
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134086231
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134086231
https://plusone.google.com/share?url=http://www.informit.com/title/9780134086231
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134086231
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134086231/Free-Sample-Chapter

Common
OpenStack

Deployments

This page intentionally left blank

Common
OpenStack

Deployments
Real-World Examples for Systems

Administrators and Engineers

Elizabeth K. Joseph
with Matthew Fischer

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trade-mark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales depart-ment at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2016944433

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-right,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms, and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-408623-1
ISBN-10: 0-13-408623-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

1 16

http://www.pearsoned.com/permissions/

❖

This book is dedicated to the OpenStack community. Of the

community, I’d also like to specifically call out the help and support

received from the Puppet OpenStack Team, whose work directly laid the

foundation for the deployment scenarios in this book.

❖

This page intentionally left blank

Contents

Preface xv

Acknowledgments xxiii

About the Author xxv

1 What Is OpenStack? 1
The Cloud 1

OpenStack Joins the Cloud 2
Building Your Cloud 3
Uses 3
Key Components 4

Instances 4
Queuing 4
Dashboard (Horizon) 4
Compute (Nova) 7
Identity (Keystone) 9
Networking (Neutron) 9
Image Service (Glance) 10
Block Storage (Cinder) 10
Object Storage (Swift) 11
Telemetry (Ceilometer) 11
Bare Metal (Ironic) 12
Orchestration (Heat) 12
Containers (Magnum) 13
Other Projects 13

Release Cycle 13
Ubuntu Long Term Support 14
Ubuntu Cloud Archive 15
Puppet Modules 16

Summary 17

I First Deployments 19

2 DevStack 21
What Is DevStack? 21

Developer Usage 22

viii Contents

Training Usage 22
Continuous Integration Usage 22

DevStack Requirements 22
Deploying DevStack 23

Dashboard: Log In as a User 24
Dashboard: Log In as an Administrator 28
Working with the Host on the Command Line 30

DevStack Options 31
DevStack "stable" 31
Customizing DevStack 32

Summary 33

3 Networking 35
Key Concepts 35

Planes of Operation 35
Provider Network 36
Tenant Networking 36
Maximum Transmission Unit (MTU) 38

Deployment Requirements 39
Traffic Flow 43

Controller Node 44
Compute Node 48

Other Resources 49
Summary 49

4 Your First OpenStack 51
Requirements 51

Reference Deployment 52
Initial Setup 52

Networking 52
Operating System 54
System Configuration 54

OpenStack Components 58
Controller Node 58
Compute Node 83

Manage an Instance 85
Summary 87

ixContents

II Deployments 89

5 Foundations for Deployments 91
Requirements 91

Reference Deployment 92
Networking 93
Select Deployment Mechanism 93

Initial Setup 94
Select Components 95

Identity (Keystone) 95
Database (MySQL) 96
Message Queuing (RabbitMQ) 96
Networking (Neutron) 96
Compute (Nova) 97
Image (Glance) 97
Dashboard (Horizon) 97

Foundation Scenario 97
Controller Node 98
Compute Node 109
Troubleshooting 115

Summary 116

6 Private Compute Cloud 117
Uses 117

Government Organization 117
Major Company 118

Requirements 118
Select Components 119

Scenario 119
Launching an Instance: Dashboard 119
Launching an Instance: OpenStack Client 130
Running a Service 136
SDKs and the OpenStack API 138

Summary 139

7 Public Compute Cloud 141
Uses 141

Traditional Technology Company 141
Web Hosting Company 142

x Contents

Requirements 142
Select Components 142

Architecture Overview 143
Scenario 144

Controller Node Setup 144
Compute Node Setup 145
Viewing Statistics: Dashboard 146
Viewing Statistics: Command Line Client 147

Handling Metrics and Alerts 150
Summary 150

8 Block Storage Cloud 151
Uses 151

Cloud Provider 151
Data Processing 152
Keeping Backups 153

Requirements 153
Select Components 153

Architecture Overview 154
Scenario 155

Controller Node Setup 155
Creating and Attaching a Volume: Dashboard 157
Creating and Attaching a Volume:
OpenStack Client 161
Using the Volume 162
Automation 166

Summary 166

9 Object Storage Cloud 167
Uses 167

Web Hosting Company 167
File Sync and Sharing 168
Log Storage 168

Requirements 169
Select Components 169
Key Concepts 169

Scenario 173
Controller Node Setup 173
Creating a Container and Object: Dashboard 176

xiContents

Creating a Container and Object:
OpenStack Client 179
Using an Object 181

Beyond Swift 184
Summary 184

10 Bare Metal Provisioning 185
Uses 185

Cloud Hosting Company 185
Internal Cloud 186
Database Hosting 186
High-Performance Computing 186

Architecture Overview 186
Installation 188
Using Ironic 188
Managing Ironic 192

Community 192
Summary 193

11 Controlling Containers 195
What Is a Container? 195
Uses 196

Public Cloud Company 196
Online Gaming Company 196

Container Drivers for Nova 197
Magnum 197

Magnum Concepts 198
Installing Magnum 199

Summary 199

III Scaling and Troubleshooting 201

12 A Whole Cloud 203
Uses 203
Requirements 203

Select Components 204
Scenario 204

Controller Node Setup 204
Compute Node Setup 205

xii Contents

Exploring the Deployment: Dashboard 205
Exploring the Deployment: Command Line
Client 207

A Bigger Cloud 207
High Availability and Scaling 208
Additional Components 208

Summary 209

13 Troubleshooting 211
Reading Displayed Errors 211
Logs 213

Debug Mode 215
Understanding Log Messages 215

Key Services 216
Networking 217

Network Debugging Tools 217
ip and Network Name Spaces 217
tcpdump 219
MTUs 219
Open vSwitch and Linux Bridges 220
iptables 220

Configuration Files 221
Puppet 221

Exploring the Modules 222
More Puppet Help 222

Mitigating Breakage 223
Requesting Help 224
Summary 224

14 Vendors and Hybrid Clouds 225
Vendor Ecosystem 225
Public and Hybrid Clouds 226

Public Clouds 226
Hybrid Clouds 228

Vendor Lock-in 229
Migrate to a New Cloud You Run 230
Migrate to a Cloud Run by a Vendor 230

Summary 230

xiiiContents

A Reference Deployment 231
Requirements 231
Installation 231
Recommendations 233

B Other Deployment Mechanisms 235
Chef 235
Ansible 235
SaltStack and Others 236
Vendor-Specific 236

C Long-Lived Puppet 237
Puppet Master or Masterless? 237
Hiera 237

Passwords in Hiera 238
Node Classification 238
Module Management 238
Software Life Cycle 239
Roles and Profiles 239
Packages 240
Revision Control 240
What Else Belongs in Your Composition Module? 240
More Information 241

D Contributing Code to OpenStack 243
Contribution Overview 243

Release Cycle 243
Communication 244
Specifications 245
Bug and Feature Tracking 246
Git and Code Review 246
Testing Infrastructure 247
Other Contributions 248

E OpenStack Client (OSC) 249
Basics 249

Authentication 249
Commands 250
Interactive Mode 250

Quick Reference 251

xiv Contents

F Finding Help with OpenStack 253
Documentation 253
Mailing Lists 254
Web-Based 254
Chat 254
Conferences and User Groups 255

OpenStack Summits 255
OpenStack Ops Meetup 255
OpenStack User Groups 255

Vendors 256

Index 257

Preface

And suddenly you know: It’s time to start something new
and trust the magic of beginnings.

Meister Eckhart

Companies today are heavily relying upon virtualized and cloud-based solutions in their
infrastructures. Whether they are off-loading their work to third-party cloud providers,
using a virtualized solution in-house or building clouds in their own data centers,
OpenStack has a lot to offer. This book provides an introduction to using and deploying
OpenStack, open source software for creating private and public clouds, in your own
organization.

OpenStack as an open source project has only existed since 2010 but quickly gained
support of companies around the world and the broader open source community. At open
source conferences OpenStack talks quickly sprang up by the time the project was just
three years old to the extent that some in the community joked that the “OS” in open
source conference names no longer stood for “Open Source” but for “OpenStack.” Demand
for talent in the field has risen along with interest, with OpenStack experts demanding
a premium as companies expand their private cloud deployments.

Audience
The audience for this book is Linux and Unix systems administrators and network engi-
neers seeking to learn the basics of OpenStack and to run sample deployment scenarios
that can be transitioned into real-world deployments. It also provides insight into the
most popular ways OpenStack is being used and how your organization can get there.

Though detailed commands are given, literacy with Linux systems administration is
expected so you can focus on learning about OpenStack and simplify the task of trou-
bleshooting. If you are doing these deployments in a series of virtual machines rather
than bare metal servers, familiarity with a virtual machine technology is expected.
This book does provide a reference deployment using virtualization with KVM and
QEMU on Ubuntu if you wish to have step-by-step instructions. However, the intent
is to leave virtualization preference up to the reader and make it easier to transition to a
physical setup.

Basic networking experience is recommended since networking is such an important
part of OpenStack, but diagrams in Chapter 3, “Networking,” will help guide you through
the OpenStack network architecture we’re demonstrating.

xvi Preface

Goals and Vision
I was inspired to write this book after attending several open source conferences where
OpenStack was becoming an increasingly popular topic. In spite of all these talks, I’d still
get practical usage questions from friends and colleagues about how they could use Open-
Stack in their organizations. To that end, each chapter with a deployment scenario begins
with a series of real-world examples of how it is being used by organizations in production.
From serving up f leets of web servers to log storage, backups and data processing, these
usage examples help you to find a place for OpenStack to accomplish a variety of tasks
that span organizations across various industries, universities and governments.

Whether you’re seeking to do an OpenStack deployment yourself or work with a
vendor, this book also provides a guide through these sample deployments. You learn
the basics of how to configure various OpenStack components and then walk through
interactions with them via a web dashboard and the OpenStack command-line client.
The mechanics of how the components interact with each other are also explained, so
you have an understanding of how you’re interacting with the systems.

System Prerequisites
In order to run most of the deployment scenarios in this book you need, at minimum,
two computers with combined resources of 6G of RAM and 50G of hard drive space.
A laptop with 8G of RAM is sufficient if you’re using virtualization, including use of
our tested reference deployment described in Appendix A, “Reference Deployment.”
If you choose to use real hardware, you will need two computers and two switches.
One of the switches must be connected to a network with access to the Internet so you
can install system packages and pull in configuration management tooling on your
systems.

Diagrams of both virtualized and physical environment options, including a breakdown
of specifications for each, are included in Chapter 3.

Ubuntu
You need to download the latest Ubuntu 14.04 ISO image to complete the deployment
scenarios. Ubuntu is a Linux distribution based on Debian, which had its first release in
2004. Initially aimed at making Linux easier for regular people, growth of Ubuntu on
servers has exploded over the past five years. It’s now the number one choice for cloud
deployments, both in OpenStack and on other cloud platforms such as Amazon Elastic
Compute Cloud (EC2).

OpenStack’s beginnings are also intertwined with the Ubuntu community. A number
of the early project contributors come from the Ubuntu project. The decision to use
Ubuntu comes from the expertise of the authors and a desire to focus on understanding the
types of deployments and basics surrounding OpenStack itself rather than the underlying
operating system.

xviiPreface

Although the OpenStack ecosystem is much broader than Ubuntu, with professional
services built around Red Hat Enterprise Linux (RHEL) and even a move to other operating
systems beyond Linux, this book uses Ubuntu 14.04 LTS (Long Term Support) as the
base installation for OpenStack.

This will impact configuration to some extent, since the Ubuntu Cloud Archive
(see Chapter 1, “What Is OpenStack?”) referenced in this book will be different from
that of RHEL, CentOS openSUSE, Fedora and others. However, the core OpenStack
knowledge and the deployment examples will be exportable to other systems once you
start making plans to move into production with your system of choice.

Puppet
With an initial release in 2005, today Puppet is one of the most popular configuration
management systems in the world. The Puppet OpenStack modules were one of the
first configuration management system projects to reach maturity in the OpenStack
community. Puppet modules for each release are made available within weeks of the
OpenStack release itself.

Like the selection of Ubuntu, the selection of Puppet for configuration management
was made so we can focus less on fundamental deployment and management, and more on
learning about OpenStack. While you will be using Puppet commands for these deploy-
ments, the basic concepts are explained and prior knowledge of Puppet is not required.
Additionally, the creators of the Puppet modules for OpenStack are a diverse group of
developers and operators from around the world and are formally supported by multiple
organizations. They are known to be f lexible enough for a variety of environments.

We will be using the default installed Puppet version on Ubuntu 14.04. If you’re
seeking to run Puppet in production, the OpenStack Puppet team recommends using
the Puppet version directly from Puppet instead. This is covered in Appendix C,
“Long-Lived Puppet.” The OpenStack Puppet modules for OpenStack are currently
tested on both Ubuntu and CentOS.

Appendix B, “Other Deployment Mechanisms,” has been provided to give you an
overview of other configuration management and orchestration services you may be
interested in using, should your organization prefer Chef, Ansible or something else.

Tour
The following is a short tour of what to expect from each chapter and the appendices.

 n Chapter 1: What Is OpenStack? This first chapter provides a brief intro-
duction to cloud computing before moving into an introduction to OpenStack
itself. It goes on to provide descriptions of each component of OpenStack that are
explored in depth in later chapters. The chapter concludes by talking about the
OpenStack release cycle and how Ubuntu and Puppet factor into this cycle and
their usage in this book.

xviii Preface

 n Chapter 2: DevStack Built as a non-production development tool, DevStack is
also a great introductory tool for a single-server deployment of OpenStack and for
getting familiar with it quickly. You learn how to use it, launch your first compute
instance and execute basic debugging techniques.

 n Chapter 3: Networking Networking is an important and complicated com-
ponent of OpenStack and will drive decisions you make as you build your own
deployments. This chapter is devoted to explaining key concepts for networking
in OpenStack and to dive into the networking decisions and requirements used
in our deployment scenarios. Diagrams and written descriptions help guide you
through these concepts.

 n Chapter 4: Your First OpenStack Before getting into chapters using con-
figuration management, this chapter walks you through a manual install of the
basic components of OpenStack, Nova compute, Keystone Identity, Glance image
storage and Neutron networking. This will give you a firm understanding of how
the pieces fit together, from the databases to the service users in Keystone, which
are handled in later chapters automatically by configuration management to the
queuing system.

 n Chapter 5: Foundations for Deployments This chapter serves as a basis for
all your subsequent deployment scenarios using Puppet. It explains the core com-
ponents and sets up your basic controller and compute node and concludes with
some basic usage tests to confirm it is working.

 n Chapter 6: Private Compute Cloud The first of our Puppet-driven deploy-
ment scenarios, this chapter provides usage examples and then walks you through
the basics of interacting with a private compute cloud. You learn how to add a compute
f lavor and your first operating system image, how to launch and interact with a
Nova compute instance from both the Horizon dashboard and the command line
client and then complete a basic web service demonstration.

 n Chapter 7: Public Compute Cloud Your next deployment scenario adds
metering to your cloud with Ceilometer. Ceilometer tracks usage of RAM, CPU,
networking and more for your deployments, which you can then feed into systems
to do monitoring and billing. Usage examples are given, as well as a basic intro-
duction to Ceilometer itself and a walkthrough of how to use it with a strong focus
on the command-line client.

 n Chapter 8: Block Storage Cloud Moving on from compute-focused deploy-
ments, this chapter introduces the concept of block storage and provides example
usage. The basics of OpenStack Cinder block storage architecture are explained,
and then you are walked through configuration. You then attach a Cinder block
storage device to a compute instance, partition it, give it a filesystem and mount it
inside your compute instance so you can add files to it.

 n Chapter 9: Object Storage Cloud Continuing with storage, this chapter
introduces you to the concept of object storage using Swift. You learn about basic
Swift concepts and deployment considerations, and then build your own tiny Swift

xixPreface

deployment. Using this deployment scenario, you create storage containers, upload
files and build upon your earlier web service demonstration by including an image
served by object storage on a compute instance.

 n Chapter 10: Bare Metal Provisioning Moving on from our deployment sce-
narios, usage examples and an architecture overview of bare metal provisioning
with OpenStack Ironic are provided. Though you aren’t doing an actual deploy-
ment for this chapter since we couldn’t make assumptions about your hardware,
guidance is given for how you might.

 n Chapter 11: Controlling Containers In this, another non-deployment chap-
ter, you learn why you may wish to use containers in an OpenStack deployment.
The chapter continues with a basic introduction to OpenStack Magnum and
considerations for your own deployments.

 n Chapter 12: A Whole Cloud Coming back to our deployment scenarios, this
chapter provides one final scenario where all the components from Chapters 6-9 are
brought together in a single scenario. This demonstrates how they can be used together,
and you’re encouraged to do your own tests with this feature-rich cloud scenario.

 n Chapter 13: Troubleshooting OpenStack is a complicated infrastructure
project, and every engineer running it needs to get very good at troubleshooting.
You are walked through understanding error messages and log files, tooling for
troubleshooting network problems, common mistakes in configuration files and
basic Puppet debugging. The chapter concludes with tips for how you can mitigate
breakage in your deployment and tips for asking for help.

 n Chapter 14: Vendors and Hybrid Clouds The final chapter of this book
introduces you to the broader OpenStack ecosystem through vendors and hybrid
clouds, which blend a local OpenStack deployment with hosted solutions. Evaluation
considerations for choices you make from cost to data sovereignty and security
are covered.

 n Appendix A: Reference Deployment In case you run into trouble with your
own environment selections, or simply don’t have a preference, this appendix pro-
vides a tested, virtualized reference deployment you may use.

 n Appendix B: Other Deployment Mechanisms We use Puppet throughout
this book, but this appendix introduces you to other ways you can deploy OpenStack,
from Chef and Ansible to where to find vendor-specific tooling.

 n Appendix C: Long-Lived Puppet The Puppet examples in this book are
triggered manually. This appendix gives direction for your options when building
a proper, maintainable Puppet system.

 n Appendix D: Contributing Code to OpenStack Feel inspired to contribute back
to OpenStack? Or need a feature or bug fix? This appendix gives an introduction to
how you go about contributing code to the OpenStack open source project, including
how community members communicate and how to use the development tooling.

xx Preface

 n Appendix E: OpenStack Client (OSC) The OpenStack Client is rapidly
replacing individually maintained clients for each project. This appendix provides
some background and a quick reference of some common commands.

 n Appendix F: Finding Help with OpenStack The final appendix provides a
quick tour of the support options in the OpenStack community, both online and
in person. It concludes with tips for finding paid support as well.

Conventions
Instead of using the root user, sudo is used throughout this book. As such, all commands
are prefixed with a dollar sign to indicate that it’s a command you should be typing into
a shell. For instance, when you’re preparing your Ubuntu systems and want to update
the Ubuntu sources before installing anything, we show that as:

$ sudo apt-get update

When lines are wrapping, we use the bash syntax of \ to indicate that the command
wraps to the next line. The creation of a compute instance is a good example of this:

$ openstack server create --flavor m1.tiny --image "CirrOS 0.3.4" \
 --security-group default --nic net-id=Network1 \
 --availability-zone nova my_first_instance

For most of the OpenStack commands, we have provided sample output of what to
expect when you run each command. For the output of standard tooling for things like
Ubuntu package installation, git clones and MySQL commands, this output is generally
not included.

Supplementary Materials
As discussed, you will need a copy of the Ubuntu 14.04 ISO to install Ubuntu on your
initial OpenStack controller and compute nodes. Later, the Ubuntu 14.04 server QCOW2
cloud image will need to be loaded into Glance for our deployment example using Ubuntu
as a compute instance. All Puppet modules and other packages are downloaded through
scripts you’re instructed to use or through Puppet itself.

This book also has an accompanying git project hosted on GitHub at https://github.com/
DeploymentsBook.

This project is broken into several repositories:

 n http-files—Used for our basic web server examples.
 n puppet-data—The repository you clone to bootstrap your installation of Puppet

on your OpenStack nodes. It also includes your core configuration file, hiera/
common.yaml, which you will be editing.

https://github.com/DeploymentsBook
https://github.com/DeploymentsBook

xxiPreface

 n puppet-deployments—Pulled in automatically by setup.py in puppet-data, this
is the composition module used for all of our deployment scenarios. It includes
service profiles and the foundation roles used in each chapter. It also includes a
README.md file for the latest known issues and work-arounds that will be updated
throughout the life of this book.

 n scripts-and-configs—Miscellaneous scripts, commands and configuration
file examples provided so you have a place from which to view or copy them as
needed. The commands provided in this directory for the deployment chapters
are particularly valuable for viewing OpenStack client output that doesn’t fit well on
a printed page.

Finally, a blog and the latest updates to other materials being made available through-
out the lifespan of this book can be found on our web site at http://deploymentsbook.com/.
You can also follow us on Twitter for updates @DeploymentsBook.

Register your copy of Common OpenStack Deployments at informit.com for convenient
access to downloads, updates, and corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account. Enter
the product ISBN (9780134086231) and click Submit. Once the process is complete,
you will find any available bonus content under “Registered Products.”

http://deploymentsbook.com/

This page intentionally left blank

Acknowledgments

When I began working on this book, I knew I had my work cut out for me and that I
would need help from various members of the community. OpenStack is a huge infrastructure
project. Every aspect of the project is continually being refined and revised, and even
the official project documentation struggles to keep up. New projects are always being
added, and the existing ones are reaching various states of maturity.

A few months into writing I brought in my contributing author, Matt Fischer. He put in
a massive amount of work across three releases of OpenStack to get our Puppet composition
module working. This book wouldn’t have made it past the theoretical stage without his
efforts. Colleen Murphy of the OpenStack Puppet team also spent time working with us
on changes and by doing review of chapters and appendices. Clayton O’Neill, Eric Peterson
and Adam Vinsh, working with Matt directly, assisted with Puppet configuration questions.
We also had the project team lead of the OpenStack Puppet project, Emilien Macchi,
pitch in with advice and getting required changes needed upstream.

Thanks to members of various teams who took time as subject matter experts to
review individual chapters, including: Mike Perez, Gordon Chung, Donagh McCabe,
Matthew Oliver, Hisashi Osanai, Christian Schwede, Kota Tsuyuzaki, Julia Kreger and
Charlie Crawford. Pasi Lallinaho helped by turning our basic HTML page examples
into something considerably more palatable. We also had help from my friends and fellow
systems and network engineers Jonathan DeMasi, Ola Peters, Joe Gordon, Eric Windisch,
James Downs and Brent Saner on several of the chapters.

We had several multi-chapter reviewers with varying backgrounds to thank, including
José Antonio Rey, Mohammed Arafa, Doug Hellman and Christian Berendt.

Throughout this process, my husband Mike Joseph has been incredibly supportive of
my work. Even during the most difficult times when I wasn’t sure I could finish it, he was
ready with encouragement.

Finally, I’d like to thank my editors at Pearson. Thanks to my editor and primary
contact at Pearson, Debra Williams Cauley, for offering advice on how to approach each
section and for keeping me on track throughout this process. Also to editor Chris Zahn,
who made his way through editing the entire book.

This page intentionally left blank

About the Author

Elizabeth K. Joseph is a Systems Administrator working on the OpenStack Infrastruc-
ture project. In her role on this team, she supports OpenStack developers as they make
contributions to the project and is active on OpenStack development mailing lists, and
has worked on test engineering for the OpenStack on OpenStack (TripleO) project. She
has given tutorials on the basics of OpenStack for San Francisco Bay Area organizations
and regularly attends the bi-annual OpenStack Design Summits. A regular speaker on
Open Source topics at conferences worldwide, her work beyond OpenStack includes
contributions to the Ubuntu project and serving on the board of a non-profit that puts
Linux-based computers in public schools.

Matthew Fischer has worked as a software developer for over 15 years in roles ranging
from UNIX kernel to mobile phone development to DevOps. Matt currently works on
a team deploying and running OpenStack and has been using Puppet to deploy OpenStack
since 2013. When not solving automation problems, Matt enjoys hiking, camping, skiing,
craft beer, and spending time with his family in Fort Collins, Colorado.

This page intentionally left blank

II
Deployments

In the following chapters, you are given examples of several types of OpenStack
deployments to consider. Each deployment is based on a series of real-world
scenarios that will be described in detail and followed up with instructions
for how the deployment can be constructed in a small scale.

This page intentionally left blank

8
Block Storage Cloud

The road to the City of Emeralds is paved with yellow brick.
L. Frank Baum, The Wonderful Wizard of Oz

OpenStack provides two popular mechanisms for storage: object and block storage.
Block storage is traditionally what you’d mount as a filesystem on your server. Object
storage instead hosts individual files that are then referenced from within your application.
In Chapter 9, “Object Storage Cloud,” you learn about why you may want to use object
storage with Swift to host files. This chapter covers block storage with Cinder.

Integrated with the rest of OpenStack, Cinder volumes can be created within an
OpenStack cloud and then live mounted to a specified instance at the whim of a user.
Additionally, you can unmount that volume from one instance and mount it on another
with just a few commands.

Uses
One of the strengths of OpenStack is to avoid vendor lock-in, particularly when used in
combination with versatile solutions like Cinder. Cinder provides an abstraction layer
through the volume manager that hooks in to over 70 different proprietary and open
source storage solutions. Additionally, it can be an interface to multiple back ends at once,
enabling you to not only diversify your back ends across vendors but also change them
out and do a planned migration as your organization sees fit.

Cloud Provider
Whether you’re running a public cloud accessible to customers or a private cloud for use
within your organization, offering the capability to extend the given filesystem require-
ments in place for the f lavors can be a huge benefit.

With the capability to add block storage volumes on the f ly, the storage requirements
for default compute nodes can be kept small to preserve space for users who want to
focus on compute power and give others the f lexibility to add the storage they need on
the f ly. The f lexibility to extend storage as needed helps scaling out resources without
over-committing beforehand and makes migrations easier if data is kept on a single volume
that can be moved to a new compute instance.

152 Chapter 8 Block Storage Cloud

Another major benefit is that the compute nodes can be run on throw-away commodity
hardware. The data needing to be stored can be either kept on expensive redundant
enterprise hardware or on something that has built-in redundancy like Swift. As a result,
compute nodes themselves could become independent, throw-away components of your
infrastructure, spun up as needed and replaced with identical servers that attach to your
storage back ends. Finally, upgrades are also simplified for your customers. If you have
a new copy of your system you are testing, you can snapshot the production data from a
Cinder volume and then attach it to your test system to see if it works.

Pets versus Cattle

If you’re unfamiliar with the pets versus cattle metaphor in cloud computing, it’s time
to get you up to speed.

Prior to the recent rise in cloud computing, systems administrators would work with our
managers to spec out hardware for servers and work out a budget to purchase it. A
new server would be delivered to the facility where we’d install the operating system
and put it into a rack in our data center. A nice label would go on the server designating a
name, and over time we’d work to maintain and update this server. The server would be
upgraded for years through operating systems and hardware failures and upgrades.
We’d start noticing specific quirks about the hardware: one server may have a flaky
onboard NIC so our notes explained that we added an additional card, another machine
may take a while to boot up. We became familiar with these servers we grew and nur-
tured over time, like pets.

When workloads and businesses began moving to the cloud for their workloads, everything
changed. Individual servers no longer had quirks and were easy to move around. A com-
plete replacement of a server became more common than an in-place upgrade, and tools
were written to manage fleets of servers operating in a larger infrastructure rather than
working with individual servers. Instead of pets, servers became a lot more like cattle.

As a systems engineer and an animal lover, I retain a love for both pets and cattle,
metaphorically or not. But this metaphor does effectively demonstrate the differences
in how servers are treated today in a cloud environment.

Data Processing
Whether you’re a film production company or a research institution, using compute nodes to
do data processing and analysis is a common use for cloud-based infrastructures. But where is
this data stored and how is it shared in your organization? What do you do when the compute
nodes you’re working on run out of space? With Cinder block storage, users are able to extend
volumes after creation or simply create new volumes as they are needed and attach them to
their running instances and mount them in a matter of minutes. Running out of hard drive
space on an instance because you have too much data is no longer a problem.

Additionally, if you realize you need more processors or memory, it’s simple to create
a new compute instance and move the volume over to the new instance. All your data
moves with you to your new server.

153Requirements

Keeping Backups
Making sure your data is backed up and replicated is a common concern, and Cinder
offers several options for this. As mentioned earlier, it provides an abstraction layer for
dozens of back ends, so you have a lot of options in your environment and on top of that,
the different types of backups that Cinder offers.

Many virtualization technologies supported by OpenStack have built-in snapshot
capabilities, but OpenStack’s block storage also has one. This enables volumes to be backed
up as snapshots to other block storage volumes and can be used on its own, using the
existing configuration. Whether offered as a backup service by a cloud provider or as
an automatic service for users on an OpenStack cloud, this is a valuable service.

You can also clone volumes. Many back ends are smart enough to do a copy-on-write in
where zero copying actually happens. The new volume references an existing volume it
was cloned from and writes data on top of that. This makes it very fast. Some snapshot
features also just do this in the back end, but every vendor solution is implemented
differently.

Moving beyond snapshots, Cinder also offers a backup service that enables you to
back up your block data to an object store. This helps with the scenario of your entire
block storage back end going completely off-line. Differential and incremental backups
can be performed and, unlike a snapshot, it is only backing up data that was actually
used, not the entire volume and unused bits.

We won’t spend a lot of time on backup scenarios in this chapter. Instead we’ll be
focusing on adding volumes in a more instance-focused environment where you’re adding
volumes to instances, but they are great options to keep in mind.

Requirements
In this deployment scenario you’ll once again be using the controller and compute nodes
you created in Chapter 5, “Foundations for Deployments.” We will be creating a 10GB
volume group for use by Cinder on the controller and the minimum specifications
defined in that chapter will easily support this.

Select Components
In addition to the foundational tooling, we’ll be adding Cinder block storage to your
deployment in this scenario. This will extend our very basic installation to have the
following services. Their placement is demonstrated in Figure 8.1.

 n Compute (Nova)
 n Identity (Keystone)
 n Networking (Neutron)
 n Image service (Glance)
 n Dashboard (Horizon)
 n Block Storage (Cinder)

154 Chapter 8 Block Storage Cloud

Architecture Overview
In Chapter 1, “What is OpenStack?” you were brief ly introduced to the components
that make up the block storage (Cinder) service: cinder-api, cinder-scheduler, cinder-
volume and also cinder-backup. A user will likely only be exposed to the API. As operators
though, understanding the architecture for the service is important as we seek to make
decisions about how we build the system and debug problems.
When a user request comes in, either from the OpenStack dashboard (Horizon), the
OpenStack Client (OSC) or through a Software Developer Kit (SDK), it interfaces with
the API for Cinder. This API will talk to a database, for initially storing the request, and
then set the status to creating and reserving quota usage. The API will also interact with a
messaging queue. The messaging queue will pass requests on to the scheduler for Cinder,
which makes decisions about where the change will be made. For example, if a user is
requesting that a volume be created, the scheduler will determine which storage device
meets the criteria the user is asking for, for the volume (size, disk type), and then send
it to the appropriate volume manager. The volume manager for Cinder is what works
directly with drivers to interface with the storage back ends. A storage back end may be
a datacenter full of Ceph nodes or a proprietary Network-attached Storage (NAS) device
that has a driver for Cinder. The volume manager will also be talking to the database
to commit to the reserved quota once we know the volume is created successfully. The
status of the volume is also set to “available” so the user knows the volume may be used.
See Figure 8.2 for a view into how the individual services work together.

 All official drivers that are available for Cinder go through verified testing by the
upstream Cinder team in the OpenStack project. To accomplish this, every vendor is
required to run continuous integration (CI) tests on all changes that report to the public
OpenStack review system. To learn about the latest supported drivers, you can visit the
OpenStack Marketplace Drivers page for an official listing: https://www.openstack.org/
marketplace/drivers/.

Paying attention to the drivers and learning what is supported will be essential when
you build out your production OpenStack deployment. When considering a solution,
be sure to research the support for your storage back end of choice and look into factors
like how long a solution or vendor has been supported in OpenStack and what they sup-
port when it comes to interacting with the Cinder volume manager.

Controller
Nova
Keystone
Neutron
Glance
Horizon
Cinder

Compute
Nova compute
Neutron Open vSwitch agent

Figure 8.1 Components of a two-system OpenStack deployment with Cinder block storage

https://www.openstack.org/marketplace/drivers/
https://www.openstack.org/marketplace/drivers/

155Scenario

Scenario
Extending beyond compute-focused deployments, like we saw in Chapter 6, “Private
Compute Cloud,” and Chapter 7, “Public Compute Cloud,” with Cinder block storage
means you can now offer real persistent storage to your users. Since we’re adding an
additional component, a bit of setup needs to be done with Puppet again to configure
this storage.

Controller Node Setup
If you have your Controller and Compute nodes available from Chapter 5 you will only
need to run a single command to add the support for Cinder block storage. In this scenario
you will only need to make changes to the controller node. No modifications need to
be made to the compute node.

Tip

Did you go through Chapter 7 before this chapter? You should create a new environment.
Even though OpenStack is modular, we haven’t designed our foundations modules to func-
tion together until you get to Chapter 12, “A Whole Cloud.”

The command is another Puppet apply command, which will process our foundational
block storage role in Puppet:

$ sudo puppet apply /etc/puppet/modules/deployments/manifests/role/foundations_block_storage.pp

User
request

Cinder
API

Messaging
queue

Ceph
storage

Vendor
NAS

Cinder
scheduler

Cinder
volume

Manager
with drivers

Database

Figure 8.2 Cinder overview

156 Chapter 8 Block Storage Cloud

This will take some time as it downloads everything required for Cinder and sets up
configurations. If anything goes wrong and this command fails, remember that Puppet
can also be run with the --debug f lag in order to show more detail.

While this is running, we can take a look at what this file contains:

class deployments::role::foundations_block_storage {
 include deployments::role::foundations
 include deployments::profile::cinder
}

include deployments::role::foundations_block_storage

This is calling out to our foundations role, which means if you didn’t set up a foun-
dations role yet for your controller, it will do it now. This is mostly a safety measure;
we would still recommend that you run it independently in case you need to do any
troubleshooting.

It then calls our Cinder block storage profile, which you can view on the controller
filesystem at /etc/puppet/modules/deployments/manifests/profile/cinder.pp, and it
contains the following:

class deployments::profile::cinder
{
 include ::cinder
 include ::cinder::api
 include ::cinder::ceilometer
 include ::cinder::config
 include ::cinder::db::mysql
 include ::cinder::keystone::auth
 include ::cinder::scheduler
 include ::cinder::volume
 include ::cinder::setup_test_volume

 file { '/etc/init/cinder-loopback.conf':
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => template('deployments/cinder-loopback.conf.erb'),
 }

The profile pulls in various components to Cinder that we will need. Just like other
services in OpenStack, Cinder requires an API, database and Keystone authentication.
In case you wish to track usage with Ceilometer’s telemetry service, we also include that.
The config is pulled in to help manage arbitrary Cinder configurations you may wish to
have. A scheduler in block storage is used in much the same way other OpenStack
services use schedulers, to view the requirements the user is requesting for the volume,
and then randomly pick a storage device back end that the volume can be created on
that meets that criteria. As you may expect, pulling in cinder::volume is for the Cinder
volume manager. As explained earlier in the chapter, this is what interacts with the
drivers actually controlling the storage back end, whether it’s a simple loopback device
with LVM (Linux Volume Manager) like we will be using or a proprietary NAS device.

157Scenario

The final lines of this file use the Puppet module’s capability to configure a test volume.
For simplicity’s sake we use this setup_test_volume, which creates a simple 10GB file
mounted to a loopback (by default, /dev/loop2) device and added to LVM as a single
logical group. An init file is also created in our cinder.pp profile to make sure the file is
mounted and the volume group is activated if your controller reboots.

Note

What Is LVM? The official page for LVM is at: http://www.sourceware.org/lvm2/ and there
are various resources and how-tos available for free online, particularly for basic control.

Once your puppet apply command completes, you’re ready to start creating volumes
and attaching them to instances!

Creating and Attaching a Volume: Dashboard
We will begin with the process for creating and attaching a volume using the OpenStack
dashboard (Horizon). With the block storage (Cinder) component now installed, when
you log into the dashboard with your test user you will see a section for Volumes in the
left under Project in Compute, as show in Figure 8.3.

Figure 8.3 Empty, default Volumes page in the dashboard

http://www.sourceware.org/lvm2/

158 Chapter 8 Block Storage Cloud

Creating a Volume
On this page you’ll want to click on the Create Volume button, which will bring up a
dialog like the one in Figure 8.4 where you will put in information about the volume you
wish to create. Some fields will be automatically filled out, but the rest will be up to you.

The volume name is what you will be using to refer to the volume. A description is
optional and can be used for whatever you want, maybe as a reminder to yourself about
what the volume is intended for. The volume source enables you to pre-populate the
volume with a source of defined data. By default, it queries the Image Storage (Glance)
service and enables you, as one of the options, to put an Image on your newly created
volume. You may also want to create a volume source that has a basic filesystem and
partition table for your new volume so it doesn’t need to be created later after you mount
it on an instance. For this scenario, we will just use No source, empty volume and will
explain how to partition and format it after it is added to an instance.

The type of volume will inform the scheduler as to which type of storage back end
you need to use. From the customer point of view, you want to define a type as tiered
and varied storage with different properties, like how fast the storage device is, Quality
of Service (QoS) requirements or whether a tier has replication. Prices may vary for the
customer based on which options they select. From your perspective, this means one of
these tiers may be using Ceph and another a proprietary NAS device that has the desired
qualities for the tier being offered. We have not set a volume type, so it will remain as
“No volume type” for this example. Our device only has 10GB, so we’ll start out in

Figure 8.4 Create a volume in the dashboard.

159Scenario

this test by creating a 1GB volume to attach to our instance. The availability zone is
identical to the one in compute (Nova) and currently must match the zone where the
instance you wish to attach it to resides. In our deployment scenario we only have a
single availability zone, so the default of nova should remain selected.

When you have finished, you can click on Create Volume in order to begin volume
creation. You will be returned to the Volumes page of the dashboard, which will show
your new volume as you can see in Figure 8.5.

Attaching a Volume
A volume on its own is not of much value, so we’ll now want to attach it to a compute
instance. If you do not have an instance running, you can create a basic one with a CirrOS
image now in the Instances dashboard. Refer back to Chapter 6 if you need a refresher
on the steps to create an instance.

Attaching a volume in the dashboard is done by going to the drop-down menu on
the right side of where your volume is listed. From that menu, select Manage Attachments
to bring up the screen, where you can attach the volume to an instance (Figure 8.6).

In this example we have an instance running called “giraffe” and the UUID is also
included, since names can be reused in compute (Nova). There is also an optional Device
Name section where you can define what you want the device to be named when it’s
attached to the instance. This can safely be left blank and a name will be assigned automati-
cally. When you’re done selecting the instance to attach to, click on Attach Volume.

Figure 8.5 A volume called “walrus” has been created.

160 Chapter 8 Block Storage Cloud

When the volume completes attaching, you will be able to see it in the dashboard as
“Attached to” with the instance name and the device it has shown up as (see Figure 8.7).

Figure 8.6 Managing volume attachments

Figure 8.7 A volume has been attached.

161Scenario

You’ll next want to log into the instance to see that the device has been attached success-
fully, but this process is the same whether you’re completing this process with the dashboard
or through the command line. You can continue to learn the process for attaching a volume
using the OpenStack Client on the command line, or skip to the “Using the Volume”
section later in this chapter to see what you can do to use your new volume.

Creating and Attaching a Volume: OpenStack Client
As we’ve discussed previously, the dashboard can be a convenient way to interact with
OpenStack to complete most of the simple operations you may need to do. You will find,
however, that most operators prefer using the command line clients or SDKs to interface
with the tooling. As such, we’ll now walk through the same process we did with the
dashboard but instead using the OpenStack Client (OSC).

The OSC is small and can easily be run from any system that has access to the API
endpoints for the services. In our deployment scenarios, this means it must be on the same
network as your controller node. You must also have access to the /etc/openrc.test file
that was created on your controller and compute nodes, so for these commands we will
assume you’re running everything on your controller.

Creating a Volume
We will be using the test user in order to create this volume, since it will also be attach-
ing to a compute instance owned by the test user. To begin, we’ll bring the environment
variables for the test user in from the openrc file. Then we can issue the command to
create a 1GB instance using that storage back end. Aside from the name, we will be using
the same specifications for creation of the volume as was used with the OpenStack
dashboard (Horizon), which means creating a 1GB volume that is empty (no partition
table, filesystem or data) and is in our default availability zone, called nova.

Tip

You’ll notice that OpenStack commands often output a lot of detail that doesn’t fit well on
the pages of a book. A GitHub repository of much of this command output sorted by chapter
is available at https://github.com/DeploymentsBook/scripts-and-configs.

$ source /etc/openrc.test
$ openstack volume create --size 1 --availability-zone nova seaotter
+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
attachments	[]
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-04-15T04:19:46.086611
description	None
encrypted	False
id	53372cc5-087a-4342-a67b-397477e1a4f2
multiattach	False
name	seaotter

https://github.com/DeploymentsBook/scripts-and-configs

162 Chapter 8 Block Storage Cloud

properties	
replication_status	disabled
size	1
snapshot_id	None
source_volid	None
status	creating
type	None
updated_at	None
user_id	aa347b98f1734f66b1331784241fa15a
+---------------------+--------------------------------------+

To confirm this volume has been created, you can run a command to list the volumes
(Listing 8.1).

As you can see, both the walrus and the seaotter volumes are listed here since they
were both created in this chapter. The walrus volume is showing that it is attached to
the giraffe instance.

If you need to make changes to a volume, use the openstack volume set command.
Running that command alone will give you help output to assist you with making
changes to all the parameters before the volume is attached.

Attaching a Volume
As mentioned earlier, you can’t do much with a volume if it’s not attached to an
instance. You’ll now want to add your new volume to an instance. First you’ll want to
see what instances are available:

$ openstack server list
+--------------------------------------+---------+--------+------------------+
| ID | Name | Status | Networks |
+--------------------------------------+---------+--------+------------------+
| 823f2d7a-f186-4453-874d-4021ff2b22e4 | giraffe | ACTIVE | private=10.0.0.3 |
+--------------------------------------+---------+--------+------------------+

With confirmation that you have an instance running, you can now run the com-
mand to attach the seaotter volume to the giraffe instance:

$ openstack server add volume giraffe seaotter

This command will have no output, but the next time you run volume list you will
see that the volume has been attached (Listing 8.2).

Since the giraffe instance already had the walrus volume attached as /dev/vdb, you will
notice that it has attached the seaotter volume as /dev/vdc.

Congratulations, you have successfully added a Cinder block storage volume to an
instance on the command line!

Using the Volume
Whether you used the OpenStack dashboard or the command line to create and attach your
volume, we will now want to actually confirm the volume was attached and then go ahead
and use it with our instance. It may be easiest to use the console in dashboard in order to
run the following commands, but if you followed instructions in an earlier chapter so that
your CirrOS instance has been set up for SSH (Secure Shell), feel free to use SSH instead.

Listing 8.1

$ openstack volume list
+--------------------------------------+--------------+-----------+------+----------------------------------+
| ID | Display Name | Status | Size | Attached to |
+--------------------------------------+--------------+-----------+------+----------------------------------+
| 53372cc5-087a-4342-a67b-397477e1a4f2 | seaotter | available | 1 | |
| 54447e7a-d39d-4186-a5b4-3a5fc1e773aa | walrus | in-use | 1 | Attached to giraffe on /dev/vdb |
+--------------------------------------+--------------+-----------+------+----------------------------------+

Listing 8.2

$ openstack volume list
+--------------------------------------+--------------+--------+------+----------------------------------+
| ID | Display Name | Status | Size | Attached to |
+--------------------------------------+--------------+--------+------+----------------------------------+
| 53372cc5-087a-4342-a67b-397477e1a4f2 | seaotter | in-use | 1 | Attached to giraffe on /dev/vdc |
| 54447e7a-d39d-4186-a5b4-3a5fc1e773aa | walrus | in-use | 1 | Attached to giraffe on /dev/vdb |
+--------------------------------------+--------------+--------+------+----------------------------------+

164 Chapter 8 Block Storage Cloud

Assuming you’re using the dashboard, navigate to the Instances screen in the OpenStack
dashboard and in the drop-down menu to the right of the instance you attached it to,
select Console to bring you to a console for your instance. Once you’re on the console
page, if you’re unable to type in the console, click Click here to show only console and
you will be brought to a page that only has the console.

Follow the instructions to log into the instance, and run the following command:

$ dmesg

There will likely be a lot of output, but the last thing you are likely to see should be
something like the following:

[648.143431] vdb: unknown partition table

This vdb device is your new block storage (Cinder) volume! At this phase it has no
partition table or filesystem, so this will need to be set up using fdisk. Assuming the device
is vdb in this example, partitioning can be done with fdisk:

$ sudo fdisk /dev/vdb
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel
Building a new DOS disklabel with disk identifier 0xcf80b0a5.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-2097151, default 2048): 2048
Last sector, +sectors or +size{K,M,G} (2048-2097151, default 2097151): 2097151

Command (m for help): p

Disk /dev/vdb: 1073 MB, 1073741824 bytes
16 heads, 63 sectors/track, 2080 cylinders, total 2097152 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0xcf80b0a5

 Device Boot Start End Blocks Id System
/dev/vdb1 2048 2097151 1047552 83 Linux
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

165Scenario

Now you’ll want to create a basic filesystem on the new disk. It’s only a 1GB volume,
and this is a demonstration, so we’ll use the ext2 filesystem:

$ sudo mkfs.ext2 /dev/vdb1
mke2fs 1.42.2 (27-Mar-2012)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
65536 inodes, 261888 blocks
13094 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done

The last step is creating a mount point and mounting your new volume. Let’s say that
you want to use this volume for photos and create a directory for that. Then we’ll check to
confirm it’s the size we expect it to be.

$ mkdir photos
$ sudo mount /dev/vdb1 photos/
$ df -h | grep vdb1
/dev/vdb1 1006.9M 1.3M 954.5M 0% /home/cirros/photos
$ df -h /dev/vdb1
Filesystem Size Used Available Use% Mounted on
/dev/vdb1 1006.9M 1.3M 954.5M 0% /home/cirros/photos

Congratulations! A 1GB volume from the block storage service Cinder is now mounted
on your system. Note that this was mounted using the root user, so you will need to
either change the ownership to your user or use root to place files on it.

Tip

File permissions with block storage in Cinder can be a tricky thing to master. When using a
Linux filesystem, files are referenced by user and group ID (UID and GID). Unless you are
very diligent about keeping things consistent across your instances through something like
custom images with default users and group or configuration management where IDs are
specifically defined, these IDs can easily be different between machines.

As a result of these potential differences in IDs, mounting a volume from the block storage
device on one instance and then detaching it to add it to another instance may land you
in a situation where the ownership of files looks all wrong. Keep this in mind as you begin
experimenting with moving volumes and always make checking permissions a step in your
plans to move a volume to another instance.

166 Chapter 8 Block Storage Cloud

Automation
As we explained in our chapters about private and public clouds, you don’t only need
to interact with OpenStack through the OpenStack dashboard or OpenStack client.
Instead you may interact with the APIs through various SDKs, which you can learn about
at http://developer.openstack.org/.

Summary
The need for expanding and moving storage of data is growing in modern environments,
and Cinder block storage fits that need. It offers a variety of storage back-end drivers
to support everything from open source tooling like LVM and Ceph to a host of tested
proprietary storage solutions from an array of vendors. The deployment scenario using
Puppet walked you through creating a volume and then attaching it to an instance where
you could use it.

http://developer.openstack.org/

A
Access & Security

DevStack, 25–26
private compute cloud, 123–126, 132–134

Account daemon, Swift, 170
Account_quotas proxy manifest, Swift, 175
Add Rule, DevStack, 124
Administrators

configuring Glance, 67–71
configuring Keystone, 62–66
dashboard for, 4–5
DevStack deployment, 28–29
management network for, 35–36
Nova installation, 72–75

ADMIN_PASSWORD placeholder, OSC
configuration, 67

Admin_token, Keystone, 59
Agents, Neutron

definition of, 77
installing Neutron, 78–81, 83
other possibilities for, 96–97

Alerts
Ceilometer, 11
public compute cloud, 150

Alphabetical order, of OpenStack release
cycle, 13–14

AMQP (Advanced Message Queuing
Protocol) framework, 96, 216

Ansible playbooks, 93, 188, 235–236
Aodh (Telemetry Alarming service), 150
Apache Mesos, 195, 198
Apache module, 102
Apache web server, configuring Keystone,

61–62
API (Application Programming Interface)

Aodh, 150
Cinder, 154–155, 156, 166
Glance, 69–70
Glance profile, 101
Ironic, 186–187

Magnum, 197–198
Nova, 73
power of OpenStack in, 28
SDKs and OpenStack, 138
Swift, 171–172
testing compute node, 111

Architecture
bare metal provisioning, 186–188
block storage cloud, 154–155
public compute cloud, 143–144

Archives, OpenStack mailing list, 244
Authentication. See also Credentials

controller node setup for Swift, 174–175
default passwords used in this book, 92, 98
foundations for deployments, 95
identity vs., 95
Keystone identity service for, 9
Keystone identity service, troubleshooting,

217
log files and, 213
objects storage cloud, 174–175
OpenStack Client, 249–250
testing compute node, 111
your first OpenStack, 58–59, 66, 69

Authtoken proxy manifest, Swift, 175
Automation, Cinder block storage, 166
AWS CloudFormation Template (CFN)

format, Heat, 13
AZ (Availability Zone), DevStack, 27

B
Back ends, Glance profile, 101
Backup

Cinder block storage, 153
troubleshooting in debug mode, 215

Bare metal. See Ironic bare metal
provisioning

Base profile, controller node deployment,
100–101

Bays, Magnum, 198–199

Index

258 Index

Bifrost, Ironic deployment with, 188
Big Tent initiative, 13
Block storage. See Cinder block storage
br-ex bridge

installing Neutron, 81
qrouter-* network namespace and, 47
testing OVS in controller node, 107–108
traffic f low on controller node, 45–46

br-int bridge
qrouter-* network namespace and, 47
testing OVS in controller node, 107–108
traffic f low in compute node, 48–49
traffic f low on controller node, 45, 46

br-tun bridge
testing OVS in controller node, 107–108
traffic f low in compute node, 48–49
traffic f low on controller node, 45–46

Branches, stable, 32
Breakage, mitigating in deployments,

223–224
Bridges

definition of, 46
initial networking setup, 53
testing OVS in controller node, 107–108
traffic f low on controller node, 45–48
troubleshooting Linux, with OVS, 220
virtual machine deployment setup, 42

Bug tracking, OpenStack, 246
Build numbers, log storage, 168

C
Cache proxy manifest, Swift, 175
Cache_errors proxy manifest, Swift, 175
Cattle vs. pets metaphor, cloud computing,

152
Ceilometer-agent-central service, 12
Ceilometer-agent-computer service, 12
Ceilometer-agent-notification service, 12
Ceilometer-api service, 12
Ceilometer-collector service, 12
ceilometer meter-list command, 147, 207
ceilometer resource-list command, 147
Ceilometer telemetry service

adding to your deployment, 142–144
controller node setup for Cinder, 156
controller node setup for public cloud,

144–145

as key component, 11–12
metrics and alerts, 150
OSC view of, 207
viewing statistics with dashboard, 146–147
viewing statistics with OSC, 147–149
in whole cloud deployment with

dashboard, 205–206
CFN (AWS CloudFormation Template)

format, Heat, 13
Chat, IRC. See IRC (Internet Relay Chat)
Chef cookbooks, 93, 188, 235
CI (Continuous Integration) system

Cinder drivers, 154
DevStack, 22
infrastructure, 247–248

Cinder-api daemon, 10
Cinder-backup daemon, 10
Cinder block storage

about, 151
architecture overview, 154–155
automation, 166
cloud provider, 151–152
controller node setup, 155–157
creating/attaching volume with dashboard,

157–161
creating/attaching volume with OSC,

161–162
data processing, 152
keeping backups, 153
overview of, 10–11
requirements, 153–154
scenario, 155
uses, 151–153
using volume, 162–165
whole cloud deployment with dashboard,

205–206
Cinder scheduler daemon, 10
Cinder-volume daemon, 11
CirrOS image

configuring Glance, 70–71
deploying Glance, 97
DevStack deployment as user, 27–28
launching dashboard for private compute

cloud, 122–123
launching test instance on dashboard,

112–115
testing compute node, 111

259 Index

CLI (Command Line Interface) tools, 6, 28,
30–31

Cloning volumes, block storage backups, 153
Cloud

block storage. See Cinder block storage
building your, 3
hosting company using Ironic for, 185–186
object storage. See Swift object storage
Open Stack joins, 2–3
pets vs. cattle metaphor in, 152
private compute. See Private compute

cloud
public compute. See Public compute cloud
tunnel-driven networks using VXLAN

in, 38
understanding, 1–2

Cloud Archive, Ubuntu, 15–16
Cloud, deploying whole

additional components, 208–209
compute node setup, 205
controller node setup, 204–205
exploring with dashboard, 205–206
exploring with OSC, 207
high availability and scaling, 208
overview of, 203
requirements, 203–204
scenario, 204
uses, 203

Cloud-init Python tooling, 128
CloudKitty, 150
Cluster, Swift, 170–172
Code contributions to OpenStack

bug and feature tracking, 246
communication, 244–245
Git and code review, 246–247
other contributions, 248
overview of, 243
release cycle, 243–244
specifications, 245–246
testing infrastructure, 247–248

COE (Container Orchestration Engine),
Magnum, 197–198

Columns, default f lavor, 120–121
Command Line Interface (CLI) tools, 6, 28,

30–31
Commands

OpenStack, 106

OSC framework for, 250
OSC frequently used, 251

Comments, stack.sh script with, 23
Communication, OpenStack contributions,

244–245
Community, OpenStack

contributions to. See Code contributions to
OpenStack

finding help within, 253–256
Ironic development in, 192
requesting help from, 224

Compute. See Nova compute
Compute node

basic configuration, 57–58
block storage volume benefits, 151–152
Cinder block storage, 154
Compute profile, 110
with containers, 197
creating, 109–110
creating first OpenStack, 51–52
deploying whole cloud, 205
deployment, 109–115
deployment requirements, 39–42, 91–92
horizontal scaling of, 208
launching test instance on dashboard, 112–115
Nova compute component handling, 7
Nova configuration, 83–84
private compute cloud requirements, 92
public compute cloud requirements, 143
public compute cloud setup, 145
Swift object storage, 169
testing, 111–112
traffic f low within, 43–44, 48–49
using object in web page, 183–184

Compute profile, compute node, 110
Conductor daemon, Nova, 73
Conferences, finding help in OpenStack, 255
Configuration files, troubleshooting, 221
Connecting to Swift, 171–172
Console

accessing daemons from, 8
launching test instance on dashboard,

113–114
Consoleauth, Nova, 73
Container Orchestration Engine (COE),

Magnum, 197–198
Container_quotas proxy manifest, Swift, 175

260 Index

Containers
drivers for Nova, 197
Magnum. See Magnum containers
overview of, 195
understanding, 195–196
uses, 196–197

Containers, Swift
concept of, 171
connecting to, 171–172
controller node setup, 173–176
creating in dashboard, 176–179
creating in OSC, 179–181
overview of, 170
using objects, 181–184

Continuous Integration (CI) system
Cinder drivers, 154
DevStack, 22
infrastructure, 247–248

Contributions. See Code contributions to
OpenStack

Control-c, stopping capture, 219
Control plane, networking, 36
Controller node

adding support for Cinder block storage,
155–157

basic configuration, 55–57
configuration requirements, 51–52
configuring Glance, 67–69
configuring Keystone, 58–67
configuring Neutron, 76–83
configuring Nova, 72–75
configuring OSC, 67
with containers, 197
traffic f low within, 44–48

Controller node, deployment
base profile, 100–101
Glance imaging service profile, 101
Horizon dashboard profile, 102
Keystone identity profile, 102–103
Neuron networking profile, 103–105
Nova compute profile, 103
overview of, 98
Puppet roles, profiles and modules, 99–100
RabbitMQ queuing profile, 105
requirements, 39–43
running puppet apply command, 98–99
testing, 105–109

Controller node setup
Cinder block storage, 154
deployment, 91–92
deployment of whole cloud, 204–205
initial networking, 53
private compute cloud, 92
public compute cloud, 143–145
Swift object storage, 169, 173–176

Core competencies, cost of public cloud, 227
Count, DevStack deployment as user, 27
CPU

DevStack requirements, 22
simple deployment requirements, 52

Create Container screen, Swift, 176–178
Create Flavor, 121–122
Create Image, 122–123
Create Key Pair, 125–126
Create Volume button, dashboard, 158
Credentials. See also Authentication

base profile openrc files for, 100
Horizon dashboard user login, 25
OpenStack interactive mode, 250–251
OSC authentication, 251
testing in controller node, 107

Customization
DevStack, 32–33
f lavors, 120–122

D
Daemons

Cinder, 10–11
console access to instances, 8
Glance, 10
Heat, 13
Keystone, 9
Neutron, 10
Nova, 7–8, 97
Swift, 170

Dashboard. See Horizon dashboard
Data plane, networking, 36–38
Data processing, Cinder block storage, 152
Data sovereignty, and public cloud, 228
Databases

controller node setup for authentication in
Cinder, 156

hosting with Ironic, 186
MySQL. See MySQL database

261 Index

Debug lines, log messages, 215–216
Debug mode, 215
Debugging. See Troubleshooting
Deployment

other mechanisms for, 235–236
reference. See Reference deployment

Deployment, DevStack
common failures, 23–24
dashboard login as administrator, 28–29
dashboard login as user, 24–28
overview of, 23
working with host on command line,

30–31
Deployment, first

compute node setup, 83–85
configuring Glance, 67–69
configuring Keystone, 58–67
configuring Neutron, 76–83
configuring Nova, 72–75
configuring OpenStack client, 67
initial setup, 52–58
managing an instance, 85–87
overview of, 51
requirements, 51–52
using reference deployment, 52

Deployment foundations
common mechanisms, 93–94
compute node, 109–115
controller node. See Controller node,

deployment
Glance image service, 97
Horizon dashboard, 97
initial setup, 94–95
Keystone identity service, 95
MySQL database, 96
networking, 93
Neutron networking, 96
Nova compute, 97
overview of, 91
RabbitMQ message Queuing, 96
reference, 92–93
requirements, 91–92
troubleshooting, 115

Designate: DNS as a service, 209
Details screen, DevStack, 27
Developers, DevStack, 22, 31–32
Devices, used by Rings in Swift, 170

DevStack
customizing, 32–33
defined, 21
deployment, 23–31
deployment limitations, 93
overview of, 21
requirements, 22–23
stable, 24, 31–32
summary review, 33
usage of, 22
using Ironic with, 188

DHCP service
initial networking setup, 53
ip/namespace ID for, 218

Directory, customizing DevStack, 33
Docker

container drivers for Nova, 197
Magnum managing orchestration for, 13
popularity of containers due to, 195
using containers, 196–197

Docker Swarm
Magnum containers, 198
orchestration for containers via, 195
public cloud company uses for, 196

Documentation, finding help, 253
Domains, Keystone, 64–65
Drivers

Cinder block storage, 154
Ironic, 12, 186–189
Ironic Inspector defining, 191
Neutron, 96–97
Nova, 7, 197

E
Encapsulation of traffic, tunnel-driven

networks, 38
Environment variables

configuring Glance, 67–71
configuring Keystone, 62–66
export commands, 66
passing data within openstack command,

67
Ephemeral Disk column, default f lavors,

120–121
Errors

troubleshooting. See troubleshooting
troubleshooting reading displayed, 211–213

262 Index

/etc/ network/interfaces file, 55
/etc/openrc.admin

adding f lavor, 130
exploring deployment with OSC, 207
export commands and, 62
Glance installation, 67–68, 71
loading admin credentials for cloud, 85
Neutron installation, 76
Nova installation, 72
OSC authentication, 68, 249
testing controller node, 107
viewing statistics with OSC, 147

/etc/openrc.test
adding image, 71
creating/attaching volume in OSC, 161
creating container/object in OSC, 180
managing instance, 85
OSC authentication, 67, 249
private cloud, 130–132, 134
testing compute node, 111
testing controller node, 106–107
using object in OSC, 182

eth0 interface
configuring controller node, 55
initial networking setup, 53
physical machine setup, 41
tcpdump command on, 219
traffic f low within, 44–48
virtual machine setup, 43

eth1 interface
configuring controller node, 55–56
physical machine setup, 41
traffic f low within, 44–48
virtual machine setup, 43

Exports
configuring Glance, 71
configuring OSC, 67
of environment variables available in

future, 66
not preserving across shells/sessions, 62

External network, deploying, 40–43

F
Failures

DevStack deployment, 23
Storage hardware, 152

High Availability and Scaling, 208
Troubleshooting, 211
Logs, 213
Connecting to AMQP, 216

Fault tolerance, Swift, 172
Features, specifications for new, 245
Features, tracking of, 246
Fernet tokens, configuring Keystone, 60–62,

102
File permissions, Cinder block storage, 165
File sharing, with object storage, 167–168
Filesystem

creating on new disk, 165
creating volume in dashboard, 158

Firewall plug-in, Neutron, 96
First deployment. See Deployment, first
Flat networking, tenant network, 37
Flavors

adding to private compute cloud, 120–122
configuring Glance, 69–70
definition of, 120
in DevStack deployment, 27, 28–29
launching instance with OSC, 130–131
launching test instance on dashboard, 113
launching with dashboard, 126–127

Floating IP address, adding to instance,
128–130, 135–136

Formpost proxy manifest, Swift, 175
Foundations role, Cinder, 156

G
The Gate, Continuous Integration testing,

247
Gateway address, logging in with SSH, 136
Gearman worker, continuous integration

testing, 247–248
Generic Routing Encapsulation (GRE), 38
Git repository

code revision control, 246–247
continuous integration testing, 247–248
scripts-and-configs, 55
troubleshooting Puppet modules, 222

GitHub repositories
initial setup of Puppet, 94–95
OpenStack commands in, 106, 130, 161
troubleshooting via, 115

263 Index

Glance-api daemon, 10
Glance imaging service

adding image to, 122–123
creating volume, 158
dashboard for private cloud, 122–123
installing on controller, 67–69
as key component, 10
overview of, 10
profile, 101
selecting for deployment, 97
using Ironic, 189–191
viewing statistics with dashboard, 146–147

Glance-registry daemon, 10
Government organization, private cloud in,

117–118
Government research organization, hybrid

cloud in, 229
GRE (Generic Routing Encapsulation), 38
Groups, DevStack deployment, 29
Growth potential, public cloud, 227

H
HA (high-availability), 92
HA (high availability), 208
Hardware

defining with Ironic Inspector, 191
enrollment, using Ironic, 188
managing Ironic, 192

Healthcheck proxy manifest, Swift, 175
Heat-api, 13
Heat-api-cfn, 13
Heat-engine, 13
Heat orchestration

as key component, 12–13
Magnum containers, 13, 197

Heat Orchestration Template (HOT) format,
Heat, 13

Help
finding with OpenStack, 253–256
Puppet, 222
requesting, 224
troubleshooting via, 115

Hiera
defining software lifecycle for data, 239
masterless Puppet and, 237
passwords in, 238
understanding, 237–238

Hiera common.yaml file
configuring controller node, 98
creating compute node, 109
Keystone identity profile, 102
troubleshooting Puppet modules, 222

High availability (HA), 92, 208
High-Performance Computing (HPC),

Ironic, 186
Horizon dashboard

accessible from any address, 92
in Cinder block storage, 162–165
console access, 8
creating/attaching volume, 157–161
creating container/object in Swift, 176–179
in DevStack deployment, 22–23, 24
as key component, 4–7
launching instance for private cloud,

119–130
launching test instance, 112–115
launching test instance, error, 212–213
login as user, 24–28
navigating to IP address of controller, 120
profile, 102
selecting for deployment, 97
testing in controller node, 108–109
using objects, 181–182
viewing public cloud statistics, 146–147
in whole cloud deployment, 205–206

Host(s)
configuring controller node, 56
customizing DevStack for multiple, 33
definition of, 42
using DevStack on command line, 30

HOT (Heat Orchestration Template) format,
Heat, 13

HPC (High-Performance Computing),
Ironic, 186

HTTP server
loading simple, 137–138
prelaunching instance with OSC, 132–134
using object in web page, 183–184

Hybrid clouds, 228–229
Hyper-V

instances as VMs using, 4
Nova drivers supporting, 7
as supported hypervisor, 146

Hypervisors, supported, 145

264 Index

I
IaaS (Infrastructure as a Service). See also

Private compute cloud, 2
ICMP ping, 123–126
Identity

authentication vs., 95
Keystone. See Keystone identity service

Identity Panel, DevStack deployment, 28–29
IDs, file permissions in Cinder, 165
Images, container, 195–196
Imaging service. See Glance imaging service
Img file, Glance, 10
Import Key Pair, access/security, 125–126
In-tree drivers, Ironic, 188
Infrastructure as a Service (IaaS). See also

Private compute cloud, 2
INI format files, troubleshooting

configuration files, 221
Installation

Magnum, 199
reference deployment, 231–233

Instance Boot Source, DevStack deployment,
27

Instance(s)
add f loating IP address with dashboard,

128–130
attaching volume in dashboard to, 158–159
compute node as host for all compute, 109
connecting to tenant networks, 36–37
definition of, 42
DevStack deployment as administrator,

28–29
DevStack deployment as user, 25–28
launching for private cloud, 126–128
launching from command line, 31
launching test on dashboard, 112–115
launching using OSC, 134–136
loading simple HTTP server, 137–138
managing, 6, 85–87
modifying through Horizon interface, 28
OpenStack, 4
prelaunching using OSC, 132–134
traffic f low within compute node, 48–49
troubleshooting reading displayed errors,

211–213
using object in web page, 183–184

int-br-ex bridge, 45
Intelligent Platform Management Interface

(IPMI). See IPMI (Intelligent Platform
Management Interface)

Interactive mode, OpenStack Client,
250–251

Interfaces, traffic f low, 45–49
Internal cloud deployment, 186
Internet access, physical machine deployment,

41
Internet Relay Chat (IRC)

contributions to OpenStack, 244–245
finding help with OpenStack, 224, 254

IP address(es)
adding f loating, 128–130, 135–136
configuring controller node, 56
setting for controller and compute node, 98
tenant networks and, 37

ip command
MTU size issues, 219–220
network namespaces and, 217–218

ip netns command, 218
ip netns exec command, 219
IPMI (Intelligent Platform Management

Interface)
Ironic drivers supporting, 12
for queries against bare metal, 145
using Ironic, 187–191

Iptables
definition of, 46
initial networking setup, 53
Linux Bridge for, 220
traffic f low on controller node, 47
troubleshooting networks, 220–221

IRC (Internet Relay Chat)
contributions to OpenStack, 244–245
finding help with OpenStack, 224, 254

Ironic-api, 12
Ironic bare metal provisioning

architecture, 186–188
development community, 192
installation, 188
IPMI for queries against, 145
Ironic Inspector, 191
as key component, 12
Magnum structure, 198

265 Index

managing, 192
overview of, 185
uses, 185–186
using Cinder, 188–191

Ironic-conductor, 12, 187
ironic node-create command, 190
ironic node-list command, 192
ironic node-show name command, 192
Ironic-python-agent, 12
ISO image file, Glance, 10

J
Jenkins user comments, CI testing, 247–248
JSON format files, troubleshooting

configuration files, 221
Jumbo frames, networking, 39

K
Kernel-based Virtual Machine. See KVM

(Kernel-based Virtual Machine)
Key Pair

DevStack deployment as user, 25–27
launching, 126–127
prelaunch access/security, 125

Key services, troubleshooting, 216–217
Keys, Fernet, 60
Keystone identity service

for Cinder, 156
for DevStack, 24
for Glance profile, 101
installing on controller, 58–67
as key component, 9
for Magnum containers, 197
for Neutron, 76–78
profile, 102–103
running Swift with other identity service,

11
selecting for deployment, 95
for Swift, 174–175
troubleshooting, 216–217
understanding, 58–59

keystone-manage command, 60–61
keystoneauth proxy manifest, Swift, 175
Kubernetes

Magnum concepts, 198
orchestration for containers, 13, 195
public cloud company uses, 196

KVM (Kernel-based Virtual Machine)
accessing OpenStack instances, 9
adding image for private cloud, 122
container drivers for Nova, 197
instances as VMs using, 4
networking with, 53
Nova drivers supporting, 7
in reference deployment, 52, 92–93,

231–233
as supported hypervisor, 146
using virtual machines, 42

L
Launch Instance button

DevStack deployment, 24–25, 27
private compute cloud, 126–127
testing dashboard, 112, 114

Libvirt KVM, 197, 231–233
Libvirt LXC, 197
Linux Bridge

Open vSwitch vs., 37
troubleshooting with iptables, 220–221
troubleshooting with OVS, 220

Linux Containers (LXC), 146, 195, 197
Linux kernel executable (vmlinuz), Ironic,

189–191
Load balancer plug-in, Neutron, 96
Local.conf file, customizing DevStack,

32–33
Location, and public cloud, 227
Lock-in, vendor, 229–230
Login

to server with SSH, 136–137
testing Horizon dashboard in controller

node, 108–109
Logs

customizing DevStack, 33
troubleshooting key services, 216
troubleshooting reading displayed errors,

211–213
troubleshooting via, 213–216
using object storage for, 167–168

Long Term Support (LTS), Ubuntu release,
15–16

LTS (Long Term Support), Ubuntu release,
14–16

LVM, Cinder, 157

266 Index

M
MAC addresses, using Ironic, 190
Magnum containers

concepts, 198
installing, 199
as key component, 13
OpenStack Instances as, 4
overview of, 197–198
understanding, 195–196

Mailing lists
finding help in OpenStack, 224, 254
OpenStack Development list, 244
OpenStack Operators, 245
OpenStack support, 245

Major company, using private compute cloud,
118

Manage Attachments, dashboard, 158–159
Management plane, networking, 35–36
Management, with Ironic, 192
Master, Puppet, 237
Masterless Puppet, 237
Maximum transmission units (MTUs),

38–39, 219–220
MD5SUMS, 122
Meeting channels, IRC, 245
Memcached, Swift, 174–175
Message Queuing

Cinder block storage architecture, 154–155
Ironic architecture, 187
RabbitMQ. See RabbitMQ Queuing

service
Metadata column, default f lavors, 120
meter-list command, 147–149
Metering data, Ceilometer, 11
Meters

Ceilometer and, 143–144
viewing statistics with command line

client, 147–149
Metrics, public compute cloud, 150
Migration, to cloud, 230
Milestones, release cycle, 244
Mission statement, OpenStack, 2
Mitaka, 54, 145
Mitigating breakage, troubleshooting,

223–224
ML2 (Modular Layer 2) plug-in, with OVS,

37

Modular Layer 2 (ML2) plug-in, with OVS,
37

Modules, OpenStack Puppet
building own composition, 240–241
management of, 238–239
more information on, 241
overview of, 99–100
roles vs., 99
troubleshooting, 222

Monitoring, via management network, 36
Mounting volume, Cinder block storage, 165
MTUs (Maximum transmission units),

38–39, 219–220
Murano: Application catalog, 209
MySQL database

configuring controller node, 56–57
configuring Glance, 67–70
configuring Keystone, 59, 60
configuring Nova, 72
Glance profile, 101
installing Neutron on controller, 78
installing Nova on controller, 72–75
Ironic architecture, 187
selecting for deployment, 96
testing in controller node, 105–106

N
n-api screen, 30
Namespaces

definition of, 46
ip command and, 217–218
managing instances, 87
qrouter-* network, 47

Naming
custom f lavors, 121
instances, 87
logs for storage, 168

NAT (Network Address Translation)
definition of, 46
initial networking setup, 53
traffic f low on controller node, 45–47

netns exec command, 87
Network Time Protocol (NTP)

base profile setup, 100
ntp daemon, 56, 58

Network Time Protocol (ntp) daemon, 58
Networking. See Neutron networking

267 Index

Networking Guide, 49
Neutron networking

compute mode installation of, 84–85
compute node setup, 57–58
configuring first OpenStack, 55–56,

76–83
controller node setup, 55–56
deployment requirements, 39–43, 92–93
DevStack deployment failures, 23
exploring possibilities with, 96–97
in Horizon, 6–7
initial setup, 52–53
as key component, 9–10
Magnum containers, 197
Maximum Transmission Units, 38–39
other resources, 49
planes of operations, 35–36
profile, 103–105
provider networks, 36
selecting for deployment, 96
significance of, 35
tenant networks, 36–38
traffic f low, 43–48
traffic f low on compute mode, 48–49
troubleshooting, 217–221
troubleshooting as key service, 216–217

Neutron-server, Neutron, 10
NICs

reference deployment, 231–233
simple deployment requirements, 51–52
virtual machine deployment setup, 42

Nodes
classification of Puppet, 238
cleaning Ironic, 192
definition of, 42
Magnum, 198–199
networking deployment, 39–43

Nova-api daemon
defined, 8
deploying Nova in controller node, 97
screen session for DevStack, 30–33

Nova-api-metadata daemon, 8, 97
Nova compute

container drivers, 197
DevStack deployment as user, 25
installing in compute mode, 83–84
installing on controller, 72–75

as key component, 7–9
profile, 103
restarting all services, 81
selecting for deployment, 97
viewing statistics with dashboard, 146–147

Nova-compute daemon, 7–8, 83, 97
Nova-conductor daemon, 7, 97
Nova-consoleauth daemon, 8
Nova-novncproxy daemon, 8
Nova-scheduler daemon, 7, 97
Nova-spicehtml5proxy daemon, 8
Nova-xvpvncproxy daemon, 8
Novncproxy daemon, 73
NTP (Network Time Protocol)

base profile setup, 100
ntp daemon, 56, 58

O
Object daemon, Swift, 170
Object storage. See Swift object storage
Object Store, Swift

backing up block data to, 153
creating container/object in dashboard,

176–178
using objects, 181–184

Objects, Swift
adding to container in dashboard, 176–179
adding to container in OSC, 179–181
connecting to Swift, 171–172
getting details about, 177, 179–181
overview of, 171
using, 181–184

Online gaming company, using containers,
196

Open source
OpenStack commitment to, 3
Puppet modules deploying OpenStack,

99–100
vendor-specific drivers/agent plug-ins for

Neutron, 96–97
Open vSwitch. See OVS (Open vSwitch)
Openrc credentials, testing compute node,

111
Openrc files, base profile, 100
OpenSSH, reference deployment, 231
Openssh-server package, reference

deployment, 233

268 Index

OpenStack
building cloud, 3
cloud, 1–2
OpenStack joins the cloud, 2–3
release cycle, 13–16
summary review, 17
understanding, 1
uses, 3–4

OpenStack Administrator Guide, 208
OpenStack Ansible Deployment (OSAD), 93
OpenStack Client. See OSC (OpenStack

Client)
OpenStack Continuous Integration,

launching DevStack, 31–32
OpenStack Design Summit and Conference,

3, 243–244
Openstack-dev mailing list, 244
Openstack endpoint create command, 250
OpenStack Foundation

creation of, 2
mailing lists, 254
Marketplace. See OpenStack Marketplace
OpenStack Summit, 3, 255

OpenStack Infrastructure team, hybrid cloud,
228–229

OpenStack Infrastructure User Manual, 247
OpenStack, key components

baremetal (Ironic), 12
block storage (Cinder), 10–11
compute (Keystone), 9
compute (Nova), 7–9
containers (Magnum), 13
dashboard (Horizon), 4–7
image service (Glance), 10
Instances, 4
networking (Neutron), 9–10
object storage (Swift), 11–12
orchestration (Heat), 12–13
other projects, 13
Queuing, 4
telemetry (Ceilometer), 11–12

OpenStack Kilo release cycle, 2015, 13
OpenStack Marketplace

finding drivers at, 97, 154
finding help at, 256
finding vendors at, 226, 236, 256
public cloud companies, 141

openstack network list command, Ironic, 191
Openstack-operators mailing list, 244
OpenStack project, hybrid cloud

deployments, 228–229
openstack server create command, Ironic,

191
openstack server list command, testing

compute node, 112
openstack server show ferret command,

112, 135
OpenStack Summit, 3, 255
OpenStack Technical Committee (TC), 13,

209, 243
openstack token issue command, 250
OpenStack Trove, 186
Openstack-user mailing list, 244
Openstacklib module, 101
Operating system

DevStack requirements, 22
initial network setup of, 54

Ops Meetups, finding OpenStack help, 255
Orchestration. See Heat orchestration
Organizations

cost of public cloud and, 227
private compute cloud use across, 117–118

OSAD (OpenStack Ansible Deployment), 93
OSC (OpenStack Client)

authentication, 249–250
base profile setup, 100–101
commands, 250
creating/attaching volume, 161–163
creating container/object in Swift, 179–181
exploring whole cloud deployment, 207
installing on controller, 67
interactive mode, 250–251
launching instance, 128–130
overview of, 249
quick reference for commands, 251
troubleshooting reading displayed errors,

213
using objects, 182
viewing statistics on public cloud, 147–149

Oslo, 74–75, 78–79
OVS (Open vSwitch)

concept of bridge in, 46
configuring controller node, 56
installing Neutron in compute mode, 85

269 Index

installing Neutron on controller, 78–80
network deployment, 40–43
restarting in development environment,

220
segmented networks using, 37
testing in controller node, 107–108
traffic f low on controller node, 45–48
troubleshooting bridges with, 220
in tunnel-driven networks, 38

ovs-vsctl command, 220

P
PaaS (Platform as a Service), 2
Packages

configuring compute node, 58
configuring controller node, 56
configuring Keystone, 59
installing Neutron, 77
installing Nova, 73–74
Puppet, 239, 240
reference deployment, 231

Partition table, creating volume in dashboard,
158

Partitions
Swift vs. standard disk, 171
used by Rings in Swift, 170–171

Passwords
controller node, 56, 98
DevStack deployment, 23, 28–29
Glance, 68–71
Hiera, 238
Horizon dashboard user login, 25
installing Neutron, 76, 78, 80
installing Nova, 72–75, 83
Keystone, 64–66
managing instances, 87

patch-int patch, 46
patch-tun patch

testing OVS in controller node, 107–108
traffic f low in compute node, 48–49
traffic f low on controller node, 45–46

Patches
definition of, 46
testing OVS in controller node, 107–108
traffic f low in compute node, 48–49
traffic f low on controller node, 45, 47–48

Periodic processes, Swift, 11

Permissions, DevStack deployment failures,
23

Pets vs. cattle metaphor, cloud computing,
152

Physical hardware
creating first OpenStack, 51
deployment requirements, 40–41, 91–92

Physical network, initial setup, 52
Ping test

logging in with SSH, 136–137
on network namespaces, 218

Pixie Boots, Ironic mascot, 192
Planes of operations, networking, 35–36
Platform as a Service (PaaS), 2
Plug-ins

Cinder, 11
installing Neutron, 80, 84–85
Neutron, 10, 77, 96–97

Preboot Execution Environment (PXE),
Ironic, 12, 186–187

Private compute cloud
deployment scenario, 119
hybrid cloud deployments using, 228–229
launching instance with dashboard,

119–130
launching instance with OpenStack Client,

130–136
overview of, 117
requirements, 118
running service, 136–138
SDKs and OpenStack API, 138
selecting components, 119
uses, 117–118

Production machines, avoid running
DevStack on, 21

Profiles
base profile, 100–101
Ceilometer, 144
Cinder block storage, 156
Glance imaging service, 101
Horizon dashboard, 102
Keystone identity, 102–103
Neuron networking, 103–105
Nova compute, 103
Puppet, 99–100, 239
RabbitMQ queuing, 105

Project Navigator, OpenStack website, 209

270 Index

Project Team Lead (PTL), OpenStack
projects, 243

Projects
configuring Keystone, 64–65
definition of, 64–65
DevStack deployment as administrator, 29
other OpenStack, 13

Proprietary drivers/agent plug-ins, Neutron,
97

Proprietary offerings, cost of public cloud
and, 227

Provider networks, 36
Provisioning

bare metal, with Ironic, 12
in Nova, 7

Proxy daemon, Swift, 170, 182
Proxy manifests, Swift, 175
Proxy_logging proxy manifest, Swift, 175
PTL (Project Team Lead), OpenStack

projects, 243
Public compute cloud

architecture overview, 143–144
benefits of, 226
companies using containers, 196
compute node setup, 145
controller node setup, 144–145
deploying whole cloud, 205
evaluating cost for, 227
evaluating location and, 227
hybrid cloud deployment, 228–229
overview of, 141
requirements, 142–143
scenario, 144
uses, 141–142
viewing metrics and alerts, 150
viewing statistics with command line

client, 147–149
viewing statistics with dashboard, 146–147

Public network switch, physical machine
setup, 41

Publishing data, Ceilometer, 11, 144
Puppet

configuring Cinder block storage, 155–157
configuring compute node, 110
configuring controller node, 98–99
configuring initial setup on servers, 94–95
contents of composition model, 240–241

controller node setup for Swift, 173–176
as deployment mechanism, 93
Hiera, 237–238
Ironic installation, 188
Keystone identity profile, 102
as master or masterless, 237
module management, 238–239
modules as configuration management

system, 16
more information, 241
node classification, 238
overview of, 237
packages, 240
passwords in Hiera, 238
revision control, 240
roles and profiles, 239
roles, profiles and modules, 99–100
software lifecycle, 239
storing modules in common.yaml file, 98
troubleshooting, 115, 221–222

puppet apply command
compute node setup for private cloud, 110
controller node setup for Cinder, 155–157
controller node setup for private cloud, 98
controller node setup for public cloud, 144
controller node setup for Swift, 173–176
deploying whole cloud, 204–205
Puppet node classification and, 238
troubleshooting with, 221–222

Puppetfile, module management, 238
PXE (Preboot Execution Environment),

Ironic, 12, 186–187
Python, 215, 243
Python-ironicclient, 12
Python-openstackclient tool, 56–57

Q
qcow2 image file, Glance, 10
qdhcp network namespace, 218
QEMU

accessing OpenStack instances, 9
adding image for private cloud, 122
instances as VMs using, 4
Nova drivers supporting, 7
reference deployment, 231
as supported hypervisor, 146

qrouter-* namespace ID, 47, 218

271 Index

Quantum, as previous name of Neutron, 10
Queuing

OpenStack, 4
Rabbit MQ. See RabbitMQ Queuing

service

R
RabbitMQ Queuing service

configuring controller node, 56–57
profile, 105
selecting for deployment, 96
troubleshooting as key service, 216–217

RAM
default f lavors, 120
DevStack requirements, 22
reference deployment, 231–233
simple deployment requirements, 52
using Ironic, 189–191

Ratelimit proxy manifest, Swift, 175
Rc files, OpenStack, 251–252
Reading displayed errors, troubleshooting,

211–213
README.md file, troubleshooting via, 115
Recommendations, reference deployment,

233
Redundancy, Swift, 172
Reference deployment

initial networking setup, 53
installation, 231–233
overview of, 231
recommendations, 233
requirements, 92–93, 231
simple deployment, 52
testing Horizon dashboard in controller

node, 108–109
Registry

configuring Glance, 69–71
Glance profile, 101

Release cycle
OpenStack, 13–14
OpenStack contributions, 243–244
OpenStack specifications, 245
Puppet modules, 16
Ubuntu Cloud Archive, 15–16
Ubuntu Long Term Support, 14–15

Replicas, used by Rings in Swift, 171
Requesting help, 224

Requirements
Cinder block storage, 153–154
deploying whole cloud, 203–204
deployment foundations, 91–92
DevStack, 22–23
first OpenStack deployment, 51–52
networking deployment, 39–43
public compute cloud deployment, 142–143
reference deployment, 231
Swift object storage deployment, 169–172

Resource IDs, viewing statistics, 147–149
Resources, viewing statistics, 147–148
RESTful API, Ironic architecture, 187
RESTful HTTP API, Swift object storage, 11
Review system, code, 247–248
Revision control system

code contributions, 246–247
Puppet, 240

Ring-builder utility, Swift, 170
Rings

further information on, 171
in Swift, 170–171, 175–176

Roles
defined, 66
in DevStack deployment, 29
in Keystone, 64–65
modules vs., 99
Puppet, 99–100, 239

Root Disk column, default f lavors, 120
Rules

iptable, 220–221
prelaunch access/security with dashboard,

123–126

S
SaaS (Software as a Service), 2
Sahara: data processing, 209
SaltStack, 235–236
Scaling

high availability and, 208
two nodes for deployment and, 92
VLANs vs. tunneling, 38

Scheduler
controller node setup for Cinder, 156
creating volume in dashboard, 158

Scheduler daemon, Nova, 73
Schema, adding to Keystone database, 60–61

272 Index

screen -r (screen reattach) command, 30
Screen tool, DevStack, 30
Scripts-and-configs, git repository, 55
SDKs (Software Development Kits)

automating Cinder, 166
OpenStack APIs and, 138

Security
deployment requirements, 92
installing Neutron, 79
managing instances, 86
OpenStack Client, 132–134
private compute cloud, 123–126
public cloud, 228
two nodes for deployment, 92

Security groups, 123–126
Segmented networking, tenant network, 37
Servers

compute node. See Compute node
controller node. See Controller node
initial setup for deployment, 94
logging in with SSH, 136–137
Neutron, 77

Services
Ceilometer, 12
control network for, 36
customizing DevStack, 33
Glance, 67–69
Heat, 13
Keystone, 58–67
Neutron, 77–78, 80, 85
Nova, 7–8, 72–73, 84
running, 136–138
Swift, 11
testing in controller node, 106
troubleshooting key, 216–217
troubleshooting reading displayed errors, 211
troubleshooting via logs, 213

setup.sh script
initial setup of Puppet, 94–95
installing RabbitMQ Puppet module, 105
placing Hiera common.yaml file via, 98

Sharing files, with object storage, 167–168
Snapshots, Cinder backups, 153
Software as a Service (SaaS), 2
Software Development Kits (SDKs)

automating Cinder, 166
OpenStack APIs and, 138

Software lifecycle, Puppet, 239
Software updates, initial operating system

setup, 54
Source screen, DevStack deployment, 27
Spawning phase, launch with dashboard, 126
Specification process, OpenStack

contributions, 245–246
SQLite database, configuring Keystone, 60
SSH (Secure Shell)

add f loating IP address, 128–130
DevStack deployment as user, 25–28
loading simple HTTP server, 137–138
logging into instance, 87
logging into server, 136–137
pre-launch access and security, 123–126
prelaunching instance with OSC, 132–134
reference deployment via, 233
using Cinder block storage, 162–165

Stable DevStack, 24, 31–32
Stack, Heat, 13
Stackforge Puppet modules, 241
stack.sh script, DevStack

commented version of, 23
customizing DevStack, 33
defined, 21

Staticweb proxy manifest, Swift, 175
Statistics, viewing public cloud, 146–149
Storage. See Cinder block storage; Swift

object storage
sudo command, first OpenStack deployment,

55–57
Summit, OpenStack, 3, 255
Support outlets, OpenStack, 245
Swap Disk column, default f lavors, 120
Swift-account-server, 11
Swift-container-server, 11
Swift-object-server, 11
Swift object storage

Ceph vs., 184
clusters, 170
connecting to, 171–172
controller node setup, 173–176
creating container in dashboard, 176–179
creating container in OSC, 179–181
as key component, 11–12
objects and containers, 171
overview of, 167

273 Index

requirements, 169–172
Rings, 170–171
scenario, 173
uses, 167–168
using objects, 181–184

Swift-proxy-server, 11
Switches, 40–41, 51
Symmetric Key Encryption, 60
Sysfsutils, installing Nova, 83
System configuration, initial networking

setup, 54–58
System Information

DevStack deployment, 29
Horizon dashboard, 205–206
OSC view of, 207

System Panel, DevStack deployment, 28–29

T
Tags, Puppet module, 238–239
Tap interface

definition of, 46
network namespaces and, 218
traffic f low in compute node, 48–49
traffic f low on controller node, 45

tcpdump command, 219–220
Technical Committee (TC), OpenStack, 13,

209, 243
Telemetry. See Ceilometer telemetry service
Tempauth proxy manifest, Swift, 175
Templates, Heat orchestration using, 12–13
Tempurl proxy manifest, Swift, 175
Tenant networks

deploying, 40–43
ip command and, 218
overview of, 36–38

Terminology, Linux networking, 46
Test user

adding image, 122–123, 131–132
configuring Glance, 71
configuring Keystone, 65–66
configuring OSC, 67
creating container/object in dashboard,

176–179
creating container/object in OSC, 179–181
managing instances, 85–87
testing compute node, 111–112
testing controller node, 105–109

Test volume, controller node setup in Cinder,
157

Testing
controller node, 105–109
infrastructure, 247–248

TEST_PASSWORD, OSC, 67
Testrc file, managing instances, 85–87
Text-based templates, Heat, 12–13
Throw-away commodity hardware, 152
Timestamps, 148
token issue command, Keystone, 66
Traceback, log messages, 215–216
Trademark disputes, OpenStack Foundation

handling, 3
Traditional technology companies, building

public clouds, 141–142
Traffic f low

compute node, 48–49
controller node, 44–48
deployment requirements, 40–43
overview of, 43–44
planes of operations, 35–36
tenant network options, 37–38

Training, DevStack as tool for, 21, 22
Transformers, Ceilometer, 144
Troubleshooting

configuration files, 221
deployments, 115
key services, 216–217
logs, 213–216
mitigating breakage, 223–224
networking, 217–221
overview of, 211
Puppet, 221–222
reading displayed errors, 211–213
requesting help, 224

Trove: Databases as a service, 209
TUN (network tunnel) interface, 46
Tunneling

network deployment, 40–43
segmented networking for tenants, 38

U
Ubuntu

Cloud Archive, 15–16
initial operating system setup, 54
initial setup for deployment, 94–95

274 Index

Ubuntu (continued)
Long Term Support release of, 14–15
reference deployment, 231–233
using object in web page, 183–184

Uca profile, 100
UCA (Ubuntu Cloud Archive)

configuring Glance, 67
configuring Keystone, 59
configuring with uca profile, 100
initial system configuration setup, 54

UML (via libvirt), as supported hypervisor, 146
Upgrades, block storage cloud, 152
URL, using objects, 182
User groups, 66, 255
User list command, 66
User Manual, OpenStack Infrastructure, 247
Users

configuring Keystone, 9, 64–65
dashboard for, 4–5
defined, 66
DevStack deployment as, 24–28, 29

UUID
configuring Keystone, 102
managing Ironic, 192

V
VCPU column, default f lavors, 120
vdb device, Cinder block storage, 164
Vendor-specific drivers/agent plug-ins,

Neutron, 96–97
Vendors

deployment mechanisms of, 236
ecosystem of, 225–226
finding help from, 256
hybrid cloud, 228–229
Ironic architecture and, 187–188
lock-in, 151, 229–230
offering deployment as value add, 94
overview of, 225
public cloud, 226–228

virbr0 bridge, networking setup, 53
virbr1 bridge, networking setup, 53
Virsch, networking setup, 53
Virsh, networking setup, 53
Virtual Extensible Local Area Networking.

See VXLAN (Virtual Extensible Local
Area Networking)

Virtual Local Area Networking (VLAN), 38
Virtual Machine Manager, 8–9, 231–233
Virtual Private Server (VPS), 142
VLAN (Virtual Local Area Networking), 38
vmlinuz (Linux kernel executable), Ironic,

189–191
VMs (virtual machines)

deployment requirements, 42–43
DevStack requirements, 22
DevStack training on, 21
initial network setup, 53
OpenStack Instances as, 4
simple deployment requirements, 51
traffic f low on controller node, 45–48

VMware, 4, 7
VMware Sphere, 146
VNC access, with Virtual Machine Manager,

8–9
Volume, Cinder block storage

cloning, 153
creating/attaching with dashboard, 157–161
creating/attaching with OSC, 161–163
file permissions and, 165
using, 162–165

Volume manager, Cinder, 154–155, 156
Volumes, Cinder, 205–206
Voting on changes, Continuous Integration

testing, 247–248
VPN as a Service, Neutron, 96
VPS (Virtual Private Server), 142
VXLAN (Virtual Extensible Local Area

Networking)
encapsulated traffic in tunnel-driven

network, 38–39
network deployment, 40–43
scaling with VLANs vs., 38
traffic f low on controller node, 46
traffic f low within compute node, 48–49

W
Web-based help, 254
Web forum, for help, 224
Web hosting companies, 142, 167–168
Web page, objects, 183–184
Wireshark, using tcpdump, 219
WSGI (Web Server Gateway Interface)

configuring Keystone, 59

275 Index

Keystone identity profile, 102
Keystone using, 9
Swift using middleware by, 11

X
Xen, 7, 146
XFS loopback devices, Swift, 175–176

Y
YAML format files. See also Hiera common.

yaml file, 221

Z
Zones, Rings in Swift, 170
Zuul, 247

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	II: Deployments
	8 Block Storage Cloud
	Uses
	Cloud Provider
	Data Processing
	Keeping Backups

	Requirements
	Select Components

	Architecture Overview
	Scenario
	Controller Node Setup
	Creating and Attaching a Volume: Dashboard
	Creating and Attaching a Volume: OpenStack Client
	Using the Volume
	Automation

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

