
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134024141
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134024141
https://plusone.google.com/share?url=http://www.informit.com/title/9780134024141
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134024141
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134024141/Free-Sample-Chapter

Practical Data
Science with

Hadoop® and Spark

Mendelevitch_Book.indb iMendelevitch_Book.indb i 11/16/16 6:39 PM11/16/16 6:39 PM

Practical Data
Science with

Hadoop® and Spark

Designing and Building Effective
Analytics at Scale

Ofer Mendelevitch
Casey Stella

Douglas Eadline

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Mendelevitch_Book.indb iiiMendelevitch_Book.indb iii 11/16/16 6:39 PM11/16/16 6:39 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016955465

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-402414-1
ISBN-10: 0-13-402414-1

1 16

Mendelevitch_Book.indb ivMendelevitch_Book.indb iv 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.pearsoned.com/permissions/

Contents

Foreword xiii

Preface xv

Acknowledgments xxi

About the Authors xxiii

I Data Science with Hadoop—An Overview 1

1 Introduction to Data Science 3
What Is Data Science? 3
Example: Search Advertising 4
A Bit of Data Science History 5

Statistics and Machine Learning 6
Innovation from Internet Giants 7
Data Science in the Modern Enterprise 8

Becoming a Data Scientist 8
The Data Engineer 8
The Applied Scientist 9
Transitioning to a Data Scientist Role 9
Soft Skills of a Data Scientist 11

Building a Data Science Team 12
The Data Science Project Life Cycle 13

Ask the Right Question 14
Data Acquisition 15
Data Cleaning: Taking Care of Data Quality 15
Explore the Data and Design Model Features 16
Building and Tuning the Model 17
Deploy to Production 17

Managing a Data Science Project 18
Summary 18

2 Use Cases for Data Science 19
Big Data—A Driver of Change 19

Volume: More Data Is Now Available 20
Variety: More Data Types 20
Velocity: Fast Data Ingest 21

Mendelevitch_Book.indb vMendelevitch_Book.indb v 11/16/16 6:39 PM11/16/16 6:39 PM

vi Contents

Business Use Cases 21
Product Recommendation 21
Customer Churn Analysis 22
Customer Segmentation 22
Sales Leads Prioritization 23
Sentiment Analysis 24
Fraud Detection 25
Predictive Maintenance 26
Market Basket Analysis 26
Predictive Medical Diagnosis 27
Predicting Patient Re-admission 28
Detecting Anomalous Record Access 28
Insurance Risk Analysis 29
Predicting Oil and Gas Well Production Levels 29

Summary 29

3 Hadoop and Data Science 31
What Is Hadoop? 31

Distributed File System 32
Resource Manager and Scheduler 34
Distributed Data Processing Frameworks 35

Hadoop’s Evolution 37
Hadoop Tools for Data Science 38

Apache Sqoop 39
Apache Flume 39
Apache Hive 40
Apache Pig 41
Apache Spark 42
R 44
Python 45
Java Machine Learning Packages 46

Why Hadoop Is Useful to Data Scientists 46
Cost Effective Storage 46
Schema on Read 47
Unstructured and Semi-Structured Data 48
Multi-Language Tooling 48
Robust Scheduling and Resource Management 49
Levels of Distributed Systems Abstractions 49

Mendelevitch_Book.indb viMendelevitch_Book.indb vi 11/16/16 6:39 PM11/16/16 6:39 PM

viiContents

Scalable Creation of Models 50
Scalable Application of Models 51

Summary 51

II Preparing and Visualizing Data with Hadoop 53

4 Getting Data into Hadoop 55
Hadoop as a Data Lake 56
The Hadoop Distributed File System (HDFS) 58
Direct File Transfer to Hadoop HDFS 58
Importing Data from Files into Hive Tables 59

Import CSV Files into Hive Tables 59
Importing Data into Hive Tables Using Spark 62

Import CSV Files into HIVE Using Spark 63
Import a JSON File into HIVE Using Spark 64

Using Apache Sqoop to Acquire Relational Data 65
Data Import and Export with Sqoop 66
Apache Sqoop Version Changes 67
Using Sqoop V2: A Basic Example 68

Using Apache Flume to Acquire Data Streams 74
Using Flume: A Web Log Example Overview 76

Manage Hadoop Work and Data Flows with Apache
Oozie 79
Apache Falcon 81
What’s Next in Data Ingestion? 82
Summary 82

5 Data Munging with Hadoop 85
Why Hadoop for Data Munging? 86
Data Quality 86

What Is Data Quality? 86
Dealing with Data Quality Issues 87
Using Hadoop for Data Quality 92

The Feature Matrix 93
Choosing the “Right” Features 94
Sampling: Choosing Instances 94
Generating Features 96
Text Features 97

Mendelevitch_Book.indb viiMendelevitch_Book.indb vii 11/16/16 6:39 PM11/16/16 6:39 PM

viii Contents

Time-Series Features 100
Features from Complex Data Types 101
Feature Manipulation 102
Dimensionality Reduction 103

Summary 106

6 Exploring and Visualizing Data 107
Why Visualize Data? 107

Motivating Example: Visualizing Network
Throughput 108
Visualizing the Breakthrough That Never
Happened 110

Creating Visualizations 112
Comparison Charts 113
Composition Charts 114
Distribution Charts 117
Relationship Charts 118

Using Visualization for Data Science 121
Popular Visualization Tools 121

R 121
Python: Matplotlib, Seaborn, and Others 122
SAS 122
Matlab 123
Julia 123
Other Visualization Tools 123

Visualizing Big Data with Hadoop 123
Summary 124

III Applying Data Modeling with Hadoop 125

7 Machine Learning with Hadoop 127
Overview of Machine Learning 127
Terminology 128
Task Types in Machine Learning 129
Big Data and Machine Learning 130
Tools for Machine Learning 131
The Future of Machine Learning and Artificial
Intelligence 132
Summary 132

Mendelevitch_Book.indb viiiMendelevitch_Book.indb viii 11/16/16 6:39 PM11/16/16 6:39 PM

ixContents

8 Predictive Modeling 133
Overview of Predictive Modeling 133
Classification Versus Regression 134
Evaluating Predictive Models 136

Evaluating Classifiers 136
Evaluating Regression Models 139
Cross Validation 139

Supervised Learning Algorithms 140
Building Big Data Predictive Model Solutions 141

Model Training 141
Batch Prediction 143
Real-Time Prediction 144

Example: Sentiment Analysis 145
Tweets Dataset 145
Data Preparation 145
Feature Generation 146
Building a Classifier 149

Summary 150

9 Clustering 151
Overview of Clustering 151
Uses of Clustering 152
Designing a Similarity Measure 153

Distance Functions 153
Similarity Functions 154

Clustering Algorithms 154
Example: Clustering Algorithms 155

k-means Clustering 155
Latent Dirichlet Allocation 157

Evaluating the Clusters and Choosing the Number
of Clusters 157
Building Big Data Clustering Solutions 158
Example: Topic Modeling with Latent Dirichlet
Allocation 160

Feature Generation 160
Running Latent Dirichlet Allocation 162

Summary 163

Mendelevitch_Book.indb ixMendelevitch_Book.indb ix 11/16/16 6:39 PM11/16/16 6:39 PM

x Contents

10 Anomaly Detection with Hadoop 165
Overview 165
Uses of Anomaly Detection 166
Types of Anomalies in Data 166
Approaches to Anomaly Detection 167

Rules-based Methods 167
Supervised Learning Methods 168
Unsupervised Learning Methods 168
Semi-Supervised Learning Methods 170

Tuning Anomaly Detection Systems 170
Building a Big Data Anomaly Detection Solution
with Hadoop 171
Example: Detecting Network Intrusions 172

Data Ingestion 172
Building a Classifier 176
Evaluating Performance 177

Summary 179

11 Natural Language Processing 181
Natural Language Processing 181

Historical Approaches 182
NLP Use Cases 182
Text Segmentation 183
Part-of-Speech Tagging 183
Named Entity Recognition 184
Sentiment Analysis 184
Topic Modeling 184

Tooling for NLP in Hadoop 184
Small-Model NLP 184
Big-Model NLP 186

Textual Representations 187
Bag-of-Words 187
Word2vec 188

Sentiment Analysis Example 189
Stanford CoreNLP 189
Using Spark for Sentiment Analysis 189

Summary 193

Mendelevitch_Book.indb xMendelevitch_Book.indb x 11/16/16 6:39 PM11/16/16 6:39 PM

xiContents

12 Data Science with Hadoop—The Next
Frontier 195
Automated Data Discovery 195
Deep Learning 197
Summary 199

A Book Web Page and
Code Download 201

B HDFS Quick Start 203
Quick Command Dereference 204

General User HDFS Commands 204
List Files in HDFS 205
Make a Directory in HDFS 206
Copy Files to HDFS 206
Copy Files from HDFS 207
Copy Files within HDFS 207
Delete a File within HDFS 207
Delete a Directory in HDFS 207
Get an HDFS Status Report (Administrators) 207
Perform an FSCK on HDFS (Administrators) 208

C Additional Background on Data Science and Apache
Hadoop and Spark 209
General Hadoop/Spark Information 209
Hadoop/Spark Installation Recipes 210
HDFS 210
MapReduce 211
Spark 211
Essential Tools 211
Machine Learning 212

Index 213

Mendelevitch_Book.indb xiMendelevitch_Book.indb xi 11/16/16 6:39 PM11/16/16 6:39 PM

This page intentionally left blank

Foreword

Hadoop and data science have been sought after skillsets respectively over the last five
years. However, few publications have attempted to bring the two together, teaching
data science within the Hadoop context. For practitioners looking for an introduction
to data science combined with solving those problems at scale using Hadoop and related
tools, this book will prove to be an excellent resource.

The topic of data science is introduced with topics covered including data ingest,
munging, feature extraction, machine learning, predictive modeling, anomaly detec-
tion, and natural language processing. The platform of choice for the examples and
implementation of these topics is Hadoop, Spark, and the other parts of the Hadoop
ecosystem. Its coverage is broad, with specific examples keeping the book grounded in
an engineer’s need to solve real-world problems. For those already familiar with data
science, but looking to expand their skillsets to very large datasets and Hadoop, this book
is a great introduction.

Throughout the text it focuses on concrete examples and providing insight into
business value with each approach. Chapter 5, “Data Munging with Hadoop,” provides
particularly useful real-world examples on using Hadoop to prepare large datasets for
common machine learning and data science tasks. Chapter 10 on anomaly detection
is particularly useful for large datasets where monitoring and alerting are important.
Chapter 11 on natural language processing will be of interest to those attempting to
make chatbots.

Ofer Mendelevitch is the VP of Data Science at Lendup.com and was previously
the Director of Data Science at Hortonworks. Few others are as qualified to be the
lead author on a book combining data science and Hadoop. Joining Ofer is his former
colleague, Casey Stella, a Principal Data Scientist at Hortonworks. Rounding out
these experts in data science and Hadoop is Doug Eadline, frequent contributor to the
Addison-Wesley Data & Analytics Series with the titles Hadoop Fundamentals Live Lessons,
Apache Hadoop 2 Quick-Start Guide, and Apache Hadoop YARN. Collectively, this team of
authors brings over a decade of Hadoop experience. I can imagine few others that have as
much knowledge on the subject of data science and Hadoop.

I’m excited to have this addition to the Data & Analytics Series. Creating data science
solutions at scale in production systems is an in-demand skillset. This book will help
you come up to speed quickly to deploy and run production data science solutions at scale.

— Paul Dix
Series Editor

Mendelevitch_Book.indb xiiiMendelevitch_Book.indb xiii 11/16/16 6:39 PM11/16/16 6:39 PM

This page intentionally left blank

Preface

Data science and machine learning are at the core of many innovative technologies and
products and are expected to continue to disrupt many industries and business models
across the globe for the foreseeable future. Until recently though, most of this innova-
tion was constrained by the limited availability of data.

With the introduction of Apache Hadoop, all of that has changed. Hadoop provides
a platform for storing, managing, and processing large datasets inexpensively and at scale,
making data science analysis of large datasets practical and feasible. In this new world
of large-scale advanced analytics, data science is a core competency that enables organi-
zations to remain competitive and innovate beyond their traditional business models.
During our time at Hortonworks, we have had a chance to see how various organizations
tackle this new set of opportunities and help them on their journey to implementing
data science at scale with Hadoop and Spark. In this book we would like to share some
of this learning and experiences.

Another issue we also wish to emphasize is the evolution of Apache Hadoop from its
early incarnation as a monolithic MapReduce engine (Hadoop version 1) to a versatile
data analytics platform that runs on YARN and supports not only MapReduce but also Tez
and Spark as processing engines (Hadoop version 2). The current version of Hadoop
provides a robust and efficient platform for many data science applications and opens up
a universe of opportunities to new business use cases that were previously unthinkable.

Focus of the Book
This book focuses on real-world practical aspects of data science with Hadoop and Spark.
Since the scope of data science is very broad, and every topic therein is deep and complex,
it is quite difficult to cover the topic thoroughly. We approached this problem by attempting
a good balance between the theoretical coverage of each use case and the example-driven
treatment of practical implementation.

This book is not designed to dig deep into many of the mathematical details of each
machine learning or statistical approach but rather provide a high-level description of
the main concepts along with guidelines for its practical use in the context of the busi-
ness problem. We provide some references that offer more in-depth treatment of the
mathematical details of these techniques in the text and have compiled a list of relevant
resources in Appendix C, “Additional Background on Data Science and Apache Hadoop
and Spark.”

When learning about Hadoop, access to a Hadoop cluster environment can become
an issue. Finding an effective way to “play” with Hadoop and Spark can be challenging

Mendelevitch_Book.indb xvMendelevitch_Book.indb xv 11/16/16 6:39 PM11/16/16 6:39 PM

xvi Preface

for some individuals. At a minimum, we recommend the Hortonworks virtual machine
sandbox for those that would like an easy way to get started with Hadoop. The sandbox
is a full single-node Hadoop installation running inside a virtual machine. The virtual
machine can be run under Windows, Mac OS, and Linux. Please see http://hortonworks
.com/products/sandbox for more information on how to download and install the sandbox.
For further help with Hadoop we recommend Hadoop 2 Quick-Start Guide: Learn the
Essentials of Big Data Computation in the Apache Hadoop 2 Ecosystem (and supporting videos),
all mentioned in Appendix C.

Who Should Read This Book
This book is intended for those readers who are interested to learn more about what
data science is and some of the practical considerations of its application to large-scale
datasets. It provides a strong technical foundation for readers who want to learn more
about how to implement various use cases, the tools that are best suited for the job, and
some of the architectures that are common in these situations. It also provides a business-
driven viewpoint on when application of data science to large datasets is useful to help
stakeholders understand what value can be derived for their organization and where to
invest their resources in applying large-scale machine learning.

There is also a level of experience assumed for this book. For those not versed in data
science, some basic competencies are important to have to understand the different
methods, including statistical concepts (for example, mean and standard deviation), and a bit
of background in programming (mostly Python and a bit of Java or Scala) to understand the
examples throughout the book.

For those with a data science background, you should generally be comfortable with
the material, although there may be some practical issues such as understanding the
numerous Apache projects. In addition, all examples are text-based, and some familiarity
with the Linux command line is required. It should be noted that we did not use (or test)
a Windows environment for the examples. However, there is no reason to assume they
will not work in that and other environments (Hortonworks supports Windows).

In terms of a specific Hadoop environment, all the examples and code were run
under Hortonworks HDP Linux Hadoop distribution (either laptop or cluster). Your
environment may differ in terms of distribution (Cloudera, MapR, Apache Source)
or operating systems (Windows). However, all the tools (or equivalents) are available
in both environments.

How to Use This Book
We anticipate several different audiences for the book:

 n data scientists
 n developers/data engineers
 n business stakeholders

Mendelevitch_Book.indb xviMendelevitch_Book.indb xvi 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.hortonworks.com/products/sandbox
http://www.hortonworks.com/products/sandbox

xviiPreface

While these readers come at the Hadoop analytics from different backgrounds, their
goal is certainly the same—running data analytics with Hadoop and Spark at scale. To
this end, we have designed the chapters to meet the needs of all readers, and as such
readers may find that they can skip areas where they may have a good practical understand-
ing. Finally, we also want to invite novice readers to use this book as a first step in their
understanding of data science at scale. We believe there is value in “walking” through
the examples, even if you are not sure what is actually happening, and then going back
and buttressing your understanding with the background material.

Part I, “Data Science with Hadoop—An Overview,” spans the first three chapters.
Chapter 1, “Introduction to Data Science,” provides an overview of data science

and its history and evolution over the years. It lays out the journey people often take to
become a data scientist. For those not versed in data science, this chapter will help you
understand why it has evolved into a powerful discipline and provide some insight into
how a data scientist designs and refines projects. There is also some discussion about what
makes a data scientist and how to best plan your career in that direction.

Chapter 2, “Use Cases for Data Science,” provides a good overview of how business
use cases are impacted by the volume, variety, and velocity of modern data streams. It
also covers some real-world data science use cases in order to help you gain an under-
standing of its benefits in various industries and applications.

Chapter 3, “Hadoop and Data Science,” provides a quick overview of Hadoop, its
evolution over the years, and the various tools in the Hadoop ecosystem. For first-time
Hadoop users this chapter can be a bit overwhelming. There are many new concepts
introduced including the Hadoop file system (HDFS), MapReduce, the Hadoop resource
manager (YARN), and Spark. While the number of sub-projects (and weird names)
that make up the Hadoop ecosystem may seem daunting, not every project is used at the
same time, and the applications in the later chapters usually focus on only a few tools at
a time.

Part II, “Preparing and Visualizing Data with Hadoop,” includes the next three chapters.
Chapter 4, “Getting Data into Hadoop,” focuses on data ingestion, discussing

various tools and techniques to import datasets from external sources into Hadoop. It
is useful for many subsequent chapters. We begin with describing the Hadoop data lake
concept and then move into the various ways data can be used by the Hadoop platform.
The ingestion targets two of the more popular Hadoop tools—Hive and Spark. This
chapter focuses on code and hands-on solutions—if you are new to Hadoop, its best to
also consult Appendix B, “HDFS Quick Start,” to get you up to speed on the HDFS
file system.

Chapter 5, “Data Munging with Hadoop,” focuses on data munging with Hadoop
or how to identify and handle data quality issues, as well as pre-process data and prepare
it for modeling. We introduce the concepts of data completeness, validity, consistency,
timeliness, and accuracy. Examples of feature generation using a real data set are provided.
This chapter is useful for all types of subsequent analysis and, like Chapter 4, is a precursor
to many of the techniques mentioned in later chapters.

Mendelevitch_Book.indb xviiMendelevitch_Book.indb xvii 11/16/16 6:39 PM11/16/16 6:39 PM

xviii Preface

An important tool in the process of data munging is visualization. Chapter 6,
“Exploring and Visualizing Data,” discusses what it means to do visualization with big
data. As background, this chapter is useful for reinforcing some of the basic concepts
behind data visualization. The charts presented in the chapter were generated using R.
Source code for all the plots is available so readers can try these charts with their own data.

Part III, “Applying Data Modeling with Hadoop,” encompasses the final six chapters.
Chapter 7, “Machine Learning with Hadoop,” provides an overview of machine

learning at a high level, covering the main tasks in machine learning such as classification
and regression, clustering, and anomaly detection. For each task type, we explore the
problem and the main approaches to solutions.

Chapter 8, “Predictive Modeling,” covers the basic algorithms and various Hadoop
tools for predictive modeling. The chapter includes an end-to-end example of building
a predictive model for sentiment analysis of Twitter text using Hive and Spark.

Chapter 9, “Clustering,” dives into cluster analysis, a very common technique in data
science. It provides an overview of various clustering techniques and similarity func-
tions, which are at the core of clustering. It then demonstrates a real-world example of
using topic modeling on a large corpus of documents using Hadoop and Spark.

Chapter 10, “Anomaly Detection with Hadoop,” covers anomaly detection, describ-
ing various types of approaches and algorithms as well as how to perform large-scale
anomaly detection on various datasets. It then demonstrates how to build an anomaly
detection system with Spark for the KDD99 dataset.

Chapter 11, “Natural Language Processing,” covers applications of data science to
the specific area of human language, using a set of techniques commonly called natural
language processing (NLP). It discusses various approaches to NLP, open-source tools
that are effective at various NLP tasks, and how to apply NLP to large-scale corpuses using
Hadoop, Pig, and Spark. An end-to-end example shows an advanced approach to sentiment
analysis that uses NLP at scale with Spark.

Chapter 12, “Data Science with Hadoop—The Next Frontier,” discusses the future
of data science with Hadoop, covering advanced data discovery techniques and deep
learning.

Consult Appendix A, “Book Webpage and Code Download,” for the book web page
and code repository (the web page provides a question and answer forum). Appendix B, as
mentioned previously, provides a quick overview of HDFS for new users and the afore-
mentioned Appendix C provides further references and background on Hadoop, Spark,
HDFS, machine learning, and many other topics.

Book Conventions
Code and file references are displayed in a monospaced font. Code input lines that wrap
because they are too long to fit on one line in this book are denoted with this symbol
➥ at the start of the next line. Long output lines are wrapped at page boundaries
without the symbol.

Mendelevitch_Book.indb xviiiMendelevitch_Book.indb xviii 11/16/16 6:39 PM11/16/16 6:39 PM

xixPreface

Accompanying Code
Again, please see Appendix A, “Book Web Page and Code Download,” for the location
of all code used in this book.

Register your copy of Practical Data Science with Hadoop® and Spark at informit.com for
convenient access to downloads, updates, and corrections as they become available.
To start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780134024141) and click Submit. Once the
process is complete, you will find any available bonus content under “Registered
Products.”

Mendelevitch_Book.indb xixMendelevitch_Book.indb xix 11/16/16 6:39 PM11/16/16 6:39 PM

This page intentionally left blank

Acknowledgments

Some of the figures and examples were inspired and copied from Yahoo! (yahoo.com),
the Apache Software Foundation (http://www.apache.org), and Hortonworks
(http://hortonworks.com). Any copied items either had permission from the author
or were available under an open sharing license.

Many people have worked behind the scenes to make this book possible. Thank you
to the reviewers who took the time to carefully read the rough drafts: Fabricio Cannini,
Brian D. Davison, Mark Fenner, Sylvain Jaume, Joshua Mora, Wendell Smith, and John
Wilson.

Ofer Mendelevitch
I want to thank Jeff Needham and Ron Lee who encouraged me to start this book, many
others at Hortonworks who helped with constructive feedback and advice, John Wilson
who provided great constructive feedback and industry perspective, and of course Debra
Williams Cauley for her vision and support in making this book a reality. Last but not least,
this book would not have come to life without the loving support of my beautiful wife,
Noa, who encouraged and supported me every step of the way, and my boys, Daniel and
Jordan, who make all this hard work so worthwhile.

Casey Stella
I want to thank my patient and loving wife, Leah, and children, William and Sylvia,
without whom I would not have the time to dedicate to such a time-consuming and
rewarding venture. I want to thank my mother and grandmother, who instilled a love
of learning that has guided me to this day. I want to thank the taxpayers of the State of
Louisiana for providing a college education and access to libraries, public radio, and
television; without which I would have neither the capability, the content, nor the courage
to speak. Finally, I want to thank Debra Williams Cauley at Addison-Wesley who used
the carrot far more than the stick.

Douglas Eadline
To Debra Williams Cauley at Addison-Wesley, your kind efforts and office at the GCT
Oyster Bar made the book-writing process almost easy (again!). Thanks to my support
crew, Emily, Carla, and Taylor—yet another book you know nothing about. Of course,
I cannot forget my office mate, Marlee, and those two boys. And, finally, another big thank
you to my wonderful wife, Maddy, for her constant support.

Mendelevitch_Book.indb xxiMendelevitch_Book.indb xxi 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.apache.org
http://www.hortonworks.com

This page intentionally left blank

About the Authors

Ofer Mendelevitch is Vice President of Data Science at Lendup, where he is responsible
for Lendup’s machine learning and advanced analytics group. Prior to joining Lendup,
Ofer was Director of Data Science at Hortonworks, where he was responsible for helping
Hortonwork’s customers apply Data Science with Hadoop and Spark to big data across
various industries including healthcare, finance, retail, and others. Before Hortonworks,
Ofer served as Entrepreneur in Residence at XSeed Capital, Vice President of Engineering
at Nor1, and Director of Engineering at Yahoo!.

Casey Stella is a Principal Data Scientist at Hortonworks, which provides an open
source Hadoop distribution. Casey’s primary responsibility is leading the analytics/data
science team for the Apache Metron (Incubating) Project, an open source cybersecurity
project. Prior to Hortonworks, Casey was an architect at Explorys, which was a medical
informatics startup spun out of the Cleveland Clinic. In the more distant past, Casey
served as a developer at Oracle, Research Geophysicist at ION Geophysical, and as a poor
graduate student in Mathematics at Texas A&M.

Douglas Eadline, PhD, began his career as an analytical chemist with an interest in
computer methods. Starting with the first Beowulf how-to document, Doug has written
hundreds of articles, white papers, and instructional documents covering many aspects of
HPC and Hadoop computing. Prior to starting and editing the popular ClusterMonkey.net
website in 2005, he served as editor in chief for ClusterWorld Magazine and was senior
HPC editor for Linux Magazine. He has practical hands-on experience in many aspects
of HPC and Apache Hadoop, including hardware and software design, benchmarking,
storage, GPU, cloud computing, and parallel computing. Currently, he is a writer and
consultant to the HPC/analytics industry and leader of the Limulus Personal Cluster Project
(http://limulus.basement-supercomputing.com). He is author of the Hadoop Fundamentals
LiveLessons and Apache Hadoop YARN Fundamentals LiveLessons videos from Pearson, and
is co-author of Apache Hadoop YARN: Moving beyond MapReduce and Batch Processing
with Apache Hadoop 2 and author of Hadoop 2 Quick Start Guide: Learn the Essentials of
Big Data Computing in the Apache Hadoop 2 Ecosystem, also from Addison-Wesley, and High
Performance Computing for Dummies.

Mendelevitch_Book.indb xxiiiMendelevitch_Book.indb xxiii 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.limulus.basement-supercomputing.com

This page intentionally left blank

II
Preparing and

Visualizing Data
with Hadoop

Mendelevitch_Book.indb 53Mendelevitch_Book.indb 53 11/16/16 6:39 PM11/16/16 6:39 PM

This page intentionally left blank

4
Getting Data into Hadoop

You can have data without information,
but you cannot have information without data.

Daniel Keys Moran

In This Chapter:

 n The data lake concept is presented as a new data processing paradigm.
 n Basic methods for importing CSV data into HDFS and Hive tables are

presented.
 n Additional methods for using Spark to import data into Hive tables or directly

for a Spark job are presented.
 n Apache Sqoop is introduced as a tool for exporting and importing relational

data into and out of HDFS.
 n Apache Flume is introduced as a tool for transporting and capturing streaming

data (e.g., web logs) into HDFS.
 n Apache Oozie is introduced as workf low manager for Hadoop ingestion jobs.
 n The Apache Falcon project is described as a framework for data governance

(organization) on Hadoop clusters.

No matter what kind of data needs processing, there is often a tool for importing such
data from or exporting such data into the Hadoop Distributed File System (HDFS).
Once stored in HDFS the data may be processed by any number of tools available in the
Hadoop ecosystem.

This chapter begins with the concept of the Hadoop data lake and then follows with
a general overview of each of the main tools for data ingestion into Hadoop —Spark,
Sqoop, and Flume—along with some specific usage examples. Workf low tools such as
Oozie and Falcon are presented as tools that aid in managing the ingestion process.

Mendelevitch_Book.indb 55Mendelevitch_Book.indb 55 11/16/16 6:39 PM11/16/16 6:39 PM

56 Chapter 4 Getting Data into Hadoop

Hadoop as a Data Lake
Data is ubiquitous, but that does not always mean that it’s easy to store and access. In
fact, many existing pre-Hadoop data architectures tend to be rather strict and therefore
difficult to work with and make changes to. The data lake concept changes all that.

So what is a data lake?
With the more traditional database or data warehouse approach, adding data to the

database requires data to be transformed into a pre-determined schema before it can be
loaded into the database. This step is often called “extract, transform, and load” (ETL)
and often consumes a lot of time, effort, and expense before the data can be used for
downstream applications. More importantly, decisions about how the data will be used
must be made during the ETL step, and later changes are costly. In addition, data are
often discarded in the ETL step because they do not fit into the data schema or are deemed
un-needed or not valuable for downstream applications.

One of the basic features of Hadoop is a central storage space for all data in the
Hadoop Distributed File Systems (HDFS), which make possible inexpensive and redundant
storage of large datasets at a much lower cost than traditional systems.

This enables the Hadoop data lake approach, wherein all data are often stored in raw
format, and what looks like the ETL step is performed when the data are processed by
Hadoop applications. This approach, also known as schema on read, enables programmers
and users to enforce a structure to suit their needs when they access data. The traditional
data warehouse approach, also known as schema on write, requires more upfront design
and assumptions about how the data will eventually be used.

For data science purposes, the capability to keep all the data in raw format is extremely
beneficial since often it is not clear up front which data items may be valuable to a given
data science goal.

With respect to big data, the data lake offers three advantages over a more traditional
approach:

 n All data are available. There is no need to make any assumptions about future
data use.

 n All data are sharable. Multiple business units or researchers can use all available
data1, some of which may not have been previously available due to data com-
partmentalization on disparate systems.

 n All access methods are available. Any processing engine (MapReduce, Tez, Spark)
or application (Hive, Spark-SQL, Pig) can be used to examine the data and pro-
cess it as needed.

1. The capability to use all available data is, of course, governed, as you might expect, by the appro-
priate security policy with Hadoop tools such as Apache Ranger. The point here is that there is no
technical hurdle to data sharing, as is often the case with traditional data architectures.

Mendelevitch_Book.indb 56Mendelevitch_Book.indb 56 11/16/16 6:39 PM11/16/16 6:39 PM

57Hadoop as a Data Lake

To be clear, data warehouses are valuable business tools, and Hadoop is designed
to complement them, not replace them. Nonetheless, the traditional data warehouse
technology was developed before the data lake began to fill with such large quantities
of data. The growth of new data from disparate sources including social media, click
streams, sensor data, and others is such that we are starting to quickly fill the data lake.
Traditional ETL stages may not be able to keep up with the rate at which data are entering
the lake. There will be overlap, and each tool will address the need for which it was
designed.

The difference between a traditional data warehouse and Hadoop is depicted in
Figure 4.1.

Different data sources (A, B, C) can be seen entering either an ETL process or a data
lake. The ETL process places the data in a schema as it stores (writes) the data to the rela-
tional database. The data lake stores the data in raw form. When a Hadoop application

Source A

Source B

Source C

Data Lake

Data Warehouse

Discarded
Data

ETL

Schema on Write

Schema on Read

Hadoop

User

Figure 4.1 The data warehouse versus the Hadoop data lake.

Mendelevitch_Book.indb 57Mendelevitch_Book.indb 57 11/16/16 6:39 PM11/16/16 6:39 PM

58 Chapter 4 Getting Data into Hadoop

uses the data, the schema is applied to data as they are read from the lake. Note that the
ETL step often discards some data as part of the process. In both cases the user accesses
the data they need. However, in the Hadoop case it can happen as soon as the data are
available in the lake.

The Hadoop Distributed File System (HDFS)
Virtually all Hadoop applications operate on data that are stored in HDFS. The oper-
ation of HDFS is separate from the local file system that most users are accustomed to
using. That is, the user must explicitly copy to and from the HDFS file system. HDFS
is not a general file system and as such cannot be used as a substitute for existing POSIX
(or even POSIX-like) file systems.

In general, HDFS is a specialized streaming file system that is optimized for reading
and writing of large files. When writing to HDFS, data are “sliced” and replicated across
the servers in a Hadoop cluster. The slicing process creates many small sub-units (blocks)
of the larger file and transparently writes them to the cluster nodes. The various slices
can be processed in parallel (at the same time) enabling faster computation. The user
does not see the file slices but interacts with whole files in HDFS like a normal file system
(i.e., files can be moved, copied, deleted, etc.). When transferring files out of HDFS, the
slices are assembled and written as one file on the host file system.

The slices or sub-units are also replicated across different servers so that the failure
of any single server will not result in lost data. Due to its design, HDFS does not support
random reads or writes to files but does support appending a file. Note that for testing
purposes it is also possible to create a single instance of HDFS on a single hard drive
(i.e., a laptop or desktop computer), and in this situation there is no file slicing or repli-
cation performed on the file.

Direct File Transfer to Hadoop HDFS
The easiest way to move data into and out of HDFS is to use the native HDFS commands.
These commands are wrappers that interact with the HDFS file system. Local commands,
such as cp, ls, or mv will only work on local files. To copy a file (test) from your local
file system to HDFS, the following put command can be used:

$ hdfs dfs -put test

To view files in HDFS use the following command. The result is a full listing similar
to a locally executed ls -l command:

$ hdfs dfs -ls
-rw-r--r-- 2 username hdfs 497 2016-05-11 14:32 test

To copy a file (another-test) from HDFS to your local file system, use the following
get command:

$ hdfs dfs -get another-test

Mendelevitch_Book.indb 58Mendelevitch_Book.indb 58 11/16/16 6:39 PM11/16/16 6:39 PM

59Importing Data from Files into Hive Tables

Other HDFS commands will be introduced in the examples. Appendix B “HDFS
Quick Start,” provides basic command examples including listing, copying, and remov-
ing files in HDFS.

Importing Data from Files into Hive Tables
Apache Hive is an SQL-like tool for analyzing data in HDFS. Data scientists often want
to import data into Hive from existing text-based files exported from spreadsheets or
databases. These file formats often include tab-separated values (TSV), comma-separated
values (CSV), raw text, JSON, and others. Having the data in Hive tables enables easy
access to it for subsequent modeling steps, the most common of which is feature genera-
tion, which we discuss in Chapter 5, “Data Munging with Hadoop.”

Once data are imported and present as a Hive table, it is available for processing using
a variety of tools including Hive’s SQL query processing, Pig, or Spark.

Hive supports two types of tables. The first type of table is an internal table and is
fully managed by Hive. If you delete an internal table, both the definition in Hive and
the data will be deleted. Internal tables are stored in an optimized format such as ORC
and thus provide a performance benefit. The second type of table is an external table that
is not managed by Hive. External tables use only a metadata description to access the data
in its raw form. If you delete an external table, only the definition (metadata about the
table) in Hive is deleted and the actual data remain intact. External tables are often used
when the data resides outside of Hive (i.e., some other application is also using/creating/
managing the files), or the original data need to remain in the underlying location even
after the table is deleted.

Due to the large number of use cases, we do not cover all the input methods available to
Hive, and instead just a basic example of CSV file import is described. Interested readers
can consult the Hive project page, https://hive.apache.org, for more information.

Import CSV Files into Hive Tables
The following example illustrates how a comma delimited text file (CSV file) can be
imported into a Hive table. The input file (names.csv) has five fields (Employee ID, First
Name, Title, State, and type of Laptop). The first five lines of the file are as follows:

10,Andrew,Manager,DE,PC
11,Arun,Manager,NJ,PC
12,Harish,Sales,NJ,MAC
13,Robert,Manager,PA,MAC
14,Laura,Engineer,PA,MAC

The first input step is to create a directory in HDFS to hold the file. Note that, like
most Hadoop tools, Hive input is directory-based. That is, input for an operation is taken
as all files in a given directory. The following command creates a names directory in
the users HDFS directory.

$ hdfs dfs -mkdir names

Mendelevitch_Book.indb 59Mendelevitch_Book.indb 59 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.hive.apache.org

60 Chapter 4 Getting Data into Hadoop

In this example, one file is used. However, any number of files could be placed in
the input directory. Next the names.csv file is moved into the HDFS names directory.

$ hdfs dfs -put name.csv names

Once the file is in HDFS, we first load the data as an external Hive table. Start a Hive
shell by typing hive at the command prompt and enter the following commands. Note,
to cut down on clutter, some of the non-essential Hive output (run times, progress bars, etc.)
have been removed from the Hive output.

hive> CREATE EXTERNAL TABLE IF NOT EXISTS Names_text(
 > EmployeeID INT,FirstName STRING, Title STRING,
 > State STRING, Laptop STRING)
 > COMMENT 'Employee Names'
 > ROW FORMAT DELIMITED
 > FIELDS TERMINATED BY ','
 > STORED AS TEXTFILE
 > LOCATION '/user/username/names';
OK

If the command worked, an OK will be printed. The various fields and the comma
delimiter are declared in the command. The final LOCATION statement in the command
tells Hive where to find the input files. The import can be verified by listing the first
five rows in the table:

hive> Select * from Names_text limit 5;
OK
10 Andrew Manager DE PC
11 Arun Manager NJ PC
12 Harish Sales NJ MAC
13 Robert Manager PA MAC
14 Laura Engineer PA MAC

The next step is to move the external table to an internal Hive table. The internal
table must be created using a similar command. However, the STORED AS format offers
new options. There are four main file formats for Hive tables in addition to the basic text
format. The choice of format depends on the type of data and analysis, but in most cases
either ORC or Parquet are used as they provide the best compression and speed advan-
tages for most data types.

 n Text file—All data are stored as raw text using the Unicode standard.
 n Sequence file—The data are stored as binary key/value pairs.
 n RCFile—All data are stored in a column optimized format (instead of row optimized).
 n ORC—An optimized row columnar format that can significantly improve

Hive performance.
 n Parquet—A columnar format that provides portability to other Hadoop tools

including Hive, Drill, Impala, Crunch, and Pig.

Mendelevitch_Book.indb 60Mendelevitch_Book.indb 60 11/16/16 6:39 PM11/16/16 6:39 PM

61Importing Data from Files into Hive Tables

The following command creates an internal Hive table that uses the ORC format:

hive> CREATE TABLE IF NOT EXISTS Names(
 > EmployeeID INT,FirstName STRING, Title STRING,
 > State STRING, Laptop STRING)
 > COMMENT 'Employee Names'
 > STORED AS ORC;
OK

To create a table using one of the other formats, change the STORED AS command to
ref lect the new format. Once the table is created, the data from the external table can
be moved to the internal table using the command,

hive> INSERT OVERWRITE TABLE Names SELECT * FROM Names_text;

As with the external table, the contents can be verified using the following command:

hive> Select * from Names limit 5;
OK
10 Andrew Manager DE PC
11 Arun Manager NJ PC
12 Harish Sales NJ MAC
13 Robert Manager PA MAC
14 Laura Engineer PA MAC

Hive also supports partitions. With partitions, tables can be separated into logical
parts that make it more efficient to query a portion of the data. For example, the internal
Hive table created previously can also be created with a partition based on the state field.
The following command creates a partitioned table:

hive> CREATE TABLE IF NOT EXISTS Names_part(
 > EmployeeID INT,
 > FirstName STRING,
 > Title STRING,
 > Laptop STRING)
 > COMMENT 'Employee names partitioned by state'
 > PARTITIONED BY (State STRING)
 > STORED AS ORC;
OK

To fill the internal table from the external table for those employed from PA, the
following command can be used:

hive> INSERT INTO TABLE Names_part PARTITION(state='PA')
 > SELECT EmployeeID, FirstName, Title, Laptop FROM Names_text WHERE
➥ state='PA';
...
OK

Mendelevitch_Book.indb 61Mendelevitch_Book.indb 61 11/16/16 6:39 PM11/16/16 6:39 PM

62 Chapter 4 Getting Data into Hadoop

This method requires each partition key to be selected and loaded individually.
When the number of potential partitions is large, this can make data entry inconvenient.
To address this issue Hive now supports dynamic-partition insert (or multi-partition
insert) that is designed to solve this problem by dynamically determining which parti-
tions should be created and populated while scanning the input table.

Importing Data into Hive Tables Using Spark
Apache Spark is a modern processing engine that is focused on in-memory processing. Spark’s
primary data abstraction is an immutable distributed collection of items called a resilient
distributed dataset (RDD). RDDs can be created from Hadoop input formats (such as HDFS
files) or by transforming other RDDs. Each dataset in an RDD is divided into logical
partitions, which may be transparently computed on different nodes of the cluster.

The other important data abstraction is Spark’s DataFrame. A DataFrame is built on
top of an RDD, but data are organized into named columns similar to a relational database
table and similar to a data frame in R or in Python’s Pandas package.

Spark DataFrames can be created from different data sources such as the following:

 n Existing RDDs
 n Structured data files
 n JSON datasets
 n Hive tables
 n External databases

Due to its f lexibility and friendly developer API, Spark is often used as part of the
process of ingesting data into Hadoop. With Spark, you can read data from a CSV file,
external SQL or NO-SQL data store, or another data source, apply certain transformations
to the data, and store it onto Hadoop in HDFS or Hive. Similar to the Hive examples,
a full treatment of all Spark import scenarios is beyond the scope of this book. Consult
the Apache Spark project page, http://spark.apache.org, for more information.

The following sections provide some basic usage examples of data import using PySpark
(Spark via the Python API), although these steps can also be performed using the Scala
or Java interfaces to Spark. Each step is explained. However, a full description of the Spark
commands and API are beyond the scope of this book.

All the examples assume the PySpark shell (version 1.6) has been started using the
following command:

$ pyspark
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 1.6.2
 /_/

Mendelevitch_Book.indb 62Mendelevitch_Book.indb 62 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.spark.apache.org

63Importing Data into Hive Tables Using Spark

Using Python version 2.7.9 (default, Apr 14 2015 12:54:25)
SparkContext available as sc, HiveContext available as sqlContext.
>>>

Import CSV Files into HIVE Using Spark
Comma-separated value (CSV) files and, by extension, other text files with separators can be
imported into a Spark DataFrame and then stored as a HIVE table using the steps described.
Note that in this example we show how to use an RDD, translate it into a DataFrame,
and store it in HIVE. It is also possible to load CSV files directly into DataFrames using
the spark-csv package.

1. The first step imports functions necessary for Spark DataFrame operations:

>>> from pyspark.sql import HiveContext
>>> from pyspark.sql.types import *
>>> from pyspark.sql import Row

2. Next, the raw data are imported into a Spark RDD. The input file, names.csv, is
located in the users local file system and does not have to be moved into HDFS
prior to use. (Assuming the local path to the data is /home/username.)

>>> csv_data = sc.textFile("file:///home/username/names.csv")

3. The RDD can be confirmed by using the type() command:

>>> type(csv_data)
<class 'pyspark.rdd.RDD'>

4. The comma-separated data are then split using Spark’s map() function that creates
a new RDD:

>>> csv_data = csv_data.map(lambda p: p.split(","))

Most CSV files have a header with the column names. The following steps remove
this from the RDD,

>>> header = csv_data.first()
>>> csv_data = csv_data.filter(lambda p:p != header)

5. The data in the csv_data RDD are put into a Spark SQL DataFrame using the
toDF() function. First, however, the data are mapped using the map() function so
that every RDD item becomes a Row object which represents a row in the new
DataFrame. Note the use of the int() to cast for the employee ID as an integer.
All other columns default to a string type.

>>> df_csv = csv_data.map(lambda p: Row(EmployeeID = int(p[0]),
➥ FirstName = p[1], Title=p[2], State=p[3], Laptop=p[4])).toDF()

The Row() class captures the mapping of the single values into named columns in
a row and subsequently transforms the complete data into a DataFrame.

Mendelevitch_Book.indb 63Mendelevitch_Book.indb 63 11/16/16 6:39 PM11/16/16 6:39 PM

64 Chapter 4 Getting Data into Hadoop

6. The structure and data of the first five rows of the df_csv DataFrame are viewed
using the following command:

>>> df_csv.show(5)
+----------+---------+------+-----+--------+
|EmployeeID|FirstName|Laptop|State| Title|
+----------+---------+------+-----+--------+
| 10| Andrew| PC| DE| Manager|
| 11| Arun| PC| NJ| Manager|
| 12| Harish| MAC| NJ| Sales|
| 13| Robert| MAC| PA| Manager|
| 14| Laura| MAC| PA|Engineer|
+----------+---------+------+-----+--------+
only showing top 5 rows

7. Similarly, if you’d like to inspect the DataFrame schema, use the printSchema()
command:

>>> df_csv.printSchema()
root
 |-- EmployeeID: long (nullable = true)
 |-- FirstName: string (nullable = true)
 |-- Laptop: string (nullable = true)
 |-- State: string (nullable = true)
 |-- Title: string (nullable = true)

8. Finally, to store the DataFrame into a Hive table, use saveAsTable():

>>> from pyspark.sql import HiveContext
>>> hc = HiveContext(sc)
>>> df_csv.write.format("orc").saveAsTable("employees")

Here we create a HiveContext that is used to store the DataFrame into a Hive table
(in ORC format), by using the saveAsTable() command.

Import a JSON File into HIVE Using Spark
Spark can import JSON files directly into a DataFrame. The following is a JSON format-
ted version of the names.csv file used in the previous examples. Note that by entering the
EmployeeID as an un-quoted integer, it will be input as an integer.

{"EmployeeID":10,"FirstName":"Andrew","Title":"Manager","State":"DE",
➥ "Laptop":"PC"}
{"EmployeeID":11,"FirstName":"Arun","Title":"Manager","State":"NJ",
➥ "Laptop":"PC"}
{"EmployeeID":12,"FirstName":"Harish","Title":"Sales","State":"NJ",
➥ "Laptop":"MAC"}

Also note that Spark expects each line to be a separate JSON object, so it will fail if
you try to load a fully formatted JSON file.

Mendelevitch_Book.indb 64Mendelevitch_Book.indb 64 11/16/16 6:39 PM11/16/16 6:39 PM

65Using Apache Sqoop to Acquire Relational Data

1. The first step imports the needed functions and creates a HiveContext.

>>> from pyspark.sql import HiveContext
>>> hc = HiveContext(sc)

Similar to the CSV example, the data file is located in the users local file system.

>>> df_json = hc.read.json("file:///home/username/names.json")

2. The first five rows of the DataFrame can be viewed using the df_json.show(5)
command:

>>> df_json.show(5)
+----------+---------+------+-----+--------+
|EmployeeID|FirstName|Laptop|State| Title|
+----------+---------+------+-----+--------+
| 10| Andrew| PC| DE| Manager|
| 11| Arun| PC| NJ| Manager|
| 12| Harish| MAC| NJ| Sales|
| 13| Robert| MAC| PA| Manager|
| 14| Laura| MAC| PA|Engineer|
+----------+---------+------+-----+--------+
only showing top 5 rows

3. To confirm that the EmployeeID was indeed cast as an integer, the df_json
.printSchema() command can be used to inspect the DataFrame schema:

>>> df_json.printSchema()

root
 |-- EmployeeID: long (nullable = true)
 |-- FirstName: string (nullable = true)
 |-- Laptop: string (nullable = true)
 |-- State: string (nullable = true)
 |-- Title: string (nullable = true)

4. Similar to the CSV example, storing this DataFrame back to Hive is simple:

>>> df_json.write.format("orc").saveAsTable("employees")

Using Apache Sqoop to Acquire Relational Data
In many enterprise environments, a lot of data that is required for data science applications
resides inside of database management systems such as Oracle, MySQL, PosgreSQL,
or DB2. Before we can use this data in the context of a data science application, we need
to ingest such data into Hadoop.

Sqoop is a tool designed to transfer data between Hadoop and relational databases.
You can use Sqoop to import data from a relational database management system (RDBMS)
into the Hadoop Distributed File System (HDFS) or export data from Hadoop back
into an RDBMS.

Mendelevitch_Book.indb 65Mendelevitch_Book.indb 65 11/16/16 6:39 PM11/16/16 6:39 PM

66 Chapter 4 Getting Data into Hadoop

Sqoop can be used with any JDBC-compliant database and has been tested on Microsoft
SQL Server, PostgreSQL, MySQL, and Oracle. In the remainder of this section, a brief
overview of how Sqoop works with Hadoop is provided. In addition, a basic Sqoop example
walk-through is demonstrated. To fully explore Sqoop, more information can found
by consulting the Sqoop project website at http://sqoop.apache.org.

Data Import and Export with Sqoop
Figure 4.2 describes the process of importing data into HDFS using Sqoop, which includes
two steps. In the first step, Sqoop examines the database to gather the necessary metadata
for the data that are to be imported. The second step is a map-only 2 (no reduce step)
Hadoop job that Sqoop submits to the cluster. This is the job that does the actual data
transfer using the metadata captured in the previous step. Note that each node doing
the import must have access to the database.

2. A map-only job is a term used in the Hadoop ecosystem to refer to a map-reduce job that
has some logic implemented in the map stage, and nothing (no-op) in the reduce job.

Sqoop Job
Sqoop Import

(2) Submit Map-Only Job

(1) Gather Metadata

RDBMS

Map

Map

Map

Map

Hadoop Cluster

HDFS Storage

Figure 4.2 Two-step Apache Sqoop data import method.

Mendelevitch_Book.indb 66Mendelevitch_Book.indb 66 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.sqoop.apache.org

67Using Apache Sqoop to Acquire Relational Data

The imported data is saved in an HDFS directory. Sqoop will use the database name
for the directory or the user can specify any alternative directory where the files should
be populated. By default, these files contain comma-delimited fields, with new lines
separating different records. You can easily override the format in which data is copied
over by explicitly specifying the field separator and record terminator characters. Once
placed in HDFS, the data are ready for further processing.

Data export from the cluster works in a similar fashion. The export is done in two steps
as shown in Figure 4.3. Like the import process, the first step is to examine the database
for metadata, followed by the export step that is again a map-only Hadoop job to write
the data to the target database. Sqoop divides the input dataset into splits and then uses
individual map tasks to push the splits to the database. Again, this process assumes the map
tasks have access to the database.

Apache Sqoop Version Changes
Two versions of Sqoop are in general use within the Hadoop ecosystem. Many users
have found the features removed in version 2 to be useful and continue to use the first
version. Sqoop version 2 will be used for the examples.

Sqoop Job
Sqoop Export

(2) Submit Map-Only Job

(1) Gather Metadata

RDBMS

Map

Map

Map

Map

Hadoop Cluster

HDFS Storage

Figure 4.3 Two-step Sqoop data export method.

Mendelevitch_Book.indb 67Mendelevitch_Book.indb 67 11/16/16 6:39 PM11/16/16 6:39 PM

68 Chapter 4 Getting Data into Hadoop

Sqoop version 1 uses specialized connectors to access external database systems. These
are often optimized for various RDBMS systems or those that do not support JDBC
(Java Database Connectivity). Connectors are plug-in components based on Sqoop’s exten-
sion framework and can be added to any existing Sqoop installation. Once a connector
is installed, Sqoop can use it to efficiently transfer data between Hadoop and the external
store supported by the connector. By default, Sqoop version 1 includes connectors for
various popular databases such as MySQL, PostgreSQL, Oracle, SQL Server, and DB2.
Sqoop version 1 also supports direct transfer to and from the RDBMS for HBase or Hive.

In order to streamline the Sqoop input methods (the issues cited were increasingly
complex command lines, security, and the need to understand too many low-level issues),
Sqoop version 2 no longer supports specialized connectors or direct import into HBase
or Hive or direct data transfer from Hive or HBase to your RDBMS. There are more
generalized ways to accomplish these tasks in version 2. All import and export is done
through the JDBC interface. Table 4.1 summarizes the changes. Due to these changes,
any new development should be done with attention to Sqoop version 2 capabilities.

Using Sqoop V2: A Basic Example
To better understand how to use Sqoop in practice, we’re going to demonstrate how to
configure and use Sqoop version 2 via a simple example. The example can then be extended
as needed to explore the other capabilities offered by Apache Sqoop. More detailed infor-
mation can be found at the Sqoop website at http://sqoop.apache.org.

The following steps will be performed:

1. Download and load sample MySQL data

2. Add Sqoop user permissions for local machine and cluster

3. Import data from MySQL to HDFS

4. Export data from HDFS to MySQL

Table 4.1 Apache Sqoop version comparison.

Feature Sqoop Version 1 Sqoop Version 2

Connectors for all major
RDBMS

Supported Not supported. Use the generic
JDBC Connector.

Kerberos Security
Integration

Supported Not supported

Data transfer from
RDBMS to Hive or
HBase

Supported Not supported. First import data
from RDBMS into HDFS, then load
data into Hive or HBase manually.

Data transfer from Hive
or HBase to RDBMS

Not supported. First export data
from Hive or HBase into HDFS,
and then use Sqoop for export.

Not supported. First export data
from Hive or HBase into HDFS,
and then use Sqoop for export.

Mendelevitch_Book.indb 68Mendelevitch_Book.indb 68 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.sqoop.apache.org

69Using Apache Sqoop to Acquire Relational Data

Step 1: Download a Sample MySQL Database
For this example, we assume MySQL is installed on the Sqoop node and will use the world
example database from the MySQL site (http://dev.mysql.com/doc/world-setup/en/
index.html). The database has three tables:

 n Country—Information about countries of the world.
 n City—Information about some of the cities in those countries.
 n CountryLanguage—Languages spoken in each country.

1. To get the database, use wget 3 to download and then extract the file:

$ wget http://downloads.mysql.com/docs/world.sql.gz
$ gunzip world.sql.gz

2. Next, log into MySQL (assumes you have privileges to create a database) and
import that database by entering the following commands:

 $ mysql -u root -p
 mysql> CREATE DATABASE world;
 mysql> USE world;
 mysql> SOURCE world.sql;
 mysql> SHOW TABLES;
 +-----------------+
 | Tables_in_world |
 +-----------------+
 | City |
 | Country |
 | CountryLanguage |
 +-----------------+
 3 rows in set (0.01 sec)

3. The following MySQL commands will let you see the details for each table (output
omitted because of space considerations):

 mysql> SHOW CREATE TABLE Country;
 mysql> SHOW CREATE TABLE City;
 mysql> SHOW CREATE TABLE CountryLanguage;

Step 2: Add Sqoop User Permissions for Local Machine and Cluster
Sqoop often needs to talk to MySQL from the Hadoop cluster. Thus, there needs to be
permissions added to MySQL so that these conversations can take place. Depending on
your installation, you may need to add several privileges for Sqoop requests based on the
location (hosts or IP addresses) from where the request originates. For example, the
following permissions were assigned for the example.

3. wget is a command line tool for Unix/Linux environments that directly downloads files from
a valid URL. If using a Windows environment, consider Winwget or a browser. If using a
Macintosh environment, consider using curl -O <url> or a browser.

Mendelevitch_Book.indb 69Mendelevitch_Book.indb 69 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.dev.mysql.com/doc/world-setup/en/index.html
http://www.dev.mysql.com/doc/world-setup/en/index.html
http://www.downloads.mysql.com/docs/world.sql.gz

70 Chapter 4 Getting Data into Hadoop

mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'localhost'
➥ IDENTIFIED BY 'sqoop';
mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'_HOSTAME_'
➥ IDENTIFIED BY 'sqoop';
mysql> GRANT ALL PRIVILEGES ON world.* To 'sqoop'@'_SUBNET_'
➥ IDENTIFIED BY 'sqoop';
FLUSH PRIVILEGES;
mysql> quit

The _HOSTNAME_ is the name of the host on which a user has logged in. The _SUBNET_
is the subnet of the cluster (for example 10.0.0.%, defines 10.0.0.0/24 network). These
permissions allow any node in the cluster to execute MySQL commands as user sqoop.
Also, for the purposes of this example, the Sqoop password is “sqoop.”

Next, log in as user sqoop to test the MySQL permissions.

$ mysql -u sqoop -p
mysql> USE world;
 mysql> SHOW TABLES;
 +-----------------+
 | Tables_in_world |
 +-----------------+
 | City |
 | Country |
 | CountryLanguage |
 +-----------------+
 3 rows in set (0.01 sec)

 mysql> quit

Step 3: Import Data Using Sqoop
As a check of Sqoop’s capability to read the MySQL database, we can use Sqoop to list
the databases in MySQL.

1. Enter the following commands. The results are after the warnings at the end of the
output. Note the use of local _HOSTNAME_ in the JDBC statement. Extra notifications
have been removed from the output (represented by ...).

$ sqoop list-databases --connect jdbc:mysql://_HOSTNAME_/world
➥ --username sqoop --password sqoop
...
information_schema
test
world

2. In a similar fashion, Sqoop can connect to MySQL and list the tables in the world
database.

$ sqoop list-tables --connect jdbc:mysql://_HOSTNAME_/world
➥ --username sqoop --password sqoop
...
City
Country
CountryLanguage

Mendelevitch_Book.indb 70Mendelevitch_Book.indb 70 11/16/16 6:39 PM11/16/16 6:39 PM

71Using Apache Sqoop to Acquire Relational Data

3. In order to import data, we need to make a directory in HDFS:

$ hdfs dfs -mkdir sqoop-mysql-import

4. The following command will import the Country table into HDFS:

$ sqoop import --connect jdbc:mysql://_HOSTNAME_/world --username
➥ sqoop --password sqoop --table Country -m 1 --target-dir
➥ /user/username/sqoop-mysql-import/country

The option –-table signifies the table to import, --target-dir is the directory
created above, and –m 1 tells sqoop to use a single map task (which is enough in our
example since it is only a small table) to import the data.

5. The import can be confirmed by examining HDFS:

$ hdfs dfs -ls sqoop-mysql-import/country
Found 2 items
-rw-r--r-- 2 username hdfs 0 2014-08-18 16:47 sqoop-mysql-
➥import/world/_SUCCESS
-rw-r--r-- 2 username hdfs 31490 2014-08-18 16:47 sqoop-mysql-
➥import/world/part-m-00000

6. The file can be viewed using the hdfs –cat command:

$ hdfs dfs -cat sqoop-mysql-import/country/part-m-00000
ABW,Aruba,North America,Caribbean,193.0,null,103000,78.4,828.0,793.0,
➥ Aruba,Nonmetropolitan Territory of The Netherlands,Beatrix,129,AW
...
ZWE,Zimbabwe,Africa,Eastern Africa,390757.0,1980,11669000,37.8,
➥ 5951.0,8670.0,Zimbabwe,Republic,Robert G. Mugabe,4068,ZW

To make Sqoop commands more convenient, an options file may be created and used
in the command line. This file will help you avoid having to rewrite the same options.
For example, a file called world-options.txt with the following contents will include the
import command, --connect, --username, and --password options:

 import
 --connect
 jdbc:mysql://_HOSTNAME_/world
 --username
 sqoop
 --password
 sqoop

The same import command from the preceding can be performed with the following
shorter line:

$ sqoop --options-file world-options.txt --table City -m 1 --target-dir
➥ /user/username/sqoop-mysql-import/city

It is also possible to include an SQL Query in the import step. For example, if we
want just cities in Canada:

SELECT ID,Name from City WHERE CountryCode='CAN'

Mendelevitch_Book.indb 71Mendelevitch_Book.indb 71 11/16/16 6:39 PM11/16/16 6:39 PM

72 Chapter 4 Getting Data into Hadoop

Then we can include the --query option in the Sqoop import request. In the fol-
lowing query example, a single mapper task is designated with the –m 1 option:

sqoop --options-file world-options.txt -m 1 --target-dir
➥ /user/username/sqoop-mysql-import/canada-city --query
➥ "SELECT ID,Name from City
➥ WHERE CountryCode='CAN' AND \$CONDITIONS"

Inspecting the results shows only cities from Canada are imported.

$ hdfs dfs -cat sqoop-mysql-import/canada-city/part-m-00000

1810,Montréal
1811,Calgary
1812,Toronto
...
1856,Sudbury
1857,Kelowna
1858,Barrie

Since there was only one mapper process, only one copy of the query needed to be
run on the database. The results are also reported in single file (part-m-0000). Multiple
mappers can be used to process the query if the --split-by option is used. The split-by
option is a way to parallelize the SQL query. Each parallel task runs a subset of the main
query with results partitioned by bounding conditions inferred by Sqoop. Your query
must include the token $CONDITIONS; this is a placeholder for Sqoop to put in unique
condition expression based on the --split-by option, and Sqoop automatically populates
this with the right conditions for each mapper task. Sqoop will try to create balanced
sub-queries based on a range of your primary key. However, it may be necessary to split
on another column if your primary key is not uniformly distributed.

The following example will help illustrate the –split-by option. First, remove the
results of the previous query.

$ hdfs dfs -rm -r -skipTrash sqoop-mysql-import/canada-city

Next, run the query using four mappers (-m 4) where we split by the ID number
(--split-by ID).

sqoop --options-file world-options.txt -m 4 --target-dir
➥ /user/username/sqoop-mysql-import/canada-city --query "SELECT ID,
➥ Name from City WHERE CountryCode='CAN' AND \$CONDITIONS" --split-by ID

If we look at the number of results files, we find four files corresponding to the four
mappers we requested in the command. There is no need to combine these files into one
entity because all Hadoop tools can manage multiple files as input.

$ hdfs dfs -ls sqoop-mysql-import/canada-city
Found 5 items
-rw-r--r-- 2 username hdfs 0 2014-08-18 21:31 sqoop-mysql-import/canada-
city/_SUCCESS
-rw-r--r-- 2 username hdfs 175 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00000

Mendelevitch_Book.indb 72Mendelevitch_Book.indb 72 11/16/16 6:39 PM11/16/16 6:39 PM

73Using Apache Sqoop to Acquire Relational Data

-rw-r--r-- 2 username hdfs 153 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00001
-rw-r--r-- 2 username hdfs 186 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00002
-rw-r--r-- 2 username hdfs 182 2014-08-18 21:31 sqoop-mysql-import/canada-
city/part-m-00003

Step 4: Export Data Using Sqoop
The first step when exporting data with Sqoop is to create tables in the target database
system for the exported data. There are actually two tables needed for each exported
table. The first is a table to hold the exported data (e.g., CityExport) and the second is
a table to be used for staging the exported data (e.g., CityExportStaging).

1. Using the following MySQL commands, you can create the tables:

mysql> USE world;
mysql> CREATE TABLE `CityExport` (
 `ID` int(11) NOT NULL AUTO_INCREMENT
 `Name` char(35) NOT NULL DEFAULT '',
 `CountryCode` char(3) NOT NULL DEFAULT '',
 `District` char(20) NOT NULL DEFAULT '',
 `Population` int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (`ID`));
mysql> CREATE TABLE `CityExportStaging` (
 `ID` int(11) NOT NULL AUTO_INCREMENT,
 `Name` char(35) NOT NULL DEFAULT '',
 `CountryCode` char(3) NOT NULL DEFAULT '',
 `District` char(20) NOT NULL DEFAULT '',
 `Population` int(11) NOT NULL DEFAULT '0',
 PRIMARY KEY (`ID`));

2. Next, create a cities-export-options.txt file similar to the world-options.txt file
created above, using the export instead of import command. The following will
export the cities data we imported above back into MySQL:

sqoop --options-file cities-export-options.txt --table CityExport
➥ --staging-table CityExportStaging --clear-staging-table -m 4
➥ --export-dir /user/username/sqoop-mysql-import/city

3. Finally, to make sure everything worked, check the table in MySQL to see if the
cities are in the table.

$ mysql> select * from CityExport limit 10;
+----+----------------+-------------+---------------+------------+
| ID | Name | CountryCode | District | Population |
+----+----------------+-------------+---------------+------------+
1	Kabul	AFG	Kabol	1780000
2	Qandahar	AFG	Qandahar	237500
3	Herat	AFG	Herat	186800
4	Mazar-e-Sharif	AFG	Balkh	127800
5	Amsterdam	NLD	Noord-Holland	731200
6	Rotterdam	NLD	Zuid-Holland	593321

Mendelevitch_Book.indb 73Mendelevitch_Book.indb 73 11/16/16 6:39 PM11/16/16 6:39 PM

74 Chapter 4 Getting Data into Hadoop

7	Haag	NLD	Zuid-Holland	440900
8	Utrecht	NLD	Utrecht	234323
9	Eindhoven	NLD	Noord-Brabant	201843
10	Tilburg	NLD	Noord-Brabant	193238
+----+----------------+-------------+---------------+------------+
10 rows in set (0.00 sec)

Some Handy Clean-up Commands
If you are not real familiar with MySQL, the following commands may be helpful to
clean up the examples.
 To remove a table in MySQL:

mysql> Drop table `CityExportStaging`;

To remove the data in a table:

mysql> delete from CityExportStaging;

To clean up imported files:

$ hdfs dfs -rm -r -skipTrash sqoop-mysql-import/{country,city,
➥ canada-city}

Using Apache Flume to Acquire Data Streams
In addition to structured data in databases, another common source of data is log files,
which usually come in the form of continuous (streaming) incremental files often
from multiple source machines. In order to use this type of data for data science with
Hadoop, we need a way to ingest such data into HDFS.

Apache Flume is designed to collect, transport, and store data streams into HDFS.
Often data transport involves a number of Flume agents that may traverse a series of
machines and locations. Flume is often used for log files, social-media-generated data,
email messages, and pretty much any continuous data source.

As shown in Figure 4.4, a Flume agent is composed of three components:

 n Source—The source component receives data and sends it to a channel. It can send
the data to more than one channel. The input data can be from a real-time source
(e.g. web log) or another Flume agent.

 n Channel—A channel is a data queue that forwards the source data to the sink
destination. It can be thought of as a buffer that manages input (source) and output
(sink) f low rates.

 n Sink—The sink delivers data to destinations such as HDFS, a local file, or another
Flume agent.

A Flume agent can have multiple sources, channels, and sinks but must have at least
one of each of the three components defined. Sources can write to multiple channels,
but a sink can only take data from a single channel. Data written to a channel remain

Mendelevitch_Book.indb 74Mendelevitch_Book.indb 74 11/16/16 6:39 PM11/16/16 6:39 PM

75Using Apache Flume to Acquire Data Streams

in the channel until a sink removes the data. By default, the data in a channel is kept in
memory but optionally may be stored on disk to prevent data loss in the event of a network
failure.

As shown in Figure 4.5, Flume agents may be placed in a pipeline. This configuration
is normally used when data is collected on one machine (e.g., a web server) and sent to
another machine that has access to HDFS.

In a Flume pipeline, the sink from one agent is connected to the source of another.
The data transfer format normally used by Flume is called Apache Avro 4 and provides
several useful features. First, Avro is a data serialization/deserialization system that uses
a compact binary format. The schema is sent as part of the data exchange and is defined
using JavaScript Object Notation (JSON). Avro also uses remote procedure calls
(RPC) to send data. That is, an Avro sink will contact an Avro source to send data.

Another useful Flume configuration is shown in Figure 4.6. In this configuration,
Flume is used to consolidate several data sources before committing them to HDFS.

There are many possible ways to construct Flume transport networks.
The full scope of Flume functionality is beyond the scope of this book, and there are

many additional features in Flume such as plug-ins and interceptors that can enhance

4. https://avro.apache.org/

Source

Channel

HDFS

Agent

Sink

Web

Server

Figure 4.4 Flume Agent with Source, Channel, and Sink.

Source

foo

Sink

bar

Channel
foo Agent

foo

AVRO

RPC

Agent

bar

Channel
bar

Sink
foo

(Avro)

Source
bar

(Avro)

Figure 4.5 Pipeline created by connecting Flume agents.

Mendelevitch_Book.indb 75Mendelevitch_Book.indb 75 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.avro.apache.org/

76 Chapter 4 Getting Data into Hadoop

Flume pipelines. For more information and example configurations, please see the
Flume Users Guide at https://f lume.apache.org/FlumeUserGuide.html.

Using Flume: A Web Log Example Overview
In this example web logs from the local machine will be placed into HDFS using Flume.
This example is easily modified to use other web logs from different machines. The full
source code and further implementation notes are available from the book web page in
Appendix A, “Book Web Page and Code Download.” Two files are needed to configure
Flume. (See the sidebar “Flume Configuration Files.”)

 n web-server-target-agent.conf—The target Flume agent that writes the data
to HDFS

 n web-server-source-agent.conf—The source Flume agent that captures the web
log data

The web log is also mirrored on the local file system by the agent that writes to HDFS.

1. To run the example, create the directory as root.

mkdir /var/log/flume-hdfs
chown hdfs:hadoop /var/log/flume-hdfs/

Web
Serv

Avro
Sink

Avro
Sink

Avro
Sink

Avro
Sink

Channel
Consolidation

HDFS

Channel

Channel

Channel

Agent1

Agent4

Agent2

Agent3

Avro
Source

Avro
Source

Avro
Source

Avro
Source

Web
Serv

Web
Serv

Figure 4.6 A Flume consolidation network.

Mendelevitch_Book.indb 76Mendelevitch_Book.indb 76 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.flume.apache.org/FlumeUserGuide.html

77Using Apache Flume to Acquire Data Streams

2. Next, as user hdfs, make a Flume data directory in HDFS.

$ hdfs dfs -mkdir /user/hdfs/flume-channel/

3. Now that the data directories are created, the Flume target agent can be started
(as user hdfs).

$ flume-ng agent -c conf -f web-server-target-agent.conf -n collector

This agent writes the data into HDFS and should be started before the source agent.
(The source reads the web logs.)

Note

In some Hadoop distributions, Flume can be started as a service when the system boots,
such as “service start flume.” This configuration allows for automatic use of the Flume
agent. The /etc/flume/conf/{flume.conf,flume-env.sh.template} files need to be
configured for this purpose. For this example, the /etc/flume/conf/flume.conf file can be
the same as the web-server-target.conf file (modified for your environment).

The source agent can be started as root, which will start to feed the web log data to
the target agent. Note that the source agent can be on another machine:

flume-ng agent -c conf -f web-server-source-agent.conf -n source_agent

To see if Flume is working, check the local log by using tail. Also check to make
sure the f lume-ng agents are not reporting any errors (filename will vary).

$ tail –f /var/log/flume-hdfs/1430164482581-1

The contents of the local log under f lume-hdfs should be identical to that written
into HDFS. The file can be inspected using the hdfs –tail command. (filename will
vary). Note, while running Flume, the most recent file in HDFS may have a .tmp
appended to it. The .tmp indicates that the file is still being written by Flume. The target
agent can be configured to write the file (and start another .tmp file) by setting some
or all of the rollCount, rollSize, rollInterval, idleTimeout, and batchSize options
in the configuration file.

$ hdfs dfs -tail flume-channel/apache_access_combined/150427/FlumeData.
➥1430164801381

Both files should have the same data in them. For instance, the preceding example
had the following in both files:

10.0.0.1 - - [27/Apr/2015:16:04:21 -0400] "GET /ambarinagios/nagios/nagios_alerts
.php?q1=alerts&alert_type=all HTTP/1.1" 200 30801 "-" "Java/1.7.0_65"
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 784
"-" "Java/1.7.0_65"
10.0.0.1 - - [27/Apr/2015:16:04:25 -0400] "POST /cgi-bin/rrd.py HTTP/1.1" 200 508
"-" "Java/1.7.0_65"

Both the target and source file can be modified to suit your system.

Mendelevitch_Book.indb 77Mendelevitch_Book.indb 77 11/16/16 6:39 PM11/16/16 6:39 PM

78 Chapter 4 Getting Data into Hadoop

Flume Configuration Files

A complete explanation of Flume configuration is beyond the scope of this chapter. The
Flume website has additional information on Flume configuration at http://flume.apache
.org/FlumeUserGuide.html#configuration.

The two files describe two Flume agents that have separate Source/Channel/Sink con-
figurations. Some of the important settings used in the example above are as follows:

In web-server-source-agent.conf, the following lines set the source. Note that the
web log is acquired by using the tail command to record the log file.

source_agent.sources = apache_server
source_agent.sources.apache_server.type = exec
source_agent.sources.apache_server.command = tail -f /etc/httpd/logs/access_log

Further down in the file, the sink is defined. The parameter source_agent.sinks.avro_
sink.hostname is used to assign the Flume node that will write to HDFS. The port
number is also set in the target configuration file.

source_agent.sinks = avro_sink
source_agent.sinks.avro_sink.type = avro
source_agent.sinks.avro_sink.channel = memoryChannel
source_agent.sinks.avro_sink.hostname = 192.168.93.24
source_agent.sinks.avro_sink.port = 4545

The HDFS settings are placed in the web-server-target-agent.conf file. Note the path
that was used in the previous example and the data specification.

collector.sinks.HadoopOut.type = hdfs
collector.sinks.HadoopOut.channel = mc2
collector.sinks.HadoopOut.hdfs.path = /user/hdfs/flume-channel/%{log_type}/
%y%m%d
collector.sinks.HadoopOut.hdfs.fileType = DataStream

The target file also defines the port and two channels (mc1 and mc2). One of the
channels writes the data to the local file system and the other writes to HDFS. The
relevant lines are shown in the following:

collector.sources.AvroIn.port = 4545
collector.sources.AvroIn.channels = mc1 mc2

collector.sinks.LocalOut.sink.directory = /var/log/flume-hdfs
collector.sinks.LocalOut.channel = mc1

The HDFS file rollover counts create a new file when a threshold is exceeded. In this
example, allow any file size and write a new file after 10,000 events or 600 seconds.

collector.sinks.HadoopOut.hdfs.rollSize = 0
collector.sinks.HadoopOut.hdfs.rollCount = 10000
collector.sinks.HadoopOut.hdfs.rollInterval = 600

A full discussion of Flume can be found on the website at https://flume.apache.org.

Mendelevitch_Book.indb 78Mendelevitch_Book.indb 78 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.flume.apache.org/FlumeUserGuide.html#configuration
http://www.flume.apache.org/FlumeUserGuide.html#configuration
http://www.flume.apache.org

79Manage Hadoop Work and Data Flows with Apache Oozie

Manage Hadoop Work and Data Flows with
Apache Oozie
Apache Oozie is a workf low scheduler system designed to run and manage multiple related
Apache Hadoop jobs. For instance, complete data input and analysis may require several
discrete Hadoop jobs to be run as a workf low where the output of one job will be the input
for a successive job. Oozie is designed to construct and manage these workf lows.

Oozie is not a substitute for the YARN scheduler mentioned previously. That is, YARN
manages resources for individual Hadoop jobs, and Oozie provides a way to connect
and control multiple Hadoop jobs on the cluster.

Oozie workf low jobs are represented as DAGs of actions. There are three types of
Oozie jobs:

 n Workf low: A specified sequence of Hadoop jobs with outcome-based decision
points and control dependency. Progress from one action to another cannot happen
until the first action is complete.

 n Coordinator: A scheduled workf low job that can run at various time intervals
or when data becomes available.

 n Bundle: A higher-level Oozie abstraction that will batch a set of coordinator jobs.

Oozie is integrated with the rest of the Hadoop stack supporting several types of
Hadoop jobs out of the box (such as Java MapReduce, Streaming MapReduce, Pig, Hive,
Spark, and Sqoop) as well as system-specific jobs (such as Java programs and shell scripts).
Oozie also provides a CLI and a Web UI for monitoring jobs. An example of a simple Oozie
workf low is shown in Figure 4.7. In this example, Oozie runs a basic MapReduce opera-
tion. If the application was successful the job ends; if there was an error, the job is killed.

Oozie workf low definitions are written in Hadoop Process Definition Language
(hPDL), which is an XML-based process definition language. Oozie workf lows con-
tain several types of nodes.

start
start

ERROR

map-reduce
wordcount

MapReduce Workflow DAG Workflow.xml

OK

kill

end
<workflow -app name=...>
<start...>
<action>
 <map-reduce>

</workflow>

Figure 4.7 A simple Oozie DAG workflow.

Mendelevitch_Book.indb 79Mendelevitch_Book.indb 79 11/16/16 6:39 PM11/16/16 6:39 PM

80 Chapter 4 Getting Data into Hadoop

 n Start/Stop control f low nodes define the beginning and the end of a workf low.
These include start, end, and optional fail nodes.

 n Action nodes are where the actual processing tasks are defined. When an action
node finishes, the remote systems notify Oozie and the next node in the workf low
is executed. Action nodes can also include HDFS commands.

 n Fork/join nodes allow parallel execution of tasks in the workf low. The fork
node allows two or more tasks to run at the same time. A join node represents a
rendezvous point that must wait until all forked tasks complete.

 n Control f low nodes enable decisions to be made about the previous task. Control
decisions are based on the results of the previous action (e.g. file size or file existence).
Decision nodes are essentially switch-case statements that use JSP EL (Java Server
Pages-Expression Language) that evaluates to either true or false.

A more complex workf low that uses all the above nodes is shown in the example work-
f low in Figure 4.8. More information on Oozie can be found at http://oozie.apache.org/
docs/4.0.0/index.html.

map-
reducestart

map-
reduce

streaming

pig decision

map-
reduce
pipes

fork join

java

file-
systemend

Figure 4.8 A more complex Oozie DAG workflow.

Mendelevitch_Book.indb 80Mendelevitch_Book.indb 80 11/16/16 6:39 PM11/16/16 6:39 PM

http://www.oozie.apache.org/docs/4.0.0/index.html
http://www.oozie.apache.org/docs/4.0.0/index.html

81Apache Falcon

Apache Falcon
Apache Falcon simplifies the configuration of data motion by providing replication, life
cycle management, lineage, and traceability. These features provide data governance
consistency across Hadoop components that is not possible using Oozie. For instance,
Falcon allows Hadoop administrators to centrally define their data pipelines, and then
Falcon uses those definitions to auto-generate workf lows in Apache Oozie. In simple
terms, proper use of Falcon helps keep your active Hadoop cluster from becoming a
confusing mess.

For example, Oozie lets you define Hadoop processing through workf low and
coordinator (a recurring workf low) jobs. The input datasets for data processing are often
described as part of coordinator jobs that specify properties such as path, frequency,
schedule runs, and so on. If there are two coordinator jobs that depend on the same data,
these details have to be defined and managed twice. If you want to add shared data
deletion or movement, a separate coordinator is required. Oozie will certainly work in
these situations, but there is no easy way to define and track the entire data life cycle or
manage multiple independent Oozie jobs.

Oozie is useful when initially setting up and testing workf lows and can be used when
the workf lows are independent and not expected to change often. If there are multiple
dependencies between workf lows or there is a need to manage the entire data life cycle,
then Falcon should be considered.

As mentioned, as Hadoop’s high-level workf low scheduler, Oozie may be managing
hundreds to thousands of coordinator jobs and files. This situation results in some common
mistakes. Processes might use the wrong copies of datasets. Datasets and processes may
be duplicated, and it becomes increasingly more difficult to track down where a particular
dataset originated. At that level of complexity, it becomes difficult to manage so many
dataset and process definitions.

To solve these problems, Falcon allows the creation of a pipeline that is defined by
three key attributes:

 n A cluster entity that defines where data, tools, and processes live on your Hadoop
cluster. A cluster entity contains things like the namenode address, Oozie URL, etc.,
which it uses to execute the other two entities: feeds and processes.

 n A feed entity defines where data live on your cluster (in HDFS). The feed is
designed to designate to Falcon where your new data (that’s either ingested, pro-
cessed, or both) live so it can retain (through retention policies) and replicate
(through replication policies) the data on or from your Cluster. A feed is typically
(but doesn’t have to be) the output of a process.

 n A process entity defines what action or “process” will be taking place in a pipeline.
Most typically, the process links to an Oozie workf low, which contains a series of
actions to execute (such as shell scripts, Java Jars, Hive actions, Pig actions, Sqoop
Actions, you name it) on your cluster. A process also, by definition, takes feeds as
inputs or outputs and is where you define how often a workf low should run.

Mendelevitch_Book.indb 81Mendelevitch_Book.indb 81 11/16/16 6:39 PM11/16/16 6:39 PM

82 Chapter 4 Getting Data into Hadoop

The following example will help explain how Falcon is used. Assume there is raw input
data that arrives every hour. These data are processed with a Pig script and the results saved
for later processing. At a simple level an Oozie workf low could easily manage the task.
However, high-level features, not available in Oozie, are needed to automate the process.
First, the input data have a retention policy of 90 days, after which old data are discarded.
Second, the processing step may have a certain number of retries should the process fail.
And, finally, the output data have a retention policy of three years (and location). It is also
possible to query data lineage with Falcon (i.e., Where did this data come from?). The simple
job f low is shown in Figure 4.9.

What’s Next in Data Ingestion?
As the Hadoop platform continues to evolve, innovation in ingestion tools continues. Two
important new tools are now available to ingestion teams that we would like to mention:

 n Apache Nifi is a recent addition to the data ingestion toolset. Originally created at
the NSA and recently open sourced and added to the Apache family, Nifi provides
a scalable way to define data routing, transformation, and system mediation logic.
An excellent UI makes building data f lows in Nifi fast and easy. Nifi provides support
for lineage tracking and the security and monitoring capability that make it a great
tool for data ingestion, especially for sensor data.

 n Apache Atlas provides a set of core data governance services that enables enter-
prises to effectively deal with compliance requirements on Hadoop.

Summary
In this chapter

 n The Hadoop data lake concept was presented as a new model for data processing.
 n Various methods for making data available to several Hadoop tools were outlined.

The examples included copying files directly to HDFS, importing CSV files to
Apache Hive and Spark, and importing JSON files into HIVE with Spark.

Hourly
Input FileHourly

Input FileHourly
Input File

Pig
Script

Daily Filtered
Output File

raw-input-feed filter-process filtered-feed

Retention
Policy

90 Days

Retry
Policy

2 Attempts

Retention
Policy

3 Years

Figure 4.9 A simple Apache Falcon workflow.

Mendelevitch_Book.indb 82Mendelevitch_Book.indb 82 11/16/16 6:39 PM11/16/16 6:39 PM

83Summary

 n Apache Sqoop was presented as a tool for moving relational data into and out
of HDFS.

 n Apache Flume was presented as tool for capturing and transporting continuous
data, such as web logs, into HDFS.

 n The Apache Oozie workf low manager was described as a tool for creating and
scheduling Hadoop workf lows.

 n The Apache Falcon tool enables a high-level framework for data governance
(end-to-end management) by keeping Hadoop data and tasks organized and
defined as pipelines.

 n New tools like Apache Nifi and Atlas were mentioned as options for governance
and data f low on a Hadoop cluster.

Mendelevitch_Book.indb 83Mendelevitch_Book.indb 83 11/16/16 6:39 PM11/16/16 6:39 PM

This page intentionally left blank

A
Accuracy

in data quality, 87
in predictive modeling, 137

ACM-SIGKDD conference, 6
Action nodes, Oozie, 80
Affinity analysis. See Market basket analysis.
Agents, 39–40
AI (artificial intelligence), 6. See also

Machine learning.
Algorithms

clustering. See Clustering algorithms.
FFT algorithm, invention of, 6
machine learning, 132

Algorithms, supervised learning
association rules, 132
clustering, 132
collaborative filtering, 132
decision trees, 140
GLMs (generalized linear models), 140
important considerations, 141
k-nearest-neighbor, 140
LASSO (least absolute shrinkage, and

selection operator), 140
linear regression, 140
logistic regression, 140
neural network, 140
random forest, 140
tree ensembles, 140

Amazon in the history of data science, 7–8
Analysis of variance, history of, 6
Anomaly detection

building a big data solution, 171–172
with clustering, 152
collective anomalies, 167, 169
conditional anomalies, 167
contextual anomalies, 166–167
Distributed Processing System, 171
Event Store systems, 171

example, detecting network intrusions,
172–178

extreme value analysis, 165
global anomalies, 166–167
machine learning, 129
outlier analysis, data quality issues, 90–91
overview, 165
point anomalies, 166–167
sequence anomalies, 167, 169
sketch techniques, 171
time-series data, 168
tuning, 170
types of anomalies, 166–167
uses for, 166

Anomaly detection, approaches to
k-means clustering, 169–170
k-medoids clustering, 170
k-nearest neighbor, 170
local outlier factor, 169–170
multivariate datasets with clustering,

169–170
PAM (partition around medoids), 170
rules-based methods, 167
semi-supervised methods, 170
statistical identification of point anomalies,

168–169
supervised learning methods, 168
unsupervised learning methods, 168–170

Apache Atlas tool, 82
Apache Nifi tool, 58–59
Applied scientists, description, 8–9
AR (autoregressive datasets), 101
ARIMA (autoregressive integrated moving

average), 101
Artificial intelligence (AI), 6. See also

Machine learning.
Association rules, machine learning, 132
Association rules algorithm, 132
AUC (area-under-the-curve), 139

Index

Mendelevitch_Book.indb 213Mendelevitch_Book.indb 213 11/16/16 6:39 PM11/16/16 6:39 PM

214 Index

Audio data, in the history of data science, 21
Automated data discovery, 195–197
Avro, with Flume, 75–76
Awadallah, Amr, 38
Ayasdi, 196

B
Bag-of-words model

for NLP, 186, 187–188
for text, 97

BalderSchweilier, Eric, 31
Bar charts

examples, 113–114
misuse of, 111
stacked, 115–116
stacked area, 116–117

Batch prediction, 143–144
Benford, Frank, 88–89
Benford’s Law, 88–89
Big-model NLP, 184, 186–187
Bing in the history of data science, 7–8
Bisciglia, Christophe, 38
Books and publications. See also Online

resources.
“Efficient Estimation of Word

Representations in Vector Space,” 188
“The Future of Data Analysis,” 6
Programming HIVE, 41
Programming Pig, 42
“Statistical Modeling: The Two Cultures,”

7
“Unsupervised Learning of Hierarchical

Representations with Convolutional
Deep Belief Networks,” 198

Box plot, invention of, 6
Box-and-whisker charts, 118–119
Breiman, Leo, 7
Bundle jobs, Oozie, 79

C
Cafarella, Mike, 37–38
Casey, Stella

about the author, xxiii
becoming a data scientist, 11

Categorical values
clustering, similarity measures, 154
data munging feature matrix, 103
predictive modeling, 134

Cell-based rules, data quality issues
description, 88
example, 92

Centers for Medicare and Medicaid Services
(CMS), 28, 85–86

Channel component of Flume, 74
Charts. See Visualization; specific charts.
chi-squared test, data quality issues, 90
Chomsky, Noam, 182
Classification

in machine learning, 129
vs. regression, 134–135

Classifiers
building, predictive modeling example,

149–150
predictive modeling, performance metrics,

136–139
Classifying text elements into categories,

99–100
Cleaning and normalizing data. See Data

munging.
Click-through-rate (CTR), 9
Cloudera, founding of, 38
Cluster analysis. See Clustering.
Cluster entities, Falcon, 81–82
Clustering

anomaly detection, 169–170
for anomaly detection, 152
choosing K, 158
in the data science project lifecycle, 16
end-to-end architecture, 158–160
evaluating clusters, 157–158
for exploratory analysis, 152
in machine learning, 129
overview, 151–152
for pre-processing data, 152
uses for, 152

Clustering, similarity measures
categorical variables, 154
distance functions, 153–154
Euclidean distance, 153
Hamming distance, 153
Jaccard coefficient, 154
Manhattan distance, 153
Minkowski distance, 153–154
mixed feature sets, 154
similarity functions, 154
Taxicab distance, 153

Mendelevitch_Book.indb 214Mendelevitch_Book.indb 214 11/16/16 6:39 PM11/16/16 6:39 PM

215Index

Clustering algorithms
density-based, 155
graph based, 155
grid-based, 155
hard vs. soft clustering, 155
hierarchical, 155
machine learning, 132
model-based, 155
partitioning-based, 154

Clustering algorithms, examples
k-means clustering, 155
k-means++ clustering, 156
k-medians clustering, 156
k-medoids clustering, 156
LDA (Latent Dirichlet Allocation), 157,

160–163
PAM (partition around medoids), 156
topic modeling, 160–163

CMS (Centers for Medicare and Medicaid
Services), 28, 85–86

Collaborative filtering, 17, 132
Collective anomalies, 167, 169
Comma-separated values (CSV), importing

to Hive tables, 59–62
Common words, removing, 97–99
Comparison charts, 111–114
Completeness, in data quality, 86–87
Complex data types

data munging, feature matrix, 100
feature extraction, 101–102

Complex features, 97. See also Data munging,
feature matrix.

Composition charts
definition, 112
description, 114–117
pie charts, 115

Composition charts, bar charts
stacked, 115–116
stacked area, 116–117

Conditional anomalies, 167
Configuration files, Flume, 76–77, 78
Confusion matrix, 136–139
Consistency, in data quality, 87
Consolidation network, Flume, 75–76
Contextual anomalies, 166–167
Contingency table. See Confusion matrix.
Control f low nodes, Oozie, 80
Coordinator jobs, Oozie, 79

Copying files to/from HDFS, 206–207
CoreNLP package, 46
Correlation, history of, 6
Credit card fraud, costs of, 25
Cross validation, predictive modeling

performance metrics, 139–140
CSV (comma-separated values), importing to

Hive tables, 59–62
CTR (click-through-rate), 9
Curiosity, attribute of data scientists, 11
Curse of dimensionality, 104
Customer churn analysis, use case for, 22
Customer segmentation, use case for, 22–23
Cutting, Doug, 37–38

D
DAG (directed acyclic graph), 37
Data acquisition in the data science project

lifecycle, 15
Data cleaning in the data science project

lifecycle, 15–16
Data engineers, description, 8–9
Data ingestion, HDFS

Apache Atlas tool, 58–59
Apache Nifi tool, 58–59
direct file transfer, 58–59
slicing and dicing input, 58

Data ingestion, increased velocity of, 21. See
also Importing data.

Data lake
advantages of, 56–58
availability of access methods, 56–57
data availability, 56–57
data sharability, 56–57
description, 19, 56–58
ETL (extract, transform, and load), 56
predetermined schema, 56
preprocessing data, 56
value of, 15

Data manipulation and analysis, Python
language, 45

Data motion, configuring, 81–82
Data munging

advantages of Hadoop, 86
definition, 85
feature engineering, 85
feature generation, 85
for predictive modeling, 142

Mendelevitch_Book.indb 215Mendelevitch_Book.indb 215 11/16/16 6:39 PM11/16/16 6:39 PM

216 Index

Data munging, data quality
accuracy, 87
Benford’s Law, 88–89
cell-based rules, 88, 92
chi-squared test, 90
completeness, 86–87
consistency, 87
definition, 86–87
differential “value distribution” rules,

89–90
distance between two distributions, 90
fraud detection, 89
with Hadoop, 92–93
Kullback-Leibler divergence pseudo-

metric., 90
missing value imputation, 91
outlier analysis, 90–91
overview, 87
static “value distribution” rules, 88–89
timeliness, 87
validity, 87

Data munging, feature matrix
aggregated features, 96
categorical values, 103
choosing instances, 94
choosing the “right” feature, 94
complex data types, 100. See also specific

types.
complex features, 97
creating, 85
curse of dimensionality, 104
dimensionality reduction, 103–105
examples, 94
extracting text from PDFs, 101
feature manipulation, 102–103
feature projection, 105
feature value discretization, 102–103
feature vectors, 93
generating features, example with Hive,

96–97
generating features, overview, 96–97
image data, 102
measuring stock prices over time, 100
one-hot encoding, 103
overview, 93–94
sampling, 94–95
scaling feature values, 103

simple features, 96
text features. See Data munging, text

features.
thresholding, 102–103
time-series features, 100–101
video data, 102

Data munging, text features
bag-of-words text model, 97
classifying text elements into categories,

99–100
dimensionality reduction, Spark example,

105
extracting text from PDFs, 101
hashing trick, 99, 105–106
ICA (independent component analysis),

105
identifying intent, 100
LDA (linear discriminant analysis), 105
LSI (latent semantic indexing), 105
NER (named entity extraction), 99–100
overview, 97–102
PCA (principal component analysis), 105
removing common words, 97–99
stemming, 105
stop words, removing, 105
term frequency, 99
TF-IDF (term frequency-inverse document

frequency), 97–99
word distribution. See Hashing trick;

Zipf ’s Law.
word vectorization, 100
Zipf ’s Law, 105

Data pipelines, creating, 81–82
Data preparation. See also Feature extraction.

in big data clustering solutions, 158–159
predictive modeling example, 145–146
for scalable models, 50
in sentiment analysis, example, 145–146

Data quality
in the data science project lifecycle, 15–16
issues. See Data munging, data quality.

Data science
computational topology, 8
deep learning, 197–199
deep nets, 197–199
definition, 3–4
future of, 195–199

Mendelevitch_Book.indb 216Mendelevitch_Book.indb 216 11/16/16 6:39 PM11/16/16 6:39 PM

217Index

history of. See History of data science.
iterative discovery process, 4
in modern enterprise, 8
representation learning, 197
semantic hashing, 197

Data science project lifecycle
classification vs. regression, 17
cluster analysis, 16
collaborative filtering, 17
data acquisition, 15
data cleaning, 15–16
data quality, 15–16
deploying to production, 17
design model features, 16
diagram, 14
exploring data, 16
feature engineering, 16
machine learning model, building, 17
modeling, 16
predictive modeling, 16
recommender system, building, 16
setting success criteria, 14–15
supervised learning, 17
tuning a machine learning model, 17
unsupervised learning, 17

Data science projects, managing, 18
Data science teams, building

competition for qualified applicants, 13
from existing employees, 13
hiring new employees, 12–13
lack of experience among hiring

management, 13
obstacles to, 12–13
shortage of qualified applicants, 12–13

Data scientists
applied scientists, 8–9
data engineers, 8–9
hard skills, 9–10
required skillset, 9–10
research scientists, 8–9
soft skills, 11–12
strategies for becoming, 9–10

Data scientists, key attributes
curiosity, 11
love of learning, 11
persistence, 12
story-telling, 12

Data variety in the history of data science,
20–21

Data velocity in the history of data science, 21
Data volume in the history of data science, 20
Databases, listing, 70–71
DataFrames

data sources, 62
definition, 42
description, 62

Decision trees
in the history of data science, 6
supervised learning algorithms, 140

Deep learning, 7, 128, 197–199
Deep nets, 197–199
Deleting

directories in HDFS, 207
files in HDFS, 207

Density-based clustering algorithm, 155
Dependent variables in predictive modeling,

134
Deploying to production in the data science

project lifecycle, 17
Design model features in the data science

project lifecycle, 16
Detecting network intrusions, anomaly

detection example, 172–178
Differential “value distribution” rules, 89–90
Dimensionality reduction, 103–105
Direct file transfer with Sqoop, 58–59
Directed acyclic graph (DAG), 37
Directories, creating in HDFS, 206
Distance between two distributions, 90
Distributed Processing System for anomaly

detection, 171
Distributed systems abstraction, levels of,

49–50
Distribution charts

box-and-whisker charts, 118–119
common types of, 117–118
definition, 112
description, 117–118
dot charts, example, 117–118
histograms, example, 117–118

Dixon, James, 19
Dot charts, example, 117–118
DStream (discretized stream), 43
Dynamic time warping, 101

Mendelevitch_Book.indb 217Mendelevitch_Book.indb 217 11/16/16 6:39 PM11/16/16 6:39 PM

218 Index

E
Eadline, Douglas

about the author, xxiii
becoming a data scientist, 12

eBay, in the history of data science, 7–8
“Efficient Estimation of Word

Representations in Vector Space,” 188
Electronic patient records, 27–28
ELIZA, 182
English, translating to Russian, 182
Error matrix. See Confusion matrix.
ETL (extract, transform, and load) from data

lakes, 56
Euclidean distance, clustering similarity

measure, 153
Evaluating predictive modeling classifiers,

136–139
Event Store systems for anomaly detection,

171
Evolution of Hadoop, 37–38
Examples. See also Use cases.

bar charts, 113–114
cell-based rules, 92
code, online resources for, 201
data munging, feature matrix, 94
dot charts, 117–118
exporting data with Sqoop, 73–74
Falcon workf low, 81–82
Flume web log, 76–77
in healthcare, validating HCPCS codes,

92–93
histograms, 117–118
Hive, sampling for a feature matrix, 94–95
line charts, 113–114
network throughput, visualization,

108–110
Oozie workf low, 79–80
pie charts, 115
Pig, sampling for a feature matrix, 94–95
predictive modeling, 133–134
predictive modeling, classif ication vs.

regression, 135
predictive modeling, design choices, 136
sampling for a feature matrix, 94–95
search advertising, 4–5
sentiment analysis, 189–193

TF-IDF (term frequency-inverse document
frequency), 98–99

Examples, clustering algorithms
k-means clustering, 155
k-means++ clustering, 156
LDA (Latent Dirichlet Allocation), 157,

160–163
topic modeling, 160–163

Examples, Spark
dimensionality reduction, 105
removing common words from text, 98–99
sampling for a feature matrix, 94–95
word vectorization, 100
word2vec, 100

Examples, Sqoop
exporting data, 73–74
version 2, 68–74

Examples, text features
classifying text elements into categories, 99
removing common words, 98–99
word vectorization, 100

Exploratory analysis, with clustering, 152
Exporting relational data, 66–67
External Hive tables, 59
Extract, transform, and load (ETL) from data

lakes, 56
Extracting text from PDFs, 101
Extreme value analysis, 165

F
Facebook

founding of Cloudera, 38
history of data science, 7–8

Falcon
cluster entities, 81–82
configuring data motion, 81–82
creating data pipelines, 81–82
description, 40
feed entities, 81–82
lifecycle management, 81–82
lineage, 81–82
process entities, 81–82
replication, 81–82
sample workf low, 81–82
traceability, 81–82

Fault tolerance in Hadoop, 31–32

Mendelevitch_Book.indb 218Mendelevitch_Book.indb 218 11/16/16 6:39 PM11/16/16 6:39 PM

219Index

Feature engineering in the data science
project lifecycle, 16. See also Data
munging, feature matrix.

Feature extraction. See also Data preparation.
in big data clustering solutions, 158–159
from complex data types, 101–102
for scalable models, 50

Feature generation
data munging. See Data munging, feature

matrix.
definition, 85
predictive modeling example, 146–149

Feature learning, 197
Feature manipulation, 102–103
Feature matrix

data munging. See Data munging, feature
matrix.

example, 128–129
Feature projection, 105
Feature value discretization, 102–103
Feature vectors, 93
Features

generating, 96–97
machine learning, 128

Feed entities, Falcon, 81–82
FFT algorithm, invention of, 6
Files

copying to/from HDFS, 206–207
deleting in HDFS, 207
importing into Hive tables, 59
viewing, 58

First-Digit Law. See Benford’s Law.
Fisher, Ronald, 6
Flink, 37. See also MapReduce.
Flume

acquiring data streams, 74–78
Avro, 75–76
channel component, 74
components, 74
configuration files, 76–77, 78
consolidation network, 75–76
description, 39–40
pipeline configuration, 75
sink component, 74
source component, 74
starting at boot, 77
web log example, 76–77

Fork/join nodes, Oozie, 80
Fourier transform, 101
Fraud costs

credit card fraud, 25
healthcare claim fraud, 25

Fraud detection
Benford’s Law, 89
data quality issues, 89
use case for, 25

fsck HDFS option, 208
“The Future of Data Analysis,” 6

G
GadFly, visualization tool, 123
Galton, Francis, 6
Gas well. See Oil and gas well.
Georgetown University, 182
get HDFS command, 58
ggplot Python package, visualization tool, 122
ggplot2 package, visualization tool, 122
GIF files, extracting time-series data, 101
GLMs (generalized linear models), 140
Global anomalies, 166–167
Google

“Efficient Estimation of Word
Representations in Vector Space,” 188

history of data science, 7–8
word vectorization, 100
word2vec, 100

Graph based clustering algorithm, 155
GraphX, 43
Graphics, visualization tools, 121–122
Graph-N-Go, visualization tool, 122
Graphs. See Visualization; specific graphs.
Grid-based clustering algorithm, 155
Grosse, Roger, 198

H
Hadoop

advantages in data munging, 86
definition, 31
evolution of, 37–38
fault tolerance, 31–32
parallel processing and predictive

modeling, 143
running Microsoft, 49
running SAP, 49

Mendelevitch_Book.indb 219Mendelevitch_Book.indb 219 11/16/16 6:39 PM11/16/16 6:39 PM

220 Index

Hadoop (continued)
running SAS, 49
vs. traditional data warehouses, 56–57
working with relational data. See Sqoop.

Hadoop, uses for data scientists
cost effective storage, 46–47
levels of distributed systems abstraction,

49–50
multi-language tooling, 48–49
resource management, 49
scalable application of models, 51
scalable creation of models, 50–51
scheduling, 49
semi-structured data, 48
unstructured data, 48

Hadoop components
distributed data processing frameworks.

See MapReduce; Parallel MapReduce.
distributed file system. See HDFS (Hadoop

Distributed Filesystem).
resource management. See YARN (Yet

Another Resource Negotiator).
scheduling. See YARN (Yet Another

Resource Negotiator).
Spark, 37, 42
Tez, 37

Hadoop Distributed Filesystem (HDFS). See
HDFS (Hadoop Distributed Filesystem).

Hadoop Process Definition Language
(hPDL), 79

Hadoop tools for data science
aggregating and moving log data into

HDFS. See Flume.
bulk data transfer. See Sqoop.
data manipulation. See R language.
data processing and management.

See Falcon; Oozie.
distributed in-memory data processing.

See Spark.
graphical display. See Python language,

Java language, R language.
Java, 8, 31, 40
multi-step ETL. See Pig.
performing calculations. See Python

language, Java language, R language.
programming languages. See Python

language; R language.

Python, 8-9, 42, 45
R, 8-9, 44-45
SQL analytics. See Hive; Spark SQL.
statistical analysis. See R language.

Hammerbacher, Jeff, 38
Hamming distance, clustering similarity

measure, 153
Hard vs. soft clustering, 155
Hashing trick, 99, 105–106. See also Zipf ’s

Law.
HDFS (Hadoop Distributed Filesystem)

copying files, 58
description, 32–34
and existing POSIX file systems, 58
importing data to. See Data ingestion,

HDFS.
online resources, 203
viewing files, 58

HDFS (Hadoop Distributed Filesystem),
quick start

copying files to/from HDFS, 206–207
creating a directory, 206
deleting directories, 207
deleting files, 207
fsck option, 208
general user commands, 204–205
getting a status report, 207–208
hdfs command, 203
health check, 208
listing files, 205–206
quick command dereference, 204

hdfs command, 203
Health check on HDFS, 208
Healthcare

claim fraud, costs of, 25
detecting anomalous record access, 28
electronic patient records, 27–28
HEDIS (Healthcare Effectiveness Data and

Information Set), 27
ICD10 standard for patient records, 27
PMI (Precision Medicine Initiative)

Cohort program, 27–28
predicting patient re-admission, 28
predictive medical diagnosis, 27–28
validating HCPCS codes, example, 92–93

HEDIS (Healthcare Effectiveness Data and
Information Set), 27

Mendelevitch_Book.indb 220Mendelevitch_Book.indb 220 11/16/16 6:39 PM11/16/16 6:39 PM

221Index

Help for data scientists. See Books and
publications; Online resources.

Heritage Provider Network, 28
Hidden Markov models (HMMs), 101
Hierarchical clustering algorithm, 155
Hierarchical learning, 197–199
Histograms, example, 117–118
History of data science

AI (artificial intelligence), 6
decision trees, 6
deep learning, 7
KDD workshops, 6
k-means clustering, 6
nearest-neighbors, 6
neural networks, 6
significant contributors, 7–8. See also

individual names.
statistics and machine learning, 6–7
support vector machines, 6
supporting technological/scientific

achievements, 5–6
History of data science, role of big data

audio data, 21
log files, 20
sensor data, 20
text data, 21
variety of data, 20–21
velocity of data, 21
video data, 21
volume of data, 20

Hive
description, 40–41
Programming HIVE, 41
sampling for a feature matrix, example,

94–95
SQL analytics, 40–41
UDFs (user-defined functions), 40–41
User-Defined Aggregation functions, 40–41
word-count script, 41

Hive tables
external, 59
importing files into, overview, 59
internal, 59

Hive tables, importing data from files
CSV files, 59–62
overview, 59
TSV (tab-separated values), 59

Hive tables, importing data with Spark
CSV files, 63–64
overview, 62–63

Hivemall, 41
HMMs (hidden Markov models), 101
Hoaglin, David, 91
Hortonworks, founding of, 38
HPDL (hadoop Process Definition

Language), 79

I
IBM, 182
ICA (independent component analysis), 105
ICD10 standard for patient records, 27
Iglewicz, Boris, 91
Image data, data munging feature matrix, 102
Image processing, 198
Importing data. See also Data ingestion.

files into Hive tables, 59, 64
JSON files, 64
relational data, 66–67

Independent variables, predictive modeling,
134

Installing and configuring Sqoop, 68–74
Insurance risk analysis, use case, 29
Intent, identifying in text, 100
Internal Hive tables, 59

J
Jaccard coefficient, 154
Java packages for Hadoop, 46
JPEG files, extracting time-series data, 101
JSON files

extracting time-series data, 101
importing into Hive tables, 64

Julia language, visualization tool, 123

K
Kaggle.com competition, 28
KDD workshops in the history of data

science, 6
K-fold cross-validation, predictive modeling

performance metrics, 139–140
k-means clustering

anomaly detection, 169–170
example, 155

k-means++ clustering, example, 156

Mendelevitch_Book.indb 221Mendelevitch_Book.indb 221 11/16/16 6:39 PM11/16/16 6:39 PM

222 Index

K-means clustering in the history of data
science, 6

k-medians clustering, example, 156
k-medoids clustering, anomaly detection, 170
K-medoids clustering, example, 156
k-nearest-neighbor

anomaly detection, 170
description, 140

Kullback-Leibler divergence pseudo-metric., 90

L
LASSO (least absolute shrinkage, and

selection operator), 140
lattice package, visualization tool, 122
LDA (linear discriminant analysis), 105
LDA (Latent Dirichlet Allocation), examples,

157, 160–163
Lee, Honglak, 198
Libraries

Matlab, 123
Python language, 45
Seaborn, 122
Spark. See MLlib.

Libraries, matplotlib
plotting library, 45
visualization tool, 122

Lifecycle management, Falcon, 81–82
Likelihood, history of, 6
Line charts, examples, 113–114
Lineage, Falcon, 81–82
Linear regression, supervised learning

algorithms, 140
LinkedIn in the history of data science, 7–8
Listing files in HDFS, 205–206
Local outlier factor, 169–170
Log files in the history of data science, 20
Logistic regression, supervised learning

algorithms, 140
Love of learning, attribute of data scientists, 11
LSI (latent semantic indexing), 105–106

M
MA (moving average) datasets, 101
Machine learning

algorithms, 132
association rules algorithm, 132
benefits of big data, 130–131
clustering algorithm, 132

collaborative filtering algorithm, 132
deep learning, 128
feature matrix, example, 128–129
features, definition, 128
future of, 132
Java packages for, 46
neural networks, 128
observations, definition, 128
overview, 127–128
perceptron, 127
support vector machines, 128
text mining, 46
tools for, 131–132
unsupervised learning, 129
Vowpal Wabbit, 46
WEKA pkg, 46

Machine learning, supervised learning
algorithms for, 132, 140–141
definition, 129

Machine learning, targets
definition, 128
task types, 129

Machine learning, task types
anomaly detection, 129
classif ication, 129
clustering, 129
market basket analysis, 129
predictive modeling, 129
recommender systems, 129
regression, 129

Machine learning libraries
Python language, 45
Spark MLlib, 132

Machine learning models
in the data science project lifecycle, 17
tuning, 17

MAE (mean absolute error), predictive
modeling performance metric, 139

Mahout, 186
Mallet package, 46
Managing data science projects vs. managing

software projects, 18
Manhattan distance, clustering similarity

measure, 153
Map phase, MapReduce, 35–36
Map-only jobs, 66–67
MapReduce. See also Flink; Spark; Tez.

description, 35–37

Mendelevitch_Book.indb 222Mendelevitch_Book.indb 222 11/16/16 6:39 PM11/16/16 6:39 PM

223Index

for highly iterative jobs, 36
map phase, 35–36
phases, 35
reduce phase, 35–36
shuff le phase, 35
word-count script, 35

Market basket analysis
in machine learning, 129
use case for, 26–27

Matlab, matrix library, 123
matplotlib, 45, 122
Mendelevitch, Ofer

about the author, xxiii
becoming a data scientist, 9
work on search advertising, 9

Microsoft, running on Hadoop, 49
Minkowski distance, clustering similarity

measure, 153–154
Missing value imputation, 91
Mixed feature sets, clustering similarity

measure, 154
MLlib. See also Libraries.

description, 43
NLP example, 186–187
word vectorization, example, 100
word2vec, example, 100

Model tuning, predictive modeling, 142–143
Model-based clustering algorithm, 155
Modeling in the data science project lifecycle, 16
Models

scalable application, 51
scalable creation, 50–51

Moving average (MA), 101
MP3 files, extracting time-series data, 101
MP4 files, extracting time-series data, 101
Multi-language tooling, 48–49
Multi-layer neural networks, 197
Multivariate datasets with clustering,

anomaly detection, 169–170
Munging data. See Data munging.

N
Named entity extraction (NER), 99–100
Named entity recognition, 184
Natural language processing (NLP). See NLP

(natural language processing).
Nearest-neighbors

in the history of data science, 6

k-nearest neighbor, anomaly detection, 170
k-nearest-neighbor algorithm, 140

NER (named entity extraction), 99–100
Netf lix in the history of data science, 7–8
Network intrusions, anomaly detection

example, 172–178
Neural networks

in the history of data science, 6
multi-layer, 197
supervised learning algorithms, 140

Ng, Andrew Y., 198
NLP (natural language processing)

Chomsky, Noam, 182
ELIZA, 182
Georgetown University, 182
historical approaches, 182
IBM, 182
named entity recognition, 184
overview, 181–182
Python language, 45
sentiment analysis, 184
tagging parts of speech, 183
text segmentation, 183
topic modeling, 184
translating Russian to English, 182
use cases, 182–183
Weizenbaum, Joseph, 182

NLP (natural language processing), examples
sentiment analysis, 189–193
with Spark, 189
with Stanford CoreNLP, 189

NLP (natural language processing), textual
representations

bag of words, 186, 187–188
“Efficient Estimation of Word

Representations in Vector Space,” 188
term frequencies, 188
term frequency scaled by TF-IDF, 188
word2vec, 188

NLP (natural language processing), tooling
for Hadoop

bag of words model, 186
big-model NLP, 184, 186–187
Mahout, 186
small-model NLP, 184–186
Spark MLlib, 186–187

NLTK, Python language, 45
Numeric computing, Python language, 45

Mendelevitch_Book.indb 223Mendelevitch_Book.indb 223 11/16/16 6:39 PM11/16/16 6:39 PM

224 Index

NumPy, Python language, 45
Nutch, in the evolution of Hadoop, 37–38

O
Observations, in machine learning, 128
Oil and gas well production predictions, use

case for, 29
Olson, Mike, 38
One-hot encoding, 103
Online resources. See also Books and

publications.
deep learning, 199
example code, 201
Google, 100
HDFS, 203
question and answer forum, 201
Sqoop project website, 66
TDA (topological data analysis), 197
webpage for this book, 201
word2vec, 100

Oozie
action nodes, 80
bundle jobs, 79
control f low nodes, 80
coordinator jobs, 79
description, 40
fork/join nodes, 80
hPDL (Hadoop Process Definition

Language), 79
job types, 79
node types, 79–80
scheduling workf low, 79–80
start/stop control f low nodes, 80
workf low example, 79–80
workf low jobs, 79

OpenNLP package, 46
Outlier. See Anomaly.

P
Packages

CoreNLP, 46
ggplot Python visualization tool, 122
Java for Hadoop, 46
Java for machine learning, 46
Mallet, 46
OpenNLP, 46
R language, 44
R package for visualization, 122

RPlyr, 44
Vowpal Wabbit, 46
WEKA, 46

PAM (partition around medoids), 156, 170
“Panama” project, 9
Pandas, Python language, 45
Parallel MapReduce, 35
Partitioning-based clustering algorithm, 154
PayPal in the history of data science, 7–8
PCA (principal component analysis), 105
PDF files, extracting text from, 101
Pearson, Karl, 6
Pentaho, 19
Perceptron, 127
Performance metrics, predictive modeling.

See Predictive modeling, performance
metrics.

Persistence, attribute of data scientists, 12
Phases of MapReduce, 35
Piatesky-Shapiro, Gregory, 6
Pie charts, 115
Pig

description, 41–42
Programming Pig, 42
sampling for a feature matrix, example,

94–95
script for word-count, 42

Pig-on-Spark, 41
Pipeline configuration, Flume, 75
PMI (Precision Medicine Initiative) Cohort

program, 27–28
PMML (predictive modeling markup

language), 143
Point anomalies, 166–167, 168–169
POSIX file systems, and HDFS, 58
Precision in predictive modeling, definition,

137
Precision-recall curve, predictive modeling

performance metric, 138–139
Predicting patient re-admission, use case for,

28
Predictive maintenance, use case for, 26
Predictive medical diagnosis, use case for,

27–28
Predictive modeling. See also Supervised

learning.
accuracy, definition, 137
architectural view, 141–143

Mendelevitch_Book.indb 224Mendelevitch_Book.indb 224 11/16/16 6:39 PM11/16/16 6:39 PM

225Index

batch prediction, 143–144
categorical targets, 134
cleaning and normalizing data, 142
confusion matrix, 136–139
in the data science project lifecycle, 16
dependent variables, 134
examples, 133–134
Hadoop parallel processing, 143
independent variables, 134
in machine learning, 129
model tuning, 142–143
munging data, 142
overview, 133–134
PMML (predictive modeling markup

language), 143
precision, definition, 137
real-time prediction, 144
recall, definition, 137
specificity, definition, 137
supervised learning, algorithms for. See

Algorithms, supervised learning.
training sets, 134
twitter. See Predictive modeling, sentiment

analysis example.
Predictive modeling, classif ication

example, 135
vs. regression, 134–135

Predictive modeling, design choices
evaluating classif iers, 136–139
example, 136
test sets, 136
training sets, 136
validation sets, 136

Predictive modeling, performance metrics
AUC (area-under-the-curve), 139
classif iers, 136–139
cross validation, 139–140
k-fold cross-validation, 139–140
MAE (mean absolute error), 139
precision-recall curve, 138–139
regression models, 139
RMSE (root mean squared error), 139
ROC (receiver operating characteristic),

138–139
ROC curve, 138–139

Predictive modeling, regression
vs. classif ication, 134–135
example, 135

Predictive modeling, sentiment analysis example
building classif iers, 149–150
data preparation, 145–146
feature generation, 146–149
tweets dataset, 145

Predictive modeling markup language
(PMML), 143

Pre-processing data with clustering, 152
Principal component analysis (PCA), 105
Process entities, Falcon, 81–82
Product recommendation, use case for, 21–22
Programming HIVE, 41
Programming Pig, 42
put HDFS command, 58
PySpark, word-count script, 45–46
Python language

data manipulation and analysis, 45
machine learning library, 45
matplotlib, plotting library, 45
natural language processing, 45
NLTK, 45
numeric computing, 45
NumPy, 45
overview, 45–46
Pandas, 45
scientific computing, 45
scikit-learn, 45
SciPy, 45
Spacy, 45
text mining, 45
word-count script, 45–46

Python visualization tool, 122

Q
QlikView, visualization tool, 123

R
R Foundation for Statistical Computing,

121–122
R language

capabilities, 44
description, 44–45
packages, 44
RPlyr, 44
RHadoop pkg, 44
RODBC pkg, 44
visualization tool, 121–122
word-count script, 44–45

Mendelevitch_Book.indb 225Mendelevitch_Book.indb 225 11/16/16 6:39 PM11/16/16 6:39 PM

226 Index

R Plyr package, 44
R project, 45
Random forest algorithm for supervised

learning, 140
Ranganath, Rajesh, 198
RDD (resilient distributed dataset)

definition, 42
source for importing to HDFS, 62–64

Reading data into Hadoop. See Data
ingestion; Importing data.

Real-time prediction, predictive modeling,
144

Recall in predictive modeling, definition,
137

Receiving operating characteristic (ROC),
predictive modeling performance
metric, 138–139

Recommender systems
in the data science project lifecycle, 16
in machine learning, 129
use case for, 21–22

Reduce phase, MapReduce, 35–36
Regression

vs. classif ication, 134–135
history of, 6
in machine learning, 129

Regression models, predictive modeling
performance metric, 139

Relationship charts
definition, 112
description, 118–120
scatter plots, 118–120

Removing
common words, 97–99
stop words, 105

Replication, Falcon, 81–82
Representation learning, 197
Research scientists, description, 8–9
Resilient distributed datastore (RDD)

definition, 42
source for importing to HDFS, 62–64

Resource management, 49
Resources for data scientists. See Books and

publications; Online resources.
Reusing command options, Sqoop, 71–72
RHadoop pkg, 44
Right model formulation, identifying, 196

Risk analysis, use case for, 29
Risk models among auto insurers, 14
RMSE (root mean squared error), predictive

modeling performance metric, 139
ROC (receiving operating characteristic),

predictive modeling performance
metric, 138–139

ROC curve, predictive modeling
performance metric, 138–139

RODBC pkg, 44
Rosenblatt, Frank, 6
Rules-based anomaly detection methods, 167
Russian, translating to English, 182

S
Sales use cases

diversifying sales, 22
increasing sales, 22
prioritizing leads, 23–24

Sampling, data munging feature matrix,
94–95

SAP, running on Hadoop, 49
Sarkar, Deepayan, 122
SAS (Statistical Analysis System)

running on Hadoop, 49
visualization tools, 122–123

SAS/Analyst, visualization tool, 123
SAS/Insight, visualization tool, 123
SAS/Procs, visualization tool, 123
Scaling feature values, data munging feature

matrix, 103
Scatter plots, 118–120
Scheduling, 49
Scheduling workf low, Oozie, 79–80
Schema-on-read, 47
Scientific computing, Python language, 45
scikit-learn package, Python language, 45
SciPy, Python language, 45
Seaborn library, visualization tool, 122
Search advertising

examples of, 4–5
Yahoo! project “Panama,” 9

Semantic hashing, 197
Semi-structured data, 48
Semi-supervised anomaly detection methods,

170
Sensitivity. See Recall.

Mendelevitch_Book.indb 226Mendelevitch_Book.indb 226 11/16/16 6:39 PM11/16/16 6:39 PM

227Index

Sensor data in the history of data science, 20
Sentiment analysis

example, 189–193
with NLP, 184, 189–193
use case for, 24–25

Sequence anomalies, 167, 169
Shuff le phase, MapReduce, 35
Similarity functions, clustering similarity

measures, 154
Similarity measures. See Clustering,

similarity measures.
Simple features, 96. See also Data munging,

feature matrix.
Sink component, Flume, 74
Sketch techniques, 171
Skill required for data scientists, 9–12
Slicing and dicing input. See also Spark.

HDFS, 58
with Sqoop, 58

Small-model NLP, 184–186
Source component, Flume, 74
Spacy, Python language, 45
Spark.

architecture, 42–43
DataFrames, 42
description, 37
fault tolerant streaming applications. See

Spark Streaming.
machine learning library. See MLlib.
NLP example, 189
Pig-on-Spark, 41
R language. See SparkR project.
RDD (resilient distributed datastore), 42
slicing and dicing data, 42
SQL analytics. See Spark SQL.
word-count script, 42–43

Spark, examples
dimensionality reduction, 105
removing common words from text, 98–99
sampling for a feature matrix, 94–95
word vectorization, 100
word2vec, 100

Spark MLlib. See MLlib.
Spark components. See specific components.
Spark SQL, 43
Spark Streaming, 43
SparkR project, 45

Specificity in predictive modeling, definition,
137

SQL analytics in Hive, 40–41
SQL for Spark, 43
Sqoop

clean-up commands, 74
definition, 65–66
description, 39
exporting data, example, 73–74
importing/exporting relational data, 66–67
installing and configuring, 68–74
listing databases, 70–71
project website, 66
reusing command options, 71–72
version 2, example, 68–74
version 2 vs. version 1, 67–68
version changes, 67–68

Stanford CoreNLP, NLP example, 189
Start/stop control f low nodes, Oozie, 80
Static “value distribution” rules, 88–89
Statistical Analysis System (SAS)

running on Hadoop, 49
visualization tools, 122–123

Statistical computing, visualization tools,
121–122

“Statistical Modeling: The Two Cultures,” 7
Statistics

box plot, invention of, 6
Tukey’s HSD test, invention of, 6

Statistics, and machine learning
overview, 6–7
statistical methods, 6

Stemming, 105
Stock prices, measuring over time, 100
Stop words, removing, 105
Storage, cost effectiveness, 46–47
Story-telling, attribute of data scientists, 12
Streaming, Spark, 43
Success criteria in the data science project

lifecycle, 14–15
Supervised learning. See also Predictive

modeling.
algorithms for. See Algorithms, supervised

learning.
anomaly detection, 168
in the data science project lifecycle, 17

Support vector machines, 6, 128

Mendelevitch_Book.indb 227Mendelevitch_Book.indb 227 11/16/16 6:39 PM11/16/16 6:39 PM

228 Index

T
Tableau, visualization tool, 123
Tables. See Hive tables.
Tab-separated values (TSV), importing to

Hive tables, 59
Tagging parts of speech, 183
TDA (topological data analysis), 195–197
Term frequency

computing, 99
definition, 188
scaled by TF-IDF, 188

Test sets in predictive modeling design
choices, 136

Text data in the history of data science, 21
Text features, 97–102. See also Data munging,

text features.
Text mining

Python language, 45
tools for, 46

Text segmentation, 183
Tez, 37. See also MapReduce.
TF-IDF (term frequency-inverse document

frequency), 97–99
data munging, text features, 97–99
scaling term frequency, 188

Thresholding, data munging feature matrix,
102–103

Timeliness in data quality, 87
Time-series data, anomaly detection, 168
Time-series features. See also Data munging,

feature matrix.
example, 100
overview, 100–101

Tooling, multi-language, 48–49
Tools. See also specific tools.
Tools, machine learning, 131–132
Tools, visualization

GadFly, 123
ggplot Python package, 122
ggplot2 package, 122
graphics, 121–122
Graph-N-Go, 122
Julia language, 123
lattice package, 122
Matlab, matrix library, 123
matplotlib library, 122

online resources, 122–123
Python, 122
QlikView, 123
R language, 121–122
SAS (Statistical Analysis System), 122
SAS/Analyst, 123
SAS/Insight, 123
SAS/Procs, 123
Seaborn library, 122
statistical computing, 121–122
Tableau, 123

Tools for Hadoop data science
aggregating and moving log data into

HDFS. See Flume.
bulk data transfer. See Sqoop.
data manipulation. Python language;

R language.
data processing and management. See

Falcon; Oozie.
distributed in-memory data processing.

See Spark.
graphical display. See Python language;

R language.
multi-step ETL. See Pig.
performing calculations..
programming languages. See Python

language; R language.
SQL analytics. See Hive; Spark SQL.
statistical analysis. See R language.

Topic modeling
example, 160–163
with NLP, 184

Topological data analysis (TDA), 195–197
Training sets

in machine learning, 129
predictive modeling, 134
predictive modeling, design choices, 136

Translating Russian to English, 182
Tree ensembles, supervised learning

algorithms, 140
True Negative Rate. See Recall.
True Positive Rate. See Recall.
TSV (tab-separated values), importing to

Hive tables, 59
Tukey, John W., 6, 118
Tukey’s HSD test, invention of, 6

Mendelevitch_Book.indb 228Mendelevitch_Book.indb 228 11/16/16 6:39 PM11/16/16 6:39 PM

229Index

Tuning
anomaly detection, 170
predictive models, 142–143

Tweets dataset, predictive modeling example,
145

U
UDFs (user-defined functions) in Hive,

40–41
Unstructured data, 48
Unsupervised detection

of collective anomalies, 169
of sequence anomalies, 169

Unsupervised learning
anomaly detection, 168–170
in the data science project lifecycle, 17

“Unsupervised Learning of Hierarchical
Representations with Convolutional
Deep Belief Networks,” 198

Use cases, business
customer churn analysis, 22
customer segmentation, 22–23
fraud detection, 25
increasing sales, 22
increasing user satisfaction and loyalty, 22
insurance risk analysis, 29
market basket analysis, 26–27
predicting oil and gas well production, 29
predictive maintenance, 26
product recommendation, 21–22
sales diversity, 22
sales lead prioritization, 23–24
sentiment analysis, 24–25

Use cases, healthcare
detecting anomalous record access, 28
electronic patient records, 27–28
HEDIS (Healthcare Effectiveness Data and

Information Set), 27
ICD10 standard for patient records, 27
PMI (Precision Medicine Initiative)

Cohort program, 27–28
predicting patient re-admission, 28
predictive medical diagnosis, 27–28

Use cases, NLP, 182–183
User satisfaction and loyalty, use case for, 22
User-based-insurance (UBI). See Risk models.

User-Defined Aggregation functions in Hive,
40–41

User-defined functions (UDFs) in Hive,
40–41

V
Validation sets, predictive modeling design

choices, 136
Validity in data quality, 87
Video data

data munging, feature matrix, 102
in the history of data science, 21

Viewing files, 58
Visualization tools

GadFly, 123
ggplot Python package, 122
ggplot2 package, 122
graphics, 121–122
Graph-N-Go, 122
Julia language, 123
lattice package, 122
Matlab, matrix library, 123
matplotlib library, 122
online resources, 122–123
Python, 122
QlikView, 123
R language, 121–122
SAS (Statistical Analysis System), 122
SAS/Analyst, 123
SAS/Insight, 123
SAS/Procs, 123
Seaborn library, 122
statistical computing, 121–122
Tableau, 123

Visualizations
with Hadoop, 123–124
misuse of, 110–112
network throughput, example, 108–110
uses in data science, 121

Visualizations, chart types. See also specific types.
comparing variables. See Comparison

charts.
composition of data items. See

Composition charts.
displaying mean, median, and maximum

values. See Box-and-whisker chart.

Mendelevitch_Book.indb 229Mendelevitch_Book.indb 229 11/16/16 6:39 PM11/16/16 6:39 PM

230 Index

Visualizations, chart types (continued)
distribution of data. See Distribution

charts.
a guide for choosing, online resource, 112
relationships between datasets or variables.

See Relationship charts.
Vowpal Wabbit package, 46

W
WAV files, extracting time-series data, 101
Wavelet transformations, 101
Webpages. See Online resources.
Weizenbaum, Joseph, 182
WEKA package, 46
Wickham, Hadley, 122
WMV files, extracting time-series data, 101
Word vectorization, 100
word2vec, 188
Word-count scripts

Hive, 41
MapReduce, 35
Pig, 42

PySpark, 45–46
Python language, 45–46
R language, 44–45
Spark, 42–43

Workf low jobs, Oozie, 79
Workf low sample, Falcon, 81–82

X
XML data, extracting time-series data, 101

Y
Yahoo!

founding of Cloudera, 38
founding of Hortonworks, 38
history of data science, 7–8
project “Panama,” 9
work on search advertising, 9

YARN (Yet Another Resource Negotiator),
34

Z
Zipf ’s Law, 105. See also Hashing trick.

Mendelevitch_Book.indb 230Mendelevitch_Book.indb 230 11/16/16 6:39 PM11/16/16 6:39 PM

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	II: Preparing and Visualizing Data with Hadoop
	4 Getting Data into Hadoop
	Hadoop as a Data Lake
	The Hadoop Distributed File System (HDFS)
	Direct File Transfer to Hadoop HDFS
	Importing Data from Files into Hive Tables
	Import CSV Files into Hive Tables

	Importing Data into Hive Tables Using Spark
	Import CSV Files into HIVE Using Spark
	Import a JSON File into HIVE Using Spark

	Using Apache Sqoop to Acquire Relational Data
	Data Import and Export with Sqoop
	Apache Sqoop Version Changes
	Using Sqoop V2: A Basic Example

	Using Apache Flume to Acquire Data Streams
	Using Flume: A Web Log Example Overview

	Manage Hadoop Work and Data Flows with Apache Oozie
	Apache Falcon
	What’s Next in Data Ingestion?
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

