SUPUTER SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK KEVIN WAYNE

FREE SAMPLE CHAPTER

SHARE

WITH OTHERS

in

Computer Science

This page intentionally left blank

Computer Science

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Princeton University

✦Addison-Wesley

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City Sāo Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016936496

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-407642-3 ISBN-10: 0-13-407642-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana. First printing, June 2016

To Adam, Andrew, Brett, Robbie, Henry, Iona, Rose, Peter, and especially Linda

To Jackie, Alex, and Michael

Contents

Preface.		 	. xiii
1—Elemen	nts of Programming	 	. 1
1.1	Your First Program	2	
1.2	Built-in Types of Data	14	
1.3	Conditionals and Loops	50	
1.4	Arrays	90	
1.5	Input and Output	126	
1.6	Case Study: Random Web Surfer	170	
2—Functi	ons and Modules	 	191
2.1	Defining Functions	192	
2.2	Libraries and Clients	226	
2.3	Recursion	262	
2.4	Case Study: Percolation	300	
3—Object	-Oriented Programming	 	329
3.1	Using Data Types	330	
3.2	Creating Data Types	382	
3.3	Designing Data Types	428	
3.4	Case Study: N-Body Simulation	478	
4—Algoria	thms and Data Structures	 	493
4.1	Performance	494	
4.2	Sorting and Searching	532	
4.3	Stacks and Queues	566	
4.4	Symbol Tables	624	
4.5	Case Study: Small-World Phenomenon	670	

5—Theory	y of Computing 715	
5.1	Formal Languages 718	
5.2	Turing Machines 766	
5.3	Universality 786	
5.4	Computability 806	
5.5	Intractability 822	
6—A Com	puting Machine	}
6.1	Representing Information 874	
6.2	TOY Machine 906	
6.3	Machine-Language Programming 930	
6.4	TOY Virtual Machine 958	
7—Buildir	ng a Computing Device	,
7.1	Boolean Logic 986	
7.2	Basic Circuit Model 1002	
7.3	Combinational Circuits 1012	
7.4	Sequential Circuits 1048	
7.5	Digital Devices 1070	
Context.		
Glossary		,
Index .		,
APIs .)

Programs

Elements of Programming

Y

Your Fir	st Program	
1.1.1	-	. 4
1.1.2	Using a command-line argument	7
Built-in	Types of Data	
1.2.1	String concatenation	. 20
1.2.2	Integer multiplication and division	n 23
1.2.3	Quadratic formula	
1.2.4	Leap year	. 28
1.2.5	Casting to get a random integer .	. 34
Conditio	onals and Loops	
1.3.1	Flipping a fair coin	. 53
1.3.2	Your first while loop	
1.3.3	Computing powers of 2	
1.3.4	Your first nested loops	
1.3.5	Harmonic numbers	
1.3.6	Newton's method	. 66
1.3.7	Converting to binary	
1.3.8	Gambler's ruin simulation	.71
1.3.9	Factoring integers	. 73
Arrays		
1.4.1	Sampling without replacement .	. 98
1.4.2	Coupon collector simulation	102
1.4.3	Sieve of Eratosthenes	104
1.4.4	Self-avoiding random walks	113
Input ar	nd Output	
1.5.1	Generating a random sequence	128
1.5.2	Interactive user input	136
1.5.3	Averaging a stream of numbers	138
1.5.4	A simple filter	140
1.5.5	Standard input-to-drawing filter	147
1.5.6	Bouncing ball	153
1.5.7	Digital signal processing	158
	ıdy: Random Web Surfer	
1.6.1	Computing the transition matrix	
1.6.2	Simulating a random surfer	175

- 1.6.3 Mixing a Markov chain 182

Functions and Modules

Defining Functions

2.1.1	Harmonic numbers (revisited)	194
2.1.2	Gaussian functions	
2.1.3	Coupon collector (revisited)	206
2.1.4	Play that tune (revisited)	
Librarie	es and Clients	
2.2.1	Random number library	234
2.2.2	Array I/O library	238
2.2.3	Iterated function systems	241
2.2.4	Data analysis library	245
2.2.5	Plotting data values in an array	
2.2.6	Bernoulli trials	250
Recursio	on	
2.3.1	Euclid's algorithm.	267
2.3.2	Towers of Hanoi	270
2.3.3	Gray code	275
2.3.4	Recursive graphics	
2.3.5	Brownian bridge	
2.3.6	Longest common subsequence	287
Case Sta	udy: Percolation	
2.4.1	Percolation scaffolding	304
2.4.2	Vertical percolation detection.	306
2.4.3	Visualization client	309
2.4.4	Percolation probability estimate	311
2.4.5	Percolation detection	313
2.4.6	Adaptive plot client	

Object-Oriented Programming

Using Data Types

3.1.1	Identifying a potential gene	337
3.1.2	Albers squares	342
3.1.3	Luminance library	
3.1.4	Converting color to grayscale	348
3.1.5	Image scaling	350
3.1.6	Fade effect	352
3.1.7	Concatenating files	356
3.1.8	Screen scraping for stock quotes	359
3.1.9	Splitting a file	360
Creating	g Data Types	
3.2.1	Charged particle	387
3.2.2	Stopwatch	391
3.2.3	Histogram	
3.2.4	Turtle graphics	396
3.2.5	Spira mirabilis	399
3.2.6	Complex number	
3.2.7	Mandelbrot set	
3.2.8	Stock account	413
Designi	ng Data Types	
3.3.1	Complex number (alternate)	434
3.3.2	Counter	437
3.3.3	Spatial vectors	444
3.3.4	Document sketch	
3.3.5	Similarity detection	

Case Study: N-Body Simulation 3.4.1 Gravitational body

3.4.1	Gravitational body	•	•	•	•	•	•	482
3.4.2	N-body simulation							485

Algorithms and Data Structures

Performance

4.1.1	3-sum problem	497
4.1.2	Validating a doubling hypothesis	499
Sorting	and Searching	
4.2.1	Binary search (20 questions)	534
4.2.2	Bisection search	537
4.2.3	Binary search (sorted array)	539
4.2.4	Insertion sort	547
4.2.5	Doubling test for insertion sort	549
4.2.6	Mergesort	552
4.2.7	Frequency counts	557
Stacks a	and Queues	
4.3.1	Stack of strings (array)	570
4.3.2	Stack of strings (linked list)	575
4.3.3	Stack of strings (resizing array)	579
4.3.4	Generic stack	584
4.3.5	Expression evaluation	588
4.3.6	Generic FIFO queue (linked list)	594
4.3.7	M/M/1 queue simulation	599
4.3.8	Load balancing simulation	607
Symbol	Tables	
4.4.1	Dictionary lookup	631
4.4.2	Indexing	633
4.4.3	Hash table	638
4.4.4	Binary search tree	646
4.4.5	Dedup filter	653
Case St	udy: Small-World Phenomenon	
4.5.1	Graph data type	677
4.5.2	Using a graph to invert an index	681
4.5.3	Shortest-paths client	685
4.5.4	Shortest-paths implementation	691
4.5.5	Small-world test	696
4.5.6	Performer–performer graph	698

Theory of Computing

Formal Languages

5.1.1	RE recognition		729
5.1.2	Generalized RE pattern match		736
5.1.3	Universal virtual DFA	•	743
Turing	Machines		
5.2.1	Virtual Turing machine tape .		776
5.2.2	Universal virtual TM	•	777
Univers	ality		
Comput	tability		
Intracta	ibility		
5.5.1	SAT solver	•	855

A Computing Machine

Representing Information

1	0)		
6.1.1	Number conversion		881
6.1.2	Floating-point components		893
TOY Ma	achine		
6.2.1	Your first TOY program		915
6.2.2	Conditionals and loops		921
6.2.3	Self-modifying code		923
Machin	e-Language Programming		
6.3.1	Calling a function		933
6.3.2	Standard output		935
6.3.3	Standard input		937
6.3.4	Array processing		939
6.3.5	Linked structures		943
TOY Via	rtual Machine		
6.4.1	TOY virtual machine		967

Circuits

Building a Computing Device

Boolean Logic
Basic Circuit Model
Combinational Circuits

Basic logic gates.						.1014
Selection multiple						
Decoder						
Demultiplexer .						
Multiplexer						
XOR						
Majority						
Odd parity						
Adder						
ALU						
Bus multiplexer.						
Sequential Circuit	5					
SR flip-flop						. 1050
Register bit						
Register						
Memory bit						
Memory						
Clock						
Digital Devices						
Program counter						.1074
Control						
CPU						

Preface

THE BASIS FOR EDUCATION IN THE last millennium was "reading, writing, and arithmetic"; now it is reading, writing, and *computing*. Learning to program is an essential part of the education of every student in the sciences and engineering. Beyond direct applications, it is the first step in understanding the nature of computer science's undeniable impact on the modern world. This book aims to teach programming to those who need or want to learn it, in a scientific context.

Our primary goal is to *empower* students by supplying the experience and basic tools necessary to use computation effectively. Our approach is to teach students that composing a program is a natural, satisfying, and creative experience. We progressively introduce essential concepts, embrace classic applications from applied mathematics and the sciences to illustrate the concepts, and provide opportunities for students to write programs to solve engaging problems. We seek also to *demystify* computation for students and to *build awareness* about the substantial intellectual underpinnings of the field of computer science.

We use the Java programming language for all of the programs in this book. The first part of the book teaches basic skills for computational problem solving that are applicable in many modern computing environments, and it is a self-contained treatment intended for people with no previous experience in programming. It is about *fundamental concepts in programming*, not Java per se. The second part of the book demonstrates that there is much more to computer science than programming, but we do often use Java programs to help communicate the main ideas.

This book is an *interdisciplinary* approach to the traditional CS1 curriculum, in that we highlight the role of computing in other disciplines, from materials science to genomics to astrophysics to network systems. This approach reinforces for students the essential idea that mathematics, science, engineering, and computing are intertwined in the modern world. While it is a CS1 textbook designed for any first-year college student, the book also can be used for self-study.

Coverage The first part of the book is organized around three stages of learning to program: basic elements, functions, object-oriented programming, and algorithms. We provide the basic information that readers need to build confidence in composing programs at each level before moving to the next level. An essential feature of our approach is the use of example programs that solve intriguing problems, supported with exercises ranging from self-study drills to challenging problems that call for creative solutions.

Elements of programming include variables, assignment statements, built-in types of data, flow of control, arrays, and input/output, including graphics and sound.

Functions and modules are the students' first exposure to modular programming. We build upon students' familiarity with mathematical functions to introduce Java functions, and then consider the implications of programming with functions, including libraries of functions and recursion. We stress the fundamental idea of dividing a program into components that can be independently debugged, maintained, and reused.

Object-oriented programming is our introduction to data abstraction. We emphasize the concept of a data type and its implementation using Java's class mechanism. We teach students how to *use*, *create*, and *design* data types. Modularity, encapsulation, and other modern programming paradigms are the central concepts of this stage.

The second part of the book introduces advanced topics in computer science: algorithms and data structures, theory of computing, and machine architecture.

Algorithms and data structures combine these modern programming paradigms with classic methods of organizing and processing data that remain effective for modern applications. We provide an introduction to classical algorithms for sorting and searching as well as fundamental data structures and their application, emphasizing the use of the scientific method to understand performance characteristics of implementations.

Theory of computing helps us address basic questions about computation, using simple abstract models of computers. Not only are the insights gained invaluable, but many of the ideas are also directly useful and relevant in practical computing applications.

Machine architecture provides a path to understanding what computation actually looks like in the real world—a link between the abstract machines of the theory of computing and the real computers that we use. Moreover, the study of

machine architecture provides a link to the past, as the microprocessors found in today's computers and mobile devices are not so different from the first computers that were developed in the middle of the 20th century.

Applications in science and engineering are a key feature of the text. We motivate each programming concept that we address by examining its impact on specific applications. We draw examples from applied mathematics, the physical and biological sciences, and computer science itself, and include simulation of physical systems, numerical methods, data visualization, sound synthesis, image processing, financial simulation, and information technology. Specific examples include a treatment in the first chapter of Markov chains for web page ranks and case studies that address the percolation problem, *n*-body simulation, and the small-world phenomenon. These applications are an integral part of the text. They engage students in the material, illustrate the importance of the programming concepts, and provide persuasive evidence of the critical role played by computation in modern science and engineering.

Historical context is emphasized in the later chapters. The fascinating story of the development and application of fundamental ideas about computation by Alan Turing, John von Neumann, and many others is an important subtext.

Our primary goal is to teach the specific mechanisms and skills that are needed to develop effective solutions to any programming problem. We work with complete Java programs and encourage readers to use them. We focus on programming by individuals, not programming in the large.

Use in the Curriculum This book is intended for a first-year college course aimed at teaching computer science to novices in the context of scientific applications. When such a course is taught from this book, college student will learn to program in a familiar context. Students completing a course based on this book will be well prepared to apply their skills in later courses in their chosen major and to recognize when further education in computer science might be beneficial.

Prospective computer science majors, in particular, can benefit from learning to program in the context of scientific applications. A computer scientist needs the same basic background in the scientific method and the same exposure to the role of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to teach prospective computer science majors and prospective majors in other fields in the *same* course. We cover the material prescribed by CS1, but our focus on applications brings life to the concepts and motivates students to learn them. Our interdisciplinary approach exposes students to problems in many different disciplines, helping them to choose a major more wisely.

Whatever the specific mechanism, the use of this book is best positioned early in the curriculum. First, this positioning allows us to leverage familiar material in high school mathematics and science. Second, students who learn to program early in their college curriculum will then be able to use computers more effectively when moving on to courses in their specialty. Like reading and writing, programming is certain to be an essential skill for any scientist or engineer. Students who have grasped the concepts in this book will continually develop that skill throughout their lifetimes, reaping the benefits of exploiting computation to solve or to better understand the problems and projects that arise in their chosen field.

Prerequisites This book is suitable for typical first-year college students. That is, we do not expect preparation beyond what is typically required for other entry-level science and mathematics courses.

Mathematical maturity is important. While we do not dwell on mathematical material, we do refer to the mathematics curriculum that students have taken in high school, including algebra, geometry, and trigonometry. Most students in our target audience automatically meet these requirements. Indeed, we take advantage of their familiarity with the basic curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering students bring with them a sense of fascination with the ability of scientific inquiry to help explain what goes on in nature. We leverage this predilection with examples of simple programs that speak volumes about the natural world. We do not assume any specific knowledge beyond that provided by typical high school courses in mathematics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching programming is one of our primary goals, so we assume no prior programming experience. But composing a program to solve a new problem is a challenging intellectual task, so students who have written numerous programs in high school can benefit from taking an introductory programming course based on this book. The book can support teaching students with varying backgrounds because the applications appeal to both novices and experts alike.

Experience using a computer is not necessary, but also is not a problem. College students use computers regularly—for example, to communicate with friends and relatives, listen to music, process photos, and as part of many other activities. The realization that they can harness the power of their own computer in interesting and important ways is an exciting and lasting lesson.

In summary, virtually all college students are prepared to take a course based on this book as a part of their first-semester curriculum.

Goals What can *instructors* of upper-level courses in science and engineering expect of students who have completed a course based on this book?

We cover the CS1 curriculum, but anyone who has taught an introductory programming course knows that expectations of instructors in later courses are typically high: each instructor expects all students to be familiar with the computing environment and approach that he or she wants to use. A physics professor might expect some students to design a program over the weekend to run a simulation; an engineering professor might expect other students to use a particular package to numerically solve differential equations; or a computer science professor might expect knowledge of the details of a particular programming environment. Is it realistic for a single entry-level course to meet such diverse expectations? Should there be a different introductory course for each set of students?

Colleges and universities have been wrestling with such questions since computers came into widespread use in the latter part of the 20th century. Our answer to them is found in this common introductory treatment of programming, which is analogous to commonly accepted introductory courses in mathematics, physics, biology, and chemistry. *Computer Science* strives to provide the basic preparation needed by all students in science and engineering, while sending the clear message that there is much more to understand about computer science than programming. Instructors teaching students who have studied from this book can expect that they will have the knowledge and experience necessary to enable those students to adapt to new computational environments and to effectively exploit computers in diverse applications.

What can *students* who have completed a course based on this book expect to accomplish in later courses?

Our message is that programming is not difficult to learn and that harnessing the power of the computer is rewarding. Students who master the material in this book are prepared to address computational challenges wherever they might appear later in their careers. They learn that modern programming environments, such as the one provided by Java, help open the door to any computational problem they might encounter later, and they gain the confidence to learn, evaluate, and use other computational tools. Students interested in computer science will be well prepared to pursue that interest; students in science and engineering will be ready to integrate computation into their studies.

Online lectures A complete set of studio-produced videos that can be used in conjunction with this text are available at

```
http://www.informit.com/title/9780134493831
```

As with traditional live lectures, the purpose of these videos is to *inform* and *inspire*, motivating students to study and learn from the text. Our experience is that student engagement with the material is significantly better than with live lectures because of the ability to play the lectures at a chosen speed and to replay and review the lectures at any time.

Booksite An extensive amount of other information that supplements this text may be found on the web at

http://introcs.cs.princeton.edu/java

For economy, we refer to this site as the *booksite* throughout. It contains material for instructors, students, and casual readers of the book. We briefly describe this material here, though, as all web users know, it is best surveyed by browsing. With a few exceptions to support testing, the material is all publicly available.

One of the most important implications of the booksite is that it empowers instructors and students to use their own computers to teach and learn the material. Anyone with a computer and a browser can begin learning to program by following a few instructions on the booksite. The process is no more difficult than downloading a media player or a song. As with any website, our booksite is continually evolving. It is an essential resource for everyone who owns this book. In particular, the supplemental materials are critical to our goal of making computer science an integral component of the education of all scientists and engineers.

For *instructors*, the booksite contains information about teaching. This information is primarily organized around a teaching style that we have developed over the past decade, where we offer two lectures per week to a large audience, supplemented by two class sessions per week where students meet in small groups with instructors or teaching assistants. The booksite has presentation slides for the lectures, which set the tone.

For *teaching assistants*, the booksite contains detailed problem sets and programming projects, which are based on exercises from the book but contain much more detail. Each programming assignment is intended to teach a relevant concept in the context of an interesting application while presenting an inviting and engaging challenge to each student. The progression of assignments embodies our approach to teaching programming. The booksite fully specifies all the assignments and provides detailed, structured information to help students complete them in the allotted time, including descriptions of suggested approaches and outlines for what should be taught in class sessions.

For *students*, the booksite contains quick access to much of the material in the book, including source code, plus extra material to encourage self-learning. Solutions are provided for many of the book's exercises, including complete program code and test data. A wealth of information is associated with the programming assignments, including suggested approaches, checklists, FAQs, and test data.

For *casual readers*, the booksite is a resource for accessing all manner of extra information associated with the book's content. All of the booksite content provides web links and other routes to pursue more information about the topic under consideration. There is far more information accessible than any individual could fully digest, but our goal is to provide enough to whet any reader's appetite for more information about the book's content.

Acknowledgments This project has been under development since 1992, so far too many people have contributed to its success for us to acknowledge them all here. Special thanks are due to Anne Rogers, for helping to start the ball rolling; to Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explaining data abstraction; to Lisa Worthington and Donna Gabai, for being the first to truly relish the challenge of teaching this material to first-year students; and to Doug Clark for his patience as we learned about building Turing machines and circuits. We also gratefully acknowledge the efforts of /dev/126; the faculty, graduate students, and teaching staff who have dedicated themselves to teaching this material over the past 25 years here at Princeton University; and the thousands of undergraduates who have dedicated themselves to learning it.

Robert Sedgewick Kevin Wayne

May 2016

Functions and Modules

2.1	Defining Functions	192
2.2	Libraries and Clients	226
2.3	Recursion	262
2.4	Case Study: Percolation	300

This CHAPTER CENTERS ON A CONSTRUCT that has as profound an impact on control flow as do conditionals and loops: the *function*, which allows us to transfer control back and forth between different pieces of code. Functions (which are known as *static methods* in Java) are important because they allow us to clearly separate tasks within a program and because they provide a general mechanism that enables us to reuse code.

We group functions together in *modules*, which we can compile independently. We use modules to break a computational task into subtasks of a reasonable size. You will learn in this chapter how to build modules of your own and how to use them, in a style of programming known as *modular programming*.

Some modules are developed with the primary intent of providing code that can be reused later by many other programs. We refer to such modules as *libraries*. In particular, we consider in this chapter libraries for generating random numbers, analyzing data, and providing input/output for arrays. Libraries vastly extend the set of operations that we use in our programs.

We pay special attention to functions that transfer control to themselves—a process known as *recursion*. At first, recursion may seem counterintuitive, but it allows us to develop simple programs that can address complex tasks that would otherwise be much more difficult to carry out.

Whenever you can clearly separate tasks within programs, you should do so. We repeat this mantra throughout this chapter, and end the chapter with a case study showing how a complex programming task can be handled by breaking it into smaller subtasks, then independently developing modules that interact with one another to address the subtasks.

2.1 Defining Functions

THE JAVA CONSTRUCT FOR IMPLEMENTING A function is known as the *static method*. The modifier static distinguishes this kind of method from the kind discussed in CHAPTER 3—we will apply it consistently for now and discuss the difference then. You have actually been using static meth-

ods since the beginning of this book, from mathematical functions such as Math.abs() and Math.sqrt() to all of the methods in StdIn, StdOut, StdDraw, and StdAudio. Indeed, every Java program that you have written has a static method named main(). In this section,

2.1.1Harmonic numbers (revisited)...1942.1.2Gaussian functions2032.1.3Coupon collector (revisited)2062.1.4Play that tune (revisited)213

Programs in this section

you will learn how to define your own static methods.

In mathematics, a *function* maps an input value of one type (the *domain*) to an output value of another type (the *range*). For example, the function $f(x) = x^2$ maps 2 to 4, 3 to 9, 4 to 16, and so forth. At first, we work with static methods that implement mathematical functions, because they are so familiar. Many standard mathematical functions are implemented in Java's Math library, but scientists and engineers work with a broad variety of mathematical functions, which cannot all be included in the library. At the beginning of this section, you will learn how to implement such functions on your own.

Later, you will learn that we can do more with static methods than implement mathematical functions: static methods can have strings and other types as their range or domain, and they can produce side effects such as printing output. We also consider in this section how to use static methods to organize programs and thus to simplify complicated programming tasks.

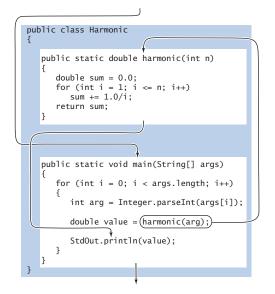
Static methods support a key concept that will pervade your approach to programming from this point forward: *whenever you can clearly separate tasks within programs, you should do so.* We will be overemphasizing this point throughout this section and reinforcing it throughout this book. When you write an essay, you break it up into paragraphs; when you write a program, you will break it up into methods. Separating a larger task into smaller ones is much more important in programming than in writing, because it greatly facilitates *debugging, maintenance*, and *reuse*, which are all critical in developing good software. **Static methods** As you know from using Java's Math library, the use of static methods is easy to understand. For example, when you write Math.abs(a-b) in a program, the effect is as if you were to replace that code with the *return value* that is produced by Java's Math.abs() method when passed the expression a-b as an *argument*. This usage is so intuitive that we have hardly needed to comment on it. If you think about what the system has to do to create this effect, you will see that it involves changing a program's *control flow*. The implications of being able to change the control flow in this way are as profound as doing so for conditionals and loops.

You can *define* static methods other than main() in a .java file by specifying a method signature, followed by a sequence of statements that constitute the method. We will consider the details shortly, but we begin with a simple example— Harmonic (PROGRAM 2.1.1)—that illustrates how methods affect control flow. It features a static method named harmonic() that takes an integer argument n and returns the nth harmonic number (see PROGRAM 1.3.5).

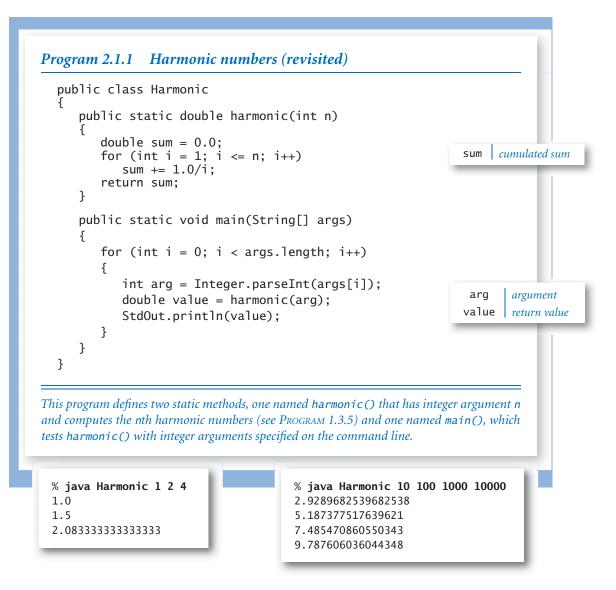
PROGRAM 2.1.1 is superior to our original implementation for computing harmonic numbers (PROGRAM 1.3.5) because it clearly separates the two primary tasks performed by the program: calculating harmonic numbers and interacting with the user. (For purposes of illustration, PROGRAM 2.1.1 takes several command-line

arguments instead of just one.) Whenever you can clearly separate tasks within programs, you should do so.

Control flow. While Harmonic appeals to our familiarity with mathematical functions, we will examine it in detail so that you can think carefully about what a static method is and how it operates. Harmonic comprises two static methods: harmonic() and main(). Even though harmonic() appears first in the code, the first statement that Java executes is, as usual, the first statement in main(). The next few statements operate as usual, except that the code harmonic(arg), which is known as a *call* on the static method harmonic(), causes a *transfer of control* to the first line of code in harmonic(), each time that it is encountered. Moreover, Java



Flow of control for a call on a static method



initializes the *parameter variable* n in harmonic() to the value of arg in main() at the time of the call. Then, Java executes the statements in harmonic() as usual, until it reaches a *return statement*, which transfers control back to the statement in main() containing the call on harmonic(). Moreover, the method call harmonic(arg) produces a value—the value specified by the return statement, which is the value of the variable sum in harmonic() at the time that the return

statement is executed. Java then assigns this *return value* to the variable value. The end result exactly matches our intuition: The first value assigned to value and printed is 1.0—the value computed by code in harmonic() when the parameter variable n is initialized to 1. The next value assigned to value and printed is 1.5—the value computed by harmonic() when n is initialized to 2. The same process is repeated for each command-line argument, transferring control back and forth between harmonic() and main().

Function-call trace. One simple approach to following the control flow through function calls is to imagine that each function prints its name and argument value(s) when it is called and its return value just before returning, with indentation added on calls and subtracted on returns. The result enhances the process of tracing a program by printing the values of its variables, which we have been using since SECTION 1.2. The added indentation exposes the flow of the control, and helps us check that each function has the effect that we expect. Generally, adding calls on StdOut.println() to trace *any* program's control flow in this way is a fine way to begin to understand what it is doing. If the return values match our expectations, we need not trace the function code in detail, saving us a substantial amount of work.

FOR THE REST OF THIS CHAPTER, your programming will center on creating and using static methods, so it is worthwhile to consider in more detail their basic properties. Following that, we will study several examples of function implementations and applications.

Terminology. It is useful to draw a distinction between abstract concepts and Java mechanisms to implement them (the Java if statement implements the conditional, the while statement implements the loop, and so forth). Several concepts are rolled up in the idea of a mathematical function, and there are Java constructs corresponding to each, as summarized in the table at the top of the next page. While these formalisms have served mathematicians well for centuries (and have served programmers well for decades), we will refrain from considering in detail all of the implications of this correspondence and focus on those that will help you learn to program.

i = 1 arg = 1harmonic(1)sum = 0.0sum = 1.0return 1.0 value = 1.0i = 2arg = 2harmonic(2) sum = 0.0sum = 1.0sum = 1.5return 1.5 value = 1.5i = 3arg = 4harmonic(4) sum = 0.0sum = 1.0sum = 1.5return 2.083333333333333333 value = 2.08333333333333333

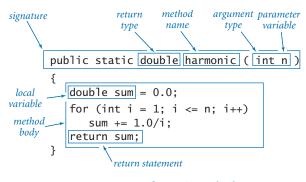
```
Function-call trace for java Harmonic 1 2 4
```

concept	Java construct	description
function	static method	mapping
input value	argument	input to function
output value	return value	output from function
formula	method body	function definition
independent variable	parameter variable	symbolic placeholder for input value

When we use a symbolic name in a formula that defines a mathematical function (such as $f(x) = 1 + x + x^2$), the symbol x is a placeholder for some input value that will be substituted into the formula to determine the output value. In Java, we use a *parameter variable* as a symbolic placeholder and we refer to a particular input value where the function is to be evaluated as an *argument*.

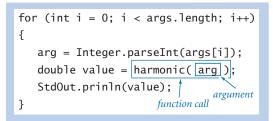
Static method definition. The first line of a static method definition, known as the *signature*, gives a name to the method and to each parameter variable. It also specifies the type of each parameter variable and the return type of the method. The signature consists of the keyword public; the keyword static; the *return type*; the *method name*; and a sequence of zero or more parameter variable types and names, separated by commas and enclosed in parentheses. We will discuss the meaning of the public keyword in the next section and the meaning of the static keyword in CHAPTER 3. (Technically, the signature in Java includes only the method name and parameter types, but we leave that distinction for experts.) Following

the signature is the *body* of the method, enclosed in curly braces. The body consists of the kinds of statements we discussed in CHAP-TER 1. It also can contain a *return statement*, which transfers control back to the point where the static method was called and returns the result of the computation or *return value*. The body may declare *local variables*, which are variables that are available only inside the method in which they are declared.



Anatomy of a static method

Function calls. As you have already seen, a static method call in Java is nothing more than the method name followed by its arguments, separated by commas and enclosed in parentheses, in precisely the same form as is customary for mathematical functions. As noted in SECTION 1.2, a method call is an expression, so you can use it to build up more complicated expressions. Similarly, an argument is an expression—Java evaluates the ex-



```
Anatomy of a function call
```

pression and passes the resulting value to the method. So, you can write code like Math.exp(-x*x/2) / Math.sqrt(2*Math.PI) and Java knows what you mean.

Multiple arguments. Like a mathematical function, a Java static method can take on more than one argument, and therefore can have more than one parameter variable. For example, the following static method computes the length of the hypotenuse of a right triangle with sides of length a and b:

```
public static double hypotenuse(double a, double b)
{ return Math.sqrt(a*a + b*b); }
```

Although the parameter variables are of the same type in this case, in general they can be of different types. The type and the name of each parameter variable are declared in the function signature, with the declarations for each variable separated by commas.

Multiple methods. You can define as many static methods as you want in a . java file. Each method has a body that consists of a sequence of statements enclosed in curly braces. These methods are independent and can appear in any order in the file. A static method can call any other static method in the same file or any static method in a Java library such as Math, as illustrated with this pair of methods:

```
public static double square(double a)
{ return a*a; }
public static double hypotenuse(double a, double b)
{ return Math.sqrt(square(a) + square(b)); }
```

Also, as we see in the next section, a static method can call static methods in other .java files (provided they are accessible to Java). In SECTION 2.3, we consider the ramifications of the idea that a static method can even call *itself*.

Overloading. Static methods with different signatures are different static methods. For example, we often want to define the same operation for values of different numeric types, as in the following static methods for computing absolute values:

```
public static int abs(int x)
{
    if (x < 0) return -x;
    else return x;
}
public static double abs(double x)
{
    if (x < 0.0) return -x;
    else return x;
}</pre>
```

These are two different methods, but are sufficiently similar so as to justify using the same name (abs). Using the same name for two static methods whose signatures differ is known as *overloading*, and is a common practice in Java programming. For example, the Java Math library uses this approach to provide implementations of Math.abs(), Math.min(), and Math.max() for all primitive numeric types. Another common use of overloading is to define two different versions of a method: one that takes an argument and another that uses a default value for that argument.

Multiple return statements. You can put return statements in a method wherever you need them: control goes back to the calling program as soon as the first return statement is reached. This *primality-testing* function is an example of a function that is natural to define using multiple return statements:

```
public static boolean isPrime(int n)
{
    if (n < 2) return false;
    for (int i = 2; i <= n/i; i++)
        if (n % i == 0) return false;
    return true;
}</pre>
```

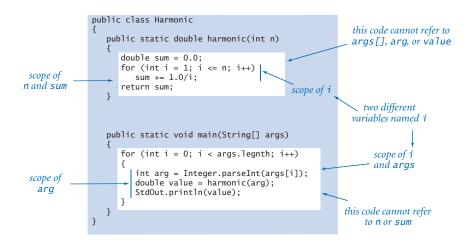
Even though there may be multiple return statements, any static method returns a single value each time it is invoked: the value following the first return statement encountered. Some programmers insist on having only one return per method, but we are not so strict in this book.

absolute value of an int value	<pre>public static int abs(int x) { if (x < 0) return -x; else return x; }</pre>		
absolute value of a doub1e value	<pre>public static double abs(double x) { if (x < 0.0) return -x; else return x; }</pre>		
primality test	<pre>public static boolean isPrime(int n) { if (n < 2) return false; for (int i = 2; i <= n/i; i++) if (n % i == 0) return false; return true; }</pre>		
hypotenuse of a right triangle	<pre>public static double hypotenuse(double a, double b) { return Math.sqrt(a*a + b*b); }</pre>		
harmonic number	<pre>public static double harmonic(int n) { double sum = 0.0; for (int i = 1; i <= n; i++) sum += 1.0 / i; return sum; }</pre>		
uniform random integer in [0, n)	<pre>public static int uniform(int n) { return (int) (Math.random() * n); }</pre>		
draw a triangle	<pre>public static void drawTriangle(double x0, double y0,</pre>		

Typical code for implementing functions (static methods)

Single return value. A Java method provides only one return value to the caller, of the type declared in the method signature. This policy is not as restrictive as it might seem because Java data types can contain more information than the value of a single primitive type. For example, you will see later in this section that you can use arrays as return values.

Scope. The *scope* of a variable is the part of the program that can refer to that variable by name. The general rule in Java is that the scope of the variables declared in a block of statements is limited to the statements in that block. In particular, the scope of a variable declared in a static method is limited to that method's body. Therefore, you cannot refer to a variable in one static method that is declared in another. If the method includes smaller blocks—for example, the body of an if or a for statement—the scope of any variables declared in one of those blocks is limited to just the statements within that block. Indeed, it is common practice to use the same variable names in independent blocks of code. When we do so, we are declaring different independent variables. For example, we have been following this practice when we use an index i in two different for loops in the same program. A guiding principle when designing software is that each variable should be declared so that its scope is as small as possible. One of the important reasons that we use static methods is that they ease debugging by limiting variable scope.



Scope of local and parameter variables

2.1 Defining Functions

Side effects. In mathematics, a function maps one or more input values to some output value. In computer programming, many functions fit that same model: they accept one or more arguments, and their only purpose is to return a value. A *pure function* is a function that, given the same arguments, always returns the same value, without producing any observable *side effects*, such as consuming input, producing output, or otherwise changing the state of the system. The functions harmonic(), abs(), isPrime(), and hypotenuse() are examples of pure functions.

However, in computer programming it is also useful to define functions that do produce side effects. In fact, we often define functions whose *only* purpose is to produce side effects. In Java, a static method may use the keyword void as its return type, to indicate that it has no return value. An explicit return is not necessary in a void static method: control returns to the caller after Java executes the method's last statement.

For example, the static method StdOut.println() has the side effect of printing the given argument to standard output (and has no return value). Similarly, the following static method has the side effect of drawing a triangle to standard drawing (and has no specified return value):

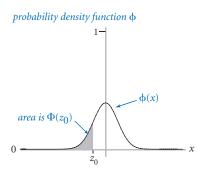
It is generally poor style to write a static method that both produces side effects and returns a value. One notable exception arises in functions that read input. For ex-ample, StdIn.readInt() both returns a value (an integer) and produces a side effect (consuming one integer from standard input). In this book, we use void static methods for two primary purposes:

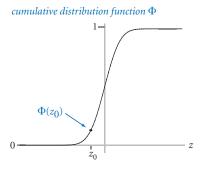
- For I/O, using StdIn, StdOut, StdDraw, and StdAudio
- To manipulate the contents of arrays

You have been using void static methods for output since main() in HelloWorld, and we will discuss their use with arrays later in this section. It is possible in Java to write methods that have other side effects, but we will avoid doing so until CHAPTER 3, where we do so in a specific manner supported by Java.

Implementing mathematical functions Why not just use the methods that are defined within Java, such as Math.sqrt()? The answer to this question is that we *do* use such implementations when they are present. Unfortunately, there are an unlimited number of mathematical functions that we may wish to use and only a small set of functions in the library. When you encounter a mathematical function that is not in the library, you need to implement a corresponding static method.

As an example, we consider the kind of code required for a familiar and important application that is of interest to many high school and college students in the United States. In a recent year, more than 1 million students took a standard college entrance examination. Scores range from 400 (lowest) to 1600 (highest) on the multiple-choice parts of the test. These scores play a role in making important decisions: for example, student athletes are required to have a score of at least 820, and the minimum eligibility requirement for certain academic scholarships is 1500. What percentage of test takers are ineligible for athletics? What percentage are eligible for the scholarships?





Gaussian probability functions

Two functions from statistics enable us to compute accurate answers to these questions. The *Gaussian (normal) probability density function* is characterized by the familiar bell-shaped curve and defined by the formula $\phi(x) = e^{-x^2/2}/\sqrt{2\pi}$. The *Gaussian cumulative distribution function* $\Phi(z)$ is defined to be the area under the curve defined by $\phi(x)$ above the *x*-axis and to the left of the vertical line x=z. These functions play an important role in science, engineering, and finance because they arise as accurate models throughout the natural world and because they are essential in understanding experimental error.

In particular, these functions are known to accurately describe the distribution of test scores in our example, as a function of the mean (average value of the scores) and the standard deviation (square root of the average of the sum of the squares of the differences between each score and the mean), which are published each year. Given the mean μ and the standard deviation σ of the test scores, the percentage of students with scores less than a given value *z* is closely approximated by the function $\Phi((z-\mu)/\sigma)$. Static methods to calculate ϕ and Φ are not available in Java's Math library, so we need to develop our own implementations.

```
Program 2.1.2 Gaussian functions
  public class Gaussian
    // Implement Gaussian (normal) distribution functions.
  {
     public static double pdf(double x)
     {
        return Math.exp(-x*x/2) / Math.sqrt(2*Math.PI);
     }
     public static double cdf(double z)
     {
        if (z < -8.0) return 0.0;
                                                                 cumulated sum
                                                            sum
        if (z > 8.0) return 1.0;
                                                            term current term
        double sum = 0.0;
        double term = z;
        for (int i = 3; sum != sum + term; i += 2)
        {
           sum = sum + term;
           term = term * z * z / i;
        }
        return 0.5 + pdf(z) * sum;
     }
     public static void main(String[] args)
     {
        double z
                     = Double.parseDouble(args[0]);
        double mu
                     = Double.parseDouble(args[1]);
        double sigma = Double.parseDouble(args[2]);
        StdOut.printf("%.3f\n", cdf((z - mu) / sigma));
     }
  }
```

This code implements the Gaussian probability density function (pdf) and Gaussian cumulative distribution function (cdf), which are not implemented in Java's Math library. The pdf() implementation follows directly from its definition, and the cdf() implementation uses a Taylor series and also calls pdf() (see accompanying text and EXERCISE 1.3.38).

```
% java Gaussian 820 1019 209
0.171
% java Gaussian 1500 1019 209
0.989
% java Gaussian 1500 1025 231
0.980
```

Closed form. In the simplest situation, we have a closed-form mathematical formula defining our function in terms of functions that are implemented in the library. This situation is the case for ϕ —the Java Math library includes methods to compute the exponential and the square root functions (and a constant value for π), so a static method pdf() corresponding to the mathematical definition is easy to implement (see Program 2.1.2).

No closed form. Otherwise, we may need a more complicated algorithm to compute function values. This situation is the case for Φ —no closed-form expression exists for this function. Such algorithms sometimes follow immediately from Taylor series approximations, but developing reliably accurate implementations of mathematical functions is an art that needs to be addressed carefully, taking advantage of the knowledge built up in mathematics over the past several centuries. Many different approaches have been studied for evaluating Φ . For example, a Taylor series approximation to the ratio of Φ and ϕ turns out to be an effective basis for evaluating the function:

 $\Phi(z) = 1/2 + \phi(z) \left(z + \frac{z^3}{3} + \frac{z^5}{(3 \cdot 5)} + \frac{z^7}{(3 \cdot 5 \cdot 7)} + \dots \right)$

This formula readily translates to the Java code for the static method cdf() in PROGRAM 2.1.2. For small (respectively large) *z*, the value is extremely close to 0 (respectively 1), so the code directly returns 0 (respectively 1); otherwise, it uses the Taylor series to add terms until the sum converges.

Running Gaussian with the appropriate arguments on the command line tells us that about 17% of the test takers were ineligible for athletics and that only about 1% qualified for the scholarship. In a year when the mean was 1025 and the standard deviation 231, about 2% qualified for the scholarship.

COMPUTING WITH MATHEMATICAL FUNCTIONS OF ALL kinds has always played a central role in science and engineering. In a great many applications, the functions that you need are expressed in terms of the functions in Java's Math library, as we have just seen with pdf(), or in terms of Taylor series approximations that are easy to compute, as we have just seen with cdf(). Indeed, support for such computations has played a central role throughout the evolution of computing systems and programming languages. You will find many examples on the booksite and throughout this book.

Using static methods to organize code Beyond evaluating mathematical functions, the process of calculating an output value on the basis of an input value is important as a general technique for organizing control flow in *any* computation. Doing so is a simple example of an extremely important principle that is a prime guiding force for any good programmer: *whenever you can clearly separate tasks within programs, you should do so.*

Functions are natural and universal for expressing computational tasks. Indeed, the "bird's-eye view" of a Java program that we began with in SECTION 1.1 was equivalent to a function: we began by thinking of a Java program as a function that transforms command-line arguments into an output string. This view expresses itself at many different levels of computation. In particular, it is generally the case that a long program is more naturally expressed in terms of functions instead of as a sequence of Java assignment, conditional, and loop statements. With the ability to define functions, we can better organize our programs by defining functions within them when appropriate.

For example, Coupon (PROGRAM 2.1.3) is a version of CouponCollector (PROGRAM 1.4.2) that better separates the individual components of the computation. If you study PROGRAM 1.4.2, you will identify three separate tasks:

- Given *n*, compute a random coupon value.
- Given *n*, do the coupon collection experiment.
- Get *n* from the command line, and then compute and print the result.

Coupon rearranges the code in CouponCollector to reflect the reality that these three functions underlie the computation. With this organization, we could change getCoupon() (for example, we might want to draw the random numbers from a different distribution) or main() (for example, we might want to take multiple inputs or run multiple experiments) without worrying about the effect of any changes in collectCoupons().

Using static methods isolates the implementation of each component of the collection experiment from others, or *encapsulates* them. Typically, programs have many independent components, which magnifies the benefits of separating them into different static methods. We will discuss these benefits in further detail after we have seen several other examples, but you certainly can appreciate that it is better to express a computation in a program by breaking it up into functions, just as it is better to express an idea in an essay by breaking it up into paragraphs. *Whenever you can clearly separate tasks within programs, you should do so.*

Program 2.1.3 Coupon collector (revisited))	
<pre>public class Coupon { public static int getCoupon(int n) { // Return a random integer betwee return (int) (Math.random() * n) } public static int collectCoupons(int { // Collect coupons until getting // and return the number of coup boolean[] isCollected = new bool int count = 0, distinct = 0; } }</pre>); nt n) g one of each va pons collected.	alue
<pre>while (distinct < n) { int r = getCoupon(n); count++; if (!isCollected[r]) distinct++; isCollected[r] = true; } return count; }</pre>	n isCollected[i] count distinct r	<pre># coupon values (0 to n-1) has coupon i been collected? # coupons collected # distinct coupons collected random coupon</pre>
<pre>public static void main(String[] an { // Collect n different coupons. int n = Integer.parseInt(args[0] int count = collectCoupons(n); StdOut.println(count); } }</pre>		

This version of P_{ROGRAM} 1.4.2 illustrates the style of encapsulating computations in static methods. This code has the same effect as CouponCollector, but better separates the code into its three constituent pieces: generating a random integer between 0 and n-1, running a coupon collection experiment, and managing the I/O.

% java Coupon 1000
6522
% java Coupon 1000
6481

% java Coupon 10000
105798
% java Coupon 1000000
12783771

Passing arguments and returning values Next, we examine the specifics of Java's mechanisms for passing arguments to and returning values from functions. These mechanisms are conceptually very simple, but it is worthwhile to take the time to understand them fully, as the effects are actually profound. Understanding argument-passing and return-value mechanisms is key to learning any new programming language.

Pass by value. You can use parameter variables anywhere in the code in the body of the function in the same way you use local variables. The only difference between a parameter variable and a local variable is that Java evaluates the argument provided by the calling code and initializes the parameter variable with the resulting value. This approach is known as *pass by value*. The method works with the *value* of its arguments, not the arguments themselves. One consequence of this approach is that changing the value of a parameter variable within a static method has no effect on the calling code. (For clarity, we do not change parameter variables in the code in this book.) An alternative approach known as *pass by reference*, where the method works directly with the calling code's arguments, is favored in some programming environments.

A STATIC METHOD CAN TAKE AN array as an argument or return an array to the caller. This capability is a special case of Java's object orientation, which is the subject of CHAPTER 3. We consider it in the present context because the basic mechanisms are easy to understand and to use, leading us to compact solutions to a number of problems that naturally arise when we use arrays to help us process large amounts of data.

Arrays as arguments. When a static method takes an array as an argument, it implements a function that operates on an arbitrary number of values of the same type. For example, the following static method computes the mean (average) of an array of double values:

```
public static double mean(double[] a)
{
    double sum = 0.0;
    for (int i = 0; i < a.length; i++)
        sum += a[i];
    return sum / a.length;
}</pre>
```

We have been using arrays as arguments since our first program. The code

```
public static void main(String[] args)
```

defines main() as a static method that takes an array of strings as an argument and returns nothing. By convention, the Java system collects the strings that you type after the program name in the java command into an array and calls main() with that array as argument. (Most programmers use the name args for the parameter variable, even though any name at all would do.) Within main(), we can manipulate that array just like any other array.

Side effects with arrays. It is often the case that the purpose of a static method that takes an array as argument is to produce a side effect (change values of array elements). A prototypical example of such a method is one that exchanges the values at two given indices in a given array. We can adapt the code that we examined at the beginning of SECTION 1.4:

```
public static void exchange(String[] a, int i, int j)
{
    String temp = a[i];
    a[i] = a[j];
    a[j] = temp;
}
```

This implementation stems naturally from the Java array representation. The parameter variable in exchange() is a reference to the array, not a copy of the array values: when you pass an array as an argument to a method, the method has an opportunity to reassign values to the elements in that array. A second prototypical example of a static method that takes an array argument and produces side effects is one that randomly shuffles the values in the array, using this version of the algorithm that we examined in SECTION 1.4 (and the exchange() and uniform() methods considered earlier in this section):

```
public static void shuffle(String[] a)
{
    int n = a.length;
    for (int i = 0; i < n; i++)
        exchange(a, i, i + uniform(n-i));
}</pre>
```

find the maximum of the array values	<pre>public static double max(double[] a) { double max = Double.NEGATIVE_INFINITY; for (int i = 0; i < a.length; i++) if (a[i] > max) max = a[i]; return max; }</pre>
dot product	<pre>public static double dot(double[] a, double[] b) { double sum = 0.0; for (int i = 0; i < a.length; i++) sum += a[i] * b[i]; return sum; }</pre>
exchange the values of two elements in an array	<pre>public static void exchange(String[] a, int i, int j) { String temp = a[i]; a[i] = a[j]; a[j] = temp; }</pre>
print a one- dimensional array (and its length)	<pre>public static void print(double[] a) { StdOut.println(a.length); for (int i = 0; i < a.length; i++) StdOut.println(a[i]); }</pre>
read a 2D array of doub1e values (with dimensions) in row-major order	<pre>public static double[][] readDouble2D() { int m = StdIn.readInt(); int n = StdIn.readInt(); double[][] a = new double[m][n]; for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) a[i][j] = StdIn.readDouble(); return a; }</pre>

Typical code for implementing functions with array arguments or return values

Similarly, we will consider in SECTION 4.2 methods that *sort* an array (rearrange its values so that they are in order). All of these examples highlight the basic fact that the mechanism for passing arrays in Java is *call by value* with respect to the array reference but *call by reference* with respect to the array elements. Unlike primitive-type arguments, the changes that a method makes to the elements of an array *are* reflected in the client program. A method that takes an array as its argument cannot change the array itself—the memory location, length, and type of the array are the same as they were when the array was created—but a method can assign different values to the elements in the array.

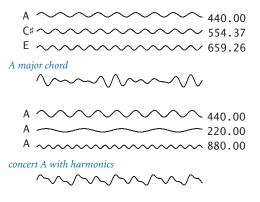
Arrays as return values. A method that sorts, shuffles, or otherwise modifies an array taken as an argument does not have to return a reference to that array, because it is changing the elements of a client array, not a copy. But there are many situations where it is useful for a static method to provide an array as a return value. Chief among these are static methods that create arrays for the purpose of returning multiple values of the same type to a client. For example, the following static method creates and returns an array of the kind used by StdAudio (see PROGRAM 1.5.7): it contains values sampled from a sine wave of a given frequency (in hertz) and duration (in seconds), sampled at the standard 44,100 samples per second.

```
public static double[] tone(double hz, double t)
{
    int SAMPLING_RATE = 44100;
    int n = (int) (SAMPLING_RATE * t);
    double[] a = new double[n+1];
    for (int i = 0; i <= n; i++)
        a[i] = Math.sin(2 * Math.PI * i * hz / SAMPLING_RATE);
    return a;
}</pre>
```

In this code, the length of the array returned depends on the duration: if the given duration is t, the length of the array is about 44100*t. With static methods like this one, we can write code that treats a sound wave as a single entity (an array containing sampled values), as we will see next in PROGRAM 2.1.4.

Example: superposition of sound waves As discussed in SECTION 1.5, the simple audio model that we studied there needs to be embellished to create sound that resembles the sound produced by a musical instrument. Many different embellishments are possible; with static methods we can systematically apply them to produce sound waves that are far more complicated than the simple sine waves that we produced in SECTION 1.5. As an illustration of the effective use of static methods to solve an interesting computational problem, we consider a program that has essentially the same functionality as PlayThatTune (PROGRAM 1.5.7), but adds harmonic tones one octave above and one octave below each note to produce a more realistic sound.

Chords and harmonics. Notes like concert *A* have a pure sound that is not very musical, because the sounds that you are accustomed to hearing have many other components. The sound from the guitar string echoes off the wooden part of the

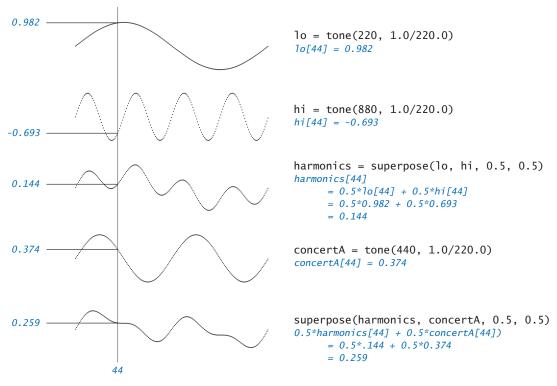


Superposing waves to make composite sounds

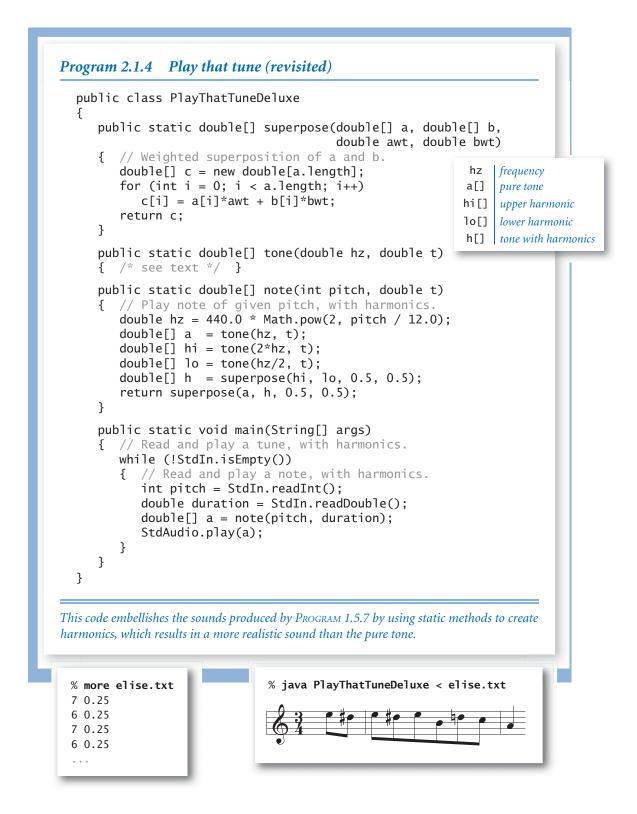
instrument, the walls of the room that you are in, and so forth. You may think of such effects as modifying the basic sine wave. For example, most musical instruments produce *harmonics* (the same note in different octaves and not as loud), or you might play chords (multiple notes at the same time). To combine multiple sounds, we use *superposition*: simply add the waves together and rescale to make sure that all values stay between -1 and +1. As it turns out, when we superpose sine waves of different frequencies in this way, we can get arbitrarily

complicated waves. Indeed, one of the triumphs of 19th-century mathematics was the development of the idea that any smooth periodic function can be expressed as a sum of sine and cosine waves, known as a *Fourier series*. This mathematical idea corresponds to the notion that we can create a large range of sounds with musical instruments or our vocal cords and that all sound consists of a composition of various oscillating curves. Any sound corresponds to a curve and any curve corresponds to a sound, and we can create arbitrarily complex curves with superposition. *Weighted superposition.* Since we represent sound waves by arrays of numbers that represent their values at the same sample points, superposition is simple to implement: we add together the values at each sample point to produce the combined result and then rescale. For greater control, we specify a relative weight for each of the two waves to be added, with the property that the weights are positive and sum to 1. For example, if we want the first sound to have three times the effect of the second, we would assign the first a weight of 0.75 and the second a weight of 0.25. Now, if one wave is in an array a[] with relative weight awt and the other is in an array b[] with relative weight bwt, we compute their weighted sum with the following code:

The conditions that the weights are positive and sum to 1 ensure that this operation preserves our convention of keeping the values of all of our waves between -1 and +1.



Adding harmonics to concert A (1/220 second at 44,100 samples/second)

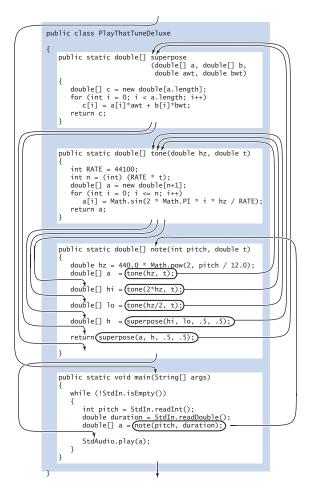


PROGRAM 2.1.4 IS AN IMPLEMENTATION THAT applies these concepts to produce a more realistic sound than that produced by PROGRAM 1.5.7. To do so, it makes use of functions to divide the computation into four parts:

- Given a frequency and duration, create a pure tone.
- Given two sound waves and relative weights, superpose them.
- Given a pitch and duration, create a note with harmonics.
- Read and play a sequence of pitch/duration pairs from standard input.

These tasks are each amenable to implementation as a function, with all of the functions then depending on one another. Each function is well defined and straightforward to implement. All of them (and StdAudio) represent sound as a sequence of floating-point numbers kept in an array, corresponding to sampling a sound wave at 44,100 samples per second.

Up to this point, the use of functions has been somewhat of a notational convenience. For example, the control flow in PROGRAM 2.1.1–2.1.3 is simple each function is called in just one place in the code. By contrast, PlayThatTuneDeluxe (Program 2.1.4) is a convincing example of the effectiveness of defining functions to organize a computation because the functions are each called multiple times. For example, the function note() calls the function tone() three times and the function sum() twice. Without functions methods, we would need multiple copies of the code in



Flow of control among several static methods

tone() and sum(); with functions, we can deal directly with concepts close to the application. Like loops, functions have a simple but profound effect: one sequence of statements (those in the method definition) is executed multiple times during the execution of our program—once for each time the function is called in the control flow in main().

FUNCTIONS (STATIC METHODS) ARE IMPORTANT BECAUSE they give us the ability to *extend* the Java language within a program. Having implemented and debugged functions such as harmonic(), pdf(), cdf(), mean(), abs(), exchange(), shuffle(), isPrime(), uniform(), superpose(), note(), and tone(), we can use them almost as if they were built into Java. The flexibility to do so opens up a whole new world of programming. Before, you were safe in thinking about a Java program as a sequence of statements. Now you need to think of a Java program as a *set of static methods* that can call one another. The statement-to-statement control flow to which you have been accustomed is still present within static methods, but programs have a higher-level control flow defined by static method calls and returns. This ability enables you to think in terms of operations called for by the application, not just the simple arithmetic operations on primitive types that are built into Java.

Whenever you can clearly separate tasks within programs, you should do so. The examples in this section (and the programs throughout the rest of the book) clearly illustrate the benefits of adhering to this maxim. With static methods, we can

- Divide a long sequence of statements into independent parts.
- Reuse code without having to copy it.
- Work with higher-level concepts (such as sound waves).

This produces code that is easier to understand, maintain, and debug than a long program composed solely of Java assignment, conditional, and loop statements. In the next section, we discuss the idea of using static methods defined in *other* programs, which again takes us to another level of programming.

Q. What happens if I leave out the keyword static when defining a static method?

A. As usual, the best way to answer a question like this is to try it yourself and see what happens. Here is the result of omitting the static modifier from harmonic() in Harmonic:

Non-static methods are different from static methods. You will learn about the former in CHAPTER 3.

Q. What happens if I write code after a return statement?

A. Once a return statement is reached, control immediately returns to the caller, so any code after a return statement is useless. Java identifies this situation as a compile-time error, reporting unreachable code.

Q. What happens if I do not include a return statement?

A. There is no problem, if the return type is void. In this case, control will return to the caller after the last statement. When the return type is not void, Java will report a missing return statement compile-time error if there is *any* path through the code that does not end in a return statement.

Q. Why do I need to use the return type void? Why not just omit the return type?

A. Java requires it; we have to include it. Second-guessing a decision made by a programming-language designer is the first step on the road to becoming one.

Q. Can I return from a void function by using return? If so, which return value should I use?

A. Yes. Use the statement return; with no return value.

Q. This issue with side effects and arrays passed as arguments is confusing. Is it really all that important?

A. Yes. Properly controlling side effects is one of a programmer's most important tasks in large systems. Taking the time to be sure that you understand the difference between passing a value (when arguments are of a primitive type) and passing a reference (when arguments are arrays) will certainly be worthwhile. The very same mechanism is used for all other types of data, as you will learn in CHAPTER 3.

Q. So why not just eliminate the possibility of side effects by making all arguments pass by value, including arrays?

A. Think of a huge array with, say, millions of elements. Does it make sense to copy all of those values for a static method that is going to exchange just two of them? For this reason, most programming languages support passing an array to a function without creating a copy of the array elements—Matlab is a notable exception.

Q. In which order does Java evaluate method calls?

A. Regardless of operator precedence or associativity, Java evaluates subexpressions (including method calls) and argument lists from left to right. For example, when evaluating the expression

f1() + f2() * f3(f4(), f5())

Java calls the methods in the order f1(), f2(), f4(), f5(), and f3(). This is most relevant for methods that produce side effects. As a matter of style, we avoid writing code that depends on the order of evaluation.

Exercises

2.1.1 Write a static method max3() that takes three int arguments and returns the value of the largest one. Add an overloaded function that does the same thing with three double values.

2.1.2 Write a static method odd() that takes three boolean arguments and returns true if an odd number of the argument values are true, and false otherwise.

2.1.3 Write a static method majority() that takes three boolean arguments and returns true if at least two of the argument values are true, and false otherwise. Do not use an if statement.

2.1.4 Write a static method eq() that takes two int arrays as arguments and returns true if the arrays have the same length and all corresponding pairs of of elements are equal, and false otherwise.

2.1.5 Write a static method areTriangular() that takes three double arguments and returns true if they could be the sides of a triangle (none of them is greater than or equal to the sum of the other two). See EXERCISE 1.2.15.

2.1.6 Write a static method sigmoid() that takes a double argument x and returns the double value obtained from the formula $1 / (1 + e^{-x})$.

2.1.7 Write a static method sqrt() that takes a double argument and returns the square root of that number. Use Newton's method (see PROGRAM 1.3.6) to compute the result.

2.1.8 Give the function-call trace for java Harmonic 3 5

2.1.9 Write a static method lg() that takes a double argument n and returns the base-2 logarithm of n. You may use Java's Math library.

2.1.10 Write a static method lg() that takes an int argument n and returns the largest integer not larger than the base-2 logarithm of n. Do *not* use the Math library.

2.1.11 Write a static method signum() that takes an int argument n and returns -1 if n is less than 0, 0 if n is equal to 0, and +1 if n is greater than 0.

2.1.12 Consider the static method duplicate() below.

```
public static String duplicate(String s)
{
    String t = s + s;
    return t;
}
```

What does the following code fragment do?

```
String s = "Hello";
s = duplicate(s);
String t = "Bye";
t = duplicate(duplicate(duplicate(t)));
StdOut.println(s + t);
```

2.1.13 Consider the static method cube() below.

```
public static void cube(int i)
{
    i = i * i * i;
}
```

How many times is the following for loop iterated?

```
for (int i = 0; i < 1000; i++)
    cube(i);</pre>
```

Answer: Just 1,000 times. A call to cube() has no effect on the client code. It changes the value of its local parameter variable i, but that change has no effect on the i in the for loop, which is a different variable. If you replace the call to cube(i) with the statement i = i * i * i; (maybe that was what you were thinking), then the loop is iterated five times, with i taking on the values 0, 1, 2, 9, and 730 at the beginning of the five iterations.

2.1.14 The following *checksum* formula is widely used by banks and credit card companies to validate legal account numbers:

 $d_0 + f(d_1) + d_2 + f(d_3) + d_4 + f(d_5) + \dots = 0 \pmod{10}$

The d_i are the decimal digits of the account number and f(d) is the sum of the decimal digits of 2*d* (for example, f(7) = 5 because $2 \times 7 = 14$ and 1 + 4 = 5). For example, 17,327 is valid because 1 + 5 + 3 + 4 + 7 = 20, which is a multiple of 10. Implement the function *f* and write a program to take a 10-digit integer as a command-line argument and print a valid 11-digit number with the given integer as its first 10 digits and the checksum as the last digit.

2.1.15 Given two stars with angles of *declination* and *right ascension* (d_1, a_1) and (d_2, a_2) , the angle they subtend is given by the formula

2 arcsin((sin²(d/2) + cos (d_1)cos(d_2)sin²(a/2))^{1/2})

where a_1 and a_2 are angles between -180 and 180 degrees, d_1 and d_2 are angles between -90 and 90 degrees, $a = a_2 - a_1$, and $d = d_2 - d_1$. Write a program to take the declination and right ascension of two stars as command-line arguments and print the angle they subtend. *Hint*: Be careful about converting from degrees to radians.

2.1.16 Write a static method scale() that takes a double array as its argument and has the side effect of scaling the array so that each element is between 0 and 1 (by subtracting the minimum value from each element and then dividing each element by the difference between the minimum and maximum values). Use the max() method defined in the table in the text, and write and use a matching min() method.

2.1.17 Write a static method reverse() that takes an array of strings as its argument and returns a new array with the strings in reverse order. (Do not change the order of the strings in the argument array.) Write a static method reverseInplace() that takes an array of strings as its argument and produces the side effect of reversing the order of the strings in the argument array.

2.1.18 Write a static method readBoolean2D() that reads a two-dimensional boolean matrix (with dimensions) from standard input and returns the resulting two-dimensional array.

2.1.19 Write a static method histogram() that takes an int array a[] and an integer m as arguments and returns an array of length m whose ith element is the number of times the integer i appeared in a[]. Assuming the values in a[] are all between 0 and m-1, the sum of the values in the returned array should equal a.length.

2.1.20 Assemble code fragments in this section and in SECTION 1.4 to develop a program that takes an integer command-line argument n and prints n five-card hands, separated by blank lines, drawn from a randomly shuffled card deck, one card per line using card names like Ace of Clubs.

2.1.21 Write a static method multiply() that takes two square matrices of the same dimension as arguments and produces their product (another square matrix of that same dimension). *Extra credit*: Make your program work whenever the number of columns in the first matrix is equal to the number of rows in the second matrix.

2.1.22 Write a static method any() that takes a boolean array as its argument and returns true if any of the elements in the array is true, and false otherwise. Write a static method all() that takes an array of boolean values as its argument and returns true if all of the elements in the array are true, and false otherwise.

2.1.23 Develop a version of getCoupon() that better models the situation when one of the coupons is rare: choose one of the *n* values at random, return that value with probability 1/(1,000n), and return all other values with equal probability. *Extra credit*: How does this change affect the expected number of coupons that need to be collected in the coupon collector problem?

2.1.24 Modify PlayThatTune to add harmonics two octaves away from each note, with half the weight of the one-octave harmonics.

Creative Exercises

2.1.25 *Birthday problem.* Develop a class with appropriate static methods for studying the birthday problem (see EXERCISE 1.4.38).

2.1.26 *Euler's totient function.* Euler's totient function is an important function in number theory: $\varphi(n)$ is defined as the number of positive integers less than or equal to *n* that are relatively prime with *n* (no factors in common with *n* other than 1). Write a class with a static method that takes an integer argument *n* and returns $\varphi(n)$, and a main() that takes an integer command-line argument, calls the method with that argument, and prints the resulting value.

2.1.27 Harmonic numbers. Write a program Harmonic that contains three static methods harmoinc(), harmoincSmall(), and harmonicLarge() for computing the harmonic numbers. The harmonicSmall() method should just compute the sum (as in PROGRAM 1.3.5), the harmonicLarge() method should use the approximation $H_n = \log_e(n) + \gamma + 1/(2n) - 1/(12n^2) + 1/(120n^4)$ (the number $\gamma = 0.577215664901532...$ is known as *Euler's constant*), and the harmonic() method should call harmonicSmall() for n < 100 and harmonicLarge() otherwise.

2.1.28 Black–Scholes option valuation. The Black–Scholes formula supplies the theoretical value of a European call option on a stock that pays no dividends, given the current stock price *s*, the exercise price *x*, the continuously compounded risk-free interest rate *r*, the volatility σ , and the time (in years) to maturity *t*. The Black–Scholes value is given by the formula $s \Phi(a) - xe^{-rt}\Phi(b)$, where $\Phi(z)$ is the Gaussian cumulative distribution function, $a = (\ln(s/x) + (r + \sigma^2/2)t) / (\sigma\sqrt{t})$, and $b = a - \sigma\sqrt{t}$. Write a program that takes *s*, *r*, σ , and *t* from the command line and prints the Black–Scholes value.

2.1.29 *Fourier spikes.* Write a program that takes a command-line argument *n* and plots the function

 $(\cos(t) + \cos(2t) + \cos(3t) + \dots + \cos(nt)) / n$

for 500 equally spaced samples of *t* from -10 to 10 (in radians). Run your program for n = 5 and n = 500. *Note*: You will observe that the sum converges to a spike (0 everywhere except a single value). This property is the basis for a proof that *any* smooth function can be expressed as a sum of sinusoids.

2.1.30 *Calendar.* Write a program Calendar that takes two integer commandline arguments m and y and prints the monthly calendar for month m of year y, as in this example:

```
% java Calendar 2 2009
February 2009
S M Tu W Th F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
```

Hint: See LeapYear (PROGRAM 1.2.4) and EXERCISE 1.2.29.

2.1.31 *Horner's method.* Write a class Horner with a method evaluate() that takes a floating-point number x and array p[] as arguments and returns the result of evaluating the polynomial whose coefficients are the elements in p[] at x:

 $p(x) = p_0 + p_1 x^1 + p_2 x^2 + \dots + p_{n-2} x^{n-2} + p_{n-1} x^{n-1}$

Use *Horner's method*, an efficient way to perform the computations that is suggested by the following parenthesization:

 $p(x) = p_0 + x (p_1 + x (p_2 + \dots + x (p_{n-2} + xp_{n-1})) \dots)$

Write a test client with a static method exp() that uses evaluate() to compute an approximation to e^x , using the first *n* terms of the Taylor series expansion $e^x = 1 + x + x^2/2! + x^3/3! + ...$ Your client should take a command-line argument x and compare your result against that computed by Math.exp(x).

2.1.32 *Chords.* Develop a version of PlayThatTune that can handle songs with chords (including harmonics). Develop an input format that allows you to specify different durations for each chord and different amplitude weights for each note within a chord. Create test files that exercise your program with various chords and harmonics, and create a version of *Für Elise* that uses them.

2.1.33 *Benford's law.* The American astronomer Simon Newcomb observed a quirk in a book that compiled logarithm tables: the beginning pages were much grubbier than the ending pages. He suspected that scientists performed more computations with numbers starting with 1 than with 8 or 9, and postulated that, under general circumstances, the leading digit is much more likely to be 1 (roughly 30%) than the digit 9 (less than 4%). This phenomenon is known as *Benford's law* and is now often used as a statistical test. For example, IRS forensic accountants rely on it to discover tax fraud. Write a program that reads in a sequence of integers from standard input and tabulates the number of times each of the digits 1–9 is the leading digit, breaking the computation into a set of appropriate static methods. Use your program to test the law on some tables of information from your computer or from the web. Then, write a program to foil the IRS by generating random amounts from \$1.00 to \$1,000.00 with the same distribution that you observed.

2.1.34 Binomial distribution. Write a function

public static double binomial(int n, int k, double p)

to compute the probability of obtaining exactly k heads in n biased coin flips (heads with probability p) using the formula

$$f(n, k, p) = p^{k}(1-p)^{n-k} n! / (k!(n-k)!)$$

Hint: To stave off overflow, compute $x = \ln f(n, k, p)$ and then return e^x . In main(), take *n* and *p* from the command line and check that the sum over all values of *k* between 0 and *n* is (approximately) 1. Also, compare every value computed with the normal approximation

$$f(n, k, p) \approx \phi(np, np(1-p))$$

(see EXERCISE 2.2.1).

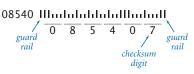
2.1.35 Coupon collecting from a binomial distribution. Develop a version of getCoupon() that uses binomial() from the previous exercise to return coupon values according to the binomial distribution with p = 1/2. *Hint*: Generate a uniformly random number x between 0 and 1, then return the smallest value of k for which the sum of f(n, j, p) for all j < k exceeds x. *Extra credit*: Develop a hypothesis for describing the behavior of the coupon collector function under this assumption.

2.1 Defining Functions

2.1.36 *Postal bar codes.* The barcode used by the U.S. Postal System to route mail is defined as follows: Each decimal digit in the ZIP code is encoded using a sequence of three half-height and two full-height bars. The barcode starts and ends with a full-height bar (the guard rail) and includes a checksum digit (after the five-digit ZIP code or ZIP+4), computed by summing up the original digits modulo 10. Implement the following functions

- Draw a half-height or full-height bar on StdDraw.
- Given a digit, draw its sequence of bars.
- Compute the checksum digit.

Also implement a test client that reads in a five- (or nine-) digit ZIP code as the command-line argument and draws the corresponding postal bar code.



2.2 Libraries and Clients

EACH PROGRAM THAT YOU HAVE WRITTEN SO far consists of Java code that resides in a single . java file. For large programs, keeping all the code in a single file in this way

is restrictive and unnecessary. Fortunately, it is very easy in Java to refer to a method in one file that is defined in another. This ability has two important consequences on our style of programming.

First, it enables *code reuse*. One program can make use of code that is already written and debugged, not by copying the code, but just by referring to it. This abil-

2.2.1	Random number library 234
	Array I/O library
2.2.3	Iterated function systems
2.2.4	Data analysis library
2.2.5	Plotting data values in an array 247
2.2.6	Bernoulli trials
	Programs in this section

r referring to it. This abil-

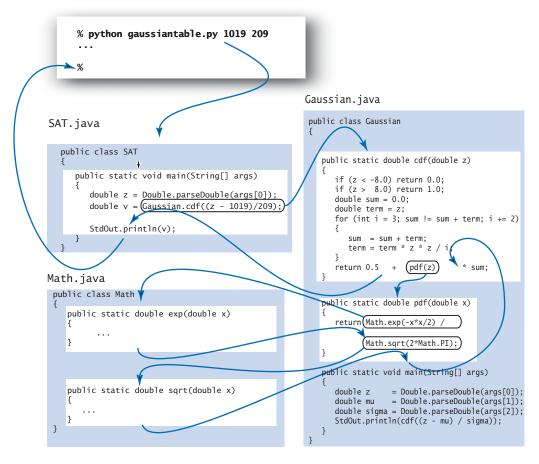
ity to define code that can be reused is an essential part of modern programming. It amounts to extending Java—you can define and use your own operations on data.

Second, it enables *modular programming*. You can not only divide a program up into static methods, as just described in SECTION 2.1, but also keep those methods in different files, grouped together according to the needs of the application. Modular programming is important because it allows us to *independently* develop, compile, and debug parts of big programs one piece at a time, leaving each finished piece in its own file for later use without having to worry about its details again. We develop libraries of static methods for use by any other program, keeping each library in its own file and using its methods in any other program. Java's Math library and our Std* libraries for input/output are examples that you have already used. More importantly, you will soon see that it is very easy to define libraries of your own. The ability to define libraries and then to use them in multiple programs is a critical aspect of our ability to build programs to address complex tasks.

Having just moved in SECTION 2.1 from thinking of a Java program as a sequence of statements to thinking of a Java program as a class comprising a set of static methods (one of which is main()), you will be ready after this section to think of a Java program as a set of *classes*, each of which is an independent module consisting of a set of methods. Since each method can call a method in another class, all of your code can interact as a network of methods that call one another, grouped together in classes. With this capability, you can start to think about managing complexity when programming by breaking up programming tasks into classes that can be implemented and tested independently. **Using static methods in other programs** To refer to a static method in one class that is defined in another, we use the same mechanism that we have been using to invoke methods such as Math.sqrt() and StdOut.println():

- Make both classes accessible to Java (for example, by putting them both in the same directory in your computer).
- To call a method, prepend its class name and a period separator.

For example, we might wish to write a simple client SAT. java that takes an SAT score z from the command line and prints the percentage of students scoring less than z in a given year (in which the mean score was 1,019 and its standard deviation was 209). To get the job done, SAT. java needs to compute $\Phi((z-1,019)/209)$, a



Flow of control in a modular program

task perfectly suited for the cdf() method in Gaussian.java (PROGRAM 2.1.2). All that we need to do is to keep Gaussian.java in the same directory as SAT.java and prepend the class name when calling cdf(). Moreover, any other class in that directory can make use of the static methods defined in Gaussian, by calling Gaussian.pdf() or Gaussian.cdf(). The Math library is always accessible in Java, so any class can call Math.sqrt() and Math.exp(), as usual. The files Gaussian.java, SAT.java, and Math.java implement Java classes that interact with one another: SAT calls a method in Gaussian, which calls another method in Gaussian, which then calls two methods in Math.

The potential effect of programming by defining multiple files, each an independent class with multiple methods, is another profound change in our programming style. Generally, we refer to this approach as *modular programming*. We independently develop and debug methods for an application and then utilize them at any later time. In this section, we will consider numerous illustrative examples to help you get used to the idea. However, there are several details about the process that we need to discuss before considering more examples.

The public keyword. We have been identifying every static method as public since HelloWorld. This modifier identifies the method as available for use by any other program with access to the file. You can also identify methods as private (and there are a few other categories), but you have no reason to do so at this point. We will discuss various options in SECTION 3.3.

Each module is a class. We use the term *module* to refer to all the code that we keep in a single file. In Java, by convention, each module is a Java class that is kept in a file with the same name of the class but has a .java extension. In this chapter, each class is merely a set of static methods (one of which is main()). You will learn much more about the general structure of the Java class in CHAPTER 3.

The .class file. When you compile the program (by typing javac followed by the class name), the Java compiler makes a file with the class name followed by a .class extension that has the code of your program in a language more suited to your computer. If you have a .class file, you can use the module's methods in another program even without having the source code in the corresponding .java file (but you are on your own if you discover a bug!).

Compile when necessary. When you compile a program, Java typically compiles everything that needs to be compiled in order to run that program. If you call Gaussian.cdf() in SAT, then, when you type javac SAT.java, the compiler will also check whether you modified Gaussian.java since the last time it was compiled (by checking the time it was last changed against the time Gaussian.class was created). If so, it will also compile Gaussian.java! If you think about this approach, you will agree that it is actually quite helpful. After all, if you find a bug in Gaussian.java (and fix it), you want all the classes that call methods in Gaussian to use the new version.

Multiple main() methods. Another subtle point is to note that more than one class might have a main() method. In our example, both SAT and Gaussian have their own main() method. If you recall the rule for executing a program, you will see that there is no confusion: when you type java followed by a class name, Java transfers control to the machine code corresponding to the main() method defined in that class. Typically, we include a main() method in every class, to test and debug its methods. When we want to run SAT, we type java SAT; when we want to debug Gaussian, we type java Gaussian (with appropriate command-line arguments).

IF YOU THINK OF EACH PROGRAM that you write as something that you might want to make use of later, you will soon find yourself with all sorts of useful tools. Modular programming allows us to view every solution to a computational problem that we may develop as adding value to our computational environment.

For example, suppose that you need to evaluate Φ for some future application. Why not just cut and paste the code that implements cdf() from Gaussian? That would work, but would leave you with two copies of the code, making it more difficult to maintain. If you later want to fix or improve this code, you would need to do so in both copies. Instead, you can just call Gaussian.cdf(). Our implementations and uses of our methods are soon going to proliferate, so having just one copy of each is a worthy goal.

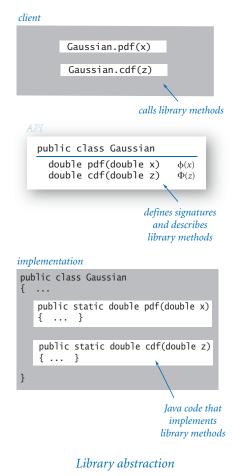
From this point forward, you should write *every* program by identifying a reasonable way to divide the computation into separate parts of a manageable size and implementing each part as if someone will want to use it later. Most frequently, that someone will be you, and you will have yourself to thank for saving the effort of rewriting and re-debugging code.

Libraries We refer to a module whose methods are primarily intended for use by many other programs as a *library*. One of the most important characteristics of programming in Java is that thousands of libraries have been predefined for your use. We reveal information about those that might be of interest to you throughout the book, but we will postpone a detailed discussion of the scope of Java libraries,

because many of them are designed for use by experienced programmers. Instead, we focus in this chapter on the even more important idea that we can build *user-defined libraries*, which are nothing more than classes that contain a set of related methods for use by other programs. No Java library can contain all the methods that we might need for a given computation, so this ability to create our own library of methods is a crucial step in addressing complex programming applications.

Clients. We use the term *client* to refer to a program that calls a given library method. When a class contains a method that is a client of a method in another class, we say that the first class is a client of the second class. In our example, Gaussian is a client of SAT. A given class might have multiple clients. For example, all of the programs that you have written that call Math.sqrt() or Math.random() are clients of Math.

APIs. Programmers normally think in terms of a *contract* between the client and the implementation that is a clear specification of what the method is to do. When you are writing both clients and implementations, you are making contracts with yourself, which by itself is help-



ful because it provides extra help in debugging. More important, this approach enables code reuse. You have been able to write programs that are clients of Std* and Math and other built-in Java classes because of an informal contract (an Englishlanguage description of what they are supposed to do) along with a precise specification of the signatures of the methods that are available for use. Collectively, this information is known as an *application programming interface* (API). This same mechanism is effective for user-defined libraries. The API allows any client to use the library without having to examine the code in the implementation, as you have been doing for Math and Std*. The guiding principle in API design is to *provide to clients the methods they need and no others*. An API with a huge number of methods may be a burden to implement; an API that is lacking important methods may be unnecessarily inconvenient for clients.

Implementations. We use the term *implementation* to describe the Java code that implements the methods in an API, kept by convention in a file with the library name and a . java extension. Every Java program is an implementation of some API, and no API is of any use without some implementation. Our goal when developing an implementation is to honor the terms of the contract. Often, there are many ways to do so, and separating client code from implementation code gives us the freedom to substitute new and improved implementations.

For EXAMPLE, CONSIDER THE GAUSSIAN DISTRIBUTION functions. These do not appear in Java's Math library but are important in applications, so it is worthwhile for us to put them in a library where they can be accessed by future client programs and to articulate this API:

public class Gaussian

double	pdf(double	x)					$\phi(x)$
double	pdf(double	х,	double	mu,	double	sigma)	$\phi(x,\mu,\sigma)$
double	cdf(double	z)					$\Phi(z)$
double	cdf(double	z,	double	mu,	double	sigma)	$\Phi(z,\mu,\sigma)$
				~			

API for our library of static methods for Gaussian distribution functions

The API includes not only the one-argument Gaussian distribution functions that we have previously considered (see PROGRAM 2.1.2) but also three-argument versions (in which the client specifies the mean and standard deviation of the distribution) that arise in many statistical applications. Implementing the three-argument Gaussian distribution functions is straightforward (see EXERCISE 2.2.1).

How much information should an API contain? This is a gray area and a hotly debated issue among programmers and computer-science educators. We might try to put as much information as possible in the API, but (as with any contract!) there are limits to the amount of information that we can productively include. In this book, we stick to a principle that parallels our guiding design principle: *provide to client programmers the information they need and no more*. Doing so gives us vastly more flexibility than the alternative of providing detailed information about implementations. Indeed, any extra information amounts to implicitly extending the contract, which is undesirable. Many programmers fall into the bad habit of checking implementation code to try to understand what it does. Doing so might lead to client code that depends on behavior not specified in the API, which would not work with a new implementation. Implementations change more often than you might think. For example, each new release of Java contains many new implementations of library functions.

Often, the implementation comes first. You might have a working module that you later decide would be useful for some task, and you can just start using its methods in other programs. In such a situation, it is wise to carefully articulate the API at some point. The methods may not have been designed for reuse, so it is worthwhile to use an API to do such a design (as we did for Gaussian).

The remainder of this section is devoted to several examples of libraries and clients. Our purpose in considering these libraries is twofold. First, they provide a richer programming environment for your use as you develop increasingly sophisticated client programs of your own. Second, they serve as examples for you to study as you begin to develop libraries for your own use.

Random numbers We have written several programs that use Math.random(), but our code often uses particular idioms that convert the random double values between 0 and 1 that Math.random() provides to the type of random numbers that we want to use (random boolean values or random int values in a specified range, for example). To effectively reuse our code that implements these idioms, we will, from now on, use the StdRandom library in PROGRAM 2.2.1. StdRandom uses overloading to generate random numbers from various distributions. You can use any of them in the same way that you use our standard I/O libraries (see the first Q&A at the end of SECTION 2.1). As usual, we summarize the methods in our StdRandom library with an API:

```
public class StdRandom
```

void	<pre>setSeed(long seed)</pre>	set the seed for reproducible results
int	uniform(int n)	integer between 0 and n-1
double	uniform(double lo, double hi)	floating-point number between 10 and hi
boolean	bernoulli(double p)	true with probability p, false otherwise
double	gaussian()	Gaussian, mean 0, standard deviation 1
double	gaussian(double mu, double sigma)	Gaussian, mean mu, standard deviation sigma
int	<pre>discrete(double[] p)</pre>	i with probability p[i]
void	<pre>shuffle(double[] a)</pre>	randomly shuffle the array a []

API for our library of static methods for random numbers

These methods are sufficiently familiar that the short descriptions in the API suffice to specify what they do. By collecting all of these methods that use Math.random() to generate random numbers of various types in one file (StdRandom.java), we concentrate our attention on generating random numbers to this one file (and reuse the code in that file) instead of spreading them through every program that uses these methods. Moreover, each program that uses one of these methods is clearer than code that calls Math.random() directly, because its purpose for using Math.random() is clearly articulated by the choice of method from StdRandom.

API design. We make certain assumptions about the values passed to each method in StdRandom. For example, we assume that clients will call uniform(n) only for positive integers n, bernoulli(p) only for p between 0 and 1, and discrete() only for an array whose elements are between 0 and 1 and sum to 1. All of these assumptions are part of the contract between the client and the implementation. We strive to design libraries such that the contract is clear and unambiguous and to avoid getting bogged down with details. As with many tasks in programming, a good API design is often the result of several iterations of trying and living with various possibilities. We always take special care in designing APIs, because when we change an API we might have to change all clients and all implementations. Our goal is to articulate what clients can expect *separate from the code* in the API. This practice frees us to change the code, and perhaps to use an implementation that achieves the desired effect more efficiently or with more accuracy.

```
Program 2.2.1 Random number library
```

```
public class StdRandom
{
   public static int uniform(int n)
   { return (int) (Math.random() * n); }
   public static double uniform(double lo, double hi)
   { return lo + Math.random() * (hi - lo); }
   public static boolean bernoulli(double p)
   { return Math.random() < p; }</pre>
   public static double gaussian()
   { /* See Exercise 2.2.17. */ }
   public static double gaussian(double mu, double sigma)
   { return mu + sigma * gaussian(); }
   public static int discrete(double[] probabilities)
   { /* See Program 1.6.2. */ }
   public static void shuffle(double[] a)
   { /* See Exercise 2.2.4. */ }
   public static void main(String[] args)
   { /* See text. */ }
```

The methods in this library compute various types of random numbers: random nonnegative integer less than a given value, uniformly distributed in a given range, random bit (Bernoulli), standard Gaussian, Gaussian with given mean and standard deviation, and distributed according to a given discrete distribution.

```
% java StdRandom 5
90 26.36076 false 8.79269 0
13 18.02210 false 9.03992 1
58 56.41176 true 8.80501 0
29 16.68454 false 8.90827 0
85 86.24712 true 8.95228 0
```

}

Unit testing. Even though we implement StdRandom without reference to any particular client, it is good programming practice to include a test client main() that, although not used when a client class uses the library, is helpful when debugging and testing the methods in the library. Whenever you create a library, you should include a main() method for unit testing and debugging. Proper unit testing can be a significant programming challenge in itself (for example, the best way of testing whether the methods in StdRandom produce numbers that have the same characteristics as truly random numbers is still debated by experts). At a minimum, you should always include a main() method that

- · Exercises all the code
- · Provides some assurance that the code is working
- Takes an argument from the command line to allow more testing

Then, you should refine that main() method to do more exhaustive testing as you use the library more extensively. For example, we might start with the following code for StdRandom (leaving the testing of shuffle() for an exercise):

```
public static void main(String[] args)
{
    int n = Integer.parseInt(args[0]);
    double[] probabilities = { 0.5, 0.3, 0.1, 0.1 };
    for (int i = 0; i < n; i++)
    {
        StdOut.printf(" %2d " , uniform(100));
        StdOut.printf("%8.5f ", uniform(10.0, 99.0));
        StdOut.printf("%5b " , bernoulli(0.5));
        StdOut.printf("%7.5f ", gaussian(9.0, 0.2));
        StdOut.printf("%2d " , discrete(probabilities));
        StdOut.println();
    }
}</pre>
```

When we include this code in StdRandom.java and invoke this method as illustrated in PROGRAM 2.2.1, the output includes no surprises: the integers in the first column might be equally likely to be any value from 0 to 99; the numbers in the second column might be uniformly spread between 10.0 and 99.0; about half of the values in the third column are true; the numbers in the fourth column seem to average about 9.0, and seem unlikely to be too far from 9.0; and the last column seems to be not far from 50% 0s, 30% 1s, 10% 2s, and 10% 3s. If something seems amiss in one of the columns, we can type java StdRandom 10 or 100 to see many more results. In this particular case, we can (and should) do far more extensive testing in a separate client to check that the numbers have many of the same properties as truly random numbers drawn from the cited distributions (see EXERCISE 2.2.3). One effective approach is to write test clients that use StdDraw, as data visualization can be a quick indication that a program is behaving as intended. For example, a plot of a large number of points whose *x*- and *y*-coordinates are

```
public class RandomPoints
{
    public static void main(String[] args)
    {
        int n = Integer.parseInt(args[0]);
        for (int i = 0; i < n; i++)
        {
            double x = StdRandom.gaussian(.5, .2);
            double y = StdRandom.gaussian(.5, .2);
            StdDraw.point(x, y);
        }
    }
}</pre>
```

A StdRandom test client

both drawn from various distributions often produces a pattern that gives direct insight into the important properties of the distribution. More important, a bug in the random number generation code is likely to show up immediately in such a plot.

Stress testing. An extensively used library such as StdRandom should also be subjected to stress testing, where we make sure that it does not crash when the client does not follow the contract or makes some assumption that is not explicitly covered. Java libraries have already been subjected to such stress testing, which requires carefully examining each line of code and questioning whether some condition might cause a problem. What should discrete() do if the array elements do not sum to exactly 1? What if the argument is an array of length 0? What should the two-argument

uniform() do if one or both of its arguments is NaN? Infinity? Any question that you can think of is fair game. Such cases are sometimes referred to as *corner cases*. You are certain to encounter a teacher or a supervisor who is a stickler about corner cases. With experience, most programmers learn to address them early, to avoid an unpleasant bout of debugging later. Again, a reasonable approach is to implement a stress test as a separate client.

Input and output for arrays We have seen—and will continue to see—many examples where we wish to keep data in arrays for processing. Accordingly, it is useful to build a library that complements StdIn and StdOut by providing static methods for reading arrays of primitive types from standard input and printing them to standard output. The following API provides these methods:

```
public class StdArrayIO
```

double[]	readDouble1D()	read a one-dimensional array of double values
double[][]	readDouble2D()	read a two-dimensional array of double values
void	<pre>print(double[] a)</pre>	print a one-dimensional array of double values
void	<pre>print(double[][] a)</pre>	print a two-dimensional array of double values

Note 1. 1D format is an integer n followed by n values.

Note 2. 2D format is two integers m and n followed by $m \times n$ values in row-major order. Note 3. Methods for int and boolean are also included.

API for our library of static methods for array input and output

The first two notes at the bottom of the table reflect the idea that we need to settle on a *file format*. For simplicity and harmony, we adopt the convention that all values appearing in standard input include the dimension(s) and appear in the order indicated. The read*() methods expect input in this format; the print() methods produce output in this format. The third note at the bottom of the table indicates that StdArrayIO actually contains 12 methods—four each for int, double, and boolean. The print() methods are overloaded (they all have the same name print() but different types of arguments), but the read*() methods need different names, formed by adding the type name (capitalized, as in StdIn) followed by 1D or 2D.

Implementing these methods is straightforward from the array-processing code that we have considered in SECTION 1.4 and in SECTION 2.1, as shown in StdArrayIO (PROGRAM 2.2.2). Packaging up all of these static methods into one file—StdArrayIO.java—allows us to easily reuse the code and saves us from having to worry about the details of reading and printing arrays when writing client programs later on.

```
Program 2.2.2 Array I/O library
  public class StdArrayIO
  {
     public static double[] readDouble1D()
     { /* See Exercise 2.2.11. */ }
     public static double[][] readDouble2D()
        int m = StdIn.readInt();
        int n = StdIn.readInt();
        double[][] a = new double[m][n];
        for (int i = 0; i < m; i++)
                                                % more tiny2D.txt
           for (int j = 0; j < n; j++)
                                                4 3
              a[i][j] = StdIn.readDouble();
                                                  .000 .270 .000
        return a;
                                                  .246 .224 -.036
     }
                                                  .222 .176 .0893
                                                 -.032 .739 .270
     public static void print(double[] a)
       /* See Exercise 2.2.11. */ }
     {
                                                % java StdArrayIO < tiny.txt
     public static void print(double[][] a)
                                                4 3
     {
                                                  0.00000
                                                           0.27000
                                                                    0.00000
        int m = a.length;
                                                  0.24600
                                                           0.22400 -0.03600
        int n = a[0].length;
                                                  0.22200
                                                           0.17600
                                                                    0.08930
        System.out.println(m + " " + n);
                                                 -0.03200
                                                           0.73900
                                                                    0.27000
        for (int i = 0; i < m; i++)
        {
           for (int j = 0; j < n; j++)
              StdOut.prinf("%9.5f ", a[i][j]);
           StdOut.println();
        }
        StdOut.println();
     }
     // Methods for other types are similar (see booksite).
     public static void main(String[] args)
     { print(readDouble2D()); }
  }
```

This library of static methods facilitates reading one-dimensional and two-dimensional arrays from standard input and printing them to standard output. The file format includes the dimensions (see accompanying text). Numbers in the output in the example are truncated.

Iterated function systems Scientists have discovered that complex visual images can arise unexpectedly from simple computational processes. With StdRandom, StdDraw, and StdArrayIO, we can study the behavior of such systems.

Sierpinski triangle. As a first example, consider the following simple process: Start by plotting a point at one of the vertices of a given equilateral triangle. Then pick one of the three vertices at random and plot a new point halfway between the point just plotted and that vertex. Continue performing this same operation. Each time, we are pick a random vertex from the triangle to establish the line whose midpoint will be the next point plotted. Since we make random choices, the set of points should have some of the characteristics of random points, and that does seem to be the case after the first few iterations:

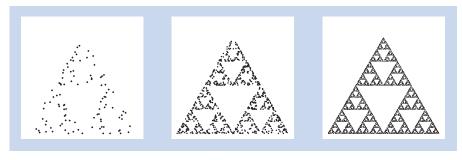


We can study the process for a large number of iterations by writing a program to plot trials points according to the rules:

```
double[] cx = { 0.000, 1.000, 0.500 };
double[] cy = { 0.000, 0.000, 0.866 };
double x = 0.0, y = 0.0;
for (int t = 0; t < trials; t++)
{
    int r = StdRandom.uniform(3);
    x = (x + cx[r]) / 2.0;
    y = (y + cy[r]) / 2.0;
    StdDraw.point(x, y);
}
```

We keep the *x*- and *y*-coordinates of the triangle vertices in the arrays cx[] and cy[], respectively. We use StdRandom.uniform() to choose a random index r into

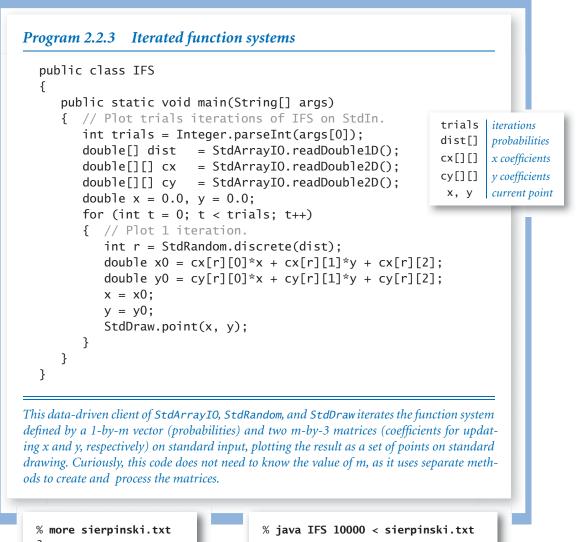
these arrays—the coordinates of the chosen vertex are (cx[r], cy[r]). The x-coordinate of the midpoint of the line from (x, y) to that vertex is given by the expression (x + cx[r])/2.0, and a similar calculation gives the y-coordinate. Adding a call to StdDraw.point() and putting this code in a loop completes the implementation. Remarkably, despite the randomness, the same figure always emerges after a large number of iterations! This figure is known as the *Sierpinski triangle* (see EXERCISE 2.3.27). Understanding why such a regular figure should arise from such a random process is a fascinating question.



A random process?

Barnsley fern. To add to the mystery, we can produce pictures of remarkable diversity by playing the same game with different rules. One striking example is known as the *Barnsley fern*. To generate it, we use the same process, but this time driven by the following table of formulas. At each step, we choose the formulas to use to update *x* and *y* with the indicated probability (1% of the time we use the first pair of formulas, 85% of the time we use the second pair of formulas, and so forth).

probability	x-update	y-update
1%	<i>x</i> = 0.500	<i>y</i> = 0.16 <i>y</i>
85%	x = 0.85x + 0.04y + 0.075	y = -0.04x + 0.85y + 0.180
7%	x = 0.20x - 0.26y + 0.400	y = 0.23x + 0.22y + 0.045
7%	x = -0.15x + 0.28y + 0.575	y = 0.26x + 0.24y - 0.086



241

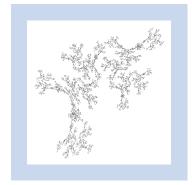
3			
	.33	.33	.34
3	3		
	.50	.00	.00
	.50	.00	.50
	.50	.00	.25
3	3		
	.00	.50	.00
	.00	.50	.00
	.00	.50	.433
_			

% more barnsley.txt 4
.01 .85 .07 .07 4 3
.00 .00 .500 .85 .04 .075 .2026 .400 15 .28 .575
.00 .16 .000 04 .85 .180 .23 .22 .045 .26 .24086
% more tree.txt
.1 .1 .2 .2 .2 .2 6 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
.00 .60 .000 50 .00 .750 .39 .38 .105 .17 .42 .465 25 .45 .625 35 .31 .525
% more coral.txt
.40 .15 .45 3 3
.30775315 .8863 .30770769 .2166 .0000 .5455 .0106 3 3
46152937 1.0962 .15384476 .3384 .69231958 .3808

% java IFS 20000 < barnsley.txt

% java IFS 20000 < tree.txt

% java IFS 20000 < coral.txt



Examples of iterated function systems

We could write code just like the code we just wrote for the Sierpinski triangle to iterate these rules, but matrix processing provides a uniform way to generalize that code to handle any set of rules. We have *m* different transformations, chosen from a 1-by-*m* vector with StdRandom.discrete(). For each transformation, we have an equation for updating *x* and an equation for updating *y*, so we use two *m*-by-3 matrices for the equation coefficients, one for *x* and one for *y*. IFS (PROGRAM 2.2.3) implements this data-driven version of the computation. This program enables limitless exploration: it performs the iteration for any input containing a vector that defines the probability distribution and the two matrices that define the coefficients, one for updating *x* and the other for updating *y*. For the coefficients just given, again, even though we choose a random equation at each step, the same figure emerges every time that we do this computation: an image that looks remarkably similar to a fern that you might see in the woods, not something generated by a random process on a computer.

Generating a Barnsley fern

That the same short program that takes a few numbers from standard input and plots points on standard drawing can (given different data) produce both the Sierpinski triangle and the Barnsley fern (and many, many other images) is truly remarkable. Because of its simplicity and the appeal of the results, this sort of calculation is useful in making synthetic images that have a realistic appearance in computer-generated movies and games.

Perhaps more significantly, the ability to produce such realistic diagrams so easily suggests intriguing scientific questions: What does computation tell us about nature? What does nature tell us about computation?

Statistics Next, we consider a library for a set of mathematical calculations and basic visualization tools that arise in all sorts of applications in science and engineering and are not all implemented in standard Java libraries. These calculations relate to the task of understanding the statistical properties of a set of numbers. Such a library is useful, for example, when we perform a series of scientific experiments that yield measurements of a quantity. One of the most important challenges facing modern scientists is proper analysis of such data, and computation is playing an increasingly important role in such analysis. These basic data analysis methods that we will consider are summarized in the following API:

```
public class StdStats
```

double	<pre>max(double[] a)</pre>	largest value
double	<pre>min(double[] a)</pre>	smallest value
double	<pre>mean(double[] a)</pre>	average
double	<pre>var(double[] a)</pre>	sample variance
double	<pre>stddev(double[] a)</pre>	sample standard deviation
double	<pre>median(double[] a)</pre>	median
void	<pre>plotPoints(double[] a)</pre>	plot points at (i, a[i])
void	<pre>plotLines(double[] a)</pre>	plot lines connecting points at (i, a[i])
void	<pre>plotBars(double[] a)</pre>	plot bars to points at (i, a[i])

Note: Overloaded implementations are included for other numeric types.

API for our library of static methods for data analysis

Basic statistics. Suppose that we have *n* measurements $x_0, x_1, ..., x_{n-1}$. The average value of those measurements, otherwise known as the *mean*, is given by the formula $\mu = (x_0 + x_1 + ... + x_{n-1}) / n$ and is an estimate of the value of the quantity. The minimum and maximum values are also of interest, as is the median (the value that is smaller than and larger than half the values). Also of interest is the *sample variance*, which is given by the formula

$$\sigma^2 = \left(\left(x_0 - \mu \right)^2 + \left(x_1 - \mu \right)^2 + \dots + \left(x_{n-1} - \mu \right)^2 \right) / (n-1)$$

```
Program 2.2.4 Data analysis library
  public class StdStats
     public static double max(double[] a)
     { // Compute maximum value in a[].
        double max = Double.NEGATIVE_INFINITY;
        for (int i = 0; i < a.length; i++)
           if (a[i] > max) max = a[i];
        return max;
     }
     public static double mean(double[] a)
       // Compute the average of the values in a[].
        double sum = 0.0;
        for (int i = 0; i < a.length; i++)
           sum = sum + a[i];
        return sum / a.length;
     }
     public static double var(double[] a)
     { // Compute the sample variance of the values in a[].
        double avg = mean(a);
        double sum = 0.0;
        for (int i = 0; i < a.length; i++)
           sum += (a[i] - avg) * (a[i] - avg);
        return sum / (a.length - 1);
     }
     public static double stddev(double[] a)
     { return Math.sqrt(var(a)); }
     // See Program 2.2.5 for plotting methods.
     public static void main(String[] args)
     { /* See text. */ }
  }
```

This code implements methods to compute the maximum, mean, variance, and standard deviation of numbers in a client array. The method for computing the minimum is omitted; plotting methods are in PROGRAM 2.2.5; see EXERCISE 4.2.20 for median().

```
% more tinylD.txt
5
3.0 1.0 2.0 5.0 4.0
```

% java StdStats < tiny1D.txt
 min 1.000
 mean 3.000
 max 5.000
 std dev 1.581</pre>

and the *sample standard deviation*, the square root of the sample variance. StdStats (PROGRAM 2.2.4) shows implementations of static methods for computing these basic statistics (the median is more difficult to compute than the others—we will consider the implementation of median() in SECTION 4.2). The main() test client for StdStats reads numbers from standard input into an array and calls each of the methods to print the minimum, mean, maximum, and standard deviation, as follows:

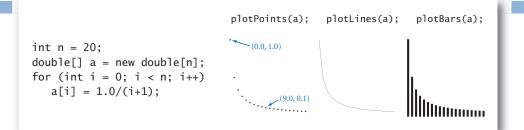
```
public static void main(String[] args)
{
    double[] a = StdArrayIO.readDouble1D();
    StdOut.printf(" min %7.3f\n", min(a));
    StdOut.printf(" mean %7.3f\n", mean(a));
    StdOut.printf(" max %7.3f\n", max(a));
    StdOut.printf(" std dev %7.3f\n", stddev(a));
}
```

As with StdRandom, a more extensive test of the calculations is called for (see EXERCISE 2.2.3). Typically, as we debug or test new methods in the library, we adjust the unit testing code accordingly, testing the methods one at a time. A mature and widely used library like StdStats also deserves a stress-testing client for extensively testing everything after any change. If you are interested in seeing what such a client might look like, you can find one for StdStats on the booksite. Most experienced programmers will advise you that any time spent doing unit testing and stress testing will more than pay for itself later.

Plotting. One important use of StdDraw is to help us visualize data rather than relying on tables of numbers. In a typical situation, we perform experiments, save the experimental data in an array, and then compare the results against a model, perhaps a mathematical function that describes the data. To expedite this process for the typical case where values of one variable are equally spaced, our StdStats library contains static methods that you can use for plotting data in an array. PROGRAM 2.2.5 is an implementation of the plotPoints(), plotLines(), and plotBars() methods for StdStats. These methods display the values in the argument array at evenly spaced intervals in the drawing window, either connected together by line segments (lines), filled circles at each value (points), or bars from the *x*-axis to the value (bars). They all plot the points with *x*-coordinate i and *y*-coordinate a[i] using filled circles, lines through the points, and bars, respectively. In addition,

```
Program 2.2.5 Plotting data values in an array
  public static void plotPoints(double[] a)
  { // Plot points at (i, a[i]).
     int n = a.length;
     StdDraw.setXscale(-1, n);
     StdDraw.setPenRadius(1/(3.0*n));
     for (int i = 0; i < n; i++)
        StdDraw.point(i, a[i]);
  }
  public static void plotLines(double[] a)
  { // Plot lines through points at (i, a[i]).
     int n = a.length;
     StdDraw.setXscale(-1, n);
     StdDraw.setPenRadius();
     for (int i = 1; i < n; i++)
        StdDraw.line(i-1, a[i-1], i, a[i]);
  }
  public static void plotBars(double[] a)
  \{ // Plot bars from (0, a[i]) to (i, a[i]).
     int n = a.length;
     StdDraw.setXscale(-1, n);
     for (int i = 0; i < n; i++)
        StdDraw.filledRectangle(i, a[i]/2, 0.25, a[i]/2);
  }
```

This code implements three methods in StdStats (PROGRAM 2.2.4) for plotting data. They plot the points (*i*, a[*i*]) with filled circles, connecting line segments, and bars, respectively.

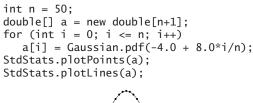


they all rescale *x* to fill the drawing window (so that the points are evenly spaced along the *x*-coordinate) and leave to the client scaling of the *y*-coordinates.

These methods are not intended to be a general-purpose plotting package, but you can certainly think of all sorts of things that you might want to add: different types of spots, labeled axes, color, and many other artifacts are commonly found in modern systems that can plot data. Some situations might call for more complicated methods than these.

Our intent with StdStats is to introduce you to data analysis while showing you how easy it is to define a library to take care of useful tasks. Indeed, this library has already proved useful—we use these plotting methods to produce the figures in this book that depict function graphs, sound waves, and experimental results. Next, we consider several examples of their use.

Plotting function graphs. You can use the StdStats.plot*() methods to draw a plot of the function graph for any function at all: choose an *x*-interval where you want to plot the function, compute function values evenly spaced through that interval and store them in an array, determine and set the *y*-scale, and then call StdStats.plotLines() or another plot*() method. For example, to plot a sine function, rescale the *y*-axis to cover values between -1 and +1. Scaling the *x*axis is automatically handled by the Std-



Plotting a function graph

Stats methods. If you do not know the range, you can handle the situation by calling:

```
StdDraw.setYscale(StdStats.min(a), StdStats.max(a));
```

The smoothness of the curve is determined by properties of the function and by the number of points plotted. As we discussed when first considering StdDraw, you have to be careful to sample enough points to catch fluctuations in the function. We will consider another approach to plotting functions based on sampling values that are not equally spaced in SECTION 2.4.

Plotting sound waves. Both the StdAudio library and the StdStats plot methods work with arrays that contain sampled values at regular intervals. The diagrams of sound waves in SECTION 1.5 and at the beginning of this section were all produced by first scaling the *y*-axis with StdDraw.setYscale(-1, 1), then plotting the points with StdStats.plotPoints(). As you have seen, such plots give direct insight into processing audio. You can also produce interesting effects by plotting sound waves as you play them with

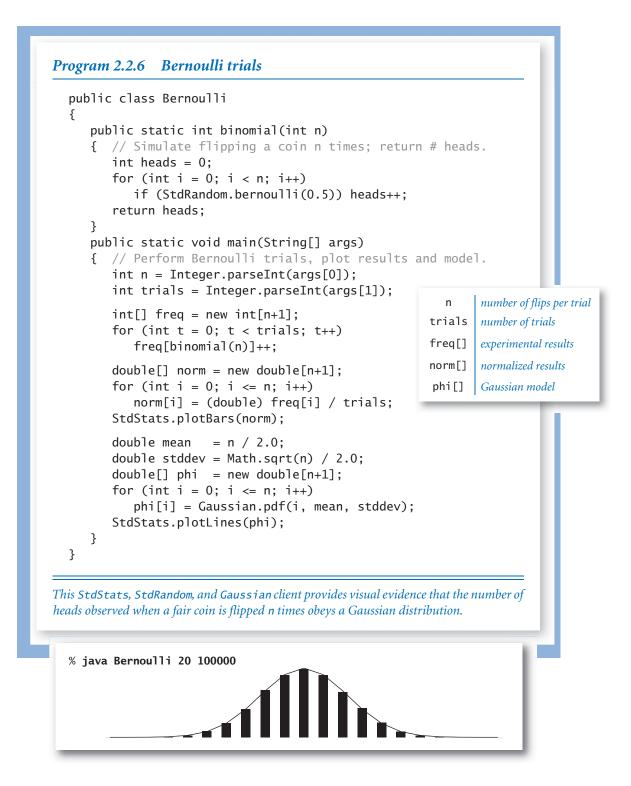
StdDraw.setYscale(-1.0, 1.0); double[] hi; hi = PlayThatTune.tone(880, 0.01); StdStats.plotPoints(hi);

Plotting a sound wave

StdAudio, although this task is a bit challenging because of the huge amount of data involved (see Exercise 1.5.23).

Plotting experimental results. You can put multiple plots on the same drawing. One typical reason to do so is to compare experimental results with a theoretical model. For example, Bernoulli (PROGRAM 2.2.6) counts the number of heads found when a fair coin is flipped *n* times and compares the result with the predicted Gaussian probability density function. A famous result from probability theory is that the distribution of this quantity is the *binomial distribution*, which is extremely well approximated by the Gaussian distribution with mean n/2 and standard deviation $\sqrt{n}/2$. The more trials we perform, the more accurate the approximation. The drawing produced by Bernoulli is a succinct summary of the results of the experiment and a convincing validation of the theory. This example is prototypical of a scientific approach to applications programming that we use often throughout this book and that you should use whenever you run an experiment. If a theoretical model that can explain your results is available, a visual plot comparing the experiment to the theory can validate both.

THESE FEW EXAMPLES ARE INTENDED TO suggest what is possible with a well-designed library of static methods for data analysis. Several extensions and other ideas are explored in the exercises. You will find StdStats to be useful for basic plots, and you are encouraged to experiment with these implementations and to modify them or to add methods to make your own library that can draw plots of your own design. As you continue to address an ever-widening circle of programming tasks, you will naturally be drawn to the idea of developing tools like these for your own use.



Modular programming The library implementations that we have developed illustrate a programming style known as *modular programming*. Instead of writing a new program that is self-contained within its own file to address a new problem, we break up each task into smaller, more manageable subtasks, then implement and independently debug code that addresses each subtask. Good libraries facilitate modular programming by allowing us to define and provide solutions for important subtasks for future clients. *Whenever you can clearly separate tasks within a program, you should do so.* Java supports such separation by allowing us to independently debug and later use classes in separate files. Traditionally, programmers use the term *module* to refer to code that can be compiled and run independently; in Java, each *class* is a module.

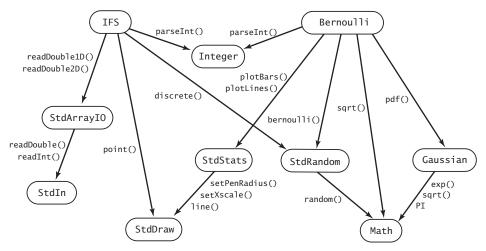
IFS (PROGRAM 2.2.3) exemplifies modular programming. This relatively sophisticated computation is implemented with several relatively small modules, developed independently. It uses StdRandom and StdArrayIO, as well as the methods

from Integer and StdDraw that we are accustomed to using. If we were to put all of the code required for IFS in a single file, we would have a large amount of code on our hands to maintain and debug; with modular programming, we can study iterated function systems with some confidence that the arrays are read properly and that the random number generator will produce properly distributed values, because we already implemented and tested the code for these tasks in separate modules.

API	description	
Gaussian	Gaussian distribution functions	
StdRandom	random numbers	
StdArrayI0	input and output for arrays	
IFS	client for iterated function systems	
StdStats	functions for data analysis	
Bernoulli	client for Bernoulli trials	

Summary of classes in this section

Similarly, Bernoulli (PROGRAM 2.2.6) exemplifies modular programming. It is a client of Gaussian, Integer, Math, StdRandom, and StdStats. Again, we can have some confidence that the methods in these modules produce the expected results because they are system libraries or libraries that we have tested, debugged, and used before. To describe the relationships among modules in a modular program, we often draw a *dependency graph*, where we connect two class names with an arrow labeled with the name of a method if the first class contains a method call and the second class contains the definition of the method. Such diagrams play an important role because understanding the relationships among modules is necessary for proper development and maintenance.



Dependency graph (partial) for the modules in this section

We emphasize modular programming throughout this book because it has many important advantages that have come to be accepted as essential in modern programming, including the following:

- We can have programs of a reasonable size, even in large systems.
- Debugging is restricted to small pieces of code.
- We can reuse code without having to re-implement it.
- Maintaining (and improving) code is much simpler.

The importance of these advantages is difficult to overstate, so we will expand upon each of them.

Programs of a reasonable size. No large task is so complex that it cannot be divided into smaller subtasks. If you find yourself with a program that stretches to more than a few pages of code, you must ask yourself the following questions: Are there subtasks that could be implemented separately? Could some of these subtasks be

logically grouped together in a separate library? Could other clients use this code in the future? At the other end of the range, if you find yourself with a huge number of tiny modules, you must ask yourself questions such as these: Is there some group of subtasks that logically belong in the same module? Is each module likely to be used by multiple clients? There is no hard-and-fast rule on module size: one implementation of a critically important abstraction might properly be a few lines of code, whereas another library with a large number of overloaded methods might properly stretch to hundreds of lines of code.

Debugging. Tracing a program rapidly becomes more difficult as the number of statements and interacting variables increases. Tracing a program with hundreds of variables requires keeping track of hundreds of values, as any statement might affect or be affected by any variable. To do so for hundreds or thousands of statements or more is untenable. With modular programming and our guiding principle of keeping the scope of variables local to the extent possible, we severely restrict the number of possibilities that we have to consider when debugging. Equally important is the idea of a contract between client and implementation. Once we are satisfied that an implementation is meeting its end of the bargain, we can debug all its clients under that assumption.

Code reuse. Once we have implemented libraries such as StdStats and StdRandom, we do not have to worry about writing code to compute averages or standard deviations or to generate random numbers again—we can simply reuse the code that we have written. Moreover, we do not need to make copies of the code: any module can just refer to any public method in any other module.

Maintenance. Like a good piece of writing, a good program can always be improved, and modular programming facilitates the process of continually improving your Java programs because improving a module improves all of its clients. For example, it is normally the case that there are several different approaches to solving a particular problem. With modular programming, you can implement more than one and try them independently. More importantly, suppose that while developing a new client, you find a bug in some module. With modular programming, fixing that bug essentially fixes bugs in all of the module's clients.

IF YOU ENCOUNTER AN OLD PROGRAM (or a new program written by an old programmer!), you are likely to find one huge module—a long sequence of statements, stretching to several pages or more, where any statement can refer to any variable in the program. Old programs of this kind are found in critical parts of our computational infrastructure (for example, some nuclear power plants and some banks) precisely because the programmers charged with maintaining them cannot even understand them well enough to rewrite them in a modern language! With support for modular programming, modern languages like Java help us avoid such situations by separately developing libraries of methods in independent classes.

The ability to share static methods among different files fundamentally extends our programming model in two different ways. First, it allows us to reuse code without having to maintain multiple copies of it. Second, by allowing us to organize a program into files of manageable size that can be independently debugged and compiled, it strongly supports our basic message: *whenever you can clearly separate tasks within a program, you should do so.*

In this section, we have supplemented the Std* libraries of SECTION 1.5 with several other libraries that you can use: Gaussian, StdArrayIO, StdRandom, and StdStats. Furthermore, we have illustrated their use with several client programs. These tools are centered on basic mathematical concepts that arise in any scientific project or engineering task. Our intent is not just to provide tools, but also to illustrate that it is easy to create your own tools. The first question that most modern programmers ask when addressing a complex task is "Which tools do I need?" When the needed tools are not conveniently available, the second question is "How difficult would it be to implement them?" To be a good programmer, you need to have the confidence to build a software tool when you need it and the wisdom to know when it might be better to seek a solution in a library.

After libraries and modular programming, you have one more step to learn a complete modern programming model: *object-oriented programming*, the topic of CHAPTER 3. With object-oriented programming, you can build libraries of functions that use side effects (in a tightly controlled manner) to vastly extend the Java programming model. Before moving to object-oriented programming, we consider in this chapter the profound ramifications of the idea that any method can call itself (in SECTION 2.3) and a more extensive case study (in SECTION 2.4) of modular programming than the small clients in this section.

Q. I tried to use StdRandom, but got the error message Exception in thread "main" java.lang.NoClassDefFoundError: StdRandom. What's wrong?

A. You need to make StdRandom accessible to Java. See the first Q&A at the end of SECTION 1.5.

Q. Is there a keyword that identifies a class as a library?

A. No, any set of public methods will do. There is a bit of a conceptual leap in this viewpoint because it is one thing to sit down to create a .java file that you will compile and run, quite another thing to create a .java file that you will rely on much later in the future, and still another thing to create a .java file for *someone else* to use in the future. You need to develop some libraries for your own use before engaging in this sort of activity, which is the province of experienced systems programmers.

Q. How do I develop a new version of a library that I have been using for a while?

A. With care. Any change to the API might break any client program, so it is best to work in a separate directory. When you use this approach, you are working with a copy of the code. If you are changing a library that has a lot of clients, you can appreciate the problems faced by companies putting out new versions of their software. If you just want to add a few methods to a library, go ahead: that is usually not too dangerous, though you should realize that you might find yourself in a situation where you have to support that library for years!

Q. How do I know that an implementation behaves properly? Why not automatically check that it satisfies the API?

A. We use informal specifications because writing a detailed specification is not much different from writing a program. Moreover, a fundamental tenet of theoretical computer science says that doing so does not even solve the basic problem, because generally there is no way to check that two different programs perform the same computation.

Exercises

2.2.1 Add to Gaussian (Program 2.1.2) an implementation of the three-argument static method pdf(x, mu, sigma) specified in the API that computes the Gaussian probability density function with a given mean μ and standard deviation σ , based on the formula $\phi(x, \mu, \sigma) = \phi((x - \mu) / \sigma)/\sigma$. Also add an implementation of the associated cumulative distribution function cdf(z, mu, sigma), based on the formula $\Phi(z, \mu, \sigma) = \Phi((z - \mu) / \sigma)$.

2.2.2 Write a library of static methods that implements the *hyperbolic* functions based on the definitions $\sinh(x) = (e^x - e^{-x}) / 2$ and $\cosh(x) = (e^x + e^{-x}) / 2$, with $\tanh(x)$, $\coth(x)$, $\operatorname{sech}(x)$, and $\operatorname{csch}(x)$ defined in a manner analogous to standard trigonometric functions.

2.2.3 Write a test client for both StdStats and StdRandom that checks that the methods in both libraries operate as expected. Take a command-line argument n, generate n random numbers using each of the methods in StdRandom, and print their statistics. *Extra credit*: Defend the results that you get by comparing them to those that are to be expected from analysis.

2.2.4 Add to StdRandom a method shuffle() that takes an array of double values as argument and rearranges them in random order. Implement a test client that checks that each permutation of the array is produced about the same number of times. Add overloaded methods that take arrays of integers and strings.

2.2.5 Develop a client that does stress testing for StdRandom. Pay particular attention to discrete(). For example, do the probabilities sum to 1?

2.2.6 Write a static method that takes double values ymin and ymax (with ymin strictly less than ymax), and a double array a [] as arguments and uses the StdStats library to linearly scale the values in a [] so that they are all between ymin and ymax.

2.2.7 Write a Gaussian and StdStats client that explores the effects of changing the mean and standard deviation for the Gaussian probability density function. Create one plot with the Gaussian distributions having a fixed mean and various standard deviations and another with Gaussian distributions having a fixed standard deviation and various means.

2.2.8 Add a method exp() to StdRandom that takes an argument λ and returns a random number drawn from the *exponential distribution* with rate λ . *Hint*: If *x* is a random number uniformly distributed between 0 and 1, then $-\ln x / \lambda$ is a random number from the exponential distribution with rate λ .

2.2.9 Add to StdRandom a static method maxwellBoltzmann() that returns a random value drawn from a *Maxwell–Boltzmann* distribution with parameter σ . To produce such a value, return the square root of the sum of the squares of three random numbers drawn from the Gaussian distribution with mean 0 and standard deviation σ . The speeds of molecules in an ideal gas obey a Maxwell–Boltzmann distribution.

2.2.10 Modify Bernoulli (PROGRAM 2.2.6) to animate the bar graph, replotting it after each experiment, so that you can watch it converge to the Gaussian distribution. Then add a command-line argument and an overloaded binomial() implementation to allow you to specify the probability p that a biased coin comes up heads, and run experiments to get a feeling for the distribution corresponding to a biased coin. Be sure to try values of p that are close to 0 and close to 1.

2.2.11 Develop a full implementation of StdArrayIO (implement all 12 methods indicated in the API).

2.2.12 Write a library Matrix that implements the following API:

public class Matrix

double	<pre>dot(double[] a, double[] b)</pre>	vector dot product
double[][]	<pre>multiply(double[][] a, double[][] b)</pre>	matrix–matrix product
double[][]	<pre>transpose(double[][] a)</pre>	transpose
double[]	<pre>multiply(double[][] a, double[] x)</pre>	matrix–vector product
double[]	<pre>multiply(double[] x, double[][] a)</pre>	vector-matrix product

(See SECTION 1.4.) As a test client, use the following code, which performs the same calculation as Markov (Program 1.6.3):

public static void main(String[] args)
{
 int trials = Integer.parseInt(args[0]);
 double[][] p = StdArrayIO.readDouble2D();
 double[] ranks = new double[p.length];
 rank[0] = 1.0;
 for (int t = 0; t < trials; t++)
 ranks = Matrix.multiply(ranks, p);
 StdArrayIO.print(ranks);
}</pre>

Mathematicians and scientists use mature libraries or special-purpose matrix-processing languages for such tasks. See the booksite for details on using such libraries.

2.2.13 Write a Matrix client that implements the version of Markov described in SECTION 1.6 but is based on squaring the matrix, instead of iterating the vector-matrix multiplication.

2.2.14 Rewrite RandomSurfer (PROGRAM 1.6.2) using the StdArrayIO and StdRandom libraries.

Partial solution.

```
double[][] p = StdArrayIO.readDouble2D();
int page = 0; // Start at page 0.
int[] freq = new int[n];
for (int t = 0; t < trials; t++)
{
    page = StdRandom.discrete(p[page]);
    freq[page]++;
}
```


2.2.15 *Sicherman dice.* Suppose that you have two six-sided dice, one with faces labeled 1, 3, 4, 5, 6, and 8 and the other with faces labeled 1, 2, 2, 3, 3, and 4. Compare the probabilities of occurrence of each of the values of the sum of the dice with those for a standard pair of dice. Use StdRandom and StdStats.

2.2.16 *Craps.* The following are the rules for a *pass bet* in the game of *craps*. Roll two six-sided dice, and let *x* be their sum.

- If *x* is 7 or 11, you win.
- If *x* is 2, 3, or 12, you lose.

Otherwise, repeatedly roll the two dice until their sum is either *x* or 7.

- If their sum is *x*, you win.
- If their sum is 7, you lose.

Write a modular program to estimate the probability of winning a pass bet. Modify your program to handle loaded dice, where the probability of a die landing on 1 is taken from the command line, the probability of landing on 6 is 1/6 minus that probability, and 2–5 are assumed equally likely. *Hint*: Use StdRandom.discrete().

2.2.17 *Gaussian random values.* Implement the no-argument gaussian() function in StdRandom (Program 2.2.1) using the Box–Muller formula (see EXERCISE 1.2.27). Next, consider an alternative approach, known as *Marsaglia's method*, which is based on generating a random point in the unit circle and using a form of the Box–Muller formula (see the discussion of do-while at the end of Section 1.3).

```
public static double gaussian()
{
    double r, x, y;
    do
    {
        x = uniform(-1.0, 1.0);
        y = uniform(-1.0, 1.0);
        r = x*x + y*y;
    } while (r >= 1 || r == 0);
    return x * Math.sqrt(-2 * Math.log(r) / r);
}
```

For each approach, generate 10 million random values from the Gaussian distribution, and measure which is faster. **2.2.18** Dynamic histogram. Suppose that the standard input stream is a sequence of double values. Write a program that takes an integer n and two double values lo and hi from the command line and uses StdStats to plot a histogram of the count of the numbers in the standard input stream that fall in each of the *n* intervals defined by dividing (lo, hi) into *n* equal-sized intervals. Use your program to add code to your solution to EXERCISE 2.2.3 to plot a histogram of the distribution of the numbers produced by each method, taking n from the command line.

2.2.19 *Stress test.* Develop a client that does stress testing for StdStats. Work with a classmate, with one person writing code and the other testing it.

2.2.20 *Gambler's ruin.* Develop a StdRandom client to study the gambler's ruin problem (see PROGRAM 1.3.8 and EXERCISE 1.3.24–25). *Note*: Defining a static method for the experiment is more difficult than for Bernoulli because you cannot return two values.

2.2.21 *IFS.* Experiment with various inputs to IFS to create patterns of your own design like the Sierpinski triangle, the Barnsley fern, or the other examples in the table in the text. You might begin by experimenting with minor modifications to the given inputs.

2.2.22 *IFS matrix implementation.* Write a version of IFS that uses the static method multiply() from Matrix (see EXERCISE 2.2.12) instead of the equations that compute the new values of x0 and y0.

2.2.23 *Library for properties of integers.* Develop a library based on the functions that we have considered in this book for computing properties of integers. Include functions for determining whether a given integer is prime; determining whether two integers are relatively prime; computing all the factors of a given integer; computing the greatest common divisor and least common multiple of two integers; Euler's totient function (EXERCISE 2.1.26); and any other functions that you think might be useful. Include overloaded implementations for long values. Create an API, a client that performs stress testing, and clients that solve several of the exercises earlier in this book.

2.2.24 *Music library*. Develop a library based on the functions in PlayThatTune (PROGRAM 2.1.4) that you can use to write client programs to create and manipulate songs.

2.2.25 *Voting machines.* Develop a StdRandom client (with appropriate static methods of its own) to study the following problem: Suppose that in a population of 100 million voters, 51% vote for candidate *A* and 49% vote for candidate *B*. However, the voting machines are prone to make mistakes, and 5% of the time they produce the wrong answer. Assuming the errors are made independently and at random, is a 5% error rate enough to invalidate the results of a close election? What error rate can be tolerated?

2.2.26 *Poker analysis.* Write a StdRandom and StdStats client (with appropriate static methods of its own) to estimate the probabilities of getting one pair, two pair, three of a kind, a full house, and a flush in a five-card poker hand via simulation. Divide your program into appropriate static methods and defend your design decisions. *Extra credit*: Add straight and straight flush to the list of possibilities.

2.2.27 Animated plots. Write a program that takes a command-line argument m and produces a bar graph of the m most recent double values on standard input. Use the same animation technique that we used for BouncingBall (PROGRAM 1.5.6): erase, redraw, show, and wait briefly. Each time your program reads a new number, it should redraw the whole bar graph. Since most of the picture does not change as it is redrawn slightly to the left, your program will produce the effect of a fixed-size window dynamically sliding over the input values. Use your program to plot a huge time-variant data file, such as stock prices.

2.2.28 Array plot library. Develop your own plot methods that improve upon those in StdStats. Be creative! Try to make a plotting library that you think will be useful for some application in the future.

2.3 Recursion

THE IDEA OF CALLING ONE FUNCTION from another immediately suggests the possibility of a function calling *itself*. The function-call mechanism in Java and most modern programming languages supports this possibility, which is known as *recursion*. In

this section, we will study examples of elegant and efficient recursive solutions to a variety of problems. Recursion is a powerful programming technique that we use often in this book. Recursive programs are often more compact and easier to understand than their nonrecursive counterparts. Few programmers become sufficiently comfortable with recursion to use it in everyday code, but solving a

2.3.1	Euclid's algorithm
2.3.2	Towers of Hanoi
2.3.3	Gray code
2.3.4	Recursive graphics
2.3.5	Brownian bridge
2.3.6	Longest common subsequence 287
	Programs in this section

problem with an elegantly crafted recursive program is a satisfying experience that is certainly accessible to every programmer (even you!).

Recursion is much more than a programming technique. In many settings, it is a useful way to describe the natural world. For example, the recursive tree (to the left) resembles a real tree, and has a natural recursive description. Many, many phenomena are well explained by recursive models. In particular, recursion plays a central role in computer science. It provides a simple computational model that embraces everything that can be computed with any computer; it helps us to organize and to analyze programs; and it is the key to numerous critically important computational applications, ranging from combinatorial search to tree data structures that support information processing to the fast Fourier transform for signal processing.

One important reason to embrace recursion is that it provides a straightforward way to build simple mathematical models that we can use to prove important facts about our programs. The proof technique that we use to do so is known as *mathematical induction*. Generally, we avoid going into the details of mathematical proofs in this book, but you will see in this section that it is worthwhile to understand that point of view and make the effort to convince yourself that recursive programs have the intended effect.

A recursive model of the natural world

2.3 Recursion

<text><text><text><text>

stand that point of view and to make the effort to convince yourself that recursive programs have the intended effect.

Functions and Modules

 \diamond 2.3 Rec

Functions and Modules

2.3 Recursion

Compariming technique with must at a second balance of the second that we use often in this compared. In this compared and exist to understand the their noncensive compared and exist to understand the their noncensive compared and exist to understand the their noncensive compared and exist to understand the distribution of the compared and exist to understand the distribution of the compared and exist to understand the distribution of the compared and exist to understand the compared and exist to understand the compared and exist to understand the compared and the second the second the compared and the second the second the compared and the second the second the second the second technical processing.
 A provide a simple comparison and the second the second technical processing to the second technical processing.
 A provide a simple comparison and the second that second the second technical processing.
 A provide a simple compared the second technical profile that can be under the second technical processing.
 A provide a provide the second that support information provide the second technical processing to the second technical processing technical technica tec

263

\diamond

The next or curries our novernos from another immediately augusts the possibility of a function colling itself. The function-call mechanism in Python and in most modern representing lenguses supports the isophibility which is known as ercor-bes of degrant and different recursives as placed of the days and different recursives as surrised or problems. Concer-sentiations to a variety of problems. The programming technique sevent in any as the day program is a fundamental programming technique event in the action the days are written and the days and programming technique event in the tractive properties. It is a fundamental to left aven are written as the as the days are as an another as a survey as the days are as a survey of the days and programming technique event in this the left aven are not many as

A recursive image

 \diamond 193

 $\langle \rangle$

亂 ľ

Your first recursive program The "Hello, World" for recursion is the *factorial* function, defined for positive integers *n* by the equation

 $n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$

In other words, *n*! is the product of the positive integers less than or equal to *n*. Now, *n*! is easy to compute with a for loop, but an even easier method is to use the following recursive function:

```
public static long factorial(int n)
{
    if (n == 1) return 1;
    return n * factorial(n-1);
}
```

This function calls itself. The implementation clearly produces the desired effect. You can persuade yourself that it does so by noting that factorial() returns 1 = 1! when *n* is 1 and that if it properly computes the value

$$(n-1)! = (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

then it properly computes the value

$$n! = n \times (n-1)!$$

= $n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$

To compute factorial(5), the recursive function multiplies 5 by factorial(4); to compute factorial(4), it multiplies 4 by factorial(3); and so forth. This process is repeated until calling factorial(1), which directly returns the value 1. We can trace this computation in precisely the same way that we trace any sequence of function calls. Since we treat all of the calls as being independent copies of the code, the fact that they are recursive is immaterial.

```
factorial(5)
factorial(4)
factorial(3)
factorial(2)
factorial(1)
return 1
return 2*1 = 2
return 3*2 = 6
return 4*6 = 24
return 5*24 = 120
```

Function-call trace for factoria1(5)

Our factorial() implementation exhibits the two main components that are required for every recursive function. First, the *base case* returns a value without making any subsequent recursive calls. It does this for one or more special input values for which the function can be evaluated without recursion. For factorial(), the base case is n = 1. Second, the *reduction step* is the central part of a recursive

function. It relates the function at one (or more) arguments to the function evaluated at one (or more) other arguments. For factorial(), the reduction step is n * factorial(n-1). All recursive functions must have these two components. Furthermore, the sequence of argument values must converge to the base case. For factorial(), the value of *n* decreases by 1 for each call, so the sequence of argument values converges to the base case n = 1.

Tiny programs such as factorial() perhaps become slightly clearer if we put the reduction step in an else clause. However, adopting this convention for every recursive program would unnecessarily complicate larger programs because it would involve putting most of the code (for the reduction step) within curly braces after the else. Instead, we adopt the convention of always putting the base case as the first statement, ending with a return, and then devoting the rest of the code to the reduction step.

```
22
 36
 4 24
 5 120
 6 720
 7 5040
 8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
```

1 1

Values of n! in long

The factorial() implementation itself is not particularly useful in practice because *n*! grows so quickly that the multiplica-

tion will overflow a long and produce incorrect answers for n > 20. But the same technique is effective for computing all sorts of functions. For example, the recursive function

```
public static double harmonic(int n)
{
    if (n == 1) return 1.0;
    return harmonic(n-1) + 1.0/n;
}
```

computes the *n*th harmonic numbers (see Program 1.3.5) when n is small, based on the following equations:

$$H_n = 1 + 1/2 + \dots + 1/n$$

= $(1 + 1/2 + \dots + 1/(n-1)) + 1/n$
= $H_{n-1} + 1/n$

Indeed, this same approach is effective for computing, with only a few lines of code, the value of *any* finite sum (or product) for which you have a compact formula. Recursive functions like these are just loops in disguise, but recursion can help us better understand the underlying computation.

Mathematical induction Recursive programming is directly related to *mathematical induction*, a technique that is widely used for proving facts about the natural numbers.

Proving that a statement involving an integer n is true for infinitely many values of n by mathematical induction involves the following two steps:

- The *base case*: prove the statement true for some specific value or values of *n* (usually 0 or 1).
- The *induction step* (the central part of the proof): assume the statement to be true for all positive integers less than *n*, then use that fact to prove it true for *n*.

Such a proof suffices to show that the statement is true for *infinitely* many values of *n*: we can start at the base case, and use our proof to establish that the statement is true for each larger value of *n*, one by one.

Everyone's first induction proof is to demonstrate that the sum of the positive integers less than or equal to *n* is given by the formula n(n + 1) / 2. That is, we wish to prove that the following equation is valid for all $n \ge 1$:

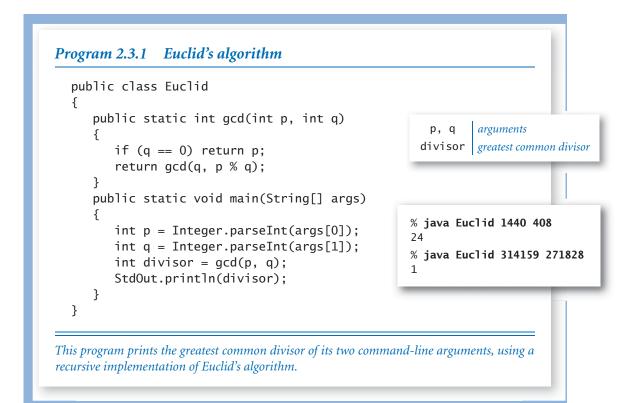
 $1 + 2 + 3 \dots + (n-1) + n = n(n+1)/2$ The equation is certainly true for n = 1 (base case) because 1 = 1(1 + 1)/2. If we assume it to be true for all positive integers less than *n*, then, in particular, it is true for n-1, so

 $1+2+3 \dots + (n-1) = (n-1) n/2$

and we can add n to both sides of this equation and simplify to get the desired equation (induction step).

Every time we write a recursive program, we need mathematical induction to be convinced that the program has the desired effect. The correspondence between induction and recursion is self-evident. The difference in nomenclature indicates a difference in outlook: in a recursive program, our outlook is to get a computation done by reducing to a smaller problem, so we use the term *reduction step*; in an induction proof, our outlook is to establish the truth of the statement for larger problems, so we use the term *induction step*.

When we write recursive programs we usually do not write down a full formal proof that they produce the desired result, but we are always dependent upon the existence of such a proof. We often appeal to an informal induction proof to convince ourselves that a recursive program operates as expected. For example, we just discussed an informal proof to become convinced that factorial() computes the product of the positive integers less than or equal to *n*.



Euclid's algorithm The *greatest common divisor* (gcd) of two positive integers is the largest integer that divides evenly into both of them. For example, the greatest common divisor of 102 and 68 is 34 since both 102 and 68 are multiples of 34, but no integer larger than 34 divides evenly into 102 and 68. You may recall learning about the greatest common divisor when you learned to reduce fractions. For example, we can simplify 68/102 to 2/3 by dividing both numerator and denominator by 34, their gcd. Finding the gcd of huge numbers is an important problem that arises in many commercial applications, including the famous RSA cryptosystem.

We can efficiently compute the gcd using the following property, which holds for positive integers *p* and *q*:

If p > q, the gcd of p and q is the same as the gcd of q and p % q.

To convince yourself of this fact, first note that the gcd of p and q is the same as the gcd of q and p-q, because a number divides both p and q if and only if it divides both q and p-q. By the same argument, q and p-2q, q and p-3q, and so forth have the same gcd, and one way to compute p % q is to subtract q from p until getting a number less than q.

The static method gcd() in Euclid (PROGRAM 2.3.1) is a compact recursive function whose reduction step is based on this property. The base case is when q is 0, with gcd(p, 0) = p. To see that the reduction step converges to the base case,

observe that the second argument value strictly decreases in each recursive call since $p \ \% q < q$. If p < q, the first recursive call effectively switches the order of the two arguments. In fact, the second argument value decreases by at least a factor of 2 for every second recursive call, so the sequence of argument values quickly converges to the base case (see EXERCISE 2.3.11). This recursive solution to the problem of computing the greatest common divisor is known as *Euclid's algorithm* and is one of the oldest known algorithms—it is more than 2,000 years old.

gcd(1440, 408) gcd(408, 216) gcd(216, 192) gcd(192, 24) gcd(24, 0) return 24 return 24 return 24 return 24 Function-call trace for gcd()

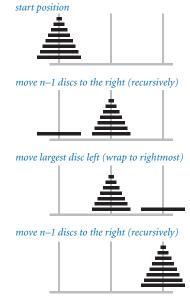
Towers of Hanoi No discussion of recursion would be complete without the ancient *towers of Hanoi* problem. In this problem, we have three poles and n discs that fit onto the poles. The discs differ in size and are initially stacked on one of the poles, in order from largest (disc n) at the bottom to smallest (disc 1) at the top. The task is to move all n discs to another pole, while obeying the following rules:

- Move only one disc at a time.
- Never place a larger disc on a smaller one.

One legend says that the world will end when a certain group of monks accomplishes this task in a temple with 64 golden discs on three diamond needles. But how can the monks accomplish the task at all, playing by the rules?

To solve the problem, our goal is to issue a sequence of instructions for moving the discs. We assume that the poles are arranged in a row, and that each instruction to move a disc specifies its number and whether to move it left or right. If a disc is on the left pole, an instruction to move left means to wrap to the right pole; if a disc is on the right pole, an instruction to move right means to wrap to the left pole. When the discs are all on one pole, there are two possible moves (move the smallest disc left or right); otherwise, there are three possible moves (move the smallest disc left or right, or make the one legal move involving the other two poles). Choosing among these possibilities on each move to achieve the goal is a challenge that requires a plan. Recursion provides just the plan that we need, based on the following idea: first we move the top n-1 discs to an empty pole, then we move the largest disc to the other empty pole (where it does not interfere with the smaller ones), and then we complete the job by moving the n-1 discs onto the largest disc.

TowersOfHanoi (PROGRAM 2.3.2) is a direct implementation of this recursive strategy. It takes a command-line argument n and prints the solution to the towers of Hanoi problem on n discs. The recursive function moves() prints the sequence of moves to move the stack of discs to the left (if the argument left is true) or to the right (if left is false). It does so exactly according to the plan just described.

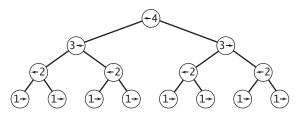


Recursive plan for towers of Hanoi

Function-call trees To better understand the behavior of modular programs that have multiple recursive calls

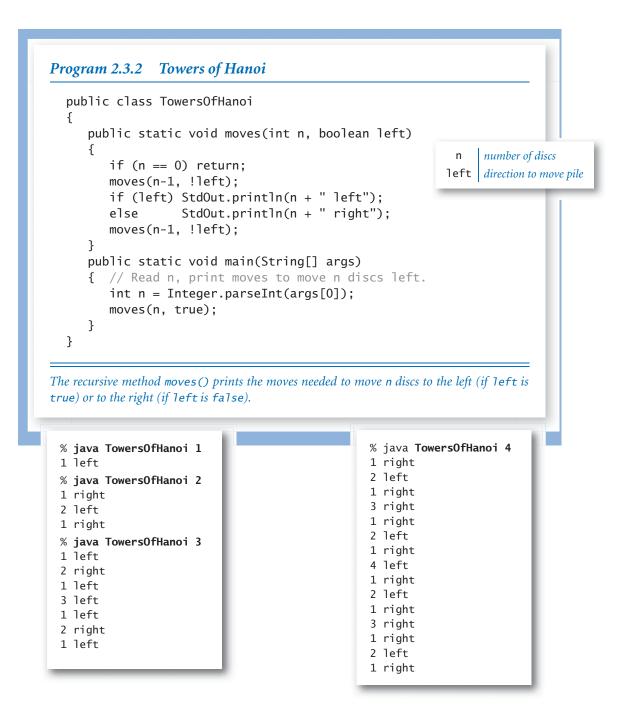
(such as TowersOfHanoi), we use a visual representation known as a *function-call tree*. Specifically, we represent each method call as a *tree node*, depicted as a circle labeled with the values of the arguments for that call. Below each tree node, we draw the tree nodes corresponding to each call in that use of the method (in order from left to right) and lines connecting to them. This diagram contains all the information we need to understand the behavior of the program. It contains a tree node for each function call.

We can use function-call trees to understand the behavior of any modular program, but they are particularly useful in exposing the behavior of recursive



Function-call tree for moves(4, true) in TowersOfHanoi

programs. For example, the tree corresponding to a call to move() in TowersOfHanoi is easy to construct. Start by drawing a tree node labeled with the values of the command-line arguments. The first argument is the number



of discs in the pile to be moved (and the label of the disc to actually be moved); the second is the direction to move the disc. For clarity, we depict the direction (a boolean value) as an arrow that points left or right, since that is our interpretation of the value—the direction to move the piece. Then draw two tree nodes below with the number of discs decremented by 1 and the direction switched, and contin-

ue doing so until only nodes with labels corresponding to a first argument value 1 have no nodes below them. These nodes correspond to calls on moves() that do not lead to further recursive calls.

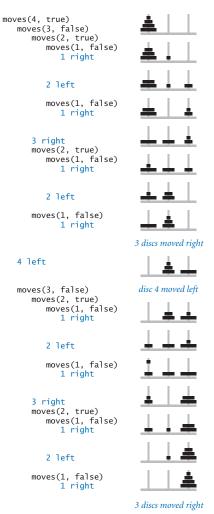
Take a moment to study the function-call tree depicted earlier in this section and to compare it with the corresponding function-call trace depicted at right. When you do so, you will see that the recursion tree is just a compact representation of the trace. In particular, reading the node labels from left to right gives the moves needed to solve the problem.

Moreover, when you study the tree, you probably notice several patterns, including the following two:

- Alternate moves involve the smallest disc.
- That disc always moves in the same direction.

These observations are relevant because they give a solution to the problem that does not require recursion (or even a computer): every other move involves the smallest disc (including the first and last), and each intervening move is the only legal move at the time not involving the smallest disc. We can *prove* that this approach produces the same outcome as the recursive program, using induction. Having started centuries ago without the benefit of a computer, perhaps our monks are using this approach.

Trees are relevant and important in understanding recursion because the tree is a quintessential recursive object. As an abstract mathematical model, trees play an essential role in many applications, and in CHAPTER 4, we will consider the use of trees as a computational model to structure data for efficient processing.



Exponential time One advantage of using recursion is that often we can develop mathematical models that allow us to prove important facts about the behavior of recursive programs. For the towers of Hanoi problem, we can estimate the amount of time until the end of the world (assuming that the legend is true). This exercise is important not just because it tells us that the end of the world is quite far off (even if the legend is true), but also because it provides insight that can help us avoid writing programs that will not finish until then.

The mathematical model for the towers of Hanoi problem is simple: if we define the function T(n) to be the number of discs moved by TowersOfHanoi to solve an *n*-disc problem, then the recursive code implies that T(n) must satisfy the following equation:

T(n) = 2 T(n-1) + 1 for n > 1, with T(1) = 1

Such an equation is known in discrete mathematics as a *recurrence relation*. Recurrence relations naturally arise in the study of recursive programs. We can often use them to derive a closed-form expression for the quantity of interest. For T(n), you may have already guessed from the initial values T(1) = 1, T(2) = 3, T(3), = 7, and T(4) = 15 that $T(n) = 2^n - 1$. The recurrence relation provides a way to *prove* this to be true, by mathematical induction:

• *Base case*: $T(1) = 2^n - 1 = 1$

• *Induction step*: if $T(n-1) = 2^{n-1} - 1$, $T(n) = 2(2^{n-1} - 1) + 1 = 2^n - 1$ Therefore, by induction, $T(n) = 2^n - 1$ for all n > 0. The minimum possible number of moves also satisfies the same recurrence (see EXERCISE 2.3.11).

Knowing the value of T(n), we can estimate the amount of time required to perform all the moves. If the monks move discs at the rate of one per second, it would take more than one week for them to finish a 20-disc problem, more than 34 years to finish a 30-disc problem, and more than 348 *centuries* for them to finish a 40-disc problem (assuming that they do not make a mistake). The 64-disc problem would take more than 5.8 *billion* centuries. The end of the world is likely to be even further off than that because those monks presumably never have had the benefit of using PROGRAM 2.3.2, and might not be able to move the discs so rapidly or to figure out so quickly which disc to move next.

Even computers are no match for exponential growth. A computer that can do a billion operations per second will still take centuries to do 2⁶⁴ operations, and no computer will ever do 2^{1,000} operations, say. The lesson is profound: with recursion, you can easily write simple short programs

2.3 Recursion

that take exponential time, but they simply will not run to completion when you try to run them for large n. Novices are often skeptical of this basic fact, so it is worth your while to pause now to think about it. To convince yourself that it is true, take the print statements out of TowersOfHanoi and run it for increasing values of n starting at 20. You can easily verify that each time you increase the value of n by 1, the running time doubles, and you will quickly lose patience waiting for it to finish. If you wait for an hour for some value of n, you will wait more than a day for n + 5, more than a month for n + 10, and more than a century for n + 20 (no one has *that* much patience). Your computer is just not fast enough to run every short Java program that you write, no matter how simple the program might seem! *Beware of programs that might require exponential time*.

We are often interested in predicting the running time of our programs. In SECTION 4.1, we will discuss the use of the same process that we just used to help estimate the running time of other programs.

Gray codes The towers of Hanoi problem is no toy. It is intimately related to basic algorithms for manipulating numbers and discrete objects. As an example, we consider *Gray codes*, a mathematical abstraction with numerous applications.

The playwright Samuel Beckett, perhaps best known for *Waiting for Godot*, wrote a play called *Quad* that had the following property: starting with an empty stage, characters enter and exit one at a time so that each subset of characters on the stage appears exactly once. How did Beckett generate the stage directions for this play?

One way to represent a subset of *n* discrete objects is to use a string of *n* bits. For Beckett's problem, we use a 4-bit string, with bits numbered from right to left and a bit value of 1 indicating the character onstage. For example, the string 0 1 0 1 corresponds to the scene with characters 3 and 1 onstage. This representation gives a quick proof of a basic fact: *the number different subsets of n objects is exactly* 2^n . *Quad* has four characters, so there are $2^4 = 16$ different scenes. Our task is to generate the stage directions.

An *n*-bit *Gray code* is a list of the 2^n different *n*-bit binary numbers such that each element in the list differs in precisely one bit from its predecessor. Gray codes directly apply to Beckett's problem because changing the value of a bit from 0 to 1

code	subset	move	
0000	empty		
$0 \ 0 \ 0 \ 1$	1	enter	1
0011	2 1	enter	2
0010	2	exit	1
0110	32	enter	3
0111	321	enter	1
0101	31	exit	2
0100	3	exit	1
1100	43	enter	4
1101	431	enter	1
$1\ 1\ 1\ 1$	4321	enter	2
1110	432	exit	1
1010	42	exit	3
1011	421	enter	1
1001	4 1	exit	2
1000	4	exit	1

Gray code representations

corresponds to a character entering the subset onstage; changing a bit from 1 to 0 corresponds to a character exiting the subset.

How do we generate a Gray code? A recursive plan that is very similar to the one that we used for the towers of Hanoi problem is effective. The *n*-bit *binary-reflected Gray code* is defined recursively as follows:

• The (n-1) bit code, with 0 prepended to each word, followed by

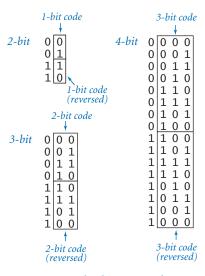
• The (n-1) bit code *in reverse order*, with 1 prepended to each word

The 0-bit code is defined to be empty, so the 1-bit code is 0 followed by 1. From this recursive definition, we can verify by induction that the *n*-bit binary reflected Gray code has the required property: adjacent codewords differ in one bit position. It is true by the inductive hypothesis, except possibly for the last codeword in the first half and the first codeword in the second half: this pair differs only in their first bit.

The recursive definition leads, after some careful thought, to the implementation in Beckett (PROGRAM 2.3.3) for printing Beckett's stage directions. This program is remarkably similar to Tow-ersOfHanoi. Indeed, except for nomenclature, the only difference is in the values of the second arguments in the recursive calls!

As with the directions in TowersOfHanoi, the enter and exit directions are redundant in Beckett, since exit is issued only when an actor is onstage, and enter is issued only when an actor is not onstage. Indeed, both Beckett and TowersOfHanoi directly involve the ruler function that we considered in one of our first programs (PROGRAM 1.2.1). Without the printing instructions, they both implement a simple recursive function that could allow Ruler to print the values of the ruler function for any value given as a command-line argument.

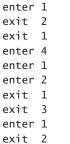
Gray codes have many applications, ranging from analog-to-digital converters to experimental design. They have been used in pulse code communication, the minimization of logic circuits, and hypercube architectures, and were even proposed to organize books on library shelves.




```
Program 2.3.3
                 Gray code
  public class Beckett
  ł
      public static void moves(int n, boolean enter)
      {
                                                                         number of actors
                                                                    n
         if (n == 0) return;
                                                                  enter
                                                                        stage direction
         moves(n-1, true);
         if (enter) StdOut.println("enter " + n);
                      StdOut.println("exit " + n);
         else
         moves(n-1, false);
      }
      public static void main(String[] args)
      {
         int n = Integer.parseInt(args[0]);
         moves(n, true);
      }
  }
This recursive program gives Beckett's stage instructions (the bit positions that change in a
binary-reflected Gray code). The bit position that changes is precisely described by the ruler
function, and (of course) each actor alternately enters and exits.
 % java Beckett 1
                                                          % java Beckett 4
```

/ Java Beckett I
enter 1
% java Beckett 2
enter 1
enter 2
exit 1
% java Beckett 3
enter 1
enter 2
exit 1
enter 3
enter 1
exit 2
exit 1

% Java beckett 4
enter 1
enter 2
exit 1
enter 3
enter 1



exit 1

Recursive graphics Simple recursive drawing schemes can lead to pictures that are remarkably intricate. Recursive drawings not only relate to numerous applications, but also provide an appealing platform for developing a better understanding of properties of recursive functions, because we can watch the process of a recursive figure taking shape.

As a first simple example, consider Htree (PROGRAM 2.3.4), which, given a command-line argument *n*, draws an *H*-tree of order *n*, defined as follows: The base case is to draw nothing for n = 0. The reduction step is to draw, within the unit square

- three lines in the shape of the letter H
- four H-trees of order n-1, one centered at each tip of the H

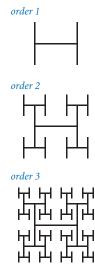
with the additional proviso that the H-trees of order n-1 are halved in size.

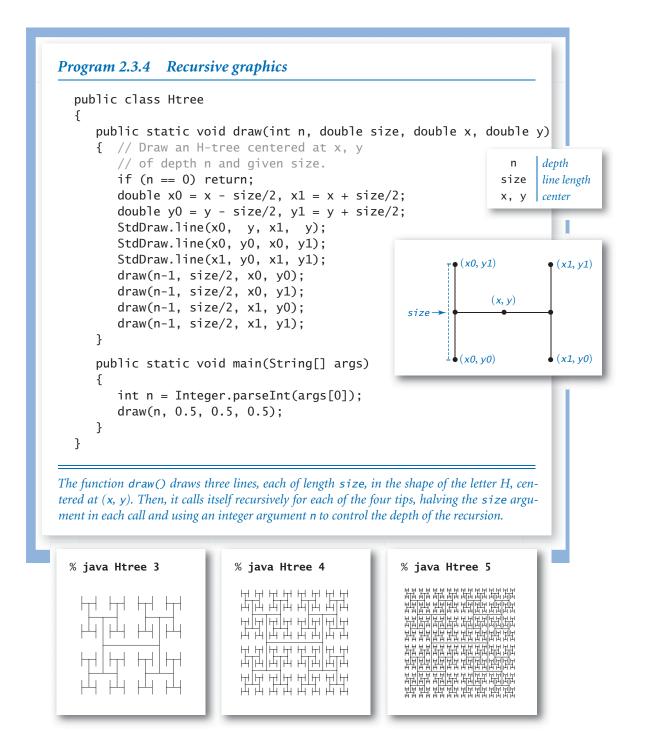
Drawings like these have many practical applications. For example, consider a cable company that needs to run cable to all of the homes distributed throughout its region. A reasonable strategy is to use an H-tree to get the signal to a suitable number of centers distributed throughout the region, then run cables connecting each home to the nearest center. The same problem is faced by computer designers who want to distribute power or signal throughout an integrated circuit chip.

Though every drawing is in a fixed-size window, H-trees certainly exhibit exponential growth. An H-tree of order *n* connects 4^n centers, so you would be trying to plot more than a million lines with n = 10, and more than a billion with n = 15. The program will certainly not finish the drawing with n = 30.

If you take a moment to run Htree on your computer for a drawing that takes a minute or so to complete, you will, just by watching the drawing progress, have the opportunity to gain substantial insight into the nature of recursive programs, because you can see the *order* in which the H figures appear and how they form into H-trees. An even more instructive exercise, which derives from the fact that

the same drawing results no matter in which order the recursive draw() calls and the StdDraw.line() calls appear, is to observe the effect of rearranging the order of these calls on the order in which the lines appear in the emerging drawing (see EXERCISE 2.3.14).





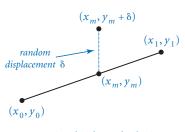
Brownian bridge An H-tree is a simple example of a *fractal*: a geometric shape that can be divided into parts, each of which is (approximately) a reduced-size copy of the original. Fractals are easy to produce with recursive programs, although scientists, mathematicians, and programmers study them from many different points of view. We have already encountered fractals several times in this book—for example, IFS (PROGRAM 2.2.3).

The study of fractals plays an important and lasting role in artistic expression, economic analysis, and scientific discovery. Artists and scientists use fractals to build compact models of complex shapes that arise in nature and resist description using conventional geometry, such as clouds, plants, mountains, riverbeds, human skin, and many others. Economists use fractals to model function graphs of economic indicators.

Fractional Brownian motion is a mathematical model for creating realistic fractal models for many naturally rugged shapes. It is used in computational finance and in the study of many natural phenomena, including ocean flows and nerve membranes. Computing the exact fractals specified by the model can be a difficult challenge, but it is not difficult to compute approximations with recursive programs.

Brownian (PROGRAM 2.3.5) produces a function graph that approximates a simple example of fractional Brownian motion known as a *Brownian bridge* and

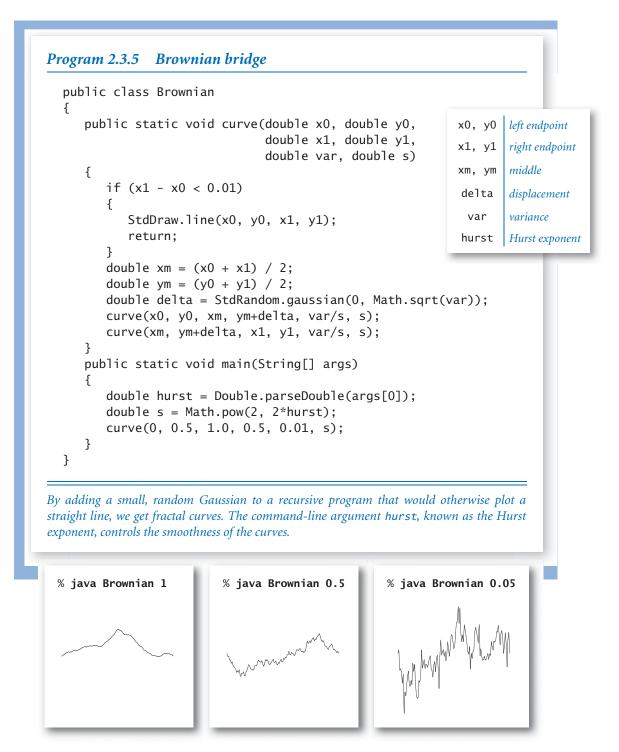
closely related functions. You can think of this graph as a random walk that connects the two points (x_0, y_0) and (x_1, y_1) , controlled by a few parameters. The implementation is based on the *midpoint displacement method*, which is a recursive plan for drawing the plot within the *x*-interval $[x_0, x_1]$. The base case (when the length of the interval is smaller than a given tolerance) is to draw a straight line connecting the two endpoints. The reduction case is to divide the interval into two halves, proceeding as follows:



Brownian bridge calculation

- Compute the midpoint (x_m, y_m) of the interval.
- Add to the *y*-coordinate y_m of the midpoint a random value δ , drawn from the Gaussian distribution with mean 0 and a given variance.
- Recur on the subintervals, dividing the variance by a given scaling factor s.

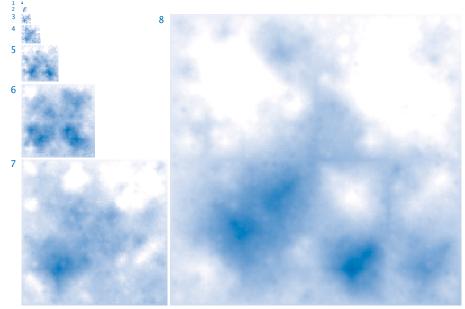
The shape of the curve is controlled by two parameters: the *volatility* (initial value of the variance) controls the distance the function graph strays from the straight



line connecting the points, and *the Hurst exponent* controls the smoothness of the curve. We denote the Hurst exponent by H and divide the variance by 2^{2H} at each recursive level. When H is 1/2 (halved at each level), the curve is a Brownian bridge—a continuous version of the gambler's ruin problem (see PROGRAM 1.3.8). When 0 < H < 1/2, the displacements tend to increase, resulting in a rougher curve. Finally, when 2 > H > 1/2, the displacements tend to decrease, resulting in a smoother curve. The value 2 - H is known as the *fractal dimension* of the curve.

The volatility and initial endpoints of the interval have to do with scale and positioning. The main() test client in Brownian allows you to experiment with the Hurst exponent. With values larger than 1/2, you get plots that look something like the horizon in a mountainous landscape; with values smaller than 1/2, you get plots similar to those you might see for the value of a stock index.

Extending the midpoint displacement method to two dimensions yields fractals known as *plasma clouds*. To draw a rectangular plasma cloud, we use a recursive plan where the base case is to draw a rectangle of a given color and the reduction step is to draw a plasma cloud in each of the four quadrants with colors that are perturbed from the average with a random Gaussian. Using the same volatility and smoothness controls as in Brownian, we can produce synthetic clouds that are remarkably realistic. We can use the same code to produce synthetic terrain, by interpreting the color value as the altitude. Variants of this scheme are widely used in the entertainment industry to generate background scenery for movies and games.



Plasma clouds

Pitfalls of recursion By now, you are perhaps persuaded that recursion can help you to write compact and elegant programs. As you begin to craft your own recursive programs, you need to be aware of several common pitfalls that can arise. We have already discussed one of them in some detail (the running time of your program might grow exponentially). Once identified, these problems are generally not difficult to overcome, but you will learn to be very careful to avoid them when writing recursive programs.

Missing base case. Consider the following recursive function, which is supposed to compute harmonic numbers, but is missing a base case:

```
public static double harmonic(int n)
{
    return harmonic(n-1) + 1.0/n;
}
```

If you run a client that calls this function, it will repeatedly call itself and never return, so your program will never terminate. You probably already have encountered infinite loops, where you invoke your program and nothing happens (or perhaps you get an unending sequence of printed output). With infinite recursion, however, the result is different because the system keeps track of each recursive call (using a mechanism that we will discuss in SECTION 4.3, based on a data structure known as a *stack*) and eventually runs out of memory trying to do so. Eventually, Java reports a StackOverflowError at run time. When you write a recursive program, you should always try to convince yourself that it has the desired effect by an informal argument based on mathematical induction. Doing so might uncover a missing base case.

No guarantee of convergence. Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller than the original problem. For example, the following method goes into an infinite recursive loop for any value of its argument (except 1) because the sequence of argument values does not converge to the base case:

```
public static double harmonic(int n)
{
    if (n == 1) return 1.0;
    return harmonic(n) + 1.0/n;
}
```

Bugs like this one are easy to spot, but subtle versions of the same problem can be harder to identify. You may find several examples in the exercises at the end of this section.

Excessive memory requirements. If a function calls itself recursively an excessive number of times before returning, the memory required by Java to keep track of the recursive calls may be prohibitive, resulting in a StackOverflowError. To get an idea of how much memory is involved, run a small set of experiments using our recursive function for computing the harmonic numbers for increasing values of n:

```
public static double harmonic(int n)
{
    if (n == 1) return 1.0;
    return harmonic(n-1) + 1.0/n;
}
```

The point at which you get StackOverflowError will give you some idea of how much memory Java uses to implement recursion. By contrast, you can run PROGRAM 1.3.5 to compute H_n for huge n using only a tiny bit of memory.

Excessive recomputation. The temptation to write a simple recursive function to solve a problem must always be tempered by the understanding that a function might take exponential time (unnecessarily) due to excessive recomputation. This effect is possible even in the simplest recursive functions, and you certainly need to learn to avoid it. For example, the *Fibonacci sequence*

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...

is defined by the recurrence $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ with $F_0 = 0$ and $F_1 = 1$. The Fibonacci sequence has many interesting properties and arise in numerous applications. A novice programmer might implement this recursive function to compute numbers in the Fibonacci sequence:

```
// Warning: this function is spectacularly inefficient.
public static long fibonacci(int n)
{
    if (n == 0) return 0;
    if (n == 1) return 1;
    return fibonacci(n-1) + fibonacci(n-2);
}
```

```
fibonacci(8)
   fibonacci(7)
      fibonacci(6)
         fibonacci(5)
            fibonacci(4)
               fibonacci(3)
                   fibonacci(2)
                      fibonacci(1)
                         return 1
                      fibonacci(0)
                         return 0
                      return 1
                   fibonacci(1)
                      return 1
                   return 2
               fibonacci(2)
                   fibonacci(1)
                      return 1
                   fibonacci(0)
                      return 0
                   return 1
               return 3
            fibonacci(3)
               fibonacci(2)
                   fibonacci(1)
                      return 1
                   fibonacci(0)
                      return 0
                   return 1
               fibonacci(1)
                   return 1
               return 2
            return 5
         fibonacci(4)
            fibonacci(3)
               fibonacci(2)
```

However, this function is spectacularly inefficient! Novice programmers often refuse to believe this fact, and run code like this expecting that the computer is certainly fast enough to crank out an answer. Go ahead; see if your computer is fast enough to use this function to compute fibonacci (50). To see why it is futile to do so, consider what the function does to compute fibonacci(8) = 21. It first computes fibonacci(7) = 13 and fibonacci(6) = 8. To compute fibonacci (7), it recursively computes fibonacci(6) = 8 again and fibonacci(5) = 5. Things rapidly get worse because both times it computes fibonacci(6), it ignores the fact that it already computed fibonacci(5), and so forth. In fact, the number of times this program computes fibonacci(1) when computing fibonacci(n) is precisely F_n (see EXERCISE 2.3.12). The mistake of recomputation is compounded exponentially. As an example, fibonacci(200) makes $F_{200} > 10^{43}$ recursive calls to fibonacci(1)! No imaginable computer will ever be able to do this many calculations. Beware of programs that might require exponential time. Many calculations that arise and find natural expression as recursive functions fall into this category. Do not fall into the trap of implementing and trying to run them.

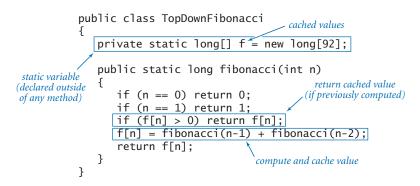
NEXT, WE CONSIDER A SYSTEMATIC TECHNIQUE known as *dynamic programming*, an elegant technique for avoiding such problems. The idea is to avoid the excessive recomputation inherent in some recursive functions by saving away the previously computed values for later reuse, instead of constantly recomputing them.

Wrong way to compute Fibonacci numbers

Dynamic programming A general approach to implementing recursive programs, known as *dynamic programming*, provides effective and elegant solutions to a wide class of problems. The basic idea is to recursively divide a complex problem into a number of simpler subproblems; store the answer to each of these subproblems; and, ultimately, use the stored answers to solve the original problem. By solving each subproblem only once (instead of over and over), this technique avoids a potential exponential blow-up in the running time.

For example, if our original problem is to compute the *n*th Fibonacci number, then it is natural to define n + 1 subproblems, where subproblem *i* is to compute the *i*th Fibonacci number for each $0 \le i \le n$. We can solve subproblem *i* easily if we already know the solutions to smaller subproblems—specifically, subproblems i-1 and i-2. Moreover, the solution to our original problem is simply the solution to one of the subproblems—subproblem *n*.

Top-down dynamic programming. In *top-down* dynamic programming, we store or *cache* the result of each subproblem that we solve, so that the next time we need to solve the same subproblem, we can use the cached values instead of solving the subproblem from scratch. For our Fibonacci example, we use an array f[] to store the Fibonacci numbers that have already been computed. We accomplish this in Java by using a static variable, also known as a *class variable* or *global variable*, that is declared outside of any method. This allows us to save information from one function call to the next.



Top-down dynamic programming approach for computing Fibonacci numbers

Top-down dynamic programming is also known as *memoization* because it avoids duplicating work by *remembering* the results of function calls.

Bottom-up dynamic programming. In bottom-up dynamic programming, we compute solutions to *all* of the subproblems, starting with the "simplest" subproblems and gradually building up solutions to more and more complicated subproblems. To apply bottom-up dynamic programming, we must order the subproblems so that each subsequent subproblem can be solved by combining solutions to subproblems earlier in the order (which have already been solved). For our Fibonacci example, this is easy: solve the subproblems in the order 0, 1, and 2, and so forth. By the time we need to solve subproblem i, we have already solved all smaller subproblems—in particular, subproblems i-1 and i-2.

```
public static long fibonacci(int n)
{
    int[] f = new int[n+1];
    f[0] = 0;
    f[1] = 1;
    for (int i = 2; i <= n; i++)
        f[i] = f[i-1] + f[i-2];
    return f[n];
}</pre>
```

When the ordering of the subproblems is clear, and space is available to store all the solutions, bottom-up dynamic programming is a very effective approach.

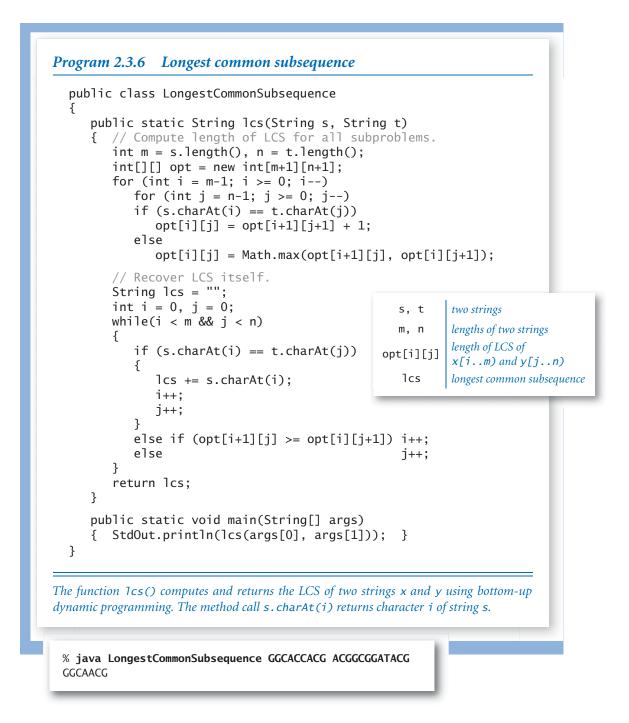
NEXT, WE CONSIDER A MORE SOPHISTICATED application of dynamic programming, where the order of solving the subproblems is not so clear (until you see it). Unlike the problem of computing Fibonacci numbers, this problem would be much more difficult to solve without thinking recursively and also applying a bottom-up dynamic programming approach.

Longest common subsequence problem. We consider a fundamental string-processing problem that arises in computational biology and other domains. Given two strings x and y, we wish to determine how *similar* they are. Some examples include comparing two DNA sequences for homology, two English words for spelling, or two Java files for repeated code. One measure of similarity is the length of the *longest common subsequence* (LCS). If we delete some characters from x and some characters from y, and the resulting two strings are equal, we call the resulting string a *common subsequence*. The LCS problem is to find a common subsequence of two strings that is as long as possible. For example, the LCS of GGCACCACG and ACGGCGGATACG is GGCAACG, a string of length 7. Algorithms to compute the LCS are used in data comparison programs like the diff command in Unix, which has been used for decades by programmers wanting to understand differences and similarities in their text files. Similar algorithms play important roles in scientific applications, such as the Smith–Waterman algorithm in computational biology and the Viterbi algorithm in digital communications theory.

LCS recurrence. Now we describe a recursive formulation that enables us to find the LSC of two given strings s and t. Let m and n be the lengths of s and t, respectively. We use the notation s[i..m) to denote the *suffix* of s starting at index i, and t[j..n) to denote the suffix of t starting at index j. On the one hand, if s and t begin with the same character, then the LCS of x and y contains that first character. Thus, our problem reduces to finding the LCS of the suffixes s[1..m) and t[1..n). On the other hand, if s and t begin with different characters, both characters cannot be part of a common subsequence, so we can safely discard one or the other. In either case, the problem reduces to finding the LCS of two strings—either s[0..m) and t[1..n) or s[1..m) and t[0..n)—one of which is strictly shorter. In general, if we let opt[i][j] denote the length of the LCS of the suffixes s[i..m) and t[j..m), then the following recurrence expresses opt[i][j] in terms of the length of the LCS for shorter suffixes.

0 if i = m or j = n opt[i][j] = opt[i+1, j+1] + 1 if s[i] = t[j] max(opt[i, j+1], opt[i+1, j]) otherwise

Dynamic programming solution. LongestCommonSubsequence (PROGRAM 2.3.6) begins with a bottom-up dynamic programming approach to solving this recurrence. We maintain a two-dimensional array opt[i][j] that stores the length of the LCS of the suffixes s[i..m) and t[j..n). Initially, the bottom row (the values for i = m) and the right column (the values for j = n) are 0. These are the initial values. From the recurrence, the order of the rest of the computation is clear: we start with opt[m][n] = 1. Then, as long as we decrease either i or j or both, we know that we will have computed what we need to compute opt[i][j], since the two options involve an opt[][] entry with a larger value of i or j or both. The method lcs() in PROGRAM 2.3.6 computes the elements in opt[][] by filling in values in rows from bottom to top (i = m-1 to 0) and from right to left in each row (j = n-1 to 0). The alternative choice of filling in values in columns from right to

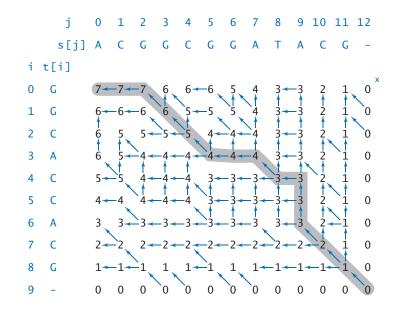


left and from bottom to top in each row would work as well. The above diagram has a blue arrow pointing to each entry that indicates which value was used to compute it. (When there is a tie in computing the maximum, both options are shown.)

The final challenge is to recover the longest common subsequence itself, not just its length. The key idea is to retrace the steps of the dynamic programming algorithm *backward*, rediscovering the path of choices (highlighted in gray in the diagram) from opt[0][0] to opt[m][n]. To determine the choice that led to opt[i][j], we consider the three possibilities:

- The character s[i] equals t[j]. In this case, we must have opt[i][j] = opt[i+1][j+1] + 1, and the next character in the LCS is s[i] (or t[j]), so we include the character s[i] (or t[j]) in the LCS and continue tracing back from opt[i+1][j+1].
- The LCS does not contain s[i]. In this case, opt[i][j] = opt[i+1][j] and we continue tracing back from opt[i+1][j].
- The LCS does not contain t[j]. In this case, opt[i][j] = opt[i][j+1] and we continue tracing back from opt[i][j+1].

We begin tracing back at opt[0][0] and continue until we reach opt[m][n]. At each step in the traceback either i increases or j increases (or both), so the process terminates after at most m + n iterations of the while loop.



Longest common subsequence of GGCACCACG and ACGGCGGATACG

2.3 Recursion

DYNAMIC PROGRAMMING IS A FUNDAMENTAL ALGORITHM design paradigm, intimately linked to recursion. If you take later courses in algorithms or operations research, you are sure to learn more about it. The idea of recursion is fundamental in computation, and the idea of avoiding recomputation of values that have been computed before is certainly a natural one. Not all problems immediately lend themselves to a recursive formulation, and not all recursive formulations admit an order of computation that easily avoids recomputation—arranging for both can seem a bit miraculous when one first encounters it, as you have just seen for the LCS. problem.

Perspective Programmers who do not use recursion are missing two opportunities. First recursion leads to compact solutions to complex problems. Second, recursive solutions embody an argument that the program operates as anticipated. In the early days of computing, the overhead associated with recursive programs was prohibitive in some systems, and many people avoided recursion. In modern systems like Java, recursion is often the method of choice.

Recursive functions truly illustrate the power of a carefully articulated abstraction. While the concept of a function having the ability to call itself seems absurd to many people at first, the many examples that we have considered are certainly evidence that mastering recursion is essential to understanding and exploiting computation and in understanding the role of computational models in studying natural phenomena.

Recursion has reinforced for us the idea of proving that a program operates as intended. The natural connection between recursion and mathematical induction is essential. For everyday programming, our interest in correctness is to save time and energy tracking down bugs. In modern applications, security and privacy concerns make correctness an *essential* part of programming. If the programmer cannot be convinced that an application works as intended, how can a user who wants to keep personal data private and secure be so convinced?

Recursion is the last piece in a programming model that served to build much of the computational infrastructure that was developed as computers emerged to take a central role in daily life in the latter part of the 20th century. Programs built from libraries of functions consisting of statements that operate on primitive types of data, conditionals, loops, and function calls (including recursive ones) can solve important problems of all sorts. In the next section, we emphasize this point and review these concepts in the context of a large application. In CHAPTER 3 and in CHAPTER 4, we will examine extensions to these basic ideas that embrace the more expansive style of programming that now dominates the computing landscape.

Q. Are there situations when iteration is the only option available to address a problem?

A. No, any loop can be replaced by a recursive function, though the recursive version might require excessive memory.

Q. Are there situations when recursion is the only option available to address a problem?

A. No, any recursive function can be replaced by an iterative counterpart. In SECTION 4.3, we will see how compilers produce code for function calls by using a data structure called a *stack*.

Q. Which should I prefer, recursion or iteration?

A. Whichever leads to the simpler, more easily understood, or more efficient code.

Q. I get the concern about excessive space and excessive recomputation in recursive code. Anything else to be concerned about?

A. Be extremely wary of creating arrays in recursive code. The amount of space used can pile up very quickly, as can the amount of time required for memory management.

2.3.1 What happens if you call factorial() with a negative value of n? With a large value of, say, 35?

2.3.2 Write a recursive function that takes an integer *n* as its argument and returns $\ln(n!)$.

2.3.3 Give the sequence of integers printed by a call to ex233(6):

```
public static void ex233(int n)
      {
         if (n \le 0) return;
         StdOut.println(n);
         ex233(n-2);
         ex233(n-3);
         StdOut.println(n);
      }
2.3.4 Give the value of ex234(6):
      public static String ex234(int n)
      {
         if (n <= 0) return "";
         return ex234(n-3) + n + ex234(n-2) + n;
      }
2.3.5 Criticize the following recursive function:
      public static String ex235(int n)
```

```
{
   String s = ex235(n-3) + n + ex235(n-2) + n;
   if (n <= 0) return "";
   return s;
}</pre>
```

Answer: The base case will never be reached because the base case appears after the reduction step. A call to ex235(3) will result in calls to ex235(0), ex235(-3), ex235(-6), and so forth until a StackOverflowError.

2.3.6 Given four positive integers a, b, c, and d, explain what value is computed by gcd(gcd(a, b), gcd(c, d)).

2.3.7 Explain in terms of integers and divisors the effect of the following Euclid-like function:

```
public static boolean gcdlike(int p, int q)
{
    if (q == 0) return (p == 1);
    return gcdlike(q, p % q);
}
```

2.3.8 Consider the following recursive function:

```
public static int mystery(int a, int b)
{
    if (b == 0) return 0;
    if (b % 2 == 0) return mystery(a+a, b/2);
    return mystery(a+a, b/2) + a;
}
```

What are the values of mystery(2, 25) and mystery(3, 11)? Given positive integers a and b, describe what value mystery(a, b) computes. Then answer the same question, but replace + with * and return 0 with return 1.

2.3.9 Write a recursive program Ruler to plot the subdivisions of a ruler using StdDraw, as in Program 1.2.1.

2.3.10 Solve the following recurrence relations, all with T(1) = 1. Assume *n* is a power of 2.

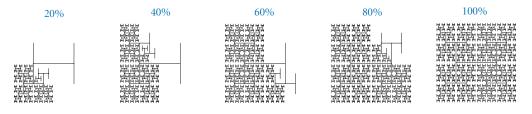
- T(n) = T(n/2) + 1
- T(n) = 2T(n/2) + 1
- T(n) = 2T(n/2) + n
- T(n) = 4T(n/2) + 3

2.3.11 Prove by induction that the minimum possible number of moves needed to solve the towers of Hanoi satisfies the same recurrence as the number of moves used by our recursive solution.

2.3.12 Prove by induction that the recursive program given in the text makes exactly F_n recursive calls to fibonacci(1) when computing fibonacci(n).

2.3.13 Prove that the second argument to gcd() decreases by at least a factor of 2 for every second recursive call, and then prove that gcd(p, q) uses at most $2 \log_2 n + 1$ recursive calls where *n* is the larger of p and q.

2.3.14 Modify Htree (PROGRAM 2.3.4) to animate the drawing of the H-tree. Next, rearrange the order of the recursive calls (and the base case), view the resulting animation, and explain each outcome.



Creative Exercises

2.3.15 *Binary representation.* Write a program that takes a positive integer n (in decimal) as a command-line argument and prints its binary representation. Recall, in PROGRAM 1.3.7, that we used the method of subtracting out powers of 2. Now, use the following simpler method: repeatedly divide 2 into n and read the remainders backward. First, write a while loop to carry out this computation and print the bits in the wrong order. Then, use recursion to print the bits in the correct order.

2.3.16 A4 paper. The width-to-height ratio of paper in the ISO format is the square root of 2 to 1. Format A0 has an area of 1 square meter. Format A1 is A0 cut with a vertical line into two equal halves, A2 is A1 cut with a horizontal line into two halves, and so on. Write a program that takes an integer command-line argument n and uses StdDraw to show how to cut a sheet of A0 paper into 2^n pieces.

2.3.17 *Permutations.* Write a program Permutations that takes an integer command-line argument n and prints all n! permutations of the n letters starting at a (assume that n is no greater than 26). A permutation of n elements is one of the n! possible orderings of the elements. As an example, when n = 3, you should get the following output (but do not worry about the order in which you enumerate them):

bca cba cab acb bac abc

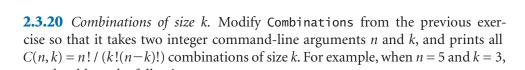
2.3.18 *Permutations of size k.* Modify Permutations from the previous exercise so that it takes two command-line arguments *n* and *k*, and prints all P(n, k) = n! / (n-k)! permutations that contain exactly *k* of the *n* elements. Below is the desired output when k = 2 and n = 4 (again, do not worry about the order):

ab ac ad ba bc bd ca cb cd da db dc

2.3.19 *Combinations.* Write a program Combinations that takes an integer command-line argument n and prints all 2^n combinations of any size. A combination is a subset of the n elements, independent of order. As an example, when n = 3, you should get the following output:

a ab abc ac b bc c

Note that your program needs to print the empty string (subset of size 0).



you should get the following output:

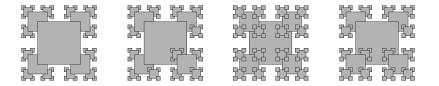
abc abd abe acd ace ade bcd bce bde cde

2.3.21 *Hamming distance.* The Hamming distance between two bit strings of length *n* is equal to the number of bits in which the two strings differ. Write a program that reads in an integer k and a bit string s from the command line, and prints all bit strings that have Hamming distance at most k from s. For example, if k is 2 and s is 0000, then your program should print

0011 0101 0110 1001 1010 1100

Hint: Choose k of the bits in s to flip.

2.3.22 *Recursive squares.* Write a program to produce each of the following recursive patterns. The ratio of the sizes of the squares is 2.2:1. To draw a shaded square, draw a filled gray square, then an unfilled black square.



2.3.23 *Pancake flipping.* You have a stack of *n* pancakes of varying sizes on a griddle. Your goal is to rearrange the stack in order so that the largest pancake is on the bottom and the smallest one is on top. You are only permitted to flip the top *k* pancakes, thereby reversing their order. Devise a recursive scheme to arrange the pancakes in the proper order that uses at most 2n - 3 flips.

order 2

order 3

Sierpinski

triangles

2.3.24 *Gray code.* Modify Beckett (Program 2.3.3) to print the Gray code (not just the sequence of bit positions that change).

2.3.25 *Towers of Hanoi variant.* Consider the following variant of the towers of Hanoi problem. There are 2n discs of increasing size stored on three poles. Initially all of the discs with odd size (1, 3, ..., 2n-1) are piled on the left pole from top to bottom in increasing order of size; all of the discs with even size (2, 4, ..., 2n) are piled on the right pole. Write a program to provide instructions for moving the odd discs to the right pole and the even discs to the left pole, obeying the same rules as for towers of Hanoi.

2.3.26 Animated towers of Hanoi. Use StdDraw to animate a solution to the towers of Hanoi problem, moving the discs at a rate of approximately 1 per second.

2.3.27 *Sierpinski triangles.* Write a recursive program to draw Sierpinski triangles (see PROGRAM 2.2.3). As with Htree, use a command-line argument to control the depth of the recursion.

2.3.28 *Binomial distribution.* Estimate the number of recursive calls that would be used by the code

```
public static double binomial(int n, int k)
{
    if ((n == 0) && (k == 0)) return 1.0;
    if ((n < 0) || (k < 0)) return 0.0;
    return (binomial(n-1, k) + binomial(n-1, k-1))/2.0;
}</pre>
```

to compute binomial(100, 50). Develop a better implementation that is based on dynamic programming. *Hint*: See EXERCISE 1.4.41.

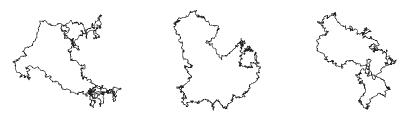
2.3.29 *Collatz function.* Consider the following recursive function, which is related to a famous unsolved problem in number theory, known as the *Collatz problem*, or the 3n+1 problem:

For example, a call to collatz(7) prints the sequence

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

as a consequence of 17 recursive calls. Write a program that takes a command-line argument n and returns the value of i < n for which the number of recursive calls for collatz(i) is maximized. The unsolved problem is that no one knows whether the function terminates for all integers (mathematical induction is no help, because one of the recursive calls is for a larger value of the argument).

2.3.30 Brownian island. B. Mandelbrot asked the famous question How long is the coast of Britain? Modify Brownian to get a program BrownianIsland that plots Brownian islands, whose coastlines resemble that of Great Britain. The modifications are simple: first, change curve() to add a random Gaussian to the x-coordinate as well as to the y-coordinate; second, change main() to draw a curve from the point at the center of the canvas back to itself. Experiment with various values of the parameters to get your program to produce islands with a realistic look.



Brownian islands with Hurst exponent of 0.76

2.3.31 *Plasma clouds.* Write a recursive program to draw plasma clouds, using the method suggested in the text.

2.3.32 A strange function. Consider McCarthy's 91 function:

```
public static int mcCarthy(int n)
{
    if (n > 100) return n - 10;
    return mcCarthy(mcCarthy(n+11));
}
```

Determine the value of mcCarthy(50) without using a computer. Give the number of recursive calls used by mcCarthy() to compute this result. Prove that the base case is reached for all positive integers n or find a value of n for which this function goes into an infinite recursive loop.

2.3.33 *Recursive tree.* Write a program Tree that takes a command-line argument n and produces the following recursive patterns for n equal to 1, 2, 3, 4, and 8.

2.3.34 Longest palindromic subsequence. Write a program LongestPalindromic-Subsequence that takes a string as a command-line argument and determines the longest subsequence of the string that is a palindrome (the same when read forward or backward). *Hint*: Compute the longest common subsequence of the string and its reverse.

This page intentionally left blank

2.4 Case Study: Percolation

THE PROGRAMMING TOOLS THAT WE HAVE considered to this point allow us to attack all manner of important problems. We conclude our study of functions and modules by considering a case study of developing a program to solve an interesting scientific problem. Our purpose in doing so is to review the basic elements that we have

covered, in the context of the various challenges that you might face in solving a specific problem, and to illustrate a programming style that you can apply broadly.

Our example applies a widely applicable computational technique known as *Monte Carlo simulation* to study a natural model known as *percolation*. The term

2.4.1	Percolation scaffolding
2.4.2	Vertical percolation detection 306
2.4.3	Visualization client
2.4.4	Percolation probability estimate 311
2.4.5	Percolation detection
2.4.6	Adaptive plot client
	D 111 1

Programs in this section

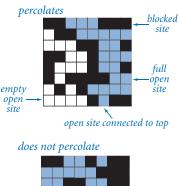
"Monte Carlo simulation" is broadly used to encompass any computational technique that employs randomness to estimate an unknown quantity by performing multiple trials (known as *simulations*). We have used it in several other contexts already—for example, in the gambler's ruin and coupon collector problems. Rather than develop a complete mathematical model or measure all possible outcomes of an experiment, we rely on the laws of probability.

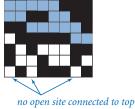
In this case study we will learn quite a bit about percolation, a model which underlies many natural phenomena. Our focus, however, is on the process of developing modular programs to address computational tasks. We identify subtasks that can be independently addressed, striving to identify the key underlying abstractions and asking ourselves questions such as the following: Is there some specific subtask that would help solve this problem? What are the essential characteristics of this specific subtask? Might a solution that addresses these essential characteristics be useful in solving other problems? Asking such questions pays significant dividend, because they lead us to develop software that is easier to create, debug, and reuse, so that we can more quickly address the main problem of interest. **Percolation** It is not unusual for local interactions in a system to imply global properties. For example, an electrical engineer might be interested in composite systems consisting of randomly distributed insulating and metallic materials: which fraction of the materials need to be metallic so that the composite system is an electrical conductor? As another example, a geologist might be interested in a porous landscape with water on the surface (or oil below). Under which conditions will the water be able to drain through to the bottom (or the oil to gush through to the surface)? Scientists have defined an abstract process known as *percolation* to model such situations. It has been studied widely, and shown to be an accurate model in a dizzying variety of applications, beyond insulating materials and porous substances to the spread of forest fires and disease epidemics to evolution to the study of the Internet.

For simplicity, we begin by working in two dimensions and model the system as an *n*-by-*n* grid of *sites*. Each site is either blocked or open; open sites are initially empty. A full site is an open site that can be connected to an open site in the top row via a chain of neighboring (left, right, up, down) open sites. If there is a full site in the bottom row, then we say that the system *percolates*. In other words, a system percolates if we fill all open sites connected to the top row and that process fills some open site on the bottom row. For the insulating/metallic materials example, the open sites correspond to metallic materials, so that a system that percolates has a metallic path from top to bottom, with full sites conducting. For the porous substance example, the open sites correspond to empty space through which water might flow, so that a system that percolates lets water fill open sites, flowing from top to bottom.

In a famous scientific problem that has been heavily studied for decades, scientists are interested in the following question: if sites are independently set to be open with

site vacancy probability p (and therefore blocked with probability 1-p), what is the probability that the system percolates? No mathematical solution to this problem has yet been derived. Our task is to write computer programs to help study the problem.





Basic scaffolding To address percolation with a Java program, we face numerous decisions and challenges, and we certainly will end up with much more code than in the short programs that we have considered so far in this book. Our goal is to illustrate an incremental style of programming where we independently develop modules that address parts of the problem, building confidence with a small computational infrastructure of our own design and construction as we proceed.

The first step is to pick a representation of the data. This decision can have substantial impact on the kind of code that we write later, so it is not to be taken lightly. Indeed, it is often the case that we learn something while working with a chosen representation that causes us to scrap it and start all over using a new one.

percolation system

blocked sites

1	1	0	0	0	1	1	1
0	1	1	0	0	0	0	0
0	0	0	1	1	0	0	1
1	1	0	0	1	0	0	0
1	0	0	0	1	0	0	1
1	0	1	1	1	1	0	0
0	1	0	1	0	0	0	0
0	0	0	0	1	0	1	1

open sites

1							
0	0	1	1	1	0	0	0
1	0	0	1	1	1	1	1
1	1	1	0	0	1	1	0
0	0	1	1	0	1	1	1
0	1	1	1	0	1	1	0
0	1	0	0	0	0	1	1
1	0	1	0	1	1	1	1
1	1	1	1	0	1	0	0
ull sites							

Percolation representations

For percolation, the path to an effective representation is clear: use an *n*-by-*n* array. Which type of data should we use for each element? One possibility is to use integers, with the convention that 0 indicates an empty site, 1 indicates a blocked site, and 2 indicates a full site. Alternatively, note that we typically describe sites in terms of questions: Is the site open or blocked? Is the site full or empty? This characteristic of the elements suggests that we might use *n*-by-*n* arrays in which element is either true or false. We refer to such two-dimensional arrays as *boolean* matrices. Using boolean matrices leads to code that is easier to understand than the alternative.

Boolean matrices are fundamental mathematical objects with many applications. Java does not provide direct support for operations on boolean matrices, but we can use the methods in StdArrayIO (see PROGRAM 2.2.2) to read and write them. This choice illustrates a basic principle that often comes up in programming: *the effort required to build a more general tool usually pays dividends*.

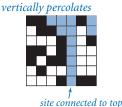
Eventually, we will want to work with random data, but we also want to be able to read and write to files because debugging programs with random inputs can be counterproductive. With random data, you get different input each time that you run the program; after fixing a bug, what you want to see is the *same* input that you just used, to check that the fix was effective. Accordingly, it is best to start with some specific cases that we understand, kept in files formatted compatible with StdArrayIO (dimensions followed by 0 and 1 values in row-major order). When you start working on a new problem that involves several files, it is usually worthwhile to create a new folder (directory) to isolate those files from others that you may be working on. For example, we might create a folder named percolation to store all of the files for this case study. To get started, we can implement and debug the basic code for reading and writing percolation systems, create test files, check that the files are compatible with the code, and so forth, before worrying about percolation at all. This type of code, sometimes called *scaffolding*, is straightforward to implement, but making sure that it is solid at the outset will save us from distraction when approaching the main problem.

Now we can turn to the code for testing whether a boolean matrix represents a system that percolates. Referring to the helpful interpretation in which we can think of the task as simulating what would happen if the top were flooded with water (does it flow to the bottom or not?), our first design decision is that we will want to have a flow() method that takes as an argument a boolean matrix isOpen[][] that specifies which sites are open and returns another boolean matrix isFull[][] that specifies which sites are full. For the moment, we will not worry at all about how to implement this method; we are just deciding how to organize the computation. It is also clear that we will want client code to be able to use a percolates() method that checks whether the array returned by flow() has any full sites on the bottom.

Percolation (PROGRAM 2.4.1) summarizes these decisions. It does not perform any interesting computation, but after running and debugging this code we can start thinking about actually solving the problem. A method that performs no computation, such as flow(), is sometimes called a *stub*. Having this stub allows us to test and debug percolates() and main() in the context in which we will need them. We refer to code like PROGRAM 2.4.1 as *scaffolding*. As with scaffolding that construction workers use when erecting a building, this kind of code provides the support that we need to develop a program. By fully implementing and debugging this code (much, if not all, of which we need, anyway) at the outset, we provide a sound basis for building code to solve the problem at hand. Often, we carry the analogy one step further and remove the scaffolding (or replace it with something better) after the implementation is complete.

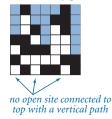
```
Program 2.4.1 Percolation scaffolding
  public class Percolation
  {
     public static boolean[][] flow(boolean[][] isOpen)
      {
         int n = isOpen.length;
         boolean[][] isFull = new boolean[n][n];
         // The isFull[][] matrix computation goes here.
         return isFull;
      }
     public static boolean percolates(boolean[][] isOpen)
      {
         boolean[][] isFull = flow(is0pen);
         int n = isOpen.length;
         for (int j = 0; j < n; j++)
                                                                      system size (n-by-n)
                                                              n
            if (isFull[n-1][j]) return true;
                                                          isFull[][]
                                                                      full sites
         return false;
                                                          isOpen[][] open sites
      }
      public static void main(String[] args)
      {
         boolean[][] isOpen = StdArrayIO.readBoolean2D();
         StdArrayIO.print(flow(is0pen));
         StdOut.println(percolates(isOpen));
     }
  }
To get started with percolation, we implement and debug this code, which handles all the
straightforward tasks surrounding the computation. The primary function flow() returns a
boolean matrix giving the full sites (none, in the placeholder code here). The helper function
percolates() checks the bottom row of the returned matrix to decide whether the system
percolates. The test client main() reads a boolean matrix from standard input and prints the
result of calling flow() and percolates() for that matrix.
 % more testEZ.txt
                                          % java Percolation < testEZ.txt
 5 5
                                           55
 01101
                                           0 0 0 0 0
 00111
                                           0 0 0 0 0
 11011
                                           0 0 0 0 0
 10001
                                           0 0 0 0 0
 01111
                                           0 0 0 0 0
                                           false
```

Vertical percolation Given a boolean matrix that represents the open sites, how do we figure out whether it represents a system that percolates? As we will see later in this section, this computation turns out to be directly related to a fundamental question in computer science. For the moment, we will consider a much simpler version of the problem that we call *vertical percolation*.



with a vertical path

does not vertically percolate



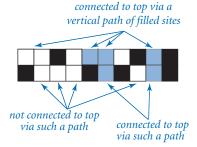
Vertical percolation

The simplification is to restrict attention to vertical connection paths. If such a path connects top to bottom in a system, we say that the system *vertically percolates* along the path (and that the system itself vertically percolates). This restriction is perhaps intuitive if we are talking about sand traveling through cement, but not if we are talking about water traveling through cement or about electrical conductivity. Simple as it is, vertical percolation is a problem that is interesting in its own right because it suggests various mathematical questions. Does the restriction make a significant difference? How many vertical percolation paths do we expect?

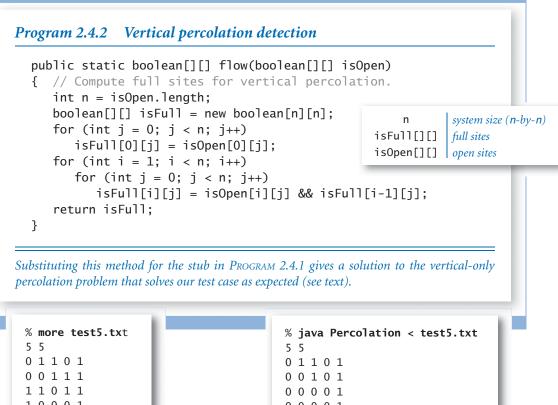
Determining the sites that are filled by some path that is connected vertically to the top is a simple calculation. We initialize the top row of our result array from the top row of the percolation system, with full sites corresponding to open ones. Then, moving from top to bottom, we fill in each row of the array by checking the corresponding row of the percolation system. Proceeding from top to bottom, we fill in the rows of isFull[][] to mark as true all elements that correspond to

sites in isOpen[][] that are vertically connected to a full site on the previous row. PROGRAM 2.4.2 is an implementation of flow() for Percolation that returns a boolean matrix of full sites (true if connected to the top via a vertical path, false otherwise).

Testing After we become convinced that our code is behaving as planned, we want to run it on a broader variety of test cases and address some of our scientific questions. At this point, our initial scaffolding becomes less useful, as representing large boolean matrices with 0s and 1s on standard input and standard output and maintaining large numbers of test cases quickly becomes unwieldy. Instead,



Vertical percolation calculation



10001 01111

```
00001
00001
true
```

we want to automatically generate test cases and observe the operation of our code on them, to be sure that it is operating as we expect. Specifically, to gain confidence in our code and to develop a better understanding of percolation, our next goals are to:

- Test our code for large random boolean matrices.
- Estimate the probability that a system percolates for a given *p*.

To accomplish these goals, we need new clients that are slightly more sophisticated than the scaffolding we used to get the program up and running. Our modular programming style is to develop such clients in independent classes without modifying our percolation code at all.

Data visualization. We can work with much bigger problem instances if we use StdDraw for output. The following static method for Percolation allows us to visualize the contents of boolean matrices as a subdivision of the StdDraw canvas into squares, one for each site:

The second argument which specifies which squares we want to fill—those corresponding to true elements or those corresponding to false elements. This method is a bit of a diversion from the calculation, but pays dividends in its ability to help us visualize large problem instances. Using show() to draw our boolean matrices representing blocked and full sites in different colors gives a compelling visual representation of percolation.

Monte Carlo simulation. We want our code to work properly for *any* boolean matrix. Moreover, the scientific question of interest involves random boolean matrices. To this end, we add another static method to Percolation:

This method generates a random n-by-n boolean matrix of any given size n, each element true with probability p.

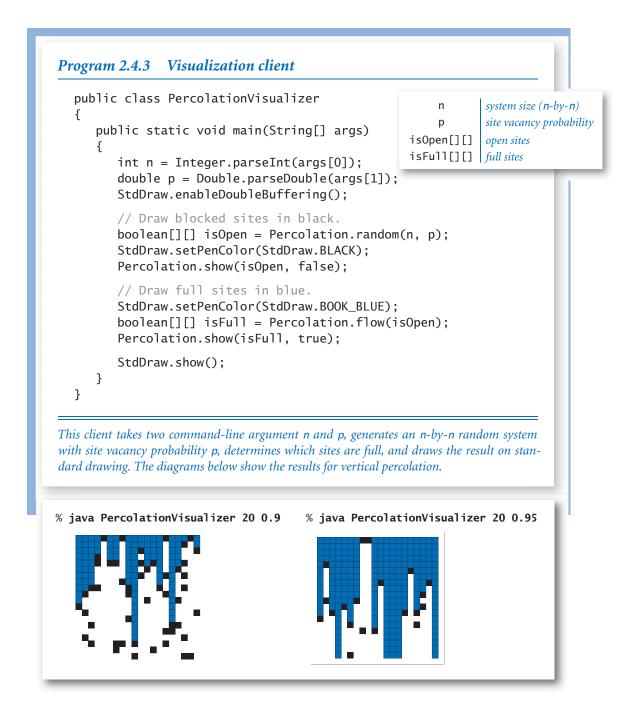
Having debugged our code on a few specific test cases, we are ready to test it on random systems. It is possible that such cases may uncover a few more bugs, so some care is in order to check results. However, having debugged our code for a small system, we can proceed with some confidence. It is easier to focus on new bugs after eliminating the obvious bugs. WITH THESE TOOLS, A CLIENT FOR testing our percolation code on a much larger set of trials is straightforward. PercolationVisualizer (PROGRAM 2.4.3) consists of just a main() method that takes n and p from the command line and displays the result of the percolation flow calculation.

This kind of client is typical. Our eventual goal is to compute an accurate estimate of percolation probabilities, perhaps by running a large number of trials, but this simple tool gives us the opportunity to gain more familiarity with the problem by studying some large cases (while at the same time gaining confidence that our code is working properly). Before reading further, you are encouraged to download and run this code from the booksite to study the percolation process. When you run PercolationVisualizer for moderate-size n (50 to 100, say) and various p, you will immediately be drawn into using this program to try to answer some questions about percolation. Clearly, the system never percolates when p is low and always percolates when p is very high. How does it behave for intermediate values of p? How does the behavior change as n increases?

Estimating probabilities The next step in our program development process is to write code to estimate the probability that a random system (of size n with site vacancy probability p) percolates. We refer to this quantity as the *percolation probability*. To estimate its value, we simply run a number of trials. The situation is no different from our study of coin flipping (see PROGRAM 2.2.6), but instead of flipping a coin, we generate a random system and check whether it percolates.

PercolationProbability (PROGRAM 2.4.4) encapsulates this computation in a method estimate(), which takes three arguments n, p, and trials and returns an estimate of the probability that an n-by-n system with site vacancy probability p percolates, obtained by generating trials random systems and calculating the fraction of them that percolate.

How many trials do we need to obtain an accurate estimate? This question is addressed by basic methods in probability and statistics, which are beyond the scope of this book, but we can get a feeling for the problem with computational experience. With just a few runs of PercolationProbability, you can learn that if the site vacancy probability is close to either 0 or 1, then we do not need many trials, but that there are values for which we need as many as 10,000 trials to be able to estimate it within two decimal places. To study the situation in more detail, we might modify PercolationProbability to produce output like Bernoulli (PROGRAM 2.2.6), plotting a histogram of the data points so that we can see the distribution of values (see EXERCISE 2.4.9).

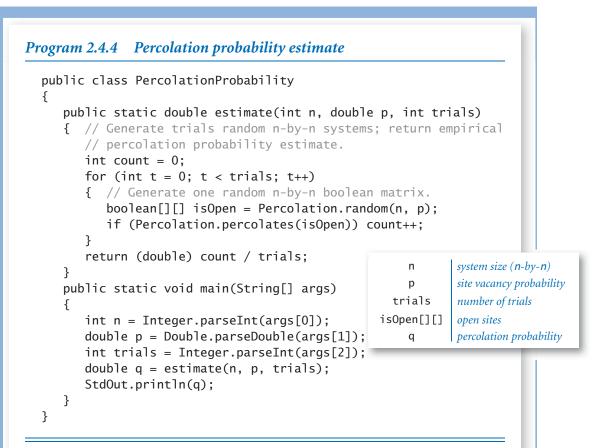


Using PercolationProbability.estimate() represents a giant leap in the amount of computation that we are doing. All of a sudden, it makes sense to run thousands of trials. It would be unwise to try to do so without first having thoroughly debugged our percolation methods. Also, we need to begin to take the time required to complete the computation into account. The basic methodology for doing so is the topic of SECTION 4.1, but the structure of these programs is sufficiently simple that we can do a quick calculation, which we can verify by running the program. If we perform T trials, each of which involves n^2 sites, then the total running time of PercolationProbability.estimate() is proportional to n^2T . If we increase T by a factor of 10 (to gain more precision), the running time increases by about a factor of 10. If we increase by about a factor of 10. One to the program of the program is provided to the program.

Can we run this program to determine percolation probabilities for a system with billions of sites with several digits of precision? No computer is fast enough to use PercolationProbability.estimate() for this purpose. Moreover, in a scientific experiment on percolation, the value of *n* is likely to be much higher. We can hope to formulate a hypothesis from our simulation that can be tested experimentally on a much larger system, but not to precisely simulate a system that corresponds atom-for-atom with the real world. Simplification of this sort is essential in science.

You are encouraged to download PercolationProbability from the booksite to get a feel for both the percolation probabilities and the amount of time required to compute them. When you do so, you are not just learning more about percolation, but are also testing the hypothesis that the models we have just described apply to the running times of our simulations of the percolation process.

What is the probability that a system with site vacancy probability *p* vertically percolates? Vertical percolation is sufficiently simple that elementary probabilistic models can yield an exact formula for this quantity, which we can validate experimentally with PercolationProbability. Since our only reason for studying vertical percolation was an easy starting point around which we could develop supporting software for studying percolation methods, we leave further study of vertical percolation for an exercise (see EXERCISE 2.4.11) and turn to the main problem.



The method estimate() generates trials random n-by-n systems with site vacancy probability p and computes the fraction of them that percolate. This is a Bernoulli process, like coin flipping (see PROGRAM 2.2.6). Increasing the number of trials increases the accuracy of the estimate. If p is close to 0 or to 1, not many trials are needed to achieve an accurate estimate. The results below are for vertical percolation.

% java PercolationProbability 20 0.05 10
0.0
% java PercolationProbability 20 0.95 10
1.0
% java PercolationProbability 20 0.85 10
0.7
% java PercolationProbability 20 0.85 1000
0.564
% java PercolationProbability 40 0.85 100
0.1

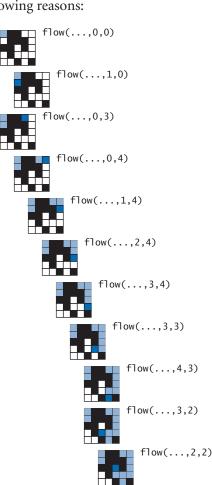
Recursive solution for percolation How do we test whether a system percolates in the general case when *any* path starting at the top and ending at the bottom (not just a vertical one) will do the job?

Remarkably, we can solve this problem with a compact program, based on a classic recursive scheme known as *depth-first search*. PROGRAM 2.4.5 is an implementation of flow() that computes the matrix isFull[][], based on a recursive four-argument version of flow() that takes as arguments the site vacancy matrix isOpen[][], the current matrix isFull[][], and a site position specified by a row index i and a column index j. The base case is a recursive call that just returns (we refer to such a call as a *null call*), for one of the following reasons:

- Either i or j is outside the array bounds.
- The site is blocked (isOpen[i][j] is false).
- We have already marked the site as full (isFull[i][j] is true).

The reduction step is to mark the site as filled and issue recursive calls for the site's four neighbors: isOpen[i+1][j], isOpen[i][j+1], isOpen[i][j-1], and isOpen[i-1][j]. The one-argument flow() calls the recursive method for every site on the top row. The recursion always terminates because each recursive call either is null or marks a new site as full. We can show by an induction-based argument (as usual for recursive programs) that a site is marked as full if and only if it is connected to one of the sites on the top row.

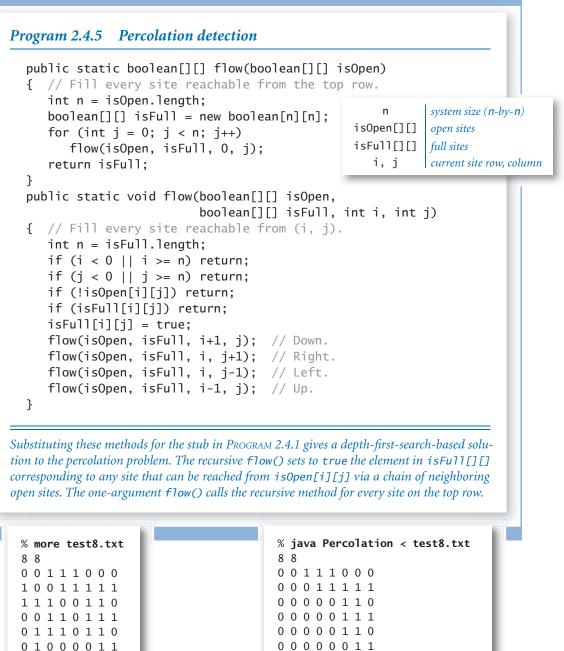
Tracing the operation of flow() on a tiny test case is an instructive exercise. You will see that it calls flow() for every site that can be reached via a path of open sites from the top row. This example illustrates that simple recursive programs can mask computations that otherwise are quite sophisticated. This method is a special case of the depth-first search algorithm, which has many important applications.



Recursive percolation (null calls omitted)

10101111

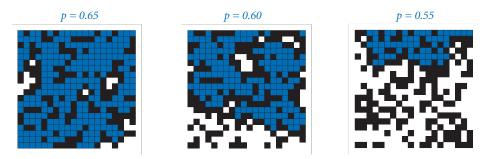
1 1 1 1 0 1 0 0



true

00000100

To avoid conflict with our solution for vertical percolation (PROGRAM 2.4.2), we might rename that class PercolationVertical, making another copy of Percolation (PROGRAM 2.4.1) and substituting the two flow() methods in PROGRAM 2.4.5 for the placeholder flow(). Then, we can visualize and perform experiments with this algorithm with the PercolationVisualizer and PercolationProbability tools that we have developed. If you do so, and try various values for n and p, you will quickly get a feeling for the situation: the systems always percolate when the site vacancy probability p is high and never percolate when p is low, and (particularly as n increases) there is a value of p above which the systems (almost) always percolate and below which they (almost) never percolate.



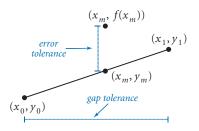
Percolation is less probable as the site vacancy probability p decreases

Having debugged PercolationVisualizer and PercolationProbability on the simple vertical percolation process, we can use them with more confidence to study percolation, and turn quickly to study the scientific problem of interest. Note that if we want to experiment with vertical percolation again, we would need to edit PercolationVisualizer and PercolationProbability to refer to PercolationVertical instead of Percolation, or write other clients of both PercolationVertical and Percolation that run methods in both classes to compare them.

Adaptive plot To gain more insight into percolation, the next step in program development is to write a program that plots the percolation probability as a function of the site vacancy probability *p* for a given value of *n*. Perhaps the best way to produce such a plot is to first derive a mathematical equation for the function, and then use that equation to make the plot. For percolation, however, no one has been able to derive such an equation, so the next option is to use the Monte Carlo method: run simulations and plot the results.

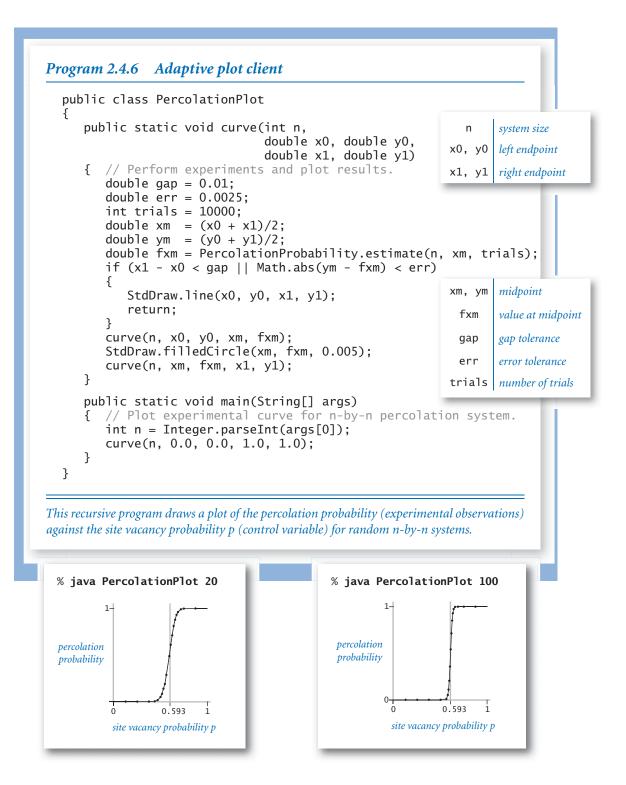
Immediately, we are faced with numerous decisions. For how many values of p should we compute an estimate of the percolation probability? Which values of p should we choose? How much precision should we aim for in these calculations? These decisions constitute an experimental design problem. Much as we might like to instantly produce an accurate rendition of the curve for any given n, the computation cost can be prohibitive. For example, the first thing that comes to mind is to plot, say, 100 to 1,000 equally spaced points, using StdStats (PROGRAM 2.2.5). But, as you learned from using PercolationProbability, computing a sufficiently precise value of the percolation probability for each point might take several seconds or longer, so the whole plot might take minutes or hours or even longer. Moreover, it is clear that a lot of this computation time is completely wasted, because we know that values for small p are 0 and values for large p are 1. We might prefer to spend that time on more precise computations for intermediate p. How should we proceed?

PercolationPlot (PROGRAM 2.4.6) implements a recursive approach with the same structure as Brownian (PROGRAM 2.3.5) that is widely applicable to similar problems. The basic idea is simple: we choose the maximum distance that we wish to allow between values of the *x*-coordinate (which we refer to as the *gap* tolerance), the maximum known error that we wish to tolerate in the *y*-coordinate (which we refer to as the *error* tolerance), and the number of trials *T* per point that we wish to perform. The recursive method draws the plot within a given interval $[x_0, x_1]$, from (x_0, y_0) to (x_1, y_1) . For our problem, the plot is from (0, 0) to



(1, 1). The base case (if the distance between x_0 and x_1 is less than the gap tolerance, or the distance between the line connecting the two endpoints and the value of the function at the midpoint is less than the error tolerance) is to simply draw a line from (x_0, y_0) to (x_1, y_1) . The reduction step is to (recursively) plot the two halves of the curve, from (x_0, y_0) to $(x_m, f(x_m))$ and from $(x_m, f(x_m))$ to (x_1, y_1) .

The code in PercolationPlot is relatively simple and produces a goodlooking curve at relatively low cost. We can use it to study the shape of the curve for various values of n or choose smaller tolerances to be more confident that the curve is close to the actual values. Precise mathematical statements about quality of approximation can, in principle, be derived, but it is perhaps not appropriate to go into too much detail while exploring and experimenting, since our goal is simply to develop a hypothesis about percolation that can be tested by scientific experimentation.



Indeed, the curves produced by PercolationPlot immediately confirm the hypothesis that there is a *threshold* value (about 0.593): if p is greater than the threshold, then the system almost certainly percolates; if p is less than the threshold,

then the system almost certainly does not percolate. As *n* increases, the curve approaches a step function that changes value from 0 to 1 at the threshold. This phenomenon, known as a *phase transition*, is found in many physical systems.

The simple form of the output of PROGRAM 2.4.6 masks the huge amount of computation behind it. For example, the curve drawn for n = 100 has 18 points, each the result of 10,000 trials, with each trial involving n^2 sites. Generating and testing each site involves a few lines of code, so this plot comes at the cost of executing billions of statements. There are two lessons to be learned from this observation. First, we need to have confidence in any line of code that might be executed billions of times, so our care in developing and debugging code incrementally is justified. Second, although we might be interested in systems that are much larger, we need further study in computer science to be able to handle larger cases-that is, to develop faster algorithms and a framework for knowing their performance characteristics.

With this reuse of all of our software, we can study all sorts of variants on the percolation problem, just by implementing different flow() methods. For example, if you leave out the last recursive call in the recursive flow() method in PROGRAM 2.4.5, it tests for a type of percolation known as *directed percolation*, where paths that go up are not considered. This model might be important for a situation like a liquid percolating through porous rock, where gravity might play a role, but not for a situation like electrical connectivity. If you run PercolationPlot for both methods, will you be able to discern the difference (see EXERCISE 2.4.10)?

```
PercolationPlot.curve()
   PercolationProbability.estimate()
      Percolation.random()
         StdRandom.bernoulli()
             n^2 times
          StdRandom.bernoulli()
      return
      Percolation.percolates()
         flow()
         return
      return
     • T times
      Percolation.random()
         StdRandom.bernoulli()
             n^2 times
         StdRandom.bernoulli()
      return
      Percolation.percolates()
         flow()
         return
      return
   return
  • once for each point
  PercolationProbability.estimate()
      Percolation.random()
         StdRandom.bernoulli()

 n<sup>2</sup> times

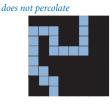
         StdRandom.bernoulli()
      return
      Percolation.percolates()
         flow()
         return
      return
     • T times
      Percolation.random()
         StdRandom.bernoulli()
             n^2 times
         StdRandom.bernoulli()
      return
      Percolation.percolates()
         flow()
         return
      return
   return
return
```

Function-call trace for PercolationPlot

To model physical situations such as water flowing through porous substances, we need to use three-dimensional arrays. Is there a similar threshold in the threedimensional problem? If so, what is its value? Depth-first search is effective for studying this question, though the addition of another dimension requires that we

pay even more attention to the computational cost of determining whether a system percolates (see EXERCISE 2.4.18). Scientists also study more complex lattice structures that are not well modeled by multidimensional arrays—we will see how to model such structures in SECTION 4.5.

Percolation is interesting to study via *in silico* experimentation because no one has been able to derive the threshold value mathematically for several natural models. The only way that scientists know the value is by using simulations like Percolation. A scientist needs to do experiments to see whether the percolation model reflects what is observed in nature, perhaps through refining the model (for example, using a different lattice structure). Percolation is an example of an increasing number of problems where computer science of the kind described here is an essential part of the scientific process.



Directed percolation

Lessons We might have approached the problem of studying percolation by sitting down to design and implement a single program, which probably would run to hundreds of lines, to produce the kind of plots that are drawn by PROGRAM 2.4.6. In the early days of computing, programmers had little choice but to work with such programs, and would spend enormous amounts of time isolating bugs and correcting design decisions. With modern programming tools like Java, we can do better, using the incremental modular style of programming presented in this chapter and keeping in mind some of the lessons that we have learned.

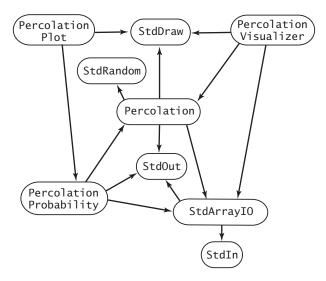
Expect bugs. Every interesting piece of code that you write is going to have at least one or two bugs, if not many more. By running small pieces of code on small test cases that you understand, you can more easily isolate any bugs and then more easily fix them when you find them. Once debugged, you can depend on using a library as a building block for any client.

Keep modules small. You can focus attention on at most a few dozen lines of code at a time, so you may as well break your code into small modules as you write it. Some classes that contain libraries of related methods may eventually grow to contain hundreds of lines of code; otherwise, we work with small files.

Limit interactions. In a well-designed modular program, most modules should depend on just a few others. In particular, a module that *calls* a large number of

other modules needs to be divided into smaller pieces. Modules that *are called by* a large number of other modules (you should have only a few) need special attention, because if you do need to make changes in a module's API, you have to reflect those changes in all its clients.

Develop code incrementally. You should run and debug each small module as you implement it. That way, you are never working with more than a few dozen lines of unreliable code at any given time. If you put all your code in one big module, it is difficult to be confident that *any* of it is free from bugs. Running code early also



Case study dependency graph (not including system calls)

forces you to think sooner rather than later about I/O formats, the nature of problem instances, and other issues. Experience gained when thinking about such issues and debugging related code makes the code that you develop later in the process more effective.

Solve an easier problem. Some working solution is better than no solution, so it is typical to begin by putting together the simplest code that you can craft that solves a given problem, as we did with vertical percolation. This implementation is the first step in a process of continual refinements and improvements as we develop a more complete understanding of the problem by examining a broader variety of test cases and developing support software such as our PercolationVisualizer and PercolationProbability classes.

Consider a recursive solution. Recursion is an indispensable tool in modern programming that you should learn to trust. If you are not already convinced of this fact by the simplicity and elegance of Percolation and PercolationPlot, you might wish to try to develop a nonrecursive program for testing whether a system percolates and then reconsider the issue.

Build tools when appropriate. Our visualization method show() and random boolean matrix generation method random() are certainly useful for many other applications, as is the adaptive plotting method of PercolationPlot. Incorporating these methods into appropriate libraries would be simple. It is no more difficult (indeed, perhaps easier) to implement general-purpose methods like these than it would be to implement special-purpose methods for percolation.

Reuse software when possible. Our StdIn, StdRandom, and StdDraw libraries all simplified the process of developing the code in this section, and we were also immediately able to reuse programs such as PercolationVisualizer, PercolationProbability, and PercolationPlot for percolation after developing them for vertical percolation. After you have written a few programs of this kind, you might find yourself developing versions of these programs that you can reuse for other Monte Carlo simulations or other experimental data analysis problems.

THE PRIMARY PURPOSE OF THIS CASE study is to convince you that modular programming will take you much further than you could get without it. Although no approach to programming is a panacea, the tools and approach that we have discussed in this section will allow you to attack complex programming tasks that might otherwise be far beyond your reach.

The success of modular programming is only a start. Modern programming systems have a vastly more flexible programming model than the class-as-a-libraryof-static-methods model that we have been considering. In the next two chapters, we develop this model, along with many examples that illustrate its utility.

Q. Editing PercolationVisualizer and PercolationProbability to rename Percolation to PercolationVertical or whatever method we want to study seems to be a bother. Is there a way to avoid doing so?

A. Yes, this is a key issue to be revisited in CHAPTER 3. In the meantime, you can keep the implementations in separate subdirectories, but that can get confusing. Advanced Java mechanisms (such as the *classpath*) are also helpful, but they also have their own problems.

Q. That recursive flow() method makes me nervous. How can I better understand what it's doing?

A. Run it for small examples of your own making, instrumented with instructions to print a function-call trace. After a few runs, you will gain confidence that it always marks as full the sites connected to the start site via a chain of neighboring open sites.

Q. Is there a simple nonrecursive approach to identifying the full sites?

A. There are several methods that perform the same basic computation. We will revisit the problem in SECTION 4.5, where we consider *breadth-first search*. In the meantime, working on developing a nonrecursive implementation of flow() is certain to be an instructive exercise, if you are interested.

Q. PercolationPlot (PROGRAM 2.4.6) seems to involve a huge amount of computation to produce a simple function graph. Is there some better way?

A. Well, the best would be a simple mathematical formula describing the function, but that has eluded scientists for decades. Until scientists discover such a formula, they must resort to computational experiments like the ones in this section.

Exercises

2.4.1 Write a program that takes a command-line argument n and creates an n-by-n boolean matrix with the element in row i and column j set to true if i and j are relatively prime, then shows the matrix on the standard drawing (see EXERCISE 1.4.16). Then, write a similar program to draw the Hadamard matrix of order n (see EXERCISE 1.4.29). Finally, write a program to draw the boolean matrix such that the element in row n and column j is set to true if the coefficient of x^j in $(1 + x)^i$ (binomial coefficient) is odd (see EXERCISE 1.4.41). You may be surprised at the pattern formed by the third example.

2.4.2 Implement a print() method for Percolation that prints 1 for blocked sites, 0 for open sites, and * for full sites.

2.4.3 Give the recursive calls for flow() in Program 2.4.5 given the following input:

2.4.4 Write a client of Percolation like PercolationVisualizer that does a series of experiments for a value of n taken from the command line where the site vacancy probability p increases from 0 to 1 by a given increment (also taken from the command line).

2.4.5 Describe the order in which the sites are marked when Percolation is used on a system with no blocked sites. Which is the last site marked? What is the depth of the recursion?

2.4.6 Experiment with using PercolationPlot to plot various mathematical functions (by replacing the call PercolationProbability.estimate() with a different expression that evaluates a mathematical function). Try the function $f(x) = \sin x + \cos 10x$ to see how the plot adapts to an oscillating curve, and come up with interesting plots for three or four functions of your own choosing.

2.4.7 Modify Percolation to animate the flow computation, showing the sites filling one by one. Check your answer to the previous exercise.

2.4.8 Modify Percolation to compute that maximum depth of the recursion used in the flow calculation. Plot the expected value of that quantity as a function of the site vacancy probability *p*. How does your answer change if the order of the recursive calls is reversed?

2.4.9 Modify PercolationProbability to produce output like that produced by Bernoulli (Program 2.2.6). *Extra credit*: Use your program to validate the hypothesis that the data obeys a Gaussian distribution.

2.4.10 Create a program PercolationDirected that tests for *directed* percolation (by leaving off the last recursive call in the recursive flow() method in PROGRAM 2.4.5, as described in the text), then use PercolationPlot to draw a plot of the directed percolation probability as a function of the site vacancy probability *p*.

2.4.11 Write a client of Percolation and PercolationDirected that takes a site vacancy probability *p* from the command line and prints an estimate of the probability that a system percolates but does not percolate down. Use enough experiments to get an estimate that is accurate to three decimal places.

Creative Exercises

2.4.12 *Vertical percolation.* Show that a system with site vacancy probability p vertically percolates with probability $1 - (1 - p^n)^n$, and use PercolationProbability to validate your analysis for various values of n.

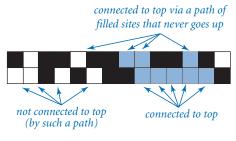
2.4.13 *Rectangular percolation systems.* Modify the code in this section to allow you to study percolation in rectangular systems. Compare the percolation probability plots of systems whose ratio of width to height is 2 to 1 with those whose ratio is 1 to 2.

2.4.14 Adaptive plotting. Modify PercolationPlot to take its control parameters (gap tolerance, error tolerance, and number of trials) as command-line arguments. Experiment with various values of the parameters to learn their effect on the quality of the curve and the cost of computing it. Briefly describe your findings.

2.4.15 *Nonrecursive directed percolation.* Write a nonrecursive program that tests for directed percolation by moving from top to bottom as in our vertical percola-

tion code. Base your solution on the following computation: if any site in a contiguous subrow of open sites in the current row is connected to some full site on the previous row, then all of the sites in the subrow become full.

2.4.16 *Fast percolation test.* Modify the recursive flow() method in PROGRAM 2.4.5 so that it returns as soon as it finds a site on the bottom row (and fills no more sites). *Hint*: Use an argument done that is true if the bottom

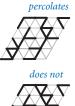


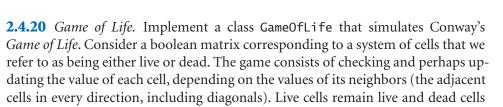
Directed percolation calculation

has been hit, false otherwise. Give a rough estimate of the performance improvement factor for this change when running PercolationPlot. Use values of n for which the programs run at least a few seconds but not more than a few minutes. Note that the improvement is ineffective unless the first recursive call in flow() is for the site *below* the current site. **2.4.17** *Bond percolation.* Write a modular program for studying percolation under the assumption that the edges of the grid provide connectivity. That is, an edge can be either empty or full, and a system percolates if there is a path consisting of full edges that goes from top to bottom. *Note*: This problem has been solved analytically, so your simulations should validate the hypothesis that the bond percolation threshold approaches 1/2 as *n* gets large.

2.4.18 Percolation in three dimensions. Implement a class Percolation3D and a class BooleanMatrix3D (for I/O and random generation) to study percolation in three-dimensional cubes, generalizing the two-dimensional case studied in this section. A percolation system is an *n*-by-*n*-by-*n* cube of sites that are unit cubes, each open with probability p and blocked with probability 1-p. Paths can connect an open cube with any open cube that shares a common face (one of six neighbors, except on the boundary). The system percolates if there exists a path connecting any open site on the bottom plane to any open site on the top plane. Use a recursive version of flow() like PROGRAM 2.4.5, but with eight recursive calls instead of four. Plot the percolation probability versus site vacancy probability p for as large a value of *n* as you can. Be sure to develop your solution incrementally, as emphasized throughout this section.

2.4.19 Bond percolation on a triangular grid. Write a modular program for studying bond percolation on a triangular grid, where the system is composed of $2n^2$ equilateral triangles packed together in an *n*-by-*n* grid of rhombus shapes. Each interior point has six bonds; each point on the edge has four; and each corner point has two.

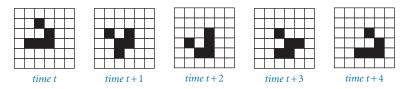




remain dead, with the following exceptions:

- A dead cell with exactly three live neighbors becomes live.
- A live cell with exactly one live neighbor becomes dead.
- A live cell with more than three live neighbors becomes dead.

Initialize with a random boolean matrix, or use one of the starting patterns on the booksite. This game has been heavily studied, and relates to foundations of computer science (see the booksite for more information).



Five generations of a glider

This page intentionally left blank

A

A-format instructions, 911 Absolute value function, 199 Absorption identity, 990 Abstract machines, 737–738 Abstract methods, 446 Abstraction color, 341-343 circuits, 1037-1039 data, 382 displays, 346 function-call, 590-591 libraries, 230, 429 object-oriented programming, 329 printing as, 76 recursion, 289 vs. representation, 69 standard audio, 155 standard drawing, 144 standard I/O, 129, 139-143 Accept states DFAs, 738-739 Turing machines, 766–767 Access modifiers, 384 Accessing references, 339 Account information dictionary lookup, 628-629 indexing, 634 Accuracy n-body simulation, 488 random web surfer, 185 Adaptive plots, 314-318

Adders binary, 771 combinational circuits, 1007 overview, 1028 ripple-carry, 1028-1030 sum-of-products, 1028 AddInts program, 134 Addition complex numbers, 402–403 floating-point numbers, 24-26 integers, 22, 884 negative numbers, 887 spatial vectors, 442-443 Address control lines, 1056 Addresses array elements, 94 memory, 909 symbolic names, 981 Adelman, Leonard, 795 Adjacency matrix, 692 Adjacent vertices, 671 Albers, Josef, 342 AlbersSquares program, 341-342 Alex, 380 Algebra boolean, 989-991 vectors, 442-443 Algorithms, 493 computability, 787 decidability, 786-787 exponential-time, 826 overview, 786 performance. See Performance polynomial-time, 825-826

searching. See Searches sorting. See Sorts Aliasing arrays, 516 bugs from, 439, 441 references, 363 Allocating memory, 94, 367 Alphabets formal languages, 720-721 metasymbols, 725 regular expressions, 730 symbols, 718-719 ALUs. See Arithmetic logic units (ALUs) Amortized analysis, 580-581 Ampersands (&) bitwise operations, 891-892 boolean type, 26-27, 991 Analog circuits, 1013 AND circuits in ALUs, 1031 AND gates, 1014 And operation bitwise, 891-892 boolean type, 26-27, 987-989 TOY machine, 913 Animations BouncingBall, 152-153 double buffering, 151 Annihilation identity, 990 Antisymmetric property, 546 Application programming interfaces (APIs) access modifiers, 384 Body, 480 built-in data types, 30-32

1108

Charge, 383 **Color**, 343 Comparable, 545 Complex, 403 Counter, 436–437 data types, 388 designing, 233, 429-431 Draw, 361 Graph, 675-679 Histogram, 392 implementing, 231 In, 354 libraries, 29, 230-232 modular programming, 432 Out, 355 PathFinder, 683 Picture, 347 Queue, 592 SET, 652 Sketch, 459 spatial vectors, 442-443 ST, 625 StackOfStrings, 568 StdArray, 237 StdAudio, 159 StdDraw, 149, 154 StdIn, 132-133 StdOut, 130 StdRandom, 233 StdStats, 244 StockAccount, 410 Stopwatch, 390 String, 332–333 symbol tables, 625-627 Turtle, 394 Universe, 483 Vector, 443 Approximation algorithms, 852 Arbitrary-size input streams, 137-138 args argument, 7, 208

Arguments arrays as, 207–210 command-line, 7-8, 11, 127 constructors, 333, 385 methods, 30 passing, 207-210, 364-365 printf(), 130-132 static methods, 197 Ariane 5 rocket, 35 Arithmetic CPU instructions, 1079 floating point numbers, 890 integers, 884-885 operators, 22 TOY machine instructions, 912 Arithmetic logic units (ALUs), 1031 bitwise operations, 1031 inputs, 1031 outputs, 1032 summary, 1032–1033 TOY machine, 910 Arithmetic expression evaluation, 586-589 Arithmetic shifts bits, 891-892 purpose, 898-899 ArrayIndexOutOfBoundsException, 95, 116, 466 Arrays aliasing, 516 as arguments, 207-210 assigning, 117 associative, 630 binary searches, 538-539 bitonic, 563 bounds checking, 95 comparing, 117 coupon collector problem, 101-103 decks of cards, 97-100

declaring, 91, 116 default initialization, 93 exchanging values, 96 FIFO queues, 596 hash tables, 636 I/O libraries, 237-238 images, 346-347 immutable types, 439-440 iterable classes, 603 linked structures, 942-944 machine-language, 938-941 memory, 91, 94, 515-517 multidimensional, 111 overview, 90-92 parallel, 411 plotting, 246-248 precomputed values, 99-100 references, 365 resizing, 578-581, 635 as return values, 210 setting values, 95–96 shuffling, 97 side effects, 208-210 Sieve of Eratosthenes, 103–105 stacks, 568-570, 578-581 summary, 115 transposition, 120 two-dimensional. See Two-dimensional arrays Arrays.binarySearch(),559 Arrays.sort(),559 ArrayStackOfStrings program, 568-570,603 Arrival rate in *M*/*M*/1 queues, 597–598 The Art of Computer Programming book, 947 ASCII standard, 874, 894-895 Assemblers for TOY machine, 964 Assembly language description, 930 symbolic names, 981

Assertions, 466-467 Assignments arrays, 117 chained, 43 compound, 60 description, 17 references, 363 Associative arrays, 630 Associative axiom, 990, 993 Associativity, 17 Asterisks (*) comments, 9 floating-point numbers, 24-26 integers, 22-23 regular expressions, 724 Audio plotting sound waves, 249 standard, 155-159 superposition, 211-215 Autoboxing, 457, 585-586 Automatic promotion, 33 Average-case performance, 648 Average magnitude, 164 Average path lengths, 693 Average power, 164 Average program, 137–138 Axioms in Boolean algebra, 990

B

Backslashes (\) escape sequences, 19 regular expressions, 731 Backward compatibility, 976 Bacon, Kevin, 684 Balanced binary trees, 661 Ball animation, 152–153 Barnsley ferns, 240–243 Base cases binary search trees, 640 recursion, 264–265, 281 Base classes, 452-453 Base64 encoding, 904 Bases in positional notation, 875 Basic scaffolding, 302-304 Basic statistics, 244-246 Beck exploit, 529 Beckett, Samuel, 273 Beckett program, 274-275 Behavior of objects, 340 Benford's law, 224 Bernoulli, Jacob, 398 Bernoulli program, 249-250 Best-case performance binary search trees, 647 insertion sort, 544 Big-O notation, 520-521 BigInteger class, 827, 897-898 Binary adders, 771 Binary digits, 22 Binary frequency count equality, 772-773 Binary incrementers, 769-771 Binary number system conversions, 67-69 description, 38 Binary operators, 17 Binary program, 67-69 Binary reflected Gray code, 274 Binary representation decimal conversions, 877 description, 875 examples, 878-879 hex conversions, 876-877 literals, 891 Binary search trees (BSTs) implementation, 645-646 insert process, 644-645 machine-language, 942-944 ordered operations, 651 overview, 640-643 performance, 647-648

search process, 643-644 symbol tables, 624-625 traversing, 649-650 **Binary** searches binary representation, 536 correctness proof, 535 exception filters, 540 inverting functions, 536–538 overview, 533-534 random web surfer, 176 running time, 535 sorted arrays, 538-539 symbol tables, 635 weighing objects, 540-541 Binary strings, 718-719 Binary trees balanced, 661 heap-ordered, 661 isomorphic, 661 Binary16 format, 888 BinarySearch program, 538–539 Binomial coefficients, 125 Binomial distributions, 125, 249 Biology computational, 732-734 DNA computers, 795 genomics application, 336-340 graphs, 672 Bipartite graphs, 682 Bisection searches, 537 Bit-slice memory design, 1054-1056 Bitmapped images, 346 Bitonic arrays, 563 Bits binary number system, 38, 875 bitwise operations, 891-892 computer dependence, 874 description, 22 logical instructions, 912-913 manipulating, 891-893 memory, 1056

1110

memory size, 513 register, 1051 shifting, 891-892 Bitwise operations and, 913 arithmetic logic units, 1031 exclusive or, 39, 913 shift, 913 Black-Scholes formula, 222, 565 Blobs, 709 Blocks statements, 50 variable scope, 200 Bodies loops, 53 static methods, 196 Body program memory, 514 N-body simulation, 479-482 Bollobás-Chung graph model, 713 Book indexes, 632-633 Booksite, 2-3 Boole, George, 986 boolean data type conversion codes, 131-132 description, 14-15 input, 133 memory size, 513 overview, 26-27 Boolean logic cryptography application, 992-994 description, 27 expressions, 995-996 functions, 987-991, 994-997 overview, 986 Boolean matrices, 302 Boolean satisfiability, 832, 836 boolean equation satisfiability problem, 838 NP-completeness, 844-846,

853-856

Booting, 959-960, 968-969 Bootstrapping, 971 BouncingBall program, 152–153 Bounding boxes for drawings, 146 Bounds arrays, 95 exponential time, 826 polynomial time, 825 Boxing, 457, 585-586 Box-Muller formula, 47 Breadth-first searches, 683, 687-688, 690, 692 break statement, 74 Bridges, Brownian, 278-280 Brin, Sergey, 184 Brown, Robert, 400 Brownian bridges, 278-280 Brownian motion, 400-401 Brownian program, 278-280 Brute-force algorithm, 535–536 BST program, 645-646 BSTs. See Binary search trees (BSTs) Buffer overflow arrays, 95 attacks, 963 Buffering drawings, 151 Bugs aliasing, 363, 439, 441 overview, 6 testing for, 318 Built-in data types boolean, 26-27 characters and strings, 19-21 comparisons, 27-29 conversions, 32-35 floating-point numbers, 24-26 integers, 22-24 library methods, 29-32 overview, 14-15 summary, 35-36 terminology, 15-18

Built-in interfaces, 451 Buses, 1034–1036 CPU connections, 1077 program counter connections, 1073–1074 Buzzers, 1048 byte data type, 24 Bytecode compiling, 589, 788 Java virtual machine, 965 Bytes memory size, 513

С

C conversion specification, 131 Caches and instruction time, 509 in top-down dynamic programming, 284 Calculators, 908 Callbacks in event-based programming, 451 Calls, 193 chaining, 404 in machine language, 932-933 methods, 30, 197, 340 reverse Polish notation, 591 Canvas, 151 Card decks, arrays for, 97-100 Carets (^) bitwise operations, 891-892 regular expressions, 731 Carroll, Lewis, 710 Carry bits in adders, 1028 Cartesian representation, 433 Casts, 33-34 Cat program, 356 Cellular automata, 794 Central processing units (CPUs) bus connections, 1077 control lines, 1077-1078 execute phase, 1079

Index

fetch phase, 1078 instructions, 1079-1080 interfaces, 1076 load address, 1080 modules, 1076 overview, 985 TOY-8 machine, 1076-1080 Centroids, 164 Chained assignments, 43 Chained comparisons, 43 Chaining method calls, 404 Characters and char data type ASCII, 894 conversion to numbers, 880-881 description, 15 memory size, 513 representing, 894-895 Unicode, 894-895 working with, 19-21 Charge program, 383–389, 515 Checksums description, 86 formula, 220 Chords, 211 Chromatic scale, 156 Church, Alonso, 790 Church-Turing thesis extended, 823 overview, 790-791 Turing machine simulation, 798 virtual machines, 958 Ciphers, Kamasutra, 377 Ciphertext, 993 Circuit models building circuits, 1006-1008 connections, 1002-1004 controlled switches, 1005-1006 conventions, 1004 inputs, 1002-1004 logical design, 1008-1009 outputs, 1002-1004

overview, 1002-1003 wires, 1002-1004 Circuits combinational. See Combinational circuits description, 1010 from gates, 1019-1021 memory, 1054-1057 Circular linked lists, 622 Circular queues, 620 Circular shifts, 375 .class extension, 3, 8, 228 ClassDefFoundError, 160 Classes, 4–5 accessing, 227-229 description, 226 implementing, 383-389 inner, 609 modules as, 228 variables, 284 Classifying NP-complete problems, 851 Client code data types, 430 library methods, 230 Clocks CPU, 1077-1079 fetch and execute, 1059, 1061 overview, 1058-1059 run and halt inputs, 1060 write control, 1059-1060 Closure operation in REs, 724 Clouds, plasma, 280 Clustering coefficients global, 713 local, 693-694 CMYK color format, 48-49, 371 Code and coding description, 2 encapsulating, 438 incremental development, 319, 701

reuse, 226, 253, 701 static methods, 205-206 Codebooks, 992 Codons, genes, 336 Coefficients for floating-point numbers, 889 Coercion, 33 Coin flip, 52-53 Collatz function, 784 Collatz problem, 296-297, 818 Collatz sequence, 948 Collections description, 566 iterable, 601-605 objects, 582-583 queues. See Queues stacks. See Stacks symbol tables. See Symbol Tables Colons (:) in Turing machine tapes, 767 foreach statements, 601-602 Color and Color data type blobs, 709 compatibility, 344 conversion, 48-49 drawings, 150 grayscale, 344 luminance, 343 memory, 514 overview, 341-343 Columns in 2D arrays, 106, 108 Combinational circuits adders, 1028-1030 ALUs, 1031-1033 buses, 1034-1036 decoders, 1021-1022 demultiplexers, 1022 description, 1007-1008 gates, 1013-1021 layers of abstraction, 1037-1039

modules, 1034 multiplexers, 1023 overview, 1012 sum-of-products, 1024-1027 Comma-separated-value (.csv) files, 358, 360 Command-line arguments, 7-8, 11, 127 Commas (,) arguments, 30 constructors, 333 lambda expressions, 450 methods, 30, 196 two-dimensional arrays, 108 Comments, 5, 9 Commercial data processing, 410-413 Common sequences, longest, 285 - 288Commutative axiom, 990 Compact trace format, 770 Comparable interface, 451, 545 Comparable keys sorting, 546 symbol tables, 626-627 CompareDocuments program, 462-463 compareTo() method description, 451 String, 332 user defined, 545-546 Comparisons arrays, 117 chained, 43 objects, 364, 545-546 operators, 27-29 performance, 508-509 sketches, 462-463 Compatibility backward, 976 Color, 344

Compile-time errors, 6 Compilers description, 3, 589 optimizing, 814 programs as data, 922-924 purpose, 788 TOY machine, 964-965 Compiling array values set at, 95-96, 108 classes in, 229 description, 2 programs, 3 Complement operation bitwise, 891 Boolean algebra, 990 Complete small-world graphs, 694 Complex program chaining method calls, 404 encapsulation, 433-434 instance variables, 403-404 objects, 404 overview, 402-403 program, 405 Complex numbers, 406-409 Compound assignments, 60 Compression, optimal, 814 Computability algorithms, 787 halting problem, 808-810 Hilbert's program, 806-807 liar's paradox, 807-808 overview, 806 reduction, 811-813 unsolvability proof, 810 unsolvable problems. See Unsolvable problems Computation: Finite and Infinite Machines, 780 Computational biology, 732-734 Computational models, 716 Computer animations, 151

Computer speed in performance, 507-508 Computer systems, 1094-1095 Computers and Intractability: A Guide to the Theory of NPcompleteness book, 859 Computers Ltd.: What They Really Can't Do book, 780 Computing devices boolean logic. See Boolean logic circuit models. See Circuit models combinational circuits. See Combinational circuits digital. See Digital devices overview, 985 sequential circuits. See Sequential circuits Computing machines machine-language programming. See Machine-language programming overview, 873 representing information. See Representing information TOY. See TOY machine Computing sketches, 459-460 Concatenation files, 356 strings, 19-20, 723-724 Concert A, 155 Concordances, 659 Conditionals and loops, 50 applications, 64-73 break statement, 74 continue statement, 74 do-while loops, 75 examples, 61 for loops, 59-61 if statement, 50-53 infinite loops, 76

miscellaneous, 74-75 in modular programming, 227-228 nesting, 62-64 performance analysis, 500, 510 static methods, 193–195 summary, 77 switch statement, 74-75 TOY machine, 913, 918-921 while loops, 53-59 Connected components, 709 Connecting programs, 141 Connections buses, 1034 circuit models, 1002-1004 CPU, 1077 power source, 1003-1004 program counters, 1073-1075 Constant order of growth, 503 Constants, 16 Constructors data types, 384-385 String, 333 Containing symbol table keys, 624 Context-free languages, 755 Continue statements, 74 Contracts APIs, 230-231 design by contract, 465-467 interface, 446-447 machine-language, 932 Control characters, 894 Control circuit CPU, 1078 execute signals, 1082-1083 fetch signals, 1080, 1082-1083 overview, 1080 Control flow conditionals and loops. See Conditionals and loops static method calls, 193-195

Control lines CPU, 1077-1080 memory bits, 1056 multiplexers, 1019-1020 program counters, 1074-1075 register bits, 1051 Controlled switches, 1002–1003, 1005-1006 Conversion codes, 131-132 Conversion specifications, 130-131 Conversions casts, 33-34 color, 48-49 data types, 339 decimal to binary, 877 explicit, 34-35 hex and binary, 876-877 implicit, 33 numbers, 21, 67-69 overview, 32 strings, 21, 453, 880-881 Convert program, 880-882 Conway, John, 326, 794 Cook, Stephen, 840, 845 Cook-Levin theorem, 844-845, 847 Cook reduction, 841 Coordinates drawing, 144-146 images, 347 polar, 47 Corner cases, 236 Cosine similarity measure, 462 Cost of immutable types, 440 Coulomb's law, 383 Counter circuits, 1008 Counter machines, 794 Counter program, 436–437 Coupon collector problem, 101-103 Coupon program, 206

CouponCollector program, 101-103, 205 CPUs. See Central processing units (CPUs) Craps game, 259 Cray, Seymour, 971 Crichton, Michael, 424 Cross-coupled NOR gates, 1050 Cross-coupled switches, 1049 Cross products of vectors, 472 Cryptographic keys, 992 Cryptography application, 992–994 Cryptosystems, 992-993 <Ctrl-C> keys, 76 <Ctrl-D> keys, 137 <Ctrl-Z> keys, 137 Cubic order of growth, 505-508 Cumulative distribution function, 202-203 Curly braces ({}) regular expressions, 724, 731 statements, 5, 78–79 static methods, 196 two-dimensional arrays, 108 Curves Brownian bridges, 278-280 Dragon, 49, 424 Koch, 397 space-filling, 425 spirals, 398-399 Cycles per second, 155

D

Dantzig, George, 831 Data abstraction, 329, 382 Data as instructions, 922–924 Data compression, 814 Data-driven code, 141, 171, 184 Data mining example, 458–459 Data paths for buses, 1034

Data structures, 493 arrays. See Arrays binary search trees. See Binary search trees (BSTs) linked lists, 571-578 queues. See Queues resource allocation, 606-607 stacks. See Stacks stock example, 411 summary, 608 symbol tables. See Symbol tables Data-type design APIs, 429-431 data mining example, 458-464 design by contract, 465-467 encapsulation, 432-438 immutability, 439-446 subclassing, 452-457 subtyping, 446-451 overview, 428 Data types access modifiers, 384 APIs, 383 boolean, 991 built-in. See Built-in data types classes, 383 Color, 341-345 Complex, 402-405 constructors, 384-385 conversions, 34-35, 339 creating, 382 definitions, 331-335 DrunkenTurtle, 400-401 elements summary, 383 generic, 583-585 Histogram, 392-393 image processing, 346-352 immutable, 364, 439 input and output, 353-362 insertion sorts, 545-548

instance methods, 385-386

instance variables, 384 Koch, 397 Mandelbrot, 406-409 output, 355 overview, 330 reference, 362-369 Spiral, 398-399 StockAccount, 410-413 Stopwatch, 390-391 String. See Strings and String data type summary, 368 TOY machine, 907 Turtle, 394-396 type safety, 18 variables within methods, 386-388 Data visualization, 307-309 Davis, Martin, 816 Dead Sea Scrolls, 659 Debugging abstraction layers, 1037 assertions, 466-467 encapsulation for, 432 immutable types, 440 incremental, 317, 319 linked lists, 596 modular programming, 251-254 test client main() for, 235 unit testing, 246 Decidability, 786-787 Decimal number system conversion to binary, 877 description, 38, 875 examples, 878-879 Decision problems, NP, 835 Decks of cards, 97-100 Declaration statements, 15-16 Declaring arrays, 91, 116 String variables, 333

Decoders, 1021-1022 Decoding numbers, 889 Decrementers, binary, 770-771 Decryption devices, 992 Dedup operation punched paper tape, 942-944 strings, 652-653 DeDup program, 652-653 Default values arrays, 93, 106-107 canvas size, 145 ink color, 150 instance variables, 415 Node objects, 572 pen radius, 146 Defensive copies, 441 Defining functions, 192 interfaces, 446 static methods, 193, 196 Definite integration, 816 Degrees of separation description, 670 shortest paths, 684-686 DeMorgan's laws, 989-991, 1014-1015 Demultiplexers, 1022 Denial-of-service attacks, 512 Dependencies in subclasses, 453 Dependency graphs, 252 Deprecated methods, 469 Depth-first searches vs. breadth-first searches, 690 percolation case study, 312 Deques, 618 Derived classes, 452 Descartes, René, 398 Design APIs, 233 by contract, 465-467 data types. See Data-type design Deterministic finite-state automata (DFAs) examples, 740-741 implementation, 741-743 Kleene's theorem. See Kleene's theorem language recognized, 739-740 NFA equivalence, 749-750 nondeterminism, 744-748 operations, 739 overview, 738 power limitations, 753-755 summary, 756 universal virtual, 788-789 DFA program, 742-743 Diameters of graphs, 711 Diamond operators (<>), 585 Dice Sicherman, 259 simulation, 121 Dictionary lookup, 624, 628-632 Difficult problems intractability, 828-829 search problems, 837-838 Digital circuits, 1013 Digital devices, 1070 control, 1080–1082 CPU, 1076-1080 program counters, 1073–1075 Digital image processing digital images, 346-347 fade effect, 351-352 grayscale, 347-349 overview, 346 scaling, 349-350 Digital signal processing, 155, 158 Dijkstra, Edsgar Dutch-national-flag problem, 564 goto statements, 926 two-stack algorithm, 587

Dijkstra's algorithm, 692 Diophantine, 816 Directed graphs, 711 Directed percolation, 317 Discrete distributions, 172 Disjunctive normal forms, 996-997 Distances of graph paths, 683, 687-688 Distributive axiom, 990 Divide-and-conquer approach linearithmic order of growth, 504 mergesort, 550-551, 554 Division floating-point numbers, 24-26 integers, 22-23 polar representation, 433 DivisorPattern program, 62-64 DNA computers, 795 DNS (domain name system), 629 do-while loops, 75 Documents, searching for, 464 Dollar signs (\$) in REs, 731 Domain name system (DNS), 629 Domains, function, 192 Dot products function implementation, 209 vectors, 92, 442-443 Double.parseDouble() method calls to, 30-31 type conversion, 21, 34 Double buffering drawings, 151 double data type conversion codes, 132 description, 14-15 input, 133 memory size, 513 overview, 24-26 Double negation identity, 990 Double negatives in gates, 1015-1016

Double quotes ("") escape sequences, 19 text, 5, 10 Doublet game, 710 Doubling hypotheses, 496, 498-499 DoublingTest program, 496, 498-499 Downscaling in image processing, 349 Dragon curves, 49, 424 Dragon program, 163 Draw library, 361 Drawings recursive graphics, 276-277 standard. See Standard drawing DrunkenTurtle program, 400 DrunkenTurtles program, 401 Dumping virtual machines, 960-961 Dutch-national-flag problem, 564 Dynamic dictionaries, 628 Dynamic dispatch, 448 Dynamic programming bottom-up, 285 longest common subsequence, 285-288 overview, 284 summary, 289 top-down, 284

E

Easy problems intractability, 829 search, 837 Eavesdroppers, 992–993 Eccentricity in vertices, 711 Eckert, J. Presper, 924–925 Edges graphs, 671, 674 self-loops and parallel, 676 EDVAC computer, 924–925 Efficiency n-body simulation, 488 random web surfer, 185 Turing machines, 772 Efficient algorithms, 532 Einstein, Albert, 400 Election voting machine errors, 436 Electric charge, 383-389 Element distinctness problem, 554 Elements in arrays, 90 else clauses, 51–52 Empirical analyses, 496-497 Empty strings with REs, 724 Emulators, 965 Encapsulation code clarity, 438 error prevention, 436-437 example, 433-434 modular programming, 432 overview, 432 planning for future, 435 private access modifier, 433 Encoding numbers, 889 Encryption devices, 992 End-of-file sequence, 137 Enhancements for Turing machines, 792-793 ENIAC computer, 924–925 Enigma code, 717 Entropy Shannon, 378 text corpus, 667-668 Equals signs (=) assignment statements, 17 assignment vs. boolean, 42, 78 comparisons, 27-29, 364 compound assignments, 60 vs. equals(), 369-370 Equality of objects, 364, 454-456

equals() method Color, 343 vs. equals signs, 369-370 Object, 453-455 String, 332 Equilateral triangles, 144-145 Equivalence problem for REs, 728 Equivalent models for Turing machines, 792-793 Erdös, Paul, 686 Erdös-Renyi model, 695, 712 Errors aliasing, 363 debugging. See Debugging encapsulation for, 436-437 overview, 6 syntax, 10-11 testing for, 318 Escape characters, 730, 757 Escape sequences, 19 Euclidean distance sketch comparisons, 462-463 vectors, 118 Euclid's algorithm description, 85 machine-language, 931 recursion, 267-268 TOY machine, 918-921 Euler, Leonhard, 89 Euler's constant, 222 Euler's sum-of-powers conjecture, 89 Euler's totient function, 222 Evaluate program, 588–589 Evaluating expressions, 17, 586-589 Event-based programming, 451 **Exception** class, 465 Exception filters, 540 Exceptions, 465-467

Exchanging values arrays, 96 function implementation, 209 Exclamation points (!) not operator, 26-27, 991 comparisons, 27-29 Exclusive or operation bitwise, 891-892, 913 boolean, 987-989 sum-of-products, 1024-1025 Execute phase in CPU, 1079 Explicit casts, 33-34 Exponential distributions, 597 Exponential order of growth, 505 difficult problems, 828-829 intractability, 826 overview, 272-273, 506 playing card possibilities, 823 running time, 507-508 SAT problem, 856 usefulness, 858 Expressions arithmetic evaluation, 586-589 boolean, 995-996 description, 17 Lambda, 450 method calls, 30 regular. See Regular expressions Extended Church-Turing thesis, 823 Extensible libraries, 452 ExtractFloat program, 893 Extracting data, 358, 360

F

Factor problem, 838, 859 Factorials, 264–265 Factoring, 72–73, 827, 838 Factors program, 72–73 Fade effect, 351–352 Fade program, 351–352

Fair coin flip, 52-53 Falsifiable hypotheses, 495 Fecundity parameter, 89 Feedback circuits, 1048-1049 Fermat's Last Theorem, 89, 722 Ferns, Barnsley, 240-243 Fetch-increment-execute cycle, 910-911 Fibonacci numbers formulas, 82 machine language, 935-936 recursion, 282-283 FIFO queues. See First-in first-out (FIFO) queues Files concatenating and filtering, 356 format, 237 in I/O, 126 n-body simulation, 483 redirection, 139-141 splitting, 360 stock example, 411 symbol tables, 629 Filled shapes, 149 Filters exception, 540 files, 356 image processing, 379 piping, 142-143 standard drawing data, 146-147 standard input, 140 final keyword description, 384 immutable types, 440 instance variables, 404 Financial systems, graphs for, 673 Finite-state transducers, 762 Finite sums, 64-65 First-in first-out (FIFO) queues applications overview, 597 array implementation, 596

linked-list implementation, 593 M/M/1, 597-600 overview, 566, 592-593 Flexibility, 702 Flip program, 52–53 Flip-flops, 1049-1050 float data type, 26, 513 Floating-point numbers conversion codes, 131–132 exponents, 889 overview, 24-26 precision, 40 representing, 888-890 storing, 40 Flow of control conditionals and loops. See Conditionals and loops static method calls, 193-195 Flowcharts, 51-52 for loops continue statement, 74 examples, 61 nesting, 62-64 working with, 59-61 Foreach statements, 601-602 Formal languages abstract machines, 737-738 alphabets, 720-721 binary strings, 718-719 definitions, 718-723 DFAs. See Deterministic finitestate automata (DFAs) recognition problem, 722 regular, 723-729 regular expressions. See Regular expressions (REs) specification problem, 722 Format, files, 237 Format strings, 130-131 Formatted input, 135 Formatted printing, 130–132

Forth language, 590 Fortran language, 1094 Fourier series, 211 Fractal dimensions, 280 Fractals, 278-280 Fractional Brownian motion, 278 Fractions, 889-890 Fragile base class problem, 453 Freeing memory, 367 Frequencies counting, 555 sorting, 556 Zipf's law, 556 FrequencyCount program, 555-557 Fully parenthesized arithmetic expressions, 587 Function calls abstraction, 590-591 static methods, 197 traces, 195 trees, 269, 271 Function graphs, 148, 248 Functional interfaces, 450 Functional programming, 449 Functional property of programs, 812-813 **Functions** boolean, 987-991, 994-997 computing with, 449 defining, 192 inverting, 536-538 iterated function systems, 239-243 libraries. See Libraries machine language, 931-933 mathematical, 202-204 modules. See Modules overview, 191 recursive. See Recursion static methods, 193-201 tables of, 907-908

1118

G

Gambler program, 70-71 Gambler's ruin simulation, 69-71 Game of Life, 326, 794 Garbage collection, 367, 516 Gardner, Martin, 424 Garey, Michael R., 859 Gates abstraction layers, 1037 AND, 1014 circuits from, 1019-1021 multiway, 1015-1017 NOR, 1014 NOT, 1013-1014 OR, 1014 overview, 1013 sum-of-products, 1026-1027 summary, 1018-1019 universal sets of, 1045 Gaussian distribution functions API, 231 cumulative, 202-203 probability density, 202-203 Gaussian elimination, 830 Gaussian program, 203 Gaussian random numbers, 47 General purpose computers, 790 Generalized multiway gates, 1016-1017 Generalized regular expressions, 730-732 Generic types, 583-585 Genomics application, 336-340 indexing, 634 regular expressions, 727, 732-734 symbol tables, 629 Geometric mean, 162

Geometry abstraction layers, 1037-1039 gates, 1015-1016 German Enigma code, 717 Get operations hash tables, 639 symbol tables, 624 Gilbert-Shannon-Reeds model, 125 Glass filters, 379 Global clustering coefficients, 713 Global variables, 284 Glossary of terms, 1097-1101 Gödel, Kurt, 807, 840 Golden ratio, 83 Goldstine, Herman, 925 Gore, Al, 436 Gosper, R., 805 Goto statements, 926 Graph data type, 675–679 Graph program, 676–679 Graphics recursive, 276-277, 397 turtle, 394-396 Graphs bipartite, 682 client example, 679-682 connected components, 709 dependency, 252 description, 671 DFAs, 738 diameters, 711 directed, 711 examples, 695 function, 148, 248 generators, 700 Graph data type, 675-679 grid, 708 isomorphism problem, 859 lessons, 700-702 matching, 713

overview, 670-671 random web surfer, 170 small-world, 693-699 systems examples, 671-674 vertex cover, 828, 834, 842 Gravity, 481 Gray codes, 273-275 Grayscale Color, 344 image processing, 347-349 Grayscale program, 347-349 Greater than signs (>) bitwise operations, 891-892 comparisons, 27-29 lambda expressions, 450 redirection, 139-140 Greatest common divisor (gcd) machine language, 931 recursive algorithm, 267-268 TOY machine, 918-921 Grep program, 736 grep tool filters, 142-143 regular expressions, 734-736 Grid graphs, 708 Guarantees **NP**-complete problems, 852 performance, 512, 627 worst-case analysis, 825

H

H-trees of order *n*, 276–277 Hadamard matrices, 122 Halt instructions CPU, 1079 TOY machine, 912 Halting problem, 808–810 Hamilton, William, 424 Hamming distances, 295 Handles for pointers, 371

Hardy, G. H., 86 Harel, David, 780 Harmonic mean, 162 Harmonic numbers finite sums, 64-65 function implementation, 199 Harmonic program, 193–195 HarmonicNumber program, 64-65 Harmonics and chords, 211 Hash codes and hashing operation object equality, 454-455 sketches, 460 strings, 515 symbol tables, 624 Hash functions, 636 Hash tables, 636-639 Hash values, 636 Hashable keys, 626 hashCode() method Object, 453, 455-456 String, 332 HashMap class, 655 HashST program, 637-638 Heap memory, 516 Heap-ordered binary trees, 661 Height in binary search trees, 640 HelloWorld program, 4-6 Hertz, 155 Hexadecimal (hex) notation conversions with binary, 876-877 description, 875-876 examples, 878-879 literals, 891 memory, 909 Hilbert, David, 425, 806, 816 Hilbert curves, 425 Hilbert's 10th problem, 816 Hilbert's program, 806-807 Histogram program, 392-393 Histograms, 177

Hoare, C. A. R., 518 Hollywood numbers, 711 Horner, William, 957 Horner's method, 223, 882, 956-957 Htree program, 276–277 Humanists, 716-717 Hurst exponent, 280 Hyperbolic functions, 256 Hyperlinks, 170 Hypotenuse of right triangles, 199 Hypotheses doubling, 496, 498-499 falsifiable, 495 mathematical analysis, 498, 500-502 overview, 496

Ι

I/O. See Input; Output Identifiers, 15-16 Identities Boolean algebra, 989-990 exclusive or function, 993 objects, 338, 340 IEEE 754 standard, 40, 888-889 if statements nesting, 62 working with, 50-53 IFS program, 241, 251 IllegalFormatConversionException, 131 ILP problem (integer linear programming problem), 831 NP-completeness, 846 vertex cover problem, 842 Immutable types, 364, 439 advantages, 440 arrays and strings, 439-440 cost, 440 example, 442-445

final modifier, 440 references, 441 symbol table keys, 625, 655 Implementation API methods, 231 interfaces, 447 Implements clause, 447 Implicit type conversions, 33 In data type, 354-356 Incremental development, 319, 701 Incrementers, binary, 769-771 Index program, 632–634 IndexGraph program, 680–682 Indexing arrays, 90, 116 String, 332 symbol tables, 624, 632-634 zero-based, 92 Induced subgraphs, 705 Induction mathematical, 262, 266 recursion step, 266 Infinite loops, 76, 808-812 Infinite tape for Turing machines, 769,774 Infinity value, 26, 40 Information content of strings, 378 Information representation. See Representing information Inheritance multiple, 470 subclassing, 452-457 subtyping, 446-451 Initialization array, 93 inline, 18 instance variables, 415 two-dimensional array, 106-107 Inline variable initialization, 18 Inner classes, 609

Inner loops description, 62 performance, 500, 510 Inorder tree traversal, 649 Input arithmetic logic units, 1031 array libraries, 237-238 circuit models, 1002-1004 clocks, 1060 command-line arguments, 7 data types, 353 demultiplexers, 1022 file concatenation, 356 gates, 1013 insertion sorts, 548-549 machine-language, 936-938 multiplexers, 1019-1020 overview, 126-129 in performance, 510 program counters, 1073-1075 random web surfer, 171 screen scraping, 357-359 standard, 132-138 stream data type, 354-355 virtual machines, 969-970 Input/off switches, 1005 InputMismatchException, 135 Inserting BST nodes, 644-645 linked list nodes, 573-574 Insertion program, 546-547 Insertion sorts data types, 545-548 input sensitivity, 548-549 overview, 543-544 performance, 544-545 InsertionDoublingTest program, 548-549

Instance methods data types, 385-386 invoking, 334 vs. static, 340 Instance variables Complex program, 403–404 data types, 384 initial values, 415 Instances of objects, 333 Instruction register (IR), 910 Instructions components, 911 CPU, 1079-1080 as data, 922-924 execution time, 509 instruction sets, 911-913 parsing, 966-967 TOY machine, 909 TOY-8 machine, 1070-1071 Integer linear inequality satisfiability, 831, 838, 845 Integer linear programming, 831 **NP**-completeness, 846 vertex cover problem, 842 Integer.parseInt() method calls to, 30-31 type conversion, 21, 23, 34 strings, 880-882 Integers and int data type arithmetic, 884-885 bitwise operations, 891-892 conversion codes, 131-132 description, 14-15 input, 133-134 overview, 22-24 Integrals, approximating, 449 Integrated development environments (IDEs), 3 Integration, definite, 816 Interactions between modules, 319 Interactive user input, 135-136

Interface construct, 446 Interfaces APIs, 430 built-in, 451 circuit models, 1003 CPU, 1076 defining, 446 functional, 450 gates, 1016-1017 implementing, 447 memory, 1054 multiplexers, 1020 program counters, 1073 using, 447-448 Internet DNS, 629-630 Internet Protocol (IP), 435 Interpolation in fade effect, 351 Interpreters Evaluate program, 589 TOY machine, 964 IntOps program, 23 Intractability difficult problems, 828-829 easy problems, 829 exponential-time algorithms, 826 main question, 840-841 **NP**-completeness. See **NP**-completeness numbers, 827 overview, 822-824 path problems, 829 polynomial-time algorithms, 825-826 polynomial-time reductions, 841-843 problem size, 824 satisfiability, 830-832 search problems, 833-840 subset sum problem, 827-828 vertex cover, 828 worst case, 825

1120

Introduction to the Theory of Computation book, 780 Invariants in assertions, 467 Inverse permutations, 122 Inverters, 1013-1014 Inverting functions, 536-538 Invoking instance methods, 334 IP (Internet Protocol), 435 IPv4 vs. IPv6, 435 number of addresses, 900, 904 IPv6 vs. IPv4, 435 number of addresses, 901 IR (instruction register), 910 IR write control line, 1082 ISBN (International Standard Book Number), 86 Isolated vertices in graphs, 703 Isomorphic binary trees, 661 Isomorphism in graphs, 859 Items in collections, 566 Iterable interface, 451, 602 Iterable collections, 601–605 arrays, 603 linked lists, 604-605 Queue, 604-605 SET, 652 Stack, 603 Iterated function systems, 239-243 Iterations in BSTs, 650 Iterator interface, 451, 602-605

J

Java command, 3, 134 . java extension, 3, 6, 8, 197, 383 Java language benefits, 9 libraries, 1094 overview, 1–8 Java platform, 2 Java Virtual Machine (JVM) description, 3 overview, 965–966 as program, 788 Java virtual machines, 429 Johnson, David S., 859 Josephus problem, 619 Julia sets, 427 Jump and link instruction, 931 Jump register instruction, 931

K

K-ring graphs, 694-695 K-way multiplexers, 1019-1020 Kamasutra ciphers, 377 Karp, Richard, 845-848 Karp's reductions NP-completeness, 845-848 polynomial-time, 841 Kevin Bacon game, 684-686 Key-sorted tree traversal, 649 Keys BSTs, 640-642, 650 cryptographic, 992 immutable, 625 Kamasutra ciphers, 377 symbol tables, 624-626, 655 Key-value pairs, 624-626 Kleene, Stephen, 748 Kleene's theorem applications, 753-756 DFA, NFA, and RE equivalence, 749-752 overview, 748 power limitations, 753-756 proof strategy, 748 RE recognition, 753 Knuth, Donald MIX machine, 947 optimization, 518 running time, 496, 501 SAT solvers, 832

Koch program, 397

L

Ladders, word, 710 Ladner, R., 859 Lambda calculus, 790, 794 Lambda expressions, 450 Languages. See Formal languages; Programming languages Last-in first-out (LIFO), 566-567 Lattices in random walks, 112-115 Layers of abstraction, 1037-1039 LCS (longest common subsequence), 285-288 Leading zeros, 883 Leaf nodes in BSTs, 640 Leaks, memory, 367, 581 LeapYear program, 28–29 Left associativity, 17 Left shift operations bitwise, 891-892 TOY machine, 913 Left subtrees, 640 Length arrays, 91-92 graphs paths, 674, 683 strings, 332 Less than signs (<) bitwise operations, 891-892 comparisons, 27-29 redirection, 140-141 Let's Make a Deal simulation, 88 Levin, Leonid, 845 Liar's paradox, 807-808 Libraries APIs, 230-232 array I/O, 237-238 clients, 230 extensible, 452 Java, 1094 methods, 29-32

modifying, 255 in modular programming, 227-228, 251-254 modules, 191 overview, 226, 230 random numbers, 232-236 statistics, 244-250 stress testing, 236 unit testing, 235 LIFO (last-in first-out), 566-567 Lights for TOY machine, 916 Lindenmayer systems, 803 Linear algebra for vectors, 442-443 Linear equation satisfiability problem, 830, 839 Linear feedback shift registers (LFSRs), 1000-1001 Linear inequality satisfiability problem, 831, 839 Linear interpolation, 351 Linear order of growth, 504-505, 507-508 Linear programming problem, 831 Linearithmic order of growth, 504-505, 507-508 Linked lists circular, 622 FIFO queues, 593, 596 hash tables, 636 iterable classes, 604-605 overview, 571-574 stacks, 574-576 summary, 578 symbol tables, 635 traversal, 574, 577 Linked structures. See Binary search trees (BSTs) LinkedStackOfStrings program, 574-576 Links in BSTs, 640-642 Lipton, R. J., 856

Lissajous, Jules A., 168 Lissajous patterns, 168 Lists, linked. See Linked lists Literals array elements, 116 binary and hex, 891 booleans, 26 characters, 18-19 description, 15 floating-point numbers, 24 integers, 22 strings, 19, 334 Little's law, 598 Load address instruction, 1080 Load instructions, 938, 1080 LoadBalance program, 606–607 Local clustering, 693-694 Local variables vs. instance variables, 384 static methods, 196 Logarithmic order of growth, 503 Logarithmic spirals, 398–399 Logical design, 1008-1009 Logical instructions, 912-913 Logical shifts, 891-892 Logical switches bus muxes, 1036 demultiplexers, 1022 multiplexers, 1020 Logo language, 400 Loitering condition, 581 Long data type, 24, 513 Long path problems, 829 Longest common subsequence (LCS), 285-288 Longest path problem, 838 LongestCommonSubsequence program, 286-288 Lookup program, 630-632 Loops. See Conditionals and loops Lost letter, 840

Lower bounds, 826 Luminance, 343–345 Luminance program, 344–345

M

M/M/1 queues, 597-600 MAC addresses, 877 Machine-language programming arrays, 938-941 benefits, 945 description, 907 functions, 931-933 overview, 930 standard input, 936-938 standard output, 934-936 summary, 945-946 TOY machine, 914 Magnitude complex numbers, 402-403 spatial vectors, 442-443 Magritte, René, 363 main() methods, 4-5 multiple, 229 transfer of control, 193-194 Majority function adder circuits, 1028-1030 sum-of-products circuits, 1027 truth tables for, 1025 Mandelbrot, Benoît, 297, 406 Mandelbrot program, 406-409 Maps, Mercator projections, 48 Markov, Andrey, 176 Markov chains impact, 184 mixing, 179-184 overview, 176 power method, 180-181 squaring, 179-180 Markov model paradigm, 460 Markov program, 180–182

Markov systems, 802-803 Markovian queues, 597 Marsaglia's method, 85, 259 Masking bitwise operations, 892-893 Matcher class for REs, 763 Matching graphs, 713 Math library, 192 accessing, 228 methods, 30-32, 193, 198 Mathematical analysis, 498-502 Mathematical functions, 202-204 Mathematical induction, 262, 266 Mathematical models, 716 Matiyasevich, Yuri, 816 Matlab language, 1094 Matrices boolean, 302 Hadamard, 122 images, 346-347 matrix multiplication, 109 sparse, 666 transition, 172-173 two-dimensional arrays, 106, 109-110 vector multiplication, 110, 180 Mauchly, John, 924-925 Maximum values in arrays, 209 Maximum keys in BSTs, 651 Maxwell-Boltzmann distributions, 257 McCarthy's 91 function, 298 Mechanical systems, graphs for, 673 Memoization, 284 Memory arrays, 91, 94, 515-517 ArrayStackOfStrings, 569-570 available, 520 bit-slice design, 1054-1056 circuits, 1054-1057

feedback loops as, 1048 flip-flops, 1049-1050 interfaces, 1054 leaks, 367, 581 linked lists, 571 memory bits, 1056 objects, 338, 514 performance, 513-517 recursion, 282 references, 367 safe pointers, 366 strings, 515 TOY machine, 908–909 two-dimensional arrays, 107 virtual, 972, 975-976 Memory dumps, 909 Memory instructions address instructions, 912 TOY machine, 913 Memory writes for CPU, 1079 Memoryless queues, 597 Mercator projections, 48 Merge program, 550–552 Mergesort divide-and-conquer, 554 overview, 550-552 performance, 553 Metacharacters, 724, 730-731 Method references, 470 Methods abstract, 446 call chaining, 404 deprecated, 469 instance, 334, 385-386 instance vs. static, 340 library, 29–32 main(), 4-5overriding, 452 static. See Functions; Static methods stub, 303 variables within, 386-388

MIDI Tuning Standard, 161 Midpoint displacement method, 278, 280 Milgram, Stanley, 670 Minimum keys in BSTs, 651 Minsky, Marvin, 780, 794 Minus signs (-) compound assignments, 60 floating-point numbers, 24-26 integers, 22 lambda expressions, 450 MIX machine, 947 Mixed-type operators, 27-29 Mixing Markov chains, 176, 179-184 MM1Queue program, 598-600 Models circuit. See Circuit models computational, 716 mathematical, 716 universal, 794-797 Modular programming, 191 classes in, 227-229 code reuse, 226, 253 debugging, 253 encapsulation, 432 flow of control in, 227-228 libraries in, 251-254 machine language, 932 maintenance, 253 program size, 252-253 Modules abstraction layers, 1037 as classes, 228 CPU, 1076 description, 1034 interactions, 319 overview, 191 program counters, 1073 size, 319 summary, 254

Monochrome luminance, 343-344 Monte Carlo simulation, 300, 307-308 Moore's Law coping with, 971 description, 507-508 Move-to-front strategy, 620 Movie-performer graph, 680 Multidimensional arrays, 111 Multiple arguments, 197 Multiple inheritance, 470 Multiple main() methods, 229 Multiple return statements, 198 Multiple I/O streams, 143 Multiplexers bus switching, 1035 description, 1023 selection, 1019-1020 Multiplication complex numbers, 402-403 floating-point numbers, 24-26 integers, 22-23, 885 matrices, 109-110 P search problems, 839 polar representation, 433 Multiway gates, 1015-1017, 1023 Music, 155-159 Mutable types, 364, 439

N

N-body simulation Body data type, 479–480 file format, 483 force, 480–482 overview, 478–479 summary, 488 Universe data type, 483–487 Names arrays, 91 methods, 5, 30, 196 objects, 362

variables, 16 vertices, 675 NaN value, 26, 40 NAND function, 989-991 Nash, John, 840 Natural numbers, 875 Natural recursion, 262 Negation axiom, 990 Negative numbers array indexes, 116 representing, 38, 886-888 Neighbor vertices, 671 Nested classes iterators, 574 linked lists, 603-605 Nesting conditionals and loops, 62-64 new keyword constructors, 385 Node objects, 609 String objects, 333 Newcomb, Simon, 224 Newline characters (n)compiler considerations, 10 escape sequences, 19 Newton, Isaac dice question, 88 motion simulation, 478-479 square root method, 65 Newton's law of gravitation, 481 Newton's method, 65-67 Newton's second law of motion, 480-481 NFAs. See Nondeterministic finitestate automata (NFAs) 90-10 rule, 170, 176 Nodes BSTs, 640-642, 942 linked lists, 571-573 new keyword, 609

Nondeterministic finite-state automata (NFAs) DFA equivalence, 749-750 Kleene's theorem. See Kleene's theorem overview, 744 RE equivalence, 750-751 recognition problem, 744-745 trace example, 747 Nondominant inner loops, 510 NOR function, 989-991 NOR gates cross-coupled, 1050 description, 1014 Normal distribution functions cumulative, 202-203 probability density, 202-203 NOT gates, 1013-1014 Not operation, 26-27, 987-989 **NP**-completeness addressing problems, 852 boolean satisfiability, 853-856 classifying problems, 851 Cook-Levin theorem, 844-847 coping, 850-857 Karp's reductions, 845-848 overview, 843-844 proving, 844-849 **NP**-hard problems, 858 **NP** search problems difficult, 837 easy, 837 main question, 840-841 nondeterminism, 835 overview, 833 solutions, 835 subset sum, 834 TSP problem, 862 vertex cover problem, 834, 842 0/1 ILP problem, 835 Null calls, 312

Null keys in symbol tables, 626 Null links in BSTs, 640 Null nodes in linked lists, 571–572 null keyword, 415 Null transitions in NFAs, 744–746 Null values in symbol tables, 626 NullPointerException, 370 Numbers conversions, 21, 67–69, 880–881 intractability, 827 negative, 886–888 real, 888–890 Numerical integration, 449 Nyquist frequency, 161

0

Object class, 453–455 Object-oriented programming data types. See Data types description, 254 overview, 329 Objects arrays, 365 collections, 582-583 comparing, 364, 545-546 Complex, 404 equality, 454-456 memory, 514 names, 362 orphaned, 366 references, 338-339 String, 333-334 type conversions, 339 uninitialized variables, 339 working with, 338-339 Observations, 495-496 Occam's Razor, 814 Octal representation, 898 Odd parity function adder circuits, 1028-1030 sum-of-products circuits, 1026 truth tables for, 1026

Off-by-one errors, 92 Offscreen canvas, 151 Offset binary representation, 889 On computable numbers, with an application to the Entscheidungsproblem article, 717 On/off switches, 1005 One-dimensional arrays, 90 One-hot OR gates, 1023 Onscreen canvas, 151 Opcodes, 911 Operands, 17 Operators and operations boolean, 26-27, 989-991 comparisons, 27-29, 364 compound assignments, 60 data types, 14, 331 description, 15 expressions, 17, 587 floating-point numbers, 24 integers, 22, 891 lambda, 450 overloading, 416 precedence, 17 reverse Polish notation, 590 stacks, 590 strings, 19, 21, 334, 453 TOY machine, 906 Optimal data compression, 814 Optimization NP problems, 835 premature, 518 Optimizing compilers, 814 OR function, 987-989 OR gates, 1014, 1023 Or operation bitwise, 891-892 boolean type, 26-27 TOY machine, 913 Order in BSTs, 640, 642-643 Order statistics, 651 Order-of-growth classifications

constant, 503 cubic, 505–508 exponential, 505-508 linear, 504-505, 507-508 linearithmic, 504-505, 507-508 logarithmic, 503 overview, 503 performance analysis, 500-501 quadratic, 504-505, 507-508 Ordered operations binary search trees, 651 symbol tables, 624 Orphaned objects, 366 Orphaned stack items, 581 Out library, 355-356 Outer loops, 62 Outline shapes, 149 Output arithmetic logic units, 1032 array libraries, 237-238 circuit models, 1002-1004 clocks, 1059-1060 data types, 353 file concatenation, 356 gates, 1013 machine language, 934-936 print statements, 8 printf() method, 126–129 standard, 127, 129-132 standard audio, 155-159 standard drawing. See Standard drawing stream data types, 355 two-dimensional arrays, 107 virtual machines, 969-970 Overflow arithmetic, 885 arrays, 95 attacks, 963 guarding against, 898 integers, 23 negative numbers, 38

Overhead for objects, 514 Overloading operators, 416 static methods, 198 Overriding methods, 452

P

The **P= NP** Question and Gödel's Lost Letter book, 856 **P** search problems, 837 examples, 839 main question, 840-841 Padding object memory, 514 Page, Lawrence, 184 Page ranks, 176-177 Palindromes description, 719 Watson-Crick, 374 Paper size, 294 Paper tape, 934–938 Papert, Seymour, 400 Parallel arrays, 411 Parallel edges, 676 Parameter variables lambda expressions, 450 static methods, 196-197, 207 Parameterized data types, 582-586 Parameters in performance, 511 TOY-8 machine, 1070 Parentheses () casts, 33 constructors, 333, 385 expressions, 17, 27 functions, 24, 197 lambda expressions, 450 methods, 30, 196 operator precedence, 17 regular expressions, 724 stacks, 587, 590 static methods, 196

vectors, 442 Parity in ripple-carry adders, 1028 Parsing instructions, 966-967 strings, 880-882 Pascal's triangle, 125 Passing arguments references by value, 364-365 static methods, 207-210 PathFinder program, 683–686, 690-692 Paths graphs, 674, 683-692 intractability problems, 829 shortest. See Shortest paths simple, 710 Pattern class for REs, 763 PCs. See Program counters (PCs) PDA (pushdown automata), 755-756 PDP-8 computers, 906 Peaks in terrain analysis, 167 Pell's equation, 869 Pens color, 150 drawings, 146 Pepys, Samuel, 88 Pepys problem, 88 Percent signs (%) conversion codes, 131-132 remainder operation, 22-23 Percolation case study adaptive plots, 314-318 lessons, 318-320 overview, 300-301 Percolation, 303-304 PercolationPlot, 315-317 PercolationProbability, 310-311 PercolationVisualizer, 308-309

probability estimates, 310-311 recursive solution, 312-314 scaffolding, 302-304 testing, 305-308 vertical percolation, 305-306 Performance binary search trees, 647-648 binary searches, 535 caveats, 509-511 comparing, 508-509 guarantees, 512, 627 hypotheses, 496-502 importance, 702 insertion sorts, 544-545 memory use, 513-517 mergesort, 553 multiple parameters, 511 order of growth, 503-506 overview, 494-495 perspective, 518 prediction, 507-509 scientific method, 495-502 shortest paths, 690 wrapper types, 369 Performer program, 697-699 Periods (.) classes, 227 regular expressions, 724 Permutations inverse, 122 sampling, 97–99 Phase transitions, 317 Phone books, 628 Photographs, 346 Physical systems, graphs for, 672 Pi constant, 31-32 Picture library, 346–347 Piecewise approximation, 148 Pigeonhole principle, 754-755

1126

Piping connecting programs, 141 filters, 142–143 Pixels in image processing, 346 Plasma clouds, 280 Playing card possibilities, 823 PlayThatTune program, 157–158 PlayThatTuneDeluxe program, 213-215 PlotFilter program, 146–147 Plotting array values, 246-248 experimental results, 249-250 function graphs, 148, 248 percolation case study, 314-318 sound waves, 249 Plus signs (+) compound assignments, 60 floating-point numbers, 24-26 integers, 22 regular expressions, 731 string concatenation, 19-20 Pointers array elements, 94 handles, 371 object references, 338 safe, 366 Poisson processes, 597 Polar coordinates, 47 Polar representation, 433-434 Polling, statistical, 167 Polymorphism, 448 Polynomial time, 823 Polynomial-time algorithms intractability, 825-826 **P** search problems, 837, 839 usefulness, 858 Polynomial-time reductions, 841-843 Pop operation reverse Polish notation, 590-591

in stacks, 567-568 Positional notation, 875 Post, Emil, 813-814 Post correspondence problem, 813-814 Postconditions in assertions, 467 Postfix notation, 590 Postorder tree traversal, 649 PostScript language, 400, 590 PotentialGene program, 336-337 Pound signs (#), 769 Power method, 180-181 Power source, 1003-1004 PowersOfTwo program, 56–58 Precedence arithmetic operators, 17 regular expressions, 724 Precision floating-point numbers, 25, 40 printf(), 130-131 standard output, 129-130 Precomputed array values, 99-100 Preconditions in assertions, 467 Prediction, performance, 507-509 Preferred attachment process, 713 Prefix-free strings, 564 Premature optimization, 518 Preorder tree traversal, 649 Primality-testing function, 198–199 Prime numbers in factoring, 72–73 Sieve of Eratosthenes, 103-105 PrimeSieve program, 103–105 Primitive data types, 14 memory size, 513 overflow checking, 39 performance, 369 wrappers, 457 Principle of superposition, 483

print() method, 31 arrays, 237-238 impurity, 32 Out, 355 vs.println(),8 standard output, 129-130 Print statements, 5 printf() method, 129-132, 355 Printing, formatted, 130-132 println() method, 31 description, 5 impurity, 32 Out, 355 vs.print(),8 standard output, 129-130 string concatenation, 20 private keyword access modifier, 384 encapsulation, 433 Probabilities, 308, 310-311 Probability density function, 202 - 203Problem reduction overview, 811 program equivalence, 812 Rice's theorem, 812-813 totality problem, 811-812 Problem size in intractability, 824 Procedural programming style, 329 Program counters (PCs) bus connections, 1073-1074 connections and timing, 1075 control lines, 1074-1075 interfaces, 1073 modules, 1073 overview, 1073 TOY machine, 910 Program equivalence problem, 812 Program size, 252–253 Programming environments, 1094

Programming languages indexing, 634 stack-based, 590 symbol tables, 629 Programming overview, 1 HelloWorld example, 4-6 input and output, 7-8 process, 2-3 Programs connecting, 141 processing programs, 788-790, 964-966 Proof by contradiction, 754 Pseudo-code, 911 public keyword access modifiers, 384 description, 228 static methods, 196 Pulses, clock, 1058 Punched cards, 940 Punched paper tape, 934-938 Pure functions, 201 Pure methods, 32 Push operation reverse Polish notation, 590-591 stacks, 567-568 Pushbuttons for TOY machine, 916 Pushdown automata, 755-756 Pushdown stacks, 567-568 Put operations hash tables, 639 symbol tables, 624 Putnam, Hilary, 816

Q

Quad play, 273 Quadratic Koch island fractal, 803 Quadratic order of growth, 504–505, 507–508 Quadratic program, 25–26 Quadrature integration, 449 Quaternions, 424 Question marks (?) in REs, 731 Questions program, 533–535 Queue program, 592–596, 604–605 Queues circular, 620 deques, 618 FIFO. *See* First-in first-out (FIFO) queues overview, 566 random, 596 summary, 608 Queuing theory, 597–600 Quotes (") in text, 5

R

Race conditions in flip-flops, 1050 Ragged arrays, 111 Ramanujan, Srinivasa, 86 Ramanujan's taxi, 86 Random graphs, 695 Random numbers fair coin flips, 52–53 function implementation, 199 Gaussian, 47 impurity, 32 libraries, 232-236 random sequences, 127-128 Sierpinski triangles, 239-240 simulations, 72-73 Math.random(), 30-31Random queues, 596 Random shortcuts, 699 Random walks Brownian bridges, 278 self-avoiding, 112-115 two-dimensional, 86 undirected graphs, 712 Random web surfer case study histograms, 177 input format, 171

lessons, 184-185 Markov chains, 176, 179-184 overview, 170-171 page ranks, 176-177 simulation, 174-178 transition matrices, 172-173 RandomInt program, 33–34 RandomSeq program, 127–128 RandomSurfer program, 175-177 RangeFilter program, 140–143 Ranges binary search trees, 651 functions, 192 Ranks binary search trees, 651 random web surfer, 176-177 Raphson, Joseph, 65 Raster images, 346 Real numbers, 888-890 Receivers in cryptography, 992 Recognition problem formal languages, 722 NFAs, 744-745 REs, 728-729, 735, 753 Recomputation, 282-283 Rectangle rule, 449 Recurrence relations, 272 Recursion, 191 base cases, 281 BSTs, 640-641, 644, 649 binary searches, 533 Brownian bridges, 278-280 considering, 320 convergence issues, 281-282 dynamic programming, 284-289 Euclid's algorithm, 267-268 exponential time, 272-273 factorial example, 264-265 function-call trees, 269, 271 graphics, 276-277, 397

Gray codes, 273-275 linked lists, 571 mathematical induction, 266 memory requirements, 282 mergesort, 550 overview, 262-263 percolation case study, 312-314 perspective, 289 pitfalls, 281-283 recomputation issues, 282-283 towers of Hanoi, 268-272 Red-black trees, 648 Redirection, 139 piping, 142-143 standard input, 140-141 standard output, 139-140 Reduced instruction set computing (RISC), 974 Reductio ab absurdum, 808 Reduction binary search trees, 640 mergesort, 554 polynomial-time, 841-843 problem, 811-813 recursion, 264-265 References accessing, 339 aliasing, 363 arrays, 365 equality, 454-455 garbage collection, 367 immutable types, 364, 441 linked lists, 572 memory, 367 method, 470 object-oriented programming, 330 objects, 338-339 orphaned objects, 366 passing, 207, 210, 364-365 performance, 369

properties, 362-363 safe pointers, 366 Reflexive property, 454 Registers implementing, 1052 machine language, 931 overview, 1051-1052 TOY machine, 909, 911 writing to, 1052-1053 Regular expressions (REs) applications, 732-736 computational biology, 732-734 generalized, 730-732 NFA equivalence, 750–752 overview, 724-725 recognition problem, 728-729, 735, 753 regular languages, 725–727 searches, 734-736 shorthand notations, 730-731 validity checking, 732 Regular languages, 723 basic operations, 723-724 regular expressions. See Regular expressions (REs) Reject states DFAs, 738-739 Turing machines, 766–767 Relative entropy, 667-668 Relays in circuit models, 1006 Remainder operation, 22–23 Removing array items, 569 collection items, 566, 602-603 linked list items, 573-574 NFA nodes, 751 queue items, 592, 596 set keys, 652 stack items, 567-569 symbol table keys, 624-627 Rendell, Paul, 805

Repetitive code, simplifying, 100 Representation in APIs, 431 Representing information binary and hex, 875-880 bit manipulation, 891-893 characters, 894-895 integer arithmetic, 884-885 negative numbers, 886-888 overview, 874 real numbers, 888–890 strings, 880-883 summary, 896 Reproducible experiments, 495 Reserved words, 16 Resetting flip-flops, 1050 Resizing arrays, 578-581, 635 ResizingArrayStackOf-Strings program, 578-581 Resource allocation graphs for, 673 overview, 606-607 Resource-sharing systems, 606-607 Return addresses, 931 return statements, 194, 196, 198 Return values arrays as, 210 methods, 30, 196, 200, 207-210 reverse Polish notation, 591 Reuse, code, 226, 253, 701 Reverse Polish notation, 590 RGB color format, 48-49, 341, 371 Rice, Henry, 812 Rice's theorem, 812-813 Riemann integral, 449 Riffle shuffles, 125 **Right shift operations** bitwise, 891-892 TOY machine, 913 Right subtrees, 640 Right triangles, 199 Ring buffers, 620

Ring graphs, 694-695, 699 Ripple-carry adders, 1028-1030 RISC (reduced instruction set computing), 974 Robinson, Julia, 816 Roots in binary search trees, 640 Rotation filters, 379 Roulette-wheel selection, 174 Round-robin policies, 606 Rows in 2D arrays, 106, 108 RR-format instructions, 911 Ruler program, 19-20 Run-time errors, 6 Running time. See Performance Running virtual machines, 969 RuntimeException, 466

S

Safe pointers, 366 Sample program, 98–99 Sample standard deviation, 246 Sample variance, 244 Sampling audio, 156-157 function graphs, 148 scaling, 349-350 without replacement, 97-99 SAT problem, 832 nondeterministic TM, 836 NP-completeness, 844–846, 853-856 SAT program, 855-856 Satisfiability, 830 boolean, 832, 836 integer linear inequality, 831 linear equation, 830 linear inequality, 831 NP-completeness, 844–846, 853-856 Saving audio files, 157 Scaffolding, 302-304

Scale program, 349-350 Scaling drawings, 146 image processing, 349-350 spatial vectors, 442-443 Scientific computing, 1094 Scientific method, 494-495 hypotheses, 496-502 observations, 495-496 Scientific notation conversion codes, 131-132 real numbers, 888-889 Scope of variables, 60, 200 Screen scraping, 357-359 Search problems difficult, 837-838 easy, 837 nondeterminism, 836 overview, 833 solutions, 835 subset sum, 834 TSP problem, 862 vertex cover problem, 834, 842 0/1 ILP problem, 835, 842 Searches binary. See Binary searches binary search trees. See Binary search trees (BSTs) bisection, 537 breadth-first, 683, 687-688, 690, 692 data mining example, 458-464 depth-first, 312, 690 indexing, 634 overview, 532 regular expressions, 734-736 for similar documents, 464 Secret messages, 992 Seeds for random numbers, 475 Select control lines, 1056 Self-avoiding walks, 112-115, 710

Self-loops for edges, 676 Self-modifying code, 922-924 SelfAvoidingWalk program, 112-115 Semantics, 52 Semicolons (;) for loops, 59 statements, 5 Sequential circuits clocks, 1058-1061 description, 1008 feedback circuits, 1048-1049 flip-flops, 1049-1050 memory, 1054–1057 overview, 1048 registers, 1051-1053 summary, 1062-1063 Sequential searches, 535-536 Server farms, 976 Servers, 606 Service rate, 597-598 SET library, 652-653 Sets elementary functions, 1001 gates, 1045 graphs, 676 Julia, 427 Mandelbrot, 406-409 overview, 652-653 of values, 14 Setting flip-flops, 1050 Shadow variables, 419 Shannon, Claude, 1013, 1041 Shannon entropy, 378 Shapes, outline and filled, 149 Shifts bits, 891-892 circular, 375 linear feedback shift registers (LFSRs), 1000-1001 purpose, 898-899 TOY machine, 913

short data type, 24 Shortcuts in ring graphs, 699 Shortest paths adjacency-matrix, 692 breadth-first searches, 690 degrees of separation, 684-686 distances, 687-688 graphs, 674, 683 implementation, 691 **P** search problems, 829, 839 performance, 690 single-source clients, 684 trees, 688-689 Shuffling arrays, 97 Sicherman dice, 259 Side effects arrays, 208-210 assertions, 467 importance, 217 methods, 32, 126, 201 Sierpinski triangles, 239–240 Sieve of Eratosthenes, 103–105 Sign-and-magnitude, 886 Sign extension convention, 899 Signatures constructors, 385 methods, 30, 196 overloading, 198 Similarity measures, 462 Simple paths, 710 Simplex method, 831 Simulations coupon collector, 174-178 dice, 121 gambler's ruin, 69-71 Let's Make a Deal, 88-89 load balancing, 606-607 M/M/1 queues, 598-600 Monte Carlo, 300, 307-308 n-body. See N-body simulation random web surfer, 174-178

Single-line comments, 5 Singles quotes ('), 19 Singly linked lists, 571 Sipser, Michael, 780 Six degrees of separation, 670 Size arrays, 578-581, 635 binary search trees, 651 modules, 319 paper, 294 problems, 495, 824 program, 252-253 symbol tables, 624 words, 874, 897 Sketch program, 459–462 Sketches comparing, 462-463 computing, 459-460 hashing, 460 overview, 458-459 Slashes (/) comments, 5 floating-point numbers, 24-26 integers, 22-23 Slide rules, 907–908 Small-world case study. See Graphs Small-world phenomenon, 670, 693 SmallWorld program, 696 Smith-Waterman algorithm, 286 Social network graphs, 672 Sorts Arrays.sort(),559 frequency counts, 555–557 insertion, 543-549 lessons, 558 mergesort, 550-555 overview, 532 **P** search problems, 839 Sound. See Standard audio

Sound waves plotting, 249 superposition of, 211-215 Source vertices, 683 Space-filling curves, 425 Spaces, 10 Space-time tradeoff, 99-100 Sparse matrices, 666 Sparse small-world graphs, 693 Sparse vectors, 666 Spatial vectors, 442–445 Specification problem APIs, 430 formal languages, 722 programs, 596 Speed clocks, 1058 in performance, 507-508 Spider traps, 176 Spira mirabilis, 398 Spiral program, 398–399 Spirographs, 167 Split program, 358, 360 Spreadsheets, 108 Sqrt program, 65-67 Square brackets ([]) arrays, 91, 106 regular expressions, 731 Square roots computing, 65-67 double value, 25 Squares, Albers, 341–342 Squaring Markov chains, 179-180 SR flip-flops, 1050 ST library, 625-627 Stable circuits with feedback, 1049 Stack program, 583–585 StackOfStrings program, 568 StackOverflowError, 282

1132

Stacks

arithmetic expression evaluation, 586-589 arrays, 568-570, 578-581 function calls, 590-591 linked lists, 574-576 overview, 566 parameterized types, 582-586 pushdown, 567-568 stack-based languages, 590 summary, 608 Standard audio concert A, 155 description, 126, 128-129 music example, 157-158 notes, 156 overview, 155 sampling, 156-157 saving files, 157 summary, 159 Standard deviation, 246 Standard drawing control commands, 145-146 description, 126, 128-129 double buffering, 151 filtering data to, 146-147 function graphs, 148 outline and filled shapes, 149 overview, 144-145 summary, 159 text and color, 150 Standard input arbitrary size, 137-138 description, 126, 128-129 formatted, 135 interactive, 135-136 machine language, 936-938 multiple streams, 143 overview, 132-133 redirecting, 140-141 summary, 159

typing, 134 virtual machines, 969-970 Standard output description, 127 formatted, 130-132 machine language, 934-936 multiple streams, 143 overview, 129-130 piping, 141-143 redirecting, 139-140 summary, 159 virtual machines, 969-970 Standard statistics, 244-250 Standards, API, 429 Start codons, 336 Statements assignment, 17 blocks, 50 declaration, 15-16 methods, 5 States DFAs, 738-739 NFAs, 744-746 objects, 340 Turing machines, 766–772 virtual machines, 968 Static methods, 191–192 accessing, 227-229 arguments, 197 for code organization, 205-206 control flow, 193-195 defining, 193, 196 function-call traces, 195 function calls, 197 implementation examples, 199 vs. instance, 340 libraries. See Libraries overloading, 198 passing arguments, 207-210 returning values, 207-210

Side effects, 201 summary, 215 superposition example, 211-215 terminology, 195-196 variable scope, 200 Static variables, 284 Statistical polling, 167 Statistics, 244-250 StdArrayIO library, 237–238 StdAudio library, 128–129, 155 StdDraw library, 128-129, 144-145, 150, 154 StdIn library, 128-129, 132-133 StdOut library, 129-131 StdRandom program, 232–236 StdStats program, 244–247 StockAccount program, 410-413 StockQuote program, 358–359 Stop codons, 336 Stopwatch program, 390–391 Store instruction, 938, 1080 Stored-program computers, 922-924 Streams input, 354-355 output, 355 screen scraping, 357-359 Stress testing, 236 Strings and String data type alphabet symbols, 718 API, 332-333 binary, 718-719 circular shifts, 375 concatenation, 19-20, 723-724 conversion codes, 131-132 conversions, 21, 453 description, 14-15 genomics application, 336-340 immutable types, 439-440 input, 133 internal storage, 37

invoking instance methods, 334 memory, 515 objects, 333-334 overview, 331 parsing, 880-882 prefix-free, 564 representation, 882-883 as sequence of characters, 19 shortcuts, 334-335 string replacement systems, 795 unions, 723 variables, 333 vertices, 675 working with, 19-21 Strogatz, Stephen, 670, 693, 713 Structured programming, 926 Stub methods, 303 Subclassing inheritance, 452-457 Subgraphs, induced, 705 Subset sum problem intractability, 827-828 NP, 834, 838 Subtraction floating-point numbers, 24-26 integers, 22 negative numbers, 887 Subtrees, 640, 651 Subtyping inheritance, 446-451 Sum-of-powers conjecture, 89 Sum-of-products adders, 1028 boolean representation, 996-997 circuits, 1024-1027 Sums, finite, 64-65 Superclasses, 452 Superposition force vectors, 483 sound waves, 211-215 Swirl filters, 379 Switch control lines, 1005 Switch statements, 74-75

Switches bus muxes, 1036 circuit models, 1002, 1005-1006 demultiplexers, 1022 gates, 1013 multiplexers, 1020 TOY machine, 916-917 Switching circuit analysis, 1007 Switching time of gates, 1013 Symbol tables APIs, 625-627 BSTs. See Binary search trees dictionary lookup, 628-632 graphs, 676 hash tables, 636-639 implementations, 635-636 indexing, 632-634 machine language, 944 overview, 624-625 perspective, 654 sets, 652-653 Symbolic names in assembly, 981 Symbols definition, 757 description, 718-719 DFA, 738 NFA, 744 regular expressions, 724 Turing machines, 766-767 Symmetric order in BSTs, 640 Symmetric property, 454 Syntax errors, 10-11

T

Tables of functions, 907–908 hash, 636–639 symbol. *See* Symbol tables Tabs compiler considerations, 10 escape sequences, 19 Tape and tape readers DFAs, 738-739 Turing machines, 766-769, 774-776 Tape program, 776 Taylor series approximations, 204 Templates, 50 TenHellos program, 54-55, 60 Terminal windows, 127 Terms, glossary for, 1097–1101 Terrain analysis, 167 Testing for bugs, 318 importance, 701 percolation case study, 305-308 Text. See also Strings and String data type drawings, 150 printing, 5, 10 Text editors, 3 Theory of computing, 715-717 this keyword, 445 Thompson, Ken, 735 3*n*+1 problem, 296–297 ThreeSum program, 497–502 Throwing exceptions, 465-466 Thue word problem, 819 Ticks, clock, 1058 Tilde notation, 500 Tildes (~) bitwise operations, 891 boolean type, 991 frequency analysis, 500 Time exponential, 272-273, 823 performance. See Performance polynomial, 823 Stopwatch timers, 390-391 TimePrimitives program, 519 Timesharing, 965 Tools, building, 320

Top-level domains, 375 toString() method Charge, 383, 387 Color, 343 Complex, 403, 405 Convert, 881-882 Counter, 436-437 description, 339 Graph, 678-679 linked lists, 574, 577 Object, 453 Sketch, 459 Tape, 776 Vector, 443 Total orderings, 546 Totality problem, 811–812 Towers of Hanoi problem, 268–272 TOY machine arithmetic logic unit, 910 conditionals and loops, 918-921 family of computers, 972-977 fetch-increment-execute cycle, 910-911 first program, 914–915 historical note, 907-908 instruction register, 910 instructions, 909, 911-913 in Java, 966–972 machine-language programming. See Machine-language programming memory, 908-909 operating, 916-917 overview, 906-907 program counter, 910 registers, 909 stored-program computer, 922-924 virtual. See Virtual machines von Neumann machines, 924-925

TOY program, 967 TOY-8 machine, 974-975 basic parameters, 1070 control circuit, 1080-1082 CPU, 1076-1080 instruction set, 1070-1071 perspective, 1084-1087 sum.toy program, 1071–1072, 1082-1083 TOY-64 machine, 973-974 Tracing function-call, 195 programs with random(), 103 variable values, 18, 56-57 Transfer of control, 193–195 Transistors, 1006 Transition matrices, 172-173 Transition program, 172–173 Transitions DFAs, 738-739 NFAs, 744-746 Turing machines, 766–767 Transitive property comparisons, 546 equivalence, 454 polynomial-time reduction, 843 Transposition of arrays, 120 Traveling salesperson problem, 862 Traversal binary search trees, 649-650 linked lists, 574, 577 TreeMap library, 655 Tree nodes, 269 Trees BSTs. See Binary search trees function-call, 269, 271 H-trees, 276-277 shortest paths, 688-689 Triangles drawing, 144-145 right, 199 Sierpinski, 239-240

Trigonometric functions, 256 Truth tables, 26–27, 988–989 TSP problem, 862 Turing, Alan, 766 bio, 410-411, 717 code breaking, 907 von Neumann influenced by, 924-925 Turing-complete models, 794 Turing machines binary adders, 771 binary incrementers, 769-771 compact trace format, 770 constant factor, 824 efficiency, 772 frequency count, 772-773 model, 766-769 overview, 766 related machines, 770-771 restrictions, 792-793 SAT problem, 836 universal, 789-790 universal virtual, 774-779 universal virtual DFAs, 789 universality. See Universality variations, 791-794 TuringMachine program, 777-778 Turtle program, 394–396 Twenty questions game, 135-136, 533-535 TwentyQuestions program, 135-136 Two-dimensional arrays description, 90 initialization, 106-107 matrices, 109-110 memory, 107, 516 output, 107 overview, 106 ragged, 111

self-avoiding walks, 112–115 setting values, 108 spreadsheets, 108 Two's complement, 38, 886–888 Type arguments, 585, 611 Type conversions, 34–35 Type parameters, 585 Type safety, 18 Types. *See* Data types

U

Unboxing, 457, 585-586 Undirected graphs, 675 Unicode characters description, 19 overview, 894-895 strings, 37 Uniform random numbers, 199 Uninitialized variables, 94, 339 Union operation in REs, 723 Unit testing, 235 Universal models, 794-797 Universal sets elementary functions, 1001 gates, 1045 Universal Turing machines (UTMs), 789-790 Universal virtual DFAs, 741-743 Universal virtual TMs, 774-779 Universality algorithms, 786-787 Church-Turing thesis, 790-791 overview, 786 programs processing programs, 788-790 Turing machine variations, 791-794 universal models, 794-797 virtual DFA/NFA, 788-789 Universe program, 483–487 Unreachable code error, 216

Unsigned integers, 884 Unsolvability proof, 810 Unsolvable problems, 430 blank tape halting problem, 820 definite integration, 816 description, 806 examples, 815 halting problem, 808-810 Hilbert's 10th problem, 816 implications, 816-817 liar's paradox, 807-808 optimal data compression, 814 optimizing compilers, 814 Post correspondence, 813-814 program equivalence, 812 totality, 811-812 Upper bounds, 825 Upscaling in image processing, 349 UseArgument program, 7-8 User-defined libraries, 230 UTF-8 encoding, 895 UTMs, 789-790

V

Validate program, 729 Validity checking, 732 Values array, 95-96 data types, 14, 331 passing arguments by, 207, 210, 364-365 precomputed, 99-100 symbol tables, 624-626 Variables assignment statements, 17 boolean, 987, 994-997 compound assignments, 60 constants, 16 description, 15-16 initial values, 415 inline initialization, 18

instance, 384 within methods, 196, 386-388 names, 16 scope, 60, 200 shadow, 419 static, 284 string, 333 tracing values, 18 uninitialized, 339 Vector images, 346 Vector program, 443-445, 515 Vectors arrays, 92 cross products, 472 dot products, 92, 442-443 matrix-vector multiplication, 110 n-body simulation, 479-480 sparse, 666 spatial, 442-445 vector-matrix multiplication, 110, 180 Vertex cover problem intractability, 828 NP-completeness, 846-847 NP search problems, 834, 842 Vertical bars () bitwise operations, 891-892 boolean type, 26-27, 991 piping, 141 regular expressions, 724 Vertical OR gates, 1023 Vertical percolation, 305–306 Vertices bipartite graphs, 682 creating, 676 eccentricity, 711 graphs, 671, 674 isolated, 703 names, 675 PathFinder, 683 String, 675

Virtual machines booting, 959-960, 968-969 cautions, 961-963 and cloud computing, 924 description, 965 dumping, 960-961 instructions, 966-967 Moore's law, 971 overview, 958-959 program development, 970-971 programs that process programs, 964-966 running, 969 standard input, 969-970 standard output, 969-970 states, 968 TOY machine family, 972-977 universal virtual DFAs, 742 universal virtual TM, 774-779 Viruses, 963 Viterbi algorithm, 286 void keyword, 201, 216 Volatility Black-Scholes formula, 565 Brownian bridges, 278, 280 Von Neumann, John, 906 ballistics tables, 907 ENIAC improvements, 924–925 Gödel letter, 840 mergesort, 554 Von Neumann architecture, 790, 906, 924-925 Voting machine errors, 436

W

Walks random. *See* Random walks self-avoiding, 112–115, 710 Watson–Crick palindrome, 374 Watts, Duncan, 670, 693, 713 Watts–Strogatz graph model, 713

.wav format, 157 Wave filters, 379 Web graphs, 695 Web pages, 170 indexes searches, 634 preferential attachment, 713 Weighing objects, 540–541 Weighted averages, 120 Weighted superposition, 212 while loops, 53-59 examples, 61 nesting, 62 Whitelists, binary searches for, 540 Whitespace characters compiler considerations, 10 input, 135 Wide interfaces APIs, 430 examples, 610-611 Wildcard operation in REs, 724 Wiles, Andrew, 722 Wind chill, 47 Wires circuit models, 1002-1004 gates, 1013 Word ladders, 710 Words binary representation, 875 computer, 874 memory size, 513 size, 897 Worst-case performance big-O notation, 520-521 binary search trees, 648 description, 512 insertion sort, 544 intractability, 825 **NP**-completeness, 852 Wrapper types autoboxing, 585-586 references, 369, 457

Write control lines CPU, 1079–1080 memory bits, 1056 register bits, 1051

X

XOR circuits in arithmetic logic units, 1031 sum-of-products, 1024–1025 xor (exclusive *or*) operation, 891–892, 913

Y

Y2K problem, 435, 976 Young tableaux, 530

Z

Zero-based indexing, 92 Zero crossings, 164 Zero extension convention, 899 0/1 *ILP* problem, 831, 835 *NP*-completeness, 845–846 vertex cover problem, 842 Zeros, leading, 883 ZIP codes, 435 Zipf 's law, 556