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INTRODUCTION  
When I received my master’s degree in electrical engineering in 2002, I 

couldn’t help but feel a little disappointed. I knew all about analog circuit 

theory, but I knew next to nothing about practical circuit boards. I could 

compute the Lorentz force in an electric motor, but I had no idea how 

motor controllers worked in the real world. Put simply, I could write pro-

grams and solve equations, but I couldn’t  make  anything.  

Shortly after I received my degree, the first Arduino boards appeared 

in the marketplace. Their simplicity and low cost sparked a worldwide 

interest in electronics, and within a few years, the Maker Movement was 

born. Makers aren’t interested in heavy mathematics and physics. Makers 

are concerned with what they can build. Whether it involves 3D print-

ers or the Raspberry Pi, makers care about cool hardware, especially if it 

involves electronics.  

But makers get nervous when it comes to motors. Pre-built quadcopters 

are growing in popularity, but I don’t see many makers designing their 

own electronic speed controls (ESCs) or programming their own robotic 

arms. This is perfectly understandable. Motors are more complicated than 

other circuit elements. With motors, you don’t just have to be concerned 

with electrical quantities such as voltage and current; you have to think 

about mechanical quantities such as torque and angular speed.  

The topic of electric motors isn’t easy, but the goal of this book is to make 

the concepts approachable to non-engineers. I assume a minimal back-

ground in mathematics and physics, and throughout the book, the empha-

sis is always on  making . Instead of discussing the Lorentz force and 

electromagnetic flux, this book focuses on practical knowledge. Instead of 
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bombarding you with equations, I’ll show you the different types of motors available and the ways 

they can be controlled.  

It takes time and patience to become comfortable with motors, but once you’ve ascended the 

learning curve, you’ll be able to work on new and fascinating types of projects. Robots and remote-

controlled vehicles will all fall within your grasp. The road is long, but I assure you that the destina-

tion is worth the journey.   

Who This Book Is For  
As the title should make clear, this is a book for makers. If you’re looking for a textbook on phasor 

diagrams and Maxwell’s equations, this isn’t the book for you. If you’re looking for practical infor-

mation related to motor operation and control, you’ve come to the right place. If you want to know 

about the different types of motors and what they’re good for, this is the book to have.  

I’ve done my best to make motors comprehensible to non-engineers, but this book is not for begin-

ners. In writing this book, I assume that you already know about volts, amps, and ohms. Further, I 

assume that you can look at a simple circuit diagram and get a sense for how the system works.   

How This Book Is Organized  
To present the topic of electric motors as clearly as possible, I’ve split the content into four parts:  

 • Part   I   , “Introduction,” provides an overview of what motors are and how they work.  Chapter   1   , 

“Introduction to Electric Motors,” introduces the history of electric motors and explains the two 

building blocks that make motor operation possible.  Chapter   2   , “Preliminary Concepts,” expands 

on this, and explains how motors convert voltage and current into torque and angular speed.   

   • Part   II   , “Exploring Electric Motors,” examines the many different types of motors available for 

makers. Specifically, the chapters in this part focus on DC motors, stepper motors, and servomo-

tors. Later chapters investigate AC motors, linear motors, and gears. For each type of motor, the 

chapter explains how it operates and how it can be controlled.   

 • Part   III   , “Electrical Motors in Practice,” presents three real-world applications of electric motors. 

Chapters   9    through    11    show how motors can be controlled with the popular circuit boards 

Arduino Mega, Raspberry Pi, and BeagleBone Black, respectively.  Chapter   12   , “Designing an 

Arduino-Based Electronic Speed Control (ESC),” explains how to build an electric speed control 

(ESC), and  Chapter   13   , “Designing a Quadcopter,” explains how to build a quadcopter. The final 

chapter focuses on the important topic of electric vehicles.   

   • Part   IV   , “Appendixes,” provides supplemental information that I hope will be helpful.  Appendix 

A   , “Electric Generators,” discusses the topic of electric generators and the different types of 

machines that convert motion into electricity. Following that, the glossary in  Appendix   B    pro-

vides definitions for many of the terms discussed throughout the book.    

 A handful of chapters present source code and circuit designs related to the content. These source 

code files and design files can be downloaded from  http://motorsformakers.com .   

http://motorsformakers.com
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Let Me Know What You Think 
Feel free to email me at  mattscar@gmail.com . I’m usually pretty good about responding promptly, 

though I won’t promise a response to every concern. 
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STEPPER MOTORS  
In this and the following chapter, the primary concern is  motion control —
making sure the motor turns with a specific angle and/or speed. This 

book discusses two types of motors intended for motion control: stepper 

motors and servomotors. I’ll refer to them as  steppers  and  servos , respec-

tively, and this chapter focuses on steppers.  

 A stepper’s purpose is to rotate through a precise angle and halt. The 

speed and torque of the rotation are secondary concerns. As long as the 

stepper rotates through the exact angle and stops, its mission is accom-

plished. Each turn is called a  step , and common step angles include 30°, 

15°, 7.5°, 5°, 2.5°, and 1.8°.  

 Due to their simplicity and precision, steppers are popular in electrical 

devices. Analog clocks, manufacturing robots, and printers (2D and 3D) 

rely on steppers for motion control. An important advantage is that the 

controller doesn’t have to read the stepper’s position to determine its ori-

entation. If the stepper is rated for 2.5°, each control signal will turn the 

rotor through an angle of 2.5°.  

 For many applications, we want the step angle to be as small as possible. 

The smaller the motor’s step angle, the greater its  angular resolution . 

Another important figure of merit is torque, particularly  holding torque . 

A stepper is expected to hold its position when it comes to a halt, and 

holding torque identifies the maximum torque it can exert to maintain its 

position.  

  4 



Stepper Motors56

II

PA
R

T

Modern steppers can be divided into three categories:  

    • Permanent motor (PM) —   High torque, poor angular resolution   

   • Variable reluctance (VR) —   Excellent angular resolution, low torque   

 • Hybrid (HY) —   Combines structure of PM and VR steppers, provides good torque and angular 

resolution    

The first part of this chapter examines these categories in detail. In each case, I’ll discuss the 

motor’s fundamental operation and present its advantages and disadvantages. The last part of the 

chapter explains how steppers can be controlled with electrical circuits.   

4.1 Permanent Magnet (PM) Steppers  
Small and reliable, permanent magnet (PM) steppers are popular in embedded devices such as disk 

drives and computer printers.  Figure   4.1    depicts the ST-PM35 stepper from Mercury Motor.   

 Figure 4.1 
 A permanent magnet (PM) 
stepper motor        

PM steppers have a lot in common with the brushless DC (BLDC) motors discussed in the preceding 

chapter. In fact, you can think of a PM stepper as a BLDC whose windings are energized to provide 

discrete rotation instead of continuous rotation.  

4.1.1 Structure  
The preceding chapter introduced the brushless DC motor and its two subcategories: inrunners and 

outrunners. PM steppers are similar to inrunners in many respects, and a good way to introduce 

them is to compare and contrast them with inrunner BLDCs.  Figure   4.2    illustrates the internal struc-

ture of a simple PM stepper.   
There are five important similarities between PM steppers and inrunner BLDCs:  

 • Neither motor has a brush or a mechanical commutator (all steppers discussed in this book are 

brushless).   

 • The rotor is on the inside, with permanent magnets mounted on its perimeter.   

 • The stator is on the outside, with electromagnets (called windings) inside slots.   

 • The controller energizes the windings with pulses of DC current.   

 • Many of the windings are connected together. Each group of connected windings forms a phase.    
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PM steppers are brushless and receive DC pulses from the controller. For this reason, they could 

be classified as BLDCs. But in this book, as in other literature, we’ll only employ the term BLDC for 

motors that aren’t specifically intended for motion control.  

 Let’s look at the differences between the two types of motors.  Table   4.1    contrasts the characteristics 

of PM steppers with those of inrunner BLDCs.  

Table 4.1   Contrasting Characteristics of PM Steppers and Inrunner BLDCs  

PM Stepper    Inrunner BLDC   

Intended for discrete rotation.   Intended for continuous rotation.  

  Almost always has two phases.   Almost always has three phases.  

Controller energizes one or two phases 
at a time.  

Controller energizes two phases at a time 
and leaves third phase floating.  

Many windings and rotor magnets.   Few windings and rotor magnets.  

From a structural perspective, the primary difference between PM steppers and inrunners is that 

PM steppers have more windings and rotor magnets. As it turns out, this is necessary to make the 

angular resolution as small as possible. The following discussion explains why this is the case.   

4.1.2 Operation  
To understand how a PM stepper operates, it’s crucial to see how its step angle is determined by 

the number of windings and rotor magnets. This discussion focuses on the motor depicted in  Figure 

4.2   . Its stator has 12 windings and its rotor has six magnets mounted on its perimeter.  

Stator

Rotor

30 deg.
60 deg.

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

N

SN

S

Figure 4.2 
Internal structure 
of a permanent 
magnet (PM) 
stepper motor        
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PM steppers are generally two-phase motors. In the figure, the different phases are denoted A and 

B. The windings labeled A’ and B’ receive the same current as those labeled A and B, but in the 

opposite direction. That is, if A behaves as a north pole, A’ behaves as a south pole.  

Each winding has one of three states: positive current, negative current, and zero current. For this 

discussion, positive current implies a north pole and negative current implies a south pole.  

Now let’s see how these motors operate.  Figure   4.3    illustrates a single turn of a PM stepper. In the 

windings, a small “N” implies that the winding behaves like a north pole due to positive current. A 

small “S” implies that the winding behaves like a south pole due to negative current. If a winding 

doesn’t have an N or S, it isn’t receiving current.   
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 Figure 4.3 
 30° 
rotation 
of a PM 
stepper 
motor        

In  Figure   4.3  a , A is positive (north pole), A’ is negative (south pole), and Phase B isn’t energized. 

The rotor aligns itself so that its south poles are attracted to the A windings and its north poles are 

attracted to the A’ windings.  

 In  Figure   4.3  b , B is positive (north pole), B’ is negative (south pole), and Phase A isn’t energized. 

The rotor rotates so that its poles align with the B and B’ windings. The rotation angle equals the 

angle between the A and B windings, which means the rotor turns exactly 30° in the clockwise 

direction. This arrangement of eight windings and six poles is common for PM stepper motors, 

though others turn at angles of 15° and 7.5°.  

 In case this isn’t clear, let’s look at a second movement.  Figure   4.4    presents another 30° rotation of a 

PM stepper motor.   
In  Figure   4.4  a , B is negative (south pole), B’ is positive (north pole), and A isn’t energized. The rotor 

is positioned so that its poles align with the B windings.  

 In  Figure   4.4  b , A is positive (north pole), A’ is negative (south pole), and B isn’t energized. The rotor 

turns exactly 30° in the clockwise direction to align itself between the A windings.  
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The controller’s job is to deliver current to the windings so the rotor continues turning in 30° incre-

ments. The difference in control signaling is a major difference between steppers and BLDCs. The 

last part of this chapter discusses the circuitry needed to govern a stepper’s operation.    

4.2 Variable Reluctance (VR) Steppers  
Just as resistance determines the flow of electric current,  reluctance  determines the flow of mag-

netic flux. In a variable reluctance (VR) stepper, the rotor turns at a specific angle to minimize the 

reluctance between opposite windings in the stator.  

 The primary advantage of VR steppers is that they have excellent angular resolution. The primary 

disadvantage is low torque.  

 This section presents VR steppers in detail. I’ll explain their internal structure first and then show 

how they rotate as their windings are energized.  

4.2.1 Structure  
Structurally speaking, variable reluctance (VR) steppers have a lot in common with PM steppers. 

Both have windings on their stator and opposite windings are connected to the same current source. 

However, there are two primary differences between VR steppers and PM steppers:  

 • Rotor —   Unlike a PM stepper, the rotor in a VR stepper doesn’t have magnets. Instead, the rotor is 

an iron disk with small protrusions called  teeth .   

   • Phases —   In a PM stepper, the controller energizes windings in two phases. For a VR stepper, the 

controller energizes every pair of opposite windings independently. In other words, if the stator 

has N windings, it receives N/2 signals from the controller.    
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Figure   4.5    illustrates the rotor and stator of a VR stepper. In this motor, the stator has eight wind-

ings and the rotor has six teeth.   

C'

A'

B

A

C

D B'

D'N

S

 Figure 4.5 
 Structure of a variable reluctance (VR) stepper        

The rotor doesn’t have magnets, but because it’s made of iron, its teeth are attracted to energized 

windings. In the figure, the A and A’ windings are labeled N and S, which shows how they’re ener-

gized by the controller. The teeth in the rotor align with these windings to provide a path for mag-

netic flux between A and A’.   

4.2.2 Operation  
As illustrated in  Figure   4.5   , only one pair of teeth is aligned with the windings at any time. When 

the controller energizes a second pair of windings, the rotor turns so that a different pair of teeth 

will be aligned. Because the teeth aren’t magnetized, it doesn’t matter whether a winding behaves 

as a north pole or as a south pole.  

This can be confusing, so  Figure   4.6    illustrates the rotation of a VR stepper. In this example, the 

stepper rotates 15° in a counterclockwise orientation.   
In  Figure   4.6  a , the controller has delivered current to the B and B’ windings, and the rotor has 

aligned itself accordingly. In  Figure   4.6  b , the C and C’ windings are energized. The C and C’ wind-

ings attract the nearest pair of teeth, which moves the rotor 15° in the clockwise direction.  

 If you know the number of windings in the stator (N w ) and the number of teeth on the rotor (N t ), the 

step angle of a VR stepper can be computed with the following equation:  

 
Step angle

N N

N N
� 360 w t

w t

= ° ×
−

       

In  Figure   4.6   , N w  equals 8 and N t  equals 6. Therefore, the step angle can be computed as 360(2/48) = 

15°. The angular resolution can be improved by increasing the number of windings and teeth. With 

the right structure, the step angle can be made much less than that of a PM stepper.  
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However, there’s a problem. The torque of a VR stepper is so low that it can’t turn a significant load. 

For this reason, VR steppers are not commonly found in practical systems. In fact, I’ve only ever 

seen a handful of VR motors for sale.  

To make up for the shortcomings of VR steppers, engineers have designed a motor that combines 

the resolution of a VR motor and the torque of a PM motor. This is called a hybrid (HY) stepper.    

4.3 Hybrid (HY) Steppers  
A hybrid (HY) stepper provides the best of both worlds. Like a PM stepper, its rotor has magnets 

that provide torque. Like a VR stepper, the rotor has teeth that improve the angular resolution. As 

an example,  Figure   4.7    depicts the JK42HW34 hybrid stepper from RioRand.   
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Figure 4.6 
15° rotation 
of a VR 
stepper        

Figure 4.7 
A hybrid (HY) stepper        
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Hybrid motors have two disadvantages. First, HY steppers can be significantly more expensive than 

PM steppers. Second, HY steppers are larger and heavier than PM steppers. To see why this is the 

case, you need to understand their structure.  

4.3.1 Structure  
If you followed the discussions of PM and VR steppers, HY steppers won’t present any difficulty. 

Their rotors and stators are different from those of either stepper type, but the principle of their 

operation is similar.  

Rotor  
If you compare the HY stepper depicted in  Figure   4.7    to the PM stepper in  Figure   4.1   , you’ll see that 

the HY stepper is longer. The reason for this is that the HY stepper rotor has (at least) two rotating 

mechanisms connected to one another. These are called  rotor poles , and  Figure   4.8    gives an idea of 

what they look like.   

Teeth

Rotor
poles

North South

 Figure 4.8 
 Rotor poles of an HY 
stepper        

The rotor poles are magnetized so that one behaves like a north pole and one behaves like a south 

pole. Each pole has its own teeth, and the teeth of one rotor pole are oriented between those of the 

other. The angular difference between the two sets of teeth determines the step angle of the motor. 

The more teeth the stepper has, the better the angular resolution.  

The rotor in  Figure   4.8    has one pair of rotor poles, but other HY steppers may have two, three, or 

more pairs. Adding rotor poles increases the stepper’s rotational torque and holding torque, but also 

increases its size and weight.   

Stator  
The stator windings of a PM stepper or VR stepper are too large to attract/repel the teeth of one 

rotor pole without repelling or attracting the teeth of the other rotor pole. For this reason, the stator 
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of an HY stepper has teeth that are approximately the same size as the teeth on the rotor. This is 

shown in  Figure   4.9   .   

A

A'

B'

A'

B

B

A

B'

Figure 4.9 
Toothed stator of an HY stepper        

In this figure, each winding has three teeth. In a real stepper, the windings may have many more. 

If a winding is energized to produce a north pole, its teeth will attract the teeth of the rotor’s south 

pole. If a winding behaves as a south pole, its teeth will attract the teeth of the rotor’s north pole.    

4.3.2 Operation  
Like a VR stepper, an HY stepper can have multiple phases, one for each pair of windings. But the 

majority of the HY steppers I’ve encountered are like PM motors. That is, the windings are divided 

into two phases: A/A’ and B/B’. These are the phases labeled in  Figure   4.9   .  

 Each phase receives positive current, negative current, and zero current. When one phase is ener-

gized, its windings attract the teeth of one rotor pole. When the next phase is energized, its wind-

ings attract the teeth of the other rotor pole. Hybrid steppers commonly have 50–60 teeth on a rotor 

pole, which increases the angular resolution. It’s common to see hybrid steppers with step angles as 

low as 1.8° and 0.9°.    

4.4 Stepper Control  
Because VR steppers are so scarce, this section focuses on controlling PM and HY steppers, which 

are almost always two-phase motors. Some PM and HY steppers are bipolar and have four wires. 

Others are unipolar and have five or six wires.  

 The terms  bipolar  and  unipolar  identify how the wires are connected to the motor’s windings. 

Before you design a control circuit for a stepper, you should know whether it’s unipolar or bipolar as 

well as the difference between the two types. For this reason, the first part of this section discusses 

bipolar and unipolar steppers and how to control them.  
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The last part of this discussion presents different methods of delivering current to a stepper’s wind-

ings. These methods include half-stepping, which improves angular resolution but reduces torque, 

and microstepping, which improves angular resolution even further.  

4.4.1 Bipolar Stepper Control  
A two-phase bipolar stepper has four wires.  Figure   4.10    shows how they’re connected inside the 

stepper.   

A

A'

Black

Green

B

B'

Red

Blue

Figure 4.10 
Connections of a bipolar 
stepper        

This figure depicts electromagnets and their corresponding phases: A/A’ and B/B’. As explained 

in  Chapter   3   , “DC Motors,” the electromagnet’s poles are determined by the nature of the current 

flow. If current flows from the black wire to the green wire, A will be the north pole and A’ will be 

the south pole. If current flows from green to black, A will be the south pole and A’ will be the north 

pole.  

  Figure   4.10    identifies the colors of the wires entering the stepper, but these aren’t set by any stan-

dard. Instead, they follow a convention I’ve encountered in many bipolar steppers. If you find a 

stepper whose wires have different colors, the first place to look is the stepper’s datasheet. If this 

doesn’t help, you can test the wires with an ohmmeter—the resistance between A and A’, like that 

between B and B’, is very small. The resistance between wires in different phases is very high.  

To design a circuit that drives a bipolar stepper, you need a means of reversing current in the 

wires. A common method of accomplishing this involves using H bridges, which were introduced 

in  Chapter   3   . An H bridge consists of four switches that, when opened and closed properly, make it 

possible to deliver current in the forward and reverse directions.  

  Figure   4.11    shows how an H bridge can be connected to control one phase (A/A’) of a bipolar motor. 

This uses four MOSFETs to serve as the switches.   
The current’s direction is controlled by setting voltages on the MOSFET gates. When S 0  and S 3  are 

set high and S 1  and S 2  are low, current travels from A to A’, making A the north pole and A’ the 

south pole. When S 1  and S 2  are set high and S 0  and S 3  are low, current travels from A’ to A, making 

A’ the north pole and A the south pole. When S 0  and S 2  are left low, the winding is unenergized.  
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Chapter   9   , “Motor Control with the Arduino Mega,” and  Chapter   10   , “Motor Control with the 

Raspberry Pi,” explain how stepper motors can be controlled with real-world circuitry. In both cases, 

the control circuit contains two H bridges capable of governing both phases of a bipolar stepper 

motor.   

4.4.2 Unipolar Stepper Control  
The wiring of a unipolar stepper motor is more complicated than that of a bipolar motor, but the goal 

is the same: to energize A, A’, B, and B’ and to set their north/south poles accordingly. To under-

stand how this is done, consider the two circuits depicted in  Figure   4.12   .   

VPOWER

S0 S2

S3S1

A

A'

 Figure 4.11 
 Controlling one phase of a bipolar stepper 
with an H bridge        

A

A'

VPOWER N

S

A

A'

VPOWER N

S

(a) (b)

Figure 4.12 
Electromagnet circuits with a center tap        

In both figures, V POWER  is connected to the center of the electromagnet’s winding. This type of con-

nection is called a  center tap .  

 In  Figure   4.12  a , the bottom of the winding is connected to ground. Current flows from the center to 

ground, energizing the electromagnet and making the bottom of the winding (labeled A’) the south 

pole. The north pole is located at the center.  
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Now here’s the tricky part: The top of the winding isn’t connected to anything, so no current flows 

from the top of the winding to the center. However, the entire iron core is magnetized by the cur-

rent in the lower wire, which means that the top of the winding also behaves as the electromagnet’s 

north pole. Therefore, in  Figure   4.12  a , A is north and A’ is south.  

  Figure   4.12  b  illustrates the reverse situation. The top of the winding is connected to the ground, so 

current flows from the winding’s center to the top. This makes the top of the winding (A) the south 

pole and the center of the winding the north pole. Because the entire iron core is magnetized, the 

bottom of the winding (A’) also behaves as the north pole.  

 From a circuit designer’s perspective, controlling a two-phase unipolar stepper requires three steps:  

    1.   Provide V POWER  to the A/A’ and the B/B’ windings.   

   2.   For each winding, connect one wire to ground to set the magnetic poles.   

   3.   Leave other wires unconnected.    

  Figure   4.13    depicts the six wires entering the unipolar stepper: two carry power (V POWERA  and 

V POWERB ) and four are connected to A, A’, B, or B’. Each of the latter four wires is connected to a 

MOSFET. When the MOSFET’s gate voltage exceeds its threshold, the wire is connected to ground. 

Otherwise, the wire is left unconnected.   

VPOWERA S2 VPOWERB S3

S1S0

A

A'

B

B'

 Figure 4.13 
 Connections of a 
unipolar stepper        
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When a MOSFET switches on, the corresponding end of the wind-

ing becomes the south pole. The opposite end of the winding 

becomes the north pole. For example, when voltage is applied to S 1 , 

the resulting current makes B the south pole and B’ the north pole.  

Many unipolar steppers have five wires instead of six. For these 

motors, the two supply wires, V POWERA  and V POWERB , are connected 

together. The other four wires remain unchanged.  

 Unipolar steppers are easier to control than bipolar steppers 

because there’s no need to manage the switches of two H bridges. 

However, when a unipolar stepper is energized, only half of the 

electromagnet is used. Therefore, if a unipolar stepper and a bipolar 

stepper have the same windings, the unipolar stepper will be half as efficient. This is why I recom-

mend using bipolar steppers whenever possible.  

 If you ignore the V POWER  wires of a unipolar stepper, you can deliver current directly between A and 

A’ and between B and B’. In essence, this is driving a unipolar stepper as a bipolar stepper.  

I’d like to make one last point concerning unipolar and bipolar steppers. If you look at a stepper’s 

datasheet, the wiring diagrams won’t look like the diagrams presented in this chapter. They repre-

sent windings using simpler symbols, and  Figure   4.14    shows a sample diagram for a bipolar stepper 

and a unipolar stepper.   

  note 
 This figure doesn’t assign col-
ors to any of the wires. This is 
because I’ve never found two 
unipolar steppers that use the 
same color convention. Check 
the datasheet to see how the 
wires should be connected.   

BLACK

GREEN

RED BLUE

BIPOLAR

RED

GRN

YEL BLU

UNIPOLAR

WHT

BLK

 Figure 4.14 
 Sample wiring 
diagrams in 
a stepper 
datasheet        

Like many datasheets, this figure doesn’t identify which winding is A/A’ and which is B/B’. This 

isn’t a significant concern. If you replace A/A’ with B/B’ in a control sequence, the motor’s rotation 

won’t be seriously affected.   

4.4.3 Drive Modes  
This chapter has explained how to operate steppers by energizing one or two winding pairs at a 

time, but there are a number of different ways to drive a stepper, and this discussion touches on 

four of them:  
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 • Full-step (one phase on) mode —   Each control signal energizes one winding.   

 • Full-step (two phases on) mode —   Each control signal energizes two windings.   

   • Half-step mode —   Each control signal alternates between energizing one and two windings.   

   • Microstep mode —   The controller delivers sinusoidal signals to the stepper’s windings.    

 Choosing between these modes requires making tradeoffs involving torque, angular resolution, and 

power.  

Full-Step (One Phase On) Mode  
The simplest way to control a stepper is to energize one winding at a time. This is the method dis-

cussed at the start of this chapter.  Figure   4.15    shows what the signaling sequence looks like when 

controlling a stepper in this mode.  

A

B

A'

B'

 Figure 4.15 
 Drive sequence in full-step 
(one phase on) mode        

With each control signal, the rotor turns to align itself with the energized winding. The rotor always 

turns through the stepper’s rated step angle. That is, if a PM motor is rated for 7.5°, each control 

signal causes it to turn 7.5°.   

Full-Step (Two Phases On) Mode  
In the full-step (two phases on) mode, the controller energizes two windings at once. This turns the 

rotor through the stepper’s rated angle, and the rotor always aligns itself between two windings. 

Figure   4.16    illustrates one rotation of a stepper motor driven in this mode.   
Figure   4.17    shows what the corresponding drive sequence looks like.   
The main advantage of this mode over full-step (one phase on) is that it improves the motor’s 

torque. Because two windings are always on, torque increases by approximately 30%–40%. The dis-

advantage is that the power supply has to provide twice as much current to turn the stepper.   
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Half-Step Mode  
The half-step mode is like a combination of the two full-step modes. That is, the controller alternates 

between energizing one winding and two windings.  Figure   4.18    depicts three rotations of a stepper 

in half-step mode.   
Figure   4.19    illustrates a control signal for a stepper motor driven in half-step mode.   
In this mode, the rotor aligns itself with windings (when one winding is energized) and between 

windings (when two windings are energized). This effectively reduces the motor’s step angle by 

half. That is, if the stepper’s step angle is 1.8°, it will turn at 0.9° in half-step mode.  

The disadvantage of this mode is that, when a single winding is energized, the rotor turns with 

approximately 20% less torque. This can be compensated for by increasing the current.     

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

N

S

N

S
S

N

S

N

S

N

N

S

N

S

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

N

S

N

S

N

S

N

S

N

S

N

S

S

N

N

S

N

S

Figure 4.16 
Stepper 
rotation 
in full-step 
(two phases 
on) mode        
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 Figure 4.17 
 Drive sequence in full-
step (two phases on) 
mode        
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 Stepper 
rotations in 
half-step mode        
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 Figure 4.19 
 Drive sequence in 
half-step mode        
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Microstep Mode 
The purpose of microstep mode is to have the stepper turn as smoothly as possible. This requires 

dividing the energizing pulse into potentially hundreds of control signals. Common numbers of divi-

sion are 8, 64, and 256. If the energizing pulse is divided into 256 signals, a 1.8° stepper will turn at 

1.8°/256 = 0.007° per control signal. 

In this mode, the controller delivers current in a sinusoidal pattern. Successive windings receive a 

delayed version of this sinusoid.  Figure  4.20  gives an idea of what this looks like. 

Using this mode reduces torque by nearly 30%, but another disadvantage involves speed. As the 

width of a control signal decreases, the ability of the motor to respond also decreases. Therefore, if 

the controller delivers rapid pulses to the stepper in microstep mode, the motor may not turn in a 

reliable fashion. 

4.5      Summary  
This chapter has three goals: explain what stepper motors are, present the main types of steppers, 

and show how steppers can be controlled by a circuit. The first goal is straightforward. A stepper 

motor is a motor intended to turn at a precise angle (the step angle) and halt. Torque is usually more 

of a concern than speed, and the torque exerted to hold the rotor’s position is called the holding 

torque.  

The first of three types of stepper motor discussed in this chapter is the permanent magnet (PM) 

stepper. These motors have almost exactly the same structure as the inrunner brushless DC motors 

discussed in  Chapter   3   . One significant difference is that PM steppers have many more windings in 

the stator and magnets in the rotor. These additional windings and magnets make it possible for the 

PM stepper to turn at step angles such as 15° and 7.5°.  

The second stepper type is the variable reluctance (VR) stepper. Like PM steppers, these have wind-

ings in the stator. But instead of having magnets on the rotor, the rotor of a VR stepper has teeth. 

A rotor can support many more teeth than magnets, so the rotor of a VR stepper turns at smaller 

angles than that of a PM stepper. However, because the teeth aren’t magnetized, the rotor is less 

A

B

A'

B'

Figure 4.20 
Drive sequence 
in microstep 
mode        
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attracted to the stator’s windings. This reduces the stepper’s torque to such an extent that VR step-

pers are rarely encountered in practical systems.  

 The last stepper type combines the advantages of PM steppers and VR steppers. The rotor of a 

hybrid (HY) stepper is divided into two or more sections called rotor poles. Each rotor pole is mag-

netized to behave like a north or south pole, and each has a set of teeth around its perimeter. These 

teeth are attracted to similar teeth on the stator. Because of the rotor’s magnetization, the HY step-

per has torque similar to that of the PM stepper. Because of the rotor’s teeth, the HY stepper has 

angular resolution similar to that of the VR stepper. Common step  angles of an HY stepper are 1.8° 

and 0.9°.  

 When you’re designing a control circuit for a stepper, it’s important to know whether the motor is 

bipolar or unipolar. A bipolar stepper has four wires that correspond to the A, B, A’, and B’ wind-

ings. These require H bridges to deliver current in the forward and reverse directions. Unipolar 

steppers have additional wires that deliver power to the windings. Unipolar steppers are easier to 

control than bipolar steppers but are less efficient.  

 The drive mode identifies how the controller energizes the stepper’s windings. The simplest drive 

mode is full-step (one phase on), in which only one winding is energized at a time. For increased 

torque, the full-step (two phases on) mode energizes two windings at a time. For twice the angular 

resolution, the half-step mode alternates between energizing one and two windings.  

 The fourth drive mode is microstep mode. In this mode, the controller divides its control signals into 

multiple signals of sinusoidal shape. This turns the rotor in tiny step angles to ensure that the rota-

tion is as smooth as possible. Microstepping has been analyzed by many engineers and researchers, 

but if your system needs smooth motion control, you may want to consider a servomotor instead of a 

stepper motor. The next chapter presents this fascinating topic.      
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