
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134076423
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134076423
https://plusone.google.com/share?url=http://www.informit.com/title/9780134076423
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134076423
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134076423/Free-Sample-Chapter

Computer
Science

This page intentionally left blank

Computer
Science

An Interdisciplinary Approach

Robert Sedgewick
Kevin Wayne

Princeton University

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sāo Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016936496

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms, and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-407642-3
ISBN-10: 0-13-407642-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2016

http://www.pearsoned.com/permissions/
http://www.informit.com/aw

To Adam, Andrew, Brett, Robbie,

Henry, Iona, Rose, Peter,

and especially Linda

To Jackie, Alex, and Michael

vi

Contents

Preface xiii

1—Elements of Programming 1
1.1 Your First Program 2

1.2 Built-in Types of Data 14

1.3 Conditionals and Loops 50

1.4 Arrays 90

1.5 Input and Output 126

1.6 Case Study: Random Web Surfer 170

2—Functions and Modules 191
2.1 Defining Functions 192

2.2 Libraries and Clients 226

2.3 Recursion 262

2.4 Case Study: Percolation 300

3—Object-Oriented Programming. 329
3.1 Using Data Types 330

3.2 Creating Data Types 382

3.3 Designing Data Types 428

3.4 Case Study: N-Body Simulation 478

4—Algorithms and Data Structures 493
4.1 Performance 494

4.2 Sorting and Searching 532

4.3 Stacks and Queues 566

4.4 Symbol Tables 624

4.5 Case Study: Small-World Phenomenon 670

vii

5—Theory of Computing 715
5.1 Formal Languages 718

5.2 Turing Machines 766

5.3 Universality 786

5.4 Computability 806

5.5 Intractability 822

6—A Computing Machine 873
6.1 Representing Information 874

6.2 TOY Machine 906

6.3 Machine-Language Programming 930

6.4 TOY Virtual Machine 958

7—Building a Computing Device 985
7.1 Boolean Logic 986

7.2 Basic Circuit Model 1002

7.3 Combinational Circuits 1012

7.4 Sequential Circuits 1048

7.5 Digital Devices 1070

Context. 1093

Glossary 1097

Index 1107

APIs . 1139

viii

Elements of Programming

Your First Program
1.1.1 Hello, World 4
1.1.2 Using a command-line argument 7

Built-in Types of Data
1.2.1 String concatenation 20
1.2.2 Integer multiplication and division 23
1.2.3 Quadratic formula 25
1.2.4 Leap year 28
1.2.5 Casting to get a random integer . . 34

Conditionals and Loops
1.3.1 Flipping a fair coin 53
1.3.2 Your first while loop 55
1.3.3 Computing powers of 2 57
1.3.4 Your first nested loops 63
1.3.5 Harmonic numbers 65
1.3.6 Newton’s method 66
1.3.7 Converting to binary 68
1.3.8 Gambler’s ruin simulation 71
1.3.9 Factoring integers 73

Arrays
1.4.1 Sampling without replacement . . 98
1.4.2 Coupon collector simulation . . 102
1.4.3 Sieve of Eratosthenes 104
1.4.4 Self-avoiding random walks . . 113

Input and Output
1.5.1 Generating a random sequence 128
1.5.2 Interactive user input 136
1.5.3 Averaging a stream of numbers 138
1.5.4 A simple filter 140
1.5.5 Standard input-to-drawing filter 147
1.5.6 Bouncing ball 153
1.5.7 Digital signal processing 158

Case Study: Random Web Surfer
1.6.1 Computing the transition matrix 173
1.6.2 Simulating a random surfer . . 175
1.6.3 Mixing a Markov chain 182

Functions and Modules

Defining Functions
2.1.1 Harmonic numbers (revisited) 194
2.1.2 Gaussian functions 203
2.1.3 Coupon collector (revisited) . . 206
2.1.4 Play that tune (revisited) 213

Libraries and Clients
2.2.1 Random number library 234
2.2.2 Array I/O library 238
2.2.3 Iterated function systems 241
2.2.4 Data analysis library 245
2.2.5 Plotting data values in an array 247
2.2.6 Bernoulli trials 250

Recursion
2.3.1 Euclid’s algorithm. 267
2.3.2 Towers of Hanoi 270
2.3.3 Gray code 275
2.3.4 Recursive graphics 277
2.3.5 Brownian bridge 279
2.3.6 Longest common subsequence 287

Case Study: Percolation
2.4.1 Percolation scaffolding. 304
2.4.2 Vertical percolation detection . . 306
2.4.3 Visualization client 309
2.4.4 Percolation probability estimate 311
2.4.5 Percolation detection 313
2.4.6 Adaptive plot client 316

Programs

ix

Object-Oriented Programming

Using Data Types
3.1.1 Identifying a potential gene . . 337
3.1.2 Albers squares 342
3.1.3 Luminance library 345
3.1.4 Converting color to grayscale . . 348
3.1.5 Image scaling 350
3.1.6 Fade effect 352
3.1.7 Concatenating files 356
3.1.8 Screen scraping for stock quotes 359
3.1.9 Splitting a file 360

Creating Data Types
3.2.1 Charged particle 387
3.2.2 Stopwatch 391
3.2.3 Histogram 393
3.2.4 Turtle graphics 396
3.2.5 Spira mirabilis 399
3.2.6 Complex number 405
3.2.7 Mandelbrot set 409
3.2.8 Stock account 413

Designing Data Types
3.3.1 Complex number (alternate) . . 434
3.3.2 Counter 437
3.3.3 Spatial vectors 444
3.3.4 Document sketch 461
3.3.5 Similarity detection 463

Case Study: N-Body Simulation
3.4.1 Gravitational body 482
3.4.2 N-body simulation 485

Algorithms and Data Structures

Performance
4.1.1 3-sum problem 497
4.1.2 Validating a doubling hypothesis 499

Sorting and Searching
4.2.1 Binary search (20 questions) . . 534
4.2.2 Bisection search 537
4.2.3 Binary search (sorted array) . . 539
4.2.4 Insertion sort 547
4.2.5 Doubling test for insertion sort 549
4.2.6 Mergesort 552
4.2.7 Frequency counts 557

Stacks and Queues
4.3.1 Stack of strings (array). 570
4.3.2 Stack of strings (linked list) . . . 575
4.3.3 Stack of strings (resizing array) 579
4.3.4 Generic stack 584
4.3.5 Expression evaluation 588
4.3.6 Generic FIFO queue (linked list) 594
4.3.7 M/M/1 queue simulation . . . 599
4.3.8 Load balancing simulation . . . 607

Symbol Tables
4.4.1 Dictionary lookup 631
4.4.2 Indexing. 633
4.4.3 Hash table 638
4.4.4 Binary search tree 646
4.4.5 Dedup filter 653

Case Study: Small-World Phenomenon
4.5.1 Graph data type 677
4.5.2 Using a graph to invert an index 681
4.5.3 Shortest-paths client 685
4.5.4 Shortest-paths implementation 691
4.5.5 Small-world test 696
4.5.6 Performer–performer graph . . 698

x

Theory of Computing

Formal Languages
5.1.1 RE recognition 729
5.1.2 Generalized RE pattern match 736
5.1.3 Universal virtual DFA 743

Turing Machines
5.2.1 Virtual Turing machine tape . . 776
5.2.2 Universal virtual TM 777

Universality

Computability

Intractability
5.5.1 SAT solver 855

A Computing Machine

Representing Information
6.1.1 Number conversion 881
6.1.2 Floating-point components . . 893

TOY Machine
6.2.1 Your first TOY program 915
6.2.2 Conditionals and loops 921
6.2.3 Self-modifying code 923

Machine-Language Programming
6.3.1 Calling a function 933
6.3.2 Standard output 935
6.3.3 Standard input 937
6.3.4 Array processing 939
6.3.5 Linked structures 943

TOY Virtual Machine
6.4.1 TOY virtual machine 967

xi

Building a Computing Device

Boolean Logic

Basic Circuit Model

Combinational Circuits

Basic logic gates 1014
Selection multiplexer 1024
Decoder 1021
Demultiplexer 1022
Multiplexer 1023
XOR 1024
Majority 1025
Odd parity 1026
Adder 1029
ALU 1033
Bus multiplexer 1036

Sequential Circuits
SR flip-flop 1050
Register bit 1051
Register 1052
Memory bit 1056
Memory 1057
Clock 1061

Digital Devices
Program counter 1074
Control 1081
CPU 1086

Circuits

xiii

Preface

THE BASIS FOR EDUCATION IN THE last millennium was “reading, writing, and arith-
metic”; now it is reading, writing, and computing. Learning to program is an

essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that composing a program is a natural, satisfying, and creative experience.
We progressively introduce essential concepts, embrace classic applications from
applied mathematics and the sciences to illustrate the concepts, and provide op-
portunities for students to write programs to solve engaging problems. We seek
also to demystify computation for students and to build awareness about the sub-
stantial intellectual underpinnings of the field of computer science.

We use the Java programming language for all of the programs in this book.
The first part of the book teaches basic skills for computational problem solving
that are applicable in many modern computing environments, and it is a self-
contained treatment intended for people with no previous experience in program-
ming. It is about fundamental concepts in programming, not Java per se. The second
part of the book demonstrates that there is much more to computer science than
programming, but we do often use Java programs to help communicate the main
ideas.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
in that we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach reinforces for
students the essential idea that mathematics, science, engineering, and computing
are intertwined in the modern world. While it is a CS1 textbook designed for any
first-year college student, the book also can be used for self-study.

xiv Preface

Coverage The first part of the book is organized around three stages of learning
to program: basic elements, functions, object-oriented programming, and algo-
rithms. We provide the basic information that readers need to build confidence
in composing programs at each level before moving to the next level. An essential
feature of our approach is the use of example programs that solve intriguing prob-
lems, supported with exercises ranging from self-study drills to challenging prob-
lems that call for creative solutions.

Elements of programming include variables, assignment statements, built-in
types of data, flow of control, arrays, and input/output, including graphics and
sound.

Functions and modules are the students’ first exposure to modular pro-
gramming. We build upon students’ familiarity with mathematical functions to
introduce Java functions, and then consider the implications of programming
with functions, including libraries of functions and recursion. We stress the fun-
damental idea of dividing a program into components that can be independently
debugged, maintained, and reused.

Object-oriented programming is our introduction to data abstraction. We
emphasize the concept of a data type and its implementation using Java’s class
mechanism. We teach students how to use, create, and design data types. Modu-
larity, encapsulation, and other modern programming paradigms are the central
concepts of this stage.

The second part of the book introduces advanced topics in computer science:
algorithms and data structures, theory of computing, and machine architecture.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effective
for modern applications. We provide an introduction to classical algorithms for
sorting and searching as well as fundamental data structures and their application,
emphasizing the use of the scientific method to understand performance charac-
teristics of implementations.

Theory of computing helps us address basic questions about computation,
using simple abstract models of computers. Not only are the insights gained in-
valuable, but many of the ideas are also directly useful and relevant in practical
computing applications.

Machine architecture provides a path to understanding what computation
actually looks like in the real world—a link between the abstract machines of the
theory of computing and the real computers that we use. Moreover, the study of

xvPreface

machine architecture provides a link to the past, as the microprocessors found in
today’s computers and mobile devices are not so different from the first computers
that were developed in the middle of the 20th century.

Applications in science and engineering are a key feature of the text. We mo-
tivate each programming concept that we address by examining its impact on
specific applications. We draw examples from applied mathematics, the physical
and biological sciences, and computer science itself, and include simulation of
physical systems, numerical methods, data visualization, sound synthesis, image
processing, financial simulation, and information technology. Specific examples
include a treatment in the first chapter of Markov chains for web page ranks and
case studies that address the percolation problem, n-body simulation, and the
small-world phenomenon. These applications are an integral part of the text. They
engage students in the material, illustrate the importance of the programming con-
cepts, and provide persuasive evidence of the critical role played by computation in
modern science and engineering.

Historical context is emphasized in the later chapters. The fascinating story of
the development and application of fundamental ideas about computation by Alan
Turing, John von Neumann, and many others is an important subtext.

Our primary goal is to teach the specific mechanisms and skills that are
needed to develop effective solutions to any programming problem. We work with
complete Java programs and encourage readers to use them. We focus on program-
ming by individuals, not programming in the large.

Use in the Curriculum This book is intended for a first-year college course
aimed at teaching computer science to novices in the context of scientific applica-
tions. When such a course is taught from this book, college student will learn to
program in a familiar context. Students completing a course based on this book
will be well prepared to apply their skills in later courses in their chosen major and
to recognize when further education in computer science might be beneficial.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
in the same course. We cover the material prescribed by CS1, but our focus on

xvi Preface

applications brings life to the concepts and motivates students to learn them. Our
interdisciplinary approach exposes students to problems in many different disci-
plines, helping them to choose a major more wisely.

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. First, this positioning allows us to leverage familiar material
in high school mathematics and science. Second, students who learn to program
early in their college curriculum will then be able to use computers more effectively
when moving on to courses in their specialty. Like reading and writing, program-
ming is certain to be an essential skill for any scientist or engineer. Students who
have grasped the concepts in this book will continually develop that skill through-
out their lifetimes, reaping the benefits of exploiting computation to solve or to
better understand the problems and projects that arise in their chosen field.

Prerequisites This book is suitable for typical first-year college students. That
is, we do not expect preparation beyond what is typically required for other entry-
level science and mathematics courses.

Mathematical maturity is important. While we do not dwell on mathematical
material, we do refer to the mathematics curriculum that students have taken in
high school, including algebra, geometry, and trigonometry. Most students in our
target audience automatically meet these requirements. Indeed, we take advantage
of their familiarity with the basic curriculum to introduce basic programming
concepts.

Scientific curiosity is also an essential ingredient. Science and engineering stu-
dents bring with them a sense of fascination with the ability of scientific inquiry to
help explain what goes on in nature. We leverage this predilection with examples
of simple programs that speak volumes about the natural world. We do not assume
any specific knowledge beyond that provided by typical high school courses in
mathematics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching
programming is one of our primary goals, so we assume no prior programming
experience. But composing a program to solve a new problem is a challenging in-
tellectual task, so students who have written numerous programs in high school
can benefit from taking an introductory programming course based on this book.
The book can support teaching students with varying backgrounds because the
applications appeal to both novices and experts alike.

xviiPreface

Experience using a computer is not necessary, but also is not a problem. Col-
lege students use computers regularly—for example, to communicate with friends
and relatives, listen to music, process photos, and as part of many other activities.
The realization that they can harness the power of their own computer in interest-
ing and important ways is an exciting and lasting lesson.

In summary, virtually all college students are prepared to take a course based
on this book as a part of their first-semester curriculum.

Goals What can instructors of upper-level courses in science and engineering
expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory
programming course knows that expectations of instructors in later courses are
typically high: each instructor expects all students to be familiar with the computing
environment and approach that he or she wants to use. A physics professor might
expect some students to design a program over the weekend to run a simulation;
an engineering professor might expect other students to use a particular package
to numerically solve differential equations; or a computer science professor might
expect knowledge of the details of a particular programming environment. Is it
realistic for a single entry-level course to meet such diverse expectations? Should
there be a different introductory course for each set of students?

Colleges and universities have been wrestling with such questions since com-
puters came into widespread use in the latter part of the 20th century. Our answer
to them is found in this common introductory treatment of programming, which
is analogous to commonly accepted introductory courses in mathematics, physics,
biology, and chemistry. Computer Science strives to provide the basic preparation
needed by all students in science and engineering, while sending the clear message
that there is much more to understand about computer science than programming.
Instructors teaching students who have studied from this book can expect that they
will have the knowledge and experience necessary to enable those students to adapt
to new computational environments and to effectively exploit computers in diverse
applications.

What can students who have completed a course based on this book expect to
accomplish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might

xviii Preface

appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate, and
use other computational tools. Students interested in computer science will be well
prepared to pursue that interest; students in science and engineering will be ready
to integrate computation into their studies.

Online lectures A complete set of studio-produced videos that can be used in
conjunction with this text are available at

http://www.informit.com/title/9780134493831

As with traditional live lectures, the purpose of these videos is to inform and inspire,
motivating students to study and learn from the text. Our experience is that stu-
dent engagement with the material is significantly better than with live lectures
because of the ability to play the lectures at a chosen speed and to replay and review
the lectures at any time.

Booksite An extensive amount of other information that supplements this text
may be found on the web at

http://introcs.cs.princeton.edu/java

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With
a few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empow-
ers instructors and students to use their own computers to teach and learn the
material. Anyone with a computer and a browser can begin learning to program
by following a few instructions on the booksite. The process is no more difficult
than downloading a media player or a song. As with any website, our booksite is
continually evolving. It is an essential resource for everyone who owns this book. In
particular, the supplemental materials are critical to our goal of making computer
science an integral component of the education of all scientists and engineers.

For instructors, the booksite contains information about teaching. This in-
formation is primarily organized around a teaching style that we have developed
over the past decade, where we offer two lectures per week to a large audience,
supplemented by two class sessions per week where students meet in small groups

http://www.informit.com/title/9780134493831
http://introcs.cs.princeton.edu/java

xixPreface

with instructors or teaching assistants. The booksite has presentation slides for the
lectures, which set the tone.

For teaching assistants, the booksite contains detailed problem sets and pro-
gramming projects, which are based on exercises from the book but contain much
more detail. Each programming assignment is intended to teach a relevant concept
in the context of an interesting application while presenting an inviting and engag-
ing challenge to each student. The progression of assignments embodies our ap-
proach to teaching programming. The booksite fully specifies all the assignments
and provides detailed, structured information to help students complete them in
the allotted time, including descriptions of suggested approaches and outlines for
what should be taught in class sessions.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. A wealth of information is associated with the programming
assignments, including suggested approaches, checklists, FAQs, and test data.

For casual readers, the booksite is a resource for accessing all manner of extra
information associated with the book’s content. All of the booksite content pro-
vides web links and other routes to pursue more information about the topic under
consideration. There is far more information accessible than any individual could
fully digest, but our goal is to provide enough to whet any reader’s appetite for
more information about the book’s content.

Acknowledgments This project has been under development since 1992, so far
too many people have contributed to its success for us to acknowledge them all here.
Special thanks are due to Anne Rogers, for helping to start the ball rolling; to Dave
Hanson, Andrew Appel, and Chris van Wyk, for their patience in explaining data
abstraction; to Lisa Worthington and Donna Gabai, for being the first to truly rel-
ish the challenge of teaching this material to first-year students; and to Doug Clark
for his patience as we learned about building Turing machines and circuits. We also
gratefully acknowledge the efforts of /dev/126; the faculty, graduate students, and
teaching staff who have dedicated themselves to teaching this material over the past
25 years here at Princeton University; and the thousands of undergraduates who
have dedicated themselves to learning it.

 Robert Sedgewick
 Kevin Wayne

 May 2016

Chapter Two

191

2.1 Defining Functions 192
2.2 Libraries and Clients 226
2.3 Recursion 262
2.4 Case Study: Percolation 300

THIS CHAPTER CENTERS ON A CONSTRUCT that has as profound an impact on control
flow as do conditionals and loops: the function, which allows us to transfer con-

trol back and forth between different pieces of code. Functions (which are known
as static methods in Java) are important because they allow us to clearly separate
tasks within a program and because they provide a general mechanism that enables
us to reuse code.

We group functions together in modules, which we can compile independent-
ly. We use modules to break a computational task into subtasks of a reasonable size.
You will learn in this chapter how to build modules of your own and how to use
them, in a style of programming known as modular programming.

Some modules are developed with the primary intent of providing code that
can be reused later by many other programs. We refer to such modules as libraries.
In particular, we consider in this chapter libraries for generating random numbers,
analyzing data, and providing input/output for arrays. Libraries vastly extend the
set of operations that we use in our programs.

We pay special attention to functions that transfer control to themselves—a
process known as recursion. At first, recursion may seem counterintuitive, but it
allows us to develop simple programs that can address complex tasks that would
otherwise be much more difficult to carry out.

Whenever you can clearly separate tasks within programs, you should do so. We
repeat this mantra throughout this chapter, and end the chapter with a case study
showing how a complex programming task can be handled by breaking it into
smaller subtasks, then independently developing modules that interact with one
another to address the subtasks.

Functions and Modules

Functions and Modules

2.1 Defining Functions

THE JAVA CONSTRUCT FOR IMPLEMENTING A function is known as the static method. The
modifier static distinguishes this kind of method from the kind discussed in
CHAPTER 3—we will apply it consistently for now and discuss the difference then.
You have actually been using static meth-
ods since the beginning of this book,
from mathematical functions such as
Math.abs() and Math.sqrt() to all of
the methods in StdIn, StdOut, StdDraw,
and StdAudio. Indeed, every Java pro-
gram that you have written has a static
method named main(). In this section,
you will learn how to define your own static methods.

In mathematics, a function maps an input value of one type (the domain) to
an output value of another type (the range). For example, the function f (x) = x 2
maps 2 to 4, 3 to 9, 4 to 16, and so forth. At first, we work with static methods that
implement mathematical functions, because they are so familiar. Many standard
mathematical functions are implemented in Java’s Math library, but scientists and
engineers work with a broad variety of mathematical functions, which cannot all
be included in the library. At the beginning of this section, you will learn how to
implement such functions on your own.

Later, you will learn that we can do more with static methods than implement
mathematical functions: static methods can have strings and other types as their
range or domain, and they can produce side effects such as printing output. We
also consider in this section how to use static methods to organize programs and
thus to simplify complicated programming tasks.

Static methods support a key concept that will pervade your approach to pro-
gramming from this point forward: whenever you can clearly separate tasks within
programs, you should do so. We will be overemphasizing this point throughout this
section and reinforcing it throughout this book. When you write an essay, you break
it up into paragraphs; when you write a program, you will break it up into methods.
Separating a larger task into smaller ones is much more important in program-
ming than in writing, because it greatly facilitates debugging, maintenance, and re-
use, which are all critical in developing good software.

2.1.1 Harmonic numbers (revisited) . . . 194
2.1.2 Gaussian functions 203
2.1.3 Coupon collector (revisited) 206
2.1.4 Play that tune (revisited) 213

Programs in this section

1932.1 Defining Functions

Static methods As you know from using Java’s Math library, the use of static
methods is easy to understand. For example, when you write Math.abs(a-b) in a
program, the effect is as if you were to replace that code with the return value that
is produced by Java’s Math.abs() method when passed the expression a-b as an
argument. This usage is so intuitive that we have hardly needed to comment on
it. If you think about what the system has to do to create this effect, you will see
that it involves changing a program’s control flow. The implications of being able
to change the control flow in this way are as profound as doing so for conditionals
and loops.

You can define static methods other than main() in a .java file by specify-
ing a method signature, followed by a sequence of statements that constitute the
method. We will consider the details shortly, but we begin with a simple example—
Harmonic (PROGRAM 2.1.1)—that illustrates how methods affect control flow. It
features a static method named harmonic() that takes an integer argument n and
returns the nth harmonic number (see PROGRAM 1.3.5).

PROGRAM 2.1.1 is superior to our original implementation for computing har-
monic numbers (PROGRAM 1.3.5) because it clearly separates the two primary tasks
performed by the program: calculating harmonic numbers and interacting with
the user. (For purposes of illustration, PROGRAM 2.1.1 takes several command-line
arguments instead of just one.) Whenever you
can clearly separate tasks within programs, you
should do so.

Control flow. While Harmonic appeals to our
familiarity with mathematical functions, we will
examine it in detail so that you can think care-
fully about what a static method is and how it
operates. Harmonic comprises two static meth-
ods: harmonic() and main(). Even though
harmonic() appears first in the code, the first
statement that Java executes is, as usual, the
first statement in main(). The next few state-
ments operate as usual, except that the code
harmonic(arg), which is known as a call on the
static method harmonic(), causes a transfer of
control to the first line of code in harmonic(),
each time that it is encountered. Moreover, Java Flow of control for a call on a static method

public class Harmonic
{

 public static double harmonic(int n)
 {
 double sum = 0.0;
 for (int i = 1; i <= n; i++)
 sum += 1.0/i;
 return sum;
 }

 public static void main(String[] args)
 {
 for (int i = 0; i < args.length; i++)
 {
 int arg = Integer.parseInt(args[i]);

 double value = harmonic(arg);

 StdOut.println(value);
 }
 }
}

194 Functions and Modules

Program 2.1.1 Harmonic numbers (revisited)

public class Harmonic
{
 public static double harmonic(int n)
 {
 double sum = 0.0;
 for (int i = 1; i <= n; i++)
 sum += 1.0/i;
 return sum;
 }

 public static void main(String[] args)
 {
 for (int i = 0; i < args.length; i++)
 {
 int arg = Integer.parseInt(args[i]);
 double value = harmonic(arg);
 StdOut.println(value);
 }
 }
}

This program defines two static methods, one named harmonic() that has integer argument n
and computes the nth harmonic numbers (see PROGRAM 1.3.5) and one named main(), which
tests harmonic() with integer arguments specified on the command line.

arg argument

value return value

sum cumulated sum

% java Harmonic 1 2 4
1.0
1.5
2.083333333333333

% java Harmonic 10 100 1000 10000
2.9289682539682538
5.187377517639621
7.485470860550343
9.787606036044348

initializes the parameter variable n in harmonic() to the value of arg in main()
at the time of the call. Then, Java executes the statements in harmonic() as usu-
al, until it reaches a return statement, which transfers control back to the state-
ment in main() containing the call on harmonic(). Moreover, the method call
harmonic(arg) produces a value—the value specified by the return statement,
which is the value of the variable sum in harmonic() at the time that the return

1952.1 Defining Functions

statement is executed. Java then assigns this return value to the variable value. The
end result exactly matches our intuition: The first value assigned to value and
printed is 1.0—the value computed by code in harmonic() when the parameter
variable n is initialized to 1. The next value assigned to value and printed is 1.5—
the value computed by harmonic() when n is initialized to 2. The same process is
repeated for each command-line argument, transferring control back and forth
between harmonic() and main().

Function-call trace. One simple approach to following the
control flow through function calls is to imagine that each
function prints its name and argument value(s) when it is
called and its return value just before returning, with inden-
tation added on calls and subtracted on returns. The result
enhances the process of tracing a program by printing the
values of its variables, which we have been using since SEC-
TION 1.2. The added indentation exposes the flow of the con-
trol, and helps us check that each function has the effect that
we expect. Generally, adding calls on StdOut.println() to
trace any program’s control flow in this way is a fine way to
begin to understand what it is doing. If the return values
match our expectations, we need not trace the function code
in detail, saving us a substantial amount of work.

FOR THE REST OF THIS CHAPTER, your programming will center
on creating and using static methods, so it is worthwhile to
consider in more detail their basic properties. Following that,
we will study several examples of function implementations
and applications.

Terminology. It is useful to draw a distinction between ab-
stract concepts and Java mechanisms to implement them (the Java if statement
implements the conditional, the while statement implements the loop, and so
forth). Several concepts are rolled up in the idea of a mathematical function, and
there are Java constructs corresponding to each, as summarized in the table at the
top of the next page. While these formalisms have served mathematicians well for
centuries (and have served programmers well for decades), we will refrain from
considering in detail all of the implications of this correspondence and focus on
those that will help you learn to program.

Function-call trace for
java Harmonic 1 2 4

i = 1
arg = 1
harmonic(1)
 sum = 0.0
 sum = 1.0
 return 1.0
value = 1.0
i = 2
arg = 2
harmonic(2)
 sum = 0.0
 sum = 1.0
 sum = 1.5
 return 1.5
value = 1.5
i = 3
arg = 4
harmonic(4)
 sum = 0.0
 sum = 1.0
 sum = 1.5
 sum = 1.8333333333333333
 sum = 2.083333333333333
 return 2.083333333333333
value = 2.083333333333333

196 Functions and Modules

concept Java construct description

function static method mapping

input value argument input to function

output value return value output from function

formula method body function definition

independent variable parameter variable symbolic placeholder for input value

When we use a symbolic name in a formula that defines a mathematical function
(such as f (x) = 1 + x + x2), the symbol x is a placeholder for some input value that
will be substituted into the formula to determine the output value. In Java, we use
a parameter variable as a symbolic placeholder and we refer to a particular input
value where the function is to be evaluated as an argument.

Static method definition. The first line of a static method definition, known as
the signature, gives a name to the method and to each parameter variable. It also
specifies the type of each parameter variable and the return type of the method.
The signature consists of the keyword public; the keyword static; the return
type; the method name; and a sequence of zero or more parameter variable types
and names, separated by commas and enclosed in parentheses. We will discuss the
meaning of the public keyword in the next section and the meaning of the static
keyword in CHAPTER 3. (Technically, the signature in Java includes only the method
name and parameter types, but we leave that distinction for experts.) Following
the signature is the body of the
method, enclosed in curly braces.
The body consists of the kinds of
statements we discussed in CHAP-
TER 1. It also can contain a return
statement, which transfers control
back to the point where the static
method was called and returns the
result of the computation or re-
turn value. The body may declare
local variables, which are variables
that are available only inside the
method in which they are declared.

signature

method
body

return statement

method
name

return
type

parameter
variable

local
variable

Anatomy of a static method

argument
type

public static double harmonic (int n)

{
 double sum = 0.0;

 for (int i = 1; i <= n; i++)
 sum += 1.0/i;
 return sum;
}

1972.1 Defining Functions

Function calls. As you have already seen, a
static method call in Java is nothing more
than the method name followed by its argu-
ments, separated by commas and enclosed
in parentheses, in precisely the same form as
is customary for mathematical functions. As
noted in SECTION 1.2, a method call is an ex-
pression, so you can use it to build up more
complicated expressions. Similarly, an argu-
ment is an expression—Java evaluates the ex-
pression and passes the resulting value to the method. So, you can write code like
Math.exp(-x*x/2) / Math.sqrt(2*Math.PI) and Java knows what you mean.

Multiple arguments. Like a mathematical function, a Java static method can take
on more than one argument, and therefore can have more than one parameter
variable. For example, the following static method computes the length of the hy-
potenuse of a right triangle with sides of length a and b:

public static double hypotenuse(double a, double b)
{ return Math.sqrt(a*a + b*b); }

Although the parameter variables are of the same type in this case, in general they
can be of different types. The type and the name of each parameter variable are
declared in the function signature, with the declarations for each variable separated
by commas.

Multiple methods. You can define as many static methods as you want in a .java
file. Each method has a body that consists of a sequence of statements enclosed in
curly braces. These methods are independent and can appear in any order in the
file. A static method can call any other static method in the same file or any static
method in a Java library such as Math, as illustrated with this pair of methods:

public static double square(double a)
{ return a*a; }

public static double hypotenuse(double a, double b)
{ return Math.sqrt(square(a) + square(b)); }

Also, as we see in the next section, a static method can call static methods in other
.java files (provided they are accessible to Java). In SECTION 2.3, we consider the
ramifications of the idea that a static method can even call itself.

Anatomy of a function call

function call
argument

for (int i = 0; i < args.length; i++)

{

 arg = Integer.parseInt(args[i]);

 double value = harmonic(arg);

 StdOut.prinln(value);

}

198 Functions and Modules

Overloading. Static methods with different signatures are different static meth-
ods. For example, we often want to define the same operation for values of different
numeric types, as in the following static methods for computing absolute values:

public static int abs(int x)
{
 if (x < 0) return -x;
 else return x;
}

public static double abs(double x)
{
 if (x < 0.0) return -x;
 else return x;
}

These are two different methods, but are sufficiently similar so as to justify using the
same name (abs). Using the same name for two static methods whose signatures
differ is known as overloading, and is a common practice in Java programming. For
example, the Java Math library uses this approach to provide implementations of
Math.abs(), Math.min(), and Math.max() for all primitive numeric types. An-
other common use of overloading is to define two different versions of a method:
one that takes an argument and another that uses a default value for that argument.

Multiple return statements. You can put return statements in a method wher-
ever you need them: control goes back to the calling program as soon as the first
return statement is reached. This primality-testing function is an example of a
function that is natural to define using multiple return statements:

public static boolean isPrime(int n)
{
 if (n < 2) return false;
 for (int i = 2; i <= n/i; i++)
 if (n % i == 0) return false;
 return true;
}

Even though there may be multiple return statements, any static method returns a
single value each time it is invoked: the value following the first return statement
encountered. Some programmers insist on having only one return per method,
but we are not so strict in this book.

1992.1 Defining Functions

absolute value of an
int value

public static int abs(int x)
{
 if (x < 0) return -x;
 else return x;
}

absolute value of a
double value

public static double abs(double x)
{
 if (x < 0.0) return -x;
 else return x;
}

primality test

public static boolean isPrime(int n)
{
 if (n < 2) return false;
 for (int i = 2; i <= n/i; i++)
 if (n % i == 0) return false;
 return true;
}

hypotenuse of
a right triangle

public static double hypotenuse(double a, double b)
{ return Math.sqrt(a*a + b*b); }

harmonic number

public static double harmonic(int n)
{
 double sum = 0.0;
 for (int i = 1; i <= n; i++)
 sum += 1.0 / i;
 return sum;
}

uniform random
integer in [0, n)

public static int uniform(int n)
{ return (int) (Math.random() * n); }

draw a triangle

public static void drawTriangle(double x0, double y0,
 double x1, double y1,
 double x2, double y2)
{
 StdDraw.line(x0, y0, x1, y1);
 StdDraw.line(x1, y1, x2, y2);
 StdDraw.line(x2, y2, x0, y0);
}

Typical code for implementing functions (static methods)

200 Functions and Modules

Single return value. A Java method provides only one return value to the caller,
of the type declared in the method signature. This policy is not as restrictive as it
might seem because Java data types can contain more information than the value
of a single primitive type. For example, you will see later in this section that you can
use arrays as return values.

Scope. The scope of a variable is the part of the program that can refer to that vari-
able by name. The general rule in Java is that the scope of the variables declared in
a block of statements is limited to the statements in that block. In particular, the
scope of a variable declared in a static method is limited to that method’s body.
Therefore, you cannot refer to a variable in one static method that is declared in
another. If the method includes smaller blocks—for example, the body of an if or
a for statement—the scope of any variables declared in one of those blocks is lim-
ited to just the statements within that block. Indeed, it is common practice to use
the same variable names in independent blocks of code. When we do so, we are de-
claring different independent variables. For example, we have been following this
practice when we use an index i in two different for loops in the same program. A
guiding principle when designing software is that each variable should be declared
so that its scope is as small as possible. One of the important reasons that we use
static methods is that they ease debugging by limiting variable scope.

Scope of local and parameter variables

scope of
n and sum

this code cannot refer to
args[], arg, or value

this code cannot refer
to n or sum

scope of
arg

scope of i

two different
variables named i

scope of i
and args

public class Harmonic
{
 public static double harmonic(int n)
 {
 double sum = 0.0;
 for (int i = 1; i <= n; i++)
 sum += 1.0/i;
 return sum;
 }

 public static void main(String[] args)
 {
 for (int i = 0; i < args.legnth; i++)
 {
 int arg = Integer.parseInt(args[i]);
 double value = harmonic(arg);
 StdOut.println(value);
 }
 }
}

2012.1 Defining Functions

Side effects. In mathematics, a function maps one or more input values to some
output value. In computer programming, many functions fit that same model: they
accept one or more arguments, and their only purpose is to return a value. A pure
function is a function that, given the same arguments, always returns the same value,
without producing any observable side effects, such as consuming input, producing
output, or otherwise changing the state of the system. The functions harmonic(),
abs(), isPrime(), and hypotenuse() are examples of pure functions.

However, in computer programming it is also useful to define functions that
do produce side effects. In fact, we often define functions whose only purpose is to
produce side effects. In Java, a static method may use the keyword void as its return
type, to indicate that it has no return value. An explicit return is not necessary in
a void static method: control returns to the caller after Java executes the method’s
last statement.

For example, the static method StdOut.println() has the side effect of
printing the given argument to standard output (and has no return value). Simi-
larly, the following static method has the side effect of drawing a triangle to stan-
dard drawing (and has no specified return value):

public static void drawTriangle(double x0, double y0,
 double x1, double y1,
 double x2, double y2)
{
 StdDraw.line(x0, y0, x1, y1);
 StdDraw.line(x1, y1, x2, y2);
 StdDraw.line(x2, y2, x0, y0);
}

It is generally poor style to write a static method that both produces side effects
and returns a value. One notable exception arises in functions that read input. For
ex-ample, StdIn.readInt() both returns a value (an integer) and produces a side
effect (consuming one integer from standard input). In this book, we use void
static methods for two primary purposes:

• For I/O, using StdIn, StdOut, StdDraw, and StdAudio
• To manipulate the contents of arrays

You have been using void static methods for output since main() in HelloWorld,
and we will discuss their use with arrays later in this section. It is possible in Java to
write methods that have other side effects, but we will avoid doing so until CHAPTER
3, where we do so in a specific manner supported by Java.

202 Functions and Modules

Implementing mathematical functions Why not just use the methods that
are defined within Java, such as Math.sqrt()? The answer to this question is that
we do use such implementations when they are present. Unfortunately, there are an
unlimited number of mathematical functions that we may wish to use and only a
small set of functions in the library. When you encounter a mathematical function
that is not in the library, you need to implement a corresponding static method.

As an example, we consider the kind of code required for a familiar and im-
portant application that is of interest to many high school and college students in
the United States. In a recent year, more than 1 million students took a standard
college entrance examination. Scores range from 400 (lowest) to 1600 (highest) on
the multiple-choice parts of the test. These scores play a role in making important
decisions: for example, student athletes are required to have a score of at least 820,
and the minimum eligibility requirement for certain academic scholarships is 1500.
What percentage of test takers are ineligible for athletics? What percentage are eli-
gible for the scholarships?

Two functions from statistics enable us to compute
accurate answers to these questions. The Gaussian (nor-
mal) probability density function is characterized by the
familiar bell-shaped curve and defined by the formula
(x) ex22 2 . The Gaussian cumulative distribution
function �(z) is defined to be the area under the curve de-
fined by �(x) above the x-axis and to the left of the vertical
line x = z. These functions play an important role in science,
engineering, and finance because they arise as accurate
models throughout the natural world and because they are
essential in understanding experimental error.

In particular, these functions are known to accurately
describe the distribution of test scores in our example, as a
function of the mean (average value of the scores) and the
standard deviation (square root of the average of the sum
of the squares of the differences between each score and the
mean), which are published each year. Given the mean �
and the standard deviation � of the test scores, the percent-
age of students with scores less than a given value z is closely
approximated by the function �((z ��)/�). Static meth-
ods to calculate � and � are not available in Java’s Math
library, so we need to develop our own implementations.Gaussian probability functions

cumulative distribution function �

0

�(z0)

z

probability density function �

0

1

1

�(x)

x

area is �(z0)

z0

z0

2032.1 Defining Functions

Program 2.1.2 Gaussian functions

public class Gaussian
{ // Implement Gaussian (normal) distribution functions.
 public static double pdf(double x)
 {
 return Math.exp(-x*x/2) / Math.sqrt(2*Math.PI);
 }

 public static double cdf(double z)
 {
 if (z < -8.0) return 0.0;
 if (z > 8.0) return 1.0;
 double sum = 0.0;
 double term = z;
 for (int i = 3; sum != sum + term; i += 2)
 {
 sum = sum + term;
 term = term * z * z / i;
 }
 return 0.5 + pdf(z) * sum;
 }

 public static void main(String[] args)
 {
 double z = Double.parseDouble(args[0]);
 double mu = Double.parseDouble(args[1]);
 double sigma = Double.parseDouble(args[2]);
 StdOut.printf("%.3f\n", cdf((z - mu) / sigma));
 }
}

This code implements the Gaussian probability density function (pdf) and Gaussian cumula-
tive distribution function (cdf), which are not implemented in Java’s Math library. The pdf()
implementation follows directly from its definition, and the cdf() implementation uses a Tay-
lor series and also calls pdf() (see accompanying text and EXERCISE 1.3.38).

sum cumulated sum

term current term

% java Gaussian 820 1019 209
0.171

% java Gaussian 1500 1019 209
0.989

% java Gaussian 1500 1025 231
0.980

204 Functions and Modules

Closed form. In the simplest situation, we have a closed-form mathematical for-
mula defining our function in terms of functions that are implemented in the li-
brary. This situation is the case for � —the Java Math library includes methods to
compute the exponential and the square root functions (and a constant value for
�), so a static method pdf() corresponding to the mathematical definition is easy
to implement (see PROGRAM 2.1.2).

No closed form. Otherwise, we may need a more complicated algorithm to com-
pute function values. This situation is the case for �—no closed-form expression
exists for this function. Such algorithms sometimes follow immediately from Tay-
lor series approximations, but developing reliably accurate implementations of
mathematical functions is an art that needs to be addressed carefully, taking advan-
tage of the knowledge built up in mathematics over the past several centuries. Many
different approaches have been studied for evaluating �. For example, a Taylor
series approximation to the ratio of � and � turns out to be an effective basis for
evaluating the function:

 �(z) � 1�2 � �(z) (z � z 3 � 3 � z 5 � (3�5) � z 7 � (3�5�7) �. . .)

This formula readily translates to the Java code for the static method cdf() in
PROGRAM 2.1.2. For small (respectively large) z, the value is extremely close to 0
(respectively 1), so the code directly returns 0 (respectively 1); otherwise, it uses the
Taylor series to add terms until the sum converges.

Running Gaussian with the appropriate arguments on the command line
tells us that about 17% of the test takers were ineligible for athletics and that only
about 1% qualified for the scholarship. In a year when the mean was 1025 and the
standard deviation 231, about 2% qualified for the scholarship.

COMPUTING WITH MATHEMATICAL FUNCTIONS OF ALL kinds has always played a central
role in science and engineering. In a great many applications, the functions that
you need are expressed in terms of the functions in Java’s Math library, as we have
just seen with pdf(), or in terms of Taylor series approximations that are easy to
compute, as we have just seen with cdf(). Indeed, support for such computations
has played a central role throughout the evolution of computing systems and pro-
gramming languages. You will find many examples on the booksite and throughout
this book.

2052.1 Defining Functions

Using static methods to organize code Beyond evaluating mathematical
functions, the process of calculating an output value on the basis of an input value
is important as a general technique for organizing control flow in any computation.
Doing so is a simple example of an extremely important principle that is a prime
guiding force for any good programmer: whenever you can clearly separate tasks
within programs, you should do so.

Functions are natural and universal for expressing computational tasks. In-
deed, the “bird’s-eye view” of a Java program that we began with in SECTION 1.1 was
equivalent to a function: we began by thinking of a Java program as a function that
transforms command-line arguments into an output string. This view expresses
itself at many different levels of computation. In particular, it is generally the case
that a long program is more naturally expressed in terms of functions instead of
as a sequence of Java assignment, conditional, and loop statements. With the abil-
ity to define functions, we can better organize our programs by defining functions
within them when appropriate.

For example, Coupon (PROGRAM 2.1.3) is a version of CouponCollector
(PROGRAM 1.4.2) that better separates the individual components of the computa-
tion. If you study PROGRAM 1.4.2, you will identify three separate tasks:

• Given n, compute a random coupon value.
• Given n, do the coupon collection experiment.
• Get n from the command line, and then compute and print the result.

Coupon rearranges the code in CouponCollector to reflect the reality that these
three functions underlie the computation. With this organization, we could change
getCoupon() (for example, we might want to draw the random numbers from a
different distribution) or main() (for example, we might want to take multiple
inputs or run multiple experiments) without worrying about the effect of any
changes in collectCoupons().

Using static methods isolates the implementation of each component of the
collection experiment from others, or encapsulates them. Typically, programs have
many independent components, which magnifies the benefits of separating them
into different static methods. We will discuss these benefits in further detail after
we have seen several other examples, but you certainly can appreciate that it is bet-
ter to express a computation in a program by breaking it up into functions, just as it
is better to express an idea in an essay by breaking it up into paragraphs. Whenever
you can clearly separate tasks within programs, you should do so.

206 Functions and Modules

Program 2.1.3 Coupon collector (revisited)

public class Coupon
{
 public static int getCoupon(int n)
 { // Return a random integer between 0 and n-1.
 return (int) (Math.random() * n);
 }

 public static int collectCoupons(int n)
 { // Collect coupons until getting one of each value
 // and return the number of coupons collected.
 boolean[] isCollected = new boolean[n];
 int count = 0, distinct = 0;
 while (distinct < n)
 {
 int r = getCoupon(n);
 count++;
 if (!isCollected[r])
 distinct++;
 isCollected[r] = true;
 }
 return count;
 }

 public static void main(String[] args)
 { // Collect n different coupons.
 int n = Integer.parseInt(args[0]);
 int count = collectCoupons(n);
 StdOut.println(count);
 }
}

This version of PROGRAM 1.4.2 illustrates the style of encapsulating computations in static meth-
ods. This code has the same effect as CouponCollector, but better separates the code into its
three constituent pieces: generating a random integer between 0 and n-1, running a coupon
collection experiment, and managing the I/O.

% java Coupon 1000
6522

% java Coupon 1000
6481

n # coupon values (0 to n-1)

isCollected[i] has coupon i been collected?

count # coupons collected

distinct # distinct coupons collected

r random coupon

% java Coupon 10000
105798

% java Coupon 1000000
12783771

2072.1 Defining Functions

Passing arguments and returning values Next, we examine the specifics of
Java’s mechanisms for passing arguments to and returning values from functions.
These mechanisms are conceptually very simple, but it is worthwhile to take the
time to understand them fully, as the effects are actually profound. Understand-
ing argument-passing and return-value mechanisms is key to learning any new
programming language.

Pass by value. You can use parameter variables anywhere in the code in the body
of the function in the same way you use local variables. The only difference be-
tween a parameter variable and a local variable is that Java evaluates the argument
provided by the calling code and initializes the parameter variable with the result-
ing value. This approach is known as pass by value. The method works with the
value of its arguments, not the arguments themselves. One consequence of this
approach is that changing the value of a parameter variable within a static method
has no effect on the calling code. (For clarity, we do not change parameter vari-
ables in the code in this book.) An alternative approach known as pass by reference,
where the method works directly with the calling code’s arguments, is favored in
some programming environments.

A STATIC METHOD CAN TAKE AN array as an argument or return an array to the caller.
This capability is a special case of Java’s object orientation, which is the subject of
CHAPTER 3. We consider it in the present context because the basic mechanisms
are easy to understand and to use, leading us to compact solutions to a number of
problems that naturally arise when we use arrays to help us process large amounts
of data.

Arrays as arguments. When a static method takes an array as an argument, it
implements a function that operates on an arbitrary number of values of the same
type. For example, the following static method computes the mean (average) of an
array of double values:

public static double mean(double[] a)
{
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 sum += a[i];
 return sum / a.length;
}

208 Functions and Modules

We have been using arrays as arguments since our first program. The code

public static void main(String[] args)

defines main() as a static method that takes an array of strings as an argument and
returns nothing. By convention, the Java system collects the strings that you type
after the program name in the java command into an array and calls main() with
that array as argument. (Most programmers use the name args for the parameter
variable, even though any name at all would do.) Within main(), we can manipu-
late that array just like any other array.

Side effects with arrays. It is often the case that the purpose of a static method
that takes an array as argument is to produce a side effect (change values of array
elements). A prototypical example of such a method is one that exchanges the val-
ues at two given indices in a given array. We can adapt the code that we examined
at the beginning of SECTION 1.4:

public static void exchange(String[] a, int i, int j)
{
 String temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

This implementation stems naturally from the Java array representation. The pa-
rameter variable in exchange() is a reference to the array, not a copy of the array
values: when you pass an array as an argument to a method, the method has an
opportunity to reassign values to the elements in that array. A second prototypical
example of a static method that takes an array argument and produces side ef-
fects is one that randomly shuffles the values in the array, using this version of the
algorithm that we examined in SECTION 1.4 (and the exchange() and uniform()
methods considered earlier in this section):

public static void shuffle(String[] a)
{
 int n = a.length;
 for (int i = 0; i < n; i++)
 exchange(a, i, i + uniform(n-i));
}

2092.1 Defining Functions

find the maximum
of the array values

public static double max(double[] a)
{
 double max = Double.NEGATIVE_INFINITY;
 for (int i = 0; i < a.length; i++)
 if (a[i] > max) max = a[i];
 return max;
}

dot product

public static double dot(double[] a, double[] b)
{
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 sum += a[i] * b[i];
 return sum;
}

exchange the values of
two elements
in an array

public static void exchange(String[] a, int i, int j)
{
 String temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}

print a one-
dimensional array

(and its length)

public static void print(double[] a)
{
 StdOut.println(a.length);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
}

read a 2D array
of double values
(with dimensions)
in row-major order

public static double[][] readDouble2D()
{
 int m = StdIn.readInt();
 int n = StdIn.readInt();
 double[][] a = new double[m][n];
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 a[i][j] = StdIn.readDouble();
 return a;
}

Typical code for implementing functions with array arguments or return values

210 Functions and Modules

Similarly, we will consider in SECTION 4.2 methods that sort an array (rearrange its
values so that they are in order). All of these examples highlight the basic fact that
the mechanism for passing arrays in Java is call by value with respect to the array
reference but call by reference with respect to the array elements. Unlike primitive-
type arguments, the changes that a method makes to the elements of an array are
reflected in the client program. A method that takes an array as its argument can-
not change the array itself—the memory location, length, and type of the array are
the same as they were when the array was created—but a method can assign differ-
ent values to the elements in the array.

Arrays as return values. A method that sorts, shuffles, or otherwise modifies an
array taken as an argument does not have to return a reference to that array, be-
cause it is changing the elements of a client array, not a copy. But there are many
situations where it is useful for a static method to provide an array as a return value.
Chief among these are static methods that create arrays for the purpose of return-
ing multiple values of the same type to a client. For example, the following static
method creates and returns an array of the kind used by StdAudio (see PROGRAM
1.5.7): it contains values sampled from a sine wave of a given frequency (in hertz)
and duration (in seconds), sampled at the standard 44,100 samples per second.

public static double[] tone(double hz, double t)
{
 int SAMPLING_RATE = 44100;
 int n = (int) (SAMPLING_RATE * t);
 double[] a = new double[n+1];
 for (int i = 0; i <= n; i++)
 a[i] = Math.sin(2 * Math.PI * i * hz / SAMPLING_RATE);
 return a;
}

In this code, the length of the array returned depends on the duration: if the given
duration is t, the length of the array is about 44100*t. With static methods like this
one, we can write code that treats a sound wave as a single entity (an array contain-
ing sampled values), as we will see next in PROGRAM 2.1.4.

2112.1 Defining Functions

Example: superposition of sound waves As discussed in SECTION 1.5, the
simple audio model that we studied there needs to be embellished to create sound
that resembles the sound produced by a musical instrument. Many different em-
bellishments are possible; with static methods we can systematically apply them to
produce sound waves that are far more complicated than the simple sine waves that
we produced in SECTION 1.5. As an illustration of the effective use of static methods
to solve an interesting computational problem, we consider a program that has es-
sentially the same functionality as PlayThatTune (PROGRAM 1.5.7), but adds har-
monic tones one octave above and one octave below each note to produce a more
realistic sound.

Chords and harmonics. Notes like concert A have a pure sound that is not very
musical, because the sounds that you are accustomed to hearing have many other
components. The sound from the guitar string echoes off the wooden part of the

instrument, the walls of the room that
you are in, and so forth. You may think of
such effects as modifying the basic sine
wave. For example, most musical instru-
ments produce harmonics (the same note
in different octaves and not as loud), or
you might play chords (multiple notes
at the same time). To combine multiple
sounds, we use superposition: simply
add the waves together and rescale to
make sure that all values stay between

�1 and �1. As it turns out, when we su-
perpose sine waves of different frequen-
cies in this way, we can get arbitrarily

complicated waves. Indeed, one of the triumphs of 19th-century mathematics was
the development of the idea that any smooth periodic function can be expressed as
a sum of sine and cosine waves, known as a Fourier series. This mathematical idea
corresponds to the notion that we can create a large range of sounds with musi-
cal instruments or our vocal cords and that all sound consists of a composition of
various oscillating curves. Any sound corresponds to a curve and any curve corre-
sponds to a sound, and we can create arbitrarily complex curves with superposition.

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A
A
A

Superposing waves to make composite sounds

212 Functions and Modules

Weighted superposition. Since we represent sound waves by arrays of numbers
that represent their values at the same sample points, superposition is simple to
implement: we add together the values at each sample point to produce the com-
bined result and then rescale. For greater control, we specify a relative weight for
each of the two waves to be added, with the property that the weights are positive
and sum to 1. For example, if we want the first sound to have three times the effect
of the second, we would assign the first a weight of 0.75 and the second a weight of
0.25. Now, if one wave is in an array a[] with relative weight awt and the other is
in an array b[] with relative weight bwt, we compute their weighted sum with the
following code:

double[] c = new double[a.length];
for (int i = 0; i < a.length; i++)
 c[i] = a[i]*awt + b[i]*bwt;

The conditions that the weights are positive and sum to 1 ensure that this opera-
tion preserves our convention of keeping the values of all of our waves between �1
and �1.

lo = tone(220, 1.0/220.0)
lo[44] = 0.982

hi = tone(880, 1.0/220.0)
hi[44] = -0.693

harmonics = superpose(lo, hi, 0.5, 0.5)
harmonics[44]
 = 0.5*lo[44] + 0.5*hi[44]
 = 0.5*0.982 + 0.5*0.693
 = 0.144

concertA = tone(440, 1.0/220.0)
concertA[44] = 0.374

superpose(harmonics, concertA, 0.5, 0.5)
0.5*harmonics[44] + 0.5*concertA[44])
 = 0.5*.144 + 0.5*0.374
 = 0.259

0.259

44

0.374

0.144

-0.693

0.982

Adding harmonics to concert A (1/220 second at 44,100 samples/second)

2132.1 Defining Functions

% java PlayThatTuneDeluxe < elise.txt

Program 2.1.4 Play that tune (revisited)

public class PlayThatTuneDeluxe
{
 public static double[] superpose(double[] a, double[] b,
 double awt, double bwt)
 { // Weighted superposition of a and b.
 double[] c = new double[a.length];
 for (int i = 0; i < a.length; i++)
 c[i] = a[i]*awt + b[i]*bwt;
 return c;
 }

 public static double[] tone(double hz, double t)
 { /* see text */ }

 public static double[] note(int pitch, double t)
 { // Play note of given pitch, with harmonics.
 double hz = 440.0 * Math.pow(2, pitch / 12.0);
 double[] a = tone(hz, t);
 double[] hi = tone(2*hz, t);
 double[] lo = tone(hz/2, t);
 double[] h = superpose(hi, lo, 0.5, 0.5);
 return superpose(a, h, 0.5, 0.5);
 }

 public static void main(String[] args)
 { // Read and play a tune, with harmonics.
 while (!StdIn.isEmpty())
 { // Read and play a note, with harmonics.
 int pitch = StdIn.readInt();
 double duration = StdIn.readDouble();
 double[] a = note(pitch, duration);
 StdAudio.play(a);
 }
 }
}

This code embellishes the sounds produced by PROGRAM 1.5.7 by using static methods to create
harmonics, which results in a more realistic sound than the pure tone.

hz frequency
a[] pure tone

hi[] upper harmonic

lo[] lower harmonic

h[] tone with harmonics

% more elise.txt
7 0.25
6 0.25
7 0.25
6 0.25
...

214 Functions and Modules

PROGRAM 2.1.4 IS AN IMPLEMENTATION THAT applies these concepts to produce a more
realistic sound than that produced by PROGRAM 1.5.7. To do so, it makes use of func-
tions to divide the computation into four parts:

• Given a frequency and duration, create a pure tone.
• Given two sound waves and relative weights, superpose them.
• Given a pitch and duration, create a note with harmonics.
• Read and play a sequence of pitch/duration pairs from standard input.

These tasks are each amenable to
implementation as a function, with
all of the functions then depend-
ing on one another. Each function
is well defined and straightforward
to implement. All of them (and
StdAudio) represent sound as a se-
quence of floating-point numbers
kept in an array, corresponding to
sampling a sound wave at 44,100
samples per second.

Up to this point, the use
of functions has been somewhat
of a notational convenience. For
example, the control flow in
PROGRAM 2.1.1–2.1.3 is simple—
each function is called in just one
place in the code. By contrast,
PlayThatTuneDeluxe (PROGRAM
2.1.4) is a convincing example of
the effectiveness of defining func-
tions to organize a computation
because the functions are each
called multiple times. For exam-
ple, the function note() calls the
function tone() three times and
the function sum() twice. With-
out functions methods, we would
need multiple copies of the code in Flow of control among several static methods

public class PlayThatTuneDeluxe

{
 public static double[] superpose
 (double[] a, double[] b,
 double awt, double bwt)
 {
 double[] c = new double[a.length];
 for (int i = 0; i < a.length; i++)
 c[i] = a[i]*awt + b[i]*bwt;
 return c;
 }

 public static double[] tone(double hz, double t)
 {
 int RATE = 44100;
 int n = (int) (RATE * t);
 double[] a = new double[n+1];
 for (int i = 0; i <= n; i++)
 a[i] = Math.sin(2 * Math.PI * i * hz / RATE);
 return a;
 }

 public static double[] note(int pitch, double t)
 {
 double hz = 440.0 * Math.pow(2, pitch / 12.0);
 double[] a = tone(hz, t);

 double[] hi = tone(2*hz, t);

 double[] lo = tone(hz/2, t);

 double[] h = superpose(hi, lo, .5, .5);

 return superpose(a, h, .5, .5);

 }

 public static void main(String[] args)
 {
 while (!StdIn.isEmpty())
 {
 int pitch = StdIn.readInt();
 double duration = StdIn.readDouble();
 double[] a = note(pitch, duration);

 StdAudio.play(a);
 }
 }

}

2152.1 Defining Functions

tone() and sum(); with functions, we can deal directly with concepts close to the
application. Like loops, functions have a simple but profound effect: one sequence
of statements (those in the method definition) is executed multiple times during
the execution of our program—once for each time the function is called in the
control flow in main().

FUNCTIONS (STATIC METHODS) ARE IMPORTANT BECAUSE they give us the ability to extend
the Java language within a program. Having implemented and debugged func-
tions such as harmonic(), pdf(), cdf(), mean(), abs(), exchange(), shuffle(),
isPrime(), uniform(), superpose(), note(), and tone(), we can use them al-
most as if they were built into Java. The flexibility to do so opens up a whole new
world of programming. Before, you were safe in thinking about a Java program
as a sequence of statements. Now you need to think of a Java program as a set of
static methods that can call one another. The statement-to-statement control flow
to which you have been accustomed is still present within static methods, but pro-
grams have a higher-level control flow defined by static method calls and returns.
This ability enables you to think in terms of operations called for by the application,
not just the simple arithmetic operations on primitive types that are built into Java.

Whenever you can clearly separate tasks within programs, you should do so. The
examples in this section (and the programs throughout the rest of the book) clearly
illustrate the benefits of adhering to this maxim. With static methods, we can

• Divide a long sequence of statements into independent parts.
• Reuse code without having to copy it.
• Work with higher-level concepts (such as sound waves).

This produces code that is easier to understand, maintain, and debug than a long
program composed solely of Java assignment, conditional, and loop statements. In
the next section, we discuss the idea of using static methods defined in other pro-
grams, which again takes us to another level of programming.

216 Functions and Modules

Q&A

Q. What happens if I leave out the keyword static when defining a static method?

A. As usual, the best way to answer a question like this is to try it yourself and
see what happens. Here is the result of omitting the static modifier from
harmonic() in Harmonic:

Harmonic.java:15: error: non-static method harmonic(int)
cannot be referenced from a static context
 double value = harmonic(arg);
 ^
1 error

Non-static methods are different from static methods. You will learn about the
former in CHAPTER 3.

Q. What happens if I write code after a return statement?

A. Once a return statement is reached, control immediately returns to the caller,
so any code after a return statement is useless. Java identifies this situation as a
compile-time error, reporting unreachable code.

Q. What happens if I do not include a return statement?

A. There is no problem, if the return type is void. In this case, control will re-
turn to the caller after the last statement. When the return type is not void, Java
will report a missing return statement compile-time error if there is any path
through the code that does not end in a return statement.

Q. Why do I need to use the return type void? Why not just omit the return type?

A. Java requires it; we have to include it. Second-guessing a decision made by a
programming-language designer is the first step on the road to becoming one.

Q. Can I return from a void function by using return? If so, which return value
should I use?

A. Yes. Use the statement return; with no return value.

2172.1 Defining Functions

Q. This issue with side effects and arrays passed as arguments is confusing. Is it
really all that important?

A. Yes. Properly controlling side effects is one of a programmer’s most important
tasks in large systems. Taking the time to be sure that you understand the difference
between passing a value (when arguments are of a primitive type) and passing a
reference (when arguments are arrays) will certainly be worthwhile. The very same
mechanism is used for all other types of data, as you will learn in CHAPTER 3.

Q. So why not just eliminate the possibility of side effects by making all arguments
pass by value, including arrays?

A. Think of a huge array with, say, millions of elements. Does it make sense to copy
all of those values for a static method that is going to exchange just two of them?
For this reason, most programming languages support passing an array to a func-
tion without creating a copy of the array elements—Matlab is a notable exception.

Q. In which order does Java evaluate method calls?

A. Regardless of operator precedence or associativity, Java evaluates subexpres-
sions (including method calls) and argument lists from left to right. For example,
when evaluating the expression

f1() + f2() * f3(f4(), f5())

Java calls the methods in the order f1(), f2(), f4(), f5(), and f3(). This is most
relevant for methods that produce side effects. As a matter of style, we avoid writ-
ing code that depends on the order of evaluation.

218 Functions and Modules

Exercises

2.1.1 Write a static method max3() that takes three int arguments and returns
the value of the largest one. Add an overloaded function that does the same thing
with three double values.

2.1.2 Write a static method odd() that takes three boolean arguments and returns
true if an odd number of the argument values are true, and false otherwise.

2.1.3 Write a static method majority() that takes three boolean arguments and
returns true if at least two of the argument values are true, and false otherwise.
Do not use an if statement.

2.1.4 Write a static method eq() that takes two int arrays as arguments and re-
turns true if the arrays have the same length and all corresponding pairs of of ele-
ments are equal, and false otherwise.

2.1.5 Write a static method areTriangular() that takes three double arguments
and returns true if they could be the sides of a triangle (none of them is greater
than or equal to the sum of the other two). See EXERCISE 1.2.15.

2.1.6 Write a static method sigmoid() that takes a double argument x and re-
turns the double value obtained from the formula 1 � (1 + e�x).

2.1.7 Write a static method sqrt() that takes a double argument and returns the
square root of that number. Use Newton’s method (see PROGRAM 1.3.6) to compute
the result.

2.1.8 Give the function-call trace for java Harmonic 3 5

2.1.9 Write a static method lg() that takes a double argument n and returns the
base-2 logarithm of n. You may use Java’s Math library.

2.1.10 Write a static method lg() that takes an int argument n and returns the
largest integer not larger than the base-2 logarithm of n. Do not use the Math library.

2.1.11 Write a static method signum() that takes an int argument n and returns
-1 if n is less than 0, 0 if n is equal to 0, and +1 if n is greater than 0.

2192.1 Defining Functions

2.1.12 Consider the static method duplicate() below.

public static String duplicate(String s)
{
 String t = s + s;
 return t;
}

What does the following code fragment do?

String s = "Hello";
s = duplicate(s);
String t = "Bye";
t = duplicate(duplicate(duplicate(t)));
StdOut.println(s + t);

2.1.13 Consider the static method cube() below.

public static void cube(int i)
{
 i = i * i * i;
}

How many times is the following for loop iterated?

for (int i = 0; i < 1000; i++)
 cube(i);

Answer : Just 1,000 times. A call to cube() has no effect on the client code. It chang-
es the value of its local parameter variable i, but that change has no effect on the i
in the for loop, which is a different variable. If you replace the call to cube(i) with
the statement i = i * i * i; (maybe that was what you were thinking), then
the loop is iterated five times, with i taking on the values 0, 1, 2, 9, and 730 at the
beginning of the five iterations.

220 Functions and Modules

2.1.14 The following checksum formula is widely used by banks and credit card
companies to validate legal account numbers:

 d0 � f (d1) � d2 � f (d3) � d4 � f (d5) � … = 0 (mod 10)

The di are the decimal digits of the account number and f (d) is the sum of the
decimal digits of 2d (for example, f (7) = 5 because 2 � 7 = 14 and 1 � 4 = 5). For
example, 17,327 is valid because 1 + 5 + 3 + 4 + 7 = 20, which is a multiple of
10. Implement the function f and write a program to take a 10-digit integer as a
command-line argument and print a valid 11-digit number with the given integer
as its first 10 digits and the checksum as the last digit.

2.1.15 Given two stars with angles of declination and right ascension (d1, a1) and
(d2, a2), the angle they subtend is given by the formula

2 arcsin((sin2(d/2) + cos (d1)cos(d2)sin2(a/2))1/2)

where a1 and a2 are angles between �180 and 180 degrees, d1 and d2 are angles
between �90 and 90 degrees, a = a2 � a1, and d = d2 � d1. Write a program to take
the declination and right ascension of two stars as command-line arguments and
print the angle they subtend. Hint : Be careful about converting from degrees to
radians.

2.1.16 Write a static method scale() that takes a double array as its argument
and has the side effect of scaling the array so that each element is between 0 and
1 (by subtracting the minimum value from each element and then dividing each
element by the difference between the minimum and maximum values). Use the
max() method defined in the table in the text, and write and use a matching min()
method.

2.1.17 Write a static method reverse() that takes an array of strings as its argu-
ment and returns a new array with the strings in reverse order. (Do not change the
order of the strings in the argument array.) Write a static method reverseInplace()
that takes an array of strings as its argument and produces the side effect of revers-
ing the order of the strings in the argument array.

2212.1 Defining Functions

2.1.18 Write a static method readBoolean2D() that reads a two-dimensional
boolean matrix (with dimensions) from standard input and returns the resulting
two-dimensional array.

2.1.19 Write a static method histogram() that takes an int array a[] and an
integer m as arguments and returns an array of length m whose ith element is the
number of times the integer i appeared in a[]. Assuming the values in a[] are
all between 0 and m-1, the sum of the values in the returned array should equal
a.length.

2.1.20 Assemble code fragments in this section and in SECTION 1.4 to develop a
program that takes an integer command-line argument n and prints n five-card
hands, separated by blank lines, drawn from a randomly shuffled card deck, one
card per line using card names like Ace of Clubs.

2.1.21 Write a static method multiply() that takes two square matrices of the
same dimension as arguments and produces their product (another square matrix
of that same dimension). Extra credit : Make your program work whenever the
number of columns in the first matrix is equal to the number of rows in the second
matrix.

2.1.22 Write a static method any() that takes a boolean array as its argument
and returns true if any of the elements in the array is true, and false otherwise.
Write a static method all() that takes an array of boolean values as its argument
and returns true if all of the elements in the array are true, and false otherwise.

2.1.23 Develop a version of getCoupon() that better models the situation when
one of the coupons is rare: choose one of the n values at random, return that value
with probability 1 /(1,000n), and return all other values with equal probability. Ex-
tra credit : How does this change affect the expected number of coupons that need
to be collected in the coupon collector problem?

2.1.24 Modify PlayThatTune to add harmonics two octaves away from each note,
with half the weight of the one-octave harmonics.

222 Functions and Modules

Creative Exercises

2.1.25 Birthday problem. Develop a class with appropriate static methods for
studying the birthday problem (see EXERCISE 1.4.38).

2.1.26 Euler’s totient function. Euler’s totient function is an important function
in number theory: �(n) is defined as the number of positive integers less than or
equal to n that are relatively prime with n (no factors in common with n other than
1). Write a class with a static method that takes an integer argument n and returns
�(n), and a main() that takes an integer command-line argument, calls the method
with that argument, and prints the resulting value.

2.1.27 Harmonic numbers. Write a program Harmonic that contains three static
methods harmoinc(), harmoincSmall(), and harmonicLarge() for comput-
ing the harmonic numbers. The harmonicSmall() method should just compute
the sum (as in PROGRAM 1.3.5), the harmonicLarge() method should use the ap-
proximation Hn = loge(n) � � � 1/(2n) � 1/(12n 2) � 1/(120n 4) (the number
� = 0.577215664901532... is known as Euler’s constant), and the harmonic() meth-
od should call harmonicSmall() for n < 100 and harmonicLarge() otherwise.

2.1.28 Black–Scholes option valuation. The Black–Scholes formula supplies
the theoretical value of a European call option on a stock that pays no divi-
dends, given the current stock price s, the exercise price x, the continuously com-
pounded risk-free interest rate r, the volatility �, and the time (in years) to ma-
turity t. The Black–Scholes value is given by the formula s �(a) � x e �r t �(b),
where �(z) is the Gaussian cumulative distribution function, a = (ln(s �x) �
(r � �2� 2) t) / (��t), and b = a � ��t. Write a program that takes s, r, �, and t from
the command line and prints the Black–Scholes value.

2.1.29 Fourier spikes. Write a program that takes a command-line argument n
and plots the function

(cos(t) � cos(2 t) � cos(3 t) � … + cos(n t)) / n
for 500 equally spaced samples of t from �10 to 10 (in radians). Run your program
for n � 5 and n � 500. Note : You will observe that the sum converges to a spike
(0 everywhere except a single value). This property is the basis for a proof that any
smooth function can be expressed as a sum of sinusoids.

2232.1 Defining Functions

2.1.30 Calendar. Write a program Calendar that takes two integer command-
line arguments m and y and prints the monthly calendar for month m of year y, as
in this example:

% java Calendar 2 2009
February 2009
 S M Tu W Th F S
 1 2 3 4 5 6 7
 8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

Hint: See LeapYear (PROGRAM 1.2.4) and EXERCISE 1.2.29.

2.1.31 Horner’s method. Write a class Horner with a method evaluate() that
takes a floating-point number x and array p[] as arguments and returns the result
of evaluating the polynomial whose coefficients are the elements in p[] at x:

p(x) = p0 � p1x1 � p2 x2 � … � pn�2 xn�2 � pn�1 xn�1

Use Horner’s method, an efficient way to perform the computations that is sug-
gested by the following parenthesization:

p(x) = p0� x (p1 � x (p2 � … � x (pn�2 �x pn�1)) . . .)

Write a test client with a static method exp() that uses evaluate() to compute
an approximation to e x, using the first n terms of the Taylor series expansion
e x = 1 + x + x 2/2! + x 3/3! + Your client should take a command-line argument x
and compare your result against that computed by Math.exp(x).

2.1.32 Chords. Develop a version of PlayThatTune that can handle songs with
chords (including harmonics). Develop an input format that allows you to specify
different durations for each chord and different amplitude weights for each note
within a chord. Create test files that exercise your program with various chords and
harmonics, and create a version of Für Elise that uses them.

224 Functions and Modules

2.1.33 Benford’s law. The American astronomer Simon Newcomb observed a
quirk in a book that compiled logarithm tables: the beginning pages were much
grubbier than the ending pages. He suspected that scientists performed more com-
putations with numbers starting with 1 than with 8 or 9, and postulated that, under
general circumstances, the leading digit is much more likely to be 1 (roughly 30%)
than the digit 9 (less than 4%). This phenomenon is known as Benford’s law and is
now often used as a statistical test. For example, IRS forensic accountants rely on
it to discover tax fraud. Write a program that reads in a sequence of integers from
standard input and tabulates the number of times each of the digits 1–9 is the lead-
ing digit, breaking the computation into a set of appropriate static methods. Use
your program to test the law on some tables of information from your computer or
from the web. Then, write a program to foil the IRS by generating random amounts
from $1.00 to $1,000.00 with the same distribution that you observed.

2.1.34 Binomial distribution. Write a function

public static double binomial(int n, int k, double p)

to compute the probability of obtaining exactly k heads in n biased coin flips (heads
with probability p) using the formula

 f (n, k, p) = pk(1�p)n�k n! � (k!(n�k)!)

Hint : To stave off overflow, compute x = ln f (n, k, p) and then return ex. In main(),
take n and p from the command line and check that the sum over all values of k
between 0 and n is (approximately) 1. Also, compare every value computed with
the normal approximation

 f (n, k, p) � �(np, np(1�p))

(see EXERCISE 2.2.1).

2.1.35 Coupon collecting from a binomial distribution. Develop a version of
getCoupon() that uses binomial() from the previous exercise to return coupon
values according to the binomial distribution with p = 1/2. Hint : Generate a uni-
formly random number x between 0 and 1, then return the smallest value of k for
which the sum of f (n, j, p) for all j < k exceeds x. Extra credit : Develop a hypothesis
for describing the behavior of the coupon collector function under this assumption.

2252.1 Defining Functions

2.1.36 Postal bar codes. The barcode used by the U.S. Postal System to route mail
is defined as follows: Each decimal digit in the ZIP code is encoded using a sequence
of three half-height and two full-height bars. The barcode starts and ends with a
full-height bar (the guard rail) and includes a checksum digit (after the five-digit
ZIP code or ZIP+4), computed by summing up the original digits modulo 10. Im-
plement the following functions

• Draw a half-height or full-height bar on StdDraw.
• Given a digit, draw its sequence of bars.
• Compute the checksum digit.

Also implement a test client that reads in a five- (or nine-)
digit ZIP code as the command-line argument and draws
the corresponding postal bar code.

08540

0 8 5 4 0 7
guard
rail

checksum
digit

guard
rail

Functions and Modules

2.2 Libraries and Clients

EACH PROGRAM THAT YOU HAVE WRITTEN so far consists of Java code that resides in a
single .java file. For large programs, keeping all the code in a single file in this way
is restrictive and unnecessary. Fortunately,
it is very easy in Java to refer to a method
in one file that is defined in another. This
ability has two important consequences
on our style of programming.

First, it enables code reuse. One pro-
gram can make use of code that is already
written and debugged, not by copying the
code, but just by referring to it. This abil-
ity to define code that can be reused is an essential part of modern programming. It
amounts to extending Java—you can define and use your own operations on data.

Second, it enables modular programming. You can not only divide a program
up into static methods, as just described in SECTION 2.1, but also keep those meth-
ods in different files, grouped together according to the needs of the application.
Modular programming is important because it allows us to independently develop,
compile, and debug parts of big programs one piece at a time, leaving each finished
piece in its own file for later use without having to worry about its details again. We
develop libraries of static methods for use by any other program, keeping each li-
brary in its own file and using its methods in any other program. Java’s Math library
and our Std* libraries for input/output are examples that you have already used.
More importantly, you will soon see that it is very easy to define libraries of your
own. The ability to define libraries and then to use them in multiple programs is a
critical aspect of our ability to build programs to address complex tasks.

Having just moved in SECTION 2.1 from thinking of a Java program as a se-
quence of statements to thinking of a Java program as a class comprising a set of
static methods (one of which is main()), you will be ready after this section to
think of a Java program as a set of classes, each of which is an independent module
consisting of a set of methods. Since each method can call a method in another
class, all of your code can interact as a network of methods that call one anoth-
er, grouped together in classes. With this capability, you can start to think about
managing complexity when programming by breaking up programming tasks into
classes that can be implemented and tested independently.

2.2.1 Random number library 234
2.2.2 Array I/O library 238
2.2.3 Iterated function systems 241
2.2.4 Data analysis library 245
2.2.5 Plotting data values in an array . . . 247
2.2.6 Bernoulli trials 250

 Programs in this section

2272.2 Libraries and Clients

Using static methods in other programs To refer to a static method in one
class that is defined in another, we use the same mechanism that we have been us-
ing to invoke methods such as Math.sqrt() and StdOut.println():

• Make both classes accessible to Java (for example, by putting them both in
the same directory in your computer).

• To call a method, prepend its class name and a period separator.
For example, we might wish to write a simple client SAT.java that takes an SAT
score z from the command line and prints the percentage of students scoring less
than z in a given year (in which the mean score was 1,019 and its standard deviation
was 209). To get the job done, SAT.java needs to compute �((z�1,019) � 209), a

Flow of control in a modular program

public class Gaussian
{

 public static double cdf(double z)
 {
 if (z < -8.0) return 0.0;
 if (z > 8.0) return 1.0;
 double sum = 0.0;
 double term = z;
 for (int i = 3; sum != sum + term; i += 2)
 {
 sum = sum + term;
 term = term * z * z / i;
 }
 return 0.5 + pdf(z) * sum;
 }

 public static double pdf(double x)
 {
 return Math.exp(-x*x/2) /

 Math.sqrt(2*Math.PI);
 }

 public static void main(String[] args)
 {
 double z = Double.parseDouble(args[0]);
 double mu = Double.parseDouble(args[1]);
 double sigma = Double.parseDouble(args[2]);
 StdOut.println(cdf((z - mu) / sigma));
 }
}

public class SAT
{

 public static void main(String[] args)
 {
 double z = Double.parseDouble(args[0]);
 double v = Gaussian.cdf((z - 1019)/209);

 StdOut.println(v);
 }
}

Gaussian.java

SAT.java

public class Math
{
 public static double exp(double x)
 {
 ...
 }

 public static double sqrt(double x)
 {
 ...
 }
}

Math.java

Gaussian.java

% python gaussiantable.py 1019 209
...

%

% python gaussiantable.py 1019 209
...

%

228 Functions and Modules

task perfectly suited for the cdf() method in Gaussian.java (PROGRAM 2.1.2). All
that we need to do is to keep Gaussian.java in the same directory as SAT.java
and prepend the class name when calling cdf(). Moreover, any other class in
that directory can make use of the static methods defined in Gaussian, by call-
ing Gaussian.pdf() or Gaussian.cdf(). The Math library is always accessible
in Java, so any class can call Math.sqrt() and Math.exp(), as usual. The files
Gaussian.java, SAT.java, and Math.java implement Java classes that interact
with one another: SAT calls a method in Gaussian, which calls another method in
Gaussian, which then calls two methods in Math.

The potential effect of programming by defining multiple files, each an inde-
pendent class with multiple methods, is another profound change in our program-
ming style. Generally, we refer to this approach as modular programming. We inde-
pendently develop and debug methods for an application and then utilize them at
any later time. In this section, we will consider numerous illustrative examples to
help you get used to the idea. However, there are several details about the process
that we need to discuss before considering more examples.

The public keyword. We have been identifying every static method as public
since HelloWorld. This modifier identifies the method as available for use by any
other program with access to the file. You can also identify methods as private
(and there are a few other categories), but you have no reason to do so at this point.
We will discuss various options in SECTION 3.3.

Each module is a class. We use the term module to refer to all the code that we
keep in a single file. In Java, by convention, each module is a Java class that is kept
in a file with the same name of the class but has a .java extension. In this chapter,
each class is merely a set of static methods (one of which is main()). You will
learn much more about the general structure of the Java class in CHAPTER 3.

The .class file. When you compile the program (by typing javac followed by
the class name), the Java compiler makes a file with the class name followed by
a .class extension that has the code of your program in a language more suited
to your computer. If you have a .class file, you can use the module’s methods in
another program even without having the source code in the corresponding .java
file (but you are on your own if you discover a bug!).

2292.2 Libraries and Clients

Compile when necessary. When you compile a program, Java typically compiles
everything that needs to be compiled in order to run that program. If you call
Gaussian.cdf() in SAT, then, when you type javac SAT.java, the compiler will
also check whether you modified Gaussian.java since the last time it was com-
piled (by checking the time it was last changed against the time Gaussian.class
was created). If so, it will also compile Gaussian.java! If you think about this ap-
proach, you will agree that it is actually quite helpful. After all, if you find a bug in
Gaussian.java (and fix it), you want all the classes that call methods in Gaussian
to use the new version.

Multiple main() methods. Another subtle point is to note that more than one
class might have a main() method. In our example, both SAT and Gaussian have
their own main() method. If you recall the rule for executing a program, you will
see that there is no confusion: when you type java followed by a class name, Java
transfers control to the machine code corresponding to the main() method defined
in that class. Typically, we include a main() method in every class, to test and debug
its methods. When we want to run SAT, we type java SAT; when we want to debug
Gaussian, we type java Gaussian (with appropriate command-line arguments).

IF YOU THINK OF EACH PROGRAM that you write as something that you might want to
make use of later, you will soon find yourself with all sorts of useful tools. Modular
programming allows us to view every solution to a computational problem that we
may develop as adding value to our computational environment.

For example, suppose that you need to evaluate � for some future application.
Why not just cut and paste the code that implements cdf() from Gaussian? That
would work, but would leave you with two copies of the code, making it more dif-
ficult to maintain. If you later want to fix or improve this code, you would need to
do so in both copies. Instead, you can just call Gaussian.cdf(). Our implementa-
tions and uses of our methods are soon going to proliferate, so having just one copy
of each is a worthy goal.

From this point forward, you should write every program by identifying a
reasonable way to divide the computation into separate parts of a manageable size
and implementing each part as if someone will want to use it later. Most frequently,
that someone will be you, and you will have yourself to thank for saving the effort
of rewriting and re-debugging code.

230 Functions and Modules

Libraries We refer to a module whose methods are primarily intended for use
by many other programs as a library. One of the most important characteristics of
programming in Java is that thousands of libraries have been predefined for your
use. We reveal information about those that might be of interest to you throughout
the book, but we will postpone a detailed discussion of the scope of Java libraries,
because many of them are designed for use by
experienced programmers. Instead, we focus in
this chapter on the even more important idea
that we can build user-defined libraries, which
are nothing more than classes that contain a set
of related methods for use by other programs.
No Java library can contain all the methods that
we might need for a given computation, so this
ability to create our own library of methods is
a crucial step in addressing complex program-
ming applications.

Clients. We use the term client to refer to
a program that calls a given library method.
When a class contains a method that is a client
of a method in another class, we say that the
first class is a client of the second class. In our
example, Gaussian is a client of SAT. A given
class might have multiple clients. For example,
all of the programs that you have written that
call Math.sqrt() or Math.random() are cli-
ents of Math.

APIs. Programmers normally think in terms
of a contract between the client and the imple-
mentation that is a clear specification of what
the method is to do. When you are writing both
clients and implementations, you are making
contracts with yourself, which by itself is help-
ful because it provides extra help in debugging. More important, this approach en-
ables code reuse. You have been able to write programs that are clients of Std* and
Math and other built-in Java classes because of an informal contract (an English-

Library abstraction

client

API

implementation

calls library methods

Gaussian.cdf(z)

public class Gaussian
{ ...

}

 public static double cdf(double z)
 { ... }

 public static double pdf(double x)
 { ... }

APIAPI

defines signatures
and describes

library methods

Java code that
implements

library methods

public class Gaussian

 double pdf(double x) �(x)
 double cdf(double z) �(z)

Gaussian.pdf(x)

2312.2 Libraries and Clients

language description of what they are supposed to do) along with a precise specifi-
cation of the signatures of the methods that are available for use. Collectively, this
information is known as an application programming interface (API). This same
mechanism is effective for user-defined libraries. The API allows any client to use
the library without having to examine the code in the implementation, as you have
been doing for Math and Std*. The guiding principle in API design is to provide to
clients the methods they need and no others. An API with a huge number of methods
may be a burden to implement; an API that is lacking important methods may be
unnecessarily inconvenient for clients.

Implementations. We use the term implementation to describe the Java code that
implements the methods in an API, kept by convention in a file with the library
name and a .java extension. Every Java program is an implementation of some
API, and no API is of any use without some implementation. Our goal when de-
veloping an implementation is to honor the terms of the contract. Often, there are
many ways to do so, and separating client code from implementation code gives us
the freedom to substitute new and improved implementations.

FOR EXAMPLE, CONSIDER THE GAUSSIAN DISTRIBUTION functions. These do not appear in
Java’s Math library but are important in applications, so it is worthwhile for us to
put them in a library where they can be accessed by future client programs and to
articulate this API:

public class Gaussian

double pdf(double x) �(x)

double pdf(double x, double mu, double sigma) �(x, �, �)

double cdf(double z) �(z)

double cdf(double z, double mu, double sigma) �(z, �, �)

API for our library of static methods for Gaussian distribution functions

The API includes not only the one-argument Gaussian distribution functions that
we have previously considered (see PROGRAM 2.1.2) but also three-argument
versions (in which the client specifies the mean and standard deviation of the dis-
tribution) that arise in many statistical applications. Implementing the three-
argument Gaussian distribution functions is straightforward (see EXERCISE 2.2.1).

232 Functions and Modules

How much information should an API contain? This is a gray area and a hotly
debated issue among programmers and computer-science educators. We might try
to put as much information as possible in the API, but (as with any contract!) there
are limits to the amount of information that we can productively include. In this
book, we stick to a principle that parallels our guiding design principle: provide
to client programmers the information they need and no more. Doing so gives us
vastly more flexibility than the alternative of providing detailed information about
implementations. Indeed, any extra information amounts to implicitly extending
the contract, which is undesirable. Many programmers fall into the bad habit of
checking implementation code to try to understand what it does. Doing so might
lead to client code that depends on behavior not specified in the API, which would
not work with a new implementation. Implementations change more often than
you might think. For example, each new release of Java contains many new imple-
mentations of library functions.

Often, the implementation comes first. You might have a working module
that you later decide would be useful for some task, and you can just start using
its methods in other programs. In such a situation, it is wise to carefully articulate
the API at some point. The methods may not have been designed for reuse, so it is
worthwhile to use an API to do such a design (as we did for Gaussian).

The remainder of this section is devoted to several examples of libraries and
clients. Our purpose in considering these libraries is twofold. First, they provide
a richer programming environment for your use as you develop increasingly so-
phisticated client programs of your own. Second, they serve as examples for you to
study as you begin to develop libraries for your own use.

Random numbers We have written several programs that use Math.random(),
but our code often uses particular idioms that convert the random double values
between 0 and 1 that Math.random() provides to the type of random numbers that
we want to use (random boolean values or random int values in a specified range,
for example). To effectively reuse our code that implements these idioms, we will,
from now on, use the StdRandom library in PROGRAM 2.2.1. StdRandom uses over-
loading to generate random numbers from various distributions. You can use any
of them in the same way that you use our standard I/O libraries (see the first Q&A
at the end of SECTION 2.1). As usual, we summarize the methods in our StdRandom
library with an API:

2332.2 Libraries and Clients

public class StdRandom

void setSeed(long seed) set the seed for reproducible results

int uniform(int n) integer between 0 and n-1

double uniform(double lo, double hi) floating-point number between lo and hi

boolean bernoulli(double p) true with probability p, false otherwise

double gaussian() Gaussian, mean 0, standard deviation 1

double gaussian(double mu, double sigma) Gaussian, mean mu, standard deviation sigma

int discrete(double[] p) i with probability p[i]

void shuffle(double[] a) randomly shuffle the array a[]

API for our library of static methods for random numbers

These methods are sufficiently familiar that the short descriptions in the API suffice
to specify what they do. By collecting all of these methods that use Math.random()
to generate random numbers of various types in one file (StdRandom.java), we
concentrate our attention on generating random numbers to this one file (and
reuse the code in that file) instead of spreading them through every program that
uses these methods. Moreover, each program that uses one of these methods is
clearer than code that calls Math.random() directly, because its purpose for using
Math.random() is clearly articulated by the choice of method from StdRandom.

API design. We make certain assumptions about the values passed to each method
in StdRandom. For example, we assume that clients will call uniform(n) only for
positive integers n, bernoulli(p) only for p between 0 and 1, and discrete()
only for an array whose elements are between 0 and 1 and sum to 1. All of these
assumptions are part of the contract between the client and the implementation.
We strive to design libraries such that the contract is clear and unambiguous and
to avoid getting bogged down with details. As with many tasks in programming, a
good API design is often the result of several iterations of trying and living with
various possibilities. We always take special care in designing APIs, because when
we change an API we might have to change all clients and all implementations. Our
goal is to articulate what clients can expect separate from the code in the API. This
practice frees us to change the code, and perhaps to use an implementation that
achieves the desired effect more efficiently or with more accuracy.

234 Functions and Modules

Program 2.2.1 Random number library

public class StdRandom
{
 public static int uniform(int n)
 { return (int) (Math.random() * n); }

 public static double uniform(double lo, double hi)
 { return lo + Math.random() * (hi - lo); }

 public static boolean bernoulli(double p)
 { return Math.random() < p; }

 public static double gaussian()
 { /* See Exercise 2.2.17. */ }

 public static double gaussian(double mu, double sigma)
 { return mu + sigma * gaussian(); }

 public static int discrete(double[] probabilities)
 { /* See Program 1.6.2. */ }

 public static void shuffle(double[] a)
 { /* See Exercise 2.2.4. */ }

 public static void main(String[] args)
 { /* See text. */ }
}

The methods in this library compute various types of random numbers: random nonnegative
integer less than a given value, uniformly distributed in a given range, random bit (Bernoulli),
standard Gaussian, Gaussian with given mean and standard deviation, and distributed ac-
cording to a given discrete distribution.

% java StdRandom 5
90 26.36076 false 8.79269 0
13 18.02210 false 9.03992 1
58 56.41176 true 8.80501 0
29 16.68454 false 8.90827 0
85 86.24712 true 8.95228 0

2352.2 Libraries and Clients

Unit testing. Even though we implement StdRandom without reference to any
particular client, it is good programming practice to include a test client main()
that, although not used when a client class uses the library, is helpful when de-
bugging and testing the methods in the library. Whenever you create a library, you
should include a main() method for unit testing and debugging. Proper unit testing
can be a significant programming challenge in itself (for example, the best way of
testing whether the methods in StdRandom produce numbers that have the same
characteristics as truly random numbers is still debated by experts). At a minimum,
you should always include a main() method that

• Exercises all the code
• Provides some assurance that the code is working
• Takes an argument from the command line to allow more testing

Then, you should refine that main() method to do more exhaustive testing as you
use the library more extensively. For example, we might start with the following
code for StdRandom (leaving the testing of shuffle() for an exercise):

public static void main(String[] args)
{
 int n = Integer.parseInt(args[0]);
 double[] probabilities = { 0.5, 0.3, 0.1, 0.1 };
 for (int i = 0; i < n; i++)
 {
 StdOut.printf(" %2d " , uniform(100));
 StdOut.printf("%8.5f ", uniform(10.0, 99.0));
 StdOut.printf("%5b " , bernoulli(0.5));
 StdOut.printf("%7.5f ", gaussian(9.0, 0.2));
 StdOut.printf("%2d " , discrete(probabilities));
 StdOut.println();
 }
}

When we include this code in StdRandom.java and invoke this method as illus-
trated in PROGRAM 2.2.1, the output includes no surprises: the integers in the first
column might be equally likely to be any value from 0 to 99; the numbers in the
second column might be uniformly spread between 10.0 and 99.0; about half of
the values in the third column are true; the numbers in the fourth column seem to
average about 9.0, and seem unlikely to be too far from 9.0; and the last column
seems to be not far from 50% 0s, 30% 1s, 10% 2s, and 10% 3s. If something seems

236 Functions and Modules

amiss in one of the columns, we can type java StdRandom 10 or 100 to see many
more results. In this particular case, we can (and should) do far more extensive
testing in a separate client to check that the numbers have many of the same prop-
erties as truly random numbers drawn from the cited distributions (see
EXERCISE 2.2.3). One effective approach is to write test clients that use StdDraw, as
data visualization can be a quick indication that a program is behaving as intended.
For example, a plot of a large number of points whose x- and y-coordinates are

both drawn from various distribu-
tions often produces a pattern that
gives direct insight into the impor-
tant properties of the distribution.
More important, a bug in the random
number generation code is likely to
show up immediately in such a plot.

Stress testing. An extensively used li-
brary such as StdRandom should also
be subjected to stress testing, where
we make sure that it does not crash
when the client does not follow the
contract or makes some assumption
that is not explicitly covered. Java li-
braries have already been subjected
to such stress testing, which requires
carefully examining each line of code
and questioning whether some con-
dition might cause a problem. What
should discrete() do if the array el-
ements do not sum to exactly 1? What
if the argument is an array of length
0? What should the two-argument

uniform() do if one or both of its arguments is NaN? Infinity? Any question that
you can think of is fair game. Such cases are sometimes referred to as corner cases.
You are certain to encounter a teacher or a supervisor who is a stickler about corner
cases. With experience, most programmers learn to address them early, to avoid an
unpleasant bout of debugging later. Again, a reasonable approach is to implement
a stress test as a separate client.

A StdRandom test client

public class RandomPoints
{
 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 for (int i = 0; i < n; i++)
 {
 double x = StdRandom.gaussian(.5, .2);
 double y = StdRandom.gaussian(.5, .2);
 StdDraw.point(x, y);
 }
 }
}

2372.2 Libraries and Clients

Input and output for arrays We have seen—and will continue to see—many
examples where we wish to keep data in arrays for processing. Accordingly, it is
useful to build a library that complements StdIn and StdOut by providing static
methods for reading arrays of primitive types from standard input and printing
them to standard output. The following API provides these methods:

public class StdArrayIO

double[] readDouble1D() read a one-dimensional array of double values

double[][] readDouble2D() read a two-dimensional array of double values

void print(double[] a) print a one-dimensional array of double values

void print(double[][] a) print a two-dimensional array of double values

Note 1. 1D format is an integer n followed by n values.
Note 2. 2D format is two integers m and n followed by m × n values in row-major order.
Note 3. Methods for int and boolean are also included.

API for our library of static methods for array input and output

The first two notes at the bottom of the table reflect the idea that we need to settle
on a file format. For simplicity and harmony, we adopt the convention that all val-
ues appearing in standard input include the dimension(s) and appear in the order
indicated. The read*() methods expect input in this format; the print() meth-
ods produce output in this format. The third note at the bottom of the table indi-
cates that StdArrayIO actually contains 12 methods—four each for int, double,
and boolean. The print() methods are overloaded (they all have the same name
print() but different types of arguments), but the read*() methods need differ-
ent names, formed by adding the type name (capitalized, as in StdIn) followed by
1D or 2D.

Implementing these methods is straightforward from the array-process-
ing code that we have considered in SECTION 1.4 and in SECTION 2.1, as shown in
StdArrayIO (PROGRAM 2.2.2). Packaging up all of these static methods into one
file—StdArrayIO.java—allows us to easily reuse the code and saves us from hav-
ing to worry about the details of reading and printing arrays when writing client
programs later on.

238 Functions and Modules

Program 2.2.2 Array I/O library

public class StdArrayIO
{
 public static double[] readDouble1D()
 { /* See Exercise 2.2.11. */ }

 public static double[][] readDouble2D()
 {
 int m = StdIn.readInt();
 int n = StdIn.readInt();
 double[][] a = new double[m][n];
 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 a[i][j] = StdIn.readDouble();
 return a;
 }

 public static void print(double[] a)
 { /* See Exercise 2.2.11. */ }

 public static void print(double[][] a)
 {
 int m = a.length;
 int n = a[0].length;
 System.out.println(m + " " + n);
 for (int i = 0; i < m; i++)
 {
 for (int j = 0; j < n; j++)
 StdOut.prinf("%9.5f ", a[i][j]);
 StdOut.println();
 }
 StdOut.println();
 }

 // Methods for other types are similar (see booksite).

 public static void main(String[] args)
 { print(readDouble2D()); }

}

This library of static methods facilitates reading one-dimensional and two-dimensional ar-
rays from standard input and printing them to standard output. The file format includes the
dimensions (see accompanying text). Numbers in the output in the example are truncated.

% more tiny2D.txt
4 3
 .000 .270 .000
 .246 .224 -.036
 .222 .176 .0893
 -.032 .739 .270

% java StdArrayIO < tiny.txt
4 3
 0.00000 0.27000 0.00000
 0.24600 0.22400 -0.03600
 0.22200 0.17600 0.08930
 -0.03200 0.73900 0.27000

2392.2 Libraries and Clients

Iterated function systems Scientists have discovered that complex visual im-
ages can arise unexpectedly from simple computational processes. With StdRandom,
StdDraw, and StdArrayIO, we can study the behavior of such systems.

Sierpinski triangle. As a first example, consider the following simple process:
Start by plotting a point at one of the vertices of a given equilateral triangle. Then
pick one of the three vertices at random and plot a new point halfway between the
point just plotted and that vertex. Continue performing this same operation. Each
time, we are pick a random vertex from the triangle to establish the line whose
midpoint will be the next point plotted. Since we make random choices, the set
of points should have some of the characteristics of random points, and that does
seem to be the case after the first few iterations:

We can study the process for a large number of iterations by writing a program to
plot trials points according to the rules:

 double[] cx = { 0.000, 1.000, 0.500 };
 double[] cy = { 0.000, 0.000, 0.866 };
 double x = 0.0, y = 0.0;
 for (int t = 0; t < trials; t++)
 {
 int r = StdRandom.uniform(3);
 x = (x + cx[r]) / 2.0;
 y = (y + cy[r]) / 2.0;
 StdDraw.point(x, y);
 }

We keep the x- and y-coordinates of the triangle vertices in the arrays cx[] and
cy[], respectively. We use StdRandom.uniform() to choose a random index r into

midpoint

last point

random vertex

A random process

(0, 0) (1, 0)

(1/2, �3/2)

240 Functions and Modules

these arrays—the coordinates of the chosen vertex are (cx[r], cy[r]). The x-co-
ordinate of the midpoint of the line from (x, y) to that vertex is given by the expres-
sion (x + cx[r])/2.0, and a similar calculation gives the y-coordinate. Adding a
call to StdDraw.point() and putting this code in a loop completes the implemen-
tation. Remarkably, despite the randomness, the same figure always emerges after
a large number of iterations! This figure is known as the Sierpinski triangle (see
EXERCISE 2.3.27). Understanding why such a regular figure should arise from such a
random process is a fascinating question.

Barnsley fern. To add to the mystery, we can produce pictures of remarkable
diversity by playing the same game with different rules. One striking example is
known as the Barnsley fern. To generate it, we use the same process, but this time
driven by the following table of formulas. At each step, we choose the formulas to
use to update x and y with the indicated probability (1% of the time we use the first
pair of formulas, 85% of the time we use the second pair of formulas, and so forth).

probability x-update y-update

1% x = 0.500 y = 0.16y

85% x = 0.85x � 0.04y � 0.075 y = �0.04x � 0.85y � 0.180

7% x = 0.20x � 0.26y � 0.400 y = 0.23x � 0.22y � 0.045

7% x = �0.15x � 0.28y � 0.575 y = 0.26x � 0.24y � 0.086

A random process?

2412.2 Libraries and Clients

Program 2.2.3 Iterated function systems

public class IFS
{
 public static void main(String[] args)
 { // Plot trials iterations of IFS on StdIn.
 int trials = Integer.parseInt(args[0]);
 double[] dist = StdArrayIO.readDouble1D();
 double[][] cx = StdArrayIO.readDouble2D();
 double[][] cy = StdArrayIO.readDouble2D();
 double x = 0.0, y = 0.0;
 for (int t = 0; t < trials; t++)
 { // Plot 1 iteration.
 int r = StdRandom.discrete(dist);
 double x0 = cx[r][0]*x + cx[r][1]*y + cx[r][2];
 double y0 = cy[r][0]*x + cy[r][1]*y + cy[r][2];
 x = x0;
 y = y0;
 StdDraw.point(x, y);
 }
 }
}

This data-driven client of StdArrayIO, StdRandom, and StdDraw iterates the function system
defined by a 1-by-m vector (probabilities) and two m-by-3 matrices (coefficients for updat-
ing x and y, respectively) on standard input, plotting the result as a set of points on standard
drawing. Curiously, this code does not need to know the value of m, as it uses separate meth-
ods to create and process the matrices.

trials iterations
dist[] probabilities

cx[][] x coefficients

cy[][] y coefficients

x, y current point

% more sierpinski.txt
3
 .33 .33 .34
3 3
 .50 .00 .00
 .50 .00 .50
 .50 .00 .25
3 3
 .00 .50 .00
 .00 .50 .00
 .00 .50 .433

% java IFS 10000 < sierpinski.txt

242 Functions and Modules

Examples of iterated function systems

% more barnsley.txt
4
 .01 .85 .07 .07
4 3
 .00 .00 .500
 .85 .04 .075
 .20 -.26 .400
 -.15 .28 .575
4 3
 .00 .16 .000
 -.04 .85 .180
 .23 .22 .045
 .26 .24 -.086

% java IFS 20000 < barnsley.txt

% more tree.txt
6
 .1 .1 .2 .2 .2 .2
6 3
 .00 .00 .550
 -.05 .00 .525
 .46 -.15 .270
 .47 -.15 .265
 .43 .26 .290
 .42 .26 .290
6 3
 .00 .60 .000
 -.50 .00 .750
 .39 .38 .105
 .17 .42 .465
 -.25 .45 .625
 -.35 .31 .525

% java IFS 20000 < tree.txt

% more coral.txt
3
 .40 .15 .45
3 3
 .3077 -.5315 .8863
 .3077 -.0769 .2166
 .0000 .5455 .0106
3 3
 -.4615 -.2937 1.0962
 .1538 -.4476 .3384
 .6923 -.1958 .3808

% java IFS 20000 < coral.txt

2432.2 Libraries and Clients

We could write code just like the code we just wrote for the Sierpinski triangle
to iterate these rules, but matrix processing provides a uniform way to generalize
that code to handle any set of rules. We have m different transformations, cho-
sen from a 1-by-m vector with StdRandom.discrete(). For each transformation,
we have an equation for updating x and an equation for updating y, so we use
two m-by-3 matrices for the equation coefficients, one for x and one for y. IFS
(PROGRAM 2.2.3) implements this data-driven version of the computation. This
program enables limitless exploration: it performs the iteration for any input con-
taining a vector that defines the probability distribution and the two matrices that
define the coefficients, one for updating x and the other for updating y. For the co-
efficients just given, again, even though we choose a random equation at each step,
the same figure emerges every time that we do this computation: an image that
looks remarkably similar to a fern that you might see in the woods, not something
generated by a random process on a computer.

Generating a Barnsley fern

That the same short program that takes a few numbers from standard input
and plots points on standard drawing can (given different data) produce both the
Sierpinski triangle and the Barnsley fern (and many, many other images) is truly
remarkable. Because of its simplicity and the appeal of the results, this sort of cal-
culation is useful in making synthetic images that have a realistic appearance in
computer-generated movies and games.

Perhaps more significantly, the ability to produce such realistic diagrams so
easily suggests intriguing scientific questions: What does computation tell us about
nature? What does nature tell us about computation?

244 Functions and Modules

Statistics Next, we consider a library for a set of mathematical calculations and
basic visualization tools that arise in all sorts of applications in science and engi-
neering and are not all implemented in standard Java libraries. These calculations
relate to the task of understanding the statistical properties of a set of numbers.
Such a library is useful, for example, when we perform a series of scientific ex-
periments that yield measurements of a quantity. One of the most important chal-
lenges facing modern scientists is proper analysis of such data, and computation is
playing an increasingly important role in such analysis. These basic data analysis
methods that we will consider are summarized in the following API:

public class StdStats

double max(double[] a) largest value

double min(double[] a) smallest value

double mean(double[] a) average

double var(double[] a) sample variance

double stddev(double[] a) sample standard deviation

double median(double[] a) median

void plotPoints(double[] a) plot points at (i, a[i])

void plotLines(double[] a) plot lines connecting points at (i, a[i])

void plotBars(double[] a) plot bars to points at (i, a[i])

Note: Overloaded implementations are included for other numeric types.

API for our library of static methods for data analysis

Basic statistics. Suppose that we have n measurements x0, x1, …, xn�1. The average
value of those measurements, otherwise known as the mean, is given by the for-
mula � � (x0 � x1 � … � xn�1) � n and is an estimate of the value of the quantity.
The minimum and maximum values are also of interest, as is the median (the value
that is smaller than and larger than half the values). Also of interest is the sample
variance, which is given by the formula

 �2 � ((x0� �)2 � (x1 � �)2 � … � (xn�1 � �)2
) � (n�1)

2452.2 Libraries and Clients

% java StdStats < tiny1D.txt
 min 1.000
 mean 3.000
 max 5.000
 std dev 1.581

% more tiny1D.txt
5
3.0 1.0 2.0 5.0 4.0

Program 2.2.4 Data analysis library

public class StdStats
{
 public static double max(double[] a)
 { // Compute maximum value in a[].
 double max = Double.NEGATIVE_INFINITY;
 for (int i = 0; i < a.length; i++)
 if (a[i] > max) max = a[i];
 return max;
 }

 public static double mean(double[] a)
 { // Compute the average of the values in a[].
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 sum = sum + a[i];
 return sum / a.length;
 }

 public static double var(double[] a)
 { // Compute the sample variance of the values in a[].
 double avg = mean(a);
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 sum += (a[i] - avg) * (a[i] - avg);
 return sum / (a.length - 1);
 }

 public static double stddev(double[] a)
 { return Math.sqrt(var(a)); }

 // See Program 2.2.5 for plotting methods.

 public static void main(String[] args)
 { /* See text. */ }

}

This code implements methods to compute the maximum, mean, variance, and standard
deviation of numbers in a client array. The method for computing the minimum is omitted;
plotting methods are in PROGRAM 2.2.5; see EXERCISE 4.2.20 for median().

246 Functions and Modules

and the sample standard deviation, the square root of the sample variance. StdStats
(PROGRAM 2.2.4) shows implementations of static methods for computing these
basic statistics (the median is more difficult to compute than the others—we will
consider the implementation of median() in SECTION 4.2). The main() test client
for StdStats reads numbers from standard input into an array and calls each of
the methods to print the minimum, mean, maximum, and standard deviation, as
follows:

public static void main(String[] args)
{
 double[] a = StdArrayIO.readDouble1D();
 StdOut.printf(" min %7.3f\n", min(a));
 StdOut.printf(" mean %7.3f\n", mean(a));
 StdOut.printf(" max %7.3f\n", max(a));
 StdOut.printf(" std dev %7.3f\n", stddev(a));
}

As with StdRandom, a more extensive test of the calculations is called for (see
EXERCISE 2.2.3). Typically, as we debug or test new methods in the library, we adjust
the unit testing code accordingly, testing the methods one at a time. A mature and
widely used library like StdStats also deserves a stress-testing client for extensively
testing everything after any change. If you are interested in seeing what such a
client might look like, you can find one for StdStats on the booksite. Most expe-
rienced programmers will advise you that any time spent doing unit testing and
stress testing will more than pay for itself later.

Plotting. One important use of StdDraw is to help us visualize data rather than re-
lying on tables of numbers. In a typical situation, we perform experiments, save the
experimental data in an array, and then compare the results against a model, per-
haps a mathematical function that describes the data. To expedite this process for
the typical case where values of one variable are equally spaced, our StdStats li-
brary contains static methods that you can use for plotting data in an array. PROGRAM
2.2.5 is an implementation of the plotPoints(), plotLines(), and plotBars()
methods for StdStats. These methods display the values in the argument array at
evenly spaced intervals in the drawing window, either connected together by line
segments (lines), filled circles at each value (points), or bars from the x-axis to
the value (bars). They all plot the points with x-coordinate i and y-coordinate
a[i] using filled circles, lines through the points, and bars, respectively. In addition,

2472.2 Libraries and Clients

 plotPoints(a); plotLines(a); plotBars(a);

int n = 20;
double[] a = new double[n];
for (int i = 0; i < n; i++)
 a[i] = 1.0/(i+1);

Program 2.2.5 Plotting data values in an array

public static void plotPoints(double[] a)
{ // Plot points at (i, a[i]).
 int n = a.length;
 StdDraw.setXscale(-1, n);
 StdDraw.setPenRadius(1/(3.0*n));
 for (int i = 0; i < n; i++)
 StdDraw.point(i, a[i]);
}

public static void plotLines(double[] a)
{ // Plot lines through points at (i, a[i]).
 int n = a.length;
 StdDraw.setXscale(-1, n);
 StdDraw.setPenRadius();
 for (int i = 1; i < n; i++)
 StdDraw.line(i-1, a[i-1], i, a[i]);
}

public static void plotBars(double[] a)
{ // Plot bars from (0, a[i]) to (i, a[i]).
 int n = a.length;
 StdDraw.setXscale(-1, n);
 for (int i = 0; i < n; i++)
 StdDraw.filledRectangle(i, a[i]/2, 0.25, a[i]/2);
}

This code implements three methods in StdStats (PROGRAM 2.2.4) for plotting data. They
plot the points (i, a[i]) with filled circles, connecting line segments, and bars, respectively.

(0.0, 1.0)

(9.0, 0.1)

248 Functions and Modules

they all rescale x to fill the drawing window (so that the points are evenly spaced
along the x-coordinate) and leave to the client scaling of the y-coordinates.

These methods are not intended to be a general-purpose plotting package,
but you can certainly think of all sorts of things that you might want to add: differ-
ent types of spots, labeled axes, color, and many other artifacts are commonly
found in modern systems that can plot data. Some situations might call for more
complicated methods than these.

 Our intent with StdStats is to introduce you to data analysis while showing
you how easy it is to define a library to take care of useful tasks. Indeed, this library
has already proved useful—we use these plotting methods to produce the figures in
this book that depict function graphs, sound waves, and experimental results. Next,
we consider several examples of their use.

Plotting function graphs. You can use
the StdStats.plot*() methods to draw
a plot of the function graph for any func-
tion at all: choose an x-interval where
you want to plot the function, compute
function values evenly spaced through
that interval and store them in an array,
determine and set the y-scale, and then
call StdStats.plotLines() or another
plot*() method. For example, to plot a
sine function, rescale the y-axis to cover
values between �1 and �1. Scaling the x-
axis is automatically handled by the Std-
Stats methods. If you do not know the range, you can handle the situation by
calling:

StdDraw.setYscale(StdStats.min(a), StdStats.max(a));

The smoothness of the curve is determined by properties of the function and by
the number of points plotted. As we discussed when first considering StdDraw, you
have to be careful to sample enough points to catch fluctuations in the function.
We will consider another approach to plotting functions based on sampling values
that are not equally spaced in SECTION 2.4.

Plotting a function graph

int n = 50;
double[] a = new double[n+1];
for (int i = 0; i <= n; i++)
 a[i] = Gaussian.pdf(-4.0 + 8.0*i/n);
StdStats.plotPoints(a);
StdStats.plotLines(a);

2492.2 Libraries and Clients

Plotting sound waves. Both the StdAudio library
and the StdStats plot methods work with arrays that
contain sampled values at regular intervals. The dia-
grams of sound waves in SECTION 1.5 and at the begin-
ning of this section were all produced by first scaling
the y-axis with StdDraw.setYscale(-1, 1), then
plotting the points with StdStats.plotPoints().
As you have seen, such plots give direct insight into
processing audio. You can also produce interesting ef-
fects by plotting sound waves as you play them with
StdAudio, although this task is a bit challenging because of the huge amount of
data involved (see EXERCISE 1.5.23).

Plotting experimental results. You can put multiple plots on the same drawing.
One typical reason to do so is to compare experimental results with a theoreti-
cal model. For example, Bernoulli (PROGRAM 2.2.6) counts the number of heads
found when a fair coin is flipped n times and compares the result with the predicted
Gaussian probability density function. A famous result from probability theory is
that the distribution of this quantity is the binomial distribution, which is extremely
well approximated by the Gaussian distribution with mean n/2 and standard de-
viation �n/2. The more trials we perform, the more accurate the approximation.
The drawing produced by Bernoulli is a succinct summary of the results of the
experiment and a convincing validation of the theory. This example is prototypical
of a scientific approach to applications programming that we use often throughout
this book and that you should use whenever you run an experiment. If a theoretical
model that can explain your results is available, a visual plot comparing the experi-
ment to the theory can validate both.

THESE FEW EXAMPLES ARE INTENDED TO suggest what is possible with a well-designed li-
brary of static methods for data analysis. Several extensions and other ideas are ex-
plored in the exercises. You will find StdStats to be useful for basic plots, and you
are encouraged to experiment with these implementations and to modify them or
to add methods to make your own library that can draw plots of your own design.
As you continue to address an ever-widening circle of programming tasks, you will
naturally be drawn to the idea of developing tools like these for your own use.

Plotting a sound wave

StdDraw.setYscale(-1.0, 1.0);
double[] hi;
hi = PlayThatTune.tone(880, 0.01);
StdStats.plotPoints(hi);

250 Functions and Modules

Program 2.2.6 Bernoulli trials

public class Bernoulli
{
 public static int binomial(int n)
 { // Simulate flipping a coin n times; return # heads.
 int heads = 0;
 for (int i = 0; i < n; i++)
 if (StdRandom.bernoulli(0.5)) heads++;
 return heads;
 }
 public static void main(String[] args)
 { // Perform Bernoulli trials, plot results and model.
 int n = Integer.parseInt(args[0]);
 int trials = Integer.parseInt(args[1]);

 int[] freq = new int[n+1];
 for (int t = 0; t < trials; t++)
 freq[binomial(n)]++;

 double[] norm = new double[n+1];
 for (int i = 0; i <= n; i++)
 norm[i] = (double) freq[i] / trials;
 StdStats.plotBars(norm);

 double mean = n / 2.0;
 double stddev = Math.sqrt(n) / 2.0;
 double[] phi = new double[n+1];
 for (int i = 0; i <= n; i++)
 phi[i] = Gaussian.pdf(i, mean, stddev);
 StdStats.plotLines(phi);
 }
}

This StdStats, StdRandom, and Gaussian client provides visual evidence that the number of
heads observed when a fair coin is flipped n times obeys a Gaussian distribution.

n number of flips per trial

trials number of trials

freq[] experimental results

norm[] normalized results

phi[] Gaussian model

% java Bernoulli 20 100000

2512.2 Libraries and Clients

Modular programming The library implementations that we have developed
illustrate a programming style known as modular programming. Instead of writing
a new program that is self-contained within its own file to address a new problem,
we break up each task into smaller, more manageable subtasks, then implement
and independently debug code that addresses each subtask. Good libraries facili-
tate modular programming by allowing us to define and provide solutions for im-
portant subtasks for future clients. Whenever you can clearly separate tasks within a
program, you should do so. Java supports such separation by allowing us to indepen-
dently debug and later use classes in separate files. Traditionally, programmers use
the term module to refer to code that can be compiled and run independently; in
Java, each class is a module.

IFS (PROGRAM 2.2.3) exemplifies modular programming. This relatively so-
phisticated computation is implemented with several relatively small modules, de-
veloped independently. It uses StdRandom and StdArrayIO, as well as the methods
from Integer and StdDraw that we
are accustomed to using. If we were
to put all of the code required for
IFS in a single file, we would have a
large amount of code on our hands
to maintain and debug; with modular
programming, we can study iterated
function systems with some confi-
dence that the arrays are read properly
and that the random number genera-
tor will produce properly distributed
values, because we already imple-
mented and tested the code for these
tasks in separate modules.

Similarly, Bernoulli (PROGRAM 2.2.6) exemplifies modular programming. It
is a client of Gaussian, Integer, Math, StdRandom, and StdStats. Again, we can
have some confidence that the methods in these modules produce the expected
results because they are system libraries or libraries that we have tested, debugged,
and used before.

API description

Gaussian Gaussian distribution functions

StdRandom random numbers

StdArrayIO input and output for arrays

IFS client for iterated function systems

StdStats functions for data analysis

Bernoulli client for Bernoulli trials

Summary of classes in this section

252 Functions and Modules

To describe the relationships among modules in a modular program, we often
draw a dependency graph, where we connect two class names with an arrow labeled
with the name of a method if the first class contains a method call and the second
class contains the definition of the method. Such diagrams play an important role
because understanding the relationships among modules is necessary for proper
development and maintenance.

We emphasize modular programming throughout this book because it has
many important advantages that have come to be accepted as essential in modern
programming, including the following:

• We can have programs of a reasonable size, even in large systems.
• Debugging is restricted to small pieces of code.
• We can reuse code without having to re-implement it.
• Maintaining (and improving) code is much simpler.

The importance of these advantages is difficult to overstate, so we will expand upon
each of them.

Programs of a reasonable size. No large task is so complex that it cannot be divid-
ed into smaller subtasks. If you find yourself with a program that stretches to more
than a few pages of code, you must ask yourself the following questions: Are there
subtasks that could be implemented separately? Could some of these subtasks be

plotBars()

setPenRadius()

setXscale()

line()

plotLines()

parseInt() parseInt()

random()

sqrt()
discrete()

point()

bernoulli()

readDouble1D()

readDouble2D()

readDouble()

readInt()

pdf()

sqrt()
PI

exp()

Dependency graph (partial) for the modules in this section

GaussianStdRandom

Math

IFS

Integer

StdDraw

StdIn

StdArrayIO

StdStats

Bernoulli

2532.2 Libraries and Clients

logically grouped together in a separate library? Could other clients use this code
in the future? At the other end of the range, if you find yourself with a huge num-
ber of tiny modules, you must ask yourself questions such as these: Is there some
group of subtasks that logically belong in the same module? Is each module likely
to be used by multiple clients? There is no hard-and-fast rule on module size: one
implementation of a critically important abstraction might properly be a few lines
of code, whereas another library with a large number of overloaded methods might
properly stretch to hundreds of lines of code.

Debugging. Tracing a program rapidly becomes more difficult as the number of
statements and interacting variables increases. Tracing a program with hundreds
of variables requires keeping track of hundreds of values, as any statement might
affect or be affected by any variable. To do so for hundreds or thousands of state-
ments or more is untenable. With modular programming and our guiding prin-
ciple of keeping the scope of variables local to the extent possible, we severely re-
strict the number of possibilities that we have to consider when debugging. Equally
important is the idea of a contract between client and implementation. Once we
are satisfied that an implementation is meeting its end of the bargain, we can debug
all its clients under that assumption.

Code reuse. Once we have implemented libraries such as StdStats and StdRandom,
we do not have to worry about writing code to compute averages or standard de-
viations or to generate random numbers again—we can simply reuse the code that
we have written. Moreover, we do not need to make copies of the code: any module
can just refer to any public method in any other module.

Maintenance. Like a good piece of writing, a good program can always be im-
proved, and modular programming facilitates the process of continually improv-
ing your Java programs because improving a module improves all of its clients.
For example, it is normally the case that there are several different approaches to
solving a particular problem. With modular programming, you can implement
more than one and try them independently. More importantly, suppose that while
developing a new client, you find a bug in some module. With modular program-
ming, fixing that bug essentially fixes bugs in all of the module’s clients.

254 Functions and Modules

IF YOU ENCOUNTER AN OLD PROGRAM (or a new program written by an old program-
mer!), you are likely to find one huge module—a long sequence of statements,
stretching to several pages or more, where any statement can refer to any variable
in the program. Old programs of this kind are found in critical parts of our compu-
tational infrastructure (for example, some nuclear power plants and some banks)
precisely because the programmers charged with maintaining them cannot even
understand them well enough to rewrite them in a modern language! With support
for modular programming, modern languages like Java help us avoid such situa-
tions by separately developing libraries of methods in independent classes.

The ability to share static methods among different files fundamentally ex-
tends our programming model in two different ways. First, it allows us to reuse
code without having to maintain multiple copies of it. Second, by allowing us to
organize a program into files of manageable size that can be independently de-
bugged and compiled, it strongly supports our basic message: whenever you can
clearly separate tasks within a program, you should do so.

 In this section, we have supplemented the Std* libraries of SECTION 1.5 with
several other libraries that you can use: Gaussian, StdArrayIO, StdRandom, and
StdStats. Furthermore, we have illustrated their use with several client programs.
These tools are centered on basic mathematical concepts that arise in any scientific
project or engineering task. Our intent is not just to provide tools, but also to il-
lustrate that it is easy to create your own tools. The first question that most mod-
ern programmers ask when addressing a complex task is “Which tools do I need?”
When the needed tools are not conveniently available, the second question is “How
difficult would it be to implement them?” To be a good programmer, you need to
have the confidence to build a software tool when you need it and the wisdom to
know when it might be better to seek a solution in a library.

After libraries and modular programming, you have one more step to learn
a complete modern programming model: object-oriented programming, the topic
of CHAPTER 3. With object-oriented programming, you can build libraries of func-
tions that use side effects (in a tightly controlled manner) to vastly extend the Java
programming model. Before moving to object-oriented programming, we consid-
er in this chapter the profound ramifications of the idea that any method can call
itself (in SECTION 2.3) and a more extensive case study (in SECTION 2.4) of modular
programming than the small clients in this section.

2552.2 Libraries and Clients

Q&A

Q. I tried to use StdRandom, but got the error message Exception in thread
"main" java.lang.NoClassDefFoundError: StdRandom. What’s wrong?

A. You need to make StdRandom accessible to Java. See the first Q&A at the end of
SECTION 1.5.

Q. Is there a keyword that identifies a class as a library?

A. No, any set of public methods will do. There is a bit of a conceptual leap in this
viewpoint because it is one thing to sit down to create a .java file that you will
compile and run, quite another thing to create a .java file that you will rely on
much later in the future, and still another thing to create a .java file for someone
else to use in the future. You need to develop some libraries for your own use be-
fore engaging in this sort of activity, which is the province of experienced systems
programmers.

Q. How do I develop a new version of a library that I have been using for a while?

A. With care. Any change to the API might break any client program, so it is best
to work in a separate directory. When you use this approach, you are working with
a copy of the code. If you are changing a library that has a lot of clients, you can
appreciate the problems faced by companies putting out new versions of their soft-
ware. If you just want to add a few methods to a library, go ahead: that is usually
not too dangerous, though you should realize that you might find yourself in a
situation where you have to support that library for years!

Q. How do I know that an implementation behaves properly? Why not automati-
cally check that it satisfies the API?

A. We use informal specifications because writing a detailed specification is not
much different from writing a program. Moreover, a fundamental tenet of theo-
retical computer science says that doing so does not even solve the basic problem,
because generally there is no way to check that two different programs perform the
same computation.

256 Functions and Modules

Exercises

2.2.1 Add to Gaussian (PROGRAM 2.1.2) an implementation of the three-argument
static method pdf(x, mu, sigma) specified in the API that computes the Gaussian
probability density function with a given mean � and standard deviation �, based
on the formula �(x, �, �) = �((x� �) / �)/�. Also add an implementation of the
associated cumulative distribution function cdf(z, mu, sigma), based on the for-
mula �(z, �, �) = �((z � �) / �).

2.2.2 Write a library of static methods that implements the hyperbolic functions
based on the definitions sinh(x) = (e x � e�x) / 2 and cosh(x) = (e x � e�x) / 2, with
tanh(x), coth(x), sech(x), and csch(x) defined in a manner analogous to standard
trigonometric functions.

2.2.3 Write a test client for both StdStats and StdRandom that checks that the
methods in both libraries operate as expected. Take a command-line argument n,
generate n random numbers using each of the methods in StdRandom, and print
their statistics. Extra credit : Defend the results that you get by comparing them to
those that are to be expected from analysis.

2.2.4 Add to StdRandom a method shuffle() that takes an array of double values
as argument and rearranges them in random order. Implement a test client that
checks that each permutation of the array is produced about the same number of
times. Add overloaded methods that take arrays of integers and strings.

2.2.5 Develop a client that does stress testing for StdRandom. Pay particular atten-
tion to discrete(). For example, do the probabilities sum to 1?

2.2.6 Write a static method that takes double values ymin and ymax (with ymin
strictly less than ymax), and a double array a[] as arguments and uses the StdStats
library to linearly scale the values in a[] so that they are all between ymin and ymax.

2.2.7 Write a Gaussian and StdStats client that explores the effects of changing
the mean and standard deviation for the Gaussian probability density function.
Create one plot with the Gaussian distributions having a fixed mean and various
standard deviations and another with Gaussian distributions having a fixed stan-
dard deviation and various means.

2572.2 Libraries and Clients

2.2.8 Add a method exp() to StdRandom that takes an argument � and returns a
random number drawn from the exponential distribution with rate �. Hint: If x is a
random number uniformly distributed between 0 and 1, then �ln x / � is a random
number from the exponential distribution with rate �.

2.2.9 Add to StdRandom a static method maxwellBoltzmann() that returns a ran-
dom value drawn from a Maxwell–Boltzmann distribution with parameter �. To
produce such a value, return the square root of the sum of the squares of three
random numbers drawn from the Gaussian distribution with mean 0 and standard
deviation �. The speeds of molecules in an ideal gas obey a Maxwell–Boltzmann
distribution.

2.2.10 Modify Bernoulli (PROGRAM 2.2.6) to animate the bar graph, replotting it
after each experiment, so that you can watch it converge to the Gaussian distribu-
tion. Then add a command-line argument and an overloaded binomial() imple-
mentation to allow you to specify the probability p that a biased coin comes up
heads, and run experiments to get a feeling for the distribution corresponding to a
biased coin. Be sure to try values of p that are close to 0 and close to 1.

2.2.11 Develop a full implementation of StdArrayIO (implement all 12 methods
indicated in the API).

2.2.12 Write a library Matrix that implements the following API:

public class Matrix

double dot(double[] a, double[] b) vector dot product

double[][] multiply(double[][] a, double[][] b) matrix–matrix product

double[][] transpose(double[][] a) transpose

double[] multiply(double[][] a, double[] x) matrix–vector product

double[] multiply(double[] x, double[][] a) vector–matrix product

(See SECTION 1.4.) As a test client, use the following code, which performs the same
calculation as Markov (PROGRAM 1.6.3):

258 Functions and Modules

public static void main(String[] args)
{
 int trials = Integer.parseInt(args[0]);
 double[][] p = StdArrayIO.readDouble2D();
 double[] ranks = new double[p.length];
 rank[0] = 1.0;
 for (int t = 0; t < trials; t++)
 ranks = Matrix.multiply(ranks, p);
 StdArrayIO.print(ranks);
}

Mathematicians and scientists use mature libraries or special-purpose matrix-pro-
cessing languages for such tasks. See the booksite for details on using such libraries.

2.2.13 Write a Matrix client that implements the version of Markov described
in SECTION 1.6 but is based on squaring the matrix, instead of iterating the vector–
matrix multiplication.

2.2.14 Rewrite RandomSurfer (PROGRAM 1.6.2) using the StdArrayIO and
StdRandom libraries.

Partial solution.

...
double[][] p = StdArrayIO.readDouble2D();
int page = 0; // Start at page 0.
int[] freq = new int[n];
for (int t = 0; t < trials; t++)
{
 page = StdRandom.discrete(p[page]);
 freq[page]++;
}
...

2592.2 Libraries and Clients

Creative Exercises

2.2.15 Sicherman dice. Suppose that you have two six-sided dice, one with faces
labeled 1, 3, 4, 5, 6, and 8 and the other with faces labeled 1, 2, 2, 3, 3, and 4. Com-
pare the probabilities of occurrence of each of the values of the sum of the dice with
those for a standard pair of dice. Use StdRandom and StdStats.

2.2.16 Craps. The following are the rules for a pass bet in the game of craps. Roll
two six-sided dice, and let x be their sum.

• If x is 7 or 11, you win.
• If x is 2, 3, or 12, you lose.

Otherwise, repeatedly roll the two dice until their sum is either x or 7.
• If their sum is x, you win.
• If their sum is 7, you lose.

Write a modular program to estimate the probability of winning a pass bet. Modify
your program to handle loaded dice, where the probability of a die landing on 1
is taken from the command line, the probability of landing on 6 is 1/6 minus that
probability, and 2–5 are assumed equally likely. Hint : Use StdRandom.discrete().

2.2.17 Gaussian random values. Implement the no-argument gaussian() func-
tion in StdRandom (PROGRAM 2.2.1) using the Box–Muller formula (see EXERCISE
1.2.27). Next, consider an alternative approach, known as Marsaglia’s method, which
is based on generating a random point in the unit circle and using a form of the
Box–Muller formula (see the discussion of do-while at the end of SECTION 1.3).

public static double gaussian()
{
 double r, x, y;
 do
 {
 x = uniform(-1.0, 1.0);
 y = uniform(-1.0, 1.0);
 r = x*x + y*y;
 } while (r >= 1 || r == 0);
 return x * Math.sqrt(-2 * Math.log(r) / r);
}

For each approach, generate 10 million random values from the Gaussian distribu-
tion, and measure which is faster.

260 Functions and Modules

2.2.18 Dynamic histogram. Suppose that the standard input stream is a sequence
of double values. Write a program that takes an integer n and two double values
lo and hi from the command line and uses StdStats to plot a histogram of the
count of the numbers in the standard input stream that fall in each of the n inter-
vals defined by dividing (lo , hi) into n equal-sized intervals. Use your program to
add code to your solution to EXERCISE 2.2.3 to plot a histogram of the distribution
of the numbers produced by each method, taking n from the command line.

2.2.19 Stress test. Develop a client that does stress testing for StdStats. Work
with a classmate, with one person writing code and the other testing it.

2.2.20 Gambler’s ruin. Develop a StdRandom client to study the gambler’s ruin
problem (see PROGRAM 1.3.8 and EXERCISE 1.3.24–25). Note : Defining a static meth-
od for the experiment is more difficult than for Bernoulli because you cannot
return two values.

2.2.21 IFS. Experiment with various inputs to IFS to create patterns of your own
design like the Sierpinski triangle, the Barnsley fern, or the other examples in the
table in the text. You might begin by experimenting with minor modifications to
the given inputs.

2.2.22 IFS matrix implementation. Write a version of IFS that uses the static
method multiply() from Matrix (see EXERCISE 2.2.12) instead of the equations
that compute the new values of x0 and y0.

2.2.23 Library for properties of integers. Develop a library based on the functions
that we have considered in this book for computing properties of integers. Include
functions for determining whether a given integer is prime; determining whether
two integers are relatively prime; computing all the factors of a given integer; com-
puting the greatest common divisor and least common multiple of two integers;
Euler’s totient function (EXERCISE 2.1.26); and any other functions that you think
might be useful. Include overloaded implementations for long values. Create an
API, a client that performs stress testing, and clients that solve several of the exer-
cises earlier in this book.

2612.2 Libraries and Clients

2.2.24 Music library. Develop a library based on the functions in PlayThatTune
(PROGRAM 2.1.4) that you can use to write client programs to create and manipulate
songs.

2.2.25 Voting machines. Develop a StdRandom client (with appropriate static
methods of its own) to study the following problem: Suppose that in a popula-
tion of 100 million voters, 51% vote for candidate A and 49% vote for candidate
B. However, the voting machines are prone to make mistakes, and 5% of the time
they produce the wrong answer. Assuming the errors are made independently and
at random, is a 5% error rate enough to invalidate the results of a close election?
What error rate can be tolerated?

2.2.26 Poker analysis. Write a StdRandom and StdStats client (with appropriate
static methods of its own) to estimate the probabilities of getting one pair, two pair,
three of a kind, a full house, and a flush in a five-card poker hand via simulation.
Divide your program into appropriate static methods and defend your design deci-
sions. Extra credit : Add straight and straight flush to the list of possibilities.

2.2.27 Animated plots. Write a program that takes a command-line argument m
and produces a bar graph of the m most recent double values on standard input.
Use the same animation technique that we used for BouncingBall (PROGRAM 1.5.6):
erase, redraw, show, and wait briefly. Each time your program reads a new number,
it should redraw the whole bar graph. Since most of the picture does not change as
it is redrawn slightly to the left, your program will produce the effect of a fixed-size
window dynamically sliding over the input values. Use your program to plot a huge
time-variant data file, such as stock prices.

2.2.28 Array plot library. Develop your own plot methods that improve upon
those in StdStats. Be creative! Try to make a plotting library that you think will be
useful for some application in the future.

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Java and most modern
programming languages supports this possibility, which is known as recursion. In
this section, we will study examples of
elegant and efficient recursive solutions
to a variety of problems. Recursion is a
powerful programming technique that
we use often in this book. Recursive pro-
grams are often more compact and easier
to understand than their nonrecursive
counterparts. Few programmers become
sufficiently comfortable with recursion
to use it in everyday code, but solving a
problem with an elegantly crafted recursive program is a satisfying experience that
is certainly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science. It
provides a simple computational model that embraces everything that can
be computed with any computer; it helps us to organize and to analyze
programs; and it is the key to numerous critically important computa-
tional applications, ranging from combinatorial search to tree data struc-
tures that support information processing to the fast Fourier transform
for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and make the effort to convince yourself that recursive
programs have the intended effect.

2.3.1 Euclid’s algorithm 267
2.3.2 Towers of Hanoi 270
2.3.3 Gray code 275
2.3.4 Recursive graphics 277
2.3.5 Brownian bridge 279
2.3.6 Longest common subsequence . . . 287

 Programs in this section

A recursive model
of the natural world

2632.3 Recursion

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematicalmodels that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm 295
2.3.2 Towers of Hanoi 298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

Functions and Modules

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility
of a function calling itself. The function-call mechanism in Python and in most
modern programming languages supports this possibility, which is known as recur-
sion. In this section, we will study exam-
ples of elegant and efficient recursive so-
lutions to a variety of problems. Once
you get used to the idea, you will see that
recursion is a powerful general-purpose
programming technique with many at-
tractive properties. It is a fundamental

tool that we use often in this
book. Recursive programs are
often more compact and easier to understand than their nonrecursive
counterparts. Few programmers become sufficiently comfortable with
recursion to use it in everyday code, but solving a problem with an ele-
gantly crafted recursive program is a satisfying experience that is certain-
ly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many
settings, it is a useful way to describe the natural world. For example, the
recursive tree (to the left) resembles a real tree, and has a natural recur-
sive description. Many, many phenomena are well explained by recursive
models. In particular, recursion plays a central role in computer science.

It provides a simple computational model that embraces everything that can be
computed with any computer; it helps us to organize and to analyze programs; and
it is the key to numerous critically important computational applications, ranging
from combinatorial search to tree data structures that support information pro-
cessing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightfor-
ward way to build simple mathematical models that we can use to prove important
facts about our programs. The proof technique that we use to do so is known as
mathematical induction. Generally, we avoid going into the details of mathematical
proofs in this book, but you will see in this section that it is worthwhile to under-
stand that point of view and to make the effort to convince yourself that recursive
programs have the intended effect.

A recursive model
of the natural world

2.3.1 Euclid’s algorithm295
2.3.2 Towers of Hanoi298
2.3.3 Gray code 303
2.3.4 Recursive graphics 305
2.3.5 Brownian bridge 307

 Programs in this section

A recursive image

264 Functions and Modules

Your first recursive program The “Hello, World” for recursion is the factorial
function, defined for positive integers n by the equation

n ! = n � (n�1) � (n�2) � … � 2 � 1

In other words, n! is the product of the positive integers less than or equal to n. Now,
n! is easy to compute with a for loop, but an even easier method is to use the fol-
lowing recursive function:

public static long factorial(int n)
{
 if (n == 1) return 1;
 return n * factorial(n-1);
}

This function calls itself. The implementation clearly produces the desired effect.
You can persuade yourself that it does so by noting that factorial() returns 1 =
1! when n is 1 and that if it properly computes the value

(n�1) ! = (n�1) � (n�2) � … � 2 � 1

then it properly computes the value

n ! = n � (n�1)!

 = n � (n�1) � (n�2) � … � 2 � 1

To compute factorial(5), the recursive func-
tion multiplies 5 by factorial(4); to compute
factorial(4), it multiplies 4 by factorial(3);
and so forth. This process is repeated until calling
factorial(1), which directly returns the value 1.
We can trace this computation in precisely the same
way that we trace any sequence of function calls.
Since we treat all of the calls as being independent
copies of the code, the fact that they are recursive is
immaterial.

Our factorial() implementation exhibits the two main components that
are required for every recursive function. First, the base case returns a value without
making any subsequent recursive calls. It does this for one or more special input
values for which the function can be evaluated without recursion. For factorial(),
the base case is n = 1. Second, the reduction step is the central part of a recursive

Function-call trace for factorial(5)

factorial(5)
 factorial(4)
 factorial(3)
 factorial(2)
 factorial(1)
 return 1
 return 2*1 = 2
 return 3*2 = 6
 return 4*6 = 24
 return 5*24 = 120

2652.3 Recursion

function. It relates the function at one (or more) arguments to
the function evaluated at one (or more) other arguments. For
factorial(), the reduction step is n * factorial(n-1). All re-
cursive functions must have these two components. Furthermore,
the sequence of argument values must converge to the base case.
For factorial(), the value of n decreases by 1 for each call, so
the sequence of argument values converges to the base case n = 1.

Tiny programs such as factorial() perhaps become
slightly clearer if we put the reduction step in an else clause.
However, adopting this convention for every recursive program
would unnecessarily complicate larger programs because it
would involve putting most of the code (for the reduction step)
within curly braces after the else. Instead, we adopt the conven-
tion of always putting the base case as the first statement, end-
ing with a return, and then devoting the rest of the code to the
reduction step.

The factorial() implementation itself is not particularly
useful in practice because n! grows so quickly that the multiplica-
tion will overflow a long and produce incorrect answers for n > 20. But the same
technique is effective for computing all sorts of functions. For example, the recur-
sive function

public static double harmonic(int n)
{
 if (n == 1) return 1.0;
 return harmonic(n-1) + 1.0/n;
}

computes the nth harmonic numbers (see PROGRAM 1.3.5) when n is small, based
on the following equations:

Hn = 1 + 1/2 + … + 1/n

 = (1 + 1/2 + … + 1/(n�1)) + 1/n

 = Hn�1 + 1/n
Indeed, this same approach is effective for computing, with only a few lines of code,
the value of any finite sum (or product) for which you have a compact formula.
Recursive functions like these are just loops in disguise, but recursion can help us
better understand the underlying computation.

Values of n! in long

 1 1
 2 2
 3 6
 4 24
 5 120
 6 720
 7 5040
 8 40320
 9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000

266 Functions and Modules

Mathematical induction Recursive programming is directly related to math-
ematical induction, a technique that is widely used for proving facts about the natu-
ral numbers.

Proving that a statement involving an integer n is true for infinitely many
values of n by mathematical induction involves the following two steps:

• The base case: prove the statement true for some specific value or values of
n (usually 0 or 1).

• The induction step (the central part of the proof): assume the statement to
be true for all positive integers less than n, then use that fact to prove it true
for n.

Such a proof suffices to show that the statement is true for infinitely many values of
n: we can start at the base case, and use our proof to establish that the statement is
true for each larger value of n, one by one.

Everyone’s first induction proof is to demonstrate that the sum of the positive
integers less than or equal to n is given by the formula n (n + 1) / 2. That is, we wish
to prove that the following equation is valid for all n � 1:

1 + 2 + 3 … + (n�1) + n = n (n + 1) / 2
The equation is certainly true for n = 1 (base case) because 1 = 1(1 + 1) / 2. If we
assume it to be true for all positive integers less than n, then, in particular, it is true
for n�1, so

1 + 2 + 3 … + (n�1) = (n�1) n / 2
and we can add n to both sides of this equation and simplify to get the desired
equation (induction step).

Every time we write a recursive program, we need mathematical induction to
be convinced that the program has the desired effect. The correspondence between
induction and recursion is self-evident. The difference in nomenclature indicates
a difference in outlook: in a recursive program, our outlook is to get a computa-
tion done by reducing to a smaller problem, so we use the term reduction step; in
an induction proof, our outlook is to establish the truth of the statement for larger
problems, so we use the term induction step.

When we write recursive programs we usually do not write down a full formal
proof that they produce the desired result, but we are always dependent upon the
existence of such a proof. We often appeal to an informal induction proof to con-
vince ourselves that a recursive program operates as expected. For example, we just
discussed an informal proof to become convinced that factorial() computes the
product of the positive integers less than or equal to n.

2672.3 Recursion

Euclid’s algorithm The greatest common divisor (gcd) of two positive integers
is the largest integer that divides evenly into both of them. For example, the greatest
common divisor of 102 and 68 is 34 since both 102 and 68 are multiples of 34, but
no integer larger than 34 divides evenly into 102 and 68. You may recall learning
about the greatest common divisor when you learned to reduce fractions. For ex-
ample, we can simplify 68/102 to 2/3 by dividing both numerator and denominator
by 34, their gcd. Finding the gcd of huge numbers is an important problem that
arises in many commercial applications, including the famous RSA cryptosystem.

We can efficiently compute the gcd using the following property, which holds
for positive integers p and q:

If p > q, the gcd of p and q is the same as the gcd of q and p % q.

Program 2.3.1 Euclid’s algorithm

public class Euclid
{
 public static int gcd(int p, int q)
 {
 if (q == 0) return p;
 return gcd(q, p % q);
 }
 public static void main(String[] args)
 {
 int p = Integer.parseInt(args[0]);
 int q = Integer.parseInt(args[1]);
 int divisor = gcd(p, q);
 StdOut.println(divisor);
 }
}

This program prints the greatest common divisor of its two command-line arguments, using a
recursive implementation of Euclid’s algorithm.

p, q arguments

divisor greatest common divisor

% java Euclid 1440 408
24

% java Euclid 314159 271828
1

268 Functions and Modules

To convince yourself of this fact, first note that the gcd of p and q is the same as the
gcd of q and p�q, because a number divides both p and q if and only if it divides
both q and p�q. By the same argument, q and p�2q, q and p�3q, and so forth have
the same gcd, and one way to compute p % q is to subtract q from p until getting a
number less than q.

The static method gcd() in Euclid (PROGRAM 2.3.1) is a compact recursive
function whose reduction step is based on this property. The base case is when q
is 0, with gcd(p, 0) = p. To see that the reduction step converges to the base case,
observe that the second argument value strictly decreases
in each recursive call since p % q < q. If p < q, the
first recursive call effectively switches the order of the two
arguments. In fact, the second argument value decreases
by at least a factor of 2 for every second recursive call, so
the sequence of argument values quickly converges to the
base case (see EXERCISE 2.3.11). This recursive solution to
the problem of computing the greatest common divisor is
known as Euclid’s algorithm and is one of the oldest known
algorithms—it is more than 2,000 years old.

Towers of Hanoi No discussion of recursion would be complete without the
ancient towers of Hanoi problem. In this problem, we have three poles and n discs
that fit onto the poles. The discs differ in size and are initially stacked on one of
the poles, in order from largest (disc n) at the bottom to smallest (disc 1) at the top.
The task is to move all n discs to another pole, while obeying the following rules:

• Move only one disc at a time.
• Never place a larger disc on a smaller one.

One legend says that the world will end when a certain group of monks accom-
plishes this task in a temple with 64 golden discs on three diamond needles. But
how can the monks accomplish the task at all, playing by the rules?

To solve the problem, our goal is to issue a sequence of instructions for mov-
ing the discs. We assume that the poles are arranged in a row, and that each in-
struction to move a disc specifies its number and whether to move it left or right.
If a disc is on the left pole, an instruction to move left means to wrap to the right
pole; if a disc is on the right pole, an instruction to move right means to wrap
to the left pole. When the discs are all on one pole, there are two possible moves
(move the smallest disc left or right); otherwise, there are three possible moves

Function-call trace for gcd()

gcd(1440, 408)
 gcd(408, 216)
 gcd(216, 192)
 gcd(192, 24)
 gcd(24, 0)
 return 24
 return 24
 return 24
 return 24
 return 24

2692.3 Recursion

(move the smallest disc left or right, or make the one legal
move involving the other two poles). Choosing among these
possibilities on each move to achieve the goal is a challenge
that requires a plan. Recursion provides just the plan that
we need, based on the following idea: first we move the top
n�1 discs to an empty pole, then we move the largest disc
to the other empty pole (where it does not interfere with the
smaller ones), and then we complete the job by moving the
n�1 discs onto the largest disc.

TowersOfHanoi (PROGRAM 2.3.2) is a direct implemen-
tation of this recursive strategy. It takes a command-line
argument n and prints the solution to the towers of Hanoi
problem on n discs. The recursive function moves() prints
the sequence of moves to move the stack of discs to the
left (if the argument left is true) or to the right (if left
is false). It does so exactly according to the plan just de-
scribed.

Function-call trees To better understand the behav-
ior of modular programs that have multiple recursive calls
(such as TowersOfHanoi), we use a visual representation known as a function-call
tree. Specifically, we represent each method call as a tree node, depicted as a circle
labeled with the values of the arguments for that call. Below each tree node, we
draw the tree nodes corresponding to each call in that use of the method (in order
from left to right) and lines connecting to them. This diagram contains all the in-
formation we need to understand the behavior of the program. It contains a tree
node for each function call.

We can use function-call trees to understand the behavior of any modular
program, but they are particularly useful in exposing the behavior of recursive

programs. For example, the tree
corresponding to a call to move()
in TowersOfHanoi is easy to con-
struct. Start by drawing a tree
node labeled with the values of
the command-line arguments.
The first argument is the number

Function-call tree for moves(4, true) in TowersOfHanoi

4

2 2 2 2

1 1 1 1 1 1 1 1

3 3

start position

move n–1 discs to the right (recursively)

move largest disc left (wrap to rightmost)

move n–1 discs to the right (recursively)

Recursive plan for towers of Hanoi

270 Functions and Modules

% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

% java TowersOfHanoi 1
1 left

% java TowersOfHanoi 2
1 right
2 left
1 right

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left

Program 2.3.2 Towers of Hanoi

public class TowersOfHanoi
{
 public static void moves(int n, boolean left)
 {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) StdOut.println(n + " left");
 else StdOut.println(n + " right");
 moves(n-1, !left);
 }
 public static void main(String[] args)
 { // Read n, print moves to move n discs left.
 int n = Integer.parseInt(args[0]);
 moves(n, true);
 }
}

The recursive method moves() prints the moves needed to move n discs to the left (if left is
true) or to the right (if left is false).

n number of discs

left direction to move pile

2712.3 Recursion

of discs in the pile to be moved (and the label of the disc to actually be moved);
the second is the direction to move the disc. For clarity, we depict the direction (a
boolean value) as an arrow that points left or right, since that is our interpretation
of the value—the direction to move the piece. Then draw two tree nodes below
with the number of discs decremented by 1 and the direction switched, and contin-
ue doing so until only nodes with labels corresponding
to a first argument value 1 have no nodes below them.
These nodes correspond to calls on moves() that do
not lead to further recursive calls.

Take a moment to study the function-call tree
depicted earlier in this section and to compare it with
the corresponding function-call trace depicted at right.
When you do so, you will see that the recursion tree is
just a compact representation of the trace. In particu-
lar, reading the node labels from left to right gives the
moves needed to solve the problem.

Moreover, when you study the tree, you probably
notice several patterns, including the following two:

• Alternate moves involve the smallest disc.
• That disc always moves in the same direction.

These observations are relevant because they give a
solution to the problem that does not require recur-
sion (or even a computer): every other move involves
the smallest disc (including the first and last), and each
intervening move is the only legal move at the time
not involving the smallest disc. We can prove that this
approach produces the same outcome as the recursive
program, using induction. Having started centuries
ago without the benefit of a computer, perhaps our
monks are using this approach.

Trees are relevant and important in understand-
ing recursion because the tree is a quintessential recur-
sive object. As an abstract mathematical model, trees
play an essential role in many applications, and in
CHAPTER 4, we will consider the use of trees as a compu-
tational model to structure data for efficient processing.

3 discs moved right

3 discs moved right

disc 4 moved left

Function-call trace for moves(4, true)

moves(4, true)
 moves(3, false)
 moves(2, true)
 moves(1, false)
 1 right

 2 left

 moves(1, false)
 1 right

 3 right
 moves(2, true)
 moves(1, false)
 1 right

 2 left

 moves(1, false)
 1 right

 4 left

 moves(3, false)
 moves(2, true)
 moves(1, false)
 1 right

 2 left

 moves(1, false)
 1 right

 3 right
 moves(2, true)
 moves(1, false)
 1 right

 2 left

 moves(1, false)
 1 right

272 Functions and Modules

Exponential time One advantage of using recursion is that often we can de-
velop mathematical models that allow us to prove important facts about the behav-
ior of recursive programs. For the towers of Hanoi problem, we can estimate the
amount of time until the end of the world (assuming that the legend is true). This
exercise is important not just because it tells us that the end of the world is quite far
off (even if the legend is true), but also because it provides insight that can help us
avoid writing programs that will not finish until then.

The mathematical model for the towers of Hanoi problem is simple: if we
define the function T(n) to be the number of discs moved by TowersOfHanoi to
solve an n-disc problem, then the recursive code implies that T(n) must satisfy the
following equation:

T(n) = 2 T(n�1) � 1 for n > 1, with T(1) = 1
Such an equation is known in discrete mathematics as a recurrence relation. Recur-
rence relations naturally arise in the study of recursive programs. We can often use
them to derive a closed-form expression for the quantity of interest. For T(n), you
may have already guessed from the initial values T(1) = 1, T(2) = 3, T(3), = 7, and
T(4) = 15 that T(n) = 2 n � 1. The recurrence relation provides a way to prove this
to be true, by mathematical induction:

• Base case : T(1) = 2n � 1 = 1
• Induction step: if T(n�1)= 2n�1 � 1, T(n) = 2 (2n�1 � 1) � 1 = 2n � 1

Therefore, by induction, T(n) = 2n � 1 for all n > 0. The minimum possible
number of moves also satisfies the same recurrence (see EXERCISE 2.3.11).

Knowing the value of T(n), we can estimate the amount of time re-
quired to perform all the moves. If the monks move discs at the rate of one
per second, it would take more than one week for them to finish a 20-disc
problem, more than 34 years to finish a 30-disc problem, and more than
348 centuries for them to finish a 40-disc problem (assuming that they do
not make a mistake). The 64-disc problem would take more than 5.8 bil-
lion centuries. The end of the world is likely to be even further off than
that because those monks presumably never have had the benefit of using
PROGRAM 2.3.2, and might not be able to move the discs so rapidly or to
figure out so quickly which disc to move next.

Even computers are no match for exponential growth. A computer
that can do a billion operations per second will still take centuries to do 264
operations, and no computer will ever do 21,000 operations, say. The lesson
is profound: with recursion, you can easily write simple short programs

Exponential
growth

(30, 230)

(20, 220)

2732.3 Recursion

that take exponential time, but they simply will not run to completion when you
try to run them for large n. Novices are often skeptical of this basic fact, so it is
worth your while to pause now to think about it. To convince yourself that it is true,
take the print statements out of TowersOfHanoi and run it for increasing values of
n starting at 20. You can easily verify that each time you increase the value of n by 1,
the running time doubles, and you will quickly lose patience waiting for it to finish.
If you wait for an hour for some value of n, you will wait more than a day for n + 5,
more than a month for n + 10, and more than a century for n + 20 (no one has that
much patience). Your computer is just not fast enough to run every short Java pro-
gram that you write, no matter how simple the program might seem! Beware of
programs that might require exponential time.

We are often interested in predicting the running time of our programs. In
SECTION 4.1, we will discuss the use of the same process that we just used to help
estimate the running time of other programs.

Gray codes The towers of Hanoi problem is no toy. It is intimately related to
basic algorithms for manipulating numbers and discrete objects. As an example,
we consider Gray codes, a mathematical abstraction with numerous applications.

The playwright Samuel Beckett, perhaps best known for Waiting for Godot,
wrote a play called Quad that had the following property: starting with an empty
stage, characters enter and exit one at a time so that each subset of characters on
the stage appears exactly once. How did Beckett generate the stage directions for
this play?

One way to represent a subset of n discrete objects is to
use a string of n bits. For Beckett’s problem, we use a 4-bit
string, with bits numbered from right to left and a bit value of 1
indicating the character onstage. For example, the string 0 1 0
1 corresponds to the scene with characters 3 and 1 onstage. This
representation gives a quick proof of a basic fact: the number
different subsets of n objects is exactly 2 n. Quad has four charac-
ters, so there are 24 = 16 different scenes. Our task is to generate
the stage directions.

An n-bit Gray code is a list of the 2n different n-bit binary
numbers such that each element in the list differs in precisely
one bit from its predecessor. Gray codes directly apply to Beck-
ett’s problem because changing the value of a bit from 0 to 1

empty

Gray code representations

code subset move

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

enter 1
enter 2
 exit 1
enter 3
enter 1
 exit 2
 exit 1
enter 4
enter 1
enter 2
 exit 1
 exit 3
enter 1
 exit 2
 exit 1

1
2 1
2

3 2
3 2 1
3 1
3

4 3
4 3 1

4 3 2 1
4 3 2
4 2

4 2 1
4 1
4

274 Functions and Modules

corresponds to a character entering the subset onstage; changing a bit from 1 to 0
corresponds to a character exiting the subset.

How do we generate a Gray code? A recursive plan that is very similar to the
one that we used for the towers of Hanoi problem is effective. The n-bit binary-
reflected Gray code is defined recursively as follows:

• The (n�1) bit code, with 0 prepended to each word, followed by
• The (n�1) bit code in reverse order, with 1 prepended to each word

The 0-bit code is defined to be empty, so the 1-bit code is 0 followed by 1. From this
recursive definition, we can verify by induction that the n-bit binary reflected Gray
code has the required property: adjacent codewords differ in one bit position. It is
true by the inductive hypothesis, except possibly for the last codeword in the first
half and the first codeword in the second half: this pair differs only in their first bit.

The recursive definition leads, after some
careful thought, to the implementation in Beckett
(PROGRAM 2.3.3) for printing Beckett’s stage direc-
tions. This program is remarkably similar to Tow-
ersOfHanoi. Indeed, except for nomenclature, the
only difference is in the values of the second argu-
ments in the recursive calls!

As with the directions in TowersOfHanoi, the
enter and exit directions are redundant in Beckett,
since exit is issued only when an actor is onstage,
and enter is issued only when an actor is not on-
stage. Indeed, both Beckett and TowersOfHanoi
directly involve the ruler function that we consid-
ered in one of our first programs (PROGRAM 1.2.1).
Without the printing instructions, they both imple-
ment a simple recursive function that could allow
Ruler to print the values of the ruler function for
any value given as a command-line argument.

Gray codes have many applications, ranging
from analog-to-digital converters to experimental design. They have been used in
pulse code communication, the minimization of logic circuits, and hypercube ar-
chitectures, and were even proposed to organize books on library shelves.

1-bit code

2-bit code

3-bit code

1-bit code
(reversed)

2-bit code
(reversed)

3-bit code
(reversed)

2-, 3-, and 4-bit Gray codes

2-bit

3-bit

4-bit 0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

0 0 0
0 0 1
0 1 1
0 1 0

0 0
0 1
1 1
1 0

1 1 0
1 1 1
1 0 1
1 0 0

2752.3 Recursion

% java Beckett 4
enter 1
enter 2
exit 1
enter 3
enter 1
exit 2
exit 1
enter 4
enter 1
enter 2
exit 1
exit 3
enter 1
exit 2
exit 1

% java Beckett 1
enter 1

% java Beckett 2
enter 1
enter 2
exit 1

% java Beckett 3
enter 1
enter 2
exit 1
enter 3
enter 1
exit 2
exit 1

Program 2.3.3 Gray code

public class Beckett
{
 public static void moves(int n, boolean enter)
 {
 if (n == 0) return;
 moves(n-1, true);
 if (enter) StdOut.println("enter " + n);
 else StdOut.println("exit " + n);
 moves(n-1, false);
 }

 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 moves(n, true);
 }
}

This recursive program gives Beckett’s stage instructions (the bit positions that change in a
binary-reflected Gray code). The bit position that changes is precisely described by the ruler
function, and (of course) each actor alternately enters and exits.

n number of actors

enter stage direction

276 Functions and Modules

Recursive graphics Simple recursive drawing schemes can lead to pictures
that are remarkably intricate. Recursive drawings not only relate to numerous ap-
plications, but also provide an appealing platform for developing a better under-
standing of properties of recursive functions, because we can watch the process of
a recursive figure taking shape.

As a first simple example, consider Htree (PROGRAM 2.3.4), which, given a
command-line argument n, draws an H-tree of order n, defined as follows: The base
case is to draw nothing for n = 0. The reduction step is to draw, within the unit
square

• three lines in the shape of the letter H
• four H-trees of order n�1, one centered at each tip of the H

with the additional proviso that the H-trees of order n�1 are halved in size.
Drawings like these have many practical applications. For ex-

ample, consider a cable company that needs to run cable to all of the
homes distributed throughout its region. A reasonable strategy is to
use an H-tree to get the signal to a suitable number of centers distrib-
uted throughout the region, then run cables connecting each home
to the nearest center. The same problem is faced by computer design-
ers who want to distribute power or signal throughout an integrated
circuit chip.

Though every drawing is in a fixed-size window, H-trees cer-
tainly exhibit exponential growth. An H-tree of order n connects 4n
centers, so you would be trying to plot more than a million lines with
n = 10, and more than a billion with n = 15. The program will certainly
not finish the drawing with n = 30.

If you take a moment to run Htree on your computer for a
drawing that takes a minute or so to complete, you will, just by watch-
ing the drawing progress, have the opportunity to gain substantial in-
sight into the nature of recursive programs, because you can see the
order in which the H figures appear and how they form into H-trees.
An even more instructive exercise, which derives from the fact that
the same drawing results no matter in which order the recursive draw() calls and
the StdDraw.line() calls appear, is to observe the effect of rearranging the order
of these calls on the order in which the lines appear in the emerging drawing (see
EXERCISE 2.3.14).

H-trees

order 1

order 2

order 3

2772.3 Recursion

Program 2.3.4 Recursive graphics

public class Htree
{
 public static void draw(int n, double size, double x, double y)
 { // Draw an H-tree centered at x, y
 // of depth n and given size.
 if (n == 0) return;
 double x0 = x - size/2, x1 = x + size/2;
 double y0 = y - size/2, y1 = y + size/2;
 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1);
 StdDraw.line(x1, y0, x1, y1);
 draw(n-1, size/2, x0, y0);
 draw(n-1, size/2, x0, y1);
 draw(n-1, size/2, x1, y0);
 draw(n-1, size/2, x1, y1);
 }

 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 draw(n, 0.5, 0.5, 0.5);
 }
}

The function draw() draws three lines, each of length size, in the shape of the letter H, cen-
tered at (x, y). Then, it calls itself recursively for each of the four tips, halving the size argu-
ment in each call and using an integer argument n to control the depth of the recursion.

n depth

size line length

x, y center

% java Htree 3 % java Htree 4 % java Htree 5

(x0, y0) (x1, y0)

(x1, y1)(x0, y1)

(x, y)
size

278 Functions and Modules

Brownian bridge An H-tree is a simple example of a fractal: a geometric shape
that can be divided into parts, each of which is (approximately) a reduced-size copy
of the original. Fractals are easy to produce with recursive programs, although sci-
entists, mathematicians, and programmers study them from many different points
of view. We have already encountered fractals several times in this book—for ex-
ample, IFS (PROGRAM 2.2.3).

The study of fractals plays an important and lasting role in artistic expression,
economic analysis, and scientific discovery. Artists and scientists use fractals to
build compact models of complex shapes that arise in nature and resist description
using conventional geometry, such as clouds, plants, mountains, riverbeds, human
skin, and many others. Economists use fractals to model function graphs of eco-
nomic indicators.

Fractional Brownian motion is a mathematical model for creating realistic
fractal models for many naturally rugged shapes. It is used in computational fi-
nance and in the study of many natural phenomena, including ocean flows and
nerve membranes. Computing the exact fractals specified by the model can be a
difficult challenge, but it is not difficult to compute approximations with recursive
programs.

Brownian (PROGRAM 2.3.5) produces a function graph that approximates a
simple example of fractional Brownian motion known as a Brownian bridge and
closely related functions. You can think of this graph as
a random walk that connects the two points (x0, y0) and
(x1, y1), controlled by a few parameters. The implemen-
tation is based on the midpoint displacement method,
which is a recursive plan for drawing the plot within
the x-interval [x0, x1]. The base case (when the length
of the interval is smaller than a given tolerance) is to
draw a straight line connecting the two endpoints. The
reduction case is to divide the interval into two halves,
proceeding as follows:

• Compute the midpoint (xm, ym) of the interval.
• Add to the y-coordinate ym of the midpoint a random value , drawn from

the Gaussian distribution with mean 0 and a given variance.
• Recur on the subintervals, dividing the variance by a given scaling factor s.

The shape of the curve is controlled by two parameters: the volatility (initial value
of the variance) controls the distance the function graph strays from the straight

Brownian bridge calculation

random
displacement �

(x 0, y 0)

(x 1, y 1)

(x m, y m + �)

(x m, y m)

2792.3 Recursion

Program 2.3.5 Brownian bridge

public class Brownian
{
 public static void curve(double x0, double y0,
 double x1, double y1,
 double var, double s)
 {
 if (x1 - x0 < 0.01)
 {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }
 double xm = (x0 + x1) / 2;
 double ym = (y0 + y1) / 2;
 double delta = StdRandom.gaussian(0, Math.sqrt(var));
 curve(x0, y0, xm, ym+delta, var/s, s);
 curve(xm, ym+delta, x1, y1, var/s, s);
 }
 public static void main(String[] args)
 {
 double hurst = Double.parseDouble(args[0]);
 double s = Math.pow(2, 2*hurst);
 curve(0, 0.5, 1.0, 0.5, 0.01, s);
 }
}

By adding a small, random Gaussian to a recursive program that would otherwise plot a
straight line, we get fractal curves. The command-line argument hurst, known as the Hurst
exponent, controls the smoothness of the curves.

x0, y0 left endpoint

x1, y1 right endpoint

xm, ym middle

delta displacement

var variance

hurst Hurst exponent

% java Brownian 1 % java Brownian 0.5 % java Brownian 0.05

280 Functions and Modules

line connecting the points, and the Hurst exponent controls the smoothness of
the curve. We denote the Hurst exponent by H and divide the variance by 22H at
each recursive level. When H is 1/2 (halved at each level), the curve is a Brown-
ian bridge—a continuous version of the gambler’s ruin problem (see PROGRAM
1.3.8). When 0 < H < 1/2, the displacements tend to increase, resulting in a rougher
curve. Finally, when 2 > H > 1/2, the displacements tend to decrease, resulting in
a smoother curve. The value 2 �H is known as the fractal dimension of the curve.

The volatility and initial endpoints of the interval have to do with scale and
positioning. The main() test client in Brownian allows you to experiment with
the Hurst exponent. With values larger than 1/2, you get plots that look something
like the horizon in a mountainous landscape; with values smaller than 1/2, you get
plots similar to those you might see for the value of a stock index.

Extending the midpoint displacement method to two dimensions yields frac-
tals known as plasma clouds. To draw a rectangular plasma cloud, we use a recursive
plan where the base case is to draw a rectangle of a given color and the reduction
step is to draw a plasma cloud in each of the four quadrants with colors that are
perturbed from the average with a random Gaussian. Using the same volatility
and smoothness controls as in Brownian, we can produce synthetic clouds that are
remarkably realistic. We can use the same code to produce synthetic terrain, by in-
terpreting the color value as the altitude. Variants of this scheme are widely used in
the entertainment industry to generate background scenery for movies and games.

Plasma clouds

4

3
2
1

5

6

7

8

2812.3 Recursion

Pitfalls of recursion By now, you are perhaps persuaded that recursion can
help you to write compact and elegant programs. As you begin to craft your own
recursive programs, you need to be aware of several common pitfalls that can arise.
We have already discussed one of them in some detail (the running time of your
program might grow exponentially). Once identified, these problems are generally
not difficult to overcome, but you will learn to be very careful to avoid them when
writing recursive programs.

Missing base case. Consider the following recursive function, which is supposed
to compute harmonic numbers, but is missing a base case:

public static double harmonic(int n)
{
 return harmonic(n-1) + 1.0/n;
}

If you run a client that calls this function, it will repeatedly call itself and never
return, so your program will never terminate. You probably already have encoun-
tered infinite loops, where you invoke your program and nothing happens (or per-
haps you get an unending sequence of printed output). With infinite recursion,
however, the result is different because the system keeps track of each recursive call
(using a mechanism that we will discuss in SECTION 4.3, based on a data structure
known as a stack) and eventually runs out of memory trying to do so. Eventually,
Java reports a StackOverflowError at run time. When you write a recursive pro-
gram, you should always try to convince yourself that it has the desired effect by an
informal argument based on mathematical induction. Doing so might uncover a
missing base case.

No guarantee of convergence. Another common problem is to include within a
recursive function a recursive call to solve a subproblem that is not smaller than the
original problem. For example, the following method goes into an infinite recur-
sive loop for any value of its argument (except 1) because the sequence of argument
values does not converge to the base case:

public static double harmonic(int n)
{
 if (n == 1) return 1.0;
 return harmonic(n) + 1.0/n;
}

282 Functions and Modules

Bugs like this one are easy to spot, but subtle versions of the same problem can be
harder to identify. You may find several examples in the exercises at the end of this
section.

Excessive memory requirements. If a function calls itself recursively an excessive
number of times before returning, the memory required by Java to keep track of
the recursive calls may be prohibitive, resulting in a StackOverflowError. To get
an idea of how much memory is involved, run a small set of experiments using our
recursive function for computing the harmonic numbers for increasing values of n:

public static double harmonic(int n)
{
 if (n == 1) return 1.0;
 return harmonic(n-1) + 1.0/n;
}

The point at which you get StackOverflowError will give you some idea of how
much memory Java uses to implement recursion. By contrast, you can run PROGRAM
1.3.5 to compute Hn for huge n using only a tiny bit of memory.

Excessive recomputation. The temptation to write a simple recursive function to
solve a problem must always be tempered by the understanding that a function
might take exponential time (unnecessarily) due to excessive recomputation. This
effect is possible even in the simplest recursive functions, and you certainly need to
learn to avoid it. For example, the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, …

is defined by the recurrence Fn = Fn�1 + Fn�2 for n � 2 with F0 = 0 and F1 = 1. The
Fibonacci sequence has many interesting properties and arise in numerous applica-
tions. A novice programmer might implement this recursive function to compute
numbers in the Fibonacci sequence:

// Warning: this function is spectacularly inefficient.
public static long fibonacci(int n)
{
 if (n == 0) return 0;
 if (n == 1) return 1;
 return fibonacci(n-1) + fibonacci(n-2);
}

2832.3 Recursion

However, this function is spectacularly inef-
ficient! Novice programmers often refuse to
believe this fact, and run code like this expect-
ing that the computer is certainly fast enough
to crank out an answer. Go ahead; see if your
computer is fast enough to use this function to
compute fibonacci(50). To see why it is fu-
tile to do so, consider what the function does to
compute fibonacci(8) = 21. It first computes
fibonacci(7) = 13 and fibonacci(6) = 8. To
compute fibonacci(7), it recursively computes
fibonacci(6) = 8 again and fibonacci(5) = 5.
Things rapidly get worse because both times it
computes fibonacci(6), it ignores the fact
that it already computed fibonacci(5), and
so forth. In fact, the number of times this pro-
gram computes fibonacci(1) when comput-
ing fibonacci(n) is precisely Fn (see EXERCISE
2.3.12). The mistake of recomputation is
compounded exponentially. As an example,
fibonacci(200) makes F200 > 1043 recursive
calls to fibonacci(1)! No imaginable comput-
er will ever be able to do this many calculations.
Beware of programs that might require exponen-
tial time. Many calculations that arise and find
natural expression as recursive functions fall
into this category. Do not fall into the trap of
implementing and trying to run them.

NEXT, WE CONSIDER A SYSTEMATIC TECHNIQUE known
as dynamic programming, an elegant technique
for avoiding such problems. The idea is to avoid
the excessive recomputation inherent in some
recursive functions by saving away the previ-
ously computed values for later reuse, instead of
constantly recomputing them.

Wrong way to compute Fibonacci numbers

fibonacci(8)

 fibonacci(7)

 fibonacci(6)

 fibonacci(5)

 fibonacci(4)

 fibonacci(3)

 fibonacci(2)

 fibonacci(1)

 return 1

 fibonacci(0)

 return 0

 return 1

 fibonacci(1)

 return 1

 return 2

 fibonacci(2)

 fibonacci(1)

 return 1

 fibonacci(0)

 return 0

 return 1

 return 3

 fibonacci(3)

 fibonacci(2)

 fibonacci(1)

 return 1

 fibonacci(0)

 return 0

 return 1

 fibonacci(1)

 return 1

 return 2

 return 5

 fibonacci(4)

 fibonacci(3)

 fibonacci(2)

 .

 .

 .

284 Functions and Modules

Dynamic programming A general approach to implementing recursive pro-
grams, known as dynamic programming, provides effective and elegant solutions to
a wide class of problems. The basic idea is to recursively divide a complex problem
into a number of simpler subproblems; store the answer to each of these subprob-
lems; and, ultimately, use the stored answers to solve the original problem. By solv-
ing each subproblem only once (instead of over and over), this technique avoids a
potential exponential blow-up in the running time.

For example, if our original problem is to compute the nth Fibonacci number,
then it is natural to define n + 1 subproblems, where subproblem i is to compute
the ith Fibonacci number for each 0 � i � n. We can solve subproblem i easily if
we already know the solutions to smaller subproblems—specifically, subproblems
i�1 and i�2. Moreover, the solution to our original problem is simply the solution
to one of the subproblems—subproblem n.

Top-down dynamic programming. In top-down dynamic programming, we
store or cache the result of each subproblem that we solve, so that the next time we
need to solve the same subproblem, we can use the cached values instead of solving
the subproblem from scratch. For our Fibonacci example, we use an array f[] to
store the Fibonacci numbers that have already been computed. We accomplish this
in Java by using a static variable, also known as a class variable or global variable,
that is declared outside of any method. This allows us to save information from one
function call to the next.

Top-down dynamic programming is also known as memoization because it avoids
duplicating work by remembering the results of function calls.

cached values

Top-down dynamic programming approach for computing Fibonacci numbers

return cached value
(if previously computed)

compute and cache value

static variable
(declared outside
of any method)

public class TopDownFibonacci
{
 private static long[] f = new long[92];

 public static long fibonacci(int n)
 {
 if (n == 0) return 0;
 if (n == 1) return 1;
 if (f[n] > 0) return f[n];
 f[n] = fibonacci(n-1) + fibonacci(n-2);
 return f[n];
 }
}

2852.3 Recursion

Bottom-up dynamic programming. In bottom-up dynamic programming, we
compute solutions to all of the subproblems, starting with the “simplest” subprob-
lems and gradually building up solutions to more and more complicated subprob-
lems. To apply bottom-up dynamic programming, we must order the subproblems
so that each subsequent subproblem can be solved by combining solutions to sub-
problems earlier in the order (which have already been solved). For our Fibonacci
example, this is easy: solve the subproblems in the order 0, 1, and 2, and so forth.
By the time we need to solve subproblem i, we have already solved all smaller sub-
problems—in particular, subproblems i�1 and i�2.

public static long fibonacci(int n)
{
 int[] f = new int[n+1];
 f[0] = 0;
 f[1] = 1;
 for (int i = 2; i <= n; i++)
 f[i] = f[i-1] + f[i-2];
 return f[n];
}

When the ordering of the subproblems is clear, and space is available to store all the
solutions, bottom-up dynamic programming is a very effective approach.

NEXT, WE CONSIDER A MORE SOPHISTICATED application of dynamic programming,
where the order of solving the subproblems is not so clear (until you see it). Un-
like the problem of computing Fibonacci numbers, this problem would be much
more difficult to solve without thinking recursively and also applying a bottom-up
dynamic programming approach.

Longest common subsequence problem. We consider a fundamental string-pro-
cessing problem that arises in computational biology and other domains. Given
two strings x and y, we wish to determine how similar they are. Some examples
include comparing two DNA sequences for homology, two English words for spell-
ing, or two Java files for repeated code. One measure of similarity is the length of
the longest common subsequence (LCS). If we delete some characters from x and
some characters from y, and the resulting two strings are equal, we call the resulting
string a common subsequence. The LCS problem is to find a common subsequence
of two strings that is as long as possible. For example, the LCS of GGCACCACG and
ACGGCGGATACG is GGCAACG, a string of length 7.

286 Functions and Modules

Algorithms to compute the LCS are used in data comparison programs like
the diff command in Unix, which has been used for decades by programmers
wanting to understand differences and similarities in their text files. Similar algo-
rithms play important roles in scientific applications, such as the Smith–Waterman
algorithm in computational biology and the Viterbi algorithm in digital commu-
nications theory.

LCS recurrence. Now we describe a recursive formulation that enables us to find
the LSC of two given strings s and t. Let m and n be the lengths of s and t, respec-
tively. We use the notation s[i..m) to denote the suffix of s starting at index i, and
t[j..n) to denote the suffix of t starting at index j. On the one hand, if s and t
begin with the same character, then the LCS of x and y contains that first character.
Thus, our problem reduces to finding the LCS of the suffixes s[1..m) and t[1..n).
On the other hand, if s and t begin with different characters, both characters can-
not be part of a common subsequence, so we can safely discard one or the other. In
either case, the problem reduces to finding the LCS of two strings—either s[0..m)
and t[1..n) or s[1..m) and t[0..n)—one of which is strictly shorter. In gen-
eral, if we let opt[i][j] denote the length of the LCS of the suffixes s[i..m) and
t[j..m), then the following recurrence expresses opt[i][j] in terms of the length
of the LCS for shorter suffixes.

 0 if i = m or j = n
opt[i][j] = opt[i+1, j+1] + 1 if s[i] = t[j]
 max(opt[i, j+1], opt[i+1, j]) otherwise

Dynamic programming solution. LongestCommonSubsequence (PROGRAM 2.3.6)
begins with a bottom-up dynamic programming approach to solving this recur-
rence. We maintain a two-dimensional array opt[i][j] that stores the length of
the LCS of the suffixes s[i..m) and t[j..n). Initially, the bottom row (the values
for i = m) and the right column (the values for j = n) are 0. These are the initial
values. From the recurrence, the order of the rest of the computation is clear: we
start with opt[m][n] = 1. Then, as long as we decrease either i or j or both, we
know that we will have computed what we need to compute opt[i][j], since the
two options involve an opt[][] entry with a larger value of i or j or both. The
method lcs() in PROGRAM 2.3.6 COmputes the elements in opt[][] by filling in
values in rows from bottom to top (i = m-1 to 0) and from right to left in each row
(j = n-1 to 0). The alternative choice of filling in values in columns from right to

2872.3 Recursion

Program 2.3.6 Longest common subsequence

public class LongestCommonSubsequence
{
 public static String lcs(String s, String t)
 { // Compute length of LCS for all subproblems.
 int m = s.length(), n = t.length();
 int[][] opt = new int[m+1][n+1];
 for (int i = m-1; i >= 0; i--)
 for (int j = n-1; j >= 0; j--)
 if (s.charAt(i) == t.charAt(j))
 opt[i][j] = opt[i+1][j+1] + 1;
 else
 opt[i][j] = Math.max(opt[i+1][j], opt[i][j+1]);

 // Recover LCS itself.
 String lcs = "";
 int i = 0, j = 0;
 while(i < m && j < n)
 {
 if (s.charAt(i) == t.charAt(j))
 {
 lcs += s.charAt(i);
 i++;
 j++;
 }
 else if (opt[i+1][j] >= opt[i][j+1]) i++;
 else j++;
 }
 return lcs;
 }

 public static void main(String[] args)
 { StdOut.println(lcs(args[0], args[1])); }
}

The function lcs() computes and returns the LCS of two strings x and y using bottom-up
dynamic programming. The method call s.charAt(i) returns character i of string s.

s, t two strings

m, n lengths of two strings

opt[i][j]
length of LCS of
x[i..m) and y[j..n)

lcs longest common subsequence

% java LongestCommonSubsequence GGCACCACG ACGGCGGATACG
GGCAACG

288 Functions and Modules

left and from bottom to top in each row would work as well. The above diagram
has a blue arrow pointing to each entry that indicates which value was used to com-
pute it. (When there is a tie in computing the maximum, both options are shown.)

The final challenge is to recover the longest common subsequence itself, not
just its length. The key idea is to retrace the steps of the dynamic programming
algorithm backward, rediscovering the path of choices (highlighted in gray in the
diagram) from opt[0][0] to opt[m][n]. To determine the choice that led to
opt[i][j], we consider the three possibilities:

• The character s[i] equals t[j]. In this case, we must have opt[i][j] =
opt[i+1][j+1] + 1, and the next character in the LCS is s[i] (or t[j]), so
we include the character s[i] (or t[j]) in the LCS and continue tracing
back from opt[i+1][j+1].

• The LCS does not contain s[i]. In this case, opt[i][j] = opt[i+1][j]
and we continue tracing back from opt[i+1][j].

• The LCS does not contain t[j]. In this case, opt[i][j] = opt[i][j+1]
and we continue tracing back from opt[i][j+1].

We begin tracing back at opt[0][0] and continue until we reach opt[m][n]. At
each step in the traceback either i increases or j increases (or both), so the process
terminates after at most m + n iterations of the while loop.

Longest common subsequence of GGCACCACG and ACGGCGGATACG

 j 0 1 2 3 4 5 6 7 8 9 10 11 12

 s[j] A C G G C G G A T A C G -

i t[i]

0 G 7 7 7 6 6 6 5 4 3 3 2 1 0

1 G 6 6 6 6 5 5 5 4 3 3 2 1 0

2 C 6 5 5 5 5 4 4 4 3 3 2 1 0

3 A 6 5 4 4 4 4 4 4 3 3 2 1 0

4 C 5 5 4 4 4 3 3 3 3 3 2 1 0

5 C 4 4 4 4 4 3 3 3 3 3 2 1 0

6 A 3 3 3 3 3 3 3 3 3 3 2 1 0

7 C 2 2 2 2 2 2 2 2 2 2 2 1 0

8 G 1 1 1 1 1 1 1 1 1 1 1 1 0

9 - 0 0 0 0 0 0 0 0 0 0 0 0 0

x

2892.3 Recursion

DYNAMIC PROGRAMMING IS A FUNDAMENTAL ALGORITHM design paradigm, intimately
linked to recursion. If you take later courses in algorithms or operations research,
you are sure to learn more about it. The idea of recursion is fundamental in com-
putation, and the idea of avoiding recomputation of values that have been comput-
ed before is certainly a natural one. Not all problems immediately lend themselves
to a recursive formulation, and not all recursive formulations admit an order of
computation that easily avoids recomputation—arranging for both can seem a bit
miraculous when one first encounters it, as you have just seen for the LCS. problem.

Perspective Programmers who do not use recursion are missing two oppor-
tunities. First recursion leads to compact solutions to complex problems. Second,
recursive solutions embody an argument that the program operates as anticipated.
In the early days of computing, the overhead associated with recursive programs
was prohibitive in some systems, and many people avoided recursion. In modern
systems like Java, recursion is often the method of choice.

Recursive functions truly illustrate the power of a carefully articulated ab-
straction. While the concept of a function having the ability to call itself seems
absurd to many people at first, the many examples that we have considered are
certainly evidence that mastering recursion is essential to understanding and ex-
ploiting computation and in understanding the role of computational models in
studying natural phenomena.

Recursion has reinforced for us the idea of proving that a program operates
as intended. The natural connection between recursion and mathematical induc-
tion is essential. For everyday programming, our interest in correctness is to save
time and energy tracking down bugs. In modern applications, security and privacy
concerns make correctness an essential part of programming. If the programmer
cannot be convinced that an application works as intended, how can a user who
wants to keep personal data private and secure be so convinced?

Recursion is the last piece in a programming model that served to build much
of the computational infrastructure that was developed as computers emerged to
take a central role in daily life in the latter part of the 20th century. Programs built
from libraries of functions consisting of statements that operate on primitive types
of data, conditionals, loops, and function calls (including recursive ones) can solve
important problems of all sorts. In the next section, we emphasize this point and
review these concepts in the context of a large application. In CHAPTER 3 and in
CHAPTER 4, we will examine extensions to these basic ideas that embrace the more
expansive style of programming that now dominates the computing landscape.

290 Functions and Modules

Q&A

Q. Are there situations when iteration is the only option available to address a
problem?

A. No, any loop can be replaced by a recursive function, though the recursive ver-
sion might require excessive memory.

Q. Are there situations when recursion is the only option available to address a
problem?

A. No, any recursive function can be replaced by an iterative counterpart. In
SECTION 4.3, we will see how compilers produce code for function calls by using a
data structure called a stack.

Q. Which should I prefer, recursion or iteration?

A. Whichever leads to the simpler, more easily understood, or more efficient code.

Q. I get the concern about excessive space and excessive recomputation in recur-
sive code. Anything else to be concerned about?

A. Be extremely wary of creating arrays in recursive code. The amount of space
used can pile up very quickly, as can the amount of time required for memory
management.

2912.3 Recursion

Exercises

2.3.1 What happens if you call factorial() with a negative value of n? With a
large value of, say, 35?

2.3.2 Write a recursive function that takes an integer n as its argument and returns
ln (n !).

2.3.3 Give the sequence of integers printed by a call to ex233(6):

public static void ex233(int n)
{
 if (n <= 0) return;
 StdOut.println(n);
 ex233(n-2);
 ex233(n-3);
 StdOut.println(n);
}

2.3.4 Give the value of ex234(6):

public static String ex234(int n)
{
 if (n <= 0) return "";
 return ex234(n-3) + n + ex234(n-2) + n;
}

2.3.5 Criticize the following recursive function:

public static String ex235(int n)
{
 String s = ex235(n-3) + n + ex235(n-2) + n;
 if (n <= 0) return "";
 return s;
}

Answer : The base case will never be reached because the base case appears after
the reduction step. A call to ex235(3) will result in calls to ex235(0), ex235(-3),
ex235(-6), and so forth until a StackOverflowError.

292 Functions and Modules

2.3.6 Given four positive integers a, b, c, and d, explain what value is computed by
gcd(gcd(a, b), gcd(c, d)).

2.3.7 Explain in terms of integers and divisors the effect of the following Euclid-
like function:

public static boolean gcdlike(int p, int q)
{
 if (q == 0) return (p == 1);
 return gcdlike(q, p % q);
}

2.3.8 Consider the following recursive function:

public static int mystery(int a, int b)
{
 if (b == 0) return 0;
 if (b % 2 == 0) return mystery(a+a, b/2);
 return mystery(a+a, b/2) + a;
}

What are the values of mystery(2, 25) and mystery(3, 11)? Given positive
integers a and b, describe what value mystery(a, b) computes. Then answer the
same question, but replace + with * and return 0 with return 1.

2.3.9 Write a recursive program Ruler to plot the subdivisions of a ruler using
StdDraw, as in PROGRAM 1.2.1.

2.3.10 Solve the following recurrence relations, all with T(1) = 1. Assume n is a
power of 2.

• T(n) = T(n/2) + 1
• T(n) = 2T(n/2) + 1
• T(n) = 2T(n/2) + n
• T(n) = 4T(n/2) + 3

2.3.11 Prove by induction that the minimum possible number of moves needed
to solve the towers of Hanoi satisfies the same recurrence as the number of moves
used by our recursive solution.

2932.3 Recursion

2.3.12 Prove by induction that the recursive program given in the text makes ex-
actly Fn recursive calls to fibonacci(1) when computing fibonacci(n).

2.3.13 Prove that the second argument to gcd() decreases by at least a factor of
2 for every second recursive call, and then prove that gcd(p, q) uses at most
2 log2 n + 1 recursive calls where n is the larger of p and q.

2.3.14 Modify Htree (PROGRAM 2.3.4) to animate the drawing of the H-tree.
Next, rearrange the order of the recursive calls (and the base case), view the result-
ing animation, and explain each outcome.

20% 40% 60% 80% 100%

294 Functions and Modules

Creative Exercises

2.3.15 Binary representation. Write a program that takes a positive integer n (in
decimal) as a command-line argument and prints its binary representation. Recall,
in PROGRAM 1.3.7, that we used the method of subtracting out powers of 2. Now, use
the following simpler method: repeatedly divide 2 into n and read the remainders
backward. First, write a while loop to carry out this computation and print the bits
in the wrong order. Then, use recursion to print the bits in the correct order.

2.3.16 A4 paper. The width-to-height ratio of paper in the ISO format is the
square root of 2 to 1. Format A0 has an area of 1 square meter. Format A1 is A0 cut
with a vertical line into two equal halves, A2 is A1 cut with a horizontal line into two
halves, and so on. Write a program that takes an integer command-line argument
n and uses StdDraw to show how to cut a sheet of A0 paper into 2n pieces.

2.3.17 Permutations. Write a program Permutations that takes an integer com-
mand-line argument n and prints all n ! permutations of the n letters starting at a
(assume that n is no greater than 26). A permutation of n elements is one of the
n ! possible orderings of the elements. As an example, when n = 3, you should get
the following output (but do not worry about the order in which you enumerate
them):

bca cba cab acb bac abc

2.3.18 Permutations of size k. Modify Permutations from the previous exercise
so that it takes two command-line arguments n and k, and prints all P(n , k) = n ! /
(n�k)! permutations that contain exactly k of the n elements. Below is the desired
output when k = 2 and n = 4 (again, do not worry about the order):

ab ac ad ba bc bd ca cb cd da db dc

2.3.19 Combinations. Write a program Combinations that takes an integer com-
mand-line argument n and prints all 2n combinations of any size. A combination is
a subset of the n elements, independent of order. As an example, when n = 3, you
should get the following output:

 a ab abc ac b bc c

Note that your program needs to print the empty string (subset of size 0).

2952.3 Recursion

2.3.20 Combinations of size k. Modify Combinations from the previous exer-
cise so that it takes two integer command-line arguments n and k, and prints all
C(n, k) = n ! / (k !(n�k)!) combinations of size k. For example, when n = 5 and k = 3,
you should get the following output:

abc abd abe acd ace ade bcd bce bde cde

2.3.21 Hamming distance. The Hamming distance between two bit strings of
length n is equal to the number of bits in which the two strings differ. Write a pro-
gram that reads in an integer k and a bit string s from the command line, and prints
all bit strings that have Hamming distance at most k from s. For example, if k is 2
and s is 0000, then your program should print

0011 0101 0110 1001 1010 1100

Hint : Choose k of the bits in s to flip.

2.3.22 Recursive squares. Write a program to produce each of the following recur-
sive patterns. The ratio of the sizes of the squares is 2.2:1. To draw a shaded square,
draw a filled gray square, then an unfilled black square.

2.3.23 Pancake flipping. You have a stack of n pancakes of varying sizes on a grid-
dle. Your goal is to rearrange the stack in order so that the largest pancake is on
the bottom and the smallest one is on top. You are only permitted to flip the top k
pancakes, thereby reversing their order. Devise a recursive scheme to arrange the
pancakes in the proper order that uses at most 2n � 3 flips.

296 Functions and Modules

2.3.24 Gray code. Modify Beckett (PROGRAM 2.3.3) to print the Gray code (not
just the sequence of bit positions that change).

2.3.25 Towers of Hanoi variant. Consider the following variant of the towers of
Hanoi problem. There are 2n discs of increasing size stored on three poles. Initially
all of the discs with odd size (1, 3, ..., 2n-1) are piled on the left pole from top to bot-
tom in increasing order of size; all of the discs with even size (2, 4, ..., 2n)
are piled on the right pole. Write a program to provide instructions for
moving the odd discs to the right pole and the even discs to the left pole,
obeying the same rules as for towers of Hanoi.

2.3.26 Animated towers of Hanoi. Use StdDraw to animate a solution to
the towers of Hanoi problem, moving the discs at a rate of approximately
1 per second.

2.3.27 Sierpinski triangles. Write a recursive program to draw Sierpin-
ski triangles (see PROGRAM 2.2.3). As with Htree, use a command-line
argument to control the depth of the recursion.

2.3.28 Binomial distribution. Estimate the number of recursive calls
that would be used by the code

public static double binomial(int n, int k)
{
 if ((n == 0) && (k == 0)) return 1.0;
 if ((n < 0) || (k < 0)) return 0.0;
 return (binomial(n-1, k) + binomial(n-1, k-1))/2.0;
}

to compute binomial(100, 50). Develop a better implementation that is based
on dynamic programming. Hint : See EXERCISE 1.4.41.

2.3.29 Collatz function. Consider the following recursive function, which is relat-
ed to a famous unsolved problem in number theory, known as the Collatz problem,
or the 3n+1 problem:

Sierpinski
triangles

order 1

order 2

order 3

2972.3 Recursion

public static void collatz(int n)
{
 StdOut.print(n + " ");
 if (n == 1) return;
 if (n % 2 == 0) collatz(n / 2);
 else collatz(3*n + 1);
}

For example, a call to collatz(7) prints the sequence

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

as a consequence of 17 recursive calls. Write a program that takes a command-line
argument n and returns the value of i < n for which the number of recursive
calls for collatz(i) is maximized. The unsolved problem is that no one knows
whether the function terminates for all integers (mathematical induction is no help,
because one of the recursive calls is for a larger value of the argument).

2.3.30 Brownian island. B. Mandelbrot asked the famous question How long is
the coast of Britain? Modify Brownian to get a program BrownianIsland that plots
Brownian islands, whose coastlines resemble that of Great Britain. The modifica-
tions are simple: first, change curve() to add a random Gaussian to the x-coordi-
nate as well as to the y-coordinate; second, change main() to draw a curve from the
point at the center of the canvas back to itself. Experiment with various values of
the parameters to get your program to produce islands with a realistic look.

Brownian islands with Hurst exponent of 0.76

298 Functions and Modules

2.3.31 Plasma clouds. Write a recursive program to draw plasma clouds, using the
method suggested in the text.

2.3.32 A strange function. Consider McCarthy’s 91 function:

public static int mcCarthy(int n)
{
 if (n > 100) return n - 10;
 return mcCarthy(mcCarthy(n+11));
}

Determine the value of mcCarthy(50) without using a computer. Give the number
of recursive calls used by mcCarthy() to compute this result. Prove that the base
case is reached for all positive integers n or find a value of n for which this function
goes into an infinite recursive loop.

2.3.33 Recursive tree. Write a program Tree that takes a command-line argument
n and produces the following recursive patterns for n equal to 1, 2, 3, 4, and 8.

1 2 3 4 8

2.3.34 Longest palindromic subsequence. Write a program LongestPalindromic-
Subsequence that takes a string as a command-line argument and determines the
longest subsequence of the string that is a palindrome (the same when read forward
or backward). Hint : Compute the longest common subsequence of the string and
its reverse.

This page intentionally left blank

Functions and Modules

2.4 Case Study: Percolation

THE PROGRAMMING TOOLS THAT WE HAVE considered to this point allow us to attack all
manner of important problems. We conclude our study of functions and modules
by considering a case study of developing a program to solve an interesting scien-
tific problem. Our purpose in doing so is to review the basic elements that we have
covered, in the context of the various
challenges that you might face in solv-
ing a specific problem, and to illustrate
a programming style that you can apply
broadly.

Our example applies a widely appli-
cable computational technique known as
Monte Carlo simulation to study a natural
model known as percolation. The term

“Monte Carlo simulation” is broadly used to encompass any computational tech-
nique that employs randomness to estimate an unknown quantity by performing
multiple trials (known as simulations). We have used it in several other contexts al-
ready—for example, in the gambler’s ruin and coupon collector problems. Rather
than develop a complete mathematical model or measure all possible outcomes of
an experiment, we rely on the laws of probability.

In this case study we will learn quite a bit about percolation, a model which
underlies many natural phenomena. Our focus, however, is on the process of devel-
oping modular programs to address computational tasks. We identify subtasks that
can be independently addressed, striving to identify the key underlying abstrac-
tions and asking ourselves questions such as the following: Is there some specific
subtask that would help solve this problem? What are the essential characteristics
of this specific subtask? Might a solution that addresses these essential character-
istics be useful in solving other problems? Asking such questions pays significant
dividend, because they lead us to develop software that is easier to create, debug,
and reuse, so that we can more quickly address the main problem of interest.

2.4.1 Percolation scaffolding 304
2.4.2 Vertical percolation detection 306
2.4.3 Visualization client 309
2.4.4 Percolation probability estimate . . 311
2.4.5 Percolation detection 313
2.4.6 Adaptive plot client 316

 Programs in this section

3012.4 Case Study: Percolation

Percolation It is not unusual for local interactions in a system to imply global
properties. For example, an electrical engineer might be interested in compos-
ite systems consisting of randomly distributed insulating and metallic materials:
which fraction of the materials need to be metallic so that the composite system is
an electrical conductor? As another example, a geologist might be interested in a
porous landscape with water on the surface (or oil below). Under which conditions
will the water be able to drain through to the bottom (or the oil to gush through
to the surface)? Scientists have defined an abstract process known as percolation
to model such situations. It has been studied widely, and shown to be an accurate
model in a dizzying variety of applications, beyond insulating materials and po-
rous substances to the spread of forest fires and disease epidemics to evolution to
the study of the Internet.

For simplicity, we begin by working in two dimensions
and model the system as an n-by-n grid of sites. Each site is
either blocked or open; open sites are initially empty. A full
site is an open site that can be connected to an open site in
the top row via a chain of neighboring (left, right, up, down)
open sites. If there is a full site in the bottom row, then we
say that the system percolates. In other words, a system per-
colates if we fill all open sites connected to the top row and
that process fills some open site on the bottom row. For the
insulating/metallic materials example, the open sites cor-
respond to metallic materials, so that a system that perco-
lates has a metallic path from top to bottom, with full sites
conducting. For the porous substance example, the open
sites correspond to empty space through which water might
flow, so that a system that percolates lets water fill open sites,
flowing from top to bottom.

In a famous scientific problem that has been heavily
studied for decades, scientists are interested in the follow-
ing question: if sites are independently set to be open with
site vacancy probability p (and therefore blocked with probability 1�p), what is the
probability that the system percolates? No mathematical solution to this problem
has yet been derived. Our task is to write computer programs to help study the
problem.

Percolation examples

does not percolate

percolates

open site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

302 Functions and Modules

Basic scaffolding To address percolation with a Java program, we face numer-
ous decisions and challenges, and we certainly will end up with much more code
than in the short programs that we have considered so far in this book. Our goal
is to illustrate an incremental style of programming where we independently de-
velop modules that address parts of the problem, building confidence with a small
computational infrastructure of our own design and construction as we proceed.

The first step is to pick a representation of the data. This decision can have
substantial impact on the kind of code that we write later, so it is not to be taken
lightly. Indeed, it is often the case that we learn something while working with a
chosen representation that causes us to scrap it and start all over using a new one.

For percolation, the path to an effective representation is
clear: use an n-by-n array. Which type of data should we use for
each element? One possibility is to use integers, with the conven-
tion that 0 indicates an empty site, 1 indicates a blocked site, and
2 indicates a full site. Alternatively, note that we typically describe
sites in terms of questions: Is the site open or blocked? Is the site
full or empty? This characteristic of the elements suggests that we
might use n-by-n arrays in which element is either true or false.
We refer to such two-dimensional arrays as boolean matrices. Us-
ing boolean matrices leads to code that is easier to understand
than the alternative.

Boolean matrices are fundamental mathematical objects
with many applications. Java does not provide direct support for
operations on boolean matrices, but we can use the methods in
StdArrayIO (see PROGRAM 2.2.2) to read and write them. This
choice illustrates a basic principle that often comes up in pro-
gramming: the effort required to build a more general tool usually
pays dividends.

 Eventually, we will want to work with random data, but we
also want to be able to read and write to files because debugging
programs with random inputs can be counterproductive. With
random data, you get different input each time that you run the
program; after fixing a bug, what you want to see is the same input
that you just used, to check that the fix was effective. Accordingly,
it is best to start with some specific cases that we understand, kept
in files formatted compatible with StdArrayIO (dimensions fol-
lowed by 0 and 1 values in row-major order).Percolation representations

blocked sites

open sites

full sites

percolation system

1 1 0 0 0 1 1 1
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 1
1 1 0 0 1 0 0 0
1 0 0 0 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1

0 0 1 1 1 0 0 0
1 0 0 1 1 1 1 1
1 1 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
0 1 0 0 0 0 1 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 0

0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0

3032.4 Case Study: Percolation

When you start working on a new problem that involves several files, it is
usually worthwhile to create a new folder (directory) to isolate those files from
others that you may be working on. For example, we might create a folder named
percolation to store all of the files for this case study. To get started, we can imple-
ment and debug the basic code for reading and writing percolation systems, create
test files, check that the files are compatible with the code, and so forth, before
worrying about percolation at all. This type of code, sometimes called scaffolding,
is straightforward to implement, but making sure that it is solid at the outset will
save us from distraction when approaching the main problem.

Now we can turn to the code for testing whether a boolean matrix represents
a system that percolates. Referring to the helpful interpretation in which we can
think of the task as simulating what would happen if the top were flooded with wa-
ter (does it flow to the bottom or not?), our first design decision is that we will want
to have a flow() method that takes as an argument a boolean matrix isOpen[][]
that specifies which sites are open and returns another boolean matrix isFull[][]
that specifies which sites are full. For the moment, we will not worry at all about
how to implement this method; we are just deciding how to organize the computa-
tion. It is also clear that we will want client code to be able to use a percolates()
method that checks whether the array returned by flow() has any full sites on the
bottom.

Percolation (PROGRAM 2.4.1) summarizes these decisions. It does not per-
form any interesting computation, but after running and debugging this code we
can start thinking about actually solving the problem. A method that performs no
computation, such as flow(), is sometimes called a stub. Having this stub allows us
to test and debug percolates() and main() in the context in which we will need
them. We refer to code like PROGRAM 2.4.1 as scaffolding. As with scaffolding that
construction workers use when erecting a building, this kind of code provides the
support that we need to develop a program. By fully implementing and debugging
this code (much, if not all, of which we need, anyway) at the outset, we provide a
sound basis for building code to solve the problem at hand. Often, we carry the
analogy one step further and remove the scaffolding (or replace it with something
better) after the implementation is complete.

304 Functions and Modules

Program 2.4.1 Percolation scaffolding

public class Percolation
{
 public static boolean[][] flow(boolean[][] isOpen)
 {
 int n = isOpen.length;
 boolean[][] isFull = new boolean[n][n];
 // The isFull[][] matrix computation goes here.
 return isFull;
 }

 public static boolean percolates(boolean[][] isOpen)
 {
 boolean[][] isFull = flow(isOpen);
 int n = isOpen.length;
 for (int j = 0; j < n; j++)
 if (isFull[n-1][j]) return true;
 return false;
 }

 public static void main(String[] args)
 {
 boolean[][] isOpen = StdArrayIO.readBoolean2D();
 StdArrayIO.print(flow(isOpen));
 StdOut.println(percolates(isOpen));
 }
}

To get started with percolation, we implement and debug this code, which handles all the
straightforward tasks surrounding the computation. The primary function flow() returns a
boolean matrix giving the full sites (none, in the placeholder code here). The helper function
percolates() checks the bottom row of the returned matrix to decide whether the system
percolates. The test client main() reads a boolean matrix from standard input and prints the
result of calling flow() and percolates() for that matrix.

n system size (n-by-n)

isFull[][] full sites

isOpen[][] open sites

% more testEZ.txt
5 5
0 1 1 0 1
0 0 1 1 1
1 1 0 1 1
1 0 0 0 1
0 1 1 1 1

% java Percolation < testEZ.txt
5 5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
false

3052.4 Case Study: Percolation

Vertical percolation Given a boolean matrix that represents the open sites,
how do we figure out whether it represents a system that percolates? As we will see
later in this section, this computation turns out to be directly related to a funda-
mental question in computer science. For the moment, we will consider a much
simpler version of the problem that we call vertical percolation.

The simplification is to restrict attention to vertical con-
nection paths. If such a path connects top to bottom in a sys-
tem, we say that the system vertically percolates along the path
(and that the system itself vertically percolates). This restric-
tion is perhaps intuitive if we are talking about sand traveling
through cement, but not if we are talking about water traveling
through cement or about electrical conductivity. Simple as it is,
vertical percolation is a problem that is interesting in its own
right because it suggests various mathematical questions. Does
the restriction make a significant difference? How many verti-
cal percolation paths do we expect?

Determining the sites that are filled by some path that
is connected vertically to the top is a simple calculation. We
initialize the top row of our result array from the top row of
the percolation system, with full sites corresponding to open
ones. Then, moving from top to bottom, we fill in each row of
the array by checking the corresponding row of the percolation
system. Proceeding from top to bottom, we fill in the rows of
isFull[][] to mark as true all elements that correspond to

sites in isOpen[][] that are vertically connected to a full site on the previous row.
PROGRAM 2.4.2 is an implementation of flow() for Percolation that returns a
boolean matrix of full sites (true if connected to the top via a vertical path, false
otherwise).

Testing After we become convinced that our code is be-
having as planned, we want to run it on a broader variety
of test cases and address some of our scientific questions.
At this point, our initial scaffolding becomes less useful,
as representing large boolean matrices with 0s and 1s on
standard input and standard output and maintaining large
numbers of test cases quickly becomes unwieldy. Instead,

Vertical percolation

does not vertically percolate

vertically percolates

site connected to top
with a vertical path

no open site connected to
top with a vertical path

Vertical percolation calculation

connected to top
via such a path

connected to top via a
vertical path of filled sites

not connected to top
via such a path

306 Functions and Modules

Program 2.4.2 Vertical percolation detection

public static boolean[][] flow(boolean[][] isOpen)
{ // Compute full sites for vertical percolation.
 int n = isOpen.length;
 boolean[][] isFull = new boolean[n][n];
 for (int j = 0; j < n; j++)
 isFull[0][j] = isOpen[0][j];
 for (int i = 1; i < n; i++)
 for (int j = 0; j < n; j++)
 isFull[i][j] = isOpen[i][j] && isFull[i-1][j];
 return isFull;
}

Substituting this method for the stub in PROGRAM 2.4.1 gives a solution to the vertical-only
percolation problem that solves our test case as expected (see text).

n system size (n-by-n)

isFull[][] full sites

isOpen[][] open sites

% more test5.txt
5 5
0 1 1 0 1
0 0 1 1 1
1 1 0 1 1
1 0 0 0 1
0 1 1 1 1

% java Percolation < test5.txt
5 5
0 1 1 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
true

we want to automatically generate test cases and observe the operation of our code
on them, to be sure that it is operating as we expect. Specifically, to gain confidence
in our code and to develop a better understanding of percolation, our next goals
are to:

• Test our code for large random boolean matrices.
• Estimate the probability that a system percolates for a given p.

To accomplish these goals, we need new clients that are slightly more sophisticated
than the scaffolding we used to get the program up and running. Our modular pro-
gramming style is to develop such clients in independent classes without modifying
our percolation code at all.

3072.4 Case Study: Percolation

Data visualization. We can work with much bigger problem instances if we use
StdDraw for output. The following static method for Percolation allows us to
visualize the contents of boolean matrices as a subdivision of the StdDraw canvas
into squares, one for each site:

public static void show(boolean[][] a, boolean which)
{
 int n = a.length;
 StdDraw.setXscale(-1, n);
 StdDraw.setYscale(-1, n);
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 if (a[i][j] == which)
 StdDraw.filledSquare(j, n-i-1, 0.5);
}

The second argument which specifies which squares we want to fill—those cor-
responding to true elements or those corresponding to false elements. This
method is a bit of a diversion from the calculation, but pays dividends in its ability
to help us visualize large problem instances. Using show() to draw our boolean
matrices representing blocked and full sites in different colors gives a compelling
visual representation of percolation.

Monte Carlo simulation. We want our code to work properly for any boolean
matrix. Moreover, the scientific question of interest involves random boolean ma-
trices. To this end, we add another static method to Percolation:

 public static boolean[][] random(int n, double p)
 {
 boolean[][] a = new boolean[n][n];
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 a[i][j] = StdRandom.bernoulli(p);
 return a;
 }

This method generates a random n-by-n boolean matrix of any given size n, each
element true with probability p.

Having debugged our code on a few specific test cases, we are ready to test
it on random systems. It is possible that such cases may uncover a few more bugs,
so some care is in order to check results. However, having debugged our code for
a small system, we can proceed with some confidence. It is easier to focus on new
bugs after eliminating the obvious bugs.

308 Functions and Modules

WITH THESE TOOLS, A CLIENT FOR testing our percolation code on a much larger set of
trials is straightforward. PercolationVisualizer (PROGRAM 2.4.3) consists of just
a main() method that takes n and p from the command line and displays the result
of the percolation flow calculation.

This kind of client is typical. Our eventual goal is to compute an accurate
estimate of percolation probabilities, perhaps by running a large number of tri-
als, but this simple tool gives us the opportunity to gain more familiarity with the
problem by studying some large cases (while at the same time gaining confidence
that our code is working properly). Before reading further, you are encouraged to
download and run this code from the booksite to study the percolation process.
When you run PercolationVisualizer for moderate-size n (50 to 100, say) and
various p, you will immediately be drawn into using this program to try to answer
some questions about percolation. Clearly, the system never percolates when p is
low and always percolates when p is very high. How does it behave for intermediate
values of p? How does the behavior change as n increases?

Estimating probabilities The next step in our program development process
is to write code to estimate the probability that a random system (of size n with
site vacancy probability p) percolates. We refer to this quantity as the percolation
probability. To estimate its value, we simply run a number of trials. The situation
is no different from our study of coin flipping (see PROGRAM 2.2.6), but instead of
flipping a coin, we generate a random system and check whether it percolates.

PercolationProbability (PROGRAM 2.4.4) encapsulates this computation
in a method estimate(), which takes three arguments n, p, and trials and re-
turns an estimate of the probability that an n-by-n system with site vacancy prob-
ability p percolates, obtained by generating trials random systems and calculat-
ing the fraction of them that percolate.

How many trials do we need to obtain an accurate estimate? This question
is addressed by basic methods in probability and statistics, which are beyond the
scope of this book, but we can get a feeling for the problem with computational
experience. With just a few runs of PercolationProbability, you can learn that
if the site vacancy probability is close to either 0 or 1, then we do not need many
trials, but that there are values for which we need as many as 10,000 trials to be
able to estimate it within two decimal places. To study the situation in more detail,
we might modify PercolationProbability to produce output like Bernoulli
(PROGRAM 2.2.6), plotting a histogram of the data points so that we can see the dis-
tribution of values (see EXERCISE 2.4.9).

3092.4 Case Study: Percolation

Program 2.4.3 Visualization client

public class PercolationVisualizer
{
 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 double p = Double.parseDouble(args[1]);
 StdDraw.enableDoubleBuffering();

 // Draw blocked sites in black.
 boolean[][] isOpen = Percolation.random(n, p);
 StdDraw.setPenColor(StdDraw.BLACK);
 Percolation.show(isOpen, false);

 // Draw full sites in blue.
 StdDraw.setPenColor(StdDraw.BOOK_BLUE);
 boolean[][] isFull = Percolation.flow(isOpen);
 Percolation.show(isFull, true);

 StdDraw.show();
 }
}

This client takes two command-line argument n and p, generates an n-by-n random system
with site vacancy probability p, determines which sites are full, and draws the result on stan-
dard drawing. The diagrams below show the results for vertical percolation.

% java PercolationVisualizer 20 0.9 % java PercolationVisualizer 20 0.95

 double p = Double.parseDouble(args[1]);

n system size (n-by-n)

p site vacancy probability

isOpen[][] open sites

isFull[][] full sites

310 Functions and Modules

Using PercolationProbability.estimate() represents a giant leap in the
amount of computation that we are doing. All of a sudden, it makes sense to run
thousands of trials. It would be unwise to try to do so without first having thor-
oughly debugged our percolation methods. Also, we need to begin to take the time
required to complete the computation into account. The basic methodology for
doing so is the topic of SECTION 4.1, but the structure of these programs is suffi-
ciently simple that we can do a quick calculation, which we can verify by running
the program. If we perform T trials, each of which involves n 2 sites, then the total
running time of PercolationProbability.estimate() is proportional to n 2T. If
we increase T by a factor of 10 (to gain more precision), the running time increases
by about a factor of 10. If we increase n by a factor of 10 (to study percolation for
larger systems), the running time increases by about a factor of 100.

Can we run this program to determine percolation probabilities for a system
with billions of sites with several digits of precision? No computer is fast enough
to use PercolationProbability.estimate() for this purpose. Moreover, in a
scientific experiment on percolation, the value of n is likely to be much higher. We
can hope to formulate a hypothesis from our simulation that can be tested experi-
mentally on a much larger system, but not to precisely simulate a system that cor-
responds atom-for-atom with the real world. Simplification of this sort is essential
in science.

You are encouraged to download PercolationProbability from the book-
site to get a feel for both the percolation probabilities and the amount of time
required to compute them. When you do so, you are not just learning more about
percolation, but are also testing the hypothesis that the models we have just de-
scribed apply to the running times of our simulations of the percolation process.

What is the probability that a system with site vacancy probability p vertically
percolates? Vertical percolation is sufficiently simple that elementary probabilistic
models can yield an exact formula for this quantity, which we can validate experi-
mentally with PercolationProbability. Since our only reason for studying verti-
cal percolation was an easy starting point around which we could develop support-
ing software for studying percolation methods, we leave further study of vertical
percolation for an exercise (see EXERCISE 2.4.11) and turn to the main problem.

3112.4 Case Study: Percolation

% java PercolationProbability 20 0.05 10
0.0

% java PercolationProbability 20 0.95 10
1.0

% java PercolationProbability 20 0.85 10
0.7

% java PercolationProbability 20 0.85 1000
0.564

% java PercolationProbability 40 0.85 100
0.1

Program 2.4.4 Percolation probability estimate

public class PercolationProbability
{
 public static double estimate(int n, double p, int trials)
 { // Generate trials random n-by-n systems; return empirical
 // percolation probability estimate.
 int count = 0;
 for (int t = 0; t < trials; t++)
 { // Generate one random n-by-n boolean matrix.
 boolean[][] isOpen = Percolation.random(n, p);
 if (Percolation.percolates(isOpen)) count++;
 }
 return (double) count / trials;
 }
 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 double p = Double.parseDouble(args[1]);
 int trials = Integer.parseInt(args[2]);
 double q = estimate(n, p, trials);
 StdOut.println(q);
 }
}

The method estimate() generates trials random n-by-n systems with site vacancy prob-
ability p and computes the fraction of them that percolate. This is a Bernoulli process, like coin
flipping (see PROGRAM 2.2.6). Increasing the number of trials increases the accuracy of the
estimate. If p is close to 0 or to 1, not many trials are needed to achieve an accurate estimate.
The results below are for vertical percolation.

n system size (n-by-n)

p site vacancy probability

trials number of trials

isOpen[][] open sites

q percolation probability

312 Functions and Modules

Recursive solution for percolation How do we test whether a system perco-
lates in the general case when any path starting at the top and ending at the bottom
(not just a vertical one) will do the job?

Remarkably, we can solve this problem with a compact program, based on
a classic recursive scheme known as depth-first search. PROGRAM 2.4.5 is an imple-
mentation of flow() that computes the matrix isFull[][], based on a recursive
four-argument version of flow() that takes as arguments the site vacancy matrix
isOpen[][], the current matrix isFull[][], and a site position specified by a row
index i and a column index j. The base case is a recursive call that just returns (we
refer to such a call as a null call), for one of the following reasons:

• Either i or j is outside the array bounds.
• The site is blocked

(isOpen[i][j] is false).
• We have already marked the site as full

(isFull[i][j] is true).
The reduction step is to mark the site as filled
and issue recursive calls for the site’s four
neighbors: isOpen[i+1][j], isOpen[i][j+1],
isOpen[i][j-1], and isOpen[i-1][j]. The
one-argument flow() calls the recursive meth-
od for every site on the top row. The recursion
always terminates because each recursive call
either is null or marks a new site as full. We can
show by an induction-based argument (as usu-
al for recursive programs) that a site is marked
as full if and only if it is connected to one of the
sites on the top row.

Tracing the operation of flow() on a tiny
test case is an instructive exercise. You will see
that it calls flow() for every site that can be
reached via a path of open sites from the top
row. This example illustrates that simple recur-
sive programs can mask computations that oth-
erwise are quite sophisticated. This method is a
special case of the depth-first search algorithm,
which has many important applications.

Recursive percolation (null calls omitted)

flow(...,0,0)

flow(...,1,0)

flow(...,0,3)

flow(...,0,4)

flow(...,1,4)

flow(...,2,4)

flow(...,3,4)

flow(...,3,3)

flow(...,4,3)

flow(...,3,2)

flow(...,2,2)

3132.4 Case Study: Percolation

% java Percolation < test8.txt
8 8
0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0
true

% more test8.txt
8 8
0 0 1 1 1 0 0 0
1 0 0 1 1 1 1 1
1 1 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
0 1 0 0 0 0 1 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 0

Program 2.4.5 Percolation detection

public static boolean[][] flow(boolean[][] isOpen)
{ // Fill every site reachable from the top row.
 int n = isOpen.length;
 boolean[][] isFull = new boolean[n][n];
 for (int j = 0; j < n; j++)
 flow(isOpen, isFull, 0, j);
 return isFull;
}
public static void flow(boolean[][] isOpen,
 boolean[][] isFull, int i, int j)
{ // Fill every site reachable from (i, j).
 int n = isFull.length;
 if (i < 0 || i >= n) return;
 if (j < 0 || j >= n) return;
 if (!isOpen[i][j]) return;
 if (isFull[i][j]) return;
 isFull[i][j] = true;
 flow(isOpen, isFull, i+1, j); // Down.
 flow(isOpen, isFull, i, j+1); // Right.
 flow(isOpen, isFull, i, j-1); // Left.
 flow(isOpen, isFull, i-1, j); // Up.
}

Substituting these methods for the stub in PROGRAM 2.4.1 gives a depth-first-search-based solu-
tion to the percolation problem. The recursive flow() sets to true the element in isFull[][]
corresponding to any site that can be reached from isOpen[i][j] via a chain of neighboring
open sites. The one-argument flow() calls the recursive method for every site on the top row.

n system size (n-by-n)

isOpen[][] open sites

isFull[][] full sites

i, j current site row, column

314 Functions and Modules

To avoid conflict with our solution for vertical percolation (PROGRAM
2.4.2), we might rename that class PercolationVertical, making another copy
of Percolation (PROGRAM 2.4.1) and substituting the two flow() methods
in PROGRAM 2.4.5 for the placeholder flow(). Then, we can visualize and per-
form experiments with this algorithm with the PercolationVisualizer and
PercolationProbability tools that we have developed. If you do so, and try vari-
ous values for n and p, you will quickly get a feeling for the situation: the systems
always percolate when the site vacancy probability p is high and never percolate
when p is low, and (particularly as n increases) there is a value of p above which the
systems (almost) always percolate and below which they (almost) never percolate.

Having debugged PercolationVisualizer and PercolationProbability
on the simple vertical percolation process, we can use them with more confi-
dence to study percolation, and turn quickly to study the scientific problem of
interest. Note that if we want to experiment with vertical percolation again, we
would need to edit PercolationVisualizer and PercolationProbability to
refer to PercolationVertical instead of Percolation, or write other clients of
both PercolationVertical and Percolation that run methods in both classes
to compare them.

Adaptive plot To gain more insight into percolation, the next step in program
development is to write a program that plots the percolation probability as a func-
tion of the site vacancy probability p for a given value of n. Perhaps the best way
to produce such a plot is to first derive a mathematical equation for the function,
and then use that equation to make the plot. For percolation, however, no one has
been able to derive such an equation, so the next option is to use the Monte Carlo
method: run simulations and plot the results.

Percolation is less probable as the site vacancy probability p decreases

p = 0.65 p = 0.60 p = 0.55

3152.4 Case Study: Percolation

Immediately, we are faced with numerous decisions. For how many values of
p should we compute an estimate of the percolation probability? Which values of p
should we choose? How much precision should we aim for in these calculations?
These decisions constitute an experimental design problem. Much as we might like
to instantly produce an accurate rendition of the curve for any given n, the compu-
tation cost can be prohibitive. For example, the first thing that comes to mind is to
plot, say, 100 to 1,000 equally spaced points, using StdStats (PROGRAM 2.2.5). But,
as you learned from using PercolationProbability, computing a sufficiently
precise value of the percolation probability for each point might take several sec-
onds or longer, so the whole plot might take minutes or hours or even longer.
Moreover, it is clear that a lot of this computation time is completely wasted, be-
cause we know that values for small p are 0 and values for large p are 1. We might
prefer to spend that time on more precise computations for intermediate p. How
should we proceed?

PercolationPlot (PROGRAM 2.4.6) implements a
recursive approach with the same structure as Brownian
(PROGRAM 2.3.5) that is widely applicable to similar prob-
lems. The basic idea is simple: we choose the maximum dis-
tance that we wish to allow between values of the x-coordi-
nate (which we refer to as the gap tolerance), the maximum
known error that we wish to tolerate in the y-coordinate
(which we refer to as the error tolerance), and the number
of trials T per point that we wish to perform. The recursive
method draws the plot within a given interval [x0, x1], from
(x0, y0) to (x1, y1). For our problem, the plot is from (0, 0) to
(1, 1). The base case (if the distance between x0 and x1 is less than the gap tolerance,
or the distance between the line connecting the two endpoints and the value of the
function at the midpoint is less than the error tolerance) is to simply draw a line
from (x0, y0) to (x1, y1). The reduction step is to (recursively) plot the two halves of
the curve, from (x0, y0) to (xm, f (xm)) and from (xm, f (xm)) to (x1, y1).

The code in PercolationPlot is relatively simple and produces a good-
looking curve at relatively low cost. We can use it to study the shape of the curve
for various values of n or choose smaller tolerances to be more confident that the
curve is close to the actual values. Precise mathematical statements about quality
of approximation can, in principle, be derived, but it is perhaps not appropriate
to go into too much detail while exploring and experimenting, since our goal is
simply to develop a hypothesis about percolation that can be tested by scientific
experimentation.

Adaptive plot tolerances

error
tolerance

gap tolerance
(x 0, y 0)

(x 1, y 1)

(x m, f(x m))

(x m, y m)

316 Functions and Modules

% java PercolationPlot 20 % java PercolationPlot 100

Program 2.4.6 Adaptive plot client

public class PercolationPlot
{
 public static void curve(int n,
 double x0, double y0,
 double x1, double y1)
 { // Perform experiments and plot results.
 double gap = 0.01;
 double err = 0.0025;
 int trials = 10000;
 double xm = (x0 + x1)/2;
 double ym = (y0 + y1)/2;
 double fxm = PercolationProbability.estimate(n, xm, trials);
 if (x1 - x0 < gap || Math.abs(ym - fxm) < err)
 {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }
 curve(n, x0, y0, xm, fxm);
 StdDraw.filledCircle(xm, fxm, 0.005);
 curve(n, xm, fxm, x1, y1);
 }

 public static void main(String[] args)
 { // Plot experimental curve for n-by-n percolation system.
 int n = Integer.parseInt(args[0]);
 curve(n, 0.0, 0.0, 1.0, 1.0);
 }
}

This recursive program draws a plot of the percolation probability (experimental observations)
against the site vacancy probability p (control variable) for random n-by-n systems.

0.5930 1

1

site vacancy probability p

percolation
probability

0.5930
0

1

1

site vacancy probability p

percolation
probability

n system size

x0, y0 left endpoint

x1, y1 right endpoint

xm, ym midpoint

fxm value at midpoint

gap gap tolerance

err error tolerance

trials number of trials

3172.4 Case Study: Percolation

Indeed, the curves produced by PercolationPlot immediately confirm the
hypothesis that there is a threshold value (about 0.593): if p is greater than the
threshold, then the system almost certainly percolates; if p is less than the threshold,
then the system almost certainly does not percolate.
As n increases, the curve approaches a step function
that changes value from 0 to 1 at the threshold. This
phenomenon, known as a phase transition, is found in
many physical systems.

The simple form of the output of PROGRAM 2.4.6
masks the huge amount of computation behind it. For
example, the curve drawn for n = 100 has 18 points,
each the result of 10,000 trials, with each trial involv-
ing n 2 sites. Generating and testing each site involves
a few lines of code, so this plot comes at the cost of
executing billions of statements. There are two lessons
to be learned from this observation. First, we need
to have confidence in any line of code that might be
executed billions of times, so our care in developing
and debugging code incrementally is justified. Second,
although we might be interested in systems that are
much larger, we need further study in computer sci-
ence to be able to handle larger cases—that is, to de-
velop faster algorithms and a framework for knowing
their performance characteristics.

With this reuse of all of our software, we can
study all sorts of variants on the percolation problem,
just by implementing different flow() methods. For
example, if you leave out the last recursive call in the
recursive flow() method in PROGRAM 2.4.5, it tests
for a type of percolation known as directed percola-
tion, where paths that go up are not considered. This
model might be important for a situation like a liq-
uid percolating through porous rock, where gravity
might play a role, but not for a situation like electrical
connectivity. If you run PercolationPlot for both
methods, will you be able to discern the difference
(see EXERCISE 2.4.10)? Function-call trace for PercolationPlot

n2 times

n2 times

n2 times

n2 times

once for each point

T times

T times

PercolationPlot.curve()
 PercolationProbability.estimate()
 Percolation.random()
 StdRandom.bernoulli()
 .
 .
 .
 StdRandom.bernoulli()
 return
 Percolation.percolates()
 flow()
 return
 return
 .
 .
 .

 Percolation.random()
 StdRandom.bernoulli() .
 .
 .
 StdRandom.bernoulli()
 return
 Percolation.percolates()
 flow()
 return
 return
 return
 .
 .
 .
 PercolationProbability.estimate()
 Percolation.random()
 StdRandom.bernoulli() .
 .
 .
 StdRandom.bernoulli()
 return
 Percolation.percolates()
 flow()
 return
 return
 .
 .
 .
 Percolation.random()
 StdRandom.bernoulli() .
 .
 .
 StdRandom.bernoulli()
 return
 Percolation.percolates()
 flow()
 return
 return
 return
return

318 Functions and Modules

To model physical situations such as water flowing through porous substances,
we need to use three-dimensional arrays. Is there a similar threshold in the three-
dimensional problem? If so, what is its value? Depth-first search is effective for
studying this question, though the addition of another dimension requires that we
pay even more attention to the computational cost of deter-
mining whether a system percolates (see EXERCISE 2.4.18). Scien-
tists also study more complex lattice structures that are not well
modeled by multidimensional arrays—we will see how to mod-
el such structures in SECTION 4.5.

Percolation is interesting to study via in silico experi-
mentation because no one has been able to derive the thresh-
old value mathematically for several natural models. The only
way that scientists know the value is by using simulations
like Percolation. A scientist needs to do experiments to see
whether the percolation model reflects what is observed in na-
ture, perhaps through refining the model (for example, using
a different lattice structure). Percolation is an example of an
increasing number of problems where computer science of the
kind described here is an essential part of the scientific process.

Lessons We might have approached the problem of studying percolation by sit-
ting down to design and implement a single program, which probably would run
to hundreds of lines, to produce the kind of plots that are drawn by PROGRAM 2.4.6.
In the early days of computing, programmers had little choice but to work with
such programs, and would spend enormous amounts of time isolating bugs and
correcting design decisions. With modern programming tools like Java, we can
do better, using the incremental modular style of programming presented in this
chapter and keeping in mind some of the lessons that we have learned.

Expect bugs. Every interesting piece of code that you write is going to have at least
one or two bugs, if not many more. By running small pieces of code on small test
cases that you understand, you can more easily isolate any bugs and then more
easily fix them when you find them. Once debugged, you can depend on using a
library as a building block for any client.

Directed percolation

does not percolate

percolates (path never goes up)

3192.4 Case Study: Percolation

Keep modules small. You can focus attention on at most a few dozen lines of code
at a time, so you may as well break your code into small modules as you write it.
Some classes that contain libraries of related methods may eventually grow to con-
tain hundreds of lines of code; otherwise, we work with small files.

Limit interactions. In a well-designed modular program, most modules should
depend on just a few others. In particular, a module that calls a large number of
other modules needs to be divided
into smaller pieces. Modules that are
called by a large number of other mod-
ules (you should have only a few) need
special attention, because if you do
need to make changes in a module’s
API, you have to reflect those changes
in all its clients.

Develop code incrementally. You
should run and debug each small
module as you implement it. That way,
you are never working with more than
a few dozen lines of unreliable code
at any given time. If you put all your
code in one big module, it is difficult
to be confident that any of it is free
from bugs. Running code early also
forces you to think sooner rather than later about I/O formats, the nature of prob-
lem instances, and other issues. Experience gained when thinking about such issues
and debugging related code makes the code that you develop later in the process
more effective.

Solve an easier problem. Some working solution is better than no solution, so it is
typical to begin by putting together the simplest code that you can craft that solves
a given problem, as we did with vertical percolation. This implementation is the
first step in a process of continual refinements and improvements as we develop a
more complete understanding of the problem by examining a broader variety of
test cases and developing support software such as our PercolationVisualizer
and PercolationProbability classes.

Percolation
Plot

Percolation
Probability

StdArrayIO

Percolation
Visualizer

StdOut

StdRandom

StdIn

StdDraw

Percolation

Case study dependency graph (not including system calls)

320 Functions and Modules

Consider a recursive solution. Recursion is an indispensable tool in modern pro-
gramming that you should learn to trust. If you are not already convinced of this
fact by the simplicity and elegance of Percolation and PercolationPlot, you
might wish to try to develop a nonrecursive program for testing whether a system
percolates and then reconsider the issue.

Build tools when appropriate. Our visualization method show() and random
boolean matrix generation method random() are certainly useful for many other
applications, as is the adaptive plotting method of PercolationPlot. Incorporat-
ing these methods into appropriate libraries would be simple. It is no more difficult
(indeed, perhaps easier) to implement general-purpose methods like these than it
would be to implement special-purpose methods for percolation.

Reuse software when possible. Our StdIn, StdRandom, and StdDraw librar-
ies all simplified the process of developing the code in this section, and we were
also immediately able to reuse programs such as PercolationVisualizer,
PercolationProbability, and PercolationPlot for percolation after develop-
ing them for vertical percolation. After you have written a few programs of this
kind, you might find yourself developing versions of these programs that you can
reuse for other Monte Carlo simulations or other experimental data analysis prob-
lems.

THE PRIMARY PURPOSE OF THIS CASE study is to convince you that modular program-
ming will take you much further than you could get without it. Although no ap-
proach to programming is a panacea, the tools and approach that we have dis-
cussed in this section will allow you to attack complex programming tasks that
might otherwise be far beyond your reach.

The success of modular programming is only a start. Modern programming
systems have a vastly more flexible programming model than the class-as-a-library-
of-static-methods model that we have been considering. In the next two chapters,
we develop this model, along with many examples that illustrate its utility.

3212.4 Case Study: Percolation

Q&A

Q. Editing PercolationVisualizer and PercolationProbability to rename
Percolation to PercolationVertical or whatever method we want to study
seems to be a bother. Is there a way to avoid doing so?

A. Yes, this is a key issue to be revisited in CHAPTER 3. In the meantime, you can
keep the implementations in separate subdirectories, but that can get confusing.
Advanced Java mechanisms (such as the classpath) are also helpful, but they also
have their own problems.

Q. That recursive flow() method makes me nervous. How can I better understand
what it’s doing?

A. Run it for small examples of your own making, instrumented with instructions
to print a function-call trace. After a few runs, you will gain confidence that it al-
ways marks as full the sites connected to the start site via a chain of neighboring
open sites.

Q. Is there a simple nonrecursive approach to identifying the full sites?

A. There are several methods that perform the same basic computation. We will
revisit the problem in SECTION 4.5, where we consider breadth-first search. In the
meantime, working on developing a nonrecursive implementation of flow() is
certain to be an instructive exercise, if you are interested.

Q. PercolationPlot (PROGRAM 2.4.6) seems to involve a huge amount of compu-
tation to produce a simple function graph. Is there some better way?

A. Well, the best would be a simple mathematical formula describing the function,
but that has eluded scientists for decades. Until scientists discover such a formula,
they must resort to computational experiments like the ones in this section.

322 Functions and Modules

Exercises

2.4.1 Write a program that takes a command-line argument n and creates an
n-by-n boolean matrix with the element in row i and column j set to true if i and
j are relatively prime, then shows the matrix on the standard drawing (see EXERCISE
1.4.16). Then, write a similar program to draw the Hadamard matrix of order n
(see EXERCISE 1.4.29). Finally, write a program to draw the boolean matrix such that
the element in row n and column j is set to true if the coefficient of x j in (1 + x)i
(binomial coefficient) is odd (see EXERCISE 1.4.41). You may be surprised at the pat-
tern formed by the third example.

2.4.2 Implement a print() method for Percolation that prints 1 for blocked
sites, 0 for open sites, and * for full sites.

2.4.3 Give the recursive calls for flow() in PROGRAM 2.4.5 given the following in-
put:

3 3
1 0 1
0 0 0
1 1 0

2.4.4 Write a client of Percolation like PercolationVisualizer that does a
series of experiments for a value of n taken from the command line where the site
vacancy probability p increases from 0 to 1 by a given increment (also taken from
the command line).

2.4.5 Describe the order in which the sites are marked when Percolation is used
on a system with no blocked sites. Which is the last site marked? What is the depth
of the recursion?

2.4.6 Experiment with using PercolationPlot to plot various mathematical
functions (by replacing the call PercolationProbability.estimate() with
a different expression that evaluates a mathematical function). Try the function
f(x) = sin x + cos 10x to see how the plot adapts to an oscillating curve, and come
up with interesting plots for three or four functions of your own choosing.

3232.4 Case Study: Percolation

2.4.7 Modify Percolation to animate the flow computation, showing the sites
filling one by one. Check your answer to the previous exercise.

2.4.8 Modify Percolation to compute that maximum depth of the recursion
used in the flow calculation. Plot the expected value of that quantity as a function
of the site vacancy probability p. How does your answer change if the order of the
recursive calls is reversed?

2.4.9 Modify PercolationProbability to produce output like that produced by
Bernoulli (PROGRAM 2.2.6). Extra credit : Use your program to validate the hypoth-
esis that the data obeys a Gaussian distribution.

2.4.10 Create a program PercolationDirected that tests for directed percolation
(by leaving off the last recursive call in the recursive flow() method in PROGRAM
2.4.5, as described in the text), then use PercolationPlot to draw a plot of the
directed percolation probability as a function of the site vacancy probability p.

2.4.11 Write a client of Percolation and PercolationDirected that takes a site
vacancy probability p from the command line and prints an estimate of the prob-
ability that a system percolates but does not percolate down. Use enough experi-
ments to get an estimate that is accurate to three decimal places.

324 Functions and Modules

Creative Exercises

2.4.12 Vertical percolation. Show that a system with site vacancy probability p ver-
tically percolates with probability 1 � (1 � p n)n, and use PercolationProbability
to validate your analysis for various values of n.

2.4.13 Rectangular percolation systems. Modify the code in this section to allow
you to study percolation in rectangular systems. Compare the percolation prob-
ability plots of systems whose ratio of width to height is 2 to 1 with those whose
ratio is 1 to 2.

2.4.14 Adaptive plotting. Modify PercolationPlot to take its control parameters
(gap tolerance, error tolerance, and number of trials) as command-line arguments.
Experiment with various values of the parameters to learn their effect on the quality
of the curve and the cost of computing it. Briefly describe your findings.

2.4.15 Nonrecursive directed percolation. Write a nonrecursive program that tests
for directed percolation by moving from top to bottom as in our vertical percola-
tion code. Base your solution on the following
computation: if any site in a contiguous sub-
row of open sites in the current row is con-
nected to some full site on the previous row,
then all of the sites in the subrow become full.

2.4.16 Fast percolation test. Modify the re-
cursive flow() method in PROGRAM 2.4.5 so
that it returns as soon as it finds a site on the
bottom row (and fills no more sites). Hint: Use
an argument done that is true if the bottom
has been hit, false otherwise. Give a rough estimate of the performance improve-
ment factor for this change when running PercolationPlot. Use values of n for
which the programs run at least a few seconds but not more than a few minutes.
Note that the improvement is ineffective unless the first recursive call in flow() is
for the site below the current site.

Directed percolation calculation

connected to topnot connected to top
(by such a path)

connected to top via a path of
filled sites that never goes up

3252.4 Case Study: Percolation

2.4.17 Bond percolation. Write a modular program for studying percolation un-
der the assumption that the edges of the grid provide connectivity. That is, an edge
can be either empty or full, and a system percolates if there is a path consisting of
full edges that goes from top to bottom. Note : This problem has been solved ana-
lytically, so your simulations should validate the hypothesis that the bond percola-
tion threshold approaches 1/2 as n gets large.

2.4.18 Percolation in three dimensions. Implement a class Percolation3D and a
class BooleanMatrix3D (for I/O and random generation) to study percolation in
three-dimensional cubes, generalizing the two-dimensional case studied in this sec-
tion. A percolation system is an n-by-n-by-n cube of sites that are unit cubes, each
open with probability p and blocked with probability 1�p. Paths can connect an
open cube with any open cube that shares a common face (one of six neighbors,
except on the boundary). The system percolates if there exists a path connecting
any open site on the bottom plane to any open site on the top plane. Use a recur-
sive version of flow() like PROGRAM 2.4.5, but with eight recursive calls instead of
four. Plot the percolation probability versus site vacancy probability p for as large a
value of n as you can. Be sure to develop your solution incrementally, as emphasized
throughout this section.

2.4.19 Bond percolation on a triangular grid. Write a modular program for
studying bond percolation on a triangular grid, where the system is composed
of 2n 2 equilateral triangles packed together in an n-by-n grid of rhombus
shapes. Each interior point has six bonds; each point on the edge has four; and
each corner point has two.

does not

percolates

does not

percolates

326 Functions and Modules

2.4.20 Game of Life. Implement a class GameOfLife that simulates Conway’s
Game of Life. Consider a boolean matrix corresponding to a system of cells that we
refer to as being either live or dead. The game consists of checking and perhaps up-
dating the value of each cell, depending on the values of its neighbors (the adjacent
cells in every direction, including diagonals). Live cells remain live and dead cells
remain dead, with the following exceptions:

• A dead cell with exactly three live neighbors becomes live.
• A live cell with exactly one live neighbor becomes dead.
• A live cell with more than three live neighbors becomes dead.

Initialize with a random boolean matrix, or use one of the starting patterns on the
booksite. This game has been heavily studied, and relates to foundations of com-
puter science (see the booksite for more information).

Five generations of a glider

time t time t

+

1 time t

+

2 time t

+

3 time t

+

4

This page intentionally left blank

1107

searching. See Searches
sorting. See Sorts

Aliasing
arrays, 516
bugs from, 439, 441
references, 363

Allocating memory, 94, 367
Alphabets

formal languages, 720–721
metasymbols, 725
regular expressions, 730
symbols, 718–719

ALUs. See Arithmetic logic units
(ALUs)

Amortized analysis, 580–581
Ampersands (&)
 bitwise operations, 891–892
 boolean type, 26–27, 991
Analog circuits, 1013
AND circuits in ALUs, 1031
AND gates, 1014
And operation
 bitwise, 891–892
 boolean type, 26–27, 987–989
 TOY machine, 913
Animations
 BouncingBall, 152–153
 double buffering, 151
Annihilation identity, 990
Antisymmetric property, 546
Application programming

interfaces (APIs)
 access modifiers, 384
 Body, 480
 built-in data types, 30–32

Adders
 binary, 771
 combinational circuits, 1007
 overview, 1028
 ripple–carry, 1028–1030
 sum-of-products, 1028
AddInts program, 134
Addition
 complex numbers, 402–403
 floating-point numbers, 24–26
 integers, 22, 884
 negative numbers, 887
 spatial vectors, 442–443
Address control lines, 1056
Addresses
 array elements, 94
 memory, 909
 symbolic names, 981
Adelman, Leonard, 795
Adjacency matrix, 692
Adjacent vertices, 671
Albers, Josef, 342
AlbersSquares program,

341–342
Alex, 380
Algebra
 boolean, 989–991
 vectors, 442–443
Algorithms, 493
 computability, 787
 decidability, 786–787
 exponential-time, 826
 overview, 786
 performance. See Performance
 polynomial-time, 825–826

A
A-format instructions, 911
Absolute value function, 199
Absorption identity, 990
Abstract machines, 737–738
Abstract methods, 446
Abstraction

color, 341–343
circuits, 1037–1039
data, 382
displays, 346
function-call, 590–591
libraries, 230, 429
object-oriented programming,

329
printing as, 76
recursion, 289
vs. representation, 69
standard audio, 155
standard drawing, 144
standard I/O, 129, 139–143

Accept states
DFAs, 738–739
Turing machines, 766–767

Access modifiers, 384
Accessing references, 339
Account information

dictionary lookup, 628–629
indexing, 634

Accuracy
n-body simulation, 488
random web surfer, 185

Adaptive plots, 314–318

Index

1108 Index

declaring, 91, 116
default initialization, 93
exchanging values, 96
FIFO queues, 596
hash tables, 636
I/O libraries, 237–238
images, 346–347
immutable types, 439–440
iterable classes, 603
linked structures, 942–944
machine-language, 938–941
memory, 91, 94, 515–517
multidimensional, 111
overview, 90–92
parallel, 411
plotting, 246–248
precomputed values, 99–100
references, 365
resizing, 578–581, 635
as return values, 210
setting values, 95–96
shuffling, 97
side effects, 208–210
Sieve of Eratosthenes, 103–105
stacks, 568–570, 578–581
summary, 115
transposition, 120
two-dimensional.

See Two-dimensional arrays
Arrays.binarySearch(), 559
Arrays.sort(), 559
ArrayStackOfStrings program,

568–570, 603
Arrival rate in M/M/1 queues, 597–598
The Art of Computer Programming

book, 947
ASCII standard, 874, 894–895
Assemblers for TOY machine, 964
Assembly language
 description, 930
 symbolic names, 981

Arguments
 arrays as, 207–210
 command-line, 7–8, 11, 127
 constructors, 333, 385
 methods, 30
 passing, 207–210, 364–365
 printf(), 130–132
 static methods, 197
Ariane 5 rocket, 35
Arithmetic
 CPU instructions, 1079
 floating point numbers, 890
 integers, 884–885
 operators, 22
 TOY machine instructions, 912
Arithmetic logic units (ALUs),

1031
 bitwise operations, 1031
 inputs, 1031
 outputs, 1032
 summary, 1032–1033
 TOY machine, 910
Arithmetic expression evaluation,

586–589
Arithmetic shifts
 bits, 891–892
 purpose, 898–899
ArrayIndexOutOfBoundsEx-

ception, 95, 116, 466
Arrays
 aliasing, 516
 as arguments, 207–210
 assigning, 117
 associative, 630
 binary searches, 538–539
 bitonic, 563
 bounds checking, 95
 comparing, 117
 coupon collector problem,

101–103
 decks of cards, 97–100

 Charge, 383
 Color, 343
 Comparable, 545
 Complex, 403
 Counter, 436–437
 data types, 388
 designing, 233, 429–431
 Draw, 361
 Graph, 675–679
 Histogram, 392
 implementing, 231
 In, 354
 libraries, 29, 230–232
 modular programming, 432
 Out, 355
 PathFinder, 683
 Picture, 347
 Queue, 592
 SET, 652
 Sketch, 459
 spatial vectors, 442–443
 ST, 625
 StackOfStrings, 568
 StdArray, 237
 StdAudio, 159
 StdDraw, 149, 154
 StdIn, 132–133
 StdOut, 130
 StdRandom, 233
 StdStats, 244
 StockAccount, 410
 Stopwatch, 390
 String, 332–333
 symbol tables, 625–627
 Turtle, 394
 Universe, 483
 Vector, 443
Approximation algorithms, 852
Arbitrary-size input streams,

137–138
args argument, 7, 208

1109Index

search process, 643–644
symbol tables, 624–625
traversing, 649–650

Binary searches
binary representation, 536
correctness proof, 535
exception filters, 540
inverting functions, 536–538
overview, 533–534
random web surfer, 176
running time, 535
sorted arrays, 538–539
symbol tables, 635
weighing objects, 540–541

Binary strings, 718–719
Binary trees

balanced, 661
heap-ordered, 661
isomorphic, 661

Binary16 format, 888
BinarySearch program, 538–539
Binomial coefficients, 125
Binomial distributions, 125, 249
Biology
 computational, 732–734
 DNA computers, 795
 genomics application, 336–340
 graphs, 672
Bipartite graphs, 682
Bisection searches, 537
Bit-slice memory design, 1054–1056
Bitmapped images, 346
Bitonic arrays, 563
Bits
 binary number system, 38, 875
 bitwise operations, 891–892
 computer dependence, 874
 description, 22
 logical instructions, 912–913
 manipulating, 891–893
 memory, 1056

Base classes, 452–453
Base64 encoding, 904
Bases in positional notation, 875
Basic scaffolding, 302–304
Basic statistics, 244–246
Beck exploit, 529
Beckett, Samuel, 273
Beckett program, 274–275
Behavior of objects, 340
Benford’s law, 224
Bernoulli, Jacob, 398
Bernoulli program, 249–250
Best-case performance
 binary search trees, 647
 insertion sort, 544
Big-O notation, 520–521
BigInteger class, 827, 897–898
Binary adders, 771
Binary digits, 22
Binary frequency count equality,

772–773
Binary incrementers, 769–771
Binary number system
 conversions, 67–69
 description, 38
Binary operators, 17
Binary program, 67–69
Binary reflected Gray code, 274
Binary representation
 decimal conversions, 877
 description, 875
 examples, 878–879
 hex conversions, 876–877
 literals, 891
Binary search trees (BSTs)
 implementation, 645–646
 insert process, 644–645
 machine-language, 942–944
 ordered operations, 651
 overview, 640–643
 performance, 647–648

Assertions, 466–467
Assignments
 arrays, 117
 chained, 43
 compound, 60
 description, 17
 references, 363
Associative arrays, 630
Associative axiom, 990, 993
Associativity, 17
Asterisks (*)
 comments, 9
 floating-point numbers, 24–26
 integers, 22–23
 regular expressions, 724
Audio
 plotting sound waves, 249
 standard, 155–159
 superposition, 211–215
Autoboxing, 457, 585–586
Automatic promotion, 33
Average-case performance, 648
Average magnitude, 164
Average path lengths, 693
Average power, 164
Average program, 137–138
Axioms in Boolean algebra, 990

B
Backslashes (\)
 escape sequences, 19
 regular expressions, 731
Backward compatibility, 976
Bacon, Kevin, 684
Balanced binary trees, 661
Ball animation, 152–153
Barnsley ferns, 240–243
Base cases
 binary search trees, 640
 recursion, 264–265, 281

1110 Index

Built-in interfaces, 451
Buses, 1034–1036

CPU connections, 1077
program counter connections,

1073–1074
Buzzers, 1048
byte data type, 24
Bytecode
 compiling, 589, 788
 Java virtual machine, 965
Bytes memory size, 513

C
C conversion specification, 131
Caches

and instruction time, 509
in top-down dynamic program-

ming, 284
Calculators, 908
Callbacks in event-based

programming, 451
Calls, 193

chaining, 404
in machine language, 932–933
methods, 30, 197, 340
reverse Polish notation, 591

Canvas, 151
Card decks, arrays for, 97–100
Carets (^)
 bitwise operations, 891–892
 regular expressions, 731
Carroll, Lewis, 710
Carry bits in adders, 1028
Cartesian representation, 433
Casts, 33–34
Cat program, 356
Cellular automata, 794
Central processing units (CPUs)
 bus connections, 1077
 control lines, 1077–1078
 execute phase, 1079

Booting, 959–960, 968–969
Bootstrapping, 971
BouncingBall program, 152–153
Bounding boxes for drawings, 146
Bounds
 arrays, 95
 exponential time, 826
 polynomial time, 825
Boxing, 457, 585–586
Box–Muller formula, 47
Breadth-first searches, 683,

687–688, 690, 692
break statement, 74
Bridges, Brownian, 278–280
Brin, Sergey, 184
Brown, Robert, 400
Brownian bridges, 278–280
Brownian motion, 400–401
Brownian program, 278–280
Brute-force algorithm, 535–536
BST program, 645–646
BSTs. See Binary search trees (BSTs)
Buffer overflow
 arrays, 95
 attacks, 963
Buffering drawings, 151
Bugs
 aliasing, 363, 439, 441
 overview, 6
 testing for, 318
Built-in data types
 boolean, 26–27
 characters and strings, 19–21
 comparisons, 27–29
 conversions, 32–35
 floating-point numbers, 24–26
 integers, 22–24
 library methods, 29–32
 overview, 14–15
 summary, 35–36
 terminology, 15–18

 memory size, 513
 register, 1051
 shifting, 891–892
Bitwise operations
 and, 913
 arithmetic logic units, 1031
 exclusive or, 39, 913
 shift, 913
Black–Scholes formula, 222, 565
Blobs, 709
Blocks
 statements, 50
 variable scope, 200
Bodies
 loops, 53
 static methods, 196
Body program
 memory, 514
 N-body simulation, 479–482
Bollobás–Chung graph model, 713
Book indexes, 632–633
Booksite, 2–3
Boole, George, 986
boolean data type
 conversion codes, 131–132
 description, 14–15
 input, 133
 memory size, 513
 overview, 26–27
Boolean logic
 cryptography application,

992–994
 description, 27
 expressions, 995–996
 functions, 987–991, 994–997
 overview, 986
Boolean matrices, 302
Boolean satisfiability, 832, 836
 boolean equation satisfiability

problem, 838
 NP-completeness, 844–846,

853–856

1111Index

reuse, 226, 253, 701
static methods, 205–206

Codebooks, 992
Codons, genes, 336
Coefficients for floating-point

numbers, 889
Coercion, 33
Coin flip, 52–53
Collatz function, 784
Collatz problem, 296–297, 818
Collatz sequence, 948
Collections

description, 566
iterable, 601–605
objects, 582–583
queues. See Queues
stacks. See Stacks
symbol tables. See Symbol

Tables
Colons (:)
 in Turing machine tapes, 767
 foreach statements, 601–602
Color and Color data type
 blobs, 709
 compatibility, 344
 conversion, 48–49
 drawings, 150
 grayscale, 344
 luminance, 343
 memory, 514
 overview, 341–343
Columns in 2D arrays, 106, 108
Combinational circuits
 adders, 1028–1030
 ALUs, 1031–1033
 buses, 1034–1036
 decoders, 1021–1022
 demultiplexers, 1022
 description, 1007–1008
 gates, 1013–1021
 layers of abstraction, 1037–1039

 overview, 1002–1003
 wires, 1002–1004
Circuits
 combinational.

See Combinational circuits
 description, 1010
 from gates, 1019–1021
 memory, 1054–1057
Circular linked lists, 622
Circular queues, 620
Circular shifts, 375
.class extension, 3, 8, 228
ClassDefFoundError, 160
Classes, 4–5
 accessing, 227–229
 description, 226
 implementing, 383–389
 inner, 609
 modules as, 228
 variables, 284
Classifying NP-complete problems,

851
Client code
 data types, 430
 library methods, 230
Clocks
 CPU, 1077–1079
 fetch and execute, 1059, 1061
 overview, 1058–1059
 run and halt inputs, 1060
 write control, 1059–1060
Closure operation in REs, 724
Clouds, plasma, 280
Clustering coefficients
 global, 713
 local, 693–694
CMYK color format, 48–49, 371
Code and coding
 description, 2
 encapsulating, 438
 incremental development, 319,

701

 fetch phase, 1078
 instructions, 1079–1080
 interfaces, 1076
 load address, 1080
 modules, 1076
 overview, 985
 TOY-8 machine, 1076–1080
Centroids, 164
Chained assignments, 43
Chained comparisons, 43
Chaining method calls, 404
Characters and char data type
 ASCII, 894
 conversion to numbers, 880–881
 description, 15
 memory size, 513
 representing, 894–895
 Unicode, 894–895
 working with, 19–21
Charge program, 383–389, 515
Checksums
 description, 86
 formula, 220
Chords, 211
Chromatic scale, 156
Church, Alonso, 790
Church–Turing thesis
 extended, 823
 overview, 790–791
 Turing machine simulation, 798
 virtual machines, 958
Ciphers, Kamasutra, 377
Ciphertext, 993
Circuit models
 building circuits, 1006–1008
 connections, 1002–1004
 controlled switches, 1005–1006
 conventions, 1004
 inputs, 1002–1004
 logical design, 1008–1009
 outputs, 1002–1004

1112 Index

Computer speed in performance,
507–508

Computer systems, 1094–1095
Computers and Intractability: A

Guide to the Theory of NP-
completeness book, 859

Computers Ltd.: What They Really
Can’t Do book, 780

Computing devices
boolean logic. See Boolean logic
circuit models.

See Circuit models
combinational circuits. See

Combinational circuits
digital. See Digital devices
overview, 985
sequential circuits.

See Sequential circuits
Computing machines
 machine-language program-

ming. See Machine-language
programming

 overview, 873
 representing information. See

Representing information
 TOY. See TOY machine
Computing sketches, 459–460
Concatenation
 files, 356
 strings, 19–20, 723–724
Concert A, 155
Concordances, 659
Conditionals and loops, 50
 applications, 64–73
 break statement, 74
 continue statement, 74
 do-while loops, 75
 examples, 61
 for loops, 59–61
 if statement, 50–53
 infinite loops, 76

Compile-time errors, 6
Compilers
 description, 3, 589
 optimizing, 814
 programs as data, 922–924
 purpose, 788
 TOY machine, 964–965
Compiling
 array values set at, 95–96, 108
 classes in, 229
 description, 2
 programs, 3
Complement operation
 bitwise, 891
 Boolean algebra, 990
Complete small-world graphs, 694
Complex program
 chaining method calls, 404
 encapsulation, 433–434
 instance variables, 403–404
 objects, 404
 overview, 402–403
 program, 405
Complex numbers, 406–409
Compound assignments, 60
Compression, optimal, 814
Computability
 algorithms, 787
 halting problem, 808–810
 Hilbert’s program, 806–807
 liar’s paradox, 807–808
 overview, 806
 reduction, 811–813
 unsolvability proof, 810
 unsolvable problems.

See Unsolvable problems
Computation: Finite and Infinite

Machines, 780
Computational biology, 732–734
Computational models, 716
Computer animations, 151

 modules, 1034
 multiplexers, 1023
 overview, 1012
 sum-of-products, 1024–1027
Comma-separated-value (.csv)

files, 358, 360
Command-line arguments, 7–8,

11, 127
Commas (,)
 arguments, 30
 constructors, 333
 lambda expressions, 450
 methods, 30, 196
 two-dimensional arrays, 108
Comments, 5, 9
Commercial data processing,

410–413
Common sequences, longest,

285–288
Commutative axiom, 990
Compact trace format, 770
Comparable interface, 451, 545
Comparable keys
 sorting, 546
 symbol tables, 626–627
CompareDocuments program,

462–463
compareTo() method
 description, 451
 String, 332
 user defined, 545–546
Comparisons
 arrays, 117
 chained, 43
 objects, 364, 545–546
 operators, 27–29
 performance, 508–509
 sketches, 462–463
Compatibility
 backward, 976
 Color, 344

1113Index

CouponCollector program,
101–103, 205

CPUs. See Central processing units
(CPUs)

Craps game, 259
Cray, Seymour, 971
Crichton, Michael, 424
Cross-coupled NOR gates, 1050
Cross-coupled switches, 1049
Cross products of vectors, 472
Cryptographic keys, 992
Cryptography application, 992–994
Cryptosystems, 992–993
<Ctrl-C> keys, 76
<Ctrl-D> keys, 137
<Ctrl-Z> keys, 137
Cubic order of growth, 505–508
Cumulative distribution function,

202–203
Curly braces ({})
 regular expressions, 724, 731
 statements, 5, 78–79
 static methods, 196
 two-dimensional arrays, 108
Curves
 Brownian bridges, 278–280
 Dragon, 49, 424
 Koch, 397
 space-filling, 425
 spirals, 398–399
Cycles per second, 155

D
Dantzig, George, 831
Data abstraction, 329, 382
Data as instructions, 922–924
Data compression, 814
Data-driven code, 141, 171, 184
Data mining example, 458–459
Data paths for buses, 1034

Control lines
 CPU, 1077–1080
 memory bits, 1056
 multiplexers, 1019–1020
 program counters, 1074–1075
 register bits, 1051
Controlled switches, 1002–1003,

1005–1006
Conversion codes, 131–132
Conversion specifications, 130–131
Conversions
 casts, 33–34
 color, 48–49
 data types, 339
 decimal to binary, 877
 explicit, 34–35
 hex and binary, 876–877
 implicit, 33
 numbers, 21, 67–69
 overview, 32
 strings, 21, 453, 880–881
Convert program, 880–882
Conway, John, 326, 794
Cook, Stephen, 840, 845
Cook–Levin theorem, 844–845, 847
Cook reduction, 841
Coordinates
 drawing, 144–146
 images, 347
 polar, 47
Corner cases, 236
Cosine similarity measure, 462
Cost of immutable types, 440
Coulomb’s law, 383
Counter circuits, 1008
Counter machines, 794
Counter program, 436–437
Coupon collector problem,

101–103
Coupon program, 206

 miscellaneous, 74–75
 in modular programming,

227–228
 nesting, 62–64
 performance analysis, 500, 510
 static methods, 193–195
 summary, 77
 switch statement, 74–75
 TOY machine, 913, 918–921
 while loops, 53–59
Connected components, 709
Connecting programs, 141
Connections
 buses, 1034
 circuit models, 1002–1004
 CPU, 1077
 power source, 1003–1004
 program counters, 1073–1075
Constant order of growth, 503
Constants, 16
Constructors
 data types, 384–385
 String, 333
Containing symbol table keys, 624
Context-free languages, 755
Continue statements, 74
Contracts
 APIs, 230–231
 design by contract, 465–467
 interface, 446–447
 machine-language, 932
Control characters, 894
Control circuit
 CPU, 1078
 execute signals, 1082–1083
 fetch signals, 1080, 1082–1083
 overview, 1080
Control flow
 conditionals and loops.

See Conditionals and loops
 static method calls, 193–195

1114 Index

Decoders, 1021–1022
Decoding numbers, 889
Decrementers, binary, 770–771
Decryption devices, 992
Dedup operation

punched paper tape, 942–944
strings, 652–653

DeDup program, 652–653
Default values
 arrays, 93, 106–107
 canvas size, 145
 ink color, 150
 instance variables, 415
 Node objects, 572
 pen radius, 146
Defensive copies, 441
Defining
 functions, 192
 interfaces, 446
 static methods, 193, 196
Definite integration, 816
Degrees of separation
 description, 670
 shortest paths, 684–686
DeMorgan’s laws, 989–991,

1014–1015
Demultiplexers, 1022
Denial-of-service attacks, 512
Dependencies in subclasses, 453
Dependency graphs, 252
Deprecated methods, 469
Depth-first searches
 vs. breadth-first searches, 690
 percolation case study, 312
Deques, 618
Derived classes, 452
Descartes, René, 398
Design
 APIs, 233
 by contract, 465–467
 data types. See Data-type design

 instance variables, 384
 Koch, 397
 Mandelbrot, 406–409
 output, 355
 overview, 330
 reference, 362–369
 Spiral, 398–399
 StockAccount, 410–413
 Stopwatch, 390–391
 String. See Strings and String

data type
 summary, 368
 TOY machine, 907
 Turtle, 394–396
 type safety, 18
 variables within methods,

386–388
Data visualization, 307–309
Davis, Martin, 816
Dead Sea Scrolls, 659
Debugging
 abstraction layers, 1037
 assertions, 466–467
 encapsulation for, 432
 immutable types, 440
 incremental, 317, 319
 linked lists, 596
 modular programming,

251–254
 test client main() for, 235
 unit testing, 246
Decidability, 786–787
Decimal number system
 conversion to binary, 877
 description, 38, 875
 examples, 878–879
Decision problems, NP, 835
Decks of cards, 97–100
Declaration statements, 15–16
Declaring
 arrays, 91, 116
 String variables, 333

Data structures, 493
 arrays. See Arrays
 binary search trees. See Binary

search trees (BSTs)
 linked lists, 571–578
 queues. See Queues
 resource allocation, 606–607
 stacks. See Stacks
 stock example, 411
 summary, 608
 symbol tables. See Symbol tables
Data-type design
 APIs, 429–431
 data mining example, 458–464
 design by contract, 465–467
 encapsulation, 432–438
 immutability, 439–446
 subclassing, 452–457
 subtyping, 446–451
 overview, 428
Data types
 access modifiers, 384
 APIs, 383
 boolean, 991
 built-in. See Built-in data types
 classes, 383
 Color, 341–345
 Complex, 402–405
 constructors, 384–385
 conversions, 34–35, 339
 creating, 382
 definitions, 331–335
 DrunkenTurtle, 400–401
 elements summary, 383
 generic, 583–585
 Histogram, 392–393
 image processing, 346–352
 immutable, 364, 439
 input and output, 353–362
 insertion sorts, 545–548
 instance methods, 385–386

1115Index

Double quotes ("")
 escape sequences, 19
 text, 5, 10
Doublet game, 710
Doubling hypotheses, 496, 498–499
DoublingTest program, 496,

498–499
Downscaling in image processing,

349
Dragon curves, 49, 424
Dragon program, 163
Draw library, 361
Drawings
 recursive graphics, 276–277
 standard. See Standard drawing
DrunkenTurtle program, 400
DrunkenTurtles program, 401
Dumping virtual machines,

960–961
Dutch-national-flag problem, 564
Dynamic dictionaries, 628
Dynamic dispatch, 448
Dynamic programming
 bottom-up, 285
 longest common subsequence,

285–288
 overview, 284
 summary, 289
 top-down, 284

E
Easy problems

intractability, 829
search, 837

Eavesdroppers, 992–993
Eccentricity in vertices, 711
Eckert, J. Presper, 924–925
Edges

graphs, 671, 674
self-loops and parallel, 676

EDVAC computer, 924–925

Dijkstra’s algorithm, 692
Diophantine, 816
Directed graphs, 711
Directed percolation, 317
Discrete distributions, 172
Disjunctive normal forms, 996–997
Distances of graph paths, 683,

687–688
Distributive axiom, 990
Divide-and-conquer approach
 linearithmic order of growth,

504
 mergesort, 550–551, 554
Division
 floating-point numbers, 24–26
 integers, 22–23
 polar representation, 433
DivisorPattern program, 62–64
DNA computers, 795
DNS (domain name system), 629
do-while loops, 75
Documents, searching for, 464
Dollar signs ($) in REs, 731
Domain name system (DNS), 629
Domains, function, 192
Dot products
 function implementation, 209
 vectors, 92, 442–443
Double.parseDouble() method
 calls to, 30–31
 type conversion, 21, 34
Double buffering drawings, 151
double data type
 conversion codes, 132
 description, 14–15
 input, 133
 memory size, 513
 overview, 24–26
Double negation identity, 990
Double negatives in gates,

1015–1016

Deterministic finite-state automata
(DFAs)

 examples, 740–741
 implementation, 741–743
 Kleene’s theorem.

See Kleene’s theorem
 language recognized, 739–740
 NFA equivalence, 749–750
 nondeterminism, 744–748
 operations, 739
 overview, 738
 power limitations, 753–755
 summary, 756
 universal virtual, 788–789
DFA program, 742–743
Diameters of graphs, 711
Diamond operators (<>), 585
Dice
 Sicherman, 259
 simulation, 121
Dictionary lookup, 624, 628–632
Difficult problems
 intractability, 828–829
 search problems, 837–838
Digital circuits, 1013
Digital devices, 1070
 control, 1080–1082
 CPU, 1076–1080
 program counters, 1073–1075
Digital image processing
 digital images, 346–347
 fade effect, 351–352
 grayscale, 347–349
 overview, 346
 scaling, 349–350
Digital signal processing, 155, 158
Dijkstra, Edsgar
 Dutch-national-flag problem,

564
 goto statements, 926
 two-stack algorithm, 587

1116 Index

Exchanging values
arrays, 96
function implementation, 209

Exclamation points (!)
 not operator, 26–27, 991
 comparisons, 27–29
Exclusive or operation
 bitwise, 891–892, 913
 boolean, 987–989
 sum-of-products, 1024–1025
Execute phase in CPU, 1079
Explicit casts, 33–34
Exponential distributions, 597
Exponential order of growth, 505
 difficult problems, 828–829
 intractability, 826
 overview, 272–273, 506
 playing card possibilities, 823
 running time, 507–508
 SAT problem, 856
 usefulness, 858
Expressions
 arithmetic evaluation, 586–589
 boolean, 995–996
 description, 17
 Lambda, 450
 method calls, 30
 regular. See Regular expressions
Extended Church–Turing thesis,

823
Extensible libraries, 452
ExtractFloat program, 893
Extracting data, 358, 360

F
Factor problem, 838, 859
Factorials, 264–265
Factoring, 72–73, 827, 838
Factors program, 72–73
Fade effect, 351–352
Fade program, 351–352

equals() method
 Color, 343
 vs. equals signs, 369–370
 Object, 453–455
 String, 332
Equilateral triangles, 144–145
Equivalence problem for REs, 728
Equivalent models for Turing

machines, 792–793
Erdös, Paul, 686
Erdös–Renyi model, 695, 712
Errors
 aliasing, 363
 debugging. See Debugging
 encapsulation for, 436–437
 overview, 6
 syntax, 10–11
 testing for, 318
Escape characters, 730, 757
Escape sequences, 19
Euclidean distance
 sketch comparisons, 462–463
 vectors, 118
Euclid’s algorithm
 description, 85
 machine-language, 931
 recursion, 267–268
 TOY machine, 918–921
Euler, Leonhard, 89
Euler’s constant, 222
Euler’s sum-of-powers conjecture,

89
Euler’s totient function, 222
Evaluate program, 588–589
Evaluating expressions, 17, 586–589
Event-based programming, 451
Exception class, 465
Exception filters, 540
Exceptions, 465–467

Efficiency
 n-body simulation, 488
 random web surfer, 185
 Turing machines, 772
Efficient algorithms, 532
Einstein, Albert, 400
Election voting machine errors, 436
Electric charge, 383–389
Element distinctness problem, 554
Elements in arrays, 90
else clauses, 51–52
Empirical analyses, 496–497
Empty strings with REs, 724
Emulators, 965
Encapsulation
 code clarity, 438
 error prevention, 436–437
 example, 433–434
 modular programming, 432
 overview, 432
 planning for future, 435
 private access modifier, 433
Encoding numbers, 889
Encryption devices, 992
End-of-file sequence, 137
Enhancements for Turing ma-

chines, 792–793
ENIAC computer, 924–925
Enigma code, 717
Entropy
 Shannon, 378
 text corpus, 667–668
Equals signs (=)
 assignment statements, 17
 assignment vs. boolean, 42, 78
 comparisons, 27–29, 364
 compound assignments, 60
 vs. equals(), 369–370
Equality of objects, 364, 454–456

1117Index

Forth language, 590
Fortran language, 1094
Fourier series, 211
Fractal dimensions, 280
Fractals, 278–280
Fractional Brownian motion, 278
Fractions, 889–890
Fragile base class problem, 453
Freeing memory, 367
Frequencies

counting, 555
sorting, 556
Zipf ’s law, 556

FrequencyCount program,
555–557

Fully parenthesized arithmetic
expressions, 587

Function calls
 abstraction, 590–591
 static methods, 197
 traces, 195
 trees, 269, 271
Function graphs, 148, 248
Functional interfaces, 450
Functional programming, 449
Functional property of programs,

812–813
Functions
 boolean, 987–991, 994–997
 computing with, 449
 defining, 192
 inverting, 536–538
 iterated function systems,

239–243
 libraries. See Libraries
 machine language, 931–933
 mathematical, 202–204
 modules. See Modules
 overview, 191
 recursive. See Recursion
 static methods, 193–201
 tables of, 907–908

 linked-list implementation, 593
 M/M/1, 597–600
 overview, 566, 592–593
Flexibility, 702
Flip program, 52–53
Flip-flops, 1049–1050
float data type, 26, 513
Floating-point numbers
 conversion codes, 131–132
 exponents, 889
 overview, 24–26
 precision, 40
 representing, 888–890
 storing, 40
Flow of control
 conditionals and loops. See

Conditionals and loops
 static method calls, 193–195
Flowcharts, 51–52
for loops
 continue statement, 74
 examples, 61
 nesting, 62–64
 working with, 59–61
Foreach statements, 601–602
Formal languages
 abstract machines, 737–738
 alphabets, 720–721
 binary strings, 718–719
 definitions, 718–723
 DFAs. See Deterministic finite-

state automata (DFAs)
 recognition problem, 722
 regular, 723–729
 regular expressions. See Regular

expressions (REs)
 specification problem, 722
Format, files, 237
Format strings, 130–131
Formatted input, 135
Formatted printing, 130–132

Fair coin flip, 52–53
Falsifiable hypotheses, 495
Fecundity parameter, 89
Feedback circuits, 1048–1049
Fermat’s Last Theorem, 89, 722
Ferns, Barnsley, 240–243
Fetch–increment–execute cycle,

910–911
Fibonacci numbers
 formulas, 82
 machine language, 935–936
 recursion, 282–283
FIFO queues. See First-in first-out

(FIFO) queues
Files
 concatenating and filtering, 356
 format, 237
 in I/O, 126
 n-body simulation, 483
 redirection, 139–141
 splitting, 360
 stock example, 411
 symbol tables, 629
Filled shapes, 149
Filters
 exception, 540
 files, 356
 image processing, 379
 piping, 142–143
 standard drawing data, 146–147
 standard input, 140
final keyword
 description, 384
 immutable types, 440
 instance variables, 404
Financial systems, graphs for, 673
Finite-state transducers, 762
Finite sums, 64–65
First-in first-out (FIFO) queues
 applications overview, 597
 array implementation, 596

1118 Index

overview, 670–671
random web surfer, 170
small-world, 693–699
systems examples, 671–674
vertex cover, 828, 834, 842

Gravity, 481
Gray codes, 273–275
Grayscale

Color, 344
 image processing, 347–349
Grayscale program, 347–349
Greater than signs (>)
 bitwise operations, 891–892
 comparisons, 27–29
 lambda expressions, 450
 redirection, 139–140
Greatest common divisor (gcd)
 machine language, 931
 recursive algorithm, 267–268
 TOY machine, 918–921
Grep program, 736
grep tool
 filters, 142–143
 regular expressions, 734–736
Grid graphs, 708
Guarantees
 NP-complete problems, 852
 performance, 512, 627
 worst-case analysis, 825

H
H-trees of order n, 276–277
Hadamard matrices, 122
Halt instructions

CPU, 1079
TOY machine, 912

Halting problem, 808–810
Hamilton, William, 424
Hamming distances, 295
Handles for pointers, 371

Geometry
 abstraction layers, 1037–1039
 gates, 1015–1016
German Enigma code, 717
Get operations
 hash tables, 639
 symbol tables, 624
Gilbert–Shannon–Reeds model,

125
Glass filters, 379
Global clustering coefficients, 713
Global variables, 284
Glossary of terms, 1097–1101
Gödel, Kurt, 807, 840
Golden ratio, 83
Goldstine, Herman, 925
Gore, Al, 436
Gosper, R., 805
Goto statements, 926
Graph data type, 675–679
Graph program, 676–679
Graphics
 recursive, 276–277, 397
 turtle, 394–396
Graphs
 bipartite, 682
 client example, 679–682
 connected components, 709
 dependency, 252
 description, 671
 DFAs, 738
 diameters, 711
 directed, 711
 examples, 695
 function, 148, 248
 generators, 700
 Graph data type, 675–679
 grid, 708
 isomorphism problem, 859
 lessons, 700–702
 matching, 713

G
Gambler program, 70–71
Gambler’s ruin simulation, 69–71
Game of Life, 326, 794
Garbage collection, 367, 516
Gardner, Martin, 424
Garey, Michael R., 859
Gates

abstraction layers, 1037
AND, 1014
circuits from, 1019–1021
multiway, 1015–1017
NOR, 1014
NOT, 1013–1014
OR, 1014
overview, 1013
sum-of-products, 1026–1027
summary, 1018–1019
universal sets of, 1045

Gaussian distribution functions
API, 231
cumulative, 202–203
probability density, 202–203

Gaussian elimination, 830
Gaussian program, 203
Gaussian random numbers, 47
General purpose computers, 790
Generalized multiway gates,

1016–1017
Generalized regular expressions,

730–732
Generic types, 583–585
Genomics

application, 336–340
indexing, 634
regular expressions, 727,

732–734
symbol tables, 629

Geometric mean, 162

1119Index

final modifier, 440
references, 441
symbol table keys, 625, 655

Implementation
API methods, 231
interfaces, 447

Implements clause, 447
Implicit type conversions, 33
In data type, 354–356
Incremental development, 319, 701
Incrementers, binary, 769–771
Index program, 632–634
IndexGraph program, 680–682
Indexing
 arrays, 90, 116
 String, 332
 symbol tables, 624, 632–634
 zero-based, 92
Induced subgraphs, 705
Induction
 mathematical, 262, 266
 recursion step, 266
Infinite loops, 76, 808–812
Infinite tape for Turing machines,

769, 774
Infinity value, 26, 40
Information content of strings, 378
Information representation. See

Representing information
Inheritance
 multiple, 470
 subclassing, 452–457
 subtyping, 446–451
Initialization
 array, 93
 inline, 18
 instance variables, 415
 two-dimensional array, 106–107
Inline variable initialization, 18
Inner classes, 609

Hoare, C. A. R., 518
Hollywood numbers, 711
Horner, William, 957
Horner’s method, 223, 882,

956–957
Htree program, 276–277
Humanists, 716–717
Hurst exponent, 280
Hyperbolic functions, 256
Hyperlinks, 170
Hypotenuse of right triangles, 199
Hypotheses
 doubling, 496, 498–499
 falsifiable, 495
 mathematical analysis, 498,

500–502
 overview, 496

I
I/O. See Input; Output
Identifiers, 15–16
Identities

Boolean algebra, 989–990
exclusive or function, 993
objects, 338, 340

IEEE 754 standard, 40, 888–889
if statements
 nesting, 62
 working with, 50–53
IFS program, 241, 251
IllegalFormatConversionEx-

ception, 131
ILP problem (integer linear pro-

gramming problem), 831
 NP-completeness, 846
 vertex cover problem, 842
Immutable types, 364, 439
 advantages, 440
 arrays and strings, 439–440
 cost, 440
 example, 442–445

Hardy, G. H., 86
Harel, David, 780
Harmonic mean, 162
Harmonic numbers
 finite sums, 64–65
 function implementation, 199
Harmonic program, 193–195
HarmonicNumber program, 64–65
Harmonics and chords, 211
Hash codes and hashing operation
 object equality, 454–455
 sketches, 460
 strings, 515
 symbol tables, 624
Hash functions, 636
Hash tables, 636–639
Hash values, 636
Hashable keys, 626
hashCode() method
 Object, 453, 455–456
 String, 332
HashMap class, 655
HashST program, 637–638
Heap memory, 516
Heap-ordered binary trees, 661
Height in binary search trees, 640
HelloWorld program, 4–6
Hertz, 155
Hexadecimal (hex) notation
 conversions with binary,

876–877
 description, 875–876
 examples, 878–879
 literals, 891
 memory, 909
Hilbert, David, 425, 806, 816
Hilbert curves, 425
Hilbert’s 10th problem, 816
Hilbert’s program, 806–807
Histogram program, 392–393
Histograms, 177

1120 Index

Inner loops
description, 62
performance, 500, 510

Inorder tree traversal, 649
Input

arithmetic logic units, 1031
array libraries, 237–238
circuit models, 1002–1004
clocks, 1060
command-line arguments, 7
data types, 353
demultiplexers, 1022
file concatenation, 356
gates, 1013
insertion sorts, 548–549
machine-language, 936–938
multiplexers, 1019–1020
overview, 126–129
in performance, 510
program counters, 1073–1075
random web surfer, 171
screen scraping, 357–359
standard, 132–138
stream data type, 354–355
virtual machines, 969–970

Input/off switches, 1005
InputMismatchException, 135
Inserting
 BST nodes, 644–645
 linked list nodes, 573–574
Insertion program, 546–547
Insertion sorts
 data types, 545–548
 input sensitivity, 548–549
 overview, 543–544
 performance, 544–545
InsertionDoublingTest

program, 548–549

Instance methods
 data types, 385–386
 invoking, 334
 vs. static, 340
Instance variables
 Complex program, 403–404
 data types, 384
 initial values, 415
Instances of objects, 333
Instruction register (IR), 910
Instructions
 components, 911
 CPU, 1079–1080
 as data, 922–924
 execution time, 509
 instruction sets, 911–913
 parsing, 966–967
 TOY machine, 909
 TOY-8 machine, 1070–1071
Integer linear inequality

satisfiability, 831, 838, 845
Integer linear programming, 831
 NP-completeness, 846
 vertex cover problem, 842
Integer.parseInt() method
 calls to, 30–31
 type conversion, 21, 23, 34
 strings, 880–882
Integers and int data type
 arithmetic, 884–885
 bitwise operations, 891–892
 conversion codes, 131–132
 description, 14–15
 input, 133–134
 overview, 22–24
Integrals, approximating, 449
Integrated development

environments (IDEs), 3
Integration, definite, 816
Interactions between modules, 319
Interactive user input, 135–136

Interface construct, 446
Interfaces
 APIs, 430
 built-in, 451
 circuit models, 1003
 CPU, 1076
 defining, 446
 functional, 450
 gates, 1016–1017
 implementing, 447
 memory, 1054
 multiplexers, 1020
 program counters, 1073
 using, 447–448
Internet DNS, 629–630
Internet Protocol (IP), 435
Interpolation in fade effect, 351
Interpreters
 Evaluate program, 589
 TOY machine, 964
IntOps program, 23
Intractability
 difficult problems, 828–829
 easy problems, 829
 exponential-time algorithms,

826
 main question, 840–841
 NP-completeness.

See NP-completeness
 numbers, 827
 overview, 822–824
 path problems, 829
 polynomial-time algorithms,

825–826
 polynomial-time reductions,

841–843
 problem size, 824
 satisfiability, 830–832
 search problems, 833–840
 subset sum problem, 827–828
 vertex cover, 828
 worst case, 825

1121Index

Koch program, 397

L
Ladders, word, 710
Ladner, R., 859
Lambda calculus, 790, 794
Lambda expressions, 450
Languages. See Formal languages;

Programming languages
Last-in first-out (LIFO), 566–567
Lattices in random walks, 112–115
Layers of abstraction, 1037–1039
LCS (longest common

subsequence), 285–288
Leading zeros, 883
Leaf nodes in BSTs, 640
Leaks, memory, 367, 581
LeapYear program, 28–29
Left associativity, 17
Left shift operations
 bitwise, 891–892
 TOY machine, 913
Left subtrees, 640
Length
 arrays, 91–92
 graphs paths, 674, 683
 strings, 332
Less than signs (<)
 bitwise operations, 891–892
 comparisons, 27–29
 redirection, 140–141
Let’s Make a Deal simulation, 88
Levin, Leonid, 845
Liar’s paradox, 807–808
Libraries
 APIs, 230–232
 array I/O, 237–238
 clients, 230
 extensible, 452
 Java, 1094
 methods, 29–32

Java Virtual Machine (JVM)
 description, 3
 overview, 965–966
 as program, 788
Java virtual machines, 429
Johnson, David S., 859
Josephus problem, 619
Julia sets, 427
Jump and link instruction, 931
Jump register instruction, 931

K
K-ring graphs, 694–695
K-way multiplexers, 1019–1020
Kamasutra ciphers, 377
Karp, Richard, 845–848
Karp’s reductions

NP-completeness, 845–848
 polynomial-time, 841
Kevin Bacon game, 684–686
Key-sorted tree traversal, 649
Keys
 BSTs, 640–642, 650
 cryptographic, 992
 immutable, 625
 Kamasutra ciphers, 377
 symbol tables, 624–626, 655
Key–value pairs, 624–626
Kleene, Stephen, 748
Kleene’s theorem
 applications, 753–756
 DFA, NFA, and RE equivalence,

749–752
 overview, 748
 power limitations, 753–756
 proof strategy, 748
 RE recognition, 753
Knuth, Donald
 MIX machine, 947
 optimization, 518
 running time, 496, 501
 SAT solvers, 832

Introduction to the Theory of
Computation book, 780

Invariants in assertions, 467
Inverse permutations, 122
Inverters, 1013–1014
Inverting functions, 536–538
Invoking instance methods, 334
IP (Internet Protocol), 435
IPv4
 vs. IPv6, 435
 number of addresses, 900, 904
IPv6
 vs. IPv4, 435
 number of addresses, 901
IR (instruction register), 910
IR write control line, 1082
ISBN (International Standard Book

Number), 86
Isolated vertices in graphs, 703
Isomorphic binary trees, 661
Isomorphism in graphs, 859
Items in collections, 566
Iterable interface, 451, 602
Iterable collections, 601–605
 arrays, 603
 linked lists, 604–605
 Queue, 604–605
 SET, 652
 Stack, 603
Iterated function systems, 239–243
Iterations in BSTs, 650
Iterator interface, 451, 602–605

J
Java command, 3, 134
.java extension, 3, 6, 8, 197, 383
Java language
 benefits, 9
 libraries, 1094
 overview, 1–8
Java platform, 2

1122 Index

Lower bounds, 826
Luminance, 343–345
Luminance program, 344–345

M
M/M/1 queues, 597–600
MAC addresses, 877
Machine-language programming

arrays, 938–941
benefits, 945
description, 907
functions, 931–933
overview, 930
standard input, 936–938
standard output, 934–936
summary, 945–946
TOY machine, 914

Magnitude
complex numbers, 402–403
spatial vectors, 442–443

Magritte, René, 363
main() methods, 4–5
 multiple, 229
 transfer of control, 193–194
Majority function
 adder circuits, 1028–1030
 sum-of-products circuits, 1027
 truth tables for, 1025
Mandelbrot, Benoît, 297, 406
Mandelbrot program, 406–409
Maps, Mercator projections, 48
Markov, Andrey, 176
Markov chains
 impact, 184
 mixing, 179–184
 overview, 176
 power method, 180–181
 squaring, 179–180
Markov model paradigm, 460
Markov program, 180–182

Lissajous, Jules A., 168
Lissajous patterns, 168
Lists, linked. See Linked lists
Literals
 array elements, 116
 binary and hex, 891
 booleans, 26
 characters, 18–19
 description, 15
 floating-point numbers, 24
 integers, 22
 strings, 19, 334
Little’s law, 598
Load address instruction, 1080
Load instructions, 938, 1080
LoadBalance program, 606–607
Local clustering, 693–694
Local variables
 vs. instance variables, 384
 static methods, 196
Logarithmic order of growth, 503
Logarithmic spirals, 398–399
Logical design, 1008–1009
Logical instructions, 912–913
Logical shifts, 891–892
Logical switches
 bus muxes, 1036
 demultiplexers, 1022
 multiplexers, 1020
Logo language, 400
Loitering condition, 581
Long data type, 24, 513
Long path problems, 829
Longest common subsequence

(LCS), 285–288
Longest path problem, 838
LongestCommonSubsequence

program, 286–288
Lookup program, 630–632
Loops. See Conditionals and loops
Lost letter, 840

 modifying, 255
 in modular programming,

227–228, 251–254
 modules, 191
 overview, 226, 230
 random numbers, 232–236
 statistics, 244–250
 stress testing, 236
 unit testing, 235
LIFO (last-in first-out), 566–567
Lights for TOY machine, 916
Lindenmayer systems, 803
Linear algebra for vectors, 442–443
Linear equation satisfiability

problem, 830, 839
Linear feedback shift registers

(LFSRs), 1000–1001
Linear inequality satisfiability

problem, 831, 839
Linear interpolation, 351
Linear order of growth, 504–505,

507–508
Linear programming problem, 831
Linearithmic order of growth,

504–505, 507–508
Linked lists
 circular, 622
 FIFO queues, 593, 596
 hash tables, 636
 iterable classes, 604–605
 overview, 571–574
 stacks, 574–576
 summary, 578
 symbol tables, 635
 traversal, 574, 577
Linked structures. See Binary

search trees (BSTs)
LinkedStackOfStrings

program, 574–576
Links in BSTs, 640–642
Lipton, R. J., 856

1123Index

MIDI Tuning Standard, 161
Midpoint displacement method,

278, 280
Milgram, Stanley, 670
Minimum keys in BSTs, 651
Minsky, Marvin, 780, 794
Minus signs (-)
 compound assignments, 60
 floating-point numbers, 24–26
 integers, 22
 lambda expressions, 450
MIX machine, 947
Mixed-type operators, 27–29
Mixing Markov chains, 176,

179–184
MM1Queue program, 598–600
Models
 circuit. See Circuit models
 computational, 716
 mathematical, 716
 universal, 794–797
Modular programming, 191
 classes in, 227–229
 code reuse, 226, 253
 debugging, 253
 encapsulation, 432
 flow of control in, 227–228
 libraries in, 251–254
 machine language, 932
 maintenance, 253
 program size, 252–253
Modules
 abstraction layers, 1037
 as classes, 228
 CPU, 1076
 description, 1034
 interactions, 319
 overview, 191
 program counters, 1073
 size, 319
 summary, 254

 feedback loops as, 1048
 flip-flops, 1049–1050
 interfaces, 1054
 leaks, 367, 581
 linked lists, 571
 memory bits, 1056
 objects, 338, 514
 performance, 513–517
 recursion, 282
 references, 367
 safe pointers, 366
 strings, 515
 TOY machine, 908–909
 two-dimensional arrays, 107
 virtual, 972, 975–976
Memory dumps, 909
Memory instructions
 address instructions, 912
 TOY machine, 913
Memory writes for CPU, 1079
Memoryless queues, 597
Mercator projections, 48
Merge program, 550–552
Mergesort
 divide-and-conquer, 554
 overview, 550–552
 performance, 553
Metacharacters, 724, 730–731
Method references, 470
Methods
 abstract, 446
 call chaining, 404
 deprecated, 469
 instance, 334, 385–386
 instance vs. static, 340
 library, 29–32
 main(), 4–5
 overriding, 452
 static. See Functions; Static

methods
 stub, 303
 variables within, 386–388

Markov systems, 802–803
Markovian queues, 597
Marsaglia’s method, 85, 259
Masking bitwise operations,

892–893
Matcher class for REs, 763
Matching graphs, 713
Math library, 192
 accessing, 228
 methods, 30–32, 193, 198
Mathematical analysis, 498–502
Mathematical functions, 202–204
Mathematical induction, 262, 266
Mathematical models, 716
Matiyasevich, Yuri, 816
Matlab language, 1094
Matrices
 boolean, 302
 Hadamard, 122
 images, 346–347
 matrix multiplication, 109
 sparse, 666
 transition, 172–173
 two-dimensional arrays, 106,

109–110
 vector multiplication, 110, 180
Mauchly, John, 924–925
Maximum values in arrays, 209
Maximum keys in BSTs, 651
Maxwell–Boltzmann distributions,

257
McCarthy’s 91 function, 298
Mechanical systems, graphs for, 673
Memoization, 284
Memory
 arrays, 91, 94, 515–517
 ArrayStackOfStrings,

569–570
 available, 520
 bit-slice design, 1054–1056
 circuits, 1054–1057

1124 Index

Nondeterministic finite-state
automata (NFAs)

DFA equivalence, 749–750
Kleene’s theorem.

See Kleene’s theorem
overview, 744
RE equivalence, 750–751
recognition problem, 744–745
trace example, 747

Nondominant inner loops, 510
NOR function, 989–991
NOR gates

cross-coupled, 1050
description, 1014

Normal distribution functions
cumulative, 202–203
probability density, 202–203

NOT gates, 1013–1014
Not operation, 26–27, 987–989
NP-completeness
 addressing problems, 852
 boolean satisfiability, 853–856
 classifying problems, 851
 Cook–Levin theorem, 844–847
 coping, 850–857
 Karp’s reductions, 845–848
 overview, 843–844
 proving, 844–849
NP-hard problems, 858
NP search problems
 difficult, 837
 easy, 837
 main question, 840–841
 nondeterminism, 835
 overview, 833
 solutions, 835
 subset sum, 834
 TSP problem, 862
 vertex cover problem, 834, 842
 0/1 ILP problem, 835
Null calls, 312

 variables, 16
 vertices, 675
NaN value, 26, 40
NAND function, 989–991
Nash, John, 840
Natural numbers, 875
Natural recursion, 262
Negation axiom, 990
Negative numbers
 array indexes, 116
 representing, 38, 886–888
Neighbor vertices, 671
Nested classes
 iterators, 574
 linked lists, 603–605
Nesting conditionals and loops,

62–64
new keyword
 constructors, 385
 Node objects, 609
 String objects, 333
Newcomb, Simon, 224
Newline characters (\n)
 compiler considerations, 10
 escape sequences, 19
Newton, Isaac
 dice question, 88
 motion simulation, 478–479
 square root method, 65
Newton’s law of gravitation, 481
Newton’s method, 65–67
Newton’s second law of motion,

480–481
NFAs. See Nondeterministic finite-

state automata (NFAs)
90–10 rule, 170, 176
Nodes
 BSTs, 640–642, 942
 linked lists, 571–573
 new keyword, 609

Monochrome luminance, 343–344
Monte Carlo simulation, 300,

307–308
Moore’s Law
 coping with, 971
 description, 507–508
Move-to-front strategy, 620
Movie–performer graph, 680
Multidimensional arrays, 111
Multiple arguments, 197
Multiple inheritance, 470
Multiple main() methods, 229
Multiple return statements, 198
Multiple I/O streams, 143
Multiplexers
 bus switching, 1035
 description, 1023
 selection, 1019–1020
Multiplication
 complex numbers, 402–403
 floating-point numbers, 24–26
 integers, 22–23, 885
 matrices, 109–110
 P search problems, 839
 polar representation, 433
Multiway gates, 1015–1017, 1023
Music, 155–159
Mutable types, 364, 439

N
N-body simulation

Body data type, 479–480
 file format, 483
 force, 480–482
 overview, 478–479
 summary, 488
 Universe data type, 483–487
Names
 arrays, 91
 methods, 5, 30, 196
 objects, 362

1125Index

constant, 503
cubic, 505–508
exponential, 505–508
linear, 504–505, 507–508
linearithmic, 504–505, 507–508
logarithmic, 503
overview, 503
performance analysis, 500–501
quadratic, 504–505, 507–508

Ordered operations
binary search trees, 651
symbol tables, 624

Orphaned objects, 366
Orphaned stack items, 581
Out library, 355–356
Outer loops, 62
Outline shapes, 149
Output
 arithmetic logic units, 1032
 array libraries, 237–238
 circuit models, 1002–1004
 clocks, 1059–1060
 data types, 353
 file concatenation, 356
 gates, 1013
 machine language, 934–936
 print statements, 8
 printf() method, 126–129
 standard, 127, 129–132
 standard audio, 155–159
 standard drawing.

See Standard drawing
 stream data types, 355
 two-dimensional arrays, 107
 virtual machines, 969–970
Overflow
 arithmetic, 885
 arrays, 95
 attacks, 963
 guarding against, 898
 integers, 23
 negative numbers, 38

Off-by-one errors, 92
Offscreen canvas, 151
Offset binary representation, 889
On computable numbers, with an

application to the Entscheid-
ungsproblem article, 717

On/off switches, 1005
One-dimensional arrays, 90
One-hot OR gates, 1023
Onscreen canvas, 151
Opcodes, 911
Operands, 17
Operators and operations
 boolean, 26–27, 989–991
 comparisons, 27–29, 364
 compound assignments, 60
 data types, 14, 331
 description, 15
 expressions, 17, 587
 floating-point numbers, 24
 integers, 22, 891
 lambda, 450
 overloading, 416
 precedence, 17
 reverse Polish notation, 590
 stacks, 590
 strings, 19, 21, 334, 453
 TOY machine, 906
Optimal data compression, 814
Optimization
 NP problems, 835
 premature, 518
Optimizing compilers, 814
OR function, 987–989
OR gates, 1014, 1023
Or operation
 bitwise, 891–892
 boolean type, 26–27
 TOY machine, 913
Order in BSTs, 640, 642–643
Order statistics, 651
Order-of-growth classifications

Null keys in symbol tables, 626
Null links in BSTs, 640
Null nodes in linked lists, 571–572
null keyword, 415
Null transitions in NFAs, 744–746
Null values in symbol tables, 626
NullPointerException, 370
Numbers
 conversions, 21, 67–69, 880–881
 intractability, 827
 negative, 886–888
 real, 888–890
Numerical integration, 449
Nyquist frequency, 161

O
Object class, 453–455
Object-oriented programming
 data types. See Data types
 description, 254
 overview, 329
Objects
 arrays, 365
 collections, 582–583
 comparing, 364, 545–546
 Complex, 404
 equality, 454–456
 memory, 514
 names, 362
 orphaned, 366
 references, 338–339
 String, 333–334
 type conversions, 339
 uninitialized variables, 339
 working with, 338–339
Observations, 495–496
Occam’s Razor, 814
Octal representation, 898
Odd parity function
 adder circuits, 1028–1030
 sum-of-products circuits, 1026
 truth tables for, 1026

1126 Index

probability estimates, 310–311
recursive solution, 312–314
scaffolding, 302–304
testing, 305–308
vertical percolation, 305–306

Performance
binary search trees, 647–648
binary searches, 535
caveats, 509–511
comparing, 508–509
guarantees, 512, 627
hypotheses, 496–502
importance, 702
insertion sorts, 544–545
memory use, 513–517
mergesort, 553
multiple parameters, 511
order of growth, 503–506
overview, 494–495
perspective, 518
prediction, 507–509
scientific method, 495–502
shortest paths, 690
wrapper types, 369

Performer program, 697–699
Periods (.)
 classes, 227
 regular expressions, 724
Permutations
 inverse, 122
 sampling, 97–99
Phase transitions, 317
Phone books, 628
Photographs, 346
Physical systems, graphs for, 672
Pi constant, 31–32
Picture library, 346–347
Piecewise approximation, 148
Pigeonhole principle, 754–755

 vectors, 442
Parity in ripple–carry adders, 1028
Parsing
 instructions, 966–967
 strings, 880–882
Pascal’s triangle, 125
Passing arguments
 references by value, 364–365
 static methods, 207–210
PathFinder program, 683–686,

690–692
Paths
 graphs, 674, 683–692
 intractability problems, 829
 shortest. See Shortest paths
 simple, 710
Pattern class for REs, 763
PCs. See Program counters (PCs)
PDA (pushdown automata),

755–756
PDP-8 computers, 906
Peaks in terrain analysis, 167
Pell’s equation, 869
Pens
 color, 150
 drawings, 146
Pepys, Samuel, 88
Pepys problem, 88
Percent signs (%)
 conversion codes, 131–132
 remainder operation, 22–23
Percolation case study
 adaptive plots, 314–318
 lessons, 318–320
 overview, 300–301

Percolation, 303–304
PercolationPlot, 315–317
PercolationProbability,

310–311
PercolationVisualizer,

308–309

Overhead for objects, 514
Overloading
 operators, 416
 static methods, 198
Overriding methods, 452

P
The P= NP Question and Gödel’s

Lost Letter book, 856
P search problems, 837
 examples, 839
 main question, 840–841
Padding object memory, 514
Page, Lawrence, 184
Page ranks, 176–177
Palindromes
 description, 719
 Watson–Crick, 374
Paper size, 294
Paper tape, 934–938
Papert, Seymour, 400
Parallel arrays, 411
Parallel edges, 676
Parameter variables
 lambda expressions, 450
 static methods, 196–197, 207
Parameterized data types, 582–586
Parameters
 in performance, 511
 TOY-8 machine, 1070
Parentheses ()

casts, 33
constructors, 333, 385
expressions, 17, 27
functions, 24, 197
lambda expressions, 450
methods, 30, 196
operator precedence, 17
regular expressions, 724
stacks, 587, 590
static methods, 196

1127Index

print() method, 31
 arrays, 237–238
 impurity, 32
 Out, 355
 vs. println(), 8
 standard output, 129–130
Print statements, 5
printf() method, 129–132, 355
Printing, formatted, 130–132
println() method, 31
 description, 5
 impurity, 32
 Out, 355
 vs. print(), 8
 standard output, 129–130
 string concatenation, 20
private keyword
 access modifier, 384
 encapsulation, 433
Probabilities, 308, 310–311
Probability density function,

202–203
Problem reduction
 overview, 811
 program equivalence, 812
 Rice’s theorem, 812–813
 totality problem, 811–812
Problem size in intractability, 824
Procedural programming style, 329
Program counters (PCs)
 bus connections, 1073–1074
 connections and timing, 1075
 control lines, 1074–1075
 interfaces, 1073
 modules, 1073
 overview, 1073
 TOY machine, 910
Program equivalence problem, 812
Program size, 252–253
Programming environments, 1094

 in stacks, 567–568
Positional notation, 875
Post, Emil, 813–814
Post correspondence problem,

813–814
Postconditions in assertions, 467
Postfix notation, 590
Postorder tree traversal, 649
PostScript language, 400, 590
PotentialGene program,

336–337
Pound signs (#), 769
Power method, 180–181
Power source, 1003–1004
PowersOfTwo program, 56–58
Precedence
 arithmetic operators, 17
 regular expressions, 724
Precision
 floating-point numbers, 25, 40
 printf(), 130–131
 standard output, 129–130
Precomputed array values, 99–100
Preconditions in assertions, 467
Prediction, performance, 507–509
Preferred attachment process, 713
Prefix-free strings, 564
Premature optimization, 518
Preorder tree traversal, 649
Primality-testing function, 198–199
Prime numbers
 in factoring, 72–73
 Sieve of Eratosthenes, 103–105
PrimeSieve program, 103–105
Primitive data types, 14
 memory size, 513
 overflow checking, 39
 performance, 369
 wrappers, 457
Principle of superposition, 483

Piping
 connecting programs, 141
 filters, 142–143
Pixels in image processing, 346
Plasma clouds, 280
Playing card possibilities, 823
PlayThatTune program, 157–158
PlayThatTuneDeluxe program,

213–215
PlotFilter program, 146–147
Plotting
 array values, 246–248
 experimental results, 249–250
 function graphs, 148, 248
 percolation case study, 314–318
 sound waves, 249
Plus signs (+)
 compound assignments, 60
 floating-point numbers, 24–26
 integers, 22
 regular expressions, 731
 string concatenation, 19–20
Pointers
 array elements, 94
 handles, 371
 object references, 338
 safe, 366
Poisson processes, 597
Polar coordinates, 47
Polar representation, 433–434
Polling, statistical, 167
Polymorphism, 448
Polynomial time, 823
Polynomial-time algorithms
 intractability, 825–826
 P search problems, 837, 839
 usefulness, 858
Polynomial-time reductions,

841–843
Pop operation
 reverse Polish notation, 590–591

1128 Index

lessons, 184–185
Markov chains, 176, 179–184
overview, 170–171
page ranks, 176–177
simulation, 174–178
transition matrices, 172–173

RandomInt program, 33–34
RandomSeq program, 127–128
RandomSurfer program, 175–177
RangeFilter program, 140–143
Ranges
 binary search trees, 651
 functions, 192
Ranks
 binary search trees, 651
 random web surfer, 176–177
Raphson, Joseph, 65
Raster images, 346
Real numbers, 888–890
Receivers in cryptography, 992
Recognition problem
 formal languages, 722
 NFAs, 744–745
 REs, 728–729, 735, 753
Recomputation, 282–283
Rectangle rule, 449
Recurrence relations, 272
Recursion, 191
 base cases, 281
 BSTs, 640–641, 644, 649
 binary searches, 533
 Brownian bridges, 278–280
 considering, 320
 convergence issues, 281–282
 dynamic programming,

284–289
 Euclid’s algorithm, 267–268
 exponential time, 272–273
 factorial example, 264–265
 function-call trees, 269, 271
 graphics, 276–277, 397

Quaternions, 424
Question marks (?) in REs, 731
Questions program, 533–535
Queue program, 592–596, 604–605
Queues
 circular, 620
 deques, 618
 FIFO. See First-in first-out

(FIFO) queues
 overview, 566
 random, 596
 summary, 608
Queuing theory, 597–600
Quotes (") in text, 5

R
Race conditions in flip-flops, 1050
Ragged arrays, 111
Ramanujan, Srinivasa, 86
Ramanujan’s taxi, 86
Random graphs, 695
Random numbers

fair coin flips, 52–53
function implementation, 199
Gaussian, 47
impurity, 32
libraries, 232–236
random sequences, 127–128
Sierpinski triangles, 239–240
simulations, 72–73
Math.random(), 30–31

Random queues, 596
Random shortcuts, 699
Random walks
 Brownian bridges, 278
 self-avoiding, 112–115
 two-dimensional, 86
 undirected graphs, 712
Random web surfer case study
 histograms, 177
 input format, 171

Programming languages
 indexing, 634
 stack-based, 590
 symbol tables, 629
Programming overview, 1
 HelloWorld example, 4–6
 input and output, 7–8
 process, 2–3
Programs
 connecting, 141
 processing programs, 788–790,

964–966
Proof by contradiction, 754
Pseudo-code, 911
public keyword
 access modifiers, 384
 description, 228
 static methods, 196
Pulses, clock, 1058
Punched cards, 940
Punched paper tape, 934–938
Pure functions, 201
Pure methods, 32
Push operation
 reverse Polish notation, 590–591
 stacks, 567–568
Pushbuttons for TOY machine, 916
Pushdown automata, 755–756
Pushdown stacks, 567–568
Put operations
 hash tables, 639
 symbol tables, 624
Putnam, Hilary, 816

Q
Quad play, 273
Quadratic Koch island fractal, 803
Quadratic order of growth,

504–505, 507–508
Quadratic program, 25–26
Quadrature integration, 449

1129Index

Repetitive code, simplifying, 100
Representation in APIs, 431
Representing information

binary and hex, 875–880
bit manipulation, 891–893
characters, 894–895
integer arithmetic, 884–885
negative numbers, 886–888
overview, 874
real numbers, 888–890
strings, 880–883
summary, 896

Reproducible experiments, 495
Reserved words, 16
Resetting flip-flops, 1050
Resizing arrays, 578–581, 635
ResizingArrayStackOf-

Strings program, 578–581
Resource allocation
 graphs for, 673
 overview, 606–607
Resource-sharing systems, 606–607
Return addresses, 931
return statements, 194, 196, 198
Return values
 arrays as, 210
 methods, 30, 196, 200, 207–210
 reverse Polish notation, 591
Reuse, code, 226, 253, 701
Reverse Polish notation, 590
RGB color format, 48–49, 341, 371
Rice, Henry, 812
Rice’s theorem, 812–813
Riemann integral, 449
Riffle shuffles, 125
Right shift operations
 bitwise, 891–892
 TOY machine, 913
Right subtrees, 640
Right triangles, 199
Ring buffers, 620

 properties, 362–363
 safe pointers, 366
Reflexive property, 454
Registers
 implementing, 1052
 machine language, 931
 overview, 1051–1052
 TOY machine, 909, 911
 writing to, 1052–1053
Regular expressions (REs)
 applications, 732–736
 computational biology, 732–734
 generalized, 730–732
 NFA equivalence, 750–752
 overview, 724–725
 recognition problem, 728–729,

735, 753
 regular languages, 725–727
 searches, 734–736
 shorthand notations, 730–731
 validity checking, 732
Regular languages, 723
 basic operations, 723–724
 regular expressions. See Regular

expressions (REs)
Reject states
 DFAs, 738–739
 Turing machines, 766–767
Relative entropy, 667–668
Relays in circuit models, 1006
Remainder operation, 22–23
Removing
 array items, 569
 collection items, 566, 602–603
 linked list items, 573–574
 NFA nodes, 751
 queue items, 592, 596
 set keys, 652
 stack items, 567–569
 symbol table keys, 624–627
Rendell, Paul, 805

 Gray codes, 273–275
 linked lists, 571
 mathematical induction, 266
 memory requirements, 282
 mergesort, 550
 overview, 262–263
 percolation case study, 312–314
 perspective, 289
 pitfalls, 281–283
 recomputation issues, 282–283
 towers of Hanoi, 268–272
Red–black trees, 648
Redirection, 139
 piping, 142–143
 standard input, 140–141
 standard output, 139–140
Reduced instruction set computing

(RISC), 974
Reductio ab absurdum, 808
Reduction
 binary search trees, 640
 mergesort, 554
 polynomial-time, 841–843
 problem, 811–813
 recursion, 264–265
References
 accessing, 339
 aliasing, 363
 arrays, 365
 equality, 454–455
 garbage collection, 367
 immutable types, 364, 441
 linked lists, 572
 memory, 367
 method, 470
 object-oriented programming,

330
 objects, 338–339
 orphaned objects, 366
 passing, 207, 210, 364–365
 performance, 369

1130 Index

Self-loops for edges, 676
Self-modifying code, 922–924
SelfAvoidingWalk program,

112–115
Semantics, 52
Semicolons (;)
 for loops, 59
 statements, 5
Sequential circuits
 clocks, 1058–1061
 description, 1008
 feedback circuits, 1048–1049
 flip-flops, 1049–1050
 memory, 1054–1057
 overview, 1048
 registers, 1051–1053
 summary, 1062–1063
Sequential searches, 535–536
Server farms, 976
Servers, 606
Service rate, 597–598
SET library, 652–653
Sets
 elementary functions, 1001
 gates, 1045
 graphs, 676
 Julia, 427
 Mandelbrot, 406–409
 overview, 652–653
 of values, 14
Setting flip-flops, 1050
Shadow variables, 419
Shannon, Claude, 1013, 1041
Shannon entropy, 378
Shapes, outline and filled, 149
Shifts
 bits, 891–892
 circular, 375
 linear feedback shift registers

(LFSRs), 1000–1001
 purpose, 898–899
 TOY machine, 913

Scale program, 349–350
Scaling
 drawings, 146
 image processing, 349–350
 spatial vectors, 442–443
Scientific computing, 1094
Scientific method, 494–495
 hypotheses, 496–502
 observations, 495–496
Scientific notation
 conversion codes, 131–132
 real numbers, 888–889
Scope of variables, 60, 200
Screen scraping, 357–359
Search problems
 difficult, 837–838
 easy, 837
 nondeterminism, 836
 overview, 833
 solutions, 835
 subset sum, 834
 TSP problem, 862
 vertex cover problem, 834, 842
 0/1 ILP problem, 835, 842
Searches
 binary. See Binary searches
 binary search trees. See Binary

search trees (BSTs)
 bisection, 537
 breadth-first, 683, 687–688, 690,

692
 data mining example, 458–464
 depth-first, 312, 690
 indexing, 634
 overview, 532
 regular expressions, 734–736
 for similar documents, 464
Secret messages, 992
Seeds for random numbers, 475
Select control lines, 1056
Self-avoiding walks, 112–115, 710

Ring graphs, 694–695, 699
Ripple–carry adders, 1028–1030
RISC (reduced instruction set

computing), 974
Robinson, Julia, 816
Roots in binary search trees, 640
Rotation filters, 379
Roulette-wheel selection, 174
Round-robin policies, 606
Rows in 2D arrays, 106, 108
RR-format instructions, 911
Ruler program, 19–20
Run-time errors, 6
Running time. See Performance
Running virtual machines, 969
RuntimeException, 466

S
Safe pointers, 366
Sample program, 98–99
Sample standard deviation, 246
Sample variance, 244
Sampling
 audio, 156–157
 function graphs, 148
 scaling, 349–350
 without replacement, 97–99
SAT problem, 832
 nondeterministic TM, 836
 NP-completeness, 844–846,

853–856
SAT program, 855–856
Satisfiability, 830
 boolean, 832, 836
 integer linear inequality, 831
 linear equation, 830
 linear inequality, 831
 NP-completeness, 844–846,

853–856
Saving audio files, 157
Scaffolding, 302–304

1131Index

Sound waves
plotting, 249
superposition of, 211–215

Source vertices, 683
Space-filling curves, 425
Spaces, 10
Space–time tradeoff, 99–100
Sparse matrices, 666
Sparse small-world graphs, 693
Sparse vectors, 666
Spatial vectors, 442–445
Specification problem

APIs, 430
formal languages, 722
programs, 596

Speed
clocks, 1058
in performance, 507–508

Spider traps, 176
Spira mirabilis, 398
Spiral program, 398–399
Spirographs, 167
Split program, 358, 360
Spreadsheets, 108
Sqrt program, 65–67
Square brackets ([])
 arrays, 91, 106
 regular expressions, 731
Square roots
 computing, 65–67
 double value, 25
Squares, Albers, 341–342
Squaring Markov chains, 179–180
SR flip-flops, 1050
ST library, 625–627
Stable circuits with feedback, 1049
Stack program, 583–585
StackOfStrings program, 568
StackOverflowError, 282

Single-line comments, 5
Singles quotes ('), 19
Singly linked lists, 571
Sipser, Michael, 780
Six degrees of separation, 670
Size
 arrays, 578–581, 635
 binary search trees, 651
 modules, 319
 paper, 294
 problems, 495, 824
 program, 252–253
 symbol tables, 624
 words, 874, 897
Sketch program, 459–462
Sketches
 comparing, 462–463
 computing, 459–460
 hashing, 460
 overview, 458–459
Slashes (/)
 comments, 5
 floating-point numbers, 24–26
 integers, 22–23
Slide rules, 907–908
Small-world case study. See Graphs
Small-world phenomenon, 670,

693
SmallWorld program, 696
Smith–Waterman algorithm, 286
Social network graphs, 672
Sorts
 Arrays.sort(), 559
 frequency counts, 555–557
 insertion, 543–549
 lessons, 558
 mergesort, 550–555
 overview, 532
 P search problems, 839
Sound. See Standard audio

short data type, 24
Shortcuts in ring graphs, 699
Shortest paths
 adjacency-matrix, 692
 breadth-first searches, 690
 degrees of separation, 684–686
 distances, 687–688
 graphs, 674, 683
 implementation, 691
 P search problems, 829, 839
 performance, 690
 single-source clients, 684
 trees, 688–689
Shuffling arrays, 97
Sicherman dice, 259
Side effects
 arrays, 208–210
 assertions, 467
 importance, 217
 methods, 32, 126, 201
Sierpinski triangles, 239–240
Sieve of Eratosthenes, 103–105
Sign-and-magnitude, 886
Sign extension convention, 899
Signatures
 constructors, 385
 methods, 30, 196
 overloading, 198
Similarity measures, 462
Simple paths, 710
Simplex method, 831
Simulations
 coupon collector, 174–178
 dice, 121
 gambler’s ruin, 69–71
 Let’s Make a Deal, 88–89
 load balancing, 606–607
 M/M/1 queues, 598–600
 Monte Carlo, 300, 307–308
 n-body. See N-body simulation
 random web surfer, 174–178

1132 Index

Side effects, 201
summary, 215
superposition example, 211–215
terminology, 195–196
variable scope, 200

Static variables, 284
Statistical polling, 167
Statistics, 244–250
StdArrayIO library, 237–238
StdAudio library, 128–129, 155
StdDraw library, 128–129,

144–145, 150, 154
StdIn library, 128–129, 132–133
StdOut library, 129–131
StdRandom program, 232–236
StdStats program, 244–247
StockAccount program, 410–413
StockQuote program, 358–359
Stop codons, 336
Stopwatch program, 390–391
Store instruction, 938, 1080
Stored-program computers,

922–924
Streams
 input, 354–355
 output, 355
 screen scraping, 357–359
Stress testing, 236
Strings and String data type
 alphabet symbols, 718
 API, 332–333
 binary, 718–719
 circular shifts, 375
 concatenation, 19–20, 723–724
 conversion codes, 131–132
 conversions, 21, 453
 description, 14–15
 genomics application, 336–340
 immutable types, 439–440
 input, 133
 internal storage, 37

 typing, 134
 virtual machines, 969–970
Standard output
 description, 127
 formatted, 130–132
 machine language, 934–936
 multiple streams, 143
 overview, 129–130
 piping, 141–143
 redirecting, 139–140
 summary, 159
 virtual machines, 969–970
Standard statistics, 244–250
Standards, API, 429
Start codons, 336
Statements
 assignment, 17
 blocks, 50
 declaration, 15–16
 methods, 5
States
 DFAs, 738–739
 NFAs, 744–746
 objects, 340
 Turing machines, 766–772
 virtual machines, 968
Static methods, 191–192
 accessing, 227–229
 arguments, 197
 for code organization, 205–206
 control flow, 193–195
 defining, 193, 196
 function-call traces, 195
 function calls, 197
 implementation examples, 199
 vs. instance, 340
 libraries. See Libraries
 overloading, 198
 passing arguments, 207–210
 returning values, 207–210

Stacks
 arithmetic expression

evaluation, 586–589
 arrays, 568–570, 578–581
 function calls, 590–591
 linked lists, 574–576
 overview, 566
 parameterized types, 582–586
 pushdown, 567–568
 stack-based languages, 590
 summary, 608
Standard audio
 concert A, 155
 description, 126, 128–129
 music example, 157–158
 notes, 156
 overview, 155
 sampling, 156–157
 saving files, 157
 summary, 159
Standard deviation, 246
Standard drawing
 control commands, 145–146
 description, 126, 128–129
 double buffering, 151
 filtering data to, 146–147
 function graphs, 148
 outline and filled shapes, 149
 overview, 144–145
 summary, 159
 text and color, 150
Standard input
 arbitrary size, 137–138
 description, 126, 128–129
 formatted, 135
 interactive, 135–136
 machine language, 936–938
 multiple streams, 143
 overview, 132–133
 redirecting, 140–141
 summary, 159

1133Index

Tape and tape readers
DFAs, 738–739
Turing machines, 766–769,

774–776
Tape program, 776
Taylor series approximations, 204
Templates, 50
TenHellos program, 54–55, 60
Terminal windows, 127
Terms, glossary for, 1097–1101
Terrain analysis, 167
Testing
 for bugs, 318
 importance, 701
 percolation case study, 305–308
Text. See also Strings and String

data type
 drawings, 150
 printing, 5, 10
Text editors, 3
Theory of computing, 715–717
this keyword, 445
Thompson, Ken, 735
3n+1 problem, 296–297
ThreeSum program, 497–502
Throwing exceptions, 465–466
Thue word problem, 819
Ticks, clock, 1058
Tilde notation, 500
Tildes (~)
 bitwise operations, 891
 boolean type, 991
 frequency analysis, 500
Time
 exponential, 272–273, 823
 performance. See Performance
 polynomial, 823
 Stopwatch timers, 390–391
TimePrimitives program, 519
Timesharing, 965
Tools, building, 320

Switches
 bus muxes, 1036
 circuit models, 1002, 1005–1006
 demultiplexers, 1022
 gates, 1013
 multiplexers, 1020
 TOY machine, 916–917
Switching circuit analysis, 1007
Switching time of gates, 1013
Symbol tables
 APIs, 625–627
 BSTs. See Binary search trees
 dictionary lookup, 628–632
 graphs, 676
 hash tables, 636–639
 implementations, 635–636
 indexing, 632–634
 machine language, 944
 overview, 624–625
 perspective, 654
 sets, 652–653
Symbolic names in assembly, 981
Symbols
 definition, 757
 description, 718–719
 DFA, 738
 NFA, 744
 regular expressions, 724
 Turing machines, 766–767
Symmetric order in BSTs, 640
Symmetric property, 454
Syntax errors, 10–11

T
Tables

of functions, 907–908
hash, 636–639
symbol. See Symbol tables

Tabs
compiler considerations, 10
escape sequences, 19

 invoking instance methods, 334
 memory, 515
 objects, 333–334
 overview, 331
 parsing, 880–882
 prefix-free, 564
 representation, 882–883
 as sequence of characters, 19
 shortcuts, 334–335
 string replacement systems, 795
 unions, 723
 variables, 333
 vertices, 675
 working with, 19–21
Strogatz, Stephen, 670, 693, 713
Structured programming, 926
Stub methods, 303
Subclassing inheritance, 452–457
Subgraphs, induced, 705
Subset sum problem
 intractability, 827–828
 NP, 834, 838
Subtraction
 floating-point numbers, 24–26
 integers, 22
 negative numbers, 887
Subtrees, 640, 651
Subtyping inheritance, 446–451
Sum-of-powers conjecture, 89
Sum-of-products
 adders, 1028
 boolean representation, 996–997
 circuits, 1024–1027
Sums, finite, 64–65
Superclasses, 452
Superposition
 force vectors, 483
 sound waves, 211–215
Swirl filters, 379
Switch control lines, 1005
Switch statements, 74–75

1134 Index

Trigonometric functions, 256
Truth tables, 26–27, 988–989
TSP problem, 862
Turing, Alan, 766

bio, 410–411, 717
code breaking, 907
von Neumann influenced by,

924–925
Turing-complete models, 794
Turing machines

binary adders, 771
binary incrementers, 769–771
compact trace format, 770
constant factor, 824
efficiency, 772
frequency count, 772–773
model, 766–769
overview, 766
related machines, 770–771
restrictions, 792–793
SAT problem, 836

 universal, 789–790
 universal virtual, 774–779
 universal virtual DFAs, 789
 universality. See Universality

variations, 791–794
TuringMachine program,

777–778
Turtle program, 394–396
Twenty questions game, 135–136,

533–535
TwentyQuestions program,

135–136
Two-dimensional arrays
 description, 90
 initialization, 106–107
 matrices, 109–110
 memory, 107, 516
 output, 107
 overview, 106
 ragged, 111

TOY program, 967
TOY-8 machine, 974–975
 basic parameters, 1070
 control circuit, 1080–1082
 CPU, 1076–1080
 instruction set, 1070–1071
 perspective, 1084–1087
 sum.toy program, 1071–1072,

1082–1083
TOY-64 machine, 973–974
Tracing
 function-call, 195
 programs with random(), 103
 variable values, 18, 56–57
Transfer of control, 193–195
Transistors, 1006
Transition matrices, 172–173
Transition program, 172–173
Transitions
 DFAs, 738–739
 NFAs, 744–746
 Turing machines, 766–767
Transitive property
 comparisons, 546
 equivalence, 454
 polynomial-time reduction, 843
Transposition of arrays, 120
Traveling salesperson problem, 862
Traversal
 binary search trees, 649–650
 linked lists, 574, 577
TreeMap library, 655
Tree nodes, 269
Trees
 BSTs. See Binary search trees
 function-call, 269, 271
 H-trees, 276–277
 shortest paths, 688–689
Triangles
 drawing, 144–145
 right, 199
 Sierpinski, 239–240

Top-level domains, 375
toString() method
 Charge, 383, 387
 Color, 343
 Complex, 403, 405
 Convert, 881–882
 Counter, 436–437
 description, 339
 Graph, 678–679
 linked lists, 574, 577
 Object, 453
 Sketch, 459
 Tape, 776
 Vector, 443
Total orderings, 546
Totality problem, 811–812
Towers of Hanoi problem, 268–272
TOY machine
 arithmetic logic unit, 910
 conditionals and loops, 918–921
 family of computers, 972–977
 fetch–increment–execute cycle,

910–911
 first program, 914–915
 historical note, 907–908
 instruction register, 910
 instructions, 909, 911–913
 in Java, 966–972
 machine-language program-

ming. See Machine-language
programming

 memory, 908–909
 operating, 916–917
 overview, 906–907
 program counter, 910
 registers, 909
 stored-program computer,

922–924
 virtual. See Virtual machines
 von Neumann machines,

924–925

1135Index

instance, 384
within methods, 196, 386–388
names, 16
scope, 60, 200
shadow, 419
static, 284
string, 333
tracing values, 18
uninitialized, 339

Vector images, 346
Vector program, 443–445, 515
Vectors
 arrays, 92
 cross products, 472
 dot products, 92, 442–443
 matrix–vector multiplication,

110
 n-body simulation, 479–480
 sparse, 666
 spatial, 442–445
 vector–matrix multiplication,

110, 180
Vertex cover problem
 intractability, 828
 NP-completeness, 846–847
 NP search problems, 834, 842
Vertical bars (|)
 bitwise operations, 891–892
 boolean type, 26–27, 991
 piping, 141
 regular expressions, 724
Vertical OR gates, 1023
Vertical percolation, 305–306
Vertices
 bipartite graphs, 682
 creating, 676
 eccentricity, 711
 graphs, 671, 674
 isolated, 703
 names, 675
 PathFinder, 683
 String, 675

Unsigned integers, 884
Unsolvability proof, 810
Unsolvable problems, 430
 blank tape halting problem, 820
 definite integration, 816
 description, 806
 examples, 815
 halting problem, 808–810
 Hilbert’s 10th problem, 816
 implications, 816–817
 liar’s paradox, 807–808
 optimal data compression, 814
 optimizing compilers, 814
 Post correspondence, 813–814
 program equivalence, 812
 totality, 811–812
Upper bounds, 825
Upscaling in image processing, 349
UseArgument program, 7–8
User-defined libraries, 230
UTF-8 encoding, 895
UTMs, 789–790

V
Validate program, 729
Validity checking, 732
Values
 array, 95–96
 data types, 14, 331
 passing arguments by, 207, 210,

364–365
 precomputed, 99–100
 symbol tables, 624–626
Variables
 assignment statements, 17
 boolean, 987, 994–997
 compound assignments, 60
 constants, 16
 description, 15–16
 initial values, 415
 inline initialization, 18

 self-avoiding walks, 112–115
 setting values, 108
 spreadsheets, 108
Two’s complement, 38, 886–888
Type arguments, 585, 611
Type conversions, 34–35
Type parameters, 585
Type safety, 18
Types. See Data types

U
Unboxing, 457, 585–586
Undirected graphs, 675
Unicode characters

description, 19
overview, 894–895
strings, 37

Uniform random numbers, 199
Uninitialized variables, 94, 339
Union operation in REs, 723
Unit testing, 235
Universal models, 794–797
Universal sets

elementary functions, 1001
gates, 1045

Universal Turing machines
(UTMs), 789–790

Universal virtual DFAs, 741–743
Universal virtual TMs, 774–779
Universality

algorithms, 786–787
Church–Turing thesis, 790–791
overview, 786
programs processing programs,

788–790
Turing machine variations,

791–794
universal models, 794–797
virtual DFA/NFA, 788–789

Universe program, 483–487
Unreachable code error, 216

1136 Index

Write control lines
CPU, 1079–1080
memory bits, 1056
register bits, 1051

X
XOR circuits

in arithmetic logic units, 1031
sum-of-products, 1024–1025

xor (exclusive or) operation,
891–892, 913

Y
Y2K problem, 435, 976
Young tableaux, 530

Z
Zero-based indexing, 92
Zero crossings, 164
Zero extension convention, 899
0/1 ILP problem, 831, 835

NP-completeness, 845–846
 vertex cover problem, 842
Zeros, leading, 883
ZIP codes, 435
Zipf ’s law, 556

.wav format, 157
Wave filters, 379
Web graphs, 695
Web pages, 170
 indexes searches, 634
 preferential attachment, 713
Weighing objects, 540–541
Weighted averages, 120
Weighted superposition, 212
while loops, 53–59
 examples, 61
 nesting, 62
Whitelists, binary searches for, 540
Whitespace characters
 compiler considerations, 10
 input, 135
Wide interfaces
 APIs, 430
 examples, 610–611
Wildcard operation in REs, 724
Wiles, Andrew, 722
Wind chill, 47
Wires
 circuit models, 1002–1004
 gates, 1013
Word ladders, 710
Words
 binary representation, 875
 computer, 874
 memory size, 513
 size, 897
Worst-case performance
 big-O notation, 520–521
 binary search trees, 648
 description, 512
 insertion sort, 544
 intractability, 825
 NP-completeness, 852
Wrapper types
 autoboxing, 585–586
 references, 369, 457

Virtual machines
 booting, 959–960, 968–969
 cautions, 961–963
 and cloud computing, 924
 description, 965
 dumping, 960–961
 instructions, 966–967
 Moore’s law, 971
 overview, 958–959
 program development, 970–971
 programs that process

programs, 964–966
 running, 969
 standard input, 969–970
 standard output, 969–970
 states, 968
 TOY machine family, 972–977
 universal virtual DFAs, 742
 universal virtual TM, 774–779
Viruses, 963
Viterbi algorithm, 286
void keyword, 201, 216
Volatility
 Black–Scholes formula, 565
 Brownian bridges, 278, 280
Von Neumann, John, 906
 ballistics tables, 907
 ENIAC improvements, 924–925
 Gödel letter, 840
 mergesort, 554
Von Neumann architecture, 790,

906, 924–925
Voting machine errors, 436

W
Walks

random. See Random walks
self-avoiding, 112–115, 710

Watson–Crick palindrome, 374
Watts, Duncan, 670, 693, 713
Watts–Strogatz graph model, 713

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	2—Functions and Modules
	2.1 Defining Functions
	2.2 Libraries and Clients
	2.3 Recursion
	2.4 Case Study: Percolation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

