
Drill layers, 258–260
Drilling, 248–249
DROs. See Dielectric resonator
clock oscillators (DROs)
DRs (Dielectric Resonators),
552–559
*.ds (dataset files), 227–229
*.dsn (design files), 227–229
DSP (digital signal processing)
simulators, 453
Dual-gate FETs, 676–679
Dual modulus counters, 601–602
Duroid substrate, 3
DUTs. See Devices under test
(DUTs)

E
Early effect, 166
EEHETM model, 410–412
EER (envelope elimination and
restoration), 455, 462
Effective dielectric constants, 46
Effective permittivity, 46–49
Efficiency
in Class-B/Class-C PAs, 384–385
in Class-D PAs, 386–389
in Class-E PAs, 391–394, 397
in Class-F PAs, 398, 401, 405–409
in Doherty PAs, 467–468, 472
Electric fields
in double-balanced mixers, 699
in SBMs, 683, 691, 724
in Schottky diodes, 660–661
simulation of, 360–361
Electrical delay, 23
Electrical length, 36–38, 60
Electromagnetic (EM) simulation
introduction to, 15
momentum for. See Momentum
Electromagnetic fields, 553
Electron affinity, 658, 664
Electron mobility
in GaAs MESFETs, 151
in GaAs pHEMTs, 161–162
in GaN HEMTs, 356–358
in HEMTs. See HEMTs (high-electron-mobility transistors)
in LDMOSFETs, 360–361
Electron wells, 161
EM simulation. See
Electromagnetic (EM)
simulation
Emitters
in BJT DC-biased circuits,
173–174
in BJTs, generally, 162–165
in Colpitts oscillators, 505,
522–525
in GaAs HBTs, 172
layout of, 250
in VCOs, 536–5377
Enable Snap, 254
Enamel-coated copper wires, 19
Energy band-gap, 356–357
Enhancement type channels, 150
ENR (Excessive Noise Ratio),
136–139
Ensembles, 114–115
Entry/Edit options, 255, 263
Envelope elimination and
restoration (EER), 455, 462
Envelopes
elimination and restoration of,
455, 462
phasors as, 438–439
simulation of, 439–446
Epitaxial layers (epi-layers), 152,
162–164
Equilibrium conditions
defined, 479
impedance-based, analyzing
with ADS, 487–491
impedance-based, generally,
486–487
open-loop gain-based,
500–506
reflection coefficient-based,
generally, 492–494
reflection coefficient-based,
implementing circuits,
494–496
reflection coefficient-based,
large-signal, 496–499
Equivalent circuits
in DRs, 555
extraction of. See Extraction of
equivalent circuits
FET small-signal, 352, 375–377
GaAs FET simplified,
186–187
large-signal, 154–156
lumped, 31, 66
Norton. See Norton equivalent
circuits
π-shaped, 72–75, 181–187
in passive devices, 16
reference planes and, 106–107
in S-parameter simulations, 98
simplified, 168–171
small-signal, 157–159, 238
T-shaped, 72–73, 181–183
Thevenin, 282–285, 288
two-port lumped, 71–75
Equivalent thermal noise
resistance, 120
Ergodic processes, 115–117
Error vector magnitude (EVM),
434–437, 453–454
Etching, 3
EVM (error vector magnitude),
434–437, 453–454
Excel, 135
Excessive Noise Ratio (ENR),
136–139
Exclusive OR (XOR) phase
detectors, 592–594
Experimental load-pull method,
362–364
Expressions
of internal noise, 112–113
of noise parameters, 124–133
External noise sources
expression of noise parameters and, 124–126
noise figures and, 122–124
representation of, 113–117
Extraction of equivalent circuits
DC simulation circuits in, 187–188
in dielectric resonators, 557–559
microstrip ring-type inductors in, 183–185
for passive devices, 183, 191
physically modeled equivalent circuits in, generally, 181
π-type equivalent circuits in, 181–187
S-parameter simulation in, 184–191
simplified FET equivalent circuits in, 186–191
T-type equivalent circuits in, 181–183
Extrinsic elements, 157, 191

F
Fabrication of LNAs. See also Low-noise amplifiers (LNAs)
introduction to, 336
matching circuits in, 340–342
overview of, 343–345
source inductors in, 338–339
FDM/FDMA (frequency division multiplexing), 434
Feedback
circuits, 560–561
DROs and. See Dielectric resonator oscillators (DROs)
networks, 500–503, 516–517, 528–529
parallel feedback oscillators, 515–522
series feedback inductors, 317
series feedback oscillators. See Series feedback oscillators
Tap and Seed method for, 441
Feedforward power amplifiers (FPAs), 461–462
Fermi energies, 658
FETs. See Field effect transistors (FETs)
FHX35LG pHEMTs, 530
FHX35LG transistor packages, 544–546
Field effect transistors (FETs)
cold, 191–193
DC bias circuits in, 177–180
dual-gate, 676–679
GaAs MESFETs, 152–154, 358
GaAs pHEMTs, 151, 161–162
Intrinsic, 193
introduction to, 150, 151
large-signal equivalent circuits in, 154–156
LDMOSFETs, 360–361
Leeson’s phase noise model and, 513
nonlinear, 666
packages and, 159–161
resistive operations in, 675
S-parameters and, 157–159
simplified equivalent circuits in, 186–187
single-gate, 676–678
small-signal equivalent circuits in, 157–159, 352, 375–377
Field-shape matching, 201–202
File formats, 140–142
File managers, 228–229
Fin-line single-balanced mixers (SBMs), 691
First IFs (intermediate frequencies), 7–8
Fixed frequency dividers, 601
Flexible cables, 42
FM (frequency-modulated) signals, 8, 513
Focus Microwaves Inc., 363
Forward-biased diodes, 654
Forward-biased junctions, 162–163, 165–166
Forward/reverse operations, 661–663
Four-diode pairs, 699–700
Four-port linear networks, 704
Fourier series
Class-F PAs in, 402
Doherty PAs in, 470
drain current in, 674
envelope waveforms in, 440
half-wave current sources in, 381–382
harmonic balance simulations in, 240–241
IF output waveform in, 687
mixture operations in, 667
noise signal analysis in, 117–119
PA classification in, 376
single-ended mixers in, 669
transconductance in, 674
voltage/current relationship in, 706
Fourier transformations, 117, 244
Fourth-order loop filters, 624–625
FPAs (feedforward power amplifiers), 461–462
FR4 (epoxy fiberglass) substrates, 3
Fractional frequency dividers, 603–605
FreeSpace, 267
Frequency
adaptive simulation, 274
carrier, 507–508
center, 507–508
characteristic impedance and, 37–40
in chip-type capacitors, 17–18
in chip-type inductors, 19–21
in chip-type passive components, 22–26
cut-off, 665
in decibels, 728–729
down-converted terms, 639–640
in DRs, 557–559
in higher-order loop filters, 617–622
indices, 245–246
intermediate, 7–8
jitters, 581
linear simulation, 274
logarithmic simulation, 274
in phase-locked loops, 608–609
resolution, 118
single-point simulation, 274
tuning, 541–543, 564, 571–572
up-converted terms, 639–640
Frequency-dependent load reflection coefficients, 367
Frequency dividers
in loop filter design, 629
phase-locked loops in, 590, 600–605
Frequency division multiplexing (FDM/FDMA), 434
Frequency-modulated (FM) signals, 8, 513
Frequency synthesizers introduction to, 582
phase-locked loops in, 587–589, 612–615, 619
Frii’s formula, 133–136, 314
Fringing capacitance, 47
Fukui method, 192
Fusing currents, 424
GaAs/AlGaAs HBTs, 172–173
GaAs (gallium arsenide) MESFETs
GaAs MESFETs. See GaAs (gallium arsenide) MESFETs
Gallium arsenide (GaAs)
MESFETs. See GaAs (gallium arsenide) MESFETs
Gallium nitride. See GaN (gallium nitride)
Gamma propagation constant, 275
GaN (gallium nitride)
in Class-F PAs, 410–412
heterojunctions, 357–358
high-electron-mobility transistors, 356–359, 410–412
semiconductors, 357–358
Gates
in Class-F PAs, 411–413
in large-signal GaAs MESFETs, 154
in small-signal equivalent circuits of FETs, 157
in small-signal GaAs MESFETs, 152–153
Gauss law, 119, 660
Gerber format files, 248
Gibb’s phenomenon, 389, 402
Gilbert cells, 700–703
Global variables, 239
g_{m} 190
GND, 267
Green’s function, 264–268
Grid/Snap options, 253–254
Grids, 248–249
Ground points, 505, 524
Group delay
in DROs, generally, 564–565
in low phase noise DROs, 573–575
in prototype DROs, 568–571
Gummel plots, 166–167
Gunn diodes, 149–151, 480–481, 525
Halberd-reformable cables, 42
Harmonic balance
in Class-D PAs, 388–390
in Class-E PAs, 396
in Class-F PAs, 416–417, 423
in Doherty PAs, 469–471
EM simulations and, 551
in equilibrium conditions, 490
in feedback oscillators, 530–533
half-wave rectifier analysis for, 736–738
in load-pull simulations, 365–367
in matching circuit simulations, 432
in mixer conversion loss, 645
in mixer simulations, 647
in oscillation output power, 499
in PDAs, 459
simulation of. See Harmonic balance simulation
sweep and, 368–370, 373–374
in VCOs, 542
Harmonic balance simulation
introduction to, 440, 444
linearity in PAs in, 448
multi-tone, 243–246
OscPort and, 491, 497
overview of, 239–243
Harmonic impedance
in Class-F PAs, 414–419
in load-pull simulations, 366
in PAs, generally, 362–363
sweep and, 374
Harmonics
in Class-F PAs, 400–409, 418
filters eliminating, 389–390
HB1Tone_LoadPull.dsn of examples, 372–373
HB.freq, 716–717
HBTs (heterojunction bipolar transistors), 172–173,
287–289
transducer power, 287–289
transmission-line matching circuits and, 329
unilateral power, 291–292
Gallium arsenide (GaAs)
MESFETs. See GaAs (gallium arsenide) MESFETs
Gallium nitride. See GaN (gallium nitride)
Gamma propagation constant, 275
GaN (gallium nitride)
in Class-F PAs, 410–412
heterojunctions, 357–358
high-electron-mobility transistors, 356–359, 410–412
semiconductors, 357–358
Gates
in Class-F PAs, 411–413
in large-signal GaAs MESFETs, 154
in small-signal equivalent circuits of FETs, 157
in small-signal GaAs MESFETs, 152–153
Gauss law, 119, 660
Gerber format files, 248
Gibb’s phenomenon, 389, 402
Gilbert cells, 700–703
Global variables, 239
g_{m} 190
GND, 267
Green’s function, 264–268
Grid/Snap options, 253–254
Grids, 248–249
Ground points, 505, 524
Group delay
in DROs, generally, 564–565
in low phase noise DROs, 573–575
in prototype DROs, 568–571
Gummel plots, 166–167
Gunn diodes, 149–151, 480–481, 525
Halberd-reformable cables, 42
Harmonic balance
in Class-D PAs, 388–390
in Class-E PAs, 396
in Class-F PAs, 416–417, 423
in Doherty PAs, 469–471
EM simulations and, 551
in equilibrium conditions, 490
in feedback oscillators, 530–533
half-wave rectifier analysis for, 736–738
in load-pull simulations, 365–367
in matching circuit simulations, 432
in mixer conversion loss, 645
in mixer simulations, 647
in oscillation output power, 499
in PDAs, 459
simulation of. See Harmonic balance simulation
sweep and, 368–370, 373–374
in VCOs, 542
Harmonic balance simulation
introduction to, 440, 444
linearity in PAs in, 448
multi-tone, 243–246
OscPort and, 491, 497
overview of, 239–243
Harmonic impedance
in Class-F PAs, 414–419
in load-pull simulations, 366
in PAs, generally, 362–363
sweep and, 374
Harmonics
in Class-F PAs, 400–409, 418
filters eliminating, 389–390
HB1Tone_LoadPull.dsn of examples, 372–373
HB.freq, 716–717
HBTs (heterojunction bipolar transistors), 172–173,
HEMTs (high-electron-mobility transistors). See also Pseudomorphic HEMTs (pHEMTs), 151, 410–412
Heterojunction bipolar transistors (HBTs), 172–173, 355–356
HFSS
for Class-F PAs, 412
for dielectric resonator oscillators, 568
for low phase noise DROs, 574
in matching circuit simulations, 427, 430
High-electron-mobility transistors (HEMTs). See also Pseudomorphic HEMTs (pHEMTs), 151, 410–412
High-frequency chip DC block capacitors, 330–331
High impedance states, 595
Higher-order loop filters, 616–625
Highly doped region (N + Drain), 360–361
Hittite, 565
HMC313 amplifiers, 565–566
Hot states, 136–138
Hybrids, 2–6, 681–685

I
I-V characteristics of diodes, 654–655
IC-CAP files, 140
ICs (integrated circuits). See Integrated circuits (ICs)
IFs. See Intermediate frequencies (IFs)
IMD3 (third-order intermodulation distortion)
in FPAs, 461–462
in matching circuit simulations, 434
in mixers, 641–642
in PAs, 447–448
in PDAs, 460
IMPATT diodes, 150–151, 480–481, 525
Impedance
analyzers of, 22–26
characteristic, 37–39
conversion impedance matrix, 713–715
equilibrium conditions based on, 486–491
high impedance states, 595
input/output, 412–418
inversers. See Impedance
inversers
large-signal, 739–743
load. See Load impedance
matching. See Impedance
matching
in matching circuit simulations, 429
in passive devices, 11–12, 22–26
reference, 88, 92, 751
in reflection and return loss, 53–54
start-up conditions based on, 481–491
Z0, 275–276
Impedance inversers introduction to, 54
matching circuits and, 223–224
for transmission lines, 70–71
Impedance matching
DC supply circuits in, 330–333
discrete matching circuits in. See Discrete matching circuits
impedance inversers and, 223–224
introduction to, 201–202
lumped-element matching circuits in, 322–325
maximum power transfer theorem in, 202–204
problem exercises on, 225–226
references on, 224–225
single-stub tuners in, 219–223
summary of, 224
transmission-line matching circuits in, 219–224, 329
Impulse response, 437–439
Impurity scattering, 161
In-phase distribution ports (S-ports), 685, 690–692
Incident voltages, 88–89, 99–105
Incident waves, 52, 90–91
indep(m3)/indep(m4), 25
Inductance
in GaAs MESFETs, 160
per unit length, 31, 39, 46
Inductors, 11–16
Inphase and quadrature-phase (IQ) modulation, 435–437
Input matching circuits, 421–424
Input/output impedance, 412–418
Input/output reflection coefficients, 281
Insertion
gain, 108–110
loss, 565–566, 574
technique for, 13
Instances, 248
Integer frequency dividers, 603–605, 617
Integrated circuits (ICs)
introduction to, 8
microwave. See Microwave integrated circuits (MICs)
monolithic microwave. See Monolithic microwave integrated circuits (MMICs)
Interdigital capacitors, 425–426
Intermediate frequencies (IFs)
introduction to, 7–8
mixer isolation and, 642–652
in mixers, generally, 639–642
Internal noise sources expression of, 112–113
noise figures and, 122–124
Intersymbol interference (ISI), 437
Intrinsic FETs. See also Field effect transistors (FETs), 193
IQ (inphase and quadrature-phase) modulation, 435–437, 441–442, 454
ISI (intersymbol interference), 437
Isolation of mixers, 642–652, 703

J
Johnson, John B., 119

K
Kahn EER technique, 462
Kelvin, 119
Kirk effect, 166
Korea, 451
KOVAR, 657

L
L-type matching circuits in Class-F PAs, 421
double L-type, 216–217
overview of, 207–212
Land patterns, 13
Laplace transforms, 583, 607, 610
Large-signal conditions
active devices in, 314–315, 351–353
admittance in, 739–743
BJTs in, 165–168
equilibrium conditions in, 480, 496
equivalent circuits in, 154–156
GaAs MESFETs in, 154–156
impedance in, 739–743
port in, 98
simulations in, 541–542, 551
Laterally diffused MOSFETs (LDMOSFETs), 356, 360–361
Layer Editor, 250–252
Layers, 248–249
Layout
automatic, 336, 339
components in, 256–264, 550
Grid settings in, 253–254
introduction to, 248–250
layers in, 250–253, 267–269
manual, 248–250
Momentum for. See Momentum
Outline settings in, 254–256
problem exercises on, 277–278
references on, 276
Schematic/Layout window in, 227–228
summary of, 276
units in, 249, 253–254
LDMOSFETs (laterally diffused MOSFETs), 356, 360–361
LE (Load Enable), 7
Lead-type passive components, 12–14
Least significant bits (LSBs), 441–442
Leeson’s phase noise model, 509–513, 565
Length of transmission lines. See also Transmission lines
characteristic impedance and, 37–40
phase velocity and, 30–35
wavelength and, 35–37
LG (low parasitic, hermetically sealed metal-ceramic package), 544–546
Lightly doped regions (NHVs), 360–361
Linear circuit analysis. See also Nonlinear circuit analysis
in AC simulations, 238
in DC simulations, 231–234
in transient simulations, 235–237
Linear simulation frequency, 274
Linearity
circuit analysis in. See Linear circuit analysis
in FPAs, 462
in PAs. See Linearity in PAs
in PDAs, 460
in predistorters, 455–456
in simulation frequency, 274
in two-tone measurements, 450
Linearity in PAs. See also Power amplifiers (PAs)
ACPR measurements in, 446–452
baseband signal modulation in, 434–438
envelope simulation in, 438–446
EVM simulation in, 453–454
introduction to, 432–434
two-tone measurements in, 446–452
LNAs. See Low-noise amplifiers (LNAs)
Load
circuits. See Load circuits
complex-valued, 217–219
impedance. See Load impedance
lines, 401
mismatched, 110–111, 201
real-valued, 217–219
reference planes, 525
reflection. See Load reflection
stability circles, 333–337
stability regions, 293–301
terminating transmission lines, 52–54
in VCOs, 549
voltage, in Class-F PAs, 401
Load circuits
in Class-D PAs, 386
in Class-E PAs, 391, 397
in Class-F PAs, 398–402, 407, 415, 421
in VCOs, 548
Load Enable (LE), 7
Index

synthesis in, 626–627
third-order, 620–621
Loop probes, 68–69
Loops
closed. See Closed-loop filters in. See Loop filters gains and, generally, 606
open. See Open-loop gains phase-locked. See Phase-locked loops (PLLS)
LOs. See Local oscillators (LOs)
Lossless matching circuits, 203–204
Lossless, passive, two-port networks, 109
Low-noise amplifiers (LNAs)
active device model for, 314–315
conjugate matching and, 292, 301–306
DC supply circuits in, 330–333
design of, generally, 314
device performance of, 315–319
fabrication of, generally, 336, 343–345
gain circles and, 306–308, 312–313
gains in, generally. See Gains introduction to, 6–7, 279–281
load impedance in, 319–321
lumped-element matching circuits in, 322–325
matching circuits in, 322–329, 340–342
measurements of, 333–336, 343–345
noise circles and, 306, 308–311, 312–313
PAs vs., 351–354
problem exercises on, 346–349
references on, 346
source impedance in, 319–321
source inductors in, 338–339
stability in, 333–336
summary of, 345–346
transmission-line matching circuits in, 325–329
Low parasitic, hermetically sealed metal-ceramic package (LG), 544–546
Low phase noise DROs. See also Dielectric resonator oscillators (DROs), 573–575
Low-power BJT packages. See also Bipolar junction transistors (BJTs), 171
Low temperature co-fired ceramics (LTCC), 4
LSBs (least significant bits), 441–442
LTCC (low temperature co-fired ceramics), 4
Lumped-element matching circuits in Class-F PAs, 424
in low-noise amplifier design, 322–325
transmission-line matching circuits and, 325–326, 329
Lumped equivalent circuits, 31
Lumped LC-equivalent circuits, 66
Lumped parallel resonant circuits, 63, 66
M
M-counters, 602–603
MAG. See Maximum available gain (MAG)
Magic-T hybrids, 683–684, 691–692
Magnetic fields, 554–555
Main devices, 464–467, 469–472
Main window, 228–229
Major Grid options, 249, 253–254
Manual layouts, 248–250
Marchand baluns, 685
Mason’s gain, 291–292, 311–312
Matching circuits. See also Impedance matching broadband, 219
designing with optimization, 246
discrete. See Discrete matching circuits
double L-type, 216–217
double-stub tuner, 222
EM simulation and, 424–432
input, 421–424
L-type. See L-type matching circuits
lossless, 203–204
in low-noise amplifier design, 340–342
in low-noise amplifiers, 322–329
lumped-element. See Lumped-element matching circuits
output, 418–424, 428
π-type, 212–214, 419–420
T-type, 214–216
transmission line. See Transmission-line matching circuits
Materka model, 155–156
MathCad, 243, 736–738
Mathematical analysis of negative resistance, 744–751
Maximum available gain (MAG) device performance and, 315–316
introduction to, 304
in low-noise amplifiers, 314
Maximum available power, 203
Maximum efficiency waveforms, 402–406
Maximum gain, 413
Maximum power transfer theorem, 202–204
Maximum stable gain (MSG) device performance and, 315
introduction to, 304
summary of, 311–312
MaxOrder, 244–245
Maxwell’s equations, 264, 553–554
MBD101 diodes, 689, 698
MDIF files, 140
MDS, 750–751
Mean voltage/power, 114–117
Measurement Expression equations for ACPR, 445
for available and delivered power, 75
for Bode plot parameters, 621
for the Boltzmann constant, 130
for calculating S-parameters, 718, 720
for calculating TOI, 649–650
for computing feedback parameters, 532–533
for conductance calculation, 489
for converting contour plots to complex numbers, 372
for DC power consumption, 371
for delivered power to load, 498
for delivered power using power probe, 371
for Doherty PA efficiency, 472
for drain efficiency and output power, 407–408
<table>
<thead>
<tr>
<th>Measurement Expression equations (continued)</th>
<th>overview of, 343–345</th>
</tr>
</thead>
<tbody>
<tr>
<td>for drawing contour plots, 372</td>
<td>source inductors in, 338–339</td>
</tr>
<tr>
<td>for effective permittivity of microstrip lines, 49</td>
<td>MES (metal semiconductor) FETs.</td>
</tr>
<tr>
<td>for efficiency in display windows, 384</td>
<td>See GaAs (gallium arsenide)</td>
</tr>
<tr>
<td>for equations written in display windows, 95</td>
<td>MESFETs</td>
</tr>
<tr>
<td>for equivalent circuit values, 25–26, 185</td>
<td>Meshes</td>
</tr>
<tr>
<td>for EVM simulations, 453</td>
<td>in Momentum, 272–273</td>
</tr>
<tr>
<td>for feedback parameters, 522–523</td>
<td>S-parameters and, 266</td>
</tr>
<tr>
<td>for impedance of coaxial cables, 44</td>
<td>Setup Controls windows</td>
</tr>
<tr>
<td>for LO/RF port reflections, 652</td>
<td>for, 272</td>
</tr>
<tr>
<td>for obtaining conjugate matching points, 305–306</td>
<td>Metal-insulator-metal (MIM)</td>
</tr>
<tr>
<td>for obtaining constellations, 443–444</td>
<td>capacitors, 14–15</td>
</tr>
<tr>
<td>for open-loop gains using simulated S-parameters, 505</td>
<td>Metal-oxide semiconductor FETs</td>
</tr>
<tr>
<td>for output power, gain, PAE of Class-F PAs, 418</td>
<td>generally. See MOSFETs (metal-oxide semiconductor FETs)</td>
</tr>
<tr>
<td>for output powers within bandwidth, 451–452</td>
<td>laterally diffused, 356, 360–361</td>
</tr>
<tr>
<td>for output spectrums, 452–453</td>
<td>Metal semiconductor FETs. See GaAs (gallium arsenide)</td>
</tr>
<tr>
<td>for output voltage spectrum, 444</td>
<td>MESFETs</td>
</tr>
<tr>
<td>for PDFs, 446</td>
<td>Metals, 658</td>
</tr>
<tr>
<td>for PLL parameters in display windows, 621</td>
<td>Microsoft Excel</td>
</tr>
<tr>
<td>for plotting simulation circuits, 531</td>
<td>DC circuit analysis in, 234</td>
</tr>
<tr>
<td>for power delivered to load, 371</td>
<td>Frii’s formula and, 135</td>
</tr>
<tr>
<td>for reference signal definition, 630</td>
<td>transient circuit analysis in, 237</td>
</tr>
<tr>
<td>for reflection coefficients, 79</td>
<td>Microstrip component with open-end capacitance (MLEF), 76–78</td>
</tr>
<tr>
<td>for series feedback network elements, 532–533</td>
<td>Microstrip component without open-end capacitance (MLOC), 76–78</td>
</tr>
<tr>
<td>for source/load impedance setup, 366–367</td>
<td>Microstrip lines. See Microstrip transmission lines</td>
</tr>
<tr>
<td>for sweep, 369</td>
<td>Microstrip oscillators</td>
</tr>
<tr>
<td>for two-tone input power, 449–450</td>
<td>EM simulations and, 548–552</td>
</tr>
<tr>
<td>for values of simplified equivalent circuits, 189</td>
<td>implementation of, 544–548</td>
</tr>
<tr>
<td>for VCO frequency definition in MeasEqn, 632</td>
<td>VCOs and, generally, 544</td>
</tr>
<tr>
<td>Measurement of LNAs. See also Low-noise amplifiers (LNAs)</td>
<td>Microstrip ring-type inductors, 183–184</td>
</tr>
<tr>
<td>introduction to, 333–336</td>
<td>Microstrip transmission lines</td>
</tr>
<tr>
<td>matching circuits in, 340–342</td>
<td>capacitance of, 46–47 carriers for, 158</td>
</tr>
<tr>
<td>Microwave active devices. See Active devices</td>
<td>characteristic impedance of, 40, 45, 47–48 divided by mesh, 273</td>
</tr>
<tr>
<td>Microwave integrated circuits (MICs)</td>
<td>in DRs, 557–559</td>
</tr>
<tr>
<td>classification of, 9</td>
<td>effective permittivity of, 49 integration and, 6 introduction to, 2–3</td>
</tr>
<tr>
<td>in communications systems, 6, 9</td>
<td>phase velocity of, 45–46 in VCOs, 544–546</td>
</tr>
<tr>
<td>monolithic. See Monolithic microwave integrated circuits (MMICs)</td>
<td>problem exercises on, 722–726</td>
</tr>
<tr>
<td>problem exercises on, 9</td>
<td>qualitative analysis of, generally, 664–667</td>
</tr>
<tr>
<td>summary of, 9</td>
<td>quantitative analysis of, generally, 704</td>
</tr>
<tr>
<td>thin-film technology for, 5</td>
<td>references on, 722</td>
</tr>
<tr>
<td>Microwave oscillators. See Oscillators</td>
<td>Schottky diodes in. See Schottky diodes</td>
</tr>
<tr>
<td>MICs (microwave integrated circuits). See Microwave integrated circuits (MICs)</td>
<td>single-balanced. See Single-balanced mixers (SBMs)</td>
</tr>
<tr>
<td>MIM (metal-insulator-metal) capacitors, 14–15</td>
<td>single-ended. See Single-ended mixers (SEMs)</td>
</tr>
<tr>
<td>Miniaturizing circuit components, 424</td>
<td>small-signal analysis of, 707–714</td>
</tr>
<tr>
<td>Minor Grid options, 249, 253–254</td>
<td>specifications for, generally, 640</td>
</tr>
<tr>
<td>Mismatched source/load, 110–111, 201</td>
<td>summary of, 720–721</td>
</tr>
<tr>
<td>Mixers</td>
<td>VSWR and, 642–652</td>
</tr>
<tr>
<td>1-dB compression points and, 640–642</td>
<td>calculation of parameters of, 714–720</td>
</tr>
<tr>
<td>comparison of, 703</td>
<td>conversion loss and, 640–642</td>
</tr>
<tr>
<td>isolation of, 642–652</td>
<td>double-balanced. See Double-balanced mixers (DBMs)</td>
</tr>
<tr>
<td>LO analysis of, 704–707</td>
<td>introduction to, 639–640</td>
</tr>
<tr>
<td>problem exercises on, 722–726</td>
<td>LO analysis of, 642–652</td>
</tr>
<tr>
<td>qualitative analysis of, generally, 664–667</td>
<td>problem exercises on, 722–726</td>
</tr>
<tr>
<td>quantitative analysis of, generally, 704</td>
<td>qualitative analysis of, generally, 664–667</td>
</tr>
<tr>
<td>references on, 722</td>
<td>quantitative analysis of, generally, 704</td>
</tr>
<tr>
<td>Schottky diodes in. See Schottky diodes</td>
<td>references on, 722</td>
</tr>
<tr>
<td>single-balanced. See Single-balanced mixers (SBMs)</td>
<td>Schottky diodes in. See Schottky diodes</td>
</tr>
<tr>
<td>single-ended. See Single-ended mixers (SEMs)</td>
<td>specifications for, generally, 640</td>
</tr>
<tr>
<td>small-signal analysis of, 707–714</td>
<td>summary of, 720–721</td>
</tr>
<tr>
<td>specifications for, generally, 640</td>
<td>VSWR and, 642–652</td>
</tr>
</tbody>
</table>
MLEF (microstrip component with open-end capacitance), 76–78
MLOC (microstrip component without open-end capacitance), 76–78
Mobile communications. See Voltage-controlled oscillators (VCOs)
Momentum circuit-simulated impedances vs., 339–342
data directory in, 273–276
EM simulations and, 264, 267, 550
introduction to, 264
Layout Layers in, 267–269
matching circuit simulations in, 340–342
meshes in, 272–273
ports in, 269–271
reference planes in, 269–271
settings in, generally, 264–267
Simulation Control in, 273–276
Substrate Layers in, 267–269
theory and, 264–267
Monolithic microwave integrated circuits (MMICs)
components of, generally, 14
introduction to, 2–6
load-pull simulation in, 365
MOSFETs (metal-oxide semiconductor FETs)
breakdown voltage of, 360
dual-gate, 676
introduction to, 151
laterally diffused, 356, 360–361
Si complementary, 151
Most significant bits (MSBs), 441–442
MSG. See Maximum stable gain (MSG)
MSUB, 337, 339
Multi-tone harmonic balance simulation, 243–246
Multiport representation, 711–713
Murata, 24, 568
N
n+ drain (highly doped region), 360–361
n-type metal-oxide semiconductors (NMOS), 594
N-type transistors, 692
Natural frequency, 607
NE32484, 750–751
NEC, 538
Negative resistance, 292–293, 744–751
Network analyzers, 22–26
Networks directory, 227–228
New Layout Window, 250–251
NFAs (noise figure analyzers), 343
NHVs (lightly doped regions), 360–361
NMOS (n-type metal-oxide semiconductors), 594
Noise density, 507
Noise factors, 122, 126, 132–133
Noise figure analyzers (NFAs), 343
Noise figures
in cascaded structures, 729–731, 735
in DC supply circuits, 333
Frii’s formula and, 133–136
introduction to, 122–124
in low-noise amplifier design, 314–315
in low-noise amplifier fabrication, 343–344
lumped-element matching circuits and, 322–325
in matching circuit simulations, 342
matching circuits and, 329, 354
measurement systems for, 136–140
meters for, 136–139
noise parameters and. See Noise parameters
in S-parameter simulation, 129
in Schottky diodes, 664
Noise floors, 596–599, 604, 629
Noise mismatch circles, 313
Noise parameters
expression of, 124–133
file formats and, 140–142
Frii’s formula for, 133–136
internal noise in, 112–113
measurement of, 139–140
noise figure measurements in, 136–139
noise figures in, generally, 122–124
problem exercises on, 144–147
representation of noise signals in, generally, 113–117
spectrum analysis of noise signals in, 117–119
summary of, 142–143
thermal noise in, 119–122
Noise powers, 279–281
Non-zero transmission lines, 103–104
Nonlinear circuit analysis. See also Linear circuit analysis
in DC simulations, 232–233
in harmonic balance simulations, 239
small-signal AC analysis in, 238
in transient simulations, 237
Normalization
in Class-F PAs, 403
of DUTs, 88
of incident voltages, 95
of reflected voltages, 95
Normalized incident voltages, 95–96
Normalized reflected voltages, 95–96
Norton equivalent circuits
introduction to, 74–75
noise figures and, 123–125
in quantitative analysis of SEMs, 715
of simple diode circuits, 232
in small-signal mixer analysis, 712
npn transistors, 162–163
Nyquist, Harry, 119
OCXOs (oven-controlled crystal oscillators), 587–588
Ohm/square, 14–15
Ohm (Ω). See 50 (ohm)
Ohmic contacts, 122–126, 358–369
Ohmic regions, 360
On/off switches, 664–667
One-port components, 22
One-port oscillators, 480–483, 500, 527
One-quarter-wavelength transmission lines, 399–400
Open-circuit method
coaxial lines and, 43–44
in DUTs, 105
Open-circuit method (continued)

reflection coefficients and, 751–757
series, 482–483
start-up. See Start-up conditions

Oscillation waveform spectrum, 506–508

Oscillator circuits
conversion of, 520–525
design methods and, 525–534
introduction to basic, 515–520

Oscillators
in dielectric resonator oscillators, 552–559
DROs. See Dielectric resonator oscillators (DROs)
introduction to, 479–480
Leeson’s phase noise model and, 509–512
microstrip. See Microstrip oscillators
microwave. See Microwave oscillators
oscillation conditions and. See Oscillation conditions
phase noise and, 514–515
problem exercises on, 577–580
quarter-wavelength coaxial-line resonators and, 68–69
references on, 577
simulation of, 534
summary of, 576–577
voltage-controlled. See Voltage-controlled oscillators (VCOs)

OscPort
frequency tuning ranges in, 542
harmonic balance simulations in, 491, 497–498
open-loop gains in, 504–505

OscTest
equilibrium conditions in, 495
frequency tuning ranges in, 542
reflection coefficients and, 752–756
OSL (open-short-load) calibrations, 105
Out-of-phase distribution ports (A-ports), 685, 690–692
Output matching circuits, 418–424, 428

Open-end capacitance, 76
Open-end microstrip lines, 76–78
Open-end transmission lines, 39–40

Open-loop gains
in dielectric resonator oscillators, 563–565, 568–571
equilibrium conditions based on, 500–506
fourth-order loop filters and, 624–625
higher-order loop filters and, 616–620
in loop filters, generally, 606–609
in series vs. parallel oscillators, 516–523
small-signal, 501–502
start-up conditions based on, 500–506
third-order loop filters and, 622

Open-stub calibrations, 105
Open stubs, 340
Operating points, 375–377

Operation
of dielectric resonators, 552–557
of phase-locked loops, 582–590
of Schottky diodes, 658–664

Optimization
in circuit simulations, 246–247
in DC supply circuits, 330–333
loop filter design using, 625–628
lumped-element matching circuits in, 322–325
in matching circuit simulations, 429
transmission-line matching circuits in, 327–329

Option controllers, 127
Option line for Touchstone files, 141

Oscillation conditions
defined, 479
equilibrium in. See Equilibrium conditions
introduction to, 480–481
parallel, 483–484, 488

Package
of BJTs, 171
capacitance in, 657
of GaAs MESFETs, 159–161
in Schottky diodes, 656–657

PAE. See Power-added efficiency (PAE)

PAPR (peak-to-average power ratio), 454
Parallel feedback oscillators, 515–520, 522
Parallel-line baluns, 699–700
Parallel oscillation conditions, 483–484, 488
Parallel-plate baluns, 685
Parallel resistance circuits, 121
Parallel resonant circuits, 61–63, 557–558
Parallel-to-series conversions, 205–208

Parameter sweep
in Class-F PAs, 423
dielectric resonator oscillators, 561
in Doherty PAs, 471
in equilibrium conditions, 490
in feedback oscillators, 530
in interdigital capacitors, 426
in matching circuit simulations, 432
in oscillation output power, 499
in spiral inductors, 425
in VCOs, 539–541, 545

Parameters
characteristic impedance, 37–39
measurements, 39–40
phrase velocity, 30–34

Index
Index

in transmission lines, generally, 30
wavelength, 35–37
Parametric amplifiers, 149
Parasitic capacitors, 421–422, 428
PAs. See Power amplifiers (PAs)
Passive devices
chip-type capacitors, 16–18
chip-type inductors, 19–21
chip-type resistors, 21–22
classification of, 12–15
equivalent circuits in, generally, 16
impedance in, 11–12, 22–26
problem exercises on, 27
summary of, 26
Path settings window, 263
Pattern-type passive components, 12–13
PC-controlled impedance tuners, 363
PCBs. See Printed circuit boards (PCBs)
PDAs (predistorted power amplifiers), 458–459
PDFs (Probability density functions), 114–115, 446
Peak-to-average power ratio (PAPR), 454
Peaking devices, 464–467, 469–472
PFDs (phase frequency detectors), 594–600, 632
Phase detectors
constants in, 583
noise floors in, 597–600, 604, 629
phase-locked loops and, 591–600
Phase frequency detectors (PFDs), 594–600, 632
Phase inversions, 518–519
Phase jitter, 508–509
Phase-locked loops (PLLs)
components of, 590
configuration of, 582–590
envelope simulation and, 440
first-order, 607–608
frequency dividers and, 600–605
higher-order loop filters and, 616–625
introduction to, 8, 581–582
loop filters and, 606–608, 626–627
measurement of, 612–615
operation of, 582–590
phase detectors and, 591–600
phase noise simulation and, 627–630
problem exercises on, 635–638
references on, 634
second order loop filters for, 608–612
simulation of. See Simulation of PLLs
steady state operations in, 588–590
summary of, 634
transition response simulation and, 630–633
VCOs and. See Voltage-controlled oscillators (VCOs)
Phase margins, 616–619
Phase noise
in closed-loop DROs, 565
in DROs, generally, 571–572, 574–575
Leeson’s model of, 509–513
oscillation waveform spectrum in, 506–508
oscillators and, 598–600
in oscillators, generally, 514–515
phase jitter and, 508–509
in phase-locked loops, 585–590, 605, 612–614
simulation of, 627–630
Phase shifters, 564, 567–568
Phase velocity, 30–34
PhaseFrequencyDetCP, 632
Phasors
in AC simulations, 237–238
analysis with, 50–51
in Class-B PAs, 382
diagrams of, 508–509
in double harmonic balance simulations, 245
as envelopes, 438–439
introduction to, 34
pHEMTs. See Pseudomorphic HEMTs (pHEMTs)
\(\pi\)-shaped equivalent circuits, 72–75, 181–187
\(\pi\)-type feedback networks, 516–517, 529
\(\pi\)-type matching circuits, 212–214, 419–420
PIN diodes, 149
Planar structures
mixers, 672–673
Momentum solutions for. See Momentum transmission lines, 1–6
Plate capacitance, 46–47
PLLs. See Phase-locked loops (PLLs)
Plot Option, 222
Plot Traces & Attributes windows, 274
PMOS (\(p\)-type metal-oxide semiconductors), 594
pn junctions, 149, 162
\(np\) transistors, 176–178
Polar charts
of GaAs FET S-parameters, 159
introduction to, 95
transmission lines and, 57
Polarities, 664
Port conditions, 87–88
Port extension, 23
Port Properties Editor windows, 269–271, 274–275
Port-to-port isolations, 651
Ports, in Momentum, 269–271
Power-added efficiency (PAE)
in Class-F PAs, 415–418, 424
load-pull simulation and, 372–374
in matching circuit simulations, 431–433
RF input/output power and, 354–355
Power amplifiers (PAs)
ACPR measurements in, 446–452
active devices in, 355–356
baseband signal modulation in, 434–438
Class-B and Class-C, 377–385
Class-D, 386–390
Class-E, 390–398
Class-F, 398–409
classification of, generally, 374–377
composite, 455
design of, 410–412
displays in, 371–374
Doherty, 462–473
EER in, 455, 462
envelope simulation in, 438–446
EVM simulation in, 453–454
Power amplifiers (PAs) (continued)

Experimental load-pull method in, 362–364
feedforward, 461–462
GaN HEMTs in, 356–359
input/output impedance in, 412–418
input/output matching circuits in, 418–424
introduction to, 6–9, 351–355
LDMOSFETs in, 360–361
linearity in. See Linearity in PAs
load impedance in, 361–362, 366–368
load-pull simulation in, 365–366
low-noise amplifiers vs., 351–354
matching circuits in, 353–354, 424–432
predistorters in, 455–460
problem exercises on, 475–478
references on, 474
summary of, 473–474
sweep in, 368–370
two-tone measurements in, 446–452
Power dividers, 70–75
Power gain circles, 308, 312–313, 319–321
Power gains. See also Gains available, 289
Frii’s formula and, 133–136
overview of, 286–287, 290–291
transducer, 287–289
unilateral, 291–292
Power probes, 371–373
Precision air-line connectors, 42
Predistorted power amplifiers (PDAs), 458–459
Predistorters, 455–460
Preference for Layout windows, 253–255, 263
Prescalers, 601
Printed circuit boards (PCBs)
fabrication of, 248–249
introduction to, 3
Stand component layout for, 260–262
substrate parameters for, 337
in VCOs, 534–536, 538
Printing, 3, 249
*_prj (project directory extension), 228
Probability density functions (PDFs), 114–115, 446
Probability distribution, 463
Programmable frequency dividers, 601
Project directory, 228–229
Propagation constants, 33
Pseudomorphic HEMTs (pHEMTs)
DC characteristics of, 188
FHX35LG transistor packages, 530, 544–546
GaAs MESFETs and, 151, 161–162
introduction to, 151
in PAs, generally, 355–356
Pseudomorphic technology, 162
Pucel, A., 513
Q
QAM (quadrature amplitude modulation), 435–436, 441–444
QPSK (quadrature phase shift keying), 435–436, 444, 454
Quadrature amplitude modulation (QAM), 435–436, 441–444
Quadrature phase shift keying (QPSK), 435–436, 444, 454
Qualitative analysis of DBMs. See also Double-balanced mixers (DBMs)
design in, 699–700
introduction to, 694–699
using transistors, 700–703
Qualitative analysis of SBMs. See also Single-balanced mixers (SBMs)
hybrids, 681–685
introduction to, 681
using diodes, design of, 690–692
using diodes, generally, 685–689
using transistors, 692–694
Quantitative analysis of SEMs. See also Single-ended mixers (SEMs)
calculation of parameters in, 714–720
introduction to, 704
LO analysis in, 704–707
small-signal analysis in, 707–714
Quarter-wavelength transmission lines
application of, 60–69
defined, 36
as impedance inverters, 54, 70–71
introduction to, 30
matching circuits using, 223
in open-end microstrips, 77
two-port lumped-element equivalent circuits and, 73–74
Quasi-TEM mode, 45
R
Raab, H., 402
Radial stubs, 330–331
Radio frequency (RF). See RF (radio frequency)
Raised-cosine filters (RCFs), 438–439, 442–443
Rat-race ring hybrids, 683–684, 690
Raytheon Corporation, 156
RBW (resolution bandwidth), 506–507, 511
RCFs (raised-cosine filters), 438–439, 442–443
R_{ds}, 189
Real-valued source/load, 217–219
Rectangular plot icons, 274
Rectangular waveguide, 2
Reference impedance, 88, 92, 751
Reference oscillators, 588–590, 598–600
Reference signals (REFs), 592–595
Reflected voltages, 88–89, 99–105, 282–283
Reference planes of DUTs, 88
in feedback oscillators, 525
of GaAs FET S-parameters, 160
in Momentum, 269–271
Reference signals (REFs), 592–595
Reflection voltages, 88–89, 99–105, 282–283
Reflected waves, 52
Reflection coefficients
 defined, 52–54
 equilibrium conditions based
 on, 492–499
frequency-dependent load, 367
input/output, 281
introduction to, 30
large-signal impedance and,
 739–743
in microstrip open-end
 capacitance, 76–78
in mixer isolations, 650–651
oscillation conditions and,
 751–757
on polar charts, 57
on Smith charts, 57–59
source, 367–368
start-up conditions based on,
 492–496
sweeping method of, 368–370
of Thevenin equivalent circuits,
 282–285
VSWR and, 54–57
Reflection-type DROs, 560–561
Reflow machines, 13
REFs (reference signals),
 592–595
Representation of noise signals,
 113–117
Resistive operations, 666, 675
Resistive power dividers, 71
Resistive SEMs. See also Single-
 ended mixers (SEMs),
 680–681
Resistors
 in FETs, 157
 as passive devices, generally,
 11–16
 in RF decoupling, 176
Resolution bandwidth (RBW),
 506–507, 511
Resolution frequency, 118
Resonant frequency, 557–559
Resonant transmission lines,
 60–69
Return gain, 108–109
Return loss (RL)
 in dielectric resonator
 oscillators, 568, 574
 mixer isolation and, 644
 in transmission lines, 52–54
 Reverse-biased CB junctions,
 162–169
 Reverse-biased voltage, 663
 RF chokes (RFCs). See also RF
 (radio frequency)
 in BJT DC-biased circuits, 174
 in Class-F output matching
 circuits, 422
 in low-noise amplifier design,
 330–331
 RF circuits and, 66–68
 in RF decoupling, 175
 in VCOs, 546–547
 RF input power
 in Class-B/Class-C PAs, 378
 in mixer isolation, 642–652
 in mixers, generally, 639–641
 output power and, 354–355
 in PAs, generally, 363, 375–377
 RF (radio frequency)
 in BJT DC-biased circuits,
 174–176
 chokes. See RF chokes (RFCs)
 circuits, generally, 66–68
 input power. See RF input
 power
 R, 189
 RL. See Return loss (RL)
 Root mean square (RMS), 96, 437
 Rx-synthesizers, 7–8
S
 S-parameter simulation. See also
 S-parameters
 S-parameters
 controllers, 127–129
 FETs in, 178–180
 GaAs FET simplified equivalent
 circuits in, 187–190
 microstrip ring-type inductors
 in, 184
 parallel feedback oscillators
 in, 522
 ports in, 97–99
 VCOs in, 539–540
 S-parameters
 BJTs and, 168–171
 Class-F input matching circuits
 and, 422
 Class-F output matching
 circuits and, 422
 in Class-F PAs, 412–414
 in closed-loop DROs, 563
 conversion of, 99–103
 in DC supply circuits,
 331–333
definitions of, 95–97
 in dielectric resonator
 oscillators, 561
 in equivalent circuits of
 DRs, 559
 file formats and, 140
 GaAs MESFETs and, 157–159
 gain circle formulas and, 313
 gain formulas and, 311–312
 input reflection coefficient and,
 110–111
 insertion loss and, 108–110
 in interdigital capacitors, 426
 introduction to, 87–88
 low-frequency stability and,
 334–335
 in low-noise amplifier design,
 314–315
 in low-noise amplifiers,
 generally, 280–281
 matching circuit simulations
 and, 342, 344–345, 431
 Momentum finding, 265–267,
 273–275
 negative resistance in, 748
 open-loop gains using, 505
 properties of, 95–97
 return loss and, 108–110
 shift of reference planes and,
 103–107
 simulation. See S-parameter
 simulation
 in spiral inductors, 425
 in Thevenin equivalent
 circuits, 284
 in VCOs, 539, 545
 voltage, 88–95
 S2P format, 141
 Saleh notation, 710
 Sample functions, 114
 Sample Points Limit fields, 274
 Saturation currents, 654, 663–664
 Saturation regions, 677–680
 SBMs. See Single-balanced mixers
 (SBMs)
 Scalar measurements, 53
 Scaling factors, 411–412
 Schematic/Layout window,
 227–228
Schematic window, 269
Schottky barrier height, 663–664
Schottky diodes
barrier height and, 663–664
depletion capacitance in, 660–661
FET small-signal equivalent circuits and, 192
forward/reverse operations and, 661–663
introduction to, 149
junctions for, 658–660
large-signal GaAs MESFETs and, 153–154
and mixers, generally, 639–640
operating principle of, 658–664
packages in, 656–657
structure of, 652–656
Schottky junctions, 658–660
SDDs (symbolically defined devices), 489
Second harmonics
in Class-F PAs, 419, 422
in matching circuit simulations, 429, 432
Second order loop filters, 608–612
Self-bias circuits, 178
Semirigid cables, 42
SEMs. See Single-ended mixers (SEMs)
Series feedback inductors, 317
Series feedback oscillators
design of, 530–533
element values in, 533
load reference planes in, 526
overview of, 515–520
reference planes in, 526
spectrum in, 534
time-domain waveforms in, 534
Series oscillation conditions, 482–483
Series resonant circuits, 106–107
Series-to-parallel conversions, 205–207
Sheet capacitance, 14–15
Sheet resistivity, 14–15
Short-circuit method
coxial lines and, 43–44
in DUTs, 105
microstrip lines and, 44–48
reflection and return loss in, 53–54
resonant transmission lines in, 61–69
Short-length transmission lines, 39–40
Short-term transmission lines, 60
Show Coordinate Entry Dialog, 263
Shunts, 317–318, 670
Si process technology
BJTs in, 149–150, 162–164
complementary MOS in, 151
LDMOSFETs in, 360–361
semiconductors in, 357–358
SiC GaN HEMTs, 358
SiC semiconductors, 357–358
Σ-ports (in-phase distribution ports), 685
Signal-to-noise ratio, 279–281
Signals
balanced, 684–685, 694
baseband, 434–438
comparison, 592–595
FM, 8
input, 279–281
large. See Large-signal conditions
reference signals, 592–595
representation of noise, 113–117
small. See Small-signal conditions
unbalanced, 684
SIGs (comparison signals), 592–595
Silicon oxide, 653
Simplified equivalent circuits,
168–171, 186–191
Simulation of PLLs. See also
Phase-locked loops (PLLs)
in ADS, 625–633
loop filter synthesis in, 626–627
phase noise in, 627–630
transient response in, 630–633
Simulations
in ADS, 227–230
circuit. See Circuit simulation
electromagnetic, 15
harmonic balance. See Harmonic balance simulation
layout and. See Layout
load-pull. See Load-pull simulation
momentum for. See Momentum of phase-locked loops. See Simulation of PLLs
references on, 276–278
S-parameter. See S-parameter simulation
Simulation Control for, 273–276
source-pull, 416–417
summary of, 276
transient circuit, 234–237
transient response, 630–633
two-tone mixer, 647–648
Simultaneous conjugate matching conditions, 302–305
Single-balanced mixers (SBMs)
hybrids, 681–685
qualitative analysis of, generally, 681, 703
spurious characteristics of, 697
using diodes, design of, 690–692
using diodes, generally, 685–689
using transistors, design of, 692–694
Single-ended mixers (SEMs)
calculation of parameters of, 714–720
design examples of, 672–673
introduction to, 640
LO analysis of, 704–707
qualitative analysis of, 667
quantitative analysis of, 704
small-signal analysis of, 707–714
using diodes, 668–672
using transistors, design of, 679–681
using transistors, generally, 673–679
Single-gate FETs, 676–678
Single layer capacitors (SLCs), 426–428, 430
Single Point simulation frequency, 274
Single-stub tuners, 219–223
Sinusoidal responses
phasor analysis and, 50–51
Polar charts and, 57
reflection and return loss, 52–54
Smith charts and, 57–59
voltage standing wave ratio, 54–59
Index

Sinusoidal waveforms
- in AC simulations, 237–239
- in Class-B/Class-C PAs, 378–384
- in Class-D PAs, 386, 389
- in PA classification, 374–377

Skyworks, Inc., 567

SLCs (single layer capacitors), 426–428, 430

Slope, 25

Slot line transmission lines, 2–3, 6

Slot options, 268

Small miniature assembly (SMA) connectors, 22–23, 42

Small-signal conditions
- AC analysis in, 238
- active devices in, 351–353
- data models in, 315
- equivalent circuits in, 157–159, 238
- GaAs MESFETs in, 153, 157–159
- gains in, 431–433
- harmonic balance simulations in, 715–720
- LO analysis in, 704–707
- in low-noise amplifiers. See Low-noise amplifiers (LNAs)
- mixer analysis in, generally, 704–707
- oscillation in, 480, 495
- simulations in, 501–502, 541–542
- single-ended mixer analysis in, 707–714
- time-varying RF signals in, 707–714
- VCOs in, 541–542

SM.freq, 716–717

Smith charts
- contour plots in, 372
- double L-type matching circuits in, 218
- DRs in, 556
- GaAs FET S-parameters in, 159
- gain circles in, 312–313
- introduction to, 95
- L-type matching circuits in, 209–212
- load stability circles in, 301
- π-type matching circuits in, 213–214
- reflection coefficient sweeping in, 368
- S-parameters of BJTs in, 170
- single-stub tuners in, 221–223
- source stability circles in, 301
- stability circles in, 333–336
- stability regions in, 297
- T-type matching circuits in, 215–216
- transmission lines in, 57–59
- VCO load circuits in, 548
- SMV1235-079 varactor diodes, 539–540
- SMV1245 varactor diodes, 567–568
- Snap options, 249, 253–254
- SnP format, 140
- Sokal, A., 390
- Sokal, N., 390
- Solder resist (SR) materials, 248
- Soldering, 13, 544
- Source impedance
 - in Class-F PAs, 413–417
 - in low-noise amplifier design, 319–321
 - in low-noise amplifiers, generally, 279–281
 - matching to loads. See Impedance matching power gains and, 286–287, 291
 - selection, 319–321
- Source inductors, 338–339
- Source-pull simulation, 416–417
- Source reflection coefficients, 367–368
- gain circles and, 306–308
- noise circles and, 306, 308–311
- power gain circles and, 312–313
- Source stability circles, 313, 333–337
- Source stability regions, 293–301
- Space-charge-region diodes, 165–167
- SPAN, 613
- Specifications for mixers. See also Mixers
 - 1-dB compression points, 640–642
 - conversion loss in, 640–642
 - introduction to, 640
 - isolation of mixers in, 642–652
 - VSWR in, 642–652
- Spectral noise power, 136
- Spectrum
 - analysis. See Spectrum analysis in decibels, 728–729
 - in oscillators, 534
- Spectrum analysis
 - amplitude and phase noise in, 506
 - conversion loss in, 640
 - load impedance in, 362
 - of noise signals, 117–119
 - phase-locked loops in, 612–613
- Spiral inductors, 424–425, 428, 430
- Spot noise figures, 136
- Spurious characteristics
 - of loop filters, 625
 - in mixer types, 703
 - in phase-locked loops, 612
 - of SBMs, 697
- Spur, 613–616, 622, 625
- SR (solder resist) materials, 248
- Stability
 - in Class-F PAs, 412–413
 - conjugate matching and, 292, 301–306
 - factors for, 296–301
 - load stability regions in, 293–296
 - in low-noise amplifier design, 315–319, 333–336
 - in low-noise amplifiers, generally, 292
 - of oscillation conditions, 492–493
 - source stability regions in, 293–296
- Standardized incident voltages, 95–96
- Standardized reflected voltages, 95–96
- Standing waves, 56
- Start-up conditions
 - defined, 479
 - impedance-based, analyzing with ADS, 487–491
 - impedance-based, generally, 481–486
 - open-loop gain-based, 500–506
 - reflection coefficient-based, generally, 492–494
 - reflection coefficient-based, implementing circuits, 494–496
Stationary processes, 115–116
Steady-state PLL operations, 588–590, 610–611
Step discontinuities, 78–79
Strip options, 268
Stubs, defined, 219
Substrates
in interdigital capacitors, 426
Layers, 267–269
Thick-film, 3–4
Thin-film, 4–5
TLX-9, 343
Surface mounting technique, 13
Sweep
in Class-F PAs, 416–417
in load-pull simulation, 368–370
Tab, 448–449
Type options for, 274
in VCOs, 539–541
Switches
in Class-D PAs, 377, 386–390
in Class-E PAs, 377, 390–392, 395–398
in Class-F PAs, 400, 407
diode approximations as, 664
FET approximations and, 664
impedance approximations and, 665
shunt, 670
time varying, 666
Symbol rates, 435–436
Symbolically defined devices (SDDs), 489
T
T-junctions, 79
T-shaped equivalent circuits, 72–73, 181–183
T-type feedback networks, 516–517, 528–529
T-type matching circuits, 214–216
Taconic’s 10-milthick TLX-9 substrate, 343
Tap and Seed feedback, 441
Taylor series, 240
Teflon substrate, 3
TEM (transverse electromagnetic) mode, 42
Temperature
in DRs, 552–553
in GaN HEMTs, 356–357
in noise figures, 136–139
in noise parameters, 119–122
in S-parameter simulation, 128
TGF2023-01 GaN HEMTs, 410–412
Thermal conductivity, 356–357
Thermal expansion coefficients, 552–553
Thermal noise
in noise figures, 136–139
in noise parameters, 119–122
sources of, 122
Thevenin equivalent circuits
in dielectric resonators, 706–707
gains and, 282–285
transducer power gains and, 288
Thick-film substrates, 3–4
Thickness options, 267
Thin-film substrates, 3–5
Third-order harmonics
in Class-F PAs, 398–399, 402–409, 415–422
in matching circuit simulations, 429, 432
Third-order intercepts (TOIs)
in cascaded structures, 729, 733–734
introduction to, 447–449
in mixer isolation, 644–650
in mixers, generally, 641–642
Third-order intermodulation distortion. See IMD3 (third-order intermodulation distortion)
Third-order intermodulation frequency power, 641
Third-order loop filters, 620–621
Three Carriage Three Harmonic Tuners, 363
Thru-reflect-line (TRL) calibrations, 105
Time delays, 35
Time-domain waveforms
in Class-B PAs, 383
in harmonic balance simulations, 240, 243
in matching circuit simulations, 440
in oscillator design, 534
phase velocity and, 34
in phasor analysis, 50
spectrum analysis of noise signals and, 117
in VCOs, 543
voltage and, 84
VSWR and, 55–56
Time varying switches, 666
Toggling, 600
TOIs (third-order intercepts). See Third-order intercepts (TOIs)
Toroidal core transformers, 681, 699
Touchstone files, 140–141
Transconductance
current sources, 377, 386
mixers, 665
single-ended mixers, 679
Transducer power gains
available power gains and, 287–289
conjugate matching and, 304
defined, 286
summary of, 311
Transfer functions
in higher-order loop filters, 616, 621–624
in loop filters, generally, 606–607
phase-locked loops in, 583–585
in second-order loop filters, 608–612
Transient circuit simulation, 234–237
Transient responses, 612, 630–633
Transistors
in Class-D PAs, 389–390
design example of, 692–694
in oscillator circuits, 515–519, 522–527
in qualitative analysis of DBMs, 700–703
in qualitative analysis of SEMs, 692–694
in VCOs, 536–538
Transmission characteristics, 429–431, 434
Transmission-line matching circuits
impedance inverters and, 223–224
in low-noise amplifier design, 325–329
single-stub tuners and, 219–223
Transmission Line Mesh fields, 272
Transmission lines
 applications of, generally, 60
 characteristic impedance of, 37–39
 coaxial, 40–44
 corner discontinuities in, 78–79
 cross junctions in, 79–80
 discontinuities in, generally, 76
 impedance inverters for, 70–71
 introduction to, 1–3, 29–30
 measurements of, 39–40
 microstrip, 40, 44–49
 open-end microstrip lines, 76–78
 parameters in, generally, 30
 phase velocity in, 30–34
 phasor analysis of, 50–51
 Polar charts and, 57
 problem exercises on, 81–85
 resonant, 60–69
 short-term, 60
 sinusoidal responses in, 50–59
 in Smith charts, 57–59
 step discontinuities in, 78–79
 summary of, 80
 T-junctions in, 79
 two-port circuit applications of, 69–70
 two-port lumped-element equivalent circuits for, 71–75
 voltage standing wave ratio in, 54–59
 wavelength in, 35–37
 Transmission zeroes, 421–422, 429–434
 Transverse electromagnetic (TEM) mode, 42, 45
 Triple-stub tuners, 222
 Triple-wound transformers, 681–684, 701–702
 TriQuint, 410, 414
 TRL (thru-reflect-line) calibrations, 105
 Troughs, 35
 Two-layer planar structures, 265
 Two-port circuits, 69–70, 523–524
 Two-port lumped-element equivalent circuits, 71–75
 Two-port networks
 noise-free, 138
 noise parameters in. See Noise parameters
 reference plane shifts in, 103
 S-parameter conversion in, 100
 S-parameter simulation in, 97
 S-parameters in, generally. See S-parameters
 terminated by loads, 103
 Two-port oscillators, 527
 Two-port parameters, 87–88, 745
 Two-sided PCBs. See also Printed circuit boards (PCBs), 248–252
 Two-tone measurements in EVM simulations, 458–460
 in FPAs, 461–462
 in linearity in PAs, 446–452
 Two-tone mixer simulation, 647–648
 Tx synthesizers, 8
 U
 Unbalanced signals, 684
 Unconditional stability regions, 297–298
 Unilateral approximations, 157
 Unilateral power gains, 291–292
 Units, 727–729
 Unmap option, 268
 V
 Valence band energy, 658
 Varactor diodes, 149, 539–540
 VBW (video bandwidth), 506
 VCOs. See Voltage-controlled oscillators (VCOs)
 VCVS (voltage-controlled voltage source), 458–459, 628
 Vector measurements, 53
 Via options, 268
 Video bandwidth (VBW), 506
 Virtual ground technique, 506
 Voltage in characteristic impedance, 37–38
 in decibels, 728
 internal vs. external sources of, 112–113
 in phase velocity, 30–33
 in phasor analysis, 51
 in pi-shaped equivalent circuits, 72–73
 in reflection and return loss, 52–54
 in short-length transmission lines, 61–62
 in two-length transmission lines, 90–95
 Voltage-controlled current source (VCCS), 627
 Voltage-controlled oscillators (VCOs)
 crystal oscillators vs., 581–582
 design specifications for, 538
 EM simulation and, 548–552
 frequency tuning ranges in, 541–543
 introduction to, 8
 in loop filter design, 630–633
 microstrip oscillators and, 544–548
 for mobile communications, generally, 534–543
 phase-locked loops in, 611–613
 phase noises of, 514–515
 tuning sensitivity of, 583
 Voltage-controlled voltage source (VCCS), 458–459, 628
 Voltage standing wave ratio (VSWR)
 in comparison of mixer types, 703
 in mixers, generally, 642–652
 in reflection and return loss, 109–110
 in transmission lines, 54–59
 VSWR. See Voltage standing wave ratio (VSWR)
 W
 Wafers, 2–3, 565
 Wave equations, 32–34, 50
 Waveforms
 characteristic impedance and, 37–38
 half-wave, 382–384, 398
 maximum efficiency, 402–406
Waveforms (continued)
- oscillation spectrum, 506–508
- sinusoidal. See Sinusoidal waveforms
time-domain. See Time-domain waveforms

Waveguide SEMs, 672–674

Wavelength, 35–37

Whiskers, 656, 672

Wireless communication systems. See also Voltage-controlled oscillators (VCOs), 6–9

X
- X-band (8–12 GHz frequency band), 314
- XOR (Exclusive OR) phase detectors, 592–594

Y
- Y-parameters
 - in extraction of equivalent circuits, 181–184, 186, 188
 - in feedback oscillators, 523–524
 - introduction to, 87–88
 - Momentum finding, 267
 - S-parameter conversion and, 99–102, 193–194
 - YIG oscillators, 749

Z
- Z-parameters
 - in Colpitts oscillators, 744–745
 - in extraction of equivalent circuits, 181–184
 - in feedback oscillator design, 528
 - of forward-biased cold FETs, 192–193
 - introduction to, 87–88
 - in lossless two-port matching networks, 203–204
 - S-parameter conversion and, 99–103
 - Z0 impedance, 275–276