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Foreword

Hadoop and data science have been sought after skillsets respectively over the last five 
years. However, few publications have attempted to bring the two together, teaching 
data science within the Hadoop context. For practitioners looking for an introduction 
to data science combined with solving those problems at scale using Hadoop and related 
tools, this book will prove to be an excellent resource.

The topic of data science is introduced with topics covered including data ingest, 
munging, feature extraction, machine learning, predictive modeling, anomaly detec-
tion, and natural language processing. The platform of choice for the examples and 
implementation of these topics is Hadoop, Spark, and the other parts of the Hadoop 
ecosystem. Its coverage is broad, with specific examples keeping the book grounded in 
an engineer’s need to solve real-world problems. For those already familiar with data 
science, but looking to expand their skillsets to very large datasets and Hadoop, this book 
is a great introduction.

Throughout the text it focuses on concrete examples and providing insight into 
business value with each approach. Chapter 5, “Data Munging with Hadoop,” provides 
particularly useful real-world examples on using Hadoop to prepare large datasets for 
common machine learning and data science tasks. Chapter 10 on anomaly detection 
is particularly useful for large datasets where monitoring and alerting are important. 
Chapter 11 on natural language processing will be of interest to those attempting to 
make chatbots.

Ofer Mendelevitch is the VP of Data Science at Lendup.com and was previously 
the Director of Data Science at Hortonworks. Few others are as qualified to be the 
lead author on a book combining data science and Hadoop. Joining Ofer is his former 
colleague, Casey Stella, a Principal Data Scientist at Hortonworks. Rounding out 
these experts in data science and Hadoop is Doug Eadline, frequent contributor to the 
Addison-Wesley Data & Analytics Series with the titles Hadoop Fundamentals Live Lessons, 
Apache Hadoop 2 Quick-Start Guide, and Apache Hadoop YARN. Collectively, this team of 
authors brings over a decade of Hadoop experience. I can imagine few others that have as 
much knowledge on the subject of data science and Hadoop.

I’m excited to have this addition to the Data & Analytics Series. Creating data science 
solutions at scale in production systems is an in-demand skillset. This book will help 
you come up to speed quickly to deploy and run production data science solutions at scale.

— Paul Dix
Series Editor
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Preface

Data science and machine learning are at the core of many innovative technologies and 
products and are expected to continue to disrupt many industries and business models 
across the globe for the foreseeable future. Until recently though, most of this innova-
tion was constrained by the limited availability of data. 

With the introduction of Apache Hadoop, all of that has changed. Hadoop provides 
a platform for storing, managing, and processing large datasets inexpensively and at scale, 
making data science analysis of large datasets practical and feasible. In this new world 
of large-scale advanced analytics, data science is a core competency that enables organi-
zations to remain competitive and innovate beyond their traditional business models. 
During our time at Hortonworks, we have had a chance to see how various organizations 
tackle this new set of opportunities and help them on their journey to implementing 
data science at scale with Hadoop and Spark. In this book we would like to share some 
of this learning and experiences. 

Another issue we also wish to emphasize is the evolution of Apache Hadoop from its 
early incarnation as a monolithic MapReduce engine (Hadoop version 1) to a versatile 
data analytics platform that runs on YARN and supports not only MapReduce but also Tez 
and Spark as processing engines (Hadoop version 2). The current version of Hadoop 
provides a robust and efficient platform for many data science applications and opens up 
a universe of opportunities to new business use cases that were previously unthinkable.

Focus of the Book
This book focuses on real-world practical aspects of data science with Hadoop and Spark. 
Since the scope of data science is very broad, and every topic therein is deep and complex, 
it is quite difficult to cover the topic thoroughly. We approached this problem by attempting 
a good balance between the theoretical coverage of each use case and the example-driven 
treatment of practical implementation.   

This book is not designed to dig deep into many of the mathematical details of each 
machine learning or statistical approach but rather provide a high-level description of 
the main concepts along with guidelines for its practical use in the context of the busi-
ness problem. We provide some references that offer more in-depth treatment of the 
mathematical details of these techniques in the text and have compiled a list of relevant 
resources in Appendix C, “Additional Background on Data Science and Apache Hadoop 
and Spark.”

When learning about Hadoop, access to a Hadoop cluster environment can become 
an issue. Finding an effective way to “play” with Hadoop and Spark can be challenging 

Mendelevitch_Book.indb   xvMendelevitch_Book.indb   xv 11/16/16   6:39 PM11/16/16   6:39 PM



xvi Preface

for some individuals. At a minimum, we recommend the Hortonworks virtual machine 
sandbox for those that would like an easy way to get started with Hadoop. The sandbox 
is a full single-node Hadoop installation running inside a virtual machine. The virtual 
machine can be run under Windows, Mac OS, and Linux. Please see http://hortonworks
.com/products/sandbox for more information on how to download and install the sandbox. 
For further help with Hadoop we recommend Hadoop 2 Quick-Start Guide: Learn the 
Essentials of Big Data Computation in the Apache Hadoop 2 Ecosystem (and supporting videos), 
all mentioned in Appendix C.

Who Should Read This Book
This book is intended for those readers who are interested to learn more about what 
data science is and some of the practical considerations of its application to large-scale 
datasets. It provides a strong technical foundation for readers who want to learn more 
about how to implement various use cases, the tools that are best suited for the job, and 
some of the architectures that are common in these situations. It also provides a business-
driven viewpoint on when application of data science to large datasets is useful to help 
stakeholders understand what value can be derived for their organization and where to 
invest their resources in applying large-scale machine learning.   

There is also a level of experience assumed for this book. For those not versed in data 
science, some basic competencies are important to have to understand the different 
methods, including statistical concepts (for example, mean and standard deviation), and a bit 
of background in programming (mostly Python and a bit of Java or Scala) to understand the 
examples throughout the book.

For those with a data science background, you should generally be comfortable with 
the material, although there may be some practical issues such as understanding the 
numerous Apache projects. In addition, all examples are text-based, and some familiarity 
with the Linux command line is required. It should be noted that we did not use (or test) 
a Windows environment for the examples. However, there is no reason to assume they 
will not work in that and other environments (Hortonworks supports Windows).

In terms of a specific Hadoop environment, all the examples and code were run 
under Hortonworks HDP Linux Hadoop distribution (either laptop or cluster). Your 
environment may differ in terms of distribution (Cloudera, MapR, Apache Source)
or operating systems (Windows). However, all the tools (or equivalents) are available 
in both environments. 

How to Use This Book
We anticipate several different audiences for the book:

 n data scientists
 n developers/data engineers 
 n business stakeholders
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While these readers come at the Hadoop analytics from different backgrounds, their 
goal is certainly the same—running data analytics with Hadoop and Spark at scale. To 
this end, we have designed the chapters to meet the needs of all readers, and as such 
readers may find that they can skip areas where they may have a good practical understand-
ing. Finally, we also want to invite novice readers to use this book as a first step in their 
understanding of data science at scale. We believe there is value in “walking” through 
the examples, even if you are not sure what is actually happening, and then going back 
and buttressing your understanding with the background material.

Part I, “Data Science with Hadoop—An Overview,” spans the first three chapters.
Chapter 1, “Introduction to Data Science,” provides an overview of data science 

and its history and evolution over the years. It lays out the journey people often take to 
become a data scientist. For those not versed in data science, this chapter will help you 
understand why it has evolved into a powerful discipline and provide some insight into 
how a data scientist designs and refines projects. There is also some discussion about what 
makes a data scientist and how to best plan your career in that direction. 

Chapter 2, “Use Cases for Data Science,” provides a good overview of how business 
use cases are impacted by the volume, variety, and velocity of modern data streams. It 
also covers some real-world data science use cases in order to help you gain an under-
standing of its benefits in various industries and applications. 

Chapter 3, “Hadoop and Data Science,” provides a quick overview of Hadoop, its 
evolution over the years, and the various tools in the Hadoop ecosystem. For first-time 
Hadoop users this chapter can be a bit overwhelming. There are many new concepts 
introduced including the Hadoop file system (HDFS), MapReduce, the Hadoop resource 
manager (YARN), and Spark. While the number of sub-projects (and weird names) 
that make up the Hadoop ecosystem may seem daunting, not every project is used at the 
same time, and the applications in the later chapters usually focus on only a few tools at 
a time. 

Part II, “Preparing and Visualizing Data with Hadoop,” includes the next three chapters.
Chapter 4, “Getting Data into Hadoop,” focuses on data ingestion, discussing 

various tools and techniques to import datasets from external sources into Hadoop. It 
is useful for many subsequent chapters. We begin with describing the Hadoop data lake 
concept and then move into the various ways data can be used by the Hadoop platform. 
The ingestion targets two of the more popular Hadoop tools—Hive and Spark. This 
chapter focuses on code and hands-on solutions—if you are new to Hadoop, its best to 
also consult Appendix B, “HDFS Quick Start,” to get you up to speed on the HDFS 
file system.

Chapter 5, “Data Munging with Hadoop,” focuses on data munging with Hadoop 
or how to identify and handle data quality issues, as well as pre-process data and prepare 
it for modeling. We introduce the concepts of data completeness, validity, consistency, 
timeliness, and accuracy. Examples of feature generation using a real data set are provided. 
This chapter is useful for all types of subsequent analysis and, like Chapter 4, is a precursor 
to many of the techniques mentioned in later chapters. 
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An important tool in the process of data munging is visualization. Chapter 6, 
“Exploring and Visualizing Data,” discusses what it means to do visualization with big 
data. As background, this chapter is useful for reinforcing some of the basic concepts 
behind data visualization. The charts presented in the chapter were generated using R. 
Source code for all the plots is available so readers can try these charts with their own data. 

Part III, “Applying Data Modeling with Hadoop,” encompasses the final six chapters.
Chapter 7, “Machine Learning with Hadoop,” provides an overview of machine 

learning at a high level, covering the main tasks in machine learning such as classification 
and regression, clustering, and anomaly detection. For each task type, we explore the 
problem and the main approaches to solutions.

Chapter 8, “Predictive Modeling,” covers the basic algorithms and various Hadoop 
tools for predictive modeling. The chapter includes an end-to-end example of building 
a predictive model for sentiment analysis of Twitter text using Hive and Spark. 

Chapter 9, “Clustering,” dives into cluster analysis, a very common technique in data 
science. It provides an overview of various clustering techniques and similarity func-
tions, which are at the core of clustering. It then demonstrates a real-world example of 
using topic modeling on a large corpus of documents using Hadoop and Spark.

Chapter 10, “Anomaly Detection with Hadoop,” covers anomaly detection, describ-
ing various types of approaches and algorithms as well as how to perform large-scale 
anomaly detection on various datasets. It then demonstrates how to build an anomaly 
detection system with Spark for the KDD99 dataset. 

Chapter 11, “Natural Language Processing,” covers applications of data science to 
the specific area of human language, using a set of techniques commonly called natural 
language processing (NLP). It discusses various approaches to NLP, open-source tools 
that are effective at various NLP tasks, and how to apply NLP to large-scale corpuses using 
Hadoop, Pig, and Spark. An end-to-end example shows an advanced approach to sentiment 
analysis that uses NLP at scale with Spark.

Chapter 12, “Data Science with Hadoop—The Next Frontier,” discusses the future 
of data science with Hadoop, covering advanced data discovery techniques and deep 
learning.

Consult Appendix A, “Book Webpage and Code Download,” for the book web page 
and code repository (the web page provides a question and answer forum). Appendix B, as 
mentioned previously, provides a quick overview of HDFS for new users and the afore-
mentioned Appendix C provides further references and background on Hadoop, Spark, 
HDFS, machine learning, and many other topics. 

Book Conventions
Code and file references are displayed in a monospaced font. Code input lines that wrap 
because they are too long to fit on one line in this book are denoted with this symbol 
➥ at the start of the next line. Long output lines are wrapped at page boundaries 
without the symbol.
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Accompanying Code
Again, please see Appendix A, “Book Web Page and Code Download,” for the location 
of all code used in this book.

Register your copy of Practical Data Science with Hadoop® and Spark at informit.com for 
convenient access to downloads, updates, and corrections as they become available. 
To start the registration process, go to informit.com/register and log in or create 
an account. Enter the product ISBN (9780134024141) and click Submit. Once the 
process is complete, you will find any available bonus content under “Registered 
Products.”
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4
Getting Data into Hadoop 

You can have data without information, 
but you cannot have information without data.

Daniel Keys Moran

In This Chapter:

 n The data lake concept is presented as a new data processing paradigm.
 n Basic methods for importing CSV data into HDFS and Hive tables are 

presented.
 n Additional methods for using Spark to import data into Hive tables or directly 

for a Spark job are presented.
 n Apache Sqoop is introduced as a tool for exporting and importing relational 

data into and out of HDFS.
 n Apache Flume is introduced as a tool for transporting and capturing streaming 

data (e.g., web logs) into HDFS.
 n Apache Oozie is introduced as workf low manager for Hadoop ingestion jobs.
 n The Apache Falcon project is described as a framework for data governance 

(organization) on Hadoop clusters. 

No matter what kind of data needs processing, there is often a tool for importing such 
data from or exporting such data into the Hadoop Distributed File System (HDFS). 
Once stored in HDFS the data may be processed by any number of tools available in the 
Hadoop ecosystem.

This chapter begins with the concept of the Hadoop data lake and then follows with 
a general overview of each of the main tools for data ingestion into Hadoop —Spark, 
Sqoop, and Flume—along with some specific usage examples. Workf low tools such as 
Oozie and Falcon are presented as tools that aid in managing the ingestion process. 
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Hadoop as a Data Lake
Data is ubiquitous, but that does not always mean that it’s easy to store and access. In 
fact, many existing pre-Hadoop data architectures tend to be rather strict and therefore 
difficult to work with and make changes to. The data lake concept changes all that.

So what is a data lake? 
With the more traditional database or data warehouse approach, adding data to the 

database requires data to be transformed into a pre-determined schema before it can be 
loaded into the database. This step is often called “extract, transform, and load” (ETL) 
and often consumes a lot of time, effort, and expense before the data can be used for 
downstream applications. More importantly, decisions about how the data will be used 
must be made during the ETL step, and later changes are costly. In addition, data are 
often discarded in the ETL step because they do not fit into the data schema or are deemed 
un-needed or not valuable for downstream applications. 

One of the basic features of Hadoop is a central storage space for all data in the 
Hadoop Distributed File Systems (HDFS), which make possible inexpensive and redundant 
storage of large datasets at a much lower cost than traditional systems.

This enables the Hadoop data lake approach, wherein all data are often stored in raw 
format, and what looks like the ETL step is performed when the data are processed by 
Hadoop applications. This approach, also known as schema on read, enables programmers 
and users to enforce a structure to suit their needs when they access data. The traditional 
data warehouse approach, also known as schema on write, requires more upfront design 
and assumptions about how the data will eventually be used. 

For data science purposes, the capability to keep all the data in raw format is extremely 
beneficial since often it is not clear up front which data items may be valuable to a given 
data science goal.

With respect to big data, the data lake offers three advantages over a more traditional 
approach:

 n All data are available. There is no need to make any assumptions about future 
data use. 

 n All data are sharable. Multiple business units or researchers can use all available 
data1, some of which may not have been previously available due to data com-
partmentalization on disparate systems. 

 n All access methods are available. Any processing engine (MapReduce, Tez, Spark) 
or application (Hive, Spark-SQL, Pig) can be used to examine the data and pro-
cess it as needed.

1. The capability to use all available data is, of course, governed, as you might expect, by the appro-
priate security policy with Hadoop tools such as Apache Ranger. The point here is that there is no 
technical hurdle to data sharing, as is often the case with traditional data architectures.

Mendelevitch_Book.indb   56Mendelevitch_Book.indb   56 11/16/16   6:39 PM11/16/16   6:39 PM



57Hadoop as a Data Lake

To be clear, data warehouses are valuable business tools, and Hadoop is designed 
to complement them, not replace them. Nonetheless, the traditional data warehouse 
technology was developed before the data lake began to fill with such large quantities 
of data. The growth of new data from disparate sources including social media, click 
streams, sensor data, and others is such that we are starting to quickly fill the data lake. 
Traditional ETL stages may not be able to keep up with the rate at which data are entering 
the lake. There will be overlap, and each tool will address the need for which it was 
designed.

The difference between a traditional data warehouse and Hadoop is depicted in 
Figure 4.1.

Different data sources (A, B, C) can be seen entering either an ETL process or a data 
lake. The ETL process places the data in a schema as it stores (writes) the data to the rela-
tional database. The data lake stores the data in raw form. When a Hadoop application 

Source A

Source B

Source C

Data Lake

Data Warehouse

Discarded
Data

ETL

Schema on Write

Schema on Read

Hadoop

User

Figure 4.1 The data warehouse versus the Hadoop data lake.
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uses the data, the schema is applied to data as they are read from the lake. Note that the 
ETL step often discards some data as part of the process. In both cases the user accesses 
the data they need. However, in the Hadoop case it can happen as soon as the data are 
available in the lake.

The Hadoop Distributed File System (HDFS)
Virtually all Hadoop applications operate on data that are stored in HDFS. The oper-
ation of HDFS is separate from the local file system that most users are accustomed to 
using. That is, the user must explicitly copy to and from the HDFS file system. HDFS 
is not a general file system and as such cannot be used as a substitute for existing POSIX 
(or even POSIX-like) file systems. 

In general, HDFS is a specialized streaming file system that is optimized for reading 
and writing of large files. When writing to HDFS, data are “sliced” and replicated across 
the servers in a Hadoop cluster. The slicing process creates many small sub-units (blocks) 
of the larger file and transparently writes them to the cluster nodes. The various slices 
can be processed in parallel (at the same time) enabling faster computation. The user 
does not see the file slices but interacts with whole files in HDFS like a normal file system 
(i.e., files can be moved, copied, deleted, etc.). When transferring files out of HDFS, the 
slices are assembled and written as one file on the host file system.

The slices or sub-units are also replicated across different servers so that the failure 
of any single server will not result in lost data. Due to its design, HDFS does not support 
random reads or writes to files but does support appending a file. Note that for testing 
purposes it is also possible to create a single instance of HDFS on a single hard drive 
(i.e., a laptop or desktop computer), and in this situation there is no file slicing or repli-
cation performed on the file. 

Direct File Transfer to Hadoop HDFS
The easiest way to move data into and out of HDFS is to use the native HDFS commands. 
These commands are wrappers that interact with the HDFS file system. Local commands, 
such as cp, ls, or mv will only work on local files. To copy a file (test) from your local 
file system to HDFS, the following put command can be used: 

$ hdfs dfs -put test 

To view files in HDFS use the following command. The result is a full listing similar 
to a locally executed ls -l command:

$ hdfs dfs -ls
-rw-r--r--   2 username hdfs        497 2016-05-11 14:32 test 

To copy a file (another-test) from HDFS to your local file system, use the following 
get command:

$ hdfs dfs -get another-test 
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Other HDFS commands will be introduced in the examples. Appendix B “HDFS 
Quick Start,” provides basic command examples including listing, copying, and remov-
ing files in HDFS. 

Importing Data from Files into Hive Tables
Apache Hive is an SQL-like tool for analyzing data in HDFS. Data scientists often want 
to import data into Hive from existing text-based files exported from spreadsheets or 
databases. These file formats often include tab-separated values (TSV), comma-separated 
values (CSV), raw text, JSON, and others. Having the data in Hive tables enables easy 
access to it for subsequent modeling steps, the most common of which is feature genera-
tion, which we discuss in Chapter 5, “Data Munging with Hadoop.” 

Once data are imported and present as a Hive table, it is available for processing using 
a variety of tools including Hive’s SQL query processing, Pig, or Spark.

Hive supports two types of tables. The first type of table is an internal table and is 
fully managed by Hive. If you delete an internal table, both the definition in Hive and 
the data will be deleted. Internal tables are stored in an optimized format such as ORC 
and thus provide a performance benefit. The second type of table is an external table that 
is not managed by Hive. External tables use only a metadata description to access the data 
in its raw form. If you delete an external table, only the definition (metadata about the 
table) in Hive is deleted and the actual data remain intact. External tables are often used 
when the data resides outside of Hive (i.e., some other application is also using/creating/
managing the files), or the original data need to remain in the underlying location even 
after the table is deleted. 

Due to the large number of use cases, we do not cover all the input methods available to 
Hive, and instead just a basic example of CSV file import is described. Interested readers 
can consult the Hive project page, https://hive.apache.org, for more information. 

Import CSV Files into Hive Tables
The following example illustrates how a comma delimited text file (CSV file) can be 
imported into a Hive table. The input file (names.csv) has five fields (Employee ID, First 
Name, Title, State, and type of Laptop). The first five lines of the file are as follows:

10,Andrew,Manager,DE,PC
11,Arun,Manager,NJ,PC
12,Harish,Sales,NJ,MAC
13,Robert,Manager,PA,MAC
14,Laura,Engineer,PA,MAC

The first input step is to create a directory in HDFS to hold the file. Note that, like 
most Hadoop tools, Hive input is directory-based. That is, input for an operation is taken 
as all files in a given directory. The following command creates a names directory in 
the users HDFS directory.

$ hdfs dfs -mkdir names
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In this example, one file is used. However, any number of files could be placed in 
the input directory. Next the names.csv file is moved into the HDFS names directory.

$ hdfs dfs -put name.csv names

Once the file is in HDFS, we first load the data as an external Hive table. Start a Hive 
shell by typing hive at the command prompt and enter the following commands. Note, 
to cut down on clutter, some of the non-essential Hive output (run times, progress bars, etc.) 
have been removed from the Hive output.

hive> CREATE EXTERNAL TABLE IF NOT EXISTS Names_text(
    > EmployeeID INT,FirstName STRING, Title STRING,
    > State STRING, Laptop STRING)
    > COMMENT 'Employee Names'
    > ROW FORMAT DELIMITED
    > FIELDS TERMINATED BY ','
    > STORED AS TEXTFILE
    > LOCATION '/user/username/names';
OK

If the command worked, an OK will be printed. The various fields and the comma 
delimiter are declared in the command. The final LOCATION statement in the command 
tells Hive where to find the input files. The import can be verified by listing the first 
five rows in the table: 

hive> Select * from Names_text limit 5;
OK
10 Andrew Manager DE PC
11 Arun Manager NJ PC
12 Harish Sales NJ MAC
13 Robert Manager PA MAC
14 Laura Engineer PA MAC

The next step is to move the external table to an internal Hive table. The internal 
table must be created using a similar command. However, the STORED AS format offers 
new options. There are four main file formats for Hive tables in addition to the basic text 
format. The choice of format depends on the type of data and analysis, but in most cases 
either ORC or Parquet are used as they provide the best compression and speed advan-
tages for most data types.

 n Text file—All data are stored as raw text using the Unicode standard.
 n Sequence file—The data are stored as binary key/value pairs.
 n RCFile—All data are stored in a column optimized format (instead of row optimized).
 n ORC—An optimized row columnar format that can significantly improve 

Hive performance.
 n Parquet—A columnar format that provides portability to other Hadoop tools 

including Hive, Drill, Impala, Crunch, and Pig.
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The following command creates an internal Hive table that uses the ORC format:

hive> CREATE TABLE IF NOT EXISTS Names(
    > EmployeeID INT,FirstName STRING, Title STRING,
    > State STRING, Laptop STRING)
    > COMMENT 'Employee Names'
    > STORED AS ORC;
OK

To create a table using one of the other formats, change the STORED AS command to 
ref lect the new format. Once the table is created, the data from the external table can 
be moved to the internal table using the command,

hive> INSERT OVERWRITE TABLE Names SELECT * FROM Names_text;

As with the external table, the contents can be verified using the following command:

hive> Select * from Names limit 5;
OK
10 Andrew Manager DE PC
11 Arun Manager NJ PC
12 Harish Sales NJ MAC
13 Robert Manager PA MAC
14 Laura Engineer PA MAC

Hive also supports partitions. With partitions, tables can be separated into logical 
parts that make it more efficient to query a portion of the data. For example, the internal 
Hive table created previously can also be created with a partition based on the state field. 
The following command creates a partitioned table: 

hive> CREATE TABLE IF NOT EXISTS Names_part(
    > EmployeeID INT,
    > FirstName STRING,
    > Title STRING,
    > Laptop STRING)
    > COMMENT 'Employee names partitioned by state'
    > PARTITIONED BY (State STRING)
    > STORED AS ORC;
OK

To fill the internal table from the external table for those employed from PA, the 
following command can be used:

hive> INSERT INTO TABLE Names_part PARTITION(state='PA')
    > SELECT EmployeeID, FirstName, Title, Laptop FROM Names_text WHERE 
➥ state='PA';
...
OK
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This method requires each partition key to be selected and loaded individually. 
When the number of potential partitions is large, this can make data entry inconvenient. 
To address this issue Hive now supports dynamic-partition insert (or multi-partition 
insert) that is designed to solve this problem by dynamically determining which parti-
tions should be created and populated while scanning the input table. 

Importing Data into Hive Tables Using Spark 
Apache Spark is a modern processing engine that is focused on in-memory processing. Spark’s 
primary data abstraction is an immutable distributed collection of items called a resilient 
distributed dataset (RDD). RDDs can be created from Hadoop input formats (such as HDFS 
files) or by transforming other RDDs. Each dataset in an RDD is divided into logical 
partitions, which may be transparently computed on different nodes of the cluster.

The other important data abstraction is Spark’s DataFrame. A DataFrame is built on 
top of an RDD, but data are organized into named columns similar to a relational database 
table and similar to a data frame in R or in Python’s Pandas package. 

Spark DataFrames can be created from different data sources such as the following:

 n Existing RDDs
 n Structured data files
 n JSON datasets
 n Hive tables
 n External databases

Due to its f lexibility and friendly developer API, Spark is often used as part of the 
process of ingesting data into Hadoop. With Spark, you can read data from a CSV file, 
external SQL or NO-SQL data store, or another data source, apply certain transformations 
to the data, and store it onto Hadoop in HDFS or Hive. Similar to the Hive examples, 
a full treatment of all Spark import scenarios is beyond the scope of this book. Consult 
the Apache Spark project page, http://spark.apache.org, for more information. 

The following sections provide some basic usage examples of data import using PySpark 
(Spark via the Python API), although these steps can also be performed using the Scala 
or Java interfaces to Spark. Each step is explained. However, a full description of the Spark 
commands and API are beyond the scope of this book. 

All the examples assume the PySpark shell (version 1.6) has been started using the 
following command:

$ pyspark
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.6.2
      /_/
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Using Python version 2.7.9 (default, Apr 14 2015 12:54:25)
SparkContext available as sc, HiveContext available as sqlContext.
>>> 

Import CSV Files into HIVE Using Spark 
Comma-separated value (CSV) files and, by extension, other text files with separators can be 
imported into a Spark DataFrame and then stored as a HIVE table using the steps described. 
Note that in this example we show how to use an RDD, translate it into a DataFrame, 
and store it in HIVE. It is also possible to load CSV files directly into DataFrames using 
the spark-csv package. 

1. The first step imports functions necessary for Spark DataFrame operations: 

>>> from pyspark.sql import HiveContext
>>> from pyspark.sql.types import *
>>> from pyspark.sql import Row

2. Next, the raw data are imported into a Spark RDD. The input file, names.csv, is 
located in the users local file system and does not have to be moved into HDFS 
prior to use. (Assuming the local path to the data is /home/username.)

>>> csv_data = sc.textFile("file:///home/username/names.csv")

3. The RDD can be confirmed by using the type() command: 

>>> type(csv_data)
<class 'pyspark.rdd.RDD'>

4. The comma-separated data are then split using Spark’s map( ) function that creates 
a new RDD:

>>> csv_data  = csv_data.map(lambda p: p.split(","))

Most CSV files have a header with the column names. The following steps remove 
this from the RDD,

>>> header = csv_data.first()
>>> csv_data = csv_data.filter(lambda p:p != header)

5. The data in the csv_data RDD are put into a Spark SQL DataFrame using the 
toDF() function. First, however, the data are mapped using the map() function so 
that every RDD item becomes a Row object which represents a row in the new 
DataFrame. Note the use of the int() to cast for the employee ID as an integer. 
All other columns default to a string type. 

>>> df_csv = csv_data.map(lambda p: Row(EmployeeID = int(p[0]), 
➥ FirstName = p[1], Title=p[2], State=p[3], Laptop=p[4])).toDF()

The Row() class captures the mapping of the single values into named columns in 
a row and subsequently transforms the complete data into a DataFrame. 
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6. The structure and data of the first five rows of the df_csv DataFrame are viewed 
using the following command:

>>> df_csv.show(5)
+----------+---------+------+-----+--------+
|EmployeeID|FirstName|Laptop|State|   Title|
+----------+---------+------+-----+--------+
|        10|   Andrew|    PC|   DE| Manager|
|        11|     Arun|    PC|   NJ| Manager|
|        12|   Harish|   MAC|   NJ|   Sales|
|        13|   Robert|   MAC|   PA| Manager|
|        14|    Laura|   MAC|   PA|Engineer|
+----------+---------+------+-----+--------+
only showing top 5 rows

7. Similarly, if you’d like to inspect the DataFrame schema, use the printSchema() 
command: 

>>> df_csv.printSchema()
root
 |-- EmployeeID: long (nullable = true)
 |-- FirstName: string (nullable = true)
 |-- Laptop: string (nullable = true)
 |-- State: string (nullable = true)
 |-- Title: string (nullable = true)

8. Finally, to store the DataFrame into a Hive table, use saveAsTable():

>>> from pyspark.sql import HiveContext
>>> hc = HiveContext(sc)
>>> df_csv.write.format("orc").saveAsTable("employees")

Here we create a HiveContext that is used to store the DataFrame into a Hive table 
(in ORC format), by using the saveAsTable() command.

Import a JSON File into HIVE Using Spark 
Spark can import JSON files directly into a DataFrame. The following is a JSON format-
ted version of the names.csv file used in the previous examples. Note that by entering the 
EmployeeID as an un-quoted integer, it will be input as an integer.

{"EmployeeID":10,"FirstName":"Andrew","Title":"Manager","State":"DE",
➥ "Laptop":"PC"}
{"EmployeeID":11,"FirstName":"Arun","Title":"Manager","State":"NJ",
➥ "Laptop":"PC"}
{"EmployeeID":12,"FirstName":"Harish","Title":"Sales","State":"NJ",
➥ "Laptop":"MAC"}

Also note that Spark expects each line to be a separate JSON object, so it will fail if 
you try to load a fully formatted JSON file. 
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1. The first step imports the needed functions and creates a HiveContext.

>>> from pyspark.sql import HiveContext
>>> hc = HiveContext(sc)

Similar to the CSV example, the data file is located in the users local file system.

>>> df_json = hc.read.json("file:///home/username/names.json")

2. The first five rows of the DataFrame can be viewed using the df_json.show(5)
command:

>>> df_json.show(5)
+----------+---------+------+-----+--------+
|EmployeeID|FirstName|Laptop|State|   Title|
+----------+---------+------+-----+--------+
|        10|   Andrew|    PC|   DE| Manager|
|        11|     Arun|    PC|   NJ| Manager|
|        12|   Harish|   MAC|   NJ|   Sales|
|        13|   Robert|   MAC|   PA| Manager|
|        14|    Laura|   MAC|   PA|Engineer|
+----------+---------+------+-----+--------+
only showing top 5 rows

3. To confirm that the EmployeeID was indeed cast as an integer, the df_json
.printSchema() command can be used to inspect the DataFrame schema:

>>> df_json.printSchema()

root
 |-- EmployeeID: long (nullable = true)
 |-- FirstName: string (nullable = true)
 |-- Laptop: string (nullable = true)
 |-- State: string (nullable = true)
 |-- Title: string (nullable = true)

4. Similar to the CSV example, storing this DataFrame back to Hive is simple:

>>> df_json.write.format("orc").saveAsTable("employees")

Using Apache Sqoop to Acquire Relational Data
In many enterprise environments, a lot of data that is required for data science applications 
resides inside of database management systems such as Oracle, MySQL, PosgreSQL, 
or DB2. Before we can use this data in the context of a data science application, we need 
to ingest such data into Hadoop.

Sqoop is a tool designed to transfer data between Hadoop and relational databases. 
You can use Sqoop to import data from a relational database management system (RDBMS) 
into the Hadoop Distributed File System (HDFS) or export data from Hadoop back 
into an RDBMS. 
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Sqoop can be used with any JDBC-compliant database and has been tested on Microsoft 
SQL Server, PostgreSQL, MySQL, and Oracle. In the remainder of this section, a brief 
overview of how Sqoop works with Hadoop is provided. In addition, a basic Sqoop example 
walk-through is demonstrated. To fully explore Sqoop, more information can found 
by consulting the Sqoop project website at http://sqoop.apache.org.

Data Import and Export with Sqoop 
Figure 4.2 describes the process of importing data into HDFS using Sqoop, which includes 
two steps. In the first step, Sqoop examines the database to gather the necessary metadata 
for the data that are to be imported. The second step is a map-only 2 (no reduce step) 
Hadoop job that Sqoop submits to the cluster. This is the job that does the actual data 
transfer using the metadata captured in the previous step. Note that each node doing 
the import must have access to the database.

2. A map-only job is a term used in the Hadoop ecosystem to refer to a map-reduce job that 
has some logic implemented in the map stage, and nothing (no-op) in the reduce job.

Sqoop Job
Sqoop Import

(2)  Submit Map-Only Job

(1)  Gather Metadata

RDBMS

Map

Map

Map

Map

Hadoop Cluster

HDFS Storage

Figure 4.2 Two-step Apache Sqoop data import method.
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The imported data is saved in an HDFS directory. Sqoop will use the database name 
for the directory or the user can specify any alternative directory where the files should 
be populated. By default, these files contain comma-delimited fields, with new lines 
separating different records. You can easily override the format in which data is copied 
over by explicitly specifying the field separator and record terminator characters. Once 
placed in HDFS, the data are ready for further processing.

Data export from the cluster works in a similar fashion. The export is done in two steps 
as shown in Figure 4.3. Like the import process, the first step is to examine the database 
for metadata, followed by the export step that is again a map-only Hadoop job to write 
the data to the target database. Sqoop divides the input dataset into splits and then uses 
individual map tasks to push the splits to the database. Again, this process assumes the map 
tasks have access to the database.

Apache Sqoop Version Changes
Two versions of Sqoop are in general use within the Hadoop ecosystem. Many users 
have found the features removed in version 2 to be useful and continue to use the first 
version. Sqoop version 2 will be used for the examples. 

Sqoop Job
Sqoop Export

(2)  Submit Map-Only Job

(1)  Gather Metadata

RDBMS

Map

Map

Map

Map

Hadoop Cluster

HDFS Storage

Figure 4.3 Two-step Sqoop data export method.
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Sqoop version 1 uses specialized connectors to access external database systems. These 
are often optimized for various RDBMS systems or those that do not support JDBC 
(Java Database Connectivity). Connectors are plug-in components based on Sqoop’s exten-
sion framework and can be added to any existing Sqoop installation. Once a connector 
is installed, Sqoop can use it to efficiently transfer data between Hadoop and the external 
store supported by the connector. By default, Sqoop version 1 includes connectors for 
various popular databases such as MySQL, PostgreSQL, Oracle, SQL Server, and DB2. 
Sqoop version 1 also supports direct transfer to and from the RDBMS for HBase or Hive.

In order to streamline the Sqoop input methods (the issues cited were increasingly 
complex command lines, security, and the need to understand too many low-level issues), 
Sqoop version 2 no longer supports specialized connectors or direct import into HBase 
or Hive or direct data transfer from Hive or HBase to your RDBMS. There are more 
generalized ways to accomplish these tasks in version 2. All import and export is done 
through the JDBC interface. Table 4.1 summarizes the changes. Due to these changes, 
any new development should be done with attention to Sqoop version 2 capabilities.

Using Sqoop V2: A Basic Example
To better understand how to use Sqoop in practice, we’re going to demonstrate how to 
configure and use Sqoop version 2 via a simple example. The example can then be extended 
as needed to explore the other capabilities offered by Apache Sqoop. More detailed infor-
mation can be found at the Sqoop website at http://sqoop.apache.org.

The following steps will be performed:

1. Download and load sample MySQL data

2. Add Sqoop user permissions for local machine and cluster

3. Import data from MySQL to HDFS 

4. Export data from HDFS to MySQL

Table 4.1 Apache Sqoop version comparison.

Feature Sqoop Version 1 Sqoop Version 2

Connectors for all major 
RDBMS

Supported Not supported. Use the generic 
JDBC Connector. 

Kerberos Security 
Integration

Supported Not supported

Data transfer from 
RDBMS to Hive or 
HBase

Supported Not supported. First import data 
from RDBMS into HDFS, then load 
data into Hive or HBase manually.

Data transfer from Hive 
or HBase to RDBMS

Not supported. First export data 
from Hive or HBase into HDFS, 
and then use Sqoop for export.

Not supported. First export data 
from Hive or HBase into HDFS, 
and then use Sqoop for export.
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Step 1: Download a Sample MySQL Database
For this example, we assume MySQL is installed on the Sqoop node and will use the world 
example database from the MySQL site (http://dev.mysql.com/doc/world-setup/en/
index.html). The database has three tables:

 n Country—Information about countries of the world. 
 n City—Information about some of the cities in those countries. 
 n CountryLanguage—Languages spoken in each country. 

1. To get the database, use wget 3 to download and then extract the file:

$ wget http://downloads.mysql.com/docs/world.sql.gz
$ gunzip world.sql.gz

2. Next, log into MySQL (assumes you have privileges to create a database) and 
import that database by entering the following commands:

   $ mysql -u root -p
   mysql> CREATE DATABASE world;
   mysql> USE world;
   mysql> SOURCE world.sql;
   mysql> SHOW TABLES;
   +-----------------+
   | Tables_in_world |
   +-----------------+
   | City            |
   | Country         |
   | CountryLanguage |
   +-----------------+
   3 rows in set (0.01 sec)

3. The following MySQL commands will let you see the details for each table (output 
omitted because of space considerations):

   mysql> SHOW CREATE TABLE Country;
   mysql> SHOW CREATE TABLE City;
   mysql> SHOW CREATE TABLE CountryLanguage;

Step 2: Add Sqoop User Permissions for Local Machine and Cluster
Sqoop often needs to talk to MySQL from the Hadoop cluster. Thus, there needs to be 
permissions added to MySQL so that these conversations can take place. Depending on 
your installation, you may need to add several privileges for Sqoop requests based on  the 
location (hosts or IP addresses) from where the request originates. For example, the 
following permissions were assigned for the example.

3. wget is a command line tool for Unix/Linux environments that directly downloads files from 
a valid URL. If using a Windows environment, consider Winwget or a browser. If using a 
Macintosh environment, consider using curl -O <url> or a browser.
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mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'localhost' 
➥ IDENTIFIED BY 'sqoop';
mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'_HOSTAME_' 
➥ IDENTIFIED BY 'sqoop';
mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'_SUBNET_' 
➥ IDENTIFIED BY 'sqoop';
FLUSH PRIVILEGES;
mysql> quit

The _HOSTNAME_ is the name of the host on which a user has logged in. The _SUBNET_ 
is the subnet of the cluster (for example 10.0.0.%, defines 10.0.0.0/24 network). These 
permissions allow any node in the cluster to execute MySQL commands as user sqoop. 
Also, for the purposes of this example, the Sqoop password is “sqoop.” 

Next, log in as user sqoop to test the MySQL permissions. 

$ mysql -u sqoop -p
mysql> USE world;
   mysql> SHOW TABLES;
   +-----------------+
   | Tables_in_world |
   +-----------------+
   | City            |
   | Country         |
   | CountryLanguage |
   +-----------------+
   3 rows in set (0.01 sec)

   mysql> quit

Step 3: Import Data Using Sqoop
As a check of Sqoop’s capability to read the MySQL database, we can use Sqoop to list 
the databases in MySQL. 

1. Enter the following commands. The results are after the warnings at the end of the 
output. Note the use of local _HOSTNAME_ in the JDBC statement. Extra notifications 
have been removed from the output (represented by ...).

$ sqoop list-databases --connect jdbc:mysql://_HOSTNAME_/world 
➥ --username sqoop --password sqoop
...
information_schema
test
world

2. In a similar fashion, Sqoop can connect to MySQL and list the tables in the world 
database.

$ sqoop list-tables --connect jdbc:mysql://_HOSTNAME_/world 
➥ --username sqoop --password sqoop
...
City
Country
CountryLanguage
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3. In order to import data, we need to make a directory in HDFS:

$ hdfs dfs -mkdir sqoop-mysql-import

4. The following command will import the Country table into HDFS: 

$ sqoop import --connect jdbc:mysql://_HOSTNAME_/world  --username 
➥ sqoop --password  sqoop --table Country  -m 1 --target-dir 
➥ /user/username/sqoop-mysql-import/country

The option –-table signifies the table to import, --target-dir is the directory 
created above, and –m 1 tells sqoop to use a single map task (which is enough in our 
example since it is only a small table) to import the data. 

5. The import can be confirmed by examining HDFS:

$ hdfs dfs -ls sqoop-mysql-import/country
Found 2 items
-rw-r--r--   2 username hdfs          0 2014-08-18 16:47 sqoop-mysql-
➥import/world/_SUCCESS
-rw-r--r--   2 username hdfs      31490 2014-08-18 16:47 sqoop-mysql-
➥import/world/part-m-00000

6. The file can be viewed using the hdfs –cat command:

$ hdfs dfs -cat sqoop-mysql-import/country/part-m-00000
ABW,Aruba,North America,Caribbean,193.0,null,103000,78.4,828.0,793.0,
➥ Aruba,Nonmetropolitan Territory of The Netherlands,Beatrix,129,AW
...
ZWE,Zimbabwe,Africa,Eastern Africa,390757.0,1980,11669000,37.8,
➥ 5951.0,8670.0,Zimbabwe,Republic,Robert G. Mugabe,4068,ZW

To make Sqoop commands more convenient, an options file may be created and used 
in the command line. This file will help you avoid having to rewrite the same options. 
For example, a file called world-options.txt with the following contents will include the 
import command, --connect, --username, and --password options:

   import
   --connect
   jdbc:mysql://_HOSTNAME_/world
   --username
   sqoop
   --password
   sqoop

The same import command from the preceding can be performed with the following 
shorter line:

$ sqoop  --options-file world-options.txt --table City  -m 1 --target-dir
➥ /user/username/sqoop-mysql-import/city

It is also possible to include an SQL Query in the import step. For example, if we 
want just cities in Canada:

SELECT ID,Name from City WHERE CountryCode='CAN'
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Then we can include the --query option in the Sqoop import request. In the fol-
lowing query example, a single mapper task is designated with the –m 1 option: 

sqoop  --options-file world-options.txt -m 1 --target-dir 
➥ /user/username/sqoop-mysql-import/canada-city --query 
➥ "SELECT ID,Name from City 
➥  WHERE CountryCode='CAN' AND \$CONDITIONS"

Inspecting the results shows only cities from Canada are imported.

$ hdfs dfs -cat sqoop-mysql-import/canada-city/part-m-00000

1810,Montréal
1811,Calgary
1812,Toronto
...
1856,Sudbury
1857,Kelowna
1858,Barrie

Since there was only one mapper process, only one copy of the query needed to be 
run on the database. The results are also reported in single file (part-m-0000). Multiple 
mappers can be used to process the query if the --split-by option is used. The split-by 
option is a way to parallelize the SQL query. Each parallel task runs a subset of the main 
query with results partitioned by bounding conditions inferred by Sqoop. Your query 
must include the token $CONDITIONS; this is a placeholder for Sqoop to put in unique 
condition expression based on the --split-by option, and Sqoop automatically populates 
this with the right conditions for each mapper task. Sqoop will try to create balanced 
sub-queries based on a range of your primary key. However, it may be necessary to split 
on another column if your primary key is not uniformly distributed.

The following example will help illustrate the –split-by option. First, remove the 
results of the previous query. 

$ hdfs dfs -rm -r -skipTrash  sqoop-mysql-import/canada-city

Next, run the query using four mappers (-m 4) where we split by the ID number 
(--split-by ID).

sqoop  --options-file world-options.txt -m 4 --target-dir 
➥ /user/username/sqoop-mysql-import/canada-city --query "SELECT ID,
➥ Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" --split-by ID

If we look at the number of results files, we find four files corresponding to the four 
mappers we requested in the command. There is no need to combine these files into one 
entity because all Hadoop tools can manage multiple files as input. 

$ hdfs dfs -ls  sqoop-mysql-import/canada-city
Found 5 items
-rw-r--r--   2 username hdfs       0 2014-08-18 21:31 sqoop-mysql-import/canada-
city/_SUCCESS
-rw-r--r--   2 username hdfs     175 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00000
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-rw-r--r--   2 username hdfs     153 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00001
-rw-r--r--   2 username hdfs     186 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00002
-rw-r--r--   2 username hdfs     182 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00003

Step 4: Export Data Using Sqoop
The first step when exporting data with Sqoop is to create tables in the target database 
system for the exported data. There are actually two tables needed for each exported 
table. The first is a table to hold the exported data (e.g., CityExport) and the second is 
a table to be used for staging the exported data (e.g., CityExportStaging). 

1. Using the following MySQL commands, you can create the tables:

mysql> USE world;
mysql> CREATE TABLE `CityExport` (
       `ID` int(11) NOT NULL AUTO_INCREMENT
       `Name` char(35) NOT NULL DEFAULT '',
       `CountryCode` char(3) NOT NULL DEFAULT '',
       `District` char(20) NOT NULL DEFAULT '',
       `Population` int(11) NOT NULL DEFAULT '0',
        PRIMARY KEY (`ID`));
mysql> CREATE TABLE `CityExportStaging` (
       `ID` int(11) NOT NULL AUTO_INCREMENT,
       `Name` char(35) NOT NULL DEFAULT '',
       `CountryCode` char(3) NOT NULL DEFAULT '',
       `District` char(20) NOT NULL DEFAULT '',
       `Population` int(11) NOT NULL DEFAULT '0',
        PRIMARY KEY (`ID`));

2. Next, create a cities-export-options.txt file similar to the world-options.txt file 
created above, using the export instead of import command. The following will 
export the cities data we imported above back into MySQL:

sqoop --options-file cities-export-options.txt --table CityExport  
➥ --staging-table CityExportStaging  --clear-staging-table -m 4 
➥ --export-dir /user/username/sqoop-mysql-import/city

3. Finally, to make sure everything worked, check the table in MySQL to see if the 
cities are in the table.

$ mysql> select * from CityExport limit 10;
+----+----------------+-------------+---------------+------------+
| ID | Name           | CountryCode | District      | Population |
+----+----------------+-------------+---------------+------------+
|  1 | Kabul          | AFG         | Kabol         |    1780000 |
|  2 | Qandahar       | AFG         | Qandahar      |     237500 |
|  3 | Herat          | AFG         | Herat         |     186800 |
|  4 | Mazar-e-Sharif | AFG         | Balkh         |     127800 |
|  5 | Amsterdam      | NLD         | Noord-Holland |     731200 |
|  6 | Rotterdam      | NLD         | Zuid-Holland  |     593321 |
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|  7 | Haag           | NLD         | Zuid-Holland  |     440900 |
|  8 | Utrecht        | NLD         | Utrecht       |     234323 |
|  9 | Eindhoven      | NLD         | Noord-Brabant |     201843 |
| 10 | Tilburg        | NLD         | Noord-Brabant |     193238 |
+----+----------------+-------------+---------------+------------+
10 rows in set (0.00 sec)

Some Handy Clean-up Commands
If you are not real familiar with MySQL, the following commands may be helpful to 
clean up the examples. 
     To remove a table in MySQL:

mysql> Drop table `CityExportStaging`;

To remove the data in a table:

mysql> delete from CityExportStaging;

To clean up imported files:

$ hdfs dfs -rm -r  -skipTrash sqoop-mysql-import/{country,city, 
➥ canada-city}

Using Apache Flume to Acquire Data Streams
In addition to structured data in databases, another common source of data is log files, 
which usually come in the form of continuous (streaming) incremental files often 
from multiple source machines. In order to use this type of data for data science with 
Hadoop, we need a way to ingest such data into HDFS.

Apache Flume is designed to collect, transport, and store data streams into HDFS. 
Often data transport involves a number of Flume agents that may traverse a series of 
machines and locations. Flume is often used for log files, social-media-generated data, 
email messages, and pretty much any continuous data source.

As shown in Figure 4.4, a Flume agent is composed of three components: 

 n Source—The source component receives data and sends it to a channel. It can send 
the data to more than one channel. The input data can be from a real-time source 
(e.g. web log) or another Flume agent. 

 n Channel—A channel is a data queue that forwards the source data to the sink 
destination. It can be thought of as a buffer that manages input (source) and output 
(sink) f low rates. 

 n Sink—The sink delivers data to destinations such as HDFS, a local file, or another 
Flume agent. 

A Flume agent can have multiple sources, channels, and sinks but must have at least 
one of each of the three components defined. Sources can write to multiple channels, 
but a sink can only take data from a single channel. Data written to a channel remain 
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in the channel until a sink removes the data. By default, the data in a channel is kept in 
memory but optionally may be stored on disk to prevent data loss in the event of a network 
failure. 

As shown in Figure 4.5, Flume agents may be placed in a pipeline. This configuration 
is normally used when data is collected on one machine (e.g., a web server) and sent to 
another machine that has access to HDFS. 

In a Flume pipeline, the sink from one agent is connected to the source of another. 
The data transfer format normally used by Flume is called Apache Avro 4 and provides 
several useful features. First, Avro is a data serialization/deserialization system that uses 
a compact binary format. The schema is sent as part of the data exchange and is defined 
using JavaScript Object Notation ( JSON ). Avro also uses remote procedure calls 
(RPC) to send data. That is, an Avro sink will contact an Avro source to send data. 

Another useful Flume configuration is shown in Figure 4.6. In this configuration, 
Flume is used to consolidate several data sources before committing them to HDFS.

There are many possible ways to construct Flume transport networks. 
The full scope of Flume functionality is beyond the scope of this book, and there are 

many additional features in Flume such as plug-ins and interceptors that can enhance 

4. https://avro.apache.org/
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Flume pipelines. For more information and example configurations, please see the 
Flume Users Guide at https://f lume.apache.org/FlumeUserGuide.html.

Using Flume: A Web Log Example Overview
In this example web logs from the local machine will be placed into HDFS using Flume. 
This example is easily modified to use other web logs from different machines. The full 
source code and further implementation notes are available from the book web page in 
Appendix A, “Book Web Page and Code Download.” Two files are needed to configure 
Flume. (See the sidebar “Flume Configuration Files.”)

 n web-server-target-agent.conf—The target Flume agent that writes the data 
to HDFS

 n web-server-source-agent.conf—The source Flume agent that captures the web 
log data

The web log is also mirrored on the local file system by the agent that writes to HDFS. 

1. To run the example, create the directory as root.

# mkdir /var/log/flume-hdfs
# chown hdfs:hadoop /var/log/flume-hdfs/
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Figure 4.6 A Flume consolidation network.
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2. Next, as user hdfs, make a Flume data directory in HDFS.

$ hdfs dfs -mkdir /user/hdfs/flume-channel/

3. Now that the data directories are created, the Flume target agent can be started 
(as user hdfs). 

$ flume-ng agent -c conf -f web-server-target-agent.conf -n collector

This agent writes the data into HDFS and should be started before the source agent. 
(The source reads the web logs.) 

Note

In some Hadoop distributions, Flume can be started as a service when the system boots, 
such as “service start flume.” This configuration allows for automatic use of the Flume 
agent. The /etc/flume/conf/{flume.conf,flume-env.sh.template} files need to be 
configured for this purpose. For this example, the /etc/flume/conf/flume.conf file can be 
the same as the web-server-target.conf file (modified for your environment).

The source agent can be started as root, which will start to feed the web log data to 
the target agent. Note that the source agent can be on another machine: 

# flume-ng agent -c conf -f web-server-source-agent.conf -n source_agent

To see if Flume is working, check the local log by using tail. Also check to make 
sure the f lume-ng agents are not reporting any errors (filename will vary).

$ tail –f /var/log/flume-hdfs/1430164482581-1

The contents of the local log under f lume-hdfs should be identical to that written 
into HDFS. The file can be inspected using the hdfs –tail command. (filename will 
vary). Note, while running Flume, the most recent file in HDFS may have a .tmp 
appended to it. The .tmp indicates that the file is still being written by Flume. The target 
agent can be configured to write the file (and start another .tmp file) by setting some 
or all of the rollCount, rollSize, rollInterval, idleTimeout, and batchSize options 
in the configuration file.

$ hdfs dfs -tail flume-channel/apache_access_combined/150427/FlumeData.
➥1430164801381

Both files should have the same data in them. For instance, the preceding example 
had the following in both files:

10.0.0.1 - - [27/Apr/2015:16:04:21 -0400] "GET /ambarinagios/nagios/nagios_alerts
.php?q1=alerts&alert_type=all HTTP/1.1" 200 30801 "-" "Java/1.7.0_65"
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 784 
"-" "Java/1.7.0_65"
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 508 
"-" "Java/1.7.0_65"

Both the target and source file can be modified to suit your system.
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Flume Configuration Files

A complete explanation of Flume configuration is beyond the scope of this chapter. The 
Flume website has additional information on Flume configuration at http://flume.apache
.org/FlumeUserGuide.html#configuration. 

The two files describe two Flume agents that have separate Source/Channel/Sink con-
figurations. Some of the important settings used in the example above are as follows:

In web-server-source-agent.conf, the following lines set the source. Note that the 
web log is acquired by using the tail command to record the log file. 

source_agent.sources = apache_server
source_agent.sources.apache_server.type = exec
source_agent.sources.apache_server.command = tail -f /etc/httpd/logs/access_log

Further down in the file, the sink is defined. The parameter source_agent.sinks.avro_
sink.hostname is used to assign the Flume node that will write to HDFS. The port 
number is also set in the target configuration file. 

source_agent.sinks = avro_sink
source_agent.sinks.avro_sink.type = avro
source_agent.sinks.avro_sink.channel = memoryChannel
source_agent.sinks.avro_sink.hostname =  192.168.93.24
source_agent.sinks.avro_sink.port = 4545

The HDFS settings are placed in the web-server-target-agent.conf file. Note the path 
that was used in the previous example and the data specification.  

collector.sinks.HadoopOut.type = hdfs
collector.sinks.HadoopOut.channel = mc2
collector.sinks.HadoopOut.hdfs.path = /user/hdfs/flume-channel/%{log_type}/
%y%m%d
collector.sinks.HadoopOut.hdfs.fileType = DataStream

The target file also defines the port and two channels (mc1 and mc2). One of the 
channels writes the data to the local file system and the other writes to HDFS. The 
relevant lines are shown in the following:

collector.sources.AvroIn.port = 4545
collector.sources.AvroIn.channels = mc1 mc2

collector.sinks.LocalOut.sink.directory = /var/log/flume-hdfs
collector.sinks.LocalOut.channel = mc1

The  HDFS file rollover counts create a new file when a threshold is exceeded. In this 
example, allow any file size and write a new file after 10,000 events or 600 seconds.

collector.sinks.HadoopOut.hdfs.rollSize = 0
collector.sinks.HadoopOut.hdfs.rollCount = 10000
collector.sinks.HadoopOut.hdfs.rollInterval = 600

A full discussion of Flume can be found on the website at https://flume.apache.org. 
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Manage Hadoop Work and Data Flows with 
Apache Oozie
Apache Oozie is a workf low scheduler system designed to run and manage multiple related 
Apache Hadoop jobs. For instance, complete data input and analysis may require several 
discrete Hadoop jobs to be run as a workf low where the output of one job will be the input 
for a successive job. Oozie is designed to construct and manage these workf lows. 

Oozie is not a substitute for the YARN scheduler mentioned previously. That is, YARN 
manages resources for individual Hadoop jobs, and Oozie provides a way to connect 
and control multiple Hadoop jobs on the cluster.

Oozie workf low jobs are represented as DAGs of actions. There are three types of 
Oozie jobs:

 n Workf low: A specified sequence of Hadoop jobs with outcome-based decision 
points and control dependency. Progress from one action to another cannot happen 
until the first action is complete. 

 n Coordinator: A scheduled workf low job that can run at various time intervals 
or when data becomes available. 

 n Bundle: A higher-level Oozie abstraction that will batch a set of coordinator jobs.

Oozie is integrated with the rest of the Hadoop stack supporting several types of 
Hadoop jobs out of the box (such as Java MapReduce, Streaming MapReduce, Pig, Hive, 
Spark, and Sqoop) as well as system-specific jobs (such as Java programs and shell scripts). 
Oozie also provides a CLI and a Web UI for monitoring jobs. An example of a simple Oozie 
workf low is shown in Figure 4.7. In this example, Oozie runs a basic MapReduce opera-
tion. If the application was successful the job ends; if there was an error, the job is killed.

Oozie workf low definitions are written in Hadoop Process Definition Language 
(hPDL), which is an XML-based process definition language. Oozie workf lows con-
tain several types of nodes. 

start
start

ERROR

map-reduce
wordcount

MapReduce Workflow DAG Workflow.xml

OK

kill

end
<workflow -app name=...>
<start...>
<action>
 <map-reduce>
 ....
 ....
</workflow>

Figure 4.7 A simple Oozie DAG workflow.
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 n Start/Stop control f low nodes define the beginning and the end of a workf low. 
These include start, end, and optional fail nodes. 

 n Action nodes are where the actual processing tasks are defined. When an action 
node finishes, the remote systems notify Oozie and the next node in the workf low 
is executed. Action nodes can also include HDFS commands.

 n Fork/join nodes allow parallel execution of tasks in the workf low. The fork 
node allows two or more tasks to run at the same time. A join node represents a 
rendezvous point that must wait until all forked tasks complete. 

 n Control f low nodes enable decisions to be made about the previous task. Control 
decisions are based on the results of the previous action (e.g. file size or file existence). 
Decision nodes are essentially switch-case statements that use JSP EL ( Java Server 
Pages-Expression Language) that evaluates to either true or false.

A more complex workf low that uses all the above nodes is shown in the example work-
f low in Figure 4.8. More information on Oozie can be found at http://oozie.apache.org/
docs/4.0.0/index.html.

map-
reducestart

map-
reduce

streaming

pig decision

map-
reduce
pipes

fork join

java

file-
systemend

Figure 4.8 A more complex Oozie DAG workflow.
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Apache Falcon
Apache Falcon simplifies the configuration of data motion by providing replication, life 
cycle management, lineage, and traceability. These features provide data governance 
consistency across Hadoop components that is not possible using Oozie. For instance, 
Falcon allows Hadoop administrators to centrally define their data pipelines, and then 
Falcon uses those definitions to auto-generate workf lows in Apache Oozie. In simple 
terms, proper use of Falcon helps keep your active Hadoop cluster from becoming a 
confusing mess.

For example, Oozie lets you define Hadoop processing through workf low and 
coordinator (a recurring workf low) jobs. The input datasets for data processing are often 
described as part of coordinator jobs that specify properties such as path, frequency, 
schedule runs, and so on. If there are two coordinator jobs that depend on the same data, 
these details have to be defined and managed twice. If you want to add shared data 
deletion or movement, a separate coordinator is required. Oozie will certainly work in 
these situations, but there is no easy way to define and track the entire data life cycle or 
manage multiple independent Oozie jobs. 

Oozie is useful when initially setting up and testing workf lows and can be used when 
the workf lows are independent and not expected to change often. If there are multiple 
dependencies between workf lows or there is a need to manage the entire data life cycle, 
then Falcon should be considered. 

As mentioned, as Hadoop’s high-level workf low scheduler, Oozie may be managing 
hundreds to thousands of coordinator jobs and files. This situation results in some common 
mistakes. Processes might use the wrong copies of datasets. Datasets and processes may 
be duplicated, and it becomes increasingly more difficult to track down where a particular 
dataset originated. At that level of complexity, it becomes difficult to manage so many 
dataset and process definitions.

To solve these problems, Falcon allows the creation of a pipeline that is defined by 
three key attributes:

 n A cluster entity that defines where data, tools, and processes live on your Hadoop 
cluster. A cluster entity contains things like the namenode address, Oozie URL, etc., 
which it uses to execute the other two entities: feeds and processes.

 n A feed entity defines where data live on your cluster (in HDFS). The feed is 
designed to designate to Falcon where your new data (that’s either ingested, pro-
cessed, or both) live so it can retain (through retention policies) and replicate 
(through replication policies) the data on or from your Cluster. A feed is typically 
(but doesn’t have to be) the output of a process.

 n A process entity defines what action or “process” will be taking place in a pipeline. 
Most typically, the process links to an Oozie workf low, which contains a series of 
actions to execute (such as shell scripts, Java Jars, Hive actions, Pig actions, Sqoop 
Actions, you name it) on your cluster. A process also, by definition, takes feeds as 
inputs or outputs and is where you define how often a workf low should run.
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The following example will help explain how Falcon is used. Assume there is raw input 
data that arrives every hour. These data are processed with a Pig script and the results saved 
for later processing. At a simple level an Oozie workf low could easily manage the task. 
However, high-level features, not available in Oozie, are needed to automate the process. 
First, the input data have a retention policy of 90 days, after which old data are discarded. 
Second, the processing step may have a certain number of retries should the process fail. 
And, finally, the output data have a retention policy of three years (and location). It is also 
possible to query data lineage with Falcon (i.e., Where did this data come from?). The simple 
job f low is shown in Figure 4.9.

What’s Next in Data Ingestion?
As the Hadoop platform continues to evolve, innovation in ingestion tools continues. Two 
important new tools are now available to ingestion teams that we would like to mention:

 n Apache Nifi is a recent addition to the data ingestion toolset. Originally created at 
the NSA and recently open sourced and added to the Apache family, Nifi provides 
a scalable way to define data routing, transformation, and system mediation logic. 
An excellent UI makes building data f lows in Nifi fast and easy. Nifi provides support 
for lineage tracking and the security and monitoring capability that make it a great 
tool for data ingestion, especially for sensor data.

 n Apache Atlas provides a set of core data governance services that enables enter-
prises to effectively deal with compliance requirements on Hadoop. 

Summary
In this chapter

 n The Hadoop data lake concept was presented as a new model for data processing. 
 n Various methods for making data available to several Hadoop tools were outlined. 

The examples included copying files directly to HDFS, importing CSV files to 
Apache Hive and Spark, and importing JSON files into HIVE with Spark.

Hourly
Input FileHourly

Input FileHourly
Input File

Pig
Script

Daily Filtered
Output File

raw-input-feed filter-process filtered-feed

Retention
Policy

90 Days

Retry
Policy

2 Attempts

Retention
Policy

3 Years

Figure 4.9 A simple Apache Falcon workflow.
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 n Apache Sqoop was presented as a tool for moving relational data into and out 
of HDFS.

 n Apache Flume was presented as tool for capturing and transporting continuous 
data, such as web logs, into HDFS.

 n The Apache Oozie workf low manager was described as a tool for creating and 
scheduling Hadoop workf lows. 

 n The Apache Falcon tool enables a high-level framework for data governance 
(end-to-end management) by keeping Hadoop data and tasks organized and 
defined as pipelines.  

 n New tools like Apache Nifi and Atlas were mentioned as options for governance 
and data f low on a Hadoop cluster.
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Hadoop (continued )
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general user commands, 204–205
getting a status report, 207–208
hdfs command, 203
health check, 208
listing files, 205–206
quick command dereference, 204

hdfs command, 203
Health check on HDFS, 208
Healthcare

claim fraud, costs of, 25
detecting anomalous record access, 28
electronic patient records, 27–28
HEDIS (Healthcare Effectiveness Data and 

Information Set), 27
ICD10 standard for patient records, 27
PMI (Precision Medicine Initiative) 

Cohort program, 27–28
predicting patient re-admission, 28
predictive medical diagnosis, 27–28
validating HCPCS codes, example, 92–93

HEDIS (Healthcare Effectiveness Data and 
Information Set), 27
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Help for data scientists. See Books and 
publications; Online resources.

Heritage Provider Network, 28
Hidden Markov models (HMMs), 101
Hierarchical clustering algorithm, 155
Hierarchical learning, 197–199
Histograms, example, 117–118
History of data science

AI (artificial intelligence), 6
decision trees, 6
deep learning, 7
KDD workshops, 6
k-means clustering, 6
nearest-neighbors, 6
neural networks, 6
significant contributors, 7–8.  See also 

individual names.
statistics and machine learning, 6–7
support vector machines, 6
supporting technological/scientific 

achievements, 5–6
History of data science, role of big data

audio data, 21
log files, 20
sensor data, 20
text data, 21
variety of data, 20–21
velocity of data, 21
video data, 21
volume of data, 20

Hive
description, 40–41
Programming HIVE, 41
sampling for a feature matrix, example, 

94–95
SQL analytics, 40–41
UDFs (user-defined functions), 40–41
User-Defined Aggregation functions, 40–41
word-count script, 41

Hive tables
external, 59
importing files into, overview, 59
internal, 59

Hive tables, importing data from files
CSV files, 59–62
overview, 59
TSV (tab-separated values), 59

Hive tables, importing data with Spark
CSV files, 63–64
overview, 62–63

Hivemall, 41
HMMs (hidden Markov models), 101
Hoaglin, David, 91
Hortonworks, founding of, 38
HPDL (hadoop Process Definition 

Language), 79

I
IBM, 182
ICA (independent component analysis), 105
ICD10 standard for patient records, 27
Iglewicz, Boris, 91
Image data, data munging feature matrix, 102
Image processing, 198
Importing data. See also Data ingestion.

files into Hive tables, 59, 64
JSON files, 64
relational data, 66–67

Independent variables, predictive modeling, 
134

Installing and configuring Sqoop, 68–74
Insurance risk analysis, use case, 29
Intent, identifying in text, 100
Internal Hive tables, 59

J
Jaccard coefficient, 154
Java packages for Hadoop, 46
JPEG files, extracting time-series data, 101
JSON files

extracting time-series data, 101
importing into Hive tables, 64

Julia language, visualization tool, 123

K
Kaggle.com competition, 28
KDD workshops in the history of data 

science, 6
K-fold cross-validation, predictive modeling 

performance metrics, 139–140
k-means clustering

anomaly detection, 169–170
example, 155

k-means++ clustering, example, 156

Mendelevitch_Book.indb   221Mendelevitch_Book.indb   221 11/16/16   6:39 PM11/16/16   6:39 PM



222 Index

K-means clustering in the history of data 
science, 6

k-medians clustering, example, 156
k-medoids clustering, anomaly detection, 170
K-medoids clustering, example, 156
k-nearest-neighbor

anomaly detection, 170
description, 140

Kullback-Leibler divergence pseudo-metric., 90

L
LASSO (least absolute shrinkage, and 

selection operator), 140
lattice package, visualization tool, 122
LDA (linear discriminant analysis), 105
LDA (Latent Dirichlet Allocation), examples, 

157, 160–163
Lee, Honglak, 198
Libraries

Matlab, 123
Python language, 45
Seaborn, 122
Spark. See MLlib.

Libraries, matplotlib
plotting library, 45
visualization tool, 122

Lifecycle management, Falcon, 81–82
Likelihood, history of, 6
Line charts, examples, 113–114
Lineage, Falcon, 81–82
Linear regression, supervised learning 

algorithms, 140
LinkedIn in the history of data science, 7–8
Listing files in HDFS, 205–206
Local outlier factor, 169–170
Log files in the history of data science, 20
Logistic regression, supervised learning 

algorithms, 140
Love of learning, attribute of data scientists, 11
LSI (latent semantic indexing), 105–106

M
MA (moving average) datasets, 101
Machine learning

algorithms, 132
association rules algorithm, 132
benefits of big data, 130–131
clustering algorithm, 132

collaborative filtering algorithm, 132
deep learning, 128
feature matrix, example, 128–129
features, definition, 128
future of, 132
Java packages for, 46
neural networks, 128
observations, definition, 128
overview, 127–128
perceptron, 127
support vector machines, 128
text mining, 46
tools for, 131–132
unsupervised learning, 129
Vowpal Wabbit, 46
WEKA pkg, 46

Machine learning, supervised learning
algorithms for, 132, 140–141
definition, 129

Machine learning, targets
definition, 128
task types, 129

Machine learning, task types
anomaly detection, 129
classif ication, 129
clustering, 129
market basket analysis, 129
predictive modeling, 129
recommender systems, 129
regression, 129

Machine learning libraries
Python language, 45
Spark MLlib, 132

Machine learning models
in the data science project lifecycle, 17
tuning, 17

MAE (mean absolute error), predictive 
modeling performance metric, 139

Mahout, 186
Mallet package, 46
Managing data science projects vs. managing 

software projects, 18
Manhattan distance, clustering similarity 

measure, 153
Map phase, MapReduce, 35–36
Map-only jobs, 66–67
MapReduce. See also Flink; Spark; Tez.

description, 35–37
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for highly iterative jobs, 36
map phase, 35–36
phases, 35
reduce phase, 35–36
shuff le phase, 35
word-count script, 35

Market basket analysis
in machine learning, 129
use case for, 26–27

Matlab, matrix library, 123
matplotlib, 45, 122
Mendelevitch, Ofer 

about the author, xxiii
becoming a data scientist, 9
work on search advertising, 9

Microsoft, running on Hadoop, 49
Minkowski distance, clustering similarity 

measure, 153–154
Missing value imputation, 91
Mixed feature sets, clustering similarity 

measure, 154
MLlib. See also Libraries.

description, 43
NLP example, 186–187
word vectorization, example, 100
word2vec, example, 100

Model tuning, predictive modeling, 142–143
Model-based clustering algorithm, 155
Modeling in the data science project lifecycle, 16
Models

scalable application, 51
scalable creation, 50–51

Moving average (MA), 101
MP3 files, extracting time-series data, 101
MP4 files, extracting time-series data, 101
Multi-language tooling, 48–49
Multi-layer neural networks, 197
Multivariate datasets with clustering, 

anomaly detection, 169–170
Munging data. See Data munging.

N
Named entity extraction (NER), 99–100
Named entity recognition, 184
Natural language processing (NLP). See NLP 

(natural language processing).
Nearest-neighbors

in the history of data science, 6

k-nearest neighbor, anomaly detection, 170
k-nearest-neighbor algorithm, 140

NER (named entity extraction), 99–100
Netf lix in the history of data science, 7–8
Network intrusions, anomaly detection 

example, 172–178
Neural networks

in the history of data science, 6
multi-layer, 197
supervised learning algorithms, 140

Ng, Andrew Y., 198
NLP (natural language processing)

Chomsky, Noam, 182
ELIZA, 182
Georgetown University, 182
historical approaches, 182
IBM, 182
named entity recognition, 184
overview, 181–182
Python language, 45
sentiment analysis, 184
tagging parts of speech, 183
text segmentation, 183
topic modeling, 184
translating Russian to English, 182
use cases, 182–183
Weizenbaum, Joseph, 182

NLP (natural language processing), examples
sentiment analysis, 189–193
with Spark, 189
with Stanford CoreNLP, 189

NLP (natural language processing), textual 
representations

bag of words, 186, 187–188
“Efficient Estimation of Word 

Representations in Vector Space,” 188
term frequencies, 188
term frequency scaled by TF-IDF, 188
word2vec, 188

NLP (natural language processing), tooling 
for Hadoop

bag of words model, 186
big-model NLP, 184, 186–187
Mahout, 186
small-model NLP, 184–186
Spark MLlib, 186–187

NLTK, Python language, 45
Numeric computing, Python language, 45
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NumPy, Python language, 45
Nutch, in the evolution of Hadoop, 37–38

O
Observations, in machine learning, 128
Oil and gas well production predictions, use 

case for, 29
Olson, Mike, 38
One-hot encoding, 103
Online resources. See also Books and 

publications.
deep learning, 199
example code, 201
Google, 100
HDFS, 203
question and answer forum, 201
Sqoop project website, 66
TDA (topological data analysis), 197
webpage for this book, 201
word2vec, 100

Oozie
action nodes, 80
bundle jobs, 79
control f low nodes, 80
coordinator jobs, 79
description, 40
fork/join nodes, 80
hPDL (Hadoop Process Definition 

Language), 79
job types, 79
node types, 79–80
scheduling workf low, 79–80
start/stop control f low nodes, 80
workf low example, 79–80
workf low jobs, 79

OpenNLP package, 46
Outlier. See Anomaly.

P
Packages

CoreNLP, 46
ggplot Python visualization tool, 122
Java for Hadoop, 46
Java for machine learning, 46
Mallet, 46
OpenNLP, 46
R language, 44
R package for visualization, 122

RPlyr, 44
Vowpal Wabbit, 46
WEKA, 46

PAM (partition around medoids), 156, 170
“Panama” project, 9
Pandas, Python language, 45
Parallel MapReduce, 35
Partitioning-based clustering algorithm, 154
PayPal in the history of data science, 7–8
PCA (principal component analysis), 105
PDF files, extracting text from, 101
Pearson, Karl, 6
Pentaho, 19
Perceptron, 127
Performance metrics, predictive modeling. 

See Predictive modeling, performance 
metrics.

Persistence, attribute of data scientists, 12
Phases of MapReduce, 35
Piatesky-Shapiro, Gregory, 6
Pie charts, 115
Pig

description, 41–42
Programming Pig, 42
sampling for a feature matrix, example, 

94–95
script for word-count, 42

Pig-on-Spark, 41
Pipeline configuration, Flume, 75
PMI (Precision Medicine Initiative) Cohort 

program, 27–28
PMML (predictive modeling markup 

language), 143
Point anomalies, 166–167, 168–169
POSIX file systems, and HDFS, 58
Precision in predictive modeling, definition, 

137
Precision-recall curve, predictive modeling 

performance metric, 138–139
Predicting patient re-admission, use case for, 

28
Predictive maintenance, use case for, 26
Predictive medical diagnosis, use case for, 

27–28
Predictive modeling. See also Supervised 

learning.
accuracy, definition, 137
architectural view, 141–143
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batch prediction, 143–144
categorical targets, 134
cleaning and normalizing data, 142
confusion matrix, 136–139
in the data science project lifecycle, 16
dependent variables, 134
examples, 133–134
Hadoop parallel processing, 143
independent variables, 134
in machine learning, 129
model tuning, 142–143
munging data, 142
overview, 133–134
PMML (predictive modeling markup 

language), 143
precision, definition, 137
real-time prediction, 144
recall, definition, 137
specificity, definition, 137
supervised learning, algorithms for. See 

Algorithms, supervised learning.
training sets, 134
twitter. See Predictive modeling, sentiment 

analysis example.
Predictive modeling, classif ication

example, 135
vs. regression, 134–135

Predictive modeling, design choices
evaluating classif iers, 136–139
example, 136
test sets, 136
training sets, 136
validation sets, 136

Predictive modeling, performance metrics
AUC (area-under-the-curve), 139
classif iers, 136–139
cross validation, 139–140
k-fold cross-validation, 139–140
MAE (mean absolute error), 139
precision-recall curve, 138–139
regression models, 139
RMSE (root mean squared error), 139
ROC (receiver operating characteristic), 

138–139
ROC curve, 138–139

Predictive modeling, regression
vs. classif ication, 134–135
example, 135

Predictive modeling, sentiment analysis example
building classif iers, 149–150
data preparation, 145–146
feature generation, 146–149
tweets dataset, 145

Predictive modeling markup language 
(PMML), 143

Pre-processing data with clustering, 152
Principal component analysis (PCA), 105
Process entities, Falcon, 81–82
Product recommendation, use case for, 21–22
Programming HIVE, 41
Programming Pig, 42
put HDFS command, 58
PySpark, word-count script, 45–46
Python language

data manipulation and analysis, 45
machine learning library, 45
matplotlib, plotting library, 45
natural language processing, 45
NLTK, 45
numeric computing, 45
NumPy, 45
overview, 45–46
Pandas, 45
scientific computing, 45
scikit-learn, 45
SciPy, 45
Spacy, 45
text mining, 45
word-count script, 45–46

Python visualization tool, 122

Q
QlikView, visualization tool, 123

R
R Foundation for Statistical Computing, 

121–122
R language

capabilities, 44
description, 44–45
packages, 44
RPlyr, 44
RHadoop pkg, 44
RODBC pkg, 44
visualization tool, 121–122
word-count script, 44–45
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R Plyr package, 44
R project, 45
Random forest algorithm for supervised 

learning, 140
Ranganath, Rajesh, 198
RDD (resilient distributed dataset)

definition, 42
source for importing to HDFS, 62–64

Reading data into Hadoop. See Data 
ingestion; Importing data.

Real-time prediction, predictive modeling, 
144

Recall in predictive modeling, definition, 
137

Receiving operating characteristic (ROC), 
predictive modeling performance 
metric, 138–139

Recommender systems
in the data science project lifecycle, 16
in machine learning, 129
use case for, 21–22

Reduce phase, MapReduce, 35–36
Regression

vs. classif ication, 134–135
history of, 6
in machine learning, 129

Regression models, predictive modeling 
performance metric, 139

Relationship charts
definition, 112
description, 118–120
scatter plots, 118–120

Removing
common words, 97–99
stop words, 105

Replication, Falcon, 81–82
Representation learning, 197
Research scientists, description, 8–9
Resilient distributed datastore (RDD)

definition, 42
source for importing to HDFS, 62–64

Resource management, 49
Resources for data scientists. See Books and 

publications; Online resources.
Reusing command options, Sqoop, 71–72
RHadoop pkg, 44
Right model formulation, identifying, 196

Risk analysis, use case for, 29
Risk models among auto insurers, 14
RMSE (root mean squared error), predictive 

modeling performance metric, 139
ROC (receiving operating characteristic), 

predictive modeling performance 
metric, 138–139

ROC curve, predictive modeling 
performance metric, 138–139

RODBC pkg, 44
Rosenblatt, Frank, 6
Rules-based anomaly detection methods, 167
Russian, translating to English, 182

S
Sales use cases

diversifying sales, 22
increasing sales, 22
prioritizing leads, 23–24

Sampling, data munging feature matrix, 
94–95

SAP, running on Hadoop, 49
Sarkar, Deepayan, 122
SAS (Statistical Analysis System)

running on Hadoop, 49
visualization tools, 122–123

SAS/Analyst, visualization tool, 123
SAS/Insight, visualization tool, 123
SAS/Procs, visualization tool, 123
Scaling feature values, data munging feature 

matrix, 103
Scatter plots, 118–120
Scheduling, 49
Scheduling workf low, Oozie, 79–80
Schema-on-read, 47
Scientific computing, Python language, 45
scikit-learn package, Python language, 45
SciPy, Python language, 45
Seaborn library, visualization tool, 122
Search advertising

examples of, 4–5
Yahoo! project “Panama,” 9

Semantic hashing, 197
Semi-structured data, 48
Semi-supervised anomaly detection methods, 

170
Sensitivity. See Recall.
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Sensor data in the history of data science, 20
Sentiment analysis

example, 189–193
with NLP, 184, 189–193
use case for, 24–25

Sequence anomalies, 167, 169
Shuff le phase, MapReduce, 35
Similarity functions, clustering similarity 

measures, 154
Similarity measures. See Clustering, 

similarity measures.
Simple features, 96. See also Data munging, 

feature matrix.
Sink component, Flume, 74
Sketch techniques, 171
Skill required for data scientists, 9–12
Slicing and dicing input. See also Spark.

HDFS, 58
with Sqoop, 58

Small-model NLP, 184–186
Source component, Flume, 74
Spacy, Python language, 45
Spark. 

architecture, 42–43
DataFrames, 42
description, 37
fault tolerant streaming applications. See 

Spark Streaming.
machine learning library. See MLlib.
NLP example, 189
Pig-on-Spark, 41
R language. See SparkR project.
RDD (resilient distributed datastore), 42
slicing and dicing data, 42
SQL analytics. See Spark SQL.
word-count script, 42–43

Spark, examples
dimensionality reduction, 105
removing common words from text, 98–99
sampling for a feature matrix, 94–95
word vectorization, 100
word2vec, 100

Spark MLlib. See MLlib.
Spark components. See specific components.
Spark SQL, 43
Spark Streaming, 43
SparkR project, 45

Specificity in predictive modeling, definition, 
137

SQL analytics in Hive, 40–41
SQL for Spark, 43
Sqoop

clean-up commands, 74
definition, 65–66
description, 39
exporting data, example, 73–74
importing/exporting relational data, 66–67
installing and configuring, 68–74
listing databases, 70–71
project website, 66
reusing command options, 71–72
version 2, example, 68–74
version 2 vs. version 1, 67–68
version changes, 67–68

Stanford CoreNLP, NLP example, 189
Start/stop control f low nodes, Oozie, 80
Static “value distribution” rules, 88–89
Statistical Analysis System (SAS)

running on Hadoop, 49
visualization tools, 122–123

Statistical computing, visualization tools, 
121–122

“Statistical Modeling: The Two Cultures,” 7
Statistics

box plot, invention of, 6
Tukey’s HSD test, invention of, 6

Statistics, and machine learning
overview, 6–7
statistical methods, 6

Stemming, 105
Stock prices, measuring over time, 100
Stop words, removing, 105
Storage, cost effectiveness, 46–47
Story-telling, attribute of data scientists, 12
Streaming, Spark, 43
Success criteria in the data science project 

lifecycle, 14–15
Supervised learning. See also Predictive 

modeling.
algorithms for. See Algorithms, supervised 

learning.
anomaly detection, 168
in the data science project lifecycle, 17

Support vector machines, 6, 128
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T
Tableau, visualization tool, 123
Tables. See Hive tables.
Tab-separated values (TSV), importing to 

Hive tables, 59
Tagging parts of speech, 183
TDA (topological data analysis), 195–197
Term frequency

computing, 99
definition, 188
scaled by TF-IDF, 188

Test sets in predictive modeling design 
choices, 136

Text data in the history of data science, 21
Text features, 97–102. See also Data munging, 

text features.
Text mining

Python language, 45
tools for, 46

Text segmentation, 183
Tez, 37. See also MapReduce.
TF-IDF (term frequency-inverse document 

frequency), 97–99
data munging, text features, 97–99
scaling term frequency, 188

Thresholding, data munging feature matrix, 
102–103

Timeliness in data quality, 87
Time-series data, anomaly detection, 168
Time-series features. See also Data munging, 

feature matrix.
example, 100
overview, 100–101

Tooling, multi-language, 48–49
Tools. See also specific tools.
Tools, machine learning, 131–132
Tools, visualization

GadFly, 123
ggplot Python package, 122
ggplot2 package, 122
graphics, 121–122
Graph-N-Go, 122
Julia language, 123
lattice package, 122
Matlab, matrix library, 123
matplotlib library, 122

online resources, 122–123
Python, 122
QlikView, 123
R language, 121–122
SAS (Statistical Analysis System), 122
SAS/Analyst, 123
SAS/Insight, 123
SAS/Procs, 123
Seaborn library, 122
statistical computing, 121–122
Tableau, 123

Tools for Hadoop data science
aggregating and moving log data into 

HDFS. See Flume.
bulk data transfer. See Sqoop.
data manipulation. Python language; 

R language.
data processing and management. See 

Falcon; Oozie.
distributed in-memory data processing. 

See Spark.
graphical display. See Python language; 

R language.
multi-step ETL. See Pig.
performing calculations..
programming languages. See Python 

language; R language.
SQL analytics. See Hive; Spark SQL.
statistical analysis. See R language.

Topic modeling
example, 160–163
with NLP, 184

Topological data analysis (TDA), 195–197
Training sets

in machine learning, 129
predictive modeling, 134
predictive modeling, design choices, 136

Translating Russian to English, 182
Tree ensembles, supervised learning 

algorithms, 140
True Negative Rate. See Recall.
True Positive Rate. See Recall.
TSV (tab-separated values), importing to 

Hive tables, 59
Tukey, John W., 6, 118
Tukey’s HSD test, invention of, 6

Mendelevitch_Book.indb   228Mendelevitch_Book.indb   228 11/16/16   6:39 PM11/16/16   6:39 PM



229Index

Tuning
anomaly detection, 170
predictive models, 142–143

Tweets dataset, predictive modeling example, 
145

U
UDFs (user-defined functions) in Hive, 

40–41
Unstructured data, 48
Unsupervised detection

of collective anomalies, 169
of sequence anomalies, 169

Unsupervised learning
anomaly detection, 168–170
in the data science project lifecycle, 17

“Unsupervised Learning of Hierarchical 
Representations with Convolutional 
Deep Belief Networks,” 198

Use cases, business
customer churn analysis, 22
customer segmentation, 22–23
fraud detection, 25
increasing sales, 22
increasing user satisfaction and loyalty, 22
insurance risk analysis, 29
market basket analysis, 26–27
predicting oil and gas well production, 29
predictive maintenance, 26
product recommendation, 21–22
sales diversity, 22
sales lead prioritization, 23–24
sentiment analysis, 24–25

Use cases, healthcare
detecting anomalous record access, 28
electronic patient records, 27–28
HEDIS (Healthcare Effectiveness Data and 

Information Set), 27
ICD10 standard for patient records, 27
PMI (Precision Medicine Initiative) 

Cohort program, 27–28
predicting patient re-admission, 28
predictive medical diagnosis, 27–28

Use cases, NLP, 182–183
User satisfaction and loyalty, use case for, 22
User-based-insurance (UBI). See Risk models.

User-Defined Aggregation functions in Hive, 
40–41

User-defined functions (UDFs) in Hive, 
40–41

V
Validation sets, predictive modeling design 

choices, 136
Validity in data quality, 87
Video data

data munging, feature matrix, 102
in the history of data science, 21

Viewing files, 58
Visualization tools

GadFly, 123
ggplot Python package, 122
ggplot2 package, 122
graphics, 121–122
Graph-N-Go, 122
Julia language, 123
lattice package, 122
Matlab, matrix library, 123
matplotlib library, 122
online resources, 122–123
Python, 122
QlikView, 123
R language, 121–122
SAS (Statistical Analysis System), 122
SAS/Analyst, 123
SAS/Insight, 123
SAS/Procs, 123
Seaborn library, 122
statistical computing, 121–122
Tableau, 123

Visualizations
with Hadoop, 123–124
misuse of, 110–112
network throughput, example, 108–110
uses in data science, 121

Visualizations, chart types. See also specific types.
comparing variables. See Comparison 

charts.
composition of data items. See 

Composition charts.
displaying mean, median, and maximum 

values. See Box-and-whisker chart.
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Visualizations, chart types (continued )
distribution of data. See Distribution 

charts.
a guide for choosing, online resource, 112
relationships between datasets or variables. 

See Relationship charts.
Vowpal Wabbit package, 46

W
WAV files, extracting time-series data, 101
Wavelet transformations, 101
Webpages. See Online resources.
Weizenbaum, Joseph, 182
WEKA package, 46
Wickham, Hadley, 122
WMV files, extracting time-series data, 101
Word vectorization, 100
word2vec, 188
Word-count scripts

Hive, 41
MapReduce, 35
Pig, 42

PySpark, 45–46
Python language, 45–46
R language, 44–45
Spark, 42–43

Workf low jobs, Oozie, 79
Workf low sample, Falcon, 81–82

X
XML data, extracting time-series data, 101

Y
Yahoo!

founding of Cloudera, 38
founding of Hortonworks, 38
history of data science, 7–8
project “Panama,” 9
work on search advertising, 9

YARN (Yet Another Resource Negotiator), 
34

Z
Zipf ’s Law, 105. See also Hashing trick.
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