
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134052779
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134052779
https://plusone.google.com/share?url=http://www.informit.com/title/9780134052779
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134052779
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134052779/Free-Sample-Chapter

Xcode 6
Start to Finish

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Xcode 6
Start to Finish

iOS and OS X
Development

Fritz Anderson

New York • Boston • Indianapolis • San Francisco
Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Xcode is a trademark of Apple, Inc., registered in the U.S. and other countries.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Anderson, Fritz.

Xcode 6 start to finish : iOS and OS X development / Fritz Anderson.
pages cm

Includes index.
ISBN 978-0-13-405277-9 (pbk. : alk. paper)
1. Mac OS. 2. iOS (Electronic resource) 3. Macintosh (Computer)—Programming.

4. iPhone (Smartphone)—Programming. 5. Application software—Development.
I. Title.

QA76.774.M33A534 2015
005.4’46—dc23 2015004190

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old
Tappan, New Jersey 07675, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-405277-9
ISBN-10: 0-13-405277-3

Text printed in the United States on recycled paper at Edwards Brothers Malloy in
Ann Arbor, Michigan.
First printing, June 2015

Editor-in-Chief
Mark L. Taub

Senior Acquisitions Editor
Trina MacDonald

Senior Development Editor
Chris Zahn

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Copy Editor
Stephanie Geels

Indexer
Ted Laux

Proofreader
Kathleen Allain

Technical Reviewers
Duncan Champney
Chuck Ross
Dan Wood

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Lori Hughes

v

For the Honorable Betty Shelton Cole,
a tough old broad

v

This page intentionally left blank

Contents at a Glance

Contents ix

Acknowledgments xxiii

About the Author xxv

Introduction 1

I First Steps 7

1 Getting Xcode 9

2 Kicking the Tires 17

3 Simple Workflow and Passive Debugging 25

4 Active Debugging 35

5 Compilation 45

6 Adding a Library Target 69

7 Version Control 79

II The Life Cycle of an iOS Application 105

8 Starting an iOS Application 107

9 An iOS Application: Model 117

10 An iOS Application: Controller 141

11 Building a New View 157

12 Auto Layout in a New View 185

13 Adding Table Cells 207

14 Adding an Editor 227

15 Unit Testing 243

16 Measurement and Analysis 265

viii Contents at a Glance

17 An iOS Extension 279

18 Provisioning 297

III Xcode for Mac OS X 319

19 Starting an OS X Application 321

20 Bindings: Wiring an OS X Application 343

21 Localization 373

22 Bundles and Packages 401

23 Property Lists 417

IV Xcode Tasks 433

24 Documentation in Xcode 435

25 The Xcode Build System 459

26 Instruments 489

27 Debugging 515

28 Snippets 531

V Appendixes 547

A Some Build Variables 549

B Resources 565

Index 579

Contents

Acknowledgments xxiii

About the Author xxv

Introduction 1
How This Book Is Organized 1

About Versions 4
About the Code 4
Conventions 5

I First Steps 7

1 Getting Xcode 9

Before You Begin 9

Installing Xcode 10

Command-Line Tools 11
Removing Xcode 11

Apple Developer Programs 12

Downloading Xcode 13

Additional Downloads 14
Summary 15

2 Kicking the Tires 17

Starting Xcode 17

Hello World 19
A New Project 19

Quieting Xcode Down 22

Building and Running 22

The Real Thing 24

Getting Rid of It 24

Summary 24

3 Simple Workflow and Passive Debugging 25

Creating the Project 25

Building 29

Running 30

x Contents

Simple Debugging 32

Summary 34

4 Active Debugging 35

A Simple Test Case 35

Going Active 35

Setting a Breakpoint 36

The Variables Pane 37
Stepping Through 37

Fixing the Problem 39

Behaviors 40
The Fix 42

Summary 43

5 Compilation 45

Compiling 45

Dynamic Loading 52

Xcode and Clang 52

Local Analysis 53

Cross-Function Analysis 55

Indexing 56

Swift 57
Compiler Products 62

Intermediate Products 62
Precompilation 64

Summary 66

6 Adding a Library Target 69

Adding a Target 69

Targets 70

Target Membership 71

Adding Files to a Target 71

Headers in Targets 74

A Dependent Target 74

Adding a Library 75

Debugging a Dependent Target 76

Summary 77

Contents xi

7 Version Control 79
Taking Control 80

Creating a Git Repository by Hand 81

The State of Your Files 82
How Xcode Works with Git 83

Your First Commit 84
Working with Remote Repositories 84

Setting Up a “Remote”— Locally 87

Pushing to the Remote 88

Merges and Conflicts 89

User A 90
User B 93
Back to User A 96

The Version Editor 99
Comparison 99

Blame 101
Log 101

Branching 102

Summary 104

II The Life Cycle of an iOS Application 105

8 Starting an iOS Application 107

Planning the App 107

Model-View-Controller 107
The Model 108
The Views 108
The Controllers 110

Starting a New iOS Project 110

Target Editor 111

What’s in the Project 112

Summary 114

9 An iOS Application: Model 117

Implementing the Model 117

Entities 118
Attributes 118
Relationships 120

xii Contents

Managed-Object Classes 123

Creating the Classes— the Wrong Way 124

Why Doing It Xcode’s Way Is a Mistake 125

The Right Way— mogenerator 126

Preparation 128

Utilities 129
Extensions 129
passer rating 131

Specializing the Core Data Classes 132

Putting Game to Work 132

Putting Passer to Work 133

Some Test Data 134
Source Control and Product Files 136

Making the Model Easier to Debug 139

Summary 139

10 An iOS Application: Controller 141
Renaming Symbols in Objective-C 141

Refactoring the Name of an Objective-C Method 142

Refactoring a Class Name 142

Renaming a Class in Swift 144

Editing the View Controller 144

The Table View 145
Setting Up the Passer List 146

Creating a New Passer 147

Live Issues and Fix-it 148
The Real Passer Rating 149

Another Bug 149

Running Passer Rating 154

Summary 155

11 Building a New View 157

The Next View Controller 157
If You Want to Add a View Controller 157
Storyboards, Scenes, and Segues 158

Building a View 161

Outlets and Assistants, in Passing 162

The Billboard View 164

Contents xiii

Linking Views to a View Controller 166

Auto Layout for the Nonce 167

Lots of Labels 169

Cleaning Up 171

The Table View 174

Outlets 175

Hooking Up the Outlets 177

Checking Connections 177

Connecting GameListController 178

Code Completion and Snippets 180

Code Snippets 181

Testing the Billboard View 183

Summary 184

12 Auto Layout in a New View 185

Why Auto Layout? 185

Limitations of Autoresizing 185

Auto Layout 186

The Thing to Remember 186

The Player Billboard, Revisited 186

Why You Should Do More 187

Factoring Layout into Subviews 188

The Playground 189

StatView 191

Installing StatView 196

Planning Constraints 197

Two Line Counts, Two Labels 200

Constraints for Real 202

Default (Any/Any) 202

Any Height (not Compact) 203

Landscape (wAny/hCompact) 203

Chasing Issues 203

A Tweak 204

Summary 205

xiv Contents

13 Adding Table Cells 207

The Game Table 207
Outlets in the Table View 207
Adding Required Protocol Methods 208

Adding Model-to-View Support 210

A Prototype Cell 211

The Game Table: First Run 211
A Custom Table Cell 214
Adding Some Graphics 217

A Cell with an Image in It 217

Hooking the Image View to the Images 218

The Assets Catalog 219

Adding Images to the Assets Catalog 220

Icons and Launch Displays 221

Summary 225

14 Adding an Editor 227

The Plan 227
Adding a Modal Scene 227

An Embedded View Controller 229
Linking the Editor to the Passer List 231

Static Table Cells 232
The Editor View Controllers 233

The Editor Table 233
Passing the Data to the Editor 235

Getting the Data Back 237

Segues 239

Summary 240

15 Unit Testing 243

The Test Navigator 244

Testing the CSV Reader 246

The CSV Test Code 247
Test Data 252
Running the Tests 252

Testing and the Debugger 254

Adding a Test Class 256

Contents xv

Asynchronous Tests 260

Testing Asynchronous Code 260

Documentation of Last Resort 261

XCTest Assertions 261

Simple Tests 262

Equality 262

Exceptions 263

Summary 264

16 Measurement and Analysis 265

Speed 265

The Debug Navigator 266

Instruments 268

XCTest and Performance 276

Memory 277

Summary 278

17 An iOS Extension 279
Adding the Today Target 280

Designing the Widget 281

Data Access 282

A Shared Library in a Framework 285

The Today Extension 290

Build Dependencies 294

The Result 295

Summary 296

18 Provisioning 297

Apple Developer Programs 297

General (App Store) Program 298

Enterprise Program 298

Provisioning for iOS 299

What You’ll See 300

Registering Your App 300

Protecting Your Assets 303

Prerelease Distributions 304

xvi Contents

The Capabilities Editor 306

OS X-only Capability 306

Capabilities for Both iOS and OS X 306

iOS Capabilities 307

OS X Sandboxing 308

Why Sandbox? 310

Why Not Sandbox? 310

Gatekeeper and Developer ID 311

Getting a Developer ID 311

Using Developer ID 312

Limitations 313

Distribution Builds 314

Basic Build Settings 314

Adjusting the Build Settings 315

The Build 317

Summary 318

III Xcode for Mac OS X 319

19 Starting an OS X Application 321

The Goal 321

Getting Started 322

Model 325

Porting from iOS 326

Adding an Entity 326

Wiring a Menu 330

Target/Action 331

First Responder 332

Loading Data into LeagueDocument 333

Adapting to a Managed Document 334

Testing the Command 335

Identifying a Type for League Data 336

Specifying How the App Handles League Files 338

Application and Document Icons 339

Summary 341

Contents xvii

20 Bindings: Wiring an OS X Application 343

Storyboard Segues in OS X 343

Building the Document Window 345

Loading the Window 345

A Table View 347

Filling the Table— Bindings 350

Object Controllers 352

Binding the Table to the Teams 354

Binding the Columns to Team Properties 355

The Arc of League Document Data 357

From League Table to Source List 357

Capturing the Team Selection 359

From Team to Tables 361

The Passer Section 363

Summary 371

21 Localization 373
How Localization Works 373

Adding a Localization 374

Base Localization 374

Why Base Localization? 375

Something Worth Localizing 376

Game Detail View: Layout 376

Game Detail View: Code 378

Modules and Namespaces 382

Localizing for French 382

Adding a Locale 383

Starting Simple: Credits.rtf 385

Localizing Main.storyboard 389

Localizing Resources 392

Localizing Program Strings 394

genstrings 395

xliff Files 396

The Rest 397

Localizing System Strings 398

Summary 400

xviii Contents

22 Bundles and Packages 401

A Simple Package: RTFD 401

Bundles 403
Application Bundles 403

The Info.plist File 405

Localizing Info.plist 406

Info.plist Keys for Applications 406

Keys for Both iOS and OS X 406

Keys for OS X 409

Keys for iOS 412

Summary 415

23 Property Lists 417

Property List Data Types 417

Editing Property Lists 419

The Property List Editor 422

Why Not the Property List Editor? 427

Other Formats 429
Text Property Lists 429

Binary Property Lists 430

JSON 430
Specialized Property Lists 431

Summary 432

IV Xcode Tasks 433

24 Documentation in Xcode 435
Quick Help 435

Inspector 435

Popover 436

Open Quickly 437

Help 438

The Documentation Window 439
The Navigator Sidebar 439

The Table of Contents Sidebar 440
Class Info 440
Searching and Navigation 440

Contents xix

Keeping Current 444

Your Own Quick Help 446

C-Family Documentation 446

Doxygen 449

Running Doxygen 454

Installing a Docset 455

Swift and reStructuredText 456
Summary 458

25 The Xcode Build System 459

How Xcode Structures a Build 459
Build Variables 462
Settings Hierarchy 463

Levels 464
Editing Build Variables 465

Configurations 466

Adjusting Configurations 466

Configuration Files 468

Creating a Configuration File 468

SDK- and Architecture-Specific Settings 469

Preprocessing xcconfig Files 470

Command-Line Tools 471
xcodebuild 471
xcode-select 472
xcrun 473

Custom Build Rules 474
Builds in the Report Navigator 476

A Simple Build Transcript 476

Summary 487

26 Instruments 489
What Instruments Is 489
Running Instruments 490

The Trace Document Window 492
Toolbar 492
Track Area 494
Detail Area 495
Extended Detail Area 495
Library 499

xx Contents

Tracing 500

Recording 500

Saving and Reopening 503

Tracing without Instruments 504

The Instruments 504
Behavior 504
Core Data 505
Dispatch 505

Filesystem 505

Graphics 506

Input/Output 506

Master Tracks 506
Memory 506

System 507

System— iOS Energy Instruments 509

Threads/Locks 509

Trace 509
UI Automation 510
User Interface 510

Custom Instruments 511
The Templates 512

All Platforms 513
iOS Only 513

Mac Only 513

Summary 514

27 Debugging 515

Scheme Options 515

Info 515
Arguments 516

Options 516

Diagnostics 518

Doing More with Breakpoints 518

View Hierarchy 521

The lldb Command Line 523
Tips 525

Summary 528

Contents xxi

28 Snippets 531

Tricks 531
General 531
Code-Folding Ribbon 535

The Assistant Editor 536
Instruments and Debugging 538

Building 539

Traps 541

V Appendixes 547

A Some Build Variables 549
Useful Build Variables 550

Environment 551
Code Signing 552

Locations 553
Compiler Settings 556

Other Tools 559
Info.plist 559

Search Paths 561
The DEVELOPER Variables 561

Source Trees 562

B Resources 565
Books 565
Books about Swift 566
On the Net 567

Forums 567
Mailing Lists 568

Developer Technical Support 568

Sites and Blogs 569

Face to Face 570
Meetings 570

Classes 570
Other Software 570

Text Editors 571
Helpers 572

Package Managers 574

xxii Contents

Version Control 575
AppCode 576

Alternatives to Cocoa 576

Index 579

Acknowledgments

Only part of the effort that went into putting Xcode 6 Start to Finish into your hands was
spent at a text editor. I am indebted to those without whom this book could not have
been made. Many of them appear in the formal production credits; they deserve
better-than-formal thanks.

Trina MacDonald went through enormous pains to turn a new edition around quickly
in the face of the many changes in Xcode. This was not a sure thing; she made sure it
happened. Thank you.

Lori Hughes stepped in with skill and good humor to give us a head start in getting the
manuscript ready to go on a tight schedule. Julie Nahil, the production manager, stepped
in early to make this possible, in addition to her job-title work of turning the manuscript I
submitted into the book I’d hoped for.

Olivia Basegio made sure the contracts, correspondence, (and advance payments!) all
got through. She guided the reviewers through their work while the book was still in
unassembled pieces on the ground.

The reviewers, Chris Zahn, Gene Backlin, and Josh Day, saved me much
embarrassment, and made this a much better work than it started. Errors remain. Some are
intentional, some not; they are all my own.

Stephanie Geels, the copy editor, made the prosecution of typos, grammar, and which
instance of a particular word gets which typeface, more fun than you’d think. In fact, fun.

A full-time day job is not an author’s best friend (except for the part about paying the
rent). Alan Takaoka, my boss in the Web Services department of IT Services, The
University of Chicago, got me three- and four-day weekends while I wrote. I promised to
keep all my meetings and deadlines while I worked on the book, but somehow none of
them fell on a Monday or Friday. Cornelia Bailey, who manages most of my projects, kept
rescheduling them.

Bess and Kate bore more than daughters should of my doubts and frustrations, and were
simply confident that I would do fine—which was all they needed to do.

This page intentionally left blank

About the Author

Fritz Anderson has been writing software, books, and articles for Apple platforms since
1984. This is his fifth book.

He has worked for research and development firms, consulting practices, and freelance.
He was admitted to the Indiana bar, but thought better of it. He is now a senior iOS
developer for the Web Services department at The University of Chicago. He has two
daughters.

This page intentionally left blank

Introduction

Welcome to Xcode 6 Start to Finish! This book will show you how to use Apple’s
integrated development environment to make great products with the least effort.

Xcode 6 is the descendant of a family of development tools dating back more than 20
years to NeXT’s ProjectBuilder. It started as a text editor, a user-interface designer, and a
front end for Unix development tools. It has become a sophisticated system for building
applications and system software, with a multitude of features that leverage a
comprehensive indexing system and subtle incremental parser to help you assemble the
right code for your project, and get it right the first time.

That much power can be intimidating. My aim in Xcode 6 Start to Finish is to demystify
Xcode, giving you a gradual tour through examples that show you how it is used day to
day. Don’t let the gentle approach fool you: This book will lead you through the full,
best-practices workflow of development with Xcode 6. There are no “advanced topics”
here—I’ll show you version control and unit testing in their proper places in the
development process.

How This Book Is Organized
First, a word on my overall plan. This is a book about developer tools. If it teaches you
something about how to use the Cocoa frameworks, or something about programming,
that’s fine, but that’s incidental to showing you the Xcode workflow. There are many
excellent books and other resources for learning the frameworks; you’ll find many of them
listed in Appendix B, “Resources.”

Every tour needs a pathway, and every lesson needs a story. The first three parts of this
book demonstrate Xcode through three applications—a command-line tool, an iOS app,
and an OS X application—that calculate and display some statistics in American football.
None of the apps are very useful; the graphical apps run almost entirely on sample data.
But they demand enough of the development tools to give you a solid insight into how to
use them.

Xcode supports some technologies, like Core Data and OS X bindings, that are not for
beginners. Xcode 6 Start to Finish dives straight into those techniques, ignoring
conceptually simpler approaches, so I can demonstrate how Xcode works. Other
“advanced” techniques, like unit testing and version control, appear at the points where
best practices require them. This will be the workflow as Xcode supports it.

2 Introduction

I’m using applications for iOS and OS X as examples, but read both Parts II and III,
even if you’re only interested in one platform. The applications are only stories; the
techniques apply to both platforms.

First Steps
In Part I, I’ll take you from installing Xcode and running your first project through basic
debugging skills. You’ll work through a small command-line application. The application
may be simple, but you’ll learn foundational skills you’ll need before adding the
complexity of graphical apps.

m Chapter 1, Getting Xcode—Some things to consider before you download
Xcode 6; two ways to download and install it.

m Chapter 2, Kicking the Tires—Your first look at Xcode, setting up a trivial
project and running it.

m Chapter 3, Simple Workflow and Passive Debugging—Write, build, and run
a simple application, and respond to a crash.

m Chapter 4, Active Debugging—Take charge of debugging by setting breakpoints
and tracing through the program. I’ll show you how to organize your workspace.

m Chapter 5, Compilation—A pause to describe the process of building an
application.

m Chapter 6, Adding a Library Target—Add a library target to a project, and
learn how to build a product from multiple targets.

m Chapter 7, Version Control—Why source control is important, and how to take
advantage of Xcode’s built-in support for versioning through Git and Subversion.

The Life Cycle of an iOS Application
Part II tells the story of a small iPhone app, and how to use Apple’s developer tools to
build it. It introduces you to the graphical editor for user interfaces, and shows how to
profile an app to optimize its speed and memory burden.

m Chapter 8, Starting an iOS Application—You’ll start by creating an iOS
project, and learn the Model-View-Controller design at the core of Cocoa on iOS
and OS X alike.

m Chapter 9, An iOS Application: Model—Design a Core Data schema and
supplement it with your own code.

m Chapter 10, An iOS Application: Controller—Create a controller to link your
model to the on-screen views. On the way, I’ll tell you about refactoring, and
Xcode’s continual error-checking.

m Chapter 11, Building a New View—Design the user-interface views for your
app with the integrated Interface Builder, and take advantage of source-code
completion.

How This Book Is Organized 3

m Chapter 12, Auto Layout in a New View—In Xcode 6, Auto Layout is more
about getting things done than fighting the tools. Learn how to make Cocoa layout
do what you want.

m Chapter 13, Adding Table Cells—While adding an in-screen component to your
app, you’ll debug memory management, and control how Xcode builds, runs, and
tests your apps through the Scheme editor.

m Chapter 14, Adding an Editor—Add an editor view, and get deep into
Storyboard.

m Chapter 15, Unit Testing—Unit testing speeds development and makes your apps
more reliable. I’ll show you how Xcode supports it as a first-class part of the
development process.

m Chapter 16, Measurement and Analysis—Use Instruments to track down
performance and memory bugs.

m Chapter 17, An iOS Extension—Create a system-wide extension and a shared
library to bring your app’s value beyond its own screen.

m Chapter 18, Provisioning—Behind the scenes, the process of getting Apple’s
permission to put apps on devices is complicated and temperamental. I’ll show you
how Xcode saves you from most of the pain, and give you a few tips on how to get
out if it backs you into a corner.

Xcode for Mac OS X
Part III shifts focus to OS X development. Some concepts are more important to OS X
than iOS, but you’ll be learning techniques you can use regardless of your platform.

m Chapter 19, Starting an OS X Application—Carrying iOS components over to
OS X; what the responder chain is, and how Interface Builder makes it easy to take
advantage of it.

m Chapter 20, Bindings: Wiring an OS X Application—As you build a popover
window, you’ll use OS X bindings to simplify the link between your data and the
screen. You’ll also encounter autosizing, a legacy technique for laying out view
hierarchies.

m Chapter 21, Localization—How you can translate your Mac and iOS apps into
other languages.

m Chapter 22, Bundles and Packages—You’ll master the fundamental structure of
most Mac and iOS products, and how both platforms use the Info.plist file to
fit apps into the operating system.

m Chapter 23, Property Lists—Learn the basic JSON-like file type for storing data
in both OS X and iOS.

4 Introduction

Xcode Tasks
By this point in the book, you’ll have a foundation for digging into the details of the
Xcode toolset. Part IV moves on to topics that deserve a more concentrated treatment
than Parts II and III.

m Chapter 24, Documentation in Xcode—How Xcode gives you both immediate
help on API, and browsable details on the concepts of Cocoa development. Find out
how you can add your own documentation to the system.

m Chapter 25, The Xcode Build System—I’ll show you the fundamental rules and
tools behind how Xcode goes from source files to executable products.

m Chapter 26, Instruments—Using Apple’s timeline profiler, you can go beyond
basic performance and memory diagnostics to a comprehensive look at how your
program uses its resources.

m Chapter 27, Debugging—How to use breakpoint actions and conditions to
eliminate in-code diagnostics. You’ll also find a tutorial on the lldb debugger
command set, for even closer control over your code.

m Chapter 28, Snippets—A roundup of tips, traps, and features to help you get the
most from the developer tools.

Appendixes
The appendixes in Part V contain references to help you master the build system, and find
help and support.

m Appendix A, Some Build Variables—The most important configuration and
environment variables from Xcode’s build system.

m Appendix B, Resources—A compendium of books, tools, and Internet resources
to support your development efforts.

About Versions
This book was finished in the fall of 2014. Xcode 6 Start to Finish is written to early
versions of 10.10, iOS 8.2, and Xcode 6.2.

About the Code
Xcode 6 Start to Finish has many examples of executable code—it’s about a system for
creating code and running it. My goal is to teach workflow. What the code itself does is
practically incidental. In particular, be aware: Much of the code in this book will not
run as initially presented. Xcode 6 Start to Finish is about the development process, most
of which (it seems) entails prosecuting and fixing bugs. You can’t learn the workflow
unless you learn how to respond to bugs.

Conventions 5

So I’ll be giving you buggy code. You may find it painful to read, and if you try to run
it, it will be painful to run. Trust me: It’s for a reason.

Also, sample code for this book is available at informit.com/title/
9780134052779 (register your book to gain access to the code). You’ll find archives of
the projects in this book as they stand at the end of each chapter. With very few
exceptions—I’ll make them very clear—if you want the project as it stands at the start of a
chapter, you should use the archive for the end of the previous chapter.

The chapter archives do not include version-control metadata. If you are following
along with the examples, and using Git (or Subversion) for your work, copy the changes
into your own working directory. If you replace your directory with a sample directory,
you’ll lose your version history.

Conventions
This book observes a number of typographic and verbal conventions.

m Human-interface elements, such as menu items and button labels, are shown like
this.

m File names and programming constructs are shown like this. This will
sometimes get tricky as when I refer to the product of the “Hello World” project
(plain text, because it’s just a noun) as the file Hello World.

m Text that you type in will be shown like this.
m When I introduce a new term, I’ll call it out like this.

I’ll have you do some command-line work in the Terminal. Some of the content will
be wider than this page, so I’ll follow the convention of breaking input lines with
backslashes (\) at the ends. I’ll break long output lines simply by splitting them, and
indenting the continuations. When that output includes long file paths, I’ll replace
components with ellipses (. . .), leaving the significant parts.

For its first 20 years, the Macintosh had a one-button mouse. (Don’t laugh—most
purchasers didn’t know what a mouse was; try pushing the wrong button on an old Mac
mouse.) Now it has four ways to effect an alternate mouse click: You can use the right
button on an actual mouse (or the corner of the mouse where the right button would be);
you can hold down the Control key and make an ordinary click; you can hold down two
fingers while clicking on a multi-touch trackpad (increasingly common even on desktop
Macs); or you can tap at a designated corner of a multi-touch trackpad. And there are
more variations available through System Preferences. Unless the distinction really matters,
I’m simply going to call it a “right-click” and let you sort it out for yourself.

This page intentionally left blank

3
Simple Workflow and

Passive Debugging

This chapter begins your use of Xcode in earnest. Here’s where I introduce the problem
that is the basis for all of the example code in this book.

The problem is the calculation of passer ratings. In American/Canadian football,
quarterbacks advance the ball by throwing (passing) it to other players. The ball may be
caught (received, a good thing) by someone on the quarterback’s own team, in which case
the ball is advanced (yardage, more is better), possibly to beyond the goal line (a
touchdown, the object of the game); or it may be caught by a member of the opposing
team (intercepted, a very bad thing).

But those are four numbers, and everybody wants a figure-of-merit, a single scale that
says (accurately or not) who is the better passer. The National Football League and the
Canadian Football League have a formula for passer ratings, yielding a scale running from
0 to (oddly) 158.3. A quarterback who rates 100 has had a pretty good day.

Creating the Project
As in Chapter 2, “Kicking the Tires,” you’ll start with a command-line project. Start
Xcode and click Create a new Xcode project, or select File→New→Project. . .
(N). In the New Project assistant sheet, select an OS X Command Line Tool, and
name the tool passer-rating; for Language, once again choose C.

Another difference: When you are shown the get-file sheet to select the location for
the new project, check the box labeled Create Git repository on, and select My Mac.
Git is a version-control system, an essential part of modern development. You’ll learn all
about it in Chapter 7, “Version Control,” but now is the time to start.

Note
Are you ever going to change anything in a project? Get it under version control. Seriously.
Your work will be safer, and you’ll do it faster.

26 Chapter 3 Simple Workflow and Passive Debugging

Again, you’ll be shown target settings, which you can ignore for now. Instead, mouse
over to the Project navigator at the left side of the Workspace window, and select main.c.

Delete everything in the main() function but its outer braces, and replace the body of
the function so the file reads thus (keep the comments at the top of the file):

#include <stdio.h>
#include "rating.h" // Yet to create; initially an error

int main(int argc, const char * argv[])
{

int nArgs;
do {

int comps, atts, yards, TDs;
printf("comps, atts, yards, TDs: ");
nArgs = scanf("%d %d %d %d %d",

&comps, &atts, &yards, &TDs);
if (nArgs == 5) {

float rating = passer_rating(comps, atts, yards, TDs);
printf("Rating = %.1f\n", rating);

}
} while (nArgs == 5);

return 0;
}

You’ll notice that as you type closing parentheses, brackets, and braces, the corresponding
opening character is briefly highlighted in yellow.

The rating calculation itself is simple. Put it into a file of its own: Select File→New
→File. . . (N). You’ll be presented with the New File assistant sheet; see Figure 3.1.
Navigate the source list on the left, and the icon array on the right thus: OS X→ Source
→ C File.

Click Next, and use the save-file sheet that appears to name the file rating (Xcode
will append .c automatically).

The save-file sheet has two custom controls. The Group popup lets you place the new
file in the Project navigator (the source list at the left of the project window). Roughly,
groups are simply ways to organize the Project inspector list; they have no influence on
how the new file will be placed on-disk. Make sure the passer-rating group is selected.

Second is Targets, a table that for now has only one row, passer-rating. A target is a
group of files and settings that combine to build a product. A file that isn’t part of a target
isn’t used to build anything. Make sure that passer-rating is checked.

Note
It’s easy to get the target assignment wrong. Xcode 6 sets the same targets for new files
as the ones for the last files that were added. If you forget to set the proper targets, you
won’t know about it until your app fails to build or mysteriously crashes because a needed
resource wasn’t included.

Creating the Project 27

Figure 3.1 The New File assistant sheet offers many templates you can use to start a new file.
Select the category from the source list on the left, and pick the template from the array of icons on

the right.

Here’s what goes into rating.c:

#include "rating.h"

static
double pinPassingComponent(double component)
{

if (component < 0.0)
return 0.0;

else if (component > 2.375)
return 2.375;

else
return component;

}

float
passer_rating(int comps, int atts, int yds, int tds, int ints)
{

// See http://en.wikipedia.org/wiki/Quarterback_Rating

double completionComponent =
(((double) comps / atts) * 100.0 - 30.0) / 20.0;

completionComponent = pinPassingComponent(completionComponent);

28 Chapter 3 Simple Workflow and Passive Debugging

double yardageComponent =
(((double) yds / atts) - 0.3) / 4.0;
// intentional bug

yardageComponent = pinPassingComponent(yardageComponent);

double touchdownComponent =
20.0 * (double) tds / atts;

touchdownComponent = pinPassingComponent(touchdownComponent);

double pickComponent =
2.375 - (25.0 * (double) ints / atts);

pickComponent = pinPassingComponent(pickComponent);

double retval = 100.0 * (completionComponent +
yardageComponent +
touchdownComponent +
pickComponent) / 6.0;

return retval;
}

Note
You see a few bugs in this code. Well done. Throughout this book, I’m going to give you
some buggy code to illustrate debugging techniques. Just play along, okay?

By now, you’ve missed a couple of braces, and you are tired of tabbing to get the extra
level of indenting. Xcode can do this for you—it’s among the features I had you turn off in
the last chapter.

Open the Preferences window (Xcode→Preferences, comma) and select the
Text Editing panel. In the Editing tab, check Code completion: Automatically
insert closing “}”. In the Indentation tab, check Syntax-aware indenting:
Automatically indent based on syntax.

Now type an open brace in your code, at the end of a line. So what, it’s a brace. Now
press Return. Xcode adds two lines: Your cursor is now at the next line, indented one
level, and a matching closing brace appears on the line after that.

Finally, you’ve noticed that both main.c and rating.c refer to a rating.h, which
notifies main() of the existence of the passer rating function. Press N again, and
choose Header File from the source files. Name it rating, and put this into it:

#ifndef passer_rating_rating_h
#define passer_rating_rating_h

float passer_rating(int comps, int atts, int yds,
int tds, int ints);

#endif

Building 29

Note
Place header files wherever you like among the project groups, but don’t add them to any
targets. There are exceptions; if you need to do it, you’ll know. Chapter 6, “Adding a
Library Target,” has more.

Click Create.

Building
That’s enough to start. Let’s try to run it. It’s easy: Click the Run button at the left end of
the toolbar, or select Product→Run (R). It doesn’t matter if you haven’t saved your
work; by default Xcode saves everything before it attempts a build. Xcode chugs away at
your code for a bit. . . and stops.

m A heads-up placard flashes, saying “Build Failed.”
m The Navigator area switches to the Issue navigator, which shows two items under
main.c. (If the Issue navigator doesn’t appear, click the fourth tab at the top of the
Navigator area.) One is tagged with a yellow triangle (a warning), and the other with
a red octagon (an error). These include descriptions of the errors (Figure 3.2, top).

m When you click one of the items, the editor highlights two lines in main.c. The
line that triggered the warning is tagged in yellow, with a banner describing the
warning; the error line is in red, with a banner of its own (Figure 3.2, bottom).

It seems the only place where I remembered about interceptions was the format string
of the scanf call. The compiler was smart enough to match the number of format
specifiers to the number of arguments of the scanf and complain. Similarly, I left off the
last parameter to passer rating, which is an outright error.

Note
For a compiler, an error is a flaw in your source that makes it impossible to translate your
code into executable form. The presence of even one error prevents Xcode from producing
a program. A warning indicates something in your source that can be translated but will
probably result in a bug or a crash when you run it. Experienced developers do not tolerate
warnings; there is even a compiler option to make a build fail upon a warning just as
though it were an error. Don’t ever ignore a warning.

Note
Need a reminder of what passer rating does with its parameters? Try this: While main
is visible in the Editor area, hold down the Command key and point the mouse at the
symbol passer rating. You’ll see it turns blue and acquires an underline, as if it were a
link on a standard web page. Click it: The editor jumps to the declaration of
passer rating. You can jump back by clicking the back-arrow button in the upper-left
corner of the editor; by pressing

<

←; or by swiping right across the editor area with two
fingers, if you’ve enabled the gesture in System Preferences. (Option-clicking the name

30 Chapter 3 Simple Workflow and Passive Debugging

Figure 3.2 (top) When Xcode detects build errors, it opens the Issue navigator to display them.
(bottom) Clicking an issue focuses the editor on the file and line at which the issue was detected.

gets you a popover that tells you passer rating was declared in rating.h. More on
this in Chapter 24, “Documentation in Xcode.”)

You can dash off a fix very quickly:

do {
int comps, atts, yards, TDs, INTs;
printf("comps, atts, yards, TDs, INTs: ");
nArgs = scanf("%d %d %d %d %d",

&comps, &atts, &yards, &TDs, INTs);
if (nArgs == 5) {

float rating = passer_rating(comps, atts, yards,
TDs, INTs);

printf("Rating = %.1f\n", rating);
}

} while (nArgs == 5);

To be conservative (I don’t want Xcode to run the program if a warning remains),
Product→Build (B) will compile and link passer-rating without running it. You
needn’t have worried: It compiles without error, displaying a “Build Succeeded” placard.

Note
The Issues navigator will show a warning or two. Let’s play dumb and carry on.

Running
Now you have something runnable. Run it (Run button, first in the toolbar; or R).

Running 31

There is a transformation: The Debug area appears at the bottom of the window; and
the View control in the toolbar highlights its middle button to match the appearance of
the Debug area (Figure 3.3).

The right half of the Debug area is a console that you’ll be using to communicate with
the passer-rating tool. If all has gone well, it should be showing something like this:

comps, atts, yards, TDs, INTs:

. . . which is just what the printf() was supposed to do. passer-rating is waiting for
input, so click in the console pane and type:

10 20 85 1 0 <return>

Something went wrong. passer-rating crashed. lldb, the debugging engine, takes
control, and the debugging displays fill up.

m In the Navigator area, the Debug navigator appears, showing the status of the
program when it crashed. The upper part of the navigator contains performance bar
charts that will be useful when you get to more complex projects. Ignore them for
the moment.
What’s left is a stack trace, showing the chain of function calls that led to the crash.
The top line, labeled 0, is the name of the function, svfscanf l, where the crash
occurred; if you click it, you can see the assembly code (the source isn’t available)
focused on the very instruction that went wrong. The next line is scanf, which
you recognize as the function you called from main, the function on the next line.
Xcode identifies main as your work by flagging it with a blue head-and-shoulders
icon. Click that line to see what your code was doing when the crash occurred.

Figure 3.3 Running an app in Xcode opens the Debug area (at the bottom of the project window).

32 Chapter 3 Simple Workflow and Passive Debugging

m In the Debug area at the bottom of the window, the left-hand pane fills with the
names of variables and their values. You see, for instance, “atts = (int) 20,” which is
just what you entered. Chapter 4, “Active Debugging,” discusses this more.

m The Editor area has the most interesting change: A green flag at the left margin and
a green banner at the right of the call to scanf. The banner says, “Thread 1:
EXC BAD ACCESS (code=1, address=0x0).” The message may be truncated; you can
see the full text in a tooltip that appears if you hover the mouse cursor over the
banner.

Note
Xcode has a lot of these banners; often they are the only way it will convey important
messages. You will probably set your editor fonts to the smallest you can comfortably read
so you can see more of your work at once. The banners are one line high, and their
margins take up some space, so the text in them may be smaller than you can comfortably
read. The only solution is to select larger fonts for everyday use; see the Fonts & Colors
panel of the Preferences window.

Simple Debugging
EXC BAD ACCESS entails the use of a bad pointer, perhaps one pointing into memory that
isn’t legal for you to read or write to. (The 64-bit virtual-memory management on OS X
and modern iOS is set so any address that might be derived from a 32-bit integer is illegal,
making it harder to cross ints and pointers.) Reexamine the line in main that crashed the
application and allow a scale to fall from your eyes:

nArgs = scanf("%d %d %d %d %d",
&comps, &atts, &yards, &TDs, INTs);

scanf collects values through pointers to the variables that will hold them. This call does
that for all values except INTs, which is passed by value, not by reference. One of the
warnings I had you ignore said exactly that: “Format specifies type ‘(int *)’ but the
argument has type ‘int’.” Simply inserting an &

nArgs = scanf("%d %d %d %d %d",
&comps, &atts, &yards, &TDs, &INTs);

should cure the problem. Sure enough, running passer-rating again shows the crasher
is gone:

comps, atts, yards, TDs, INTs: 10 20 85 1 0
Rating = 89.4
comps, atts, yards, TDs, INTs: <

<

D>

With the

<

D keystroke, the input stream to passer-rating ends, the program exits,
and the Debug area closes.

Simple Debugging 33

You ordinarily wouldn’t want to run or debug a program under Xcode if another is
running. Instead, you’d like the incumbent app to clear out. There are four ways to do this.

m Simply let the app exit on its own, as you did when you used

<

D to stop
passer-rating, or would by selecting the Quit command in an OS X
application. But this doesn’t work for iOS apps, which in principle never quit. You’ll
have to use one of the other techniques.

m Click the Stop button in the toolbar.
m Select Product→Stop (period).
m Tell Xcode to run an application, the same or a different one, and click Stop in the

alert sheet that appears. See Figure 3.4.

That alert sheet also offers an Add button, which will run and debug the new process
without quitting the old one. Xcode will start a new execution context: You can switch
between them using the jump bar at the top of the Debug area, and the Stop button in
the toolbar becomes a menu you can use to select which instance to stop.

Note
Don’t check the Do not show this message again box. There will come a time when you
want to continue the execution of a program you are debugging, and rather than clicking
the tiny button the debugger provides, you’ll go for the large, friendly Run button in the
toolbar. That time comes to me frequently. The add-or-stop sheet is the only thing standing
between you and the ruin of your debugging session.

For the moment, you’re done: The scanf call will return fewer than five inputs if the
standard input stream ends. You end it as you would in a terminal shell, by pressing

<

D.

Figure 3.4 When you tell Xcode to run an application while it already has an application running,
it displays a sheet asking what you want to do with the existing app. Normally, you’d click Stop, but

there is also the option to Add the new instance to run concurrently with the old one.

34 Chapter 3 Simple Workflow and Passive Debugging

Note
M and A badges are accumulating in the Project navigator. These have to do with version
control. Nothing is wrong. Patience! I’ll get to it in Chapter 7, “Version Control.”

Summary
This chapter stepped you up to writing and running a program of your own. It introduced
the first level of debugging: what to do when your program crashes. It turns out that
Xcode offers good facilities to help you analyze a crash without you having to do much.
You accepted Xcode’s guidance, quickly traced the problem, and verified that your fix
worked.

But we’re not done with passer-rating. There are still bugs in it, and this time
you’ll have to hunt for them.

Index

A

.a (static libraries), 69, 539

Accessibility package, 14

Accessory setting

details, 232
editors, 211

Accounts panel

Apple ID, 298
Developer ID, 311
iOS provisioning, 300–301, 303
remote repositories, 88–89
version control, 80

ACTION variable, 551

Actions

for wiring menus, 331
xcodebuild, 471–472

Activate/Deactivate Breakpoints, 39

Active Allocation Distribution style, 496

Activity Monitor instrument, 507–508

AD HOC CODE SIGNING ALLOWED, 552

Ad-hoc distributions, 299, 304, 315–316

Add, 33

Add 4 Constraints, 175

Add an Account, 300

Add Apple ID, 298, 300

Add Breakpoint at Current Line, 36

Add Build Rule, 474–475

Add Entity, 118

Add Exception Breakpoint, 150

580 Index

Add Files to

availability, 326

get-file sheets, 128, 252

mogenerated directory, 328

projects, 460

target pickers, 73

Add Item, 422-423

Add Localization, 383

Add Missing Constraints, 171, 364–365

Add Missing Constraints in Game List
Controller, 168

Add Other, 72

Add Relationship, 121

Add Remote, 87–88

Add/Remove Breakpoint at Current Line, 527

Add Run Script Build Phase, 135

Add shortcut, 501

Add Target, 244

Add to targets, 128

Add User-Defined Setting, 550

Added file state, 83

Added folders, 128

Additional exported UTI properties view, 338

addWindowController method, 347

Adobe PhoneGap, 576–577

Advanced attributes for models, 120

Agent applications, 411

Alert sheets

in debugging, 33

Git messages, 82

version control, 96

Alignment of labels, 170–171

All 2 Constraints, 173

All Entities, 452

All Frames in Container, 173

All in builds, 462, 476

All Issues, 476

All Messages, 476

All Processes, 493

Allocation Density style, 496

Allocations & Leaks service, 501

Allocations instruments, 496, 506, 538

Allow Location Simulation, 517

Allows Editing Multiple Values Selection, 355

alltargets, 472

Also create XIB file, 158, 175

Always Presents Application Modal Alerts,
355

Always use deferred mode, 502

Analysis and measurement, 264

memory, 277–278
speed. See Speed

Analysis message display, 56

analyze action for xcodebuild, 471

Anchor View, 378

Antecedents in makefile goals, 459

Antialiasing, 414

.app directory, 403

App Extensions, 493

App groups, registering, 282–283

App Store

Enterprise program, 298, 315–316
OS X applications, 309
program members, 302
provisioning, 297–299
sandboxing, 308-311
TestFlight distributions, 304–305
Xcode downloads, 10–13
Xcode updates, 472

.app suffix, 473

Appcelerator Titanium, 577

AppCode, 576

AppDelegate class

description, 112, 289–290
OS X applications, 324

Index 581

AppIcon image set, 221

Apple Developer Forums, 567

Apple developer programs, 12–13, 297–299

Apple Pay system, 307

AppleGlot tool, 391

Application Data popup, 517

Application IDs, 299

Application Language popup, 388, 517

Application Region popup, 517

Applications

bundles, 403–405

icons, 339–340

Info plist keys for, 406–409

iOS. See iOS

registering, 300–303

tests, 260

/Applications directory, 10, 17

applicationWillResignActive method, 290

applicationWillTerminate method, 290

Apps Groups, 307

apropos in lldb, 523

Architecture-specific build settings, 469–470

archive action in xcodebuild, 471

Archives organizer, 312, 317

ARCHS, 556

ARCHS STANDARD, 466, 556

ARCHS STANDARD 32 BIT, 556

Arguments panel, 516

Ask on Launch, 294

Assembly listings, 63

assert macro, 531

Assertions

description, 243

XCTest, 261–264

Asset catalogs, 484, 559

ASSETCATALOG COMPILER APPICON NAME,
559

ASSETCATALOG COMPILER LAUNCHIMAGE NAME,
559

Assets, protecting, 303

Assets catalog, 219

adding images to, 220–221
image sets, 219–220

Assignments (=) in Boolean contexts, 149

Assistant editor

assembly display, 63
caller display, 58
connection checks, 176
Editor area, 162
Interface Builder, 159
jump bar, 164–165
linking views, 166
localizations, 389, 393
Option-key navigation, 437
overview, 536–538
Preview, 165–166
views, 162, 176–177

Associated Domains, 307

Associative arrays, 418, 429

Asynchronous tests, 260–261

At sign (@) notation, 520

atIndexPath method, 146

ATSApplicationFontsPath key, 410

Attributes for models, 118–121

Attributes Inspector, 164–165

Audio package, 14

@author keyword, 448

Authorization in iOS provisioning, 299

Authorized devices in iOS provisioning, 299

Auto Layout, 185

labels, 171, 200–202
localizations, 375–378
overview, 186
permanent views, 202–205
planning constraints, 197–200

582 Index

Auto Layout (continued)

purpose, 185–186

size classes, 197

size constraints, 186–188

subviews, 188–197

views, 167–169

Automatic code completion, 22, 28, 180–183

Automatic for Assistant editor, 162

Automatic Reference Counting, 58

Automatic Snapshotting, 507

Automatically continue after evaluating
actions, 520

Automation instrument, 510

Autoresize limitations, 185–186

Auxiliary tools, 14

B

@b bold comment format, 448

B2B program, 298

Background Modes, 307

backslashes (\) for breaking input lines, 5

Badges for test navigator, 244

Bar graphs in Debug navigator, 211–213,
266–267

Base localization, 373–376

Baseline performance, 276

Basic button, 462

BBEdit text editor, 571

Beta distributions, 299, 304–306, 315–316

Billboard view

overview, 164–166

size constraints, 186–188

testing, 183–184

Binaries, fat, 482

Binary property lists, 430

Binary stores, 336

Bindings, 343

columns to team properties, 355–357

document window, 345–350

filling, 350–357

game array controller, 369

game table, 369–370

game-table labels, 369

League table to source list, 357–359

object controllers, 352–354

Passer section, 363–364

passer table, 365–367

passer-table labels, 364–365

running, 367–369

storyboard segues, 343–345

tables to teams, 354–355

team selection, 359–361

teams to tables, 361–363

Blame view in Comparison editor, 99,
101–102

Block Graph style, 496

Blogs, 569–570

Bluetooth instrument, 509

Bookmark navigator, 440

Books, 565–567

Borders for buttons, 229

Branching in version control systems,
102–104

Breakpoint navigator, 150

breakpoint set, 527

Breakpoints, 35

listing, 150

lldb, 524

removing, 36

setting, 36–37

tips, 525

unit testing, 254

working with, 518–521

Index 583

brokenByLines method, 289

@bug keyword, 448

build action in xcodebuild, 471

Build Configuration popup, 466

Build For Running, 476

Build New Instrument, 512

Build Phases tab

description, 70
libraries, 75
targets, 50, 71–72, 460–461
text data, 135
widget, 294–295

Build Rules tab, 70, 474–475

Build settings, 462–463, 549–550

code signing, 552–553
Compiler, 556–559
DEVELOPER, 561–562
environment, 551–552
Info.plist, 559–560
Java, 560
locations, 553–556
search paths, 561
source trees, 562–563

Build Settings tab

build settings, 462–466, 550
code size, 531
flags, 558
hierarchy, 463–464
packages, 405
product names, 322
Quick Help, 436, 447
release size, 532
SDK, 112
targets, 70, 317

Building views, 161–162

labels, 169–171
outlets and Assistant editors, 163–164

Builds and build system, 459

command-line tools, 471–473

configuration files, 468–471

configurations, 466–467

custom rules, 474–475

dependencies in widget, 294–295

distribution, 314–318

projects, 22–23, 29–30

Report Navigator, 476–477

settings, 462–463, 465–466

settings hierarchy, 463–465

structures, 459–462

transcript, 476–487

tricks, 539–541

BUILT PRODUCTS DIR, 554

builtin-copy tool, 483

Bulleted lists, 456

Bumgarner, Bill, 539

Bundle Identifier setting

new projects, 19

OS X applications, 323

Bundles, 279, 401, 403

application, 403–405

Info.plist keys and file, 405–409

location settings, 555–556

.strings files, 392

targets, 543

Button borders, 229

C

.c files, 462

@c comment format, 448

Call-tree detail, 271

Call-tree list, 498

584 Index

Canvas

segues on, 239

view controllers, 159

Canvas menu, 188

Capabilities editor, 306–308

Capabilities tab, 282–283, 309

Capitalization, 233

Carbon Events instrument, 510

Cascade delete rule, 122

CC, 462

Cell-based views, 348

cellForRowAtIndexPath method

custom cells, 215–217

images, 218–219

outlets, 208–209

prototype cells, 211

table view, 145

Cells. See Tables and table cells

Certificates

code signing, 552

Developer ID, 12, 311–312

distribution builds, 314–315

Identifiers & Profiles site, 300

iOS provisioning, 299, 303

private keys, 303

team membership, 300–301

CFBundleIconFiles key, 412

CFBundleVersion, 316

Change color, 452

Check and Install Now, 445

Check for and install updates automatically,
445

Check Out, 89

Check out an existing project, 17, 80, 85, 89

checkNSErrorContent method, 248

Choose a profiling template for, 491

Choose Target, 493

clang compiler, 47

builds, 482
cross-function analysis, 55–56
drawbacks, 57–58
indexing, 56–57
local analysis, 53–55
modules, 65–66
overview, 52–53
precompilation, 64

CLANG CXX LANGUAGE STANDARD, 557

CLANG ENABLE MODULES, 557

CLANG ENABLE OBJC ARC, 557

Class Info settings, 440–441

Class Prefix, 111

Classes (educational), 570

Classes (objects)

managed-object. See Managed-object
classes

name refactoring, 142–143
object allocations by, 489
renaming, 144
specializing, 132–138

clean action for xcodebuild, 471

Cloning repositories, 85

close enough function, 189–190

Close Project, 24

cocoa-dev list, 568

Cocoa Events instrument, 510

Cocoa language application frameworks

alternatives, 576–577
Core Data, 111
libraries, 76
pointers, 54

Cocoa Layout instrument, 506

Cocoa Touch framework, 107, 180, 286

CocoaHeads meetings, 570

CocoaPods package manager, 574

Code completion, 22, 28, 180–183

Index 585

Code completion: Automatically insert
closing “}”, 28

Code-folding ribbon, 535–536

CODE SIGN IDENTITY, 314, 552

CODE SIGNING ALLOWED, 552

CODE SIGNING ENTITLEMENTS, 553

Code Signing Identity, 266

CODE SIGNING RESOURCE RULES PATH, 553

Code signing settings, 552–553

Code snippets, 181–183

Color

buttons, 221

labels, 170, 189

views, 164

Color controls

palette, 164

well, 164

Column Sizing setting, 350

Columns, 172–173

Combined for build settings, 462

Combo fields for property lists, 432

Command Line Developer Tools package, 12

Command Line Tool template, 19

Command-line tools, 11

builds, 471–473

package, 14

Comments

documentation, 447–449

reStructured Text, 456–457

Commit editor, 84–85

Commit sheet, 91

Commits

selective, 91–93

version control systems, 84–85, 98

Company Identifier setting, 323

Comparison editor, 99–100

Blame view, 101–102

Log view, 101

Compile Sources build phase, 50, 460–462

Compilers and compiling, 45

build settings, 556–559

clang, 52–53

controllers, 148–149

cross-function analysis, 55–56

dynamic loading, 52–53

indexing, 56–57

intermediate products, 62–64

linking, 50–52

local analysis, 53–55

precompilation, 64–65

process, 45–52

warnings, 29–30, 539

Completes action, 42

Completion, code, 22, 28, 180–183

componentsSeparatedByCharactersInSet
method, 254–255

COMPRESS PNG FILES, 559

Condition field for breakpoints, 520

Conditionally Sets Editable, 355, 366

Configuration files, 468–471

Configure Repository sheet, 85

configureView method, 178–179

Conflicted file state, 83–84

Conflicts

assignments, 533

version control systems, 89–98

Connecting outlets, 163–164

Connection inspector for First Responders, 332–
333

Connections for outlets, 177–180

Connections instrument, 508

Console applications, 23

Console windows, 526

586 Index

Constraints

description, 188

labels, 200–202

planning, 197–200

size, 186–188

trace document window, 499

views, 168, 186–188

Contained extensions, 280

Container apps, 294

Content Compression Resistance, 203

Content Compression Resistance Priority, 204

Contents directory, 403

CONTENTS FOLDER PATH, 555

Continue, 39

Continuously Updates Value, 356

Controller Key setting, 354–355

Controllers layers, 141

MVC model, 108, 110

object, 352–354

view. See View controllers

Converting

data types, 429

property list formats, 430

Copy Bundle Resources build phase

build rules, 475

folder references, 533

sample-data.csv, 136–137

targets, 74

Xcode structures, 460

Copy for dictionaries, 424

Copy items into destination group’s folder
(if needed), 326

Copy Source Changes, 100

Copy Transcript for Shown Results, 477

Core Animation instrument, 506

Core Data

events, 490

model objects, 117

Core Data Cache Misses instrument, 505

Core Data Faults instrument, 505

Core Data Fetches instrument, 505

Core Data Saves instrument, 505

Counters instrument, 508

CPU Activity instrument, 509

CPU bar for speed analysis, 267

CPU perspective, 494

CPU Usage style, 496

Create a new Xcode Project, 17, 25

Create Document-Based Application, 323

Create folder references, 128

Create folder references for any added
folders, 533

Create Git repository on, 20, 25, 80, 323

Create groups, 128

Create groups for any added folders, 128, 326

CREATE INFOPLIST SECTION IN LIBRARY,
560

Create New Remote, 85

Create NSManagedObject Subclass, 124

Create Symbolic Breakpoint, 527

Credits.rtf file, 385–388

Cross-function analysis, 55–56

CSResourcesFileMapped key, 410

.csv data files, 246

CSV Reader, 246–251

CSVError class, 253

CSVFileTests class, 247

Current Bytes style, 496

Current Views, 40

Custom build rules, 474–475

Custom instruments, 511–512

Index 587

Custom script, 475

Custom segues, 239

Custom table cells, 214–217

D

DarwinPorts package manager, 574

Dash styles tool, 572

Dashcode package, 14

Data access in widget, 282–285

Data formatters for numbers, 367–368

Data Model editor, 118

Data Model inspector, 119–122

Data Protection, 308

Data types for property lists, 417–419,
429–431

dataSource property, 207

Date attribute, 119

Date data type

property lists, 417–419, 429

Swift, 60

Debug area

breakpoints, 36

components, 23, 31–33

hiding, 23, 40–41

variables, 37, 254, 525

DEBUG macro, 531

Debug navigator, 31

actions, 42

Game table, 211–212

speed analysis, 266–268

stack trace, 151–152

Debug Selected Views, 195, 292

Debug XPC services used by this application,
517

Debugging, 515

breakpoints. See Breakpoints

controllers, 149–154

dependent targets, 76

lldb command line, 523–525

models, 139

problem fixes, 39–42

projects, 32–34

scheme options, 515–518

stepping through code, 37–39

tips, 525–528

tricks, 538–539

UI Hierarchy, 521

unit testing, 254–256

Variables pane, 37–38

views, 521–523

Debugging-symbol package, 486

Decrease Deck Size, 495

Deepest Stack Libraries style, 496

Default attribute, 120

Default - Property List XML, 427–428

Defaults, sharing, 283–284

Deferred Mode, 502

#define directive, 62

DEFINES MODULE, 557

Definitions, 535

Delays Events, 380

Delegate design pattern, 145

delegate property, 207

Delete Rule for relationships, 121

Deleting

menus, 330

projects, 24

Deny delete rule, 122

588 Index

Dependencies

implicit, 76

makefile goals, 459–460, 462

widget, 294–295

Dependent targets, 74–76

Deployment Target field, 111-112

@deprecated keyword, 448

DERIVED FILE DIR, 475, 554–555

Derived files, 553–554

description method, 526

Descriptions for exceptions, 151

Designable views, 193

Designing widget, 281–282

destination for xcodebuild, 472

Destination locations

Doxygen, 452

settings, 553–555

Detail area in trace document window, 495

Detail Disclosure, 232

DetailViewController class, 113

DEVELOPER APPLICATIONS DIR, 562

DEVELOPER BIN DIR, 562

DEVELOPER DIR, 562

/Developer directory, 10

DEVELOPER FRAMEWORKS DIR, 562

Developer ID, 311–314

Developer ID Application identity, 311

Developer ID Installer identity, 311

DEVELOPER LIBRARY DIR, 562

Developer programs, 12–13, 297–299

DEVELOPER SDK DIR, 562

Developer Technical Support (DTS),
12, 568–569

DEVELOPER TOOLS DIR, 562

DEVELOPER USR DIR, 562

Development process in iOS applications,
304

Devices settings, 111, 302–303

Diagnostics tab, 518

Diagrams panel, 452–453

Diamond badges, 244

Dictionaries

object properties, 233

property lists, 417–419, 422, 424,
431–432

didReceiveMemoryWarning method,
292–293

didSet method, 247–248, 378

Directives in Swift, 139

Directories for localization, 373–374

Directory I/O instrument, 505

Discard All Changes, 100, 125

Discard Changes, 99–100

Disclosure triangles in trace document
window, 495

Disk image (.dmg) files, 13–14

Disk Monitor instrument, 508

Disk space requirements, 10

Dispatch instruments, 505

Display Brightness instrument, 509

Display Pattern field, 364, 366–367, 369

Display requirements, 10

Display Settings tab, 497–499

Distributed source-control systems, 84

Distributions

builds, 314–318

iOS applications, 304

prerelease, 304–306

ditto command, 481

.dmg (disk image) files, 13–14

Do not show this message again, 33

Dock, 17

DOCSET BUNDLE ID setting, 453

DOCSET FEEDNAME setting, 453

Index 589

DOCSET PUBLISHER ID setting, 454

DOCSET PUBLISHER NAME setting, 454

Docsets (documentation sets)

installing, 455–456

overview, 444–445

searching, 442

Document class, 323–324

Document Extension setting, 323

Document outlet sidebar, 176

Document outline view, 159

Document Versions: Allow debugging when
using document Versions Browser, 517

Document window, building, 345–350

Document.xcdatamodeld file, 324

Documentation, 435

docsets, 444–445

Documentation window, 439–444

downloading, 11

Doxygen, 449–456

help menu, 438–439

Open Quickly, 437–438

Quick Help, 435–437, 446–449

reStructured Text, 456–458

Documentation and API Reference settings,
438

Documentation sets (docsets)

installing, 455–456

overview, 444–445

searching, 442

Documents

application bundles, 409

icons, 339–340

OS X, 321–322

Dollar sign ($) setting, 533

Dot panel in Doxygen, 454

DOT PATH setting, 454

Double Length Pseudolanguage, 388, 391

Downloading

docsets, 444–445

packages, 14–15

Xcode, 13–14

Downloads panel, 11, 15, 445

Doxygen generator, 446

basic settings, 450–454

comments, 449

docset installation, 455–456

expert settings, 453

preparation, 449–450

running, 454–455

DSTROOT, 554

.dSYM packages, 485

DTPerformanceSession framework, 504

DTrace Data Import, 512

DTrace Script Export, 512

DTrace tool, 511–512

DTS (Developer Technical Support), 12,
568–569

Duck-typing, 58

Dynamic libraries (.dylib), 539

Dynamic loading, 52–53

E

@e keyword, 448

Edges for views, 228

Edit All in Scope, 57

Edit Breakpoint, 520–521

Edit Find Options, 90

Edit for targets, 493

Edit Instrument sheet, 511

Edit ‘Reads/Writes’ Instrument, 511

Edit Scheme, 76, 270, 387

590 Index

Editing

build settings, 465–466
property lists, 419–429
view controllers, 144–147

Editing tab, 22, 28, 180

Editor area, 32, 162

Editor control, 42

Editor menu, adjusting, 532

Editor Style control, 118

Editor table, 233–235

passing data to, 235–237
retrieving data from, 237–239

Editor view controllers, 233–235

Editors, 227

Assistant. See Assistant editor
Capabilities, 306–308
Commit, 84–85
Comparison, 99–102
Data Model, 118
linking, 231–232
Merge, 97
Project, 375
Property List, 406, 422–429
RTF, 385–386
segues, 240
static table cells, 232–233
Target. See Targets and Target editor
text, 571–572
Version, 99

ellipses (...) for file paths, 5

@em keyword, 448

emacs text editor, 572

Email Link, 444

Embed in Application, 280, 286

Embedded view controllers, 229–231

Enable for Development button, 302

ENABLE NS ASSERTIONS macro, 532

Enable user interface debugging, 521

#end directive, 139

Energy Usage instrument, 509

enqueueGame method, 274

Enterprise developer program

ad-hoc distributions, 304
Apple developer programs, 298–299
build settings, 315

Entities, 117

models, 118
OS X applications, 326–330

Entitlement chains, 306

Enumerated lists, 456–457

Environment settings, 551–552

Epsilon values, 262

Equality assertions, 262–263

Errors

compiler, 29–30
debugging. See Debugging
displaying, 53, 55
unit testing, 254

Errors Only, 476

Escape key shows code completions, 181

Event Profiler instrument, 508

Events, 490, 508

EXC BAD ACCESS message, 32

Exception breakpoints, 150

@exception keyword, 448

Exceptions, 150–154

assertions, 263–264
temporary, 309

EXECUTABLE FOLDER PATH, 555

EXECUTABLE PATH, 556

existingPasserByName function, 329–330

Expand Variables Based, 516

expectationWithDescription method, 260

Expert tab in Doxygen, 451–453

Export Accounts, 303

Index 591

Export as a Mac Application, 539

Export button in Documentation window, 443

Export Developer ID-signed Application, 312

Export for Localization, 396

Export Items, 303

Export Snapshot, 95

Exported UTIs category, 336

expression, 524

expression interpreter, 524

Extended Detail area, 495–496

Display Settings, 497–499

Record Settings, 496–497

Extensions.swift file, 129

extern keyword, 535

F

F-keys, 39

Face to face support, 570

Family popup for labels, 170

Fat (universal) binaries, 482

Features, turning off, 22

Fetched Properties table, 118

fetchedResultsController method, 146

Field lists in reStructuredText, 457

File Activity instrument, 505

File Attributes instrument, 505

File Format menu, 336

File inspector tab, 72

File Locks instrument, 505

File Types column, 385

Files

adding to targets, 71–73

configuration, 468–471

renaming, 534

searching, 535

sharing, 284–285
states, 82–83

File’s Owner setting, 332, 354

Filesystem instruments, 505–506

Fill With Test Data, 334

Filled Line Graph style, 496

Filling bindings, 350–357

fillViewContents method, 284

fillWithData, 332–336

Filtering stack trace, 151–152

Find and Replace, 89, 425

Find for property lists, 425

Find Implicit Dependencies, 76

Find in Project, 93

Find in Workspace/Project, 425

Find navigator, 144

Finder

bundles, 403
docset versions, 445
instruments, 491
iOS apps, 405
packages, 402

Fink package manager, 574

First Responders, 332–333

Fix-it popover, 148

Flatten Recursion, 498

FlushGameQueue method, 274

FlushGameQueues method, 274

Folders

new projects, 20
references, 533

Font field for labels, 169–170

Fonts & Colors panel, 32

Fonts for widget, 292

forAllPassersInContext method, 274

Format menu, deleting, 330

Formats tab for strings, 399

592 Index

Formatters for numbers, 367–368

Forums, 567–568

FOSS (free and open-source) software, 574

Foundation command-line program, 53

Fraction Digits setting, 367

frame in lldb, 524

Frameworks

benefits, 52
in compiling, 51
header files, 64, 74
libraries in, 76, 285–290
Objective-C, 114
overview, 279
playgrounds, 189
testing, 243

Frameworks directory, 405

FRAMEWORKS FOLDER PATH, 556

Frameworks groups in iOS projects, 114

Free and open-source software (FOSS), 574

free function, 489

French localization, 375

Credits.rtf file, 385–388
locales, 383–385
Main.storyboard, 389–392
process, 382
resources, 392–394
strings, 394–397

fulfill method, 261

FULL PRODUCT NAME, 551

fullViewContents method, 293–294

Function keys, 39

G

Game Center mediator, 306

Game table, 207

first run, 211–213

Model-to-View support, 210
outlets, 207–208
protocol methods, 208–209
prototype cells, 211
table cells, 214–217

GameDB class, 287–289

GameDetailController class, 376–382

GameListController class, 144

billboard view, 164, 166, 201
connections, 177–180, 215
outlets, 175–177
tables, 207
widget, 281

gameTableClicked method, 381

Garbage collection, 558

Gatekeeper, 12, 311–314

gcc compiler, 53

GCC ENABLE CPP RTTI, 462

GCC ENABLE OBJC GC, 559

GCC OPTIMIZATION LEVEL, 557

GCC PREPROCESSOR DEFINITIONS, 558

GCC PREPROCESSOR DEFINITIONS NOT
USED IN PRECOMPS, 559

GCC TREAT WARNINGS AS ERRORS, 558

GCC VERSION, 558

GCC VERSION IDENTIFIER, 558

GCC WARN flags, 559

GCC WARN INHIBIT ALL WARNINGS, 558

General editor for iOS projects, 111

General settings

automatic features, 22
controllers, 148
icons, 221
images, 221
Info.plist file, 405
instruments, 501–502
iOS projects, 113
Issue Navigator detail, 56

Index 593

libraries, 76

property lists, 419

registering apps, 300

Target editor, 224

GENERATE DOCSET setting, 453

Generate Test Data build phase, 137

Generic team provisioning profiles, 302

genstrings utility, 395–396

Gestures for navigation, 537–538

Get Started with a playground, 18

Git version-control system, 25, 575

OS X applications, 323

repositories. See Repositories

servers, 88

Xcode with, 83–84

GitHub, 575

.gitignore files, 81

Global hot key combinations, 501

GNU General Public License, 53

Goals for makefiles, 459

GPS instrument, 509

GPU Driver instrument, 506

GPU Frame Capture, 518

Graphics, 217

assets catalog, 219–221

icons and launch images, 221–225

image views, 218–219

table cells, 217–218

Graphics instruments, 506

Graphics package, 14

Graphs in Debug navigator, 211–213

GraphViz package, 449

GROUP, 551

Group from Selection, 124, 161

Group popup, 26

Grouped style, 232

Groups, framework, 114

H

Handoff, 307

hAny bar, 200–202

Hardware capabilities, 309

Hardware IO package, 14

hCompact, 202

HEADER SEARCH PATHS, 561

HeaderDoc format, 446, 456

Headers, 29

library targets, 74

prefix, 64–65

Heads-up (HUD) window, 176

HealthKit framework, 308

Heights Equally, 203

Hello World project, 19

building and running, 22–23

creating, 19–22

deleting, 24

Help

application bundles, 410

help menu, 438–439

lldb, 523–525

Quick Help, 435–437, 446–449

help breakpoint, 523

help command, 523

Help menu, 438–439

HFS+ filesystem, 544–545

Hidden binding, 364

Hide Missing Symbols, 271, 273, 497–498

Hide/Show Debug Area button, 38

Hide system calls in the stack trace button,
499

Hide System Libraries, 271–272, 498

594 Index

Hide Toolbar, 526

Hiding Debug area, 41

Highlight setting, 357

HOME, 551

Homebrew package manager, 449, 574

HomeKit framework, 308

Hooking up outlets, 177

Hopper Disassembler tool, 47, 572–573

Hosted extensions, 280

Hosting apps, 294

Hot key combinations, 501

HTML and Doxygen, 453–454

HUD (heads-up) window, 176

I

@i comment format, 448

@IBAction type

linking controls to actions, 177
unwind segues, 238

@IBDesignable type, 193

@IBInspectable type, 193

@IBOutlet type

array controllers, 352
constraints, 188
MacStatView, 379
outlets, 175–177
removing, 542
view controllers, 163, 166

iCloud capabilities, 306

Icons

applications and documents, 339–340
launch images, 221–225

Identifier popup, 229

#if directive, 139

Ignored file state, 82

Image sets, 219–220

Image Views, 218–219

Images. See Graphics

Images.xcassets catalog, 220

OS X applications, 324
overview, 113

Implicit dependencies, 76

#import directive, 62

Import Energy Diagnostics from Device, 509

Import Localizations, 397

In-app purchases, 306

In-house distributions, 304, 315

In Project, 535

In Workspace, 535

#include directive, 62, 470

Increase Deck Size, 495

Indentation tab, 22, 28

Indexed attribute, 120

Indexing, 56–57

Individuals in Apple developer programs, 298

Info.plist file, 324, 431–432

advertising in, 306
application keys, 406–409
background modes, 307
builds, 315–316, 485
bundles, 403, 405–406, 409, 415
gloss effect, 223
localizations, 406
OS X applications, 324
packages, 401–402
property lists, 420, 422
settings, 559–560
strings, 398

Info tab

application keys, 409–410
builds, 466–467, 469
Info.plist file, 405
localizations, 375
property lists, 419–420

Index 595

Quick Help, 436
schemes, 515–516
tests, 245

INFOPLIST EXPAND BUILD SETTINGS, 560

INFOPLIST FILE, 314, 405, 559

INFOPLIST OUTPUT FORMAT, 430, 560

INFOPLIST PREPROCESS, 560

InfoPlist.strings file, 387, 398, 406

INFOSTRINGS PATH, 560

Inherited setting, 533

INPUT FILE BASE, 475

INPUT FILE DIR, 475

INPUT FILE NAME, 475

INPUT FILE PATH, 475

Input lines, breaking, 5

Input/output instruments, 506

Insert Pattern, 90

insertNewObject method, 147

Inspectable properties, 189, 196

install action for xcodebuild, 471–472

Installing

docsets, 455–456
Xcode, 11

installsrc action, 472

instantiateController method, 345

Instruction, 527

Instruments, 504

behavior, 504
Core Data, 505
custom, 511–512
Dispatch, 505
filesystem, 505–506
graphics, 506
input/output, 506
iOS energy, 509
master tracks, 506
overview, 489–490

recording, 500–503
running, 490–491
saving and reopening, 503–504
speed analysis, 268–272
system, 507–509
templates, 512–513
threads/Locks, 509–510
trace, 509
trace document window, 492–500
tricks, 538
UI automation, 510
user interface, 510

Integer Digits setting, 368

Intentions for views, 168

Inter-App Audio service, 307

Interface Builder

Auto Layout, 186
class names, 143
constraints, 187–188
designable views, 193
game detail, 378–380
inspectable properties, 189, 196
linking views, 166
localizations, 385, 389
outlets, 175, 177, 208
permanent views, 202
property editing, 332
scene editing, 172
size classes, 197
table views, 349
view controllers, 158–161, 163, 238
widget, 291

Interface Builder tab, 42, 160

Intermediate compiler products, 62–64

Interpreted languages, 53

Invert Call Tree, 271–272, 497–498

I/O Activity instrument, 506

596 Index

iOS

application bundles, 406–409, 412–415

Auto Layout. See Auto Layout

capabilities, 306–308

energy instruments, 509

measurement and analysis. See
Measurement and analysis model. See
Models

MVC design pattern, 107–110

as packages, 405

porting from, 326–330

prerelease distributions, 304

provisioning. See Provisioning

scheme options, 517–518

starting projects, 110–112

table cells. See Tables and table cells

templates, 112–114

unit testing. See Unit testing

view controllers. See View controllers

widget extension. See Widget

“iOS Debugging Magic (TN2239)”, 538

iOS Enterprise developer program

Apple developer programs, 298

build settings, 316

iOS icon is pre-rendered, 223

iOS Simulator

limitations, 213, 266

memory, 507

speed analysis, 266

templates, 513

tests, 252

IPHONEOS DEPLOYMENT TARGET, 561

iprofiler, 504

ISO-standard languages, 373

Issue navigator, 29

Issue Navigator Detail, 56

Issues: Show live issues, 53

Items of New Constraints, 175

J

Java, Build settings for, 560

JetBrains AppCode, 576

Join a Program, 298

JSON format for property lists, 430–431

Jump bars

Assistant editor, 164–165

description, 160–161

K

Kaleidoscope tool, 573

Keep in Dock, 491

Key Bindings panel

controllers, 148

key equivalents, 227–228

Preferences window, 533–534

Key Equivalent field, 331

Key-Value Coding (KVC), 180, 233–234

Key-Value Observation (KVO), 351, 353, 361

Key-value pairs

localizations, 389

property lists, 422

Keyboard panel, 39, 412, 501

Keyboard Shortcuts tab, 412

Keychain sharing, 306

keyPathsForValuesAffectingCurrentTeamName
method, 362

Keys for applications, 406–415

KVC (Key-Value Coding), 180, 233–234

KVO (Key-Value Observation), 351, 353, 361

Index 597

L

Labels

building views, 169–171
constraints, 200–202
tags, 215

Language & Region panel, 373

Language & Text panel, 399

Language popup, 111

Language setting, 323

Language tab, 373

Launch behavior for bundles, 410–411

Launch due to a background fetch event, 518

Launch images, 221–225

Launch storyboards, 224

LaunchScreen.xib layout, 113

Layout

Auto Layout. See Auto Layout
localizations, 375–378

Layout guides for views, 168

layoutSubviews function, 194–195

Leading edges of views, 228

LeagueDocument class, 333–334

LeagueViewController class, 344, 347,
358–360, 363

LeagueWindowController class, 345–347

Leaks instrument, 507, 538

Left-side group for labels, 169–171

Levels for build settings, 464–465

libcrypto API, 9

Libraries

adding, 75–76
dynamic, 52–53
instruments, 499–500, 504
object, 51, 347–348
static, 69, 539
targets. See Library targets

/Library/Developer directory, 11–12

Library navigator, 444

Library palette, 504

LIBRARY SEARCH PATHS, 561

Library targets, 69

adding, 69–71
debugging, 76
dependent, 74–76
description, 70–71
headers, 74
membership, 71–73

Library window, 499–500

limitPinner function, 129

Line Graph style, 496

Line wrapping: Wrap lines to editor width, 22

Link Binary With Libraries build phase,
50–51, 66, 75, 460

Linking and linkers

editing, 51
editors, 231–232
process, 50–52
tricks, 540
views, 166–167

Lion, 308

lipo tool, 482

Lists in reStructured Text, 456–457

Live Rendering, 193

lldb debugger

command line, 523–525
linking description, 53

LLDB Quick Start Guide, 525

.lldbinit files, 525

llvm library, 53, 149

loadGames function, 272–274, 334–335

Loading

document window, 345–347
dynamic, 52–53
LeagueDocument data, 333–334

loadSampleData method, 287–288

598 Index

loadStatViews method, 380

loadView method, 158

Local analysis, 53–55

Local remote repositories, 87–88

Local variables, 37

Locales, 383–385

Localizable Strings file, 385

Localizable.strings file, 395–396

Localization Debugging: Show non-localized
strings, 517

Localizations, 368, 373

adding, 374–376

application bundles, 408–409

base, 374–376

French. See French localization

game detail, 376–382

Info.plist, 406

locales, 383–385

modules and namespaces, 382

overview, 373–374

strings, 398–399

Locations

Doxygen, 452

settings, 553–556

Locks instruments, 509–510

Log Message, 520

Log view for Comparison editor, 99, 101

Logic tests, 260

Login button.png, 404

Logs

vs. breakpoints, 518–519

builds, 476–477

lproj system, 373–374

LSApplicationCategoryType key, 410

LSBackgroundOnly key, 410

LSEnvironment key, 410

LSFileQuarantineEnabled key, 411

LSFileQuarantineExcludedPathPatterns
key, 411

LSGetAppDiedEvents key, 410

LSMinimumSystemVersion key, 411

LSMinimumSystemVersionByArchitecture
key, 411

LSMultipleInstancesProhibited key, 411

LSRequiresIPhoneOS key, 412

LSUIElement key, 411

LSUIPresentationMode key, 411

M

Mac App Store. See App Store

Mac Developer identity, 312

Mac OS X. See OS X

“Mac OS X Debugging Magic (TN2124)”, 538

MAC OS X PRODUCT BUILD VERSION,
552

MAC OS X VERSION ACTUAL, 551

MAC OS X VERSION MAJOR, 552

MAC OS X VERSION MINOR, 552

Machine instructions, 49

MacOS directory, 404

MacPorts package manager, 574

MacStatView class, 376

Mailing lists, 568

Main.storyboard file, 112, 389–392

MainInterface.storyboard file, 290

Makefile goals, 459

makeWindowControllers method, 344–345

malloc function, 489

MallocDebug application, 489

Manage Flags, 508

Manage PM Events, 508

Manage Schemes editor, 317

Index 599

Managed-object classes, 117, 123

creating, 124–128

source control and product files,
136–138

specializing, 132–138

test data, 134–136

Managed object contexts, binding, 352–353

managedObjectContext property, 353

Maps capability, 306–307

Margins in reStructured Text, 456–458

MARK directive, 208

Mark Heap, 538

Mark Selected Files As Resolved, 84

Master branches in version control systems, 102–
103

Master-Detail Application template, 161–162

Master tracks instruments, 506

MasterViewController class, 112, 141–143

Matching, 144

Mavericks version, 9–11

Maximum attribute, 120, 368

MDM (Mobile-Device Management) systems,
304

measureBlock method, 246, 276

Measurement and analysis, 264

memory, 277–278

speed. See Speed

Meetings, 570

Membership, target, 71–73

Memory, 277–278

instruments, 506–507

problems, 538

RAM, 49

requirements, 10

Memory Monitor instrument, 508

Menus, wiring, 330–331

file types, 336–338

First Responders, 332–333

icons, 339–340

League Files, 338–339

LeagueDocument data, 333–334

managed documents, 334–335

targets and actions, 331–332

testing commands, 335–336

Merge editor, 97

Merge from Branch, 104

Merge into Branch, 104

Merges in version control systems, 89–98

Messages

analysis, 56

Documentation window, 444

logs, 520

Objective-C compilers, 544

Metadata in Git, 82

Method names, refactoring, 142

Min Length setting, 120

Mini instruments, 502

Minimum attribute, 120, 368

missing-braces-and-parentheses warning, 149

MKDirectionsApplicationSupportedModes key,
415

Mobile-Device Management (MDM) systems,
304

Modal scenes, 227–233

Mode settings

Doxygen, 452

object controllers, 352

Model Key Path field, 354, 366–367

Model-to-View support, 210

Model-View-Controller (MVC) design pattern,
107–108

controllers, 110

models, 108

views, 108–110

600 Index

Models

attributes, 118–121

debugging, 139

entities, 118

implementing, 117

managed-object classes. See
Managed-object classes

OS X applications, 325–330

relationships, 120–123

Modified file state, 82–83

module.map file, 66

MODULE NAME, 557

Modules, 65–66

localizations, 382

Swift in, 289

symbols, 250

Modules extension, 52

mogenerator tool, 126–128, 573

More Developer Tools, 14

Mouse buttons, 5

Mouse pointer variables, 37

Move Breakpoint To, 525

Multiple Values Placeholder, 356

MVC (Model-View-Controller) design pattern,
107–108

controllers, 110

models, 108

views, 108–110

N

Name labels, 169–170

Names

product, 322

refactoring, 142–143

Namespaces, localizations, 382

nan (not a number), 35

NATIVE ARCH, 557

NATIVE ARCH 32 BIT, 557

NATIVE ARCH 64 BIT, 557

Navigation panel for gestures, 537–538

Navigators, 21

Breakpoint, 150
Debug, 211–212
detail settings, 56
Documentation window, 439–440
Issue navigator, 29
Library, 444
Project, 36
Report, 476
Symbol, 57

NDEBUG macro, 531

Net resources, 567–570

Network Activity instrument, 509

Network Activity Monitor instrument, 508

Network capabilities, 309

New Branch, 102

New File assistant, 26–27

New Folder

Doxygen, 452
subclasses, 124

New OS X Icon, 339–340

New Project assistant, 19–20, 27

iOS, 110
OS X, 328

New Scope, 535

New Target assistant, 69, 280

New Trace assistant, 491

newton sqrt function, 189

Next Run, 494

.nib files, 143

nm tool, 63

No Access, 309

No Action delete rule, 121

No Selection Placeholder field, 356

Index 601

Normalizing entities, 326

Not a number (nan), 35

not-enough-fields.csv file, 252

Notification Center widget, 290, 294–295

NS BLOCK ASSERTIONS macro, 531–532

NSAppleScriptEnabled key, 411

NSApplicationShowExceptions setting, 528

NSArray class, 151

NSArrayController class, 352–353

NSBundle class, 373, 392

NSCoder Night meetings, 570

NSController class, 352

NSError class, 54–55

NSFetchedResultsController class, 113,
129–130, 144, 207

NSFileWrapper class, 402

NSHumanReadableCopyright key, 408, 410

NSLocalizedString class, 395

NSJSONSerialization class, 431

NSLog function, 519–520

NSMainNibFile key, 407

NSManagedObject class, 145

MVC model, 107

subclass creation, 124

widget design, 281

NSManagedObjectCollector class, 353

NSManagedObjectContext class, 289

NSNull class, 431

NSObject class, 107

NSPersistentDocument class, 334, 353

NSPrincipalClass key, 407

NSRTFDPboardType file type, 402

NSScrollView, 544

NSServices key, 412

NSSplitView class, 357

NSSplitViewController class, 358

NSString class, 180

NSSupportsSuddenTermination key, 411

NSTextFields, 370

NSTextView, 544

NSZombieEnabled setting, 518

Null Placeholder, 356

Nullify delete rule, 122

Numbers

data formatters, 367–368
property lists, 417–418, 429

O

.o files, 460

-O3 optimization, 540

objc-language list, 568

Object allocations by class, 489

Object controllers, 352–354

OBJECT FILE DIR, 555

Object files, 50–51

objectAtIndexPath method, 144

Objective-C programs

assertions, 261–262
characteristics, 57–58
choosing, 111
compiler messages, 544
data types, 417–418
namespaces, 382
optimization settings, 540
optional arguments, 395
renaming symbols in, 141–143
shared libraries, 286
source files, 50
support for, 62

OBJROOT, 554

observeValueForKeyPath method, 360–361

-Ofast optimization, 540

-Onone optimization, 540

602 Index

Open another project, 18

Open GL ES, 518

Open in instruments, 504

Open Keyboard Shortcut Preferences, 501

Open Quickly, 261, 437–438, 532

Open Recent, 24

OpenCL facility, 53

OpenGL ES Analyzer instrument, 506

Optimization

compiler, 48–49

speed, 272–275

tricks, 540–541

Option key, 537–538

Optional for libraries, 75

Options panel, 19–20

Options tab

localizations, 388

schemes, 516

Ordered for relationships, 121

Ordered lists, 417–418

Organization Identifier, 110, 280

Organization Name setting

iOS projects, 110

new projects, 19

OS X projects, 323

Organizational Identifier setting, 19

Organizations in Apple developer programs,
298

Organizer window

derived files, 554

snapshots, 95

trash, 24

Orientation constraints, 197–198

-Os optimization, 540

OS X, 321

application keys, 409–412

bindings. See Bindings

bundles. See Bundles

capabilities, 306–307

entities, 326–330

frameworks. See Frameworks

goals, 321–322

localizations. See Localizations

models, 325–330

porting from iOS, 326–330

property lists. See Property lists

sandboxing, 308–311

starting applications, 322–325

storyboard segues, 343–345

wiring menus, 330–340

OSAScriptingDefinition key, 412

OTA (over-the-air) installations, 304

OTHER CFLAGS, 558

OTHER CODE SIGN FLAGS, 553

OTHER CPLUSPLUSFLAGS, 558

OTHER SWIFT FLAGS, 558

otool tool, 63

outlet collections, 201

Outlets

building views, 163–164

code completion and snippets,
180–183

connections, 177–180

hooking up, 177

overview, 175–176

table view, 207–208

Output panel in Doxygen, 452

Over-the-air (OTA) installations, 304

Overlay for instruments, 497

P

@p code-text comment, 448

Package managers, 574

Index 603

Packages, 401

downloading, 14–15

RTFD, 401–402

PaintCode tool, 573–574

@param parameter comment, 448

Passbook system, 307

Passer Array controller, 363–364

Passer class, 212, 231–232

passer rating function, 131, 256

Passer ratings project overview

building, 29–30

controllers, 154–155

creating, 25–29

debugging, 32–34

running, 30–32

test case, 35

PasserEditController class, 228, 233–235

PasserEditTableController class, 230, 233

passerGameHeader method, 394

PasserListController class, 160, 162, 231,
233, 236

Passing data to editor, 235–237

Paste for dictionaries, 424

.pch files, 65

Peak Graph style, 496–497

Performance

compiler, 48–49

speed, 272–275

tricks, 540–541

XCTest, 276–277

Performance bar charts, 31

Persistent State: Launch application without
state restoration, 517

Personal VPN system, 307

Phases, build, 460–461

PhoneGap framework, 576–577

pinComparables function, 129

pip package, 446

Pixels for icons, 223

Plain style, 232

Planning

apps, 107–110

constraints, 197–200

platform in lldb, 523

PLATFORM NAME, 551

Playback head in trace document window,
494

Player billboard, 186–188

Playgrounds, 17, 189–191

PLIST FILE OUTPUT FORMAT, 430

Plists. See Property lists

plutil tool, 428–430

po command, 526

Point Graph style, 496

Pointers in Cocoa programming, 54

Points for icons, 223

Popovers

Quick Help, 436–437

variable values, 37

Portals for iOS, 304

Porting from iOS, 326–330

POSIX working directory, 517

Precompilation, 64–65

Prefer Margin Relative, 173–174

Preferences window

Apple ID, 298

automatic features, 22

behaviors, 40–42

bindings, 148

code completion, 28, 180

code-folding ribbon, 535–536

controllers, 148

docsets, 444–445

downloads, 11, 15

604 Index

Preferences window (continued)

fonts, 32

indentation, 28

instruments, 501

Issue Navigator detail, 56

key equivalents, 533

navigational gestures, 537–538

remote repositories, 85, 88–89

source trees, 563

team membership, 300–301

version control, 80

warnings and errors, 53

Prefix files, 64–65

Prefix headers, 64–65

prepareForSegue function, 234–236,
283–284, 381

Prepares Content, 352

Preprocessing xcconfig files, 470–471

Preprocessors, 62–63

Prerelease distributions, 304–306

Prerelease versions, 13

Present As Popover connections, 239

Preview, 94–95

Preview assistant, 168, 172

Preview view, 165–166

Previous Run, 494

print ln function, 191

Private keys for certificates, 303

Private role, 74

Probes, 511

process in lldb, 524

Process instrument, 508

Processor requirements, 10

Product files in managed-object classes,
136–138

PRODUCT MODULE NAME, 557

PRODUCT NAME, 551

Product Name setting, 19, 322

PRODUCT TYPE, 551

Profile action, 490–491

Profiles

applications, 268
provisioning, 299–303

Program members, 302

PROJECT, 551

PROJECT DIR, 553

Project editor

library targets, 69–70
localizations, 375

PROJECT FILE PATH, 553

-project for xcodebuild, 472

PROJECT NAME, 551

Project navigator, 36

Project role, 74

ProjectBuilder, 1

Projects list for builds, 460

Projects overview

building, 22–23, 29–30
creating, 19–22, 25–29
debugging, 32–34
deleting, 24
Doxygen settings, 452–453
running, 22–23, 30–32
templates, 112–114

Projects panel

derived files, 554
snapshots, 95

Properties for entities, 117

Property List editor, 406

limitations, 427–429
working with, 422–426

Property lists, 417

binary, 430
data types, 417–419, 429–431
editing, 419–429

Index 605

limitations, 431

localizations, 392–394

specialized, 431–432

text, 429–430

Protecting assets, 303

Protocol methods, 208–209

Prototype cells, 211, 214

Provide Feedback link, 445

Provisioning, 297, 299

asset protection, 303

capabilities editor, 306–308

distribution builds, 314–318

Gatekeeper and Developer ID,
311–314

OS X Sandboxing, 308–311

prerelease distributions, 304–306

profiles, 299–303

registering apps, 300-303

PROVISIONING PROFILE, 314, 553

Public role, 74

Pull, 96

Push, 88–89, 96

Push segues, 162

Pushing to remote repositories, 88–89

pwrite function, 511

Q

Quick Help facility, 435

comment syntax, 447–449

generating, 446–447

inspector, 435–436

popovers, 436–437

Quick Help for Selected Item, 436, 439

QuickLook eye, 191

Quit

lldb, 523
OS X, 33

Quit Xcode, 24

R

Raises For Not Applicable Keys, 354–356

RAM, 49

rating components function, 256–257

RatingTest class, 256–260

Read Access, 309

Read/Write Access, 309

Reads/Writes instrument, 506, 511–512

Recent Executables, 493

Recent for builds, 476

Record button, 501

Record for instruments, 504

Record Options, 502–503

Record Settings tab, 496–497

Recording instruments, 500–503

Rectangles, layout, 171

Refactoring feature, 57

class names, 142–143
method names, 142

Reference Language column, 384–385

References

folders, 533
repositories, 87

Registered developers, 12–13, 302

Registering

app groups, 282–283
apps, 300–303
team membership, 300

Regular expressions

refactoring method names, 142
searches, 89
traps, 542

606 Index

Relationships, 117–118, 120–123

Relative to Group, 534

Release Notes section, 438

Remote repositories, 84–87

Remotes tab, 88

Removing

breakpoints, 36

Xcode, 11–12

Renamed file state, 83

Renaming

classes, 144

symbols, 141–143

Renaming service, 534

Render As Template Image, 221

Rentzsch, Jon “Wolf”, 126

Reopening instruments, 503–504

Replace All, 144

Replace All in File, 90–91

Report Navigator, 476–477

Repositories

cloning, 85

remote, 84–87

Xcode Server, 85–86

Required for libraries, 75

Requirements, 9–10

resizableImageWithCapInsets method, 221

Resolve Auto Layout Issues menu, 202–203,
229

Resource forks, 401

Resource Manager, 401

Resources

books, 565–567

Developer Technical Support, 568–569

face to face, 570

localizing, 392–394

net, 567–570

sites and blogs, 569–570

software, 570–576

Resources directory, 403

Respect language direction, 388

Responder chains, 331

reStructured Text (reST) language, 446,
456–458

restview package, 446

Retain cycles, 277

Retrieving data from editor, 237–239

@return keyword, 448

Return Value, 525

Reveal in Library, 440

Rich text file directory (RTFD) package,
401–402

Right-clicking, 5

Right-side group for labels, 169–170

Right to Left Pseudolanguage, 388, 391

Root view controller segues, 162, 239

Routing App Coverage File, 518

Row Height setting for table cells, 215

RTF editor for localizations, 385–386

RTFD (rich text file directory) package,
401–402

Rules, build, 474–475

Run-Edit-Print Loop (REPL), 189

Run scheme editor, 515

Run Script editor, 135

Running

Doxygen, 454–455

instruments, 490–491

projects, 22–23, 30–32

tests, 252–254

Running Application settings, 493

Index 607

S

sample code, 5

sample-data.csv file, 136–138, 252, 265, 333

Sampler instrument, 508

Sandboxing

benefits, 310

disadvantages, 310–311

OS X, 308–311

Save as Template, 503

Save-file dialog for targets, 73

Save for iOS App Store Deployment, 539

Save Screen Shot, 224

Saving instruments, 503–504

Scale for track area, 495

Scan recursively, 452

scanf function, 32, 47–48

Scenes

modal, 227–233

view controllers, 158–161

Schedules for instruments, 509

Scheme control, 74

Scheme editor, 76

instrument templates, 270

tests, 245

scheme for xcodebuild, 472

Schemes

builds, 317

options, 515–518

Scopes, defining, 535

SDKROOT, 553

SDKs (software development kits), 9

build settings, 469–470

iOS projects, 112

Search Documentation for Selected Text
section, 439

Search paths for settings, 561

Searches

Documentation window, 440–443
files, 535
help, 438
version control, 90–91

@see documentation comment, 448

Segues

passer list, 231
types, 239–240
unwind, 238
view controllers, 158–161
views, 162

Select Statistics to List settings, 497

Selection Indexes setting, 366

Selective commits, 91–93

sender method, 232, 235

Separate by Category, 497

Separate by Thread, 497

Services menu, 501, 542

Set Baseline, 276

setUp method
CSV testing, 248
performance testing, 276
unit testing, 257

setupPlayers function, 194

Shadow Offset, 170

Shadows for labels, 170

SHALLOW BUNDLE, 555

Share Breakpoint, 525

Shared libraries in frameworks, 285–290

Shared Memory instrument, 507

Shared User Defaults Controller, 354

sharedGameDB method, 287

Sharing

defaults, 283–284
files, 284–285

Shift key, 538

608 Index

Shortcuts

function keys, 39

instruments, 501

lldb, 524

Show All Results, 441

Show Bounds/Layout Rectangles, 188

Show Bounds Rectangles, 164

Show: Code folding ribbon, 22, 535

Show Definitions, 466, 550

Show Detail connections, 239

Show environment settings in build log, 549

Show Find Options, 542

Show Group Banners, 500

Show/Hide...debugger, 40

Show/Hide navigator, 40

Show HTML output, 454

Show In Finder, 24, 539

Show live issues, 22, 148

Show navigator, 42

Show non-localized strings, 392

Show Package Contents, 10, 402, 405, 445

Show Raw Values & Keys, 432

Show Setting Names, 466, 550

Show Setting Titles, 550

Show Slicing, 221

Show tab named, 42

Show this window when Xcode launches, 18

Show Values, 550

Signals from exceptions, 150

Signatures in iOS provisioning, 299

Signing identities, 299, 487

SimpleCSVFile, 246

Simulate Document, 350

Simulate Location, 39

Sites, 569–570

Size and Size Inspector, 168, 173

columns, 350
constraints, 186–188, 197–200
table cells, 215
views, 164–165

Size classes, 197

SKIP INSTALL, 555

Sleep/Wake instrument, 509

Snap Track to Fit, 271, 495

Snapshot Now, 507

Snapshots

projects, 95
VM Tracker, 507

Snippets, 181–183

Software development kits (SDKs), 9

build settings, 469–470
iOS projects, 112

Software resources, 570–571

AppCode, 576
assessment, 577–578
Cocoa alternatives, 576–577
helpers, 572–574
package managers, 574
text editors, 571–572
version control, 575–576

Sort Descriptors binding, 365–366

Sorting tables, 365

Source code

description, 45
Doxygen, 452
property lists, 427

Source control. See Version control systems

Source Control menu, 81–82, 86, 88–89

Source files with names matching, 475

Source Locations settings, 553

Source trees settings, 562–563

Sources & Binaries, 449

Index 609

SourceTree version control system, 575

Specialized property lists, 431–432

Speed, 265–266

Debug navigator, 266–268

instruments, 268–272

memory, 277–278

optimization, 272–275

Spin Monitor instrument, 508

Splash screens, 224

Split views, 357

Spotlight box, 120

SQLite, 117, 336

SRCROOT, 135, 472, 553

Stack Libraries style, 496

Stack Overflow forum, 568

Stack traces, 31

displaying, 151

filtering, 151–152

trace document window, 499

Stacked for instruments, 497

Staged file state, 83

Starting

iOS projects, 110–112

Xcode, 17–18

startMeasuring method, 276

States of files, 82–83

Static libraries (.a), 69, 539

Static table cells, 228, 232–233

Statistics to Graph settings, 512

Stats view, 291–292

StatView, 191–197

Step Into (F7), 39, 527–528

Step Out (F8), 39

Step Over (F6), 39, 527

Stepping through code, 37–39, 527–528

Stop

debugging, 33
instruments, 501
iOS, 155

stopMeasuring method, 276

Store in External Record File, 120

Storyboard editor, 240

.storyboardc files, 143

Storyboards, 224

segues, 240, 343–345
for view controllers, 158–161

Strategy control, 494

Strings and .strings files

localizations, 389–392, 394–399
property lists, 417–418, 429–430

STRINGS FILE OUTPUT ENCODING, 560

Structure

application bundles, 407, 410, 412–413
builds, 459–462

Structured directory trees, 403

Style settings

buttons, 229
instruments, 496
models, 118
table cells, 232

Sublime Text 2 text editor, 571–572

Subscripts, 129–130

Subviews from layouts, 188–197

Sudden Termination instrument, 504

Suggest completions while typing, 180

Supporting Files group, 113

Suppressing warnings, 155

SWIFT OPTIMIZATION LEVEL, 557–558

Swift programming language

assertions, 261–263
books about, 566–567
chained expressions, 139

610 Index

Swift programming language (continued)

choosing, 111

class names, 123

class qualifiers, 361

collections, 177

data types, 418

directives, 139

exceptions, 263

HeaderDoc comments, 446

managed-object classes, 127

mangled names, 150

memory management, 277

modules, 65–66, 114, 250, 289

namespaces, 382, 543

Objective-C comparisons, 57–62

optimization, 540

pinner functions, 131

playgrounds, 18, 189

renaming classes, 144

reStructured Text, 456–458

subscripts, 129

support limitations, 63, 126

system libraries, 66

Switch-Branch sheet, 103

Switch to Branch, 103

Symbol navigator, 57

Symbols, 49

modules, 250

renaming, 141–143

tokens, 53–54

SYMROOT, 554

Syntax-aware indenting settings, 22, 28

System Calls instrument, 509

System instruments, 507–509

System Language, 388

SYSTEM LIBRARY DIR, 561

System Preferences application

function keys, 39

gestures, 29–30, 440

instruments, 501, 506

localizations, 373, 387

System Processes, 493

T

Tab, 42

Table Cell View, 355

Table of contents sidebar, 440

Table View Cell, 355

Tables and table cells, 207

custom, 214–217

graphics. See Graphics

modal scenes, 228

OS X, 347–350

outlets, 207–208

prototype, 211

static, 228, 232–233

table views, 145–146, 174–175,
229–230

tableView function, 207, 209, 216

Tabs

creating, 159

Documentation window, 440

switching, 42

Tags

labels, 215

version control, 542

TARGET BUILD DIR, 554

Targets and Target editor

ad-hoc variants, 317

asset-catalog file, 221

build phases, 50, 460–461

build rules, 474

Index 611

build settings, 462–463

bundles, 543

capabilities, 309

code size, 531

components, 69–70

configuration files, 467–469

dependencies, 76

device families, 414

displaying, 244

icons, 221, 316

images, 221, 414

Info.plist file, 324, 405–406, 408

instruments, 501

iOS projects, 111–112

levels, 464–465

libraries. See Library targets

in lldb, 523–524

new projects, 26–27

packages, 405–406

product names, 322

property lists, 419–420

provisioning profiles, 300

Quick Help, 436, 447

registering apps, 300

storyboards, 224

trace document window, 492–493

widget, 280

wiring menus, 331–332

xcodebuild, 471–472

Team Admins in Apple developer programs,
298

Team Agents in Apple developer programs,
298

Team array controller, 352–353

Team class, 327

Team Members in Apple developer programs,
298, 300

Team Provisioning Profiles, 302

TeamDetailController, 358–363

teamGameHeader method, 394–395

teamWithName function, 328

tearDown method, 246, 248, 276

Templates

instruments, 270, 503, 512–513

iOS projects, 112–114

Temporary exceptions, 309

Terminal application, 24

test action for xcodebuild, 471

Test data for unit testing, 252

Test navigator, 244–246

Test suites, 243

testCalculation method, 257

testExample method, 246

testFileReadsCompletely method, 249

TestFlight beta distributions, 305–306

Testing

unit. See Unit testing

views, 183–184

testNoSuchFile method, 249

testPerformanceExample method, 246, 276

testTooManyFieldsError method, 253–254

Text Color control, 170

Text Editing panel, 22, 180, 536

Text editors, 571–572

Text for property lists, 417–418, 429–430

TextEdit application, 401–402

TextMate 2 text editor, 571

TextWrangler text editor, 571

3rd Party Mac Developer Application identity,
312

3rd Party Mac Developer Installer identity, 312

Third-party package managers, 575

612 Index

Thread

in debugging, 527

lldb, 524

Threads instruments, 509–510

Threads perspective, 494

Time Profile commands, 501–502

Time Profilers for instruments, 268–272, 496,
508

Timeline Assistant, 191

Titanium API, 577

Titles

buttons, 228–229

columns, 350

menu items, 331

Today widget, 290–294

TodayViewController, 291–293

@todo documentation comment, 448

Toggle Instruments Recording, 501

Tokens, 53–54

too-many-fields.csv file, 252

Toolbars

modal scenes, 228

trace document window, 492–494

Tools in Interface Builder, 159–161

Top Functions filter, 498

Top Layout Guide, 228

Trace document window, 492

Detail area, 495

Extended Detail area, 495–499

Library area, 499–500

toolbar, 492–494

Track area, 494–495

Trace documents, 268–269

Trace Highlights, 499

Trace instruments, 509

Track area in trace document window,
494–495

Track Display, 497

Trailing edges in views, 228

Transcripts for builds, 476–487

Transient attribute, 120

Trash, 24

Tricks

Assistant editor, 536–538
building, 539–541
code-folding ribbon, 535–536
general, 531–535
instruments and debugging, 538–539

Truncation, 367

Two developer-program memberships, 315

2010-data-calculated.csv file, 252

Type menu for instruments, 497

Typographic conventions, 5

U

UI automation instruments, 510

UI Hierarchy view, 521

UI-layout editors, 158

UI panel, 521

UIAppFonts key, 413

UIApplication class, 260

UIApplicationDelegate protocol, 112

UIApplicationExitsOnSuspend key, 414

UIBackgroundModes key, 414

@UIDesignable views, 292

UIFileSharingEnabled key, 414

UIImage class, 221

UIImageView class, 218

UIInterfaceOrientation key, 413

UILabel class, 171

UILaunchImageFile key, 414

UILaunchImages key, 414

UILaunchStoryboardName key, 412

Index 613

UIMainStoryboardFile key, 412

UINavigationController class, 161–162

UINewsstandApp key, 414–415

UIPrerenderedIcon key, 414

UIRequiredDeviceCapabilities key, 413

UIRequiresPersistentWiFi key, 413

UIScrollView class, 347

UIStatusBarHidden key, 413

UIStatusBarStyle key, 413

UISupportedExternalAccessoryProtocols key,
413

UISupportedInterfaceOrientations key, 413

UITableView class, 129–130, 145, 215, 229,
347

UITableViewCell class, 145, 211, 214, 217,
231

UITableViewController class, 113, 229–230

UITableViewDataSource class, 208

UITableViewDelegate class, 236

UIView class, 109–110, 166, 215

UIViewController class, 110, 141, 157–158,
175, 207, 229–230

UIViewEdgeAntialiasing key, 414

UIViewGroupOpacity key, 414

Umbrella headers, 66

Undefined attributes, 119

Unformatted field, 368

Uniform Type Identifiers (UTIs), 336–338

Unit testing

asynchronous tests, 260–261

CSV Reader, 246–251

overview, 243–244

test navigator, 244–246

testing and debugger, 254–260

XCTest assertions, 261–264

Universal (fat) binaries, 482

Unknown file state, 84

UNLOCALIZED RESOURCES FOLDER PATH,
556

Unmerged file state, 83

Unmodified file state, 83

Unresolved addresses, back-filling, 51

Untracked file state, 82

Unwind segues, 238

Update Frames, 171, 173, 203

Update Frames menu, 175

URLs for application bundles, 409

Use Base Internationalization, 375

Use Core Data

iOS projects, 111
OS X applications, 323

Use dot tool, 452

Use scalar properties for primitive data types,
124

Use Storyboards, 323

USER, 551

User and System Libraries style, 496

User Info settings for models, 120

User information for application bundles,
407–408

User interface instruments, 506, 510

User presentation in application bundles,
413–414

Uses Lazy Fetching, 352

Using popup for build rules, 475

/usr/bin directories, 11

UTExportedTypeDeclarations key, 409, 432

Utilities.swift file, 129–131

Utility area, 72, 159

UTImportedTypeDeclarations key, 409

V

Validates Immediately, 356

Validation field for attributes, 120

614 Index

Value Transformer field, 354, 364

Value With Pattern binding, 364

valueForKeyPath method, 134

Variables

build. See Build settings

Debug area, 32

Variables pane, 37–38, 526

verbal conventions, 5

Version control systems, 25, 79–80

branching, 102–104

commits, 84–85

file state, 82–83

managed-object classes, 136–138

merges and conflicts, 89–98

remote repositories, 84–87

software, 575–576

tags, 542

Version editor, 99–102

working with, 81–82

Xcode with Git, 83–84

Version Control with Subversion,
575

Version editor, 99–102

Versioned bundles, 403

Versioning, 120

Versions covered, 4

Versions version control system, 575–576

vi text editor, 572

View control, 31, 42, 119

View controllers, 141

adding, 157–158

building views. See Building views

editing, 144–147

embedded, 229–231

outlets. See Outlets

storyboards, scenes, and segues,
158–161

table views, 174–175

View Debugging, 517

View Details, 301

View menu, deleting, 330

View Processes by Queue, 521

View Processes by Thread, 521

View selector, 23

View UI Hierarchy, 521

viewDidLoad method, 231, 233–235, 292,
380, 393–394

Views

Auto Layout. See Auto Layout

building. See Building views

cleaning up, 171–174

constraints, 168, 186–188

debugging, 521–523

linking, 166–167

MVC model, 107–110

table, 145–146, 174–175, 229–230

testing, 183–184

viewWithTag function, 215

VM Operations instrument, 509

VM Tracker instrument, 507

W

waitForExpectationsWithTimeout method,
261

wAny bar, 200–202

@warning documentation comment, 448

Warnings

compiler, 29–30, 539

disclosure triangles, 208

displaying, 53, 55

suppressing, 155

Index 615

Watchdog timer, 265

watchpoint commands, 524, 526–527

Welcome to Xcode window, 17–18

What’s New in Xcode section, 439

Widget, 279

build dependencies, 294–295

data access, 282–285

designing, 281–282

extension, 290–294

result, 295–296

shared libraries, 285–290

target, 280

widgetPerformUpdateWithCompletionHandler
method, 293

Widths Equally, 203

WiFi instrument, 509

Wildcard patterns in searches, 89

windowDidLoad method, 346–347, 360

Wireless Accessory Configuration, 308

Wiring menus, 330–331

file types, 336–338

First Responders, 332–333

icons, 339–340

League Files, 338–339

LeagueDocument data, 333–334

managed documents, 334–335

targets and actions, 331–332

testing commands, 335–336

Wiring OS X applications. See Bindings

Wizard tab for Doxygen, 451, 453

WORA (write-once-run-anywhere) apps,
577

Workflows, 4

Working Directory: Use custom working
directory, 517

-workspace for xcodebuild, 471–472

Wow feature of Assistant editor, 536

WRAPPER EXTENSION, 555

WRAPPER SUFFIX, 555

Write-once-run-anywhere (WORA) apps,
577

X

x-code-users list, 568

X11 package, 454

.xcassets files, 220

images, 559

OS X applications, 324

overview, 113

xcconfig files, 468–471

.xcdatamodeld file, 324

XCNotificationExpectationHandler class, 261

Xcode icon, 17

Xcode Overview section, 438

xcode-select tool, 11, 472–473

Xcode Server

Accounts panel, 300

repositories, 80, 85–86

xcode-users list, 568

XCODE VERSION ACTUAL, 552

xcodebuild tool, 463–464, 468–469,
471–472

.xcodeproj package, 471

xcrun tool, 473

XCTAssert assertion, 250

XCTAssertEqual assertion, 250, 262

XCTAssertEqualObjects assertion, 263

XCTAssertEqualWithAccuracy assertion,
257, 262

XCTAssertFalse assertion, 262

XCTAssertGreaterThan assertion, 263

XCTAssertGreaterThanOrEqual assertion, 263

XCTAssertLessThan assertion, 263

616 Index

XCTAssertLessThanOrEqual assertion, 263

XCTAssertNil assertion, 262

XCTAssertNotEqual assertion, 261

XCTAssertNotEqualObjects assertion, 263

XCTAssertNotEqualWithAccuracy assertion,
262

XCTAssertNoThrow assertion, 263

XCTAssertNoThrowSpecific assertion, 263

XCTAssertNoThrowSpecificNamed assertion,
264

XCTAssertNotNil assertion, 250, 262

XCTAssertThrows assertion, 263

XCTAssertThrowsSpecific assertion, 263

XCTAssertThrowsSpecificNamed assertion,
264

XCTAssertTrue assertion, 262

XCTest assertion macro, 243

XCTest class, 250

assertions, 261–264
performance, 276–277

XCTestCase class, 243, 260–261

XCTestExpectation class, 261

XCTFail assertion, 262

XCUnitTest class, 244–245

Xemacs text editor, 572

XIB files, 143, 344

linking, 158
owners, 175
xliff files, 396–397

XML

property lists, 405, 421, 427–431

refactoring names, 143

stores, 336

XPC services, 517–518

Y

Yosemite Server, 80

Yosemite version, 9–10

command-line tools, 11

gestures, 380

modules, 338

state-restoration feature, 335

storyboards, 343

support, 13–14

Xcode Server, 80

Z

Zombie technique, 518

Zoom In, 228

Zoom Out, 227

zooming

instruments, 495

Interface Builder, 159

Zuckerberg, Mark, 578

	Contents
	Acknowledgments
	About the Author
	Introduction
	How This Book Is Organized
	About Versions
	About the Code
	Conventions

	3 Simple Workflow and Passive Debugging
	Creating the Project
	Building
	Running
	Simple Debugging
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

