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Introduction 

Welcome! Accueil! Przywitać! 歓迎 

Welcome to your first taste of localization: the word “welcome” translated into the four 
languages English, French, Polish, and Japanese. But this book is about more than localization 
and translating strings. This book covers internationalization. What is internationalization, and 
how does that differ from localization? Although these terms do tend to become 
interchangeable, their applications are not equivocal. 

Internationalization is the process of preparing your app to be localized. It encompasses 
supporting the cultural information of a given region and locale. It is preparing your code to 
support the character set, calendars, number format, sorting, and text direction of that locale, just 
to name a few. You often see the term “internationalization” abbreviated with the numeronym 
“i18n.” 

Localization is the process of translating text and assets to support a specified region’s language. 
It’s often abbreviated “l10n.” 

So that’s the “what”; what about the “why?” Why a book about internationalization, and how is 
it worth your investment of time? 

▪  iOS internationalization information and resources are scattered among fantastic blog 
posts, tutorials, and book chapters. This book’s goal is to be a central repository for all 
things internationalized. 

▪  You can generate goodwill with your customers. Customers appreciate the fit and finish 
effort to make it easy for them to understand your application by having it support their 
cultural norms. 

▪  The numbers point to supporting more than a single market: 60% of iPhone users 
worldwide are not native English speaking, and 50% of the countries within the top 10 
for downloads and revenue in the iOS App Store are non-English-speaking countries 
from Europe and East Asia. App revenue in Asia increased by over 150% year-over-
year (2012 to 2013), while North America’s revenue grew by just over 45%. (Source: 
Distimo 2014) 

▪  The extra resources needed to support internationalization are not out of budget. Most 
Objective-C classes include a specific “locale” property or method. By including that 
call, you’ve added incredible flexibility and support to your application with minimum 
developer effort. Localization of your application can be an initial resource hit, but after 
it is established, it becomes a straightforward process of supplying string tables for sup-
ported languages. 



These are compelling arguments for budgeting time and resources to internationalizing your 
application! 
 

Reader Expectations 

This book does have a few expectations of you, with the biggest being an understanding of 
Objective-C. A basic list of what is expected follows: 

▪  Objective-C—This is the programming language for iOS. This book assumes that you 
have a strong working knowledge of Object-C because it pulls from existing classes and 
references methods and properties from each. It is also assumed that you have experi-
ence working with view controllers, XIBs, and Storyboards. 

▪  Xcode 5.x and later—Much of the coding throughout the book references Xcode, its 
layout, and its tools and options, including Interface Builder. It is also assumed that you 
have a working knowledge of and familiarity with the iOS Simulator. 

▪  iOS 7 and later—You will not need an iOS device, be it an iPhone or an iPad, but you 
do need to have experience using the device. Many of the instructions throughout the 
book are detailed, and a working knowledge of the System would be to your benefit. 

▪  Apple Developer account—This is not a requirement but it’s great to have access to the 
Apple Developer resources and WWDC materials and videos. This also makes it easier 
to follow Chapter 7, “Submitting Your App,” and its discussion on localizing your app 
summary in the App Store. 

How This Book Is Organized 

Here’s a summary for each of the book’s chapters: 

▪  Chapter 1, “International Settings”—This chapter covers the supported languages, 
regions, and calendars available in iOS 7. We’ll talk about what differentiates a “lan-
guage” setting from a “region” or “locale” setting. This chapter goes step-by-step in how 
to change these settings. It gives details on how the settings are presented—in the native 
language for the most part—as well as background information on each of the settings. 
The chapter also includes detailed lists of the supported formats—date, time, currency, 
quotation marks, separators—for each language and region. 

▪  Chapter 2, “Characters and Encoding”—This chapter covers character sets, under-
standing and working with them. We’ll talk about their storage and display and how en-
coding can potentially affect both of those aspects. Unicode is covered, as well as how it 
simplifies working with character sets. We’ll look at locale-specific character sets and 
their interaction with characters and ligatures. We’ll go into character details on retriev-
ing their Unicode code points and the tools that make that possible. A discussion on 
fonts wraps up the chapter. 



▪  Chapter 3, “Coding for Locale”—This chapter includes lots of code. There are many 
samples to cover specific locale classes, NSLocale, and the locale-specific arguments 
we can harness for our good from the NSNumberFormatter, Address Book Frame-
work, NSDateFormatter, NSTimeZone, NSDateComponents, and NSString 
classes. We’ll demonstrate how they all respect the current locale settings for the System 
and verify that their return values are correct for the given locale. 

▪  Chapter 4, “Prepping Your App for Localization”—We’ll take our lessons learned in 
Chapter 3 and apply them to a sample internationalization app, the I18nExerciser. This 
app will carry us through to Chapter 6. We’ll build an app that will display locale-
specific information including date styles, character sets, measurement system, number 
formatting, sorting, current calendar, contact names, and many more items. No localiza-
tion happens with this chapter. This is the prep, setting up our app to automatically han-
dle localization. 

▪  Chapter 5, “Localizing Your App”—We’ll take our sample app and walk through the 
localization process. We’ll cover the power of base localization, generate “dot-strings” 
files, and work with the key-value pairs in the “dot-strings” files. We’ll also cover local-
izing images and localizing the app name, and we’ll discuss working with translation 
services. 

▪  Chapter 6, “Adjusting the UI”—The majority of this chapter covers Auto Layout and 
constraints. When the localized strings are applied, they can be longer than our default 
development language. We’ll cover how to prevent clipped strings with appropriate con-
straint settings. This chapter also covers how to support right-to-left languages via the 
proper constraint settings. We’ll also discuss implications of the height of the keyboard 
for different languages. We’ll cover available tools such as pseudo localization, double 
strings, and launch switches. We’ll wrap up with UI localization, images, colors, and 
string length. 

▪  Chapter 7, “Submitting Your App”—This chapter hits on the App Store and iTunes 
Connect. It includes details on supported territories and pricing tiers. The chapter com-
pletes “language mapping” between the number of supported iOS 7 languages, to the 
languages spoken in iTunes Connect territories, to the languages listed in iTunes Con-
nect on the app summary page. The chapter covers the how-tos for changing territories, 
as well as what fields to localize on the app summary page: name, description, key-
words, URLs, screenshots, and EULAs. The chapter closes by covering Apple’s promo-
tional materials and discussing how to see your app in regional App Stores. 

▪  Appendix A, “Case Study: Boom Beach”—This appendix focuses on the numbers. 
Stats for a specific app’s download and sales increase after a Japanese localized version 
is provided. 

▪  Appendix B, “Web Resources”—This is a listing of web resources related to interna-
tionalization and localization. 

 
 



Getting the Sample Code 

Chapters 4, 5, and 6 are written so that you can complete the sample project from scratch. 
Because they are set up with minimum instruction, I made the completed projects available on 
my GitHub account: https://github.com/ShawnLa-i18n. Each chapter has its own associated 
project so that you can follow the project progress, see the mistakes, and see how they’re fixed. 

Contacting the Author 

Feel free to contact me via e-mail at shawnlai18n@gmail.com if you have any comments or 
questions about this book, or contact me at the GitHub repository. 

https://github.com/ShawnLa-i18n


2 
Characters and Encoding 

Reading asks that you bring your whole life experience and your ability to decode the written word and 
your creative imagination to the page and be a co-author with the writer, because the story is just squiggles 

on the page unless you have a reader. 

Katherine Paterson 

Characters. Letters. Symbols. Items used on a printed page and on a multitude of displays we 
use today. When used in an organized sequence, they are interpreted to give meaning or, in 
other words, create words. Languages use different characters with accent marks and 
pronunciation marks to accentuate or provide meaning. We’ll talk about what’s involved in 
creating characters, things like diacritics and surrogate pairs and ligatures, and storing those 
characters (encoding and code points). 

Chapter topics include the following: 

▪ What’s behind the scenes with characters 

▪ How characters are stored and accessed by the OS 

▪ How the OS determines what character to use based on its language setting 

▪ How glyphs allow us to have different renditions or renderings of the same character 

▪ What causes “garbage” characters or empty box characters to display 

We’ll hit the essentials about characters, strings, encoding, Unicode, and glyphs, and wrap up 
with fonts. 

 



Characters 

What is a character, what constitutes a character, and how is that character represented as far as 
ye ole computer is concerned? A character is the smallest component of a written language that 
has semantic value. Focusing on the English (U.S.) alphabet, it’s composed of 26 characters, 
and depending on the order and combination of those 26 characters, words can be formed, 
returning even more meaning. This section discusses characters in generic terms to get you into 
the mind-set of thinking of individual characters. The other goal I have is to make you aware of 
the different “characteristics” of characters. How characters are handled at the operating system 
level is covered in the “Code Pages and Encoding” section. 

Types of Characters 

You will be working with more than the characters from the English (U.S.) alphabet, so let’s 
talk about characters that exist in other languages. 

Accented Characters 

Often, accents on characters such as the acute (´) accent and the grave (`) accent are referred to 
as diacritical marks. Other accents from European languages include the circumflex (^), umlaut 
(¨), and cedilla (¸). 

The main use of accents is to change the accented character’s sound value. English examples 
include naïve and Noël. The accented characters (diereses in this case) show that these 
characters (vowels) are pronounced separately from the preceding vowel. 

Acute and grave accents can indicate that a final vowel is to be pronounced, such as the French 
works résumé or été. 

Accents can perform other functionality with different alphabetic systems. The Arabic harakat 
and the Hebrew niqqud systems are used for indicated vowel and tone sounds that are not 
conveyed through the basic alphabet. The Arabic sukūn and the Indic virama both designate the 
absence of a vowel. Special characters exist to mark for abbreviations or acronyms—as in the 
Cyrillic titlo and the Hebrew gershayim. The Greek language includes accents to indicate that 
letters of the alphabet are being used as numerals. In the Chinese Hanyu Pinyin system, accents 
are used to mark syllable tones in which the marked vowels occur. 

  
 Heads Up! 

Different sounds can provide different meanings. You need to know you’re using the correct 
character to give the correct intended meaning to your customer! 

Chinese Characters 

Chinese characters in themselves do not make up an alphabet. The writing system for Chinese 
is logosyllabic, meaning that a character generally represents one syllable of spoken Chinese 
and might be a word on its own or a part of a polysyllabic word. Chinese characters are all 



derived from several hundred simple pictographs (representing physical objects) and 
ideographs (representing pronunciation or abstract notations). 

Some Chinese characters have been adopted as part of the writing systems of other East Asian 
languages, such as Japanese and Korean. International software support for the Chinese, 
Japanese, and Korean languages is often shortcut as CJK. Table 2.1 shows examples of Asian 
characters. 

Table 2.1 Sampling of Asian Characters 

Language Character English Translation 

Chinese 树 “tree” 

Japanese 魚 “fish” 

Korean 책 
“book” 

Characters for the Japanese language are usually a mixture of Chinese characters, or kanji, plus 
two syllabic scripts. At times the English (U.S.) alphabet is used as well. Having a working 
knowledge of 2,000 kanji characters is sufficient to read and comprehend most Japanese text. 

Korean characters come mainly from an alphabetic script, Hangeul. Some hanja Chinese 
characters are used, but to a much lesser extent than with Japanese. When reading older Korean 
texts, an understanding of about 2,000 hanja characters is essential. 

Table 2.2 contains different types of characters that are not necessarily found in any language’s 
alphabet but are interesting nonetheless. We’ll go over these types of characters and how to use 
and access them in the section, “Unicode and Encoding.” Punctuation characters have the 
capability to accentuate meaning, context, and understanding of text, but they do need to be 
associated with characters and words to accomplish that task. They cannot add meaning or 
understanding by themselves. 

Table 2.2 Sampling of “Other” Characters 

Category Character English Description 

Punctuation ¶ Paragraph symbol, or pilcrow 
sign 

Pictographs ☃ Snowman 

Math Symbols ∩ Intersection 

Letterlike Symbols ℃ Degree Celsius 

 
 



 
Strings 

Why do we use the term “strings,” and where did this term originate? Think of pearls, beads, or 
the like strung on a cord—something sequential connected in a line or arranged in a series or 
succession. 

In general computer science terms, a string is traditionally a sequence of characters.  This 
sequence of characters can be stored as a variable. Strings are generally treated as data types 
and are often implemented as an array that stores the characters using a manner of character 
encoding. The term encoding here refers to converting a character to its internal code point 
representation. Encoding is covered in detail in an upcoming section of this chapter. 

In Objective-C, the string class is NSString and is the basic tool for representing text within 
your application. The NSString class provides powerful and flexible methods for manipulating 
its contents, as well as searching. And to add to its coolness, this class has native Unicode 
support. 

  
 Note 

We will hit the NSString class and its other NS cousins in Chapter 3, “Coding for Locale.” I do 
want to call out this topic now because in the next section, “Code Pages and Encoding,” I make 
references to NSString objects, but again, the next chapter calls it out in greater detail. 

  

Code Pages and Encoding 

The most basic of definitions for character encoding is the assigning of a numeric code to a 
character. This particular number is called a code point. The OS represents these assigned code 
points by one or more bytes. This coding is a set of mappings between the bytes representing 
the numeric code used by the OS and the characters in the coded character set. This gives the 
OS a way to reference all available characters. If the encoding key is not available, potentially a 
different character is referenced, and the resulting data looks like garbage to the customer. To 
add to the complexity, there are many character sets and character encodings, giving us many 
ways to map among bytes, code points, and characters. Code samples in upcoming sections 
demonstrate this in action. 

But where did this complexity originate? If we’re talking about characters—which are typically 
stored in one or two bytes—and numeric codes assigned to these characters, then why is there 
not a one-to-one correspondence? Let’s all sit back, relax, and enjoy a small history lesson on 
encoding. 



 

 

ASCII Character Set 

Back when the IBM-PC was first introduced—the Stone Age in computer time—due to 
localization being a lower priority, the characters having the highest importance were numbers, 
punctuation symbols, and unaccented English letters. All of them had a code associated with 
them, collectively called ASCII (American Standard Code for Information Interchange), which 
represented every character using a numeric value from 32 to 127. The capital letter “D” has a 
code point of 68 (decimal value), a lowercase “m” has a code of 77, and an exclamation point 
(“!”) has a code point of 33. All code points are conveniently stored in seven bits. Most systems 
at this time were using bytes of eight bits in length, so every possible ASCII character could be 
stored with a bit to spare. All code points below 32 were labeled unprintable and were used for 
control characters, such as 10, which is a “line feed,” and 13, which is a “carriage return.” 

Extended Character Set 

Noticing that bytes have room for a total of eight bits, people collectively got the idea, “Hey, 
codes 128 through 255 are available for our own aspirations.” One of the aspirations that came 
to be from this was the IBM-PC’s original equipment manufacturer (OEM) character set, which 
provided some support for European languages, specifically some accented characters, drawing 
characters including horizontal bars and vertical bars, and other characters. 

After computers were purchased outside of the U.S., all manner of different OEM character  
sets appeared. All of these used the spare 128 characters for their own designs. Now what 
would happen in some circumstances was that a character that was encoded based on a  
different character set would appear as a completely different character on a computer using  
its own extended character set. For example, on some computers, the character code 130 would 
display as “é” but on computers sold in Israel the character would display as the Hebrew  
letter gimel (ג). When Americans would send their “résumés” to Israel, they would arrive as 
“rגsumגs.” In many cases, such as with Russian, there were many divergent ideas related to the 
upper 128 characters, which resulted in not being able to reliably interchange Russian 
documents. 

ANSI Standard 

Eventually, this OEM free-for-all got codified in the ANSI (American National Standards 
Institute) standard. With the ANSI standard, the consensus was to handle the characters below 
128 the same as ASCII, and the handling of characters from 128 and up would depend on the 
locale. Code pages were established to handle these upper value characters. 

The different ideas were codified into what are known as code pages. A code page is a table of 
values that describes a language’s encoding for a particular character set. Each of these code 
pages had a value associated with it. Greek speakers would use code page 737, Cyrillic 
speakers code page 855, and so on. All of these code pages were the same from codes 0 to 128, 
but different from codes 129 and up. 



Asian Character Support: DBCS 

This subject becomes even more complex when we’re dealing with Asian character sets. 
Because the Chinese, Japanese, and Korean languages contain more than 256 characters, a 
different scheme needed to be developed, and it had to compete with the concept of code pages 
holding only 256 characters. The result of this was the double-byte character set (DBCS). 

Each Asian character is represented by a pair of code points (hence the term double-byte), 
which allows for representing up to 65,536 characters. For programming awareness, a set of 
points are set aside to represent the first byte of the set and are not valued unless they are 
immediately followed by a defined second byte. DBCS meant that you had to write code that 
would treat these pairs of code points as one, and this still disallowed the combining of, say, 
Japanese and Chinese in the same data stream because depending on the code page, the same 
double-byte code points represent different characters for the different languages. 

  
 Heads Up! 

Make every effort you can not to use the previously mentioned encodings. Beware, your app 
might need to deal with them when reading in a text file or accessing a Web site. Program 
defensively so that your code correctly handles this encoding. Coding examples in the upcoming 
sections demonstrate how to do this.  

Unicode and Encoding 

Hopefully, from what I presented in the preceding section, it is more than apparent just how 
nasty encoding can be, especially when you’re dealing with code pages. Thankfully, the pain 
was felt far and wide, and the result was Unicode. Two of Unicode’s mandates were to 
eliminate code page collisions and give each character its own individual code point value.  The 
name “Unicode” comes from the desire to have a “universal” character set or, precisely, 
“universal code points.” 

Unicode Planes 

Unicode is broken down into several planes, a plane being a continuous group of 65,536 (216) 
code points. Plane 0 is indicated as the Basic Multilingual Plane (BMP) and is where almost all 
of your day-to-day characters reside. The notable exception to this is the Emoji characters. 
Planes 1 through 16 are largely empty of characters and are termed supplementary planes. 
Table 2.3 lists the available Unicode Planes and the types of characters they hold. 

Table 2.3 Unicode Planes 

Plane Character Types It Contains 

Plane 0 BMP—Contains characters for most modern languages plus a large 
number of special characters. Code points in this plane are also used 
to encode CJK characters. 



Plane 1 Supplementary Multilingual Plane (SMP)—Contains Emoji 
characters and other pictographs. Also holds historical scripts such  
as hieroglyphics. 

Plane 2 Supplementary Ideographic Plane (SIP)—Contains CJK characters. 

Planes 3–13 Unassigned—Temporarily named the Tertiary Ideographic Plane. 

Plane 14 Supplementary Special-purpose Plane (SSP)—Contains 
nongraphical characters, such as those used for XML language tag 
characters, as well as alternative glyphs. 

Planes 15–16 Supplementary Private Use Area-A and Area-B, respectively—
Contains characters that are used internally by fonts for auxiliary 
glyphs and ligatures. 

In simplest terms, Unicode provides a code point for every character or symbol in nearly all the 
world’s writing systems. Unicode code points are written in the form “U+####” in which 
“####” is made up of four to six hexadecimal digits. To give three quick examples, the code 
point U+0062 (decimal 98) represents a lowercase “b”—the same character and same value in 
the Latin ASCII table. The Cyrillic capital letter “de” or “Д” has the Unicode code point of 
U+0414 (decimal 1044), and the fleur-de-lis symbol “⚜ ” is U+269C (decimal 9884). 

To provide room for 65,536 characters, Unicode was originally conceived as a 16-bit encoding. 
This provided enough space to encode all modern scripts around the world. Private Use areas 
were designated to hold rare or obsolete characters. Unicode has approximately 10% of its total 
available code points in use, leaving ample room to grow. 

Combining Character Sequences 

Certain characters can be represented either as a single code point or as a sequence of two or 
more code points. Take, for example, the “ì” character. This can be represented either as a 
single-character “ì” (“Latin Small Letter I with Grave,” U+00EC), or as a combination of two 
characters, “i” (“Latin Small Letter I,” U+0069) and “`” (“Combining Grave Accent,” 
U+0300). Both of these forms are variants of a composite or combining character sequence. 
This combination of characters is not restricted to Latin scripts but includes CJK character sets 
as well. With Hangul, the syllable 가 can be represented as a single code point, U+AC00, or as 

the sequence ᄀ + ᅡ, U+1100 and U+1161. 

As far as Unicode is concerned, the two characters are not equivalent—because they contain 
different code points—but they do have canonical equivalency. In other words, they have the 
same appearance and meaning.  See the “Diacritics” section later in this chapter for examples of 
this combination in action.   

Duplicate Characters 

As you look through existing Unicode tables, do you see double? The characters might look the 
same, but that’s the only similarity they have. The display might be identical, but some 
characters are encoded at different code points to retain the character’s meaning. Take, for 



example, the Latin character “A” (U+0041). Its shape is identical to the Cyrillic “A” (U+0410), 
but they are two very separate characters. Having the separate code points also simplifies the 
conversion from legacy encodings. 

Of course, there is the contrary scenario in which there truly are duplicate characters, both in 
display and in the character’s meaning. An example here would be the Angstrom sign, “Å.” 
This character owns two listings; the first has the character info “Latin Capital Letter A with 
Ring Above” (U+00C5), and the second has “Angstrom Sign” (U+212B). 

Other characters that fall into this category have a property known as compatibility equivalence. 
Compatibility represents essentially the character but a slightly different visual appearance and 
a different behavior for this character. Concrete examples include Greek letters, which can be 
mathematical and technical symbols, Roman numerals, or actually Greek text. 

Other examples of compatibility equivalence include ligatures. The single character “ff”—
having character info of “Latin Small Ligature FF” (U+FB00) is compatible with the sequence 
of two characters “ff” having character info of “Latin Small Letter F” (U+0066) + “Latin Small 
Letter F” (U+0066). They might render and display similarly, but that similarity is dependent 
on context, typeface, and the text renderer. 

  
 Heads Up! 

If your sorting is not giving the expected results, check your characters and make no 
assumptions. You could be working with a character that is identical to another character 
encoded with a different code point. 

Encoding in Action 

Wow. I’m thankful we have Unicode, and although it’s imperfect, it is a far, far more direct 
approach to working with characters and handling encoding. Let’s move on to seeing encoding 
in action with some code samples and then wrap up this section with some encoding bloopers. 
We’ve already talked about ASCII encoding; now let’s look at encoding definitions for two of 
the most common encoding formats, UTF-8 and UTF-16. 

UTF-8 

UTF-8 stands for Universal Character Set (UCS) Transformation Format—8-bit. 

  
 Universal Character Set and Unicode 

UCS and Unicode have a relationship and distinctions as well. UCS and Unicode are related by 
the fact that Unicode is regarded as the 16-bit coding of the Basic Multilingual Plane (BMP) of 
the UCS.  

  
The UTF-8 format uses variable-width encoding and is capable of storing and representing 
every character in the Unicode character set. Its design was based on avoiding endianness 



complications and byte order marks found in the UTF-16 and UTF-32 encoding formats and, 
even more important, backward compatibility with the ASCII format (see the “Endianness” 
note later in the chapter for more detail about that and byte order). This encoding format 
accounts for more than half of all web pages, and the Internet Mail Consortium recommends 
that all email programs create and display messages using UTF-8. It’s increasingly becoming 
the default character encoding in software applications, operating systems, and programming 
languages. Xcode is a prime example of this, as shown in Figure 2.1. 
 

 

Figure 2.1  The default encoding for source files in Xcode. 

UTF-16 

UTF-16 is the character encoding capable of encoding well over one million code points in the 
Unicode code space. UTF-16 is short for 16-bit Unicode Transformation Format. The Unicode 
code space encompasses from code point 0 to 0x10FFFF. Its encoding is variable-length; code 
points are encoded with one or two 16-bit code units. UTF-16 encoding provides excellent 
support for Asian languages. It is not, however, ASCII compatible. 

Coding Encoding 

Let’s look at some code samples. 

Text comes down to the wire as an NSData instance in which the “wire” could be a network 
condition or a file I/O action. To encode the text you are accessing, you can allocate an 
NSString and initialize it via the initWithData:encoding method. Notice the second 
parameter: encoding! So you need to know how the text was encoded. 

Example 1: Encoding to ASCII 

Listing 2.1 takes a string that contains accented characters, in this case the German word 
“Fußgängerübergänge.” We’ll examine what characters get “lost” from this encoding. 

Listing 2.1 Encoding Text to ASCII 

// Fußgängerübergänge - "sea voyage" 

NSString *uberUmlats = @"Fußgängerübergänge"; 

NSData *ASCIIData =  



[uberUmlats dataUsingEncoding:NSASCIIStringEncoding allowLossyConversion:YES]; 

NSString *encodeToASCII =  

[[NSString alloc] initWithData:ASCIIData encoding:NSASCIIStringEncoding]; 

NSLog(@"Encoded to ASCII - %@", encodeToASCII); 

The encoding that is in place is ASCII via the NSASCIIEncoding specifier. The reason we get 
Fusgangerubergange as our return value is two-fold. First, by specifying ASCII we are limited 
to characters with code point values under 128, so essentially no accented characters, of which 
our string has three, “ß,” “ä,” and “ü.” Second, by using NSString’s dataUsingEncoding: 
allowLossyConversion: instance method, we can specify, in a sense, “Handle all the 
characters I give you, and if it’s an accented character, I’m okay with your losing that accent.” 
Although the result is not a correct German word, its display is very close, and its meaning can 
reasonably be interpreted. If we change the encoding type to NSMacOSRomanStringEncoding, 
there’s no guarantee how the characters will be converted and encoded. In fact, with this 
encoding, the result is an unintelligible Fu§g?¿nger¿berg¿nge. 

Example 2: Returning the ASCII Value from a Character 

Listing 2.2 takes a single character as its argument and returns the ASCII value associated  
with it. 

Listing 2.2 Returning the ASCII Value for a Character 

NSString *encodingFun = @"a"; 

if ([encodingFun length] > 0) { 

    unichar ASCIIValue = [encodingFun characterAtIndex:0]; 

NSLog(@"ASCII value is %d", ASCIIValue); 

} 

The returned ASCII value for the character a is 97. Note that the type unichar is used because 
it is a typedef for an unsigned short. The value returned by the characterAtIndex method is 
the Unicode decimal representation for the code point. An NSString object is usually 
represented by an array of unichars internally, hence the reason we are using unichar as a 
return type. 

Example 3: Encoding an ASCII String to UTF-8 

Listing 2.3 shows the potential of repairing some “damage.” Typically, if you are working with 
text that has accented characters, those characters are misinterpreted when encoded to ASCII. 
This example starts with a misinterpreted string and correctly encodes it to UTF-8. Note that a 
little magic incantation is involved with this snippet because we need to take an NSString 
object and covert it to a plain C string. 



 

Listing 2.3 Encoding an ASCII String to UTF-8 

NSString *notUTF = @"N√ºrnberg"; 

NSString *nowUTF =  

[NSString stringWithUTF8String:[notUTF cStringUsingEncoding: 

NSMacOSRomanStringEncoding]]; 

NSLog(@"Now a UTF8 string: %@", nowUTF); 

The returned value is Nürnberg. 

Example 4: Returning a String from an Encoding URL 

Listing 2.4 takes an encoded string, in this case encoded from a valid URL, and returns text.  
With an encoded URL, many of the punctuation symbols and nonprinting characters are 
encoded, such as a space character encoded as %20. In the following argument, the chevrons  
< and > are encoded as %3C and %3E, respectively. The ampersand & is encoded as %26. 

Listing 2.4 Returning a String from an Encoding URL 

NSString *curentEncodedString = @"%3CTom%26Jerry%3E"; 

NSString *currentDecodedString =  

[curentEncodedString 

stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]; 

NSLog(@"Decoded string: %@", currentDecodedString);  

The code returns <Tom&Jerry>. 

Objective-C Encoding Enumerations 

The constants listed in Table 2.4 are the string encodings provided by the NSString class. 
You’ll use these encodings for the specified operating system so that the characters being 
encoded have the proper, understandable codes so that they are appropriately displayed. For 
example, if you are exporting text from your app that you know is going to a platform that  
does not support Unicode, you should encode it to the ASCII format using the 
NSASCIIStringEncoding constant. 

 

 

 



Table 2.4 Encoding Formats 

Enum Name Value Description 

NSASCIIStringEncoding 1 Supports only lower-value, 0–127, 
ASCII characters. No support for 
higher-bit characters. You’ll want to use 
this only if characters need to be in 7-bit 
ASCII. 

NSNEXTSTEPStringEncoding 2 Supports encoding used by NeXT. 

NSJapaneseEUCStringEncoding 3 Supports a variable-width encoding 
used to represent the elements of three 
Japanese character set standards  
(JIS X 0208, JIS X 0212, JIS X 0201). 

NSUTF8StringEncoding 4 Allows for full Unicode support. 
Characters display as ASCII when the 
text is plain English. 

NSISOLatin1StringEncoding 5 Encoding for European characters as 
high-bit ASCII (values 128–255). Also 
cross-platform international standard. 
Very common for Web sites to deliver 
their text in this format. 

NSSymbolStringEncoding 6 Way for symbol characters to be 
encoded. 

NSNonLossyASCIIStringEncoding 7 Similar to NSASCIIStringEncoding. 
Reinforces no high-bit characters. 

NSShiftJISStringEncoding 8 Supports Shift Japanese Industrial 
Standards encoding.  

NSISOLatin2StringEncoding 9 Supports ISO/IEC 8859 encoding of 
European languages. 

NSUnicodeStringEncoding  

 

10 Encodes all characters as two bytes. 
Marker bytes exist at the beginning of 
the file stream to signify whether the 
byte order is little or big endian. 

NSWindowsCP1251StringEncoding  11 Supports Cyrillic text. This is the same 
as AdobeStandardCyrillic. 

NSWindowsCP1252StringEncoding  12 Supports “WinLatin1” encoding. This is 
the most common for European/English 
text. Windows boxes that host Web 
sites deliver their context in this format. 

NSWindowsCP1253StringEncoding  13 Supports “Greek” encoding. 

NSWindowsCP1254StringEncoding  14 Supports “Turkish” encoding. 
 



NSWindowsCP1250StringEncoding  15 As with Latin1, supports “WinLatin2” 
encoding. 

NSISO2022JPStringEncoding  21 Japanese encoding for e-mail. 

NSMacOSRomanStringEncoding  30 Default encoding for the Mac. 

NSUTF16StringEncoding = 

NSUnicodeStringEncoding 

 Supports UTF16. 
NSUnicodeStringEncoding is an alias 
for NSUTF16qStringEncoding. 

NSUTF16BigEndianStringEncoding 0x90000100 NSUTF16StringEncoding encoding with 
explicit endianness specified. 

NSUTF16LittleEndianStringEncoding 0x94000100 NSUTF16StringEncoding encoding with 
explicit endianness specified. 

NSUTF32StringEncoding 0x8c000100 Convert NSString to 
NSUTF32StringEncoding. 

NSUTF32BigEndianStringEncoding 0x98000100 NSUTF32StringEncoding encoding with 
explicit endianness specified. 

NSUTF32LittleEndianStringEncoding 0x9c000100 NSUTF32StringEncoding encoding with 
explicit endianness specified. 

NSProprietaryStringEncoding 65536 As the name of the enum infers, used 
for custom, proprietary encodings.  

  
 Endianness 

We won’t go into detail in this book about string support, but I do want to call out endian. As you 
can be confident, this is neither a reference to a citizen of the country of India nor a reference to a 
Native American person, but rather a reference to the order in which bytes are stored in memory. 
Little endian stores data with the least significant byte in the smallest address. Big endian stores 
the most significant byte of a data word in the smallest memory address and the least significant 
byte in the largest address. The iOS operating system stores data in the little endian format.  

Encoding Gone Bad 

Table 2.5 shows an example of some “bad” encoding. (Is it true that there’s no bad encoding, 
just bad programmers?) 

 

 

 

 

 



Table 2.5 Examples of Encoding Gone Bad 

Original Text After Encoding Notes 

der Mülleimer der MÃ¼lleimer Stored UTF-8 being 
interpreted as Latin-1. 

Nürnberg N√ºrnberg UTF-8 to Mac Roman. 

Understanding how 
to “get” certain 
characters, certain 
glyphs and explain 
how they’re 
represented 

Understanding how to 
¿$B!F¿Bget¿$B!G¿(B 
certain characters, certain 
glyphs and explain how 
they_$B!G¿Bre represented 

Source file was Japanese (ISO 
2022-JP) and was read in 
using the UTF-8 encoding. 

  
 Heads Up! 

If your app needs to include a text file for an end-user agreement or licensing documentation, 
verify that it is properly UTF encoded. Ensure that any “read me” file that you will be 
internationalizing supports all the characters of the region it is shipped to. It is far too easy to 
look foolish with missed encoded characters in potentially the first file a customer reads! 

Diacritics 

A diacritic, or diacritical mark is a mark, point, or sign attached to a character to distinguish it 
from another of similar form. This mark can also give that character a particular phonetic value 
to indicate stress. A cedilla (hook or tail “¸”) accomplishes this when it is added under certain 
letters to modify their pronunciation: “ç ḑ ą Ȩ Ų.” Other diacritics that affect a character’s 
pronunciation include the tilde “~” and the circumflex (chevron-shaped “ˆ” in the Latin script), 
or the macron when it is placed above a vowel, as in “ē Ā.” You will hear diacritics referred to 
as combining characters. 

Diacritics can be treated in several ways: 

▪ A diacritic can be a Roman base character plus a diacritic character. A combination such 
as “á” might be encoded either as a single character with character info of “Small A With 
Acute,” or as a sequence of characters, “Small A” + “Combining Acute.” Another 
example is the character “Ä” represented as the Unicode code point U+00C4, or as a pair 
of code points, U+0041 and U+0308. 

▪ The “Small E with Grave,” or “è” character, might be rendered via glyphs—either a 
single composite glyph, or using two separate glyphs, one for “e” and another for an 
overstriking grave accent. 

▪ In some orthographies (the relationship between sounds and letters), the combination “è” 
would be considered a grapheme (a letter or a number of letters that represent a phoneme, 
or speech sound that distinguishes one word from another), whereas in other 
orthographies “e” and the grave accent would each be considered a grapheme in a word. 



In other words, if an orthography has an “è” as a grapheme, then it should be encoded as 
a single character and an associated single glyph. On the flip side, if an orthography has 
separate graphemes for the “e” and the “`” (the grave accent), they should be encoded as 
separate characters and rendered as separate glyphs. 

Precomposed Diacritics 

We’ve been talking about diacritics and how they can be added to or combined with other 
characters. Some of the terms given to this combination are composite character, 
decomposable character, and precomposed character. Let’s look at an example to see why this 
distinction is important. The character “ñ” is a precomposed character because it is treated as an 
individual Unicode character and has a Unicode code point of U+00F1. Technically, this 
character can be decomposed into an equivalent string of a base character “n” (U+006E) and a 
combining tilde “~” (U+0303). Precomposed characters are a solution for handling legacy 
support of special characters in character sets. They are included for the primary reason of 
aiding systems with incomplete Unicode support in which the individual decomposed 
characters can be rendered successfully. 

In looking at our “Small Letter N with Tilde” example, we could potentially be dealing with 
one single character or two individual, separate characters. If our code is doing any kind of 
character or string comparison, it is possible to have a test fail. To ensure that the expected 
single characters are used in the comparison, Unicode normalization is required. This can be 
accomplished via the precomposedStringWithCanonicalMapping method. Let’s look at some 
code. In Listing 2.5, we’ll work with our “Latin Small Letter N with Tilde” as a combined 
character and compare it to the precomposed character. 

Listing 2.5 Displaying Combined and Precomposed Characters 

NSString *combinedCharacter = @"n\u0303"; 

NSString *precomposedCharacter = @"ñ"; 

BOOL isEqual = [combinedCharacter isEqualToString:precomposedCharacter]; 

NSLog(@"The 'combined' character, '%@', is %@ to 'precomposed' character, '%@'", 

combinedCharacter, isEqual ? @"equal" : @"not equal", precomposedCharacter); 

This returns “ñ is not equal to ñ.” 

Now applying the same test, but first normalizing the characters, we use this: 

NSString *combinedNormalized =  

[combinedCharacter precomposedStringWithCanonicalMapping]; 

NSString *precomposedNormalized =  

[precomposedCharacter precomposedStringWithCanonicalMapping]; 

BOOL isEqualNorm = [combinedNormalized isEqualToString:precomposedNormalized]; 

NSLog(@"The 'combined-normalized' character, '%@', is %@ to 'precomposed-

normalized' character, '%@'", combinedCharacter, isEqualNorm ? @"equal" : @"not 

equal", precomposedCharacter); 



This returns “ñ is equal to ñ.” 

  
 Heads Up! 

Be aware of the gamut of diacritics that exist, their effect on line spacing and line height, and if 
they are not precomposed, their effect on the total number of characters in a line of text. If you 
are working with custom fonts in your app, be certain that the font contains the glyphs of the 
diacritics you need. 

Surrogate Characters 

Surrogate characters are typically referred to as surrogate pairs. They are the combination of 
two characters, containing a single code point. To make the detection of surrogate pairs easy, 
the Unicode standard has reserved the range from U+D800 to U+DFFF for the use of UTF-16. 
No characters are assigned to code point values in this range. When programs see a bit 
sequence that falls in this range, they immediately—zip! zip!—know that they have 
encountered a surrogate pair. 

This reserved range is composed of two parts: 

▪ High surrogates—U+D800 to U+DBFF (total of 1,024 code points) 

▪ Low surrogates—U+DC00 to U+DFFF (total of 1,024 code points) 

A lone surrogate is invalid in UTF-16; surrogates are always written in pairs, with the high 
surrogate followed by the low. 

With UTF-16 encoding, characters with code points in ranges U+0000 through U+D7FF and 
U+E000 through U+FFFD are stored as single 16-bit units. 

Table 2.6 contains examples of surrogate pairs. 

 

 

 

 

 

 

 

 

 

 



Table 2.6 Examples of Surrogate Pairs 

Character Code Point Surrogate Pair 

 

U+10000 {U+D800, U+DC00} 

 

U+10E6D {U+D803, U+DE6D} 

 

U+1D11E {U+D834, U+DD1E} 

 

U+10FFFF {U+DBFF, U+DFFF} 

 

The following code snippet shows you how to get a printout of a surrogate pair when you are 
given its code point: 

uniChar characterArray[2]; 

CFStringGetSurrogatePairForLongCharacter(0x10FFFF, characterArray); 

NSString *surrogate = [[NSString alloc] initWithCharacters:characterArray length:2]; 

NSLog(@"Surrogate: %@", surrogate); 

Note that this is taking advantage of the CFStringGetSurrogatePairForLongCharacter 
function, which maps a UTF-32 character to a pair of UTF-16 surrogate characters. We need an 
array to plug the resulting UTF-16 pair into—that’s what the characterArray is for—and then 
the initWithCharacters:length: method of NSString does the rest. 
  
 Heads Up! 

In speaking to fellow developers, I’ve found that one of the “gotchas” they’ve had to debug and 
fix was from the result of copying and pasting surrogate pairs. They’ve also had issues when 
working with Greek/mathematical symbols. The result of the paste action was munged and 
missing characters. Do thorough testing with a range of characters, those with high Unicode 
code point values, surrogate pairs, and even Emoji characters, especially if your app supports 
text entry.  

Emoji 

I’m making a special callout on the Emoji characters because they are extremely popular, and 
Apple both uses a special font to represent them and provides a keyboard to input just Emoji 
characters. 



Introduced in the late 1990s from a Japanese mobile phone provider, Emoji is the Japanese 
term for picture characters. Created by Shigetaka Kurita as an effort to retain his company’s 
customer base, the smiley-faced icons gave their text messages more cuteness. The other 
supporting factor of the Emoji characters was the ability to give contextual information with a 
single character. What’s the weather going to be like today? That’s easily presented with a sun 
or umbrella or cloud Emoji character. 

Figure 2.2 shows the first page of the Emoji keyboard. 
 

 

Figure 2.2  The Emoji keyboard. 

Apple Color Emoji is a font available on both iOS and OS X to provide support for the Unicode 
Emoji characters. Instead of this font having glyphs with black and white outlines, it has full-
color, higher-resolution images for each of the nearly 900 glyphs it supports. 

Strong support of Emoji has been a hard target to hit because it has historically occupied a 
private use area of Unicode with a range of code points from U+1F604 to U+1F539. 

Retrieving Characters from Unicode Code Points 

A quick way to see what character is associated with a given code point is via the Mac OS 
Calculator app. After the app is launched, if you switch the view to programmer, you can enter 



hex values and the app will return the available ASCII or Unicode character. If no character is 
available, nothing shows on its “screen.” See Figure 2.3 for a screenshot of the Calculator app. 
 

 

Figure 2.3  The Mac OS Calculator app in programmer view, displaying the 
Cyrillic “de” character. 

Here, I simply entered “414” for the Cyrillic capital character “de” (“Д”), mentioned in an early 
section. The binary representation of the code point value is displayed as well. This is 
extremely useful if you have the code point number, but what if you do not? 

Obtaining Unicode Code Points 

I have created an iPhone project available on my GitHub page that will return the Unicode code 
point value for a given character. The project also returns the ASCII value, when available, for 
the provided character. By having the code point for a character, you have more reference 
information. You’re more easily able to search for the character and reproduce it, and then test 
it against a required font to ensure that a glyph for that character exists in the font set. You will 
also know what the impact on encoding this character will be. By having the code point value, 
you don’t need to keep the actual character saved in a file and then load the file and copy and 
paste the character. 



The workflow of my project is this: 

▪ You see a character from a text or Web site or even a file you’ve opened on your device. 

▪ You select the character and then copy it. 

▪ You switch to my project and paste it into the “String” field. 

The GitHub project link is https://github.com/ShawnLaAppleDev/UnicodeValueGrabber.  

The code takes advantage of both the NSString class method initWithString and the format 
specifier %04x to return the Hexadecimal value of supplied character. Note that the format 
specifier is set up to have four placeholders that include leading zeros (see Listing 2.6). 

Listing 2.6 Returning the Unicode Code Points 

unichar ch = [unicodeString characterAtIndex:0]; 

NSString *unicodeHex =  

[[NSString stringWithFormat:@"U+%04x", ch] uppercaseString];      

return unicodeHex; 

 Note 

You can dig even more deeply into Unicode at www.unicode.org. 

Glyphs 

It is easy to confuse “glyphs” with “characters” because it is the glyph of the character that is 
drawn onscreen and hence what we are looking at. A glyph is a pattern, a shape, or an outline of 
the character’s image. Characters are what you type; glyphs are what you see. 

Two points need to be called out: 

▪ A character conveys differences in meaning or sound. No appearance property is 
associated with it. 

▪ A glyph conveys differences in appearance. The key thing is appearance. A glyph has no 
intrinsic meaning. 

Figure 2.4 shows a sampling of some glyphs for the Latin character “c.” Note that they are all 
of the same character, lowercase “c,” and therefore have the same meaning, but they are 
displayed, shaped, and outlined differently. 
 

http://www.unicode.org
https://github.com/ShawnLaAppleDev/UnicodeValueGrabber


 

Figure 2.4  A sampling of glyphs for the lowercase character “c.” 

There are also cases in which a character will have a glyph assigned to it based on the font set 
so that the shape it displays is nothing like the traditional shape of the character. “Wingdings” 
and assorted symbol fonts like that are prime examples in which the lowercase “c” character 
actually displays as . 

Also, variations in a character’s glyph can be associated with things like cursive connectors. In 
this scenario, the character is displayed traditionally, but it has slight changes depending on 
what character precedes it and what character follows it. Again, no meaning is lost; we have 
just gained flourishes. 

Contextual Glyphs 

For the Arabic and Indic family of languages, a character’s glyph can change greatly depending 
on the glyph’s position within the word and can change depending on characters that follow 
and precede it. Let’s focus on the Arabic character “Ain,” "ع" (Unicode code point U+0639). 
Figure 2.5 displays the different glyphs used for “Ain” depending on its context and position.  
 

 

Figure 2.5  Examples of contextual glyphs. 



Arabic is a right-to-left language, so the first/initial character is the rightmost, the second is to 
the left of that, the third is to the left of the second, and so on. 

Another example is the Greek character sigma (σ). When it is used at the end of a word and the 
characters of that word are not all uppercase, the final form of the character “ς” is used, for 
example, “Ὀδυσσεύς” (Odysseus). Note the two sigmas in the center of the name that remain 
the same and the word-final sigma at the end. Same character, different glyphs. This example 
also demonstrates that uppercase and lowercase are handled as separate characters and not as 
the same character—same character value, only displayed differently. 
  
 Chapter Quote 

The quote at the beginning of this chapter comes from children’s author Katherine Paterson. I 
included it because she mentions “reading” and “decoding,” which are both file I/O functions we 
are covering. The mention of “squiggles” reminds me of glyphs. 

  

Now that we’ve covered glyphs, let’s move on to fonts. 

Fonts 

The term font is a common, everyday household term. We generally think of it as the shape and 
display of the characters we are working with, as well as the size and spacing. It is a 
combination of these properties, as well as the typeface associated with the font. 

Font files are your storage depot for the glyphs that are associated with the characters. Well-
crafted fonts won’t fake bold, italic, and bold-italic variations but have built-in, designed 
glyphs for these variations. After your application has worked out what characters it is dealing 
with, it will look in the font for glyphs in order to display or print those characters. Of course, if 
the encoding information was wrong, it will be looking up glyphs for the wrong characters.  

A given font will usually cover a single character set. In the case of a large character set, like 
Unicode, just a subset of all the available characters will be available. This is one of the many 
reasons you will see specific fonts for CJK characters. It is more practical to have specific fonts 
hold specific character sets for both performance and file-size benefits. 

If your font doesn’t have a glyph for a particular character, some applications as well as the OS 
will look for the missing glyph in other fonts on your system. Although this eliminates a 
missing glyph from displaying as an empty box or a box containing a question mark, it does 
have the potential of having the glyph look different from the surrounding text, like a ransom 
note. 

  
 Heads Up! 

Including fonts will cause the bundle size to grow. With iOS, any custom fonts and font files your 
project needs must be included in the application bundle. Currently, there is not an option to 
install fonts to a Library/Fonts type folder on an iOS device. Be aware of how this will affect your 
bundle size and, by association, your download times. 



  

Ligatures 

The term ligature, which simply means “connection,” originates from the Latin ligari. The term 
itself doesn’t imply a certain purpose or use. Today, there are two possible ways to define a 
ligature, and both ways can appear in connection or individually. If we talk about the display of 
characters, a ligature is made from two or more letters, which appear connected. In handwriting 
such connections are created all the time, especially with cursive print. 

Some ligatures are two separate characters displayed with a connected glyph, whereas the glyph 
is one character with its own code point. 

Standard ligatures include might include fi, fl, ff, ffi, ffl, and ft. The purpose of these ligatures is 
to make certain letter parts that tend to knock up against each other more attractive. 

Here are some individual Unicode ligature characters: 

▪ ӕ—CYRILLIC SMALL LIGATURE A IE; Unicode: U+04D5; UTF-8: D3 95 

▪ fl—LATIN SMALL LIGATURE FL; Unicode: U+FB02; UTF-8: EF AC 82 

▪ fi—LATIN SMALL LIGATURE FI; Unicode: U+FB01; UTF-8: EF AC 81 

Code Snippet to Compare Ligatures 

Listing 2.7 compares the single-character ligature “ff” to the two-character equivalent “ff.” The 
localizedCompare method returns an NSComparisonResult value, which could be an enum of 
NSOrderedAscending, NSOrderedSame, or NSOrderedDescending. 

Listing 2.7 Using Localized Compare to Determine Whether Characters Are 
Equal 

NSString *characters = @"ff"; // Two "f" characters 

NSString *ligature = @"\uFB00"; // Single character - "ff" ligature 
NSComparisonResult result = [characters localizedCompare: ligature]; 

if (result == NSOrderedSame){ 

    NSLog(@"%@ is equal to %@", characters, ligature); 

} else{ 

    NSLog(@"Characters are not equal."); 

}; 

The code returns “ff is equal to ff.” 



Summary 

This chapter talked about characters and what kinds of “characters” they can be. We covered 
the history of encoding, starting with ASCII’s use of code pages and how that was fraught with 
danger. From there we moved to encoding and working with code points for characters and 
what can happen to a character if the wrong encoding is used. Hopefully, that discussion 
“scared you straight” so that you’ll use Unicode code points and use them often. From there, 
we talked about different ways Unicode handles characters, including combining, 
precomposed, surrogate, and duplicate. Glyphs, ligatures, and fonts wrapped up the chapter 
when we covered how they affect the display of the character. 
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