
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134023212
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134023212
https://plusone.google.com/share?url=http://www.informit.com/title/9780134023212
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134023212
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134023212/Free-Sample-Chapter

NoSQL
for Mere
Mortals®

The For Mere Mortals® Series presents you with information on important technology

topics in an easily accessible, common sense manner. If you have little or no

background or formal training on the subjects covered in the series, these guides are

for you. This series avoids dwelling on the theoretical and instead takes you right to

the heart of the topic with a matter-of-fact, hands-on approach.

Mike Hernandez - Series Editor

Are you an instructor? Most For Mere Mortals guides have extensive teaching resources and supplements available.

Visit for a complete list of available products.

Make sure to connect with us!

For Mere Mortals Series

NoSQL

for Mere
Mortals®

Dan Sullivan

Hoboken, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals. The author and publisher
have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein. The
publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For questions about sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015935038

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-13-402321-2
ISBN-10: 0-13-402321-8

Text printed in the United States on recycled paper at Edwards Brothers Malloy,
Ann Arbor, Michigan.

First printing, April 2015

Editor-in-Chief: Greg Wiegand

Acquisitions Editor: Joan Murray

Development Editor: Mark Renfrow

Managing Editor: Sandra Schroeder

Senior Project Editor: Tonya Simpson

Copy Editor: Karen Annett

Indexer: WordWise Publishing Services

Proofreader: Chuck Hutchinson

Technical Reviewer: Theodor Richardson

Editorial Assistant: Cindy Teeters

Cover Designer: Alan Clements

Compositor: Mary Sudul

For Katherine

This page intentionally left blank

About the Author

Dan Sullivan is a data architect and

data scientist with more than 20 years

of experience in business intelligence,

machine learning, data mining, text

mining, Big Data, data modeling,

and application design. Dan’s project

work has ranged from analyzing com-

plex genomics and proteomics data to

designing and implementing numerous

database applications. His most recent

work has focused on NoSQL database

modeling, data analysis, cloud comput-

ing, text mining, and data integration in

life sciences. Dan has extensive experi-

ence in relational database design and

works regularly with NoSQL databases.

Dan has presented and written extensively on NoSQL, cloud comput-

ing, analytics, data warehousing, and business intelligence. He has

worked in many industries, including life sciences, financial services,

oil and gas, manufacturing, health care, insurance, retail, power sys-

tems, telecommunications, pharmaceuticals, and publishing.

This page intentionally left blank

Contents

Preface xxi

Introduction xxv

PART I: INTRODUCTION 1
Chapter 1 Different Databases for Different Requirements 3

Relational Database Design 4

E-commerce Application 5

Early Database Management Systems 6

Flat File Data Management Systems 7

Organization of Flat File Data Management Systems 7

Random Access of Data 9

Limitations of Flat File Data Management Systems 9

Hierarchical Data Model Systems 12

Organization of Hierarchical Data Management Systems 12

Limitations of Hierarchical Data Management Systems 14

Network Data Management Systems 14

Organization of Network Data Management Systems 15

Limitations of Network Data Management Systems 17

Summary of Early Database Management Systems 17

The Relational Database Revolution 19

Relational Database Management Systems 19

Organization of Relational Database Management Systems 20

Organization of Applications Using Relational Database

Management Systems 26

Limitations of Relational Databases 27

Motivations for Not Just/No SQL (NoSQL) Databases 29

Scalability 29

Cost 31

Flexibility 31

Availability 32

Summary 34

x Contents

Case Study 35

Review Questions 36

References 37

Bibliography 37
Chapter 2 Variety of NoSQL Databases 39

Data Management with Distributed Databases 41

Store Data Persistently 41

Maintain Data Consistency 42

Ensure Data Availability 44

Consistency of Database Transactions 47

Availability and Consistency in Distributed Databases 48

Balancing Response Times, Consistency, and Durability 49

Consistency, Availability, and Partitioning: The CAP

Theorem 51

ACID and BASE 54

ACID: Atomicity, Consistency, Isolation, and Durability 54

BASE: Basically Available, Soft State, Eventually

Consistent 56

Types of Eventual Consistency 57

Casual Consistency 57

Read-Your-Writes Consistency 57

Session Consistency 58

Monotonic Read Consistency 58

Monotonic Write Consistency 58

Four Types of NoSQL Databases 59

Key-Value Pair Databases 60

Keys 60

Values 64

Differences Between Key-Value and Relational Databases 65

Document Databases 66

Documents 66

Querying Documents 67

Differences Between Document and Relational Databases 68

 Contents xi

Column Family Databases 69

Columns and Column Families 69

Differences Between Column Family and Relational

Databases 70

Graph Databases 71

Nodes and Relationships 72

Differences Between Graph and Relational Databases 73

Summary 75

Review Questions 76

References 77

Bibliography 77

PART II: KEY-VALUE DATABASES 79
Chapter 3 Introduction to Key-Value Databases 81

From Arrays to Key-Value Databases 82

Arrays: Key Value Stores with Training Wheels 82

Associative Arrays: Taking Off the Training Wheels 84

Caches: Adding Gears to the Bike 85

In-Memory and On-Disk Key-Value Database: From Bikes to

Motorized Vehicles 89

Essential Features of Key-Value Databases 91

Simplicity: Who Needs Complicated Data Models

Anyway? 91

Speed: There Is No Such Thing as Too Fast 93

Scalability: Keeping Up with the Rush 95

Scaling with Master-Slave Replication 95

Scaling with Masterless Replication 98

Keys: More Than Meaningless Identifiers 103

How to Construct a Key 103

Using Keys to Locate Values 105

Hash Functions: From Keys to Locations 106

Keys Help Avoid Write Problems 107

xii Contents

Values: Storing Just About Any Data You Want 110

Values Do Not Require Strong Typing 110

Limitations on Searching for Values 112

Summary 114

Review Questions 115

References 116

Bibliography 116
Chapter 4 Key-Value Database Terminology 117

Key-Value Database Data Modeling Terms 118

Key 121

Value 123

Namespace 124

Partition 126

Partition Key 129

Schemaless 129

Key-Value Architecture Terms 131

Cluster 131

Ring 133

Replication 135

Key-Value Implementation Terms 137

Hash Function 137

Collision 138

Compression 139

Summary 141

Review Questions 141

References 142
Chapter 5 Designing for Key-Value Databases 143

Key Design and Partitioning 144

Keys Should Follow a Naming Convention 145

Well-Designed Keys Save Code 145

Dealing with Ranges of Values 147

Keys Must Take into Account Implementation Limitations 149

How Keys Are Used in Partitioning 150

 Contents xiii

Designing Structured Values 151

Structured Data Types Help Reduce Latency 152

Large Values Can Lead to Inefficient Read and Write

Operations 155

Limitations of Key-Value Databases 159

Look Up Values by Key Only 160

Key-Value Databases Do Not Support Range Queries 161

No Standard Query Language Comparable to SQL for Relational

Databases 161

Design Patterns for Key-Value Databases 162

Time to Live (TTL) Keys 163

Emulating Tables 165

Aggregates 166

Atomic Aggregates 169

Enumerable Keys 170

Indexes 171

Summary 173

Case Study: Key-Value Databases for Mobile Application

Configuration 174

Review Questions 177

References 178

PART III: DOCUMENT DATABASES 179
Chapter 6 Introduction to Document Databases 181

What Is a Document? 182

Documents Are Not So Simple After All 182

Documents and Key-Value Pairs 187

Managing Multiple Documents in Collections 188

Getting Started with Collections 188

Tips on Designing Collections 191

Avoid Explicit Schema Definitions 199

Basic Operations on Document Databases 201

Inserting Documents into a Collection 202

xiv Contents

Deleting Documents from a Collection 204

Updating Documents in a Collection 206

Retrieving Documents from a Collection 208

Summary 210

Review Questions 210

References 211
Chapter 7 Document Database Terminology 213

Document and Collection Terms 214

Document 215

Documents: Ordered Sets of Key-Value Pairs 215

Key and Value Data Types 216

Collection 217

Embedded Document 218

Schemaless 220

Schemaless Means More Flexibility 221

Schemaless Means More Responsibility 222

Polymorphic Schema 223

Types of Partitions 224

Vertical Partitioning 225

Horizontal Partitioning or Sharding 227

Separating Data with Shard Keys 229

Distributing Data with a Partitioning Algorithm 230

Data Modeling and Query Processing 232

Normalization 233

Denormalization 235

Query Processor 235

Summary 237

Review Questions 237

References 238
Chapter 8 Designing for Document Databases 239

Normalization, Denormalization, and the Search for Proper

Balance 241

One-to-Many Relations 242

Many-to-Many Relations 243

 Contents xv

The Need for Joins 243

Executing Joins: The Heavy Lifting of Relational

Databases 245

Executing Joins Example 247

What Would a Document Database Modeler Do? 248

The Joy of Denormalization 249

Avoid Overusing Denormalization 251

Just Say No to Joins, Sometimes 253

Planning for Mutable Documents 255

Avoid Moving Oversized Documents 258

The Goldilocks Zone of Indexes 258

Read-Heavy Applications 259

Write-Heavy Applications 260

Modeling Common Relations 261

One-to-Many Relations in Document Databases 262

Many-to-Many Relations in Document Databases 263

Modeling Hierarchies in Document Databases 265

Parent or Child References 265

Listing All Ancestors 266

Summary 267

Case Study: Customer Manifests 269

Embed or Not Embed? 271

Choosing Indexes 271

Separate Collections by Type? 272

Review Questions 273

References 273

PART IV: COLUMN FAMILY DATABASES 275
Chapter 9 Introduction to Column Family Databases 277

In the Beginning, There Was Google BigTable 279

Utilizing Dynamic Control over Columns 280

Indexing by Row, Column Name, and Time Stamp 281

Controlling Location of Data 282

xvi Contents

Reading and Writing Atomic Rows 283

Maintaining Rows in Sorted Order 284

Differences and Similarities to Key-Value and Document

Databases 286

Column Family Database Features 286

Column Family Database Similarities to and Differences from

Document Databases 287

Column Family Database Versus Relational Databases 289

Avoiding Multirow Transactions 290

Avoiding Subqueries 291

Architectures Used in Column Family Databases 293

HBase Architecture: Variety of Nodes 293

Cassandra Architecture: Peer-to-Peer 295

Getting the Word Around: Gossip Protocol 296

Thermodynamics and Distributed Database: Why We Need

Anti-Entropy 299

Hold This for Me: Hinted Handoff 300

When to Use Column Family Databases 303

Summary 304

Review Questions 304

References 305
Chapter 10 Column Family Database Terminology 307

Basic Components of Column Family Databases 308

Keyspace 309

Row Key 309

Column 310

Column Families 312

Structures and Processes: Implementing Column Family

Databases 313

Internal Structures and Configuration Parameters of Column

Family Databases 313

Old Friends: Clusters and Partitions 314

Cluster 314

Partition 316

 Contents xvii

Taking a Look Under the Hood: More Column Family Database

Components 317

Commit Log 317

Bloom Filter 319

Consistency Level 321

Processes and Protocols 322

Replication 322

Anti-Entropy 323

Gossip Protocol 324

Hinted Handoff 325

Summary 326

Review Questions 327

References 327
Chapter 11 Designing for Column Family Databases 329

Guidelines for Designing Tables 332

Denormalize Instead of Join 333

Make Use of Valueless Columns 334

Use Both Column Names and Column Values to Store

Data 334

Model an Entity with a Single Row 335

Avoid Hotspotting in Row Keys 337

Keep an Appropriate Number of Column Value Versions 338

Avoid Complex Data Structures in Column Values 339

Guidelines for Indexing 340

When to Use Secondary Indexes Managed by the Column Family

Database System 341

When to Create and Manage Secondary Indexes Using

Tables 345

Tools for Working with Big Data 348

Extracting, Transforming, and Loading Big Data 350

Analyzing Big Data 351

Describing and Predicting with Statistics 351

Finding Patterns with Machine Learning 353

Tools for Analyzing Big Data 354

xviii Contents

Tools for Monitoring Big Data 355

Summary 356

Case Study: Customer Data Analysis 357

Understanding User Needs 357

Review Questions 359

References 360

PART V: GRAPH DATABASES 361
Chapter 12 Introduction to Graph Databases 363

What Is a Graph? 363

Graphs and Network Modeling 365

Modeling Geographic Locations 365

Modeling Infectious Diseases 366

Modeling Abstract and Concrete Entities 369

Modeling Social Media 370

Advantages of Graph Databases 372

Query Faster by Avoiding Joins 372

Simplified Modeling 375

Multiple Relations Between Entities 375

Summary 376

Review Questions 376

References 377
Chapter 13 Graph Database Terminology 379

Elements of Graphs 380

Vertex 380

Edge 381

Path 383

Loop 384

Operations on Graphs 385

Union of Graphs 385

Intersection of Graphs 386

Graph Traversal 387

 Contents xix

Properties of Graphs and Nodes 388

Isomorphism 388

Order and Size 389

Degree 390

Closeness 390

Betweenness 391

Types of Graphs 392

Undirected and Directed Graphs 392

Flow Network 393

Bipartite Graph 394

Multigraph 395

Weighted Graph 395

Summary 396

Review Questions 397

References 397
Chapter 14 Designing for Graph Databases 399

Getting Started with Graph Design 400

Designing a Social Network Graph Database 401

Queries Drive Design (Again) 405

Querying a Graph 408

Cypher: Declarative Querying 408

Gremlin: Query by Graph Traversal 410

Basic Graph Traversal 410

Traversing a Graph with Depth-First and Breadth-First

Searches 412

Tips and Traps of Graph Database Design 415

Use Indexes to Improve Retrieval Time 415

Use Appropriate Types of Edges 416

Watch for Cycles When Traversing Graphs 417

Consider the Scalability of Your Graph Database 418

Summary 420

Case Study: Optimizing Transportation Routes 420

Understanding User Needs 420

Designing a Graph Analysis Solution 421

xx Contents

Review Questions 423

References 423

PART VI: CHOOSING A DATABASE FOR YOUR APPLICATION 425
Chapter 15 Guidelines for Selecting a Database 427

Choosing a NoSQL Database 428

Criteria for Selecting Key-Value Databases 429

Use Cases and Criteria for Selecting Document Databases 430

Use Cases and Criteria for Selecting Column Family

Databases 431

Use Cases and Criteria for Selecting Graph Databases 433

Using NoSQL and Relational Databases Together 434

Summary 436

Review Questions 436

References 437

PART VII: APPENDICES 441
Appendix A: Answers to Chapter Review Questions 443
Appendix B: List of NoSQL Databases 477
Glossary 481
Index 491

Preface

“Whatever there be of progress in life comes not through
adaptation but through daring.”

—HENRY MILLER

It is difficult to avoid discussions about data. Individuals are con-

cerned about keeping their personal data private. Companies struggle

to keep data out of the hands of cybercriminals. Governments and

businesses have an insatiable appetite for data. IT analysts trip over

themselves coming up with new terms to describe data: Big Data,

streaming data, high-velocity data, and unstructured data. There is no

shortage of terms for ways to store data: databases, data stores, data

warehouses, and data lakes. Someone has gone so far as to coin the

phrase data swamp.

While others engage in sometimes heated discussions about data,

there are those who need to collect, process, analyze, and manage

data. This book is for them.

NoSQL databases emerged from unmet needs. Data management tools

that worked well for decades could not keep up with demands of Inter-

net applications. Hundreds and thousands of business professionals

using corporate databases were no longer the most challenging use

case. Companies such as Google, Amazon, Facebook, and Yahoo! had

to meet the needs of users that measured in the millions.

The theoretically well-grounded relational data model that had served

us so well needed help. Specialized applications, like Web crawling

and online shopping cart management, motivated the enhancement

and creation of nonrelational databases, including key-value, docu-

ment, column family, and graph databases. Relational databases are

still needed and face no risk of being replaced by NoSQL databases.

xxii Preface

Instead, NoSQL databases offer additional options with different per-

formance and functional characteristics.

This book is intended as a guide to introduce NoSQL databases, to

discuss when they work well and when they do not, and, perhaps most

important, to describe how to use them effectively to meet your data

management needs.

You can find PowerPoints, chapter quizzes, and an accompanying

instructor’s guide in Pearson’s Instructor Resource Center (IRC) via the

website pearsonhighered.com.

Acknowledgments

This book is the product of a collaboration, not a single author as the

cover may suggest. I would like to thank my editor, Joan Murray, for

conceiving of this book and inviting me into the ranks of the well-

respected authors and publishing professionals who have created the

For Mere Mortals series.

Tonya Simpson patiently and professionally took a rough draft of

NoSQL for Mere Mortals and turned it into a polished, finished product.

Thanks to Sondra Scott, Cindy Teeters, and Mark Renfrow of Pearson

for their help in seeing this book to completion. Thank you to Karen

Annett for copyediting this book; I know I gave you plenty to do.

Thanks to Theodor Richardson for his thoughtful and detail-oriented

technical edit.

My family was a steadfast support through the entire book writing

process.

My father-in-law, Bill Aiken, is my number-one fan and my constant

source of encouragement.

I am thankful for the encouragement offered by my children Nicole,

Charles, and Kevin and their partners Katie and Sara.

I would like to especially thank my sons, Nicholas and James. Nich-

olas read chapters and completed review questions as if this were a

textbook in a course. He identified weak spots and was a resource for

improving the explanations throughout the text. James, a professional

technology writer himself, helped write the section on graph data-

bases. He did not hesitate to make time in his schedule for yet another

unexpected request for help from his father, and as a result, the qual-

ity of those chapters improved.

xxiv Acknowledgments

Neither this book nor the other professional and personal accomplish-

ments I have had over the past three decades could have occurred

without the ever-present love and support of my partner, Katherine.

Others cannot know, and probably do not even suspect, that much of

what I appear to have done myself is really what we have accomplished

together. This book is just one of the many products of our journey.

Dan Sullivan

Portland, Oregon

2015

Introduction

“Just when I think I have learned the way to live, life changes.”
—HUGH PRATHER

Databases are like television. There was a time in the history of both

when you had few options to choose from and all the choices were dis-

appointingly similar. Times have changed. The database management

system is no longer synonymous with relational databases, and televi-

sion is no longer limited to a handful of networks broadcasting indis-

tinguishable programs.

Names like PostgreSQL, MySQL, Oracle, Microsoft SQL Server, and

IBM DB2 are well known in the IT community, even among profes-

sionals outside the data management arena. Relational databases

have been the choice of data management professionals for decades.

They meet the needs of businesses tracking packages and account

balances as well as scientists studying bacteria and human diseases.

They keep data logically organized and easily retrieved. One of their

most important characteristics is their ability to give multiple users a

consistent view of data no matter how many changes are under way

within the database.

Many of us in the database community thought we understood how to

live with databases. Then life changed. Actually, the Internet changed.

The Internet emerged from a military-sponsored network called

ARPANET to become a platform for academic collaboration and even-

tually for commercial and personal use. The volume and types of data

expanded. In addition to keeping our checking account balances, we

want our computers to find the latest news, help with homework, and

summarize reviews of new films. Now, many of us depend on the Inter-

net to keep in touch with family, network with colleagues, and pursue

professional education and development.

xxvi Introduction

It is no surprise that such radical changes in data management

requirements have led to radically new ways to manage data. The

latest generation of data management tools is collectively known as

NoSQL databases. The name reflects what these systems are not

instead of what they are. We can attribute this to the well-earned dom-

inance of relational databases, which use a language called SQL.

NoSQL databases fall into four broad categories: key-value, document,

column family, and graph databases. (Search-oriented systems, such

as Solr and Elasticsearch are sometimes included in the extended

family of NoSQL databases. They are outside the scope of this book.)

Key-value databases employ a simple model that enables you to store

and look up a datum (also known as the value) using an identifier

(also known as the key). BerkleyDB, released in the mid-1990s, was

an early key-value database used in applications for which relational

databases were not a good fit.

Document databases expand on the ideas of key-value databases to

organize groups of key values into a logical structure known as a

document. Document databases are high-performance, flexible data

management systems that are increasingly used in a broad range of

data management tasks.

Column family databases share superficial similarities to relational

databases. The name of the first implementation of a column fam-

ily database, Google BigTable, hints at the connection to relational

databases and their core data structure, the table. Column family

databases are used for some of the largest and most demanding,

data-intensive applications.

Graph databases are well suited to modeling networks—that is,

things connected to other things. The range of use cases spans com-

puters communicating with other computers to people interacting

with each other.

 Introduction xxvii

This is a dynamic time in database system research and development.

We have well-established and widely used relational databases that are

good fits for many data management problems. We have long-estab-

lished alternatives, such as key-value databases, as well as more recent

designs, including document, column family, and graph databases.

One of the disadvantages of this state of affairs is that decision mak-

ing is more challenging. This book is designed to lessen that challenge.

After reading this book, you should have an understanding of NoSQL

options and when to use them.

Keep in mind that NoSQL databases are changing rapidly. By the

time you read this, your favorite NoSQL database might have fea-

tures not mentioned here. Watch for increasing support for transac-

tions. How database management systems handle transactions is an

important distinguishing feature of these systems. (If you are unfa-

miliar with transactions, don’t worry. You will soon know about them

if you keep reading.)

Who Should Read This Book?

This book is designed for anyone interested in learning how to use

NoSQL databases. Novice database developers, seasoned relational

data modelers, and experienced NoSQL developers will find something

of value in this book.

Novice developers will learn basic principles and design criteria of data

management in the opening chapters of the book. You’ll also get a bit

of data management history because, as we all know, history has a

habit of repeating itself.

There are comparisons to relational databases throughout the book.

If you are well versed in relational database design, these compar-

isons might help you quickly grasp and assess the value of NoSQL

database features.

xxviii Introduction

For those who have worked with some NoSQL databases, this book may

help you get up to speed with other types of NoSQL databases. Key-value

and document databases are widely used, but if you haven’t encoun-

tered column family or graph databases, then this book can help.

If you are comfortable working with a variety of NoSQL databases but

want to know more about the internals of these distributed systems,

this book is a starting place. You’ll become familiar with implementa-

tion features such as quorums, Bloom filters, and anti-entropy. The ref-

erences will point you to resources to help you delve deeper if you’d like.

This book does not try to duplicate documentation available with

NoSQL databases. There is no better place to learn how to insert data

into a database than from the documentation. On the other hand,

documentation rarely has the level of explanation, discussion of pros

and cons, and advice about best practices provided in a book such

as NoSQL for Mere Mortals. Read this book as a complement to, not a

replacement for, database documentation.

The Purpose of This Book

The purpose of this book is to help someone with an interest in data to

use NoSQL databases to help solve problems. The book is built on the

assumption that the reader is not a seasoned database professional.

If you are comfortable working with Excel, then you are ready for the

topics covered in this book.

With this book, you’ll not only learn about NoSQL databases, but also

how to apply design principles and best practices to solve your data

management requirements. This is a book that will take you into the

internals of NoSQL database management systems to explain how dis-

tributed databases work and what to do (and not do) to build scalable,

reliable applications.

The hallmark of this book is pragmatism. Everything in this book is

designed to help you use NoSQL databases to solve problems. There is

 Introduction xxix

a bit of computer science theory scattered through the pages but only

to provide more explanation about certain key topics. If you are well

versed in theory, feel free to skip over it.

How to Read This Book

For those who are new to database systems, start with Chapters 1 and

2. These will provide sufficient background to read the other chapters.

If you are familiar with relational databases and their predecessors,

you can skip Chapter 1. If you are already experienced with NoSQL,

you could skip Chapter 2; however, it does discuss all four major types

of NoSQL databases, so you might want to at least skim the sections

on types you are less familiar with.

Everyone should read Part II. It is referenced throughout the other

parts of the book. Parts III, IV, and V could be read in any order, but

there are some references to content in earlier chapters. To achieve

the best understanding of each type of NoSQL database, read all three

chapters in Parts II, III, IV, and V.

Chapter 15 assumes familiarity with the content in the other chap-

ters, but you might be able to skip parts on NoSQL databases you are

sufficiently familiar with. If your goal is to understand how to choose

between NoSQL options, be sure to read Chapter 15.

How This Book Is Organized

Here’s an overview of what you’ll find in each part and each chapter.

Part I: Introduction

NoSQL databases did not appear out of nowhere. This part provides

a background on relational databases and earlier data management

systems.

xxx Introduction

Chapter 1, “Different Databases for Different Requirements,” intro-

duces relational databases and their precursor data management

systems along with a discussion about today’s need for the alternative

approaches provided by NoSQL databases.

Chapter 2, “Variety of NoSQL Databases,” explores key functionality

in databases, challenges to implementing distributed databases, and

the trade-offs you’ll find in different types of databases. The chapter

includes an introduction to a series of case studies describing realistic

applications of various NoSQL databases.

Part II: Key-Value Databases

In this part, you learn how to use key-value databases and how to

avoid potential problems with them.

Chapter 3, “Introduction to Key-Value Databases,” provides an over-

view of the simplest of the NoSQL database types.

Chapter 4, “Key-Value Database Terminology,” introduces the vocab-

ulary you need to understand the structure and function of key-value

databases.

Chapter 5, “Designing for Key-Value Databases,” covers principles of

designing key-value databases, the limitations of key-value databases,

and design patterns used in key-value databases. The chapter con-

cludes with a case study describing a realistic use case of key-value

databases.

Part III: Document Databases

This part delves into the widely used document database and pro-

vides guidance on how to effectively implement document database

applications.

 Introduction xxxi

Chapter 6, “Introduction to Document Databases,” describes the

basic characteristics of document databases, introduces the concept

of schemaless databases, and discusses basic operations on docu-

ment databases.

Chapter 7, “Document Database Terminology,” acquaints you with the

vocabulary of document databases.

Chapter 8, “Designing for Document Databases,” delves into the

benefits of normalization and denormalization, planning for mutable

documents, tips on indexing, as well as common design patterns. The

chapter concludes with a case study using document databases for a

business application.

Part IV: Column Family Databases

This part covers Big Data applications and the need for column family

databases.

Chapter 9, “Introduction to Column Family Databases,” describes the

Google BigTable design, the difference between key-value, document,

and column family databases as well as architectures used in column

family databases.

Chapter 10, “Column Family Database Terminology,” introduces the

vocabulary of column family databases. If you’ve always wondered

“what is anti-entropy?” this chapter is for you.

Chapter 11, “Designing for Column Family Databases,” offers guide-

lines for designing tables, indexing, partitioning, and working with

Big Data.

Part V: Graph Databases

This part covers graph databases and use cases where they are partic-

ularly appropriate.

xxxii Introduction

Chapter 12, “Introduction to Graph Databases,” discusses graph and

network modeling as well as the benefits of graph databases.

Chapter 13, “Graph Database Terminology,” introduces the vocabulary

of graph theory, the branch of math underlying graph databases.

Chapter 14, “Designing for Graph Databases,” covers tips for graph

database design, traps to watch for, and methods for querying a

graph database. This chapter concludes with a case study example

of graph database applied to a business problem.

Part VI: Choosing a Database for Your Application

This part deals with applying what you have learned in the rest of the

book.

Chapter 15, “Guidelines for Selecting a Database,” builds on the previ-

ous chapters to outline factors that you should consider when selecting

a database for your application.

Part VII: Appendices

Appendix A, “Answers to Chapter Review Questions,” contains the

review questions at the end of each chapter along with answers.

Appendix B, “List of NoSQL Databases,” provides a nonexhaustive list

of NoSQL databases, many of which are open source or otherwise free

to use.

The Glossary contains definitions of NoSQL terminology used through-

out the book.

 239

8
Designing for Document

Databases

“Making good decisions is a crucial skill at every level.”
—PETER DRUCKER

AUTHOR AND MANAGEMENT CONSULTANT

Topics Covered In This Chapter

Normalization, Denormalization, and the Search for Proper

Balance

Planning for Mutable Documents

The Goldilocks Zone of Indexes

Modeling Common Relations

Case Study: Customer Manifests

Designers have many options when it comes to designing document

databases. The flexible structure of JSON and XML documents is a

key factor in this—flexibility. If a designer wants to embed lists within

lists within a document, she can. If another designer wants to cre-

ate separate collections to separate types of data, then he can. This

freedom should not be construed to mean all data models are equally

good—they are not.

The goal of this chapter is to help you understand ways of assessing

document database models and choosing the best techniques for

your needs.

Relational database designers can reference rules of normalization

to help them assess data models. A typical relational data model is

240 Chapter 8 Designing for Document Databases

designed to avoid data anomalies when inserts, updates, or deletes are

performed. For example, if a database maintained multiple copies of

a customer’s current address, it is possible that one or more of those

addresses are updated but others are not. In that case, which of the

current databases is actually the current one?

In another case, if you do not store customer information separately

from the customer’s orders, then all records of the customer could be

deleted if all her orders are deleted. The rules for avoiding these anom-

alies are logical and easy to learn from example.

❖ Note Document database modelers depend more on heuristics, or

rules of thumb, when designing databases. The rules are not formal,

logical rules like normalization rules. You cannot, for example, tell

by looking at a description of a document database model whether

or not it will perform efficiently. You must consider how users will

query the database, how much inserting will be done, and how often

and in what ways documents will be updated.

In this chapter, you learn about normalization and denormaliza-

tion and how it applies to document database modeling. You also

learn about the impact of updating documents, especially when the

size of documents changes. Indexes can significantly improve query

response times, but this must be balanced against the extra time that

is needed to update indexes when documents are inserted or updated.

Several design patterns have emerged in the practice of document

database design. These are introduced and discussed toward the end

of the chapter.

This chapter concludes with a case study covering the use of a doc-

ument database for tracking the contents of shipments made by the

fictitious transportation company introduced in earlier chapters.

 Normalization, Denormalization, and the Search for Proper Balance 241

Normalization, Denormalization, and
the Search for Proper Balance

Unless you have worked with relational databases, you probably would

not guess that normalization has to do with eliminating redundancy.

Redundant data is considered a bad, or at least undesirable, thing in

the theory of relational database design. Redundant data is the root of

anomalies, such as two current addresses when only one is allowed.

In theory, a data modeler will want to eliminate redundancy to

minimize the chance of introducing anomalies. As Albert Einstein

observed, “In theory, theory and practice are the same. In practice,

they are not.” There are times where performance in relational data-

bases is poor because of the normalized model. Consider the data

model shown in Figure 8.1.

Customer
Addresses

Orders

Order
Items

Customers
Customer

Credit
History

Promotions

Products
Daily

Inventory
Levels

Figure 8.1 Normalized databases have separate tables for entities. Data about
entities is isolated and redundant data is avoided.

Figure 8.1 depicts a simple normalized model of customers, orders, and

products. Even this simple model requires eight tables to capture a

basic set of data about the entities. These include the following:

242 Chapter 8 Designing for Document Databases

• Customers table with fields such as name, customer ID, and so on

• Loyalty Program Members, with fields such as date joined,

amount spent since joining, and customer ID

• Customer Addresses, with fields such as street, city, state, start

date, end date, and customer ID

• Customer Credit Histories report with fields such as credit cate-

gory, start date, end date, and customer ID

• Orders, with fields such as order ID, customer ID, ship date, and

so on

• Order Items, with fields such as order ID, order item ID, product

ID, quantity, cost, and so on

• Products, with fields such as product ID, product name, product

description, and so on

• Daily Inventory Levels, with fields such as product ID, date,

quantity available, and so on

• Promotions, with fields such as promotion ID, promotion descrip-

tion, start date, and so on

• Promotion to Customers, with fields such as promotion ID and

customer ID

Each box in Figure 8.1 represents an entity in the data model. The

lines between entities indicate the kind of relationship between the

entities.

One-to-Many Relations

When a single line ends at an entity, then one of those rows partici-

pates in a single relation. When there are three branching lines ending

at an entity, then there are one or more rows in that relationship. For

example, the relation between Customer and Orders indicates that a

 Normalization, Denormalization, and the Search for Proper Balance 243

customer can have one or more orders, but there is only one customer

associated with each order.

This kind of relation is called a one-to-many relationship.

Many-to-Many Relations

Now consider the relation between Customers and Promotions. There

are branching lines at both ends of the relationship. This indicates

that customers can have many promotions associated with them. It

also means that promotions can have many customers related to them.

For example, a customer might receive promotions that are targeted to

all customers in their geographic area as well as promotions targeted

to the types of products the customer buys most frequently.

Similarly, a promotion will likely target many customers. The sales

and marketing team might create promotions designed to improve the

sale of headphones by targeting all customers who bought new phones

or tablets in the past three months. The team might have a special

offer on Bluetooth speakers for anyone who bought a laptop or desktop

computer in the last year. Again, there will be many customers in this

category (at least the sales team hopes so), so there will be many cus-

tomers associated with this promotion.

These types of relations are known as many-to-many relationships.

The Need for Joins

Developers of applications using relational databases often have to

work with data from multiple tables. Consider the Order Items and

Products entities shown in Figure 8.2.

244 Chapter 8 Designing for Document Databases

Order_Items Products

Order_Item_ID
Order_ID
Quantity
Cost_Per_Unit
Product_ID

Product_ID
Product_Description
Product_Name
Product_Category
List_Price

Figure 8.2 Products and Order Items are in a one-to-many relationship. To
retrieve Product data about an Order item, they need to share an attribute that
serves as a common reference. In this case, Product_ID is the shared attribute.

If you were designing a report that lists an order with all the items on

the order, you would probably need to include attributes such as the

name of the product, the cost per unit, and the quantity. The name of

the product is in the Product table, and the other two attributes are in

the Order Items table (see Figure 8.3).

❖ Note If you are familiar with the difference in logical and phys-

ical data models, you will notice a mix of terminology. Figures 8.1

and 8.2 depict logical models, and parts of these models are referred

to as entities and attributes . If you were to write a report using the

database, you would work with an implementation of the physical

model.

For physical models, the terms tables and columns are used to refer

to the same structures that are called entities and attributes in the

logical data model. There are differences between entities and tables;

for example, tables have locations on disks or in other data struc-

tures called table spaces. Entities do not have such properties.

For the purpose of this chapter, entities should be considered synon-

ymous with tables and attributes should be considered synonymous

with columns.

 Normalization, Denormalization, and the Search for Proper Balance 245

Order Items
Order_Item_ID Order_ID

1298
1299
1300
1301
1302

789
789
790
790
790

1
2
1
1
3

$25.99
$20.00
$12.50
$20.00
$12.99

345
372
591
372
413

Quantity Cost_Per_Unit Product_ID

Products
Product_ID Product_Description

345

372

413

420

591

Easy clean tablet cover that
fits most 10" Android tablets.
Lightweight blue ear buds
with comfort fit.

Pack of 100 individually
wrapped screen wipes.

60"×48" whiteboard with
marker and eraser holder.

Set of 10 dry erase markers.

Easy Clean Cover

Acme Ear Buds
10-Pack Markers

Large Whiteboard
Screen Clean
Wipes

Electronic Accessories

Electronic Accessories
Office Supplies

Office Supplies

Office Supplies

25.99

20
15

56.99

12.99

Product_Name Product_Category List_Price

Figure 8.3 To be joined, tables must share a common value known as a
foreign key.

In relational databases, modelers often start with designs like the one

you saw earlier in Figure 8.1. Normalized models such as this minimize

redundant data and avoid the potential for data anomalies. Document

database designers, however, often try to store related data together in

the same document. This would be equivalent to storing related data in

one table of a relational database. You might wonder why data modelers

choose different approaches to their design. It has to do with the trade-

offs between performance and potential data anomalies.

To understand why normalizing data models can adversely affect per-

formance, let’s look at an example with multiple joins.

Executing Joins: The Heavy Lifting of Relational Databases

Imagine you are an analyst and you have decided to develop a promo-

tion for customers who have bought electronic accessories in the past

12 months. The first thing you want to do is understand who those

customers are, where they live, and how often they buy from your busi-

ness. You can do this by querying the Customer table.

246 Chapter 8 Designing for Document Databases

You do not want all customers, though—just those who have bought

electronic accessories. That information is not stored in the Customer

table, so you look to the Orders table. The Orders table has some infor-

mation you need, such as the date of purchase. This enables you to

filter for only orders made in the past 12 months.

The Orders table, however, does not have information on electronic

accessories, so you look to the Order Items table. This does not have

the information you are looking for, so you turn to the Products table.

Here, you find the information you need. The Products table has a

column called Product_Category, which indicates if a product is an

electronic accessory or some other product category. You can use this

column to filter for electronic accessory items.

At this point, you have all the data you need. The Customer table has

information about customers, such as their names and customer IDs.

The Orders table has order date information, so you can select only

orders from the past 12 months. It also allows you to join to the Order_

Items table, which can tell you which orders contained products in the

electronic accessories category. The category information is not directly

available in the Order_Items table, but you can join the Order_Items

table to the Products table to get the product category (see Figure 8.4).

Tables

Customers

Orders

Order Items

Product

Columns

Customer_Name
Customer_ID

Customer_ID
Order_ID
Order_Date

Order_ID
Product_ID

Product_ID
Product_Category

Figure 8.4 Analyzing customers who bought a particular type of product
requires three joins between four tables.

 Normalization, Denormalization, and the Search for Proper Balance 247

To get a sense of how much work is involved in joining tables, let’s

consider pseudocode for printing the name of customers who have pur-

chased electronic accessories in the last 12 months:

for cust in get_customers():
 for order in get_customer_orders(cust.customer_id):
 if today() - 365 <= order.order_date:
 for order_item in get_order_items
 (order.order_id):
 if 'electronic accessories' =
 get_product_category(order_item.product_id):
 customer_set = add_item
 (customer_set,cust.name);

for customer_name in customer_set:
 print customer_name;

In this example, the functions get _ customers, get _ customer _

orders, and get _ order _ items return a list of rows. In the case of

get _ customers(), all customers are returned.

Each time get _ customer _ orders is called, it is given a customer _

id. Only orders with that customer ID are returned. Each time get _

order _ items is called, it is given an order _ id. Only order items

with that order _ id are returned.

The dot notation indicates a field in the row returned. For example,

order.order _ date returns the order _ date on a particular order.

Similarly, cust.name returns the name of the customer currently refer-

enced by the cust variable.

Executing Joins Example

Now to really see how much work is involved, let’s walk through an

example. Let’s assume there are 10,000 customers in the database.

The first for loop will execute 10,000 times. Each time it executes, it

will look up all orders for the customer. If each of the 10,000 customers

248 Chapter 8 Designing for Document Databases

has, on average, 10 orders, then the for order loop will execute

100,000 times. Each time it executes, it will check the order date.

Let’s say there are 20,000 orders that have been placed in the last

year. The for order _ item loop will execute 20,000 times. It will per-

form a check and add a customer name to a set of customer names if

at least one of the order items was an electronic accessory.

Looping through rows of tables and looking for matches is one—rather

inefficient—way of performing joins. The performance of this join could

be improved. For example, indexes could be used to more quickly find

all orders placed within the last year. Similarly, indexes could be used

to find the products that are in the electronic accessory category.

Databases implement query optimizers to come up with the best way of

fetching and joining data. In addition to using indexes to narrow down

the number of rows they have to work with, they may use other tech-

niques to match rows. They could, for example, calculate hash values

of foreign keys to quickly determine which rows have matching values.

The query optimizer may also sort rows first and then merge rows from

multiple tables more efficiently than if the rows were not sorted. These

techniques can work well in some cases and not in others. Database

researchers and vendors have made advances in query optimization

techniques, but executing joins on large data sets can still be time

consuming and resource intensive.

What Would a Document Database Modeler Do?

Document data modelers have a different approach to data modeling

than most relational database modelers. Document database modelers

and application developers are probably using a document database for

its scalability, its flexibility, or both. For those using document data-

bases, avoiding data anomalies is still important, but they are willing

to assume more responsibility to prevent them in return for scalability

and flexibility.

 Normalization, Denormalization, and the Search for Proper Balance 249

For example, if there are redundant copies of customer addresses in

the database, an application developer could implement a customer

address update function that updates all copies of an address. She

would always use that function to update an address to avoid intro-

ducing a data anomaly. As you can see, developers will write more code

to avoid anomalies in a document database, but will have less need for

database tuning and query optimization in the future.

So how do document data modelers and application developers get

better performance? They minimize the need for joins. This process is

known as denormalization. The basic idea is that data models should

store data that is used together in a single data structure, such as a

table in a relational database or a document in a document database.

The Joy of Denormalization

To see the benefits of denormalization, let’s start with a simple exam-

ple: order items and products. Recall that the Order _ Items entity had

the following attributes:

• order _ item _ ID

• order _ id

• quantity

• cost _ per _ unit

• product _ id

The Products entity has the following attributes:

• product _ ID

• product _ description

• product _ name

• product _ category

• list _ price

250 Chapter 8 Designing for Document Databases

An example of an order items document is

{
order_item_ID : 834838,
 order_ID: 8827,
 quantity: 3,
 cost_per_unit: 8.50,
 product_ID: 3648
}

An example of a product document is

{
 product_ID: 3648,
 product_description: "1 package laser printer paper.
 100% recycled.",
 product_name : "Eco-friendly Printer Paper",
 product_category : "office supplies",
 list_price : 9.00
}

If you implemented two collections and maintained these separate

documents, then you would have to query the order items collection

for the order item you were interested in and then query the products

document for information about the product with product _ ID 3648.

You would perform two lookups to get the information you need about

one order item.

By denormalizing the design, you could create a collection of docu-

ments that would require only one lookup operation. A denormalized

version of the order item collection would have, for example:

 {
order_item_ID : 834838,
 order_ID: 8827,
 quantity: 3,
 cost_per_unit: 8.50,
 product :
 {

 Normalization, Denormalization, and the Search for Proper Balance 251

 product_description: "1 package laser printer
 paper. 100% recycled.",
 product_name : "Eco-friendly Printer Paper",
 product_category : "office supplies",
 list_price : 9.00
 }
}

❖ Note Notice that you no longer need to maintain product _ ID

fields. Those were used as database references (or foreign keys in

relational database parlance) in the Order _ Items document.

Avoid Overusing Denormalization

Denormalization, like all good things, can be used in excess. The goal

is to keep data that is frequently used together in the document. This

allows the document database to minimize the number of times it

must read from persistent storage, a relatively slow process even when

using solid state devices (SSDs). At the same time, you do not want to

allow extraneous information to creep into your denormalized collec-

tion (see Figure 8.5).

{ }
{ }
{ }
{ }
{ }
{ }
{ }
{ }

Small
Documents

Large
Documents

Figure 8.5 Large documents can lead to fewer documents retrieved when a
block of data is read from persistent storage. This can increase the total number
of data block reads to retrieve a collection or subset of collections.

252 Chapter 8 Designing for Document Databases

To answer the question “how much denormalization is too much?” you

should consider the queries your application will issue to the docu-

ment database.

Let’s assume you will use two types of queries: one to generate invoices

and packing slips for customers and one to generate management

reports. Also, assume that 95% of the queries will be in the invoice

and packing slip category and 5% of the queries will be for manage-

ment reports.

Invoices and packing slips should include, among other fields, the

following:

• order_ID

• quantity

• cost_per_unit

• product_name

Management reports tend to aggregate information across groups or

categories. For these reports, queries would include product category

information along with aggregate measures, such as total number

sold. A management report showing the top 25 selling products would

likely include a product description.

Based on these query requirements, you might decide it is better to

not store product description, list price, and product category in the

Order _ Items collection. The next version of the Order _ Items docu-

ment would then look like this:

{
 order_item_ID : 834838,
 order_ID: 8827,
 quantity: 3,
 cost_per_unit: 8.50,
 product_name : "Eco-friendly Printer Paper"
}

 Normalization, Denormalization, and the Search for Proper Balance 253

and we would maintain a Products collection with all the relevant

product details; for example:

{
 product_description: "1 package laser printer paper.
 100% recycled.",
 product_name : "Eco-friendly Printer Paper",
 product_category : 'office supplies',
 list_price : 9.00
 }

Product _ name is stored redundantly in both the Order _ Items col-

lection and in the Products collection. This model uses slightly more

storage but allows application developers to retrieve information for the

bulk of their queries in a single lookup operation.

Just Say No to Joins, Sometimes

Never say never when designing NoSQL models. There are best prac-

tices, guidelines, and design patterns that will help you build scalable

and maintainable applications. None of them should be followed dog-

matically, especially in the presence of evidence that breaking those

best practices, guidelines, or design patterns will give your application

better performance, more functionality, or greater maintainability.

If your application requirements are such that storing related informa-

tion in two or more collections is an optimal design choice, then make

that choice. You can implement joins in your application code. A worst-

case scenario is joining two large collections with two for loops, such as

for doc1 in collection1:
 for doc2 in collection2:
 <do something with both documents>

If there are N documents in collection1 and M documents in collec-

tion2, this statement would execute N × M times. The execution time

for such loops can grow quickly. If the first collection has 100,000 doc-

uments and the second has 500,000, then the statement would exe-

cute 50,000,000,000 (5 × 105) times. If you are dealing with collections

254 Chapter 8 Designing for Document Databases

this large, you will want to use indexes, filtering, and, in some cases,

sorting to optimize your join by reducing the number of overall opera-

tions performed (see Figure 8.6).

Collection
1

Collection
2

× =

All-to-All
Comparison

Figure 8.6 Simple join operations that compare all documents in one collection
to all documents in another collection can lead to poor performance on large
collections. Joins such as this can be improved by using indexes, filtering, and,
in some cases, sorting.

Normalization is a useful technique for reducing the chances of intro-

ducing data anomalies. Denormalization is also useful, but for (obvi-

ously) different reasons. Specifically, denormalization is employed to

improve query performance. When using document databases, data

modelers and developers often employ denormalization as readily as

relational data modelers employ normalization.

❖ Tip Remember to use your queries as a guide to help strike the

right balance of normalization and denormalization. Too much of

either can adversely affect performance. Too much normalization

leads to queries requiring joins. Too much denormalization leads to

large documents that will likely lead to unnecessary data reads from

persistent storage and other adverse effects.

There is another less-obvious consideration to keep in mind when

designing documents and collections: the potential for documents to

change size. Documents that are likely to change size are known as

mutable documents.

 Planning for Mutable Documents 255

Planning for Mutable Documents

Things change. Things have been changing since the Big Bang. Things

will most likely continue to change. It helps to keep these facts in mind

when designing databases.

Some documents will change frequently, and others will change infre-

quently. A document that keeps a counter of the number of times a

web page is viewed could change hundreds of times per minute. A

table that stores server event log data may only change when there is

an error in the load process that copies event data from a server to the

document database. When designing a document database, consider

not just how frequently a document will change, but also how the size

of the document may change.

Incrementing a counter or correcting an error in a field will not sig-

nificantly change the size of a document. However, consider the fol-

lowing scenarios:

• Trucks in a company fleet transmit location, fuel consumption,

and other operating metrics every three minutes to a fleet man-

agement database.

• The price of every stock traded on every exchange in the world is

checked every minute. If there is a change since the last check,

the new price information is written to the database.

• A stream of social networking posts is streamed to an applica-

tion, which summarizes the number of posts; overall sentiment

of the post; and the names of any companies, celebrities, public

officials, or organizations. The database is continuously updated

with this information.

Over time, the number of data sets written to the database increases.

How should an application designer structure the documents to handle

such input streams? One option is to create a new document for each

256 Chapter 8 Designing for Document Databases

new set of data. In the case of the trucks transmitting operational

data, this would include a truck ID, time, location data, and so on:

{
 truck_id: 'T87V12',
 time: '08:10:00',
 date : '27-May-2015',
 driver_name: 'Jane Washington',
 fuel_consumption_rate: '14.8 mpg',
 …
}

Each truck would transmit 20 data sets per hour, or assuming a

10-hour operations day, 200 data sets per day. The truck _ id, date,

and driver _ name would be the same for all 200 documents. This looks

like an obvious candidate for embedding a document with the opera-

tional data in a document about the truck used on a particular day. This

could be done with an array holding the operational data documents:

{
 truck_id: 'T87V12',
 date : '27-May-2015',
 driver_name: 'Jane Washington',
 operational_data:
 [
 {time : '00:01',
 fuel_consumption_rate: '14.8 mpg',
 …},
 {time : '00:04',
 fuel_consumption_rate: '12.2 mpg',
 …},
 {time : '00:07',
 fuel_consumption_rate: '15.1 mpg',
 …},
 ...]
}

The document would start with a single operational record in the

array, and at the end of the 10-hour shift, it would have 200 entries in

the array.

 Planning for Mutable Documents 257

From a logical modeling perspective, this is a perfectly fine way to

structure the document, assuming this approach fits your query

requirements. From a physical model perspective, however, there is a
potential performance problem.

When a document is created, the database management system allo-
cates a certain amount of space for the document. This is usually
enough to fit the document as it exists plus some room for growth. If
the document grows larger than the size allocated for it, the document
may be moved to another location. This will require the database man-

agement system to read the existing document and copy it to another

location, and free the previously used storage space (see Figure 8.7).

{
 .
 .
 .
 .
 .
}

Original
Document

Allocated
Space

Sufficient
Space

Insert Large
Field

Additional Space Required

Copy to
New Location

{
 .
 .
 .
 .
 .
 .
 .
 .
}

{

 }

Sufficient
Space

Figure 8.7 When documents grow larger than the amount of space allocated for
them, they may be moved to another location. This puts additional load on the
storage systems and can adversely affect performance.

258 Chapter 8 Designing for Document Databases

Avoid Moving Oversized Documents

One way to avoid this problem of moving oversized documents is to

allocate sufficient space for the document at the time the document

is created. In the case of the truck operations document, you could

create the document with an array of 200 embedded documents with

the time and other fields specified with default values. When the actual

data is transmitted to the database, the corresponding array entry is

updated with the actual values (see Figure 8.8).

{truck_id: ‘T8V12’
 date: ‘27-May-2015’
 operational_data:
 [{time: ‘00 : 00’,
 fuel_consumption_rate: 0.0}
 {time: ‘00 : 00’,
 fuel_consumption_rate: 0.0}
 .
 .
 .
 .
 {time: ‘00 : 00’,
 fuel_consumption_rate: 0.0}
]

200 Embedded
Documents with
Default Values

Figure 8.8 Creating documents with sufficient space for anticipated growth
reduces the need to relocate documents.

Consider the life cycle of a document and when possible plan for antic-

ipated growth. Creating a document with sufficient space for the full

life of the document can help to avoid I/O overhead.

The Goldilocks Zone of Indexes

Astronomers have coined the term Goldilocks Zone to describe the zone

around a star that could sustain a habitable planet. In essence, the

zone that is not too close to the sun (too hot) or too far away (too cold)

is just right. When you design a document database, you also want to

try to identify the right number of indexes. You do not want too few,

which could lead to poor read performance, and you do not want too

many, which could lead to poor write performance.

 The Goldilocks Zone of Indexes 259

Read-Heavy Applications

Some applications have a high percentage of read operations relative to

the number of write operations. Business intelligence and other ana-

lytic applications can fall into this category. Read-heavy applications

should have indexes on virtually all fields used to help filter results. For

example, if it was common for users to query documents from a partic-

ular sales region or with order items in a certain product category, then

the sales region and product category fields should be indexed.

It is sometimes difficult to know which fields will be used to filter

results. This can occur in business intelligence applications. An ana-

lyst may explore data sets and choose a variety of different fields as

filters. Each time he runs a new query, he may learn something new

that leads him to issue another query with a different set of filter fields.

This iterative process can continue as long as the analyst gains insight

from queries.

Read-heavy applications can have a large number of indexes, espe-

cially when the query patterns are unknown. It is not unusual to index

most fields that could be used to filter results in an analytic applica-

tion (see Figure 8.9).

Analyst
Formulates
New Query

Analyst

Analyst Gets
Query Results

1
Analyst
Issues
Query

Analytic
Document

DB

3

2

Figure 8.9 Querying analytic databases is an iterative process. Virtually any
field could potentially be used to filter results. In such cases, indexes may be
created on most fields.

260 Chapter 8 Designing for Document Databases

Write-Heavy Applications

Write-heavy applications are those with relatively high percentages of

write operations relative to read operations. The document database

that receives the truck sensor data described previously would likely

be a write-heavy database. Because indexes are data structures that

must be created and updated, their use will consume CPU, persistent

storage, and memory resources and increase the time needed to insert

or update a document in the database.

Data modelers tend to try to minimize the number of indexes in write-

heavy applications. Essential indexes, such as those created for fields

storing the identifiers of related documents, should be in place. As with

other design choices, deciding on the number of indexes in a write-

heavy application is a matter of balancing competing interests.

Fewer indexes typically correlate with faster updates but potentially

slower reads. If users performing read operations can tolerate some

delay in receiving results, then minimizing indexes should be con-

sidered. If, however, it is important for users to have low-latency que-

ries against a write-heavy database, consider implementing a second

database that aggregates the data according to the time-intensive read

queries. This is the basic model used in business intelligence.

Transaction processing systems are designed for fast writes and tar-

geted reads. Data is copied from that database using an extraction,

transformation, and load (ETL) process and placed in a data mart or

data warehouse. The latter two types of databases are usually heavily

indexed to improve query response time (see Figure 8.10).

 Modeling Common Relations 261

Document
DB Tuned

for
Writes

Write-Heavy
Transaction
Database

Read-Heavy
Analytics
Database

Extraction,
Transformation,

and Load Process

Document
DB Tuned

for
Reads

Figure 8.10 When both write-heavy and read-heavy applications must be sup-
ported, a two-database solution may be the best option.

❖ Tip Identifying the right set of indexes for your application can

take some experimentation. Start with the queries you expect to

support and implement indexes to reduce the time needed to execute

the most important and the most frequently executed. If you find the

need for both read-heavy and write-heavy applications, consider a

two-database solution with one database tuned for each type.

Modeling Common Relations

As you gather requirements and design a document database, you will

likely find the need for one or more of three common relations:

• One-to-many relations

• Many-to-many relations

• Hierarchies

262 Chapter 8 Designing for Document Databases

The first two involve relations between two collections, whereas the

third can entail an arbitrary number of related documents within a

collection. You learned about one-to-one and one-to-many relations

previously in the discussion of normalization. At that point, the focus

was on the need for joins when normalizing data models. Here, the

focus is on how to efficiently implement such relationships in docu-

ment databases. The following sections discuss design patterns for

modeling these three kinds of relations.

One-to-Many Relations in Document Databases

One-to-many relations are the simplest of the three relations. This

relation occurs when an instance of an entity has one or more related

instances of another entity. The following are some examples:

• One order can have many order items.

• One apartment building can have many apartments.

• One organization can have many departments.

• One product can have many parts.

This is an example in which the typical model of document database

differs from that of a relational database. In the case of a one-to-many

relation, both entities are modeled using a document embedded within

another document. For example:

{
 customer_id: 76123,
 name: 'Acme Data Modeling Services',
 person_or_business: 'business',
 address : [
 { street: '276 North Amber St',
 city: 'Vancouver',
 state: 'WA',
 zip: 99076} ,

 Modeling Common Relations 263

 { street: '89 Morton St',
 city: 'Salem',
 state: 'NH',
 zip: 01097}
]
 }

The basic pattern is that the one entity in a one-to-many relation is

the primary document, and the many entities are represented as an

array of embedded documents. The primary document has fields

about the one entity, and the embedded documents have fields about

the many entities.

Many-to-Many Relations in Document Databases

A many-to-many relation occurs when instances of two entities can

both be related to multiple instances of another entity. The following

are some examples:

• Doctors can have many patients and patients can have many

doctors.

• Operating system user groups can have many users and users

can be in many operating system user groups.

• Students can be enrolled in many courses and courses can have

many students enrolled.

• People can join many clubs and clubs can have many members.

Many-to-many relations are modeled using two collections—one for

each type of entity. Each collection maintains a list of identifiers that

reference related entities. For example, a document with course data

would include an array of student IDs, and a student document would

include a list of course IDs, as in the following:

264 Chapter 8 Designing for Document Databases

Courses:

{
 { courseID: 'C1667',
 title: 'Introduction to Anthropology',
 instructor: 'Dr. Margret Austin',
 credits: 3,
 enrolledStudents: ['S1837', 'S3737', 'S9825' …
 'S1847'] },
 { courseID: 'C2873',
 title: 'Algorithms and Data Structures',
 instructor: 'Dr. Susan Johnson',
 credits: 3,
 enrolledStudents: ['S1837','S3737', 'S4321', 'S9825'
 … 'S1847'] },
 { courseID: C3876,
 title: 'Macroeconomics',
 instructor: 'Dr. James Schulen',
 credits: 3,
 enrolledStudents: ['S1837', 'S4321', 'S1470', 'S9825'
 … 'S1847'] },
 ...

Students:

{
 {studentID:'S1837',
 name: 'Brian Nelson',
 gradYear: 2018,
 courses: ['C1667', C2873,'C3876']},
 {studentID: 'S3737',
 name: 'Yolanda Deltor',
 gradYear: 2017,
 courses: ['C1667','C2873']},
 …
}

The pattern minimizes duplicate data by referencing related docu-

ments with identifiers instead of embedded documents.

Care must be taken when updating many-to-many relationships so

that both entities are correctly updated. Also remember that document

 Modeling Common Relations 265

databases will not catch referential integrity errors as a relational data-

base will. Document databases will allow you to insert a student docu-

ment with a courseID that does not correspond to an existing course.

Modeling Hierarchies in Document Databases

Hierarchies describe instances of entities in some kind of parent-child

or part-subpart relation. The product _ category attribute introduced

earlier is an example where a hierarchy could help represent relations

between different product categories (see Figure 8.11).

Product_Categories

Office Furniture Office Supplies Electronics

Desk Chair Cabinets

Writing
Instruments

Pens Pencils

Organizers

Phones

iPhone Android

TabletsElectronic
Accessories

Packing
Supplies

Figure 8.11 Hierarchies describe parent-child or part-subpart relations.

There are a few different ways to model hierarchical relations. Each

works well with particular types of queries.

Parent or Child References

A simple technique is to keep a reference to either the parent or the

children of an entity. Using the data depicted in Figure 8.11, you could

model product categories with references to their parents:

{
 {productCategoryID: 'PC233', name:'Pencils',
 parentID:'PC72'},
 {productCategoryID: 'PC72', name:'Writing Instruments',
 parentID: 'PC37''},

266 Chapter 8 Designing for Document Databases

 {productCategoryID: 'PC37', name:'Office Supplies',
 parentID: 'P01'},
 {productCategoryID: 'P01', name:'Product Categories' }
}

Notice that the root of the hierarchy, 'Product Categories', does not

have a parent and so has no parent field in its document.

This pattern is useful if you frequently have to show a specific instance

and then display the more general type of that category.

A similar pattern works with child references:

{
 {productCategoryID: 'P01', name:'Product Categories',
 childrenIDs: ['P37','P39','P41']},
 {productCategoryID: 'PC37', name:'Office Supplies',
 childrenIDs: ['PC72','PC73','PC74'']},
 {productCategoryID: 'PC72', name:'Writing
 Instruments', childrenIDs: ['PC233','PC234']'},
 {productCategoryID: 'PC233', name:'Pencils'}
}

The bottom nodes of the hierarchy, such as 'Pencils', do not have

children and therefore do not have a childrenIDs field.

This pattern is useful if you routinely need to retrieve the children or

subparts of the instance modeled in the document. For example, if you

had to support a user interface that allowed users to drill down, you

could use this pattern to fetch all the children or subparts of the cur-

rent level of the hierarchy displayed in the interface.

Listing All Ancestors

Instead of just listing the parent in a child document, you could keep

a list of all ancestors. For example, the 'Pencils' category could be

structured in a document as

{productCategoryID: 'PC233', name:'Pencils',
 ancestors:['PC72', 'PC37', 'P01']}

 Summary 267

This pattern is useful when you have to know the full path from any

point in the hierarchy back to the root.

An advantage of this pattern is that you can retrieve the full path to

the root in a single read operation. Using a parent or child reference

requires multiple reads, one for each additional level of the hierarchy.

A disadvantage of this approach is that changes to the hierarchy may

require many write operations. The higher up in the hierarchy the

change is, the more documents will have to be updated. For exam-

ple, if a new level was introduced between 'Product Category' and

'Office Supplies', all documents below the new entry would have to

be updated. If you added a new level to the bottom of the hierarchy—

for example, below 'Pencils' you add 'Mechanical Pencils' and

'Non-mechanical Pencils'—then no existing documents would have

to change.

❖ Note One-to-many, many-to-many, and hierarchies are com-

mon patterns in document databases. The patterns described here

are useful in many situations, but you should always evaluate the

utility of a pattern with reference to the kinds of queries you will

execute and the expected changes that will occur over the lives of

the documents. Patterns should support the way you will query and

maintain documents by making those operations faster or less com-

plicated than other options.

Summary

This chapter concludes the examination of document databases by

considering several key issues you should consider when modeling for

document databases.

268 Chapter 8 Designing for Document Databases

Normalization and denormalization are both useful practices. Normal-

ization helps to reduce the chance of data anomalies while denormal-

ization is introduced to improve performance. Denormalization is a

common practice in document database modeling. One of the advan-

tages of denormalization is that it reduces or eliminates the need for

joins. Joins can be complex and/or resource-intensive operations. It

helps to avoid them when you can, but there will likely be times you

will have to implement joins in your applications. Document data-

bases, as a rule, do not support joins.

In addition to considering the logical aspects of modeling, you should

consider the physical implementation of your design. Mutable doc-

uments, in particular, can adversely affect performance. Mutable

documents that grow in size beyond the storage allocated for them

may have to be moved in persistent storage, such as on disks. This

need for additional writing of data can slow down your applications’

update operations.

Indexes are another important implementation topic. The goal is to

have the right number of indexes for your application. All instances

should help improve query performance. Indexes that would help with

query performance may be avoided if they would adversely impact

write performance in a noticeable way. You will have to balance bene-

fits of faster query response with the cost of slower inserts and updates

when indexes are in place.

Finally, it helps to use design patterns when modeling common rela-

tions such as one-to-many, many-to-many, and hierarchies. Some-

times embedded documents are called for, whereas in other cases,

references to other document identifiers are a better option when mod-

eling these relations.

Part IV, “Column Family Databases,” introduces wide column data-

bases. These are another important type of NoSQL database and are

especially important for managing large data sets with potentially

billions of rows and millions of columns.

 Case Study: Customer Manifests 269

Case Study: Customer Manifests

Chapter 1, “Different Databases for Different Requirements,” intro-

duced TransGlobal Transport and Shipping (TGTS), a fictitious trans-

portation company that coordinates the movement of goods around

the globe for businesses of all sizes. As business has grown, TGTS is

transporting and tracking more complicated and varied shipments.

Analysts have gathered requirements and some basic estimates about

the number of containers that will be shipped. They found a mix of

common fields for all containers and specialized fields for different

types of containers.

All containers will require a core set of fields such as customer name,

origination facility, destination facility, summary of contents, number

of items in container, a hazardous material indicator, an expiration

date for perishable items such as fruit, a destination facility, and a

delivery point of contact and contact information.

In addition, some containers will require specialized information.

Hazardous materials must be accompanied by a material safety data

sheet (MSDS), which includes information for emergency responders

who may have to handle the hazardous materials. Perishable foods

must also have details about food inspections, such as the name of the

person who performed the inspection, the agency responsible for the

inspection, and contact information of the agency.

The analyst found that 70%–80% of the queries would return a sin-

gle manifest record. These are typically searched for by a manifest

identifier or by customer name, date of shipment, and originating

facility. The remaining 20%–30% would be mostly summary reports

by customers showing a subset of common information. Occasionally,

managers will run summary reports by type of shipment (for example,

hazardous materials, perishable foods), but this is rarely needed.

270 Chapter 8 Designing for Document Databases

Executives inform the analysts that the company has plans to sub-

stantially grow the business in the next 12 to 18 months. The analysts

realize that they may have many different types of cargo in the future

with specialized information, just as hazardous materials and perish-

able foods have specialized fields. They also realize they must plan for

future scaling up and the need to support new fields in the database.

They concluded that a document database that supports horizontal

scaling and a flexible schema is required.

The analysts start the document and collection design process by con-

sidering fields that are common to most manifests. They decided on a

collection called Manifests with the following fields:

• Customer name

• Customer contact person’s name

• Customer address

• Customer phone number

• Customer fax

• Customer email

• Origination facility

• Destination facility

• Shipping date

• Expected delivery date

• Number of items in container

They also determine fields they should track for perishable foods and

hazardous materials. They decide that both sets of specialized fields

should be grouped into their own documents. The next question they

have to decide is, should those documents be embedded with manifest

documents or should they be in a separate collection?

 Case Study: Customer Manifests 271

Embed or Not Embed?

The analysts review sample reports that managers have asked for and

realize that the perishable foods fields are routinely reported along

with the common fields in the manifest. They decide to embed the per-

ishable foods within the manifest document.

They review sample reports and find no reference to the MSDS for

hazardous materials. They ask a number of managers and execu-

tives about this apparent oversight. They are eventually directed to

a compliance officer. She explains that the MSDS is required for all

hazardous materials shipments. The company must demonstrate to

regulators that their database includes MSDSs and must make the

information available in the event of an emergency. The compliance

officer and analyst conclude they need to define an additional report

for facility managers who will run the report and print MSDS informa-

tion in the event of an emergency.

Because the MSDS information is infrequently used, they decide to

store it in a separate collection. The Manifest collection will include a

field called msdsID that will reference the corresponding MSDS docu-

ment. This approach has the added benefit that the compliance officer

can easily run a report listing any hazardous material shipments that

do not have an msdsID. This allows her to catch any missing MSDSs

and continue to comply with regulations.

Choosing Indexes

The analysts anticipate a mix of read and write operations with

approximately 60%–65% reads and 35%–40% writes. They would

like to maximize the speed of both reads and writes, so they carefully

weigh the set of indexes to create.

Because most of the reads will be looks for single manifests, they decide

to focus on that report first. The manifest identifier is a logical choice for

index field because it is used to retrieve manifest doccuments.

272 Chapter 8 Designing for Document Databases

Analysts can also look up manifests by customer name, shipment

date, and origination facility. The analysts consider creating three

indexes: one for each field. They realize, however, that they will rarely

need to list all shipments by date or by origination facility, so they

decide against separate indexes for those fields.

Instead, they create a single index on all three fields: customer name,

shipment date, and origination facility. With this index, the database

can determine if a manifest exists for a particular customer, shipping

date, and origination facility by checking the index only; there is no

need to check the actual collection of documents, thus reducing the

number of read operations that have to be performed.

Separate Collections by Type?

The analysts realize that they are working with a small number of

manifest types, but there may be many more in the future. For exam-

ple, the company does not ship frozen goods now, but there has been

discussion about providing that service. The analysts know that if you

frequently filter documents by type, it can be an indicator that they

should use separate collections for each type.

They soon realize they are the exception to that rule because they do

not know all the types they may have. The number of types can grow

quite large, and managing a large number of collections is less prefera-

ble to managing types within a single collection.

By using requirements for reports and keeping in mind some basic

design principles, the analysts are able to quickly create an initial

schema for tracking a complex set of shipment manifests.

 References 273

Review Questions

1. What are the advantages of normalization?

2. What are the advantages of denormalization?

3. Why are joins such costly operations?

4. How do document database modelers avoid costly joins?

5. How can adding data to a document cause more work for the I/O

subsystem in addition to adding the data to a document?

6. How can you, as a document database modeler, help avoid that

extra work mentioned in Question 5?

7. Describe a situation where it would make sense to have many

indexes on your document collections.

8. What would cause you to minimize the number of indexes on your

document collection?

9. Describe how to model a many-to-many relationship.

10. Describe three ways to model hierarchies in a document database.

References

Apache Foundation. Apache CouchDB 1.6 Documentation: http://docs.

couchdb.org/en/1.6.1/.

Brewer, Eric. “CAP Twelve Years Later: How the ‘Rules’ Have Changed.”

Computer vol. 45, no. 2 (Feb 2012): 23–29.

Brewer, Eric A. “Towards Robust Distributed Systems.” PODC. vol. 7.

2000.

Chodorow, Kristina. 50 Tips and Tricks for MongoDB Developers. Sebas-

topol, CA: O’Reilly Media, Inc., 2011.

Chodorow, Kristina. MongoDB: The Definitive Guide. Sebastopol, CA:

O’Reilly Media, Inc., 2013.

http://docs.couchdb.org/en/1.6.1/
http://docs.couchdb.org/en/1.6.1/

274 Chapter 8 Designing for Document Databases

Copeland, Rick. MongoDB Applied Design Patterns. Sebastopol, CA:

O’Reilly Media, Inc., 2013.

Couchbase. Couchbase Documentation: http://docs.couchbase.com/.

Han, Jing, et al. “Survey on NoSQL Database.” Pervasive computing

and applications (ICPCA), 2011 6th International Conference on IEEE,

2011.

MongoDB. MongoDB 2.6 Manual: http://docs.mongodb.org/manual/.

O’Higgins, Niall. MongoDB and Python: Patterns and Processes for the

Popular Document-Oriented Database. Sebastopol, CA: O’Reilly Media,

Inc., 2011.

OrientDB. OrientDB Manual, version 2.0:

http://www.orientechnologies.com/docs/last/.

http://docs.couchbase.com/
http://docs.mongodb.org/manual/
http://www.orientechnologies.com/docs/last/

 491

Index

A

abstract/concrete entities,
modeling, 369

abstract entity types, avoiding,
191-193

abstraction, 120

access, random, 9

ACID (atomicity, consistency,
isolation, and durability), 54,
124, 169-170, 429, 435

addition, 118

addQueryResultsToCache
function, 88

advantages of graph databases,
372-376

Aerospike, 477

aggregation, 166-169

algorithms

compression, 140

Dijkstra, 395

graphs, 407

hash functions, 137-138

partitioning, 230

AllegroGraph, 477

Amazon Web Services, 477

analyzing

big data, 351, 354-355

graphs, 388

predictions, 351-352

ancestor lists, 266

anomalies, 233, 254

anti-entropy, 299-300, 323-324

Apache

Accumulo, 477

Cassandra, 295, 300-302

CouchDB, 477

Giraph, 478

HBase, 478

applications

e-commerce, 5-6, 433

RDBMSs, 26-27

read-heavy, 259

write-heavy, 260-261

applying

column family databases,
303-304

dynamic control over columns, 280

graph databases, 385

intersections, 386

traversal, 387

unions, 385

modelers, 248-254

relational databases with NoSQL,
434-436

492 applying

secondary indexes, 345-347

valueless columns, 334

architecture

column family databases, 293

Cassandra, 295-302

distributed databases, 299-300

gossip protocols, 296-299

HBase, 293-294

key-value databases, 131

clusters, 131-133

replication, 135-136

rings, 133

arcs. See edges

ArrangoDB, 478

arrays, 118

associative, 84-85

key-value databases, 82-84

atomic aggregates, 169-170.
See also aggregation

atomic rows, reading/writing,
283-284

attributes, 120, 244

aggregation, 166-169

keys, 170-171

naming conventions, 145

automatic indexes, 341

availability

BASE, 56-59

CAP theorem, 51-54

of data, 44-48

of databases, 32-33

avoiding

abstract entity types, 191-193

complex data structures, 339-340

explicit schema definitions,
199-201

hotspotting, 337-338

joins, 372-375

moving oversized documents, 258

multirow transactions, 290-291

subqueries, 291-292

write problems, 107-110

B

bags, 215

BASE (basically available, soft state,
eventually consistent), 56-59

benefits of denormalization, 249-250

betweenness, 391

big data tools, 348-356

bigraphs, 394

BigTable (Google), 279-285

bipartite graphs, 394

BLOBs (binary large objects), 123

Bloom filters, 319-320

breadth, traversing graphs, 412

Brewer’s theorem. See CAP theorem

C

caches

key-value databases, 85-88

TTL, 163-164

CAP theorem, 51-54

case studies, key-value databases,
174-177

Cassandra, 295, 300-302, 310, 418,
478

Cassandra’s Query Language.
See CQL

child records, 12

child references, 265

closeness, 390-391

 comparing 493

Cloudant, 478

clusters

column family databases,
314-316

definition of, 131-133

CODASYL (Conference on Data
Systems Languages)
Consortium, 17

Codd, E. F., 19

code

keys, 145-147

sharing, 195-198

validation, 222

collections

document databases

deleting, 204-206

inserting, 202-204

managing in, 188-198

retrieving, 208-209

updating, 206-208

indexes, 217

multiple, 194

terminology, 214-219

collisions, definition of, 138

column family databases, 69-71

anti-entropy, 323-324

applying, 303-304

architecture, 293

Cassandra, 295, 300-302

distributed databases, 299-300

gossip protocols, 296-299

HBase, 293-294

atomic rows, 283-284

clusters, 314-316

comparing to other databases,
286-292

design

big data tools, 348-356

indexing, 340-348

tables, 332-340

dynamic control over columns, 280
Google BigTable, 279-285
gossip protocols, 324-325
hinted handoffs, 325-326
implementing, 313-322
indexing, 281
locations of data, 282-283
partitions, 316
replication, 322
rows, 284-285
selecting, 431-432
terminology, 308

columns, 310-313

keyspaces, 309

row keys, 309-310

columns, 121, 244, 310-312.
See also tables

families, 312-313

names, 281

storage, 334

valueless, 334

values

avoiding complex data structures,
339-340

versions, 338

commands

remove, 204

update, 207

commit logs, 317-318

common relations, modeling, 261

comparing

column family databases,
286-292

494 comparing

graphs, 388

replicas, 323

components of RDBMSs, 20

compression, definition of, 139-140

concrete/abstract entities,
modeling, 369

Conference on Data Systems
Languages. See CODASYL
Consortium

configuration

arrays, 83

collections, 191-193

column family databases

big data tools, 348-356

indexing, 340-348

tables, 332-340

databases, 29

availability, 32-33

costs, 31

early systems, 6, 17-18

flat file systems, 7-11

flexibility, 31-32

hierarchical data model systems,
12-14

network data management
systems, 14-17

scalability, 29-31

document databases, 182

avoiding explicit schema
definitions, 199-201

basic operations, 201

collections, 218

deleting from collections, 204-206

denormalization, 235

embedded documents, 218-219

horizontal partitions, 227-231

HTML, 182-187

inserting into collections, 202-204

key-value pairs, 187

managing in collections, 188-198

normalization, 233-234

partitions, 224

polymorphic schemas, 223

query processors, 235-236

retrieving from collections,
208-209

schemaless, 220-222

terminology, 214-217

updating in collections, 206-208

vertical partitions, 225-227

graph databases, 363-364,
400-401

advantages of, 372-376

intersections, 386

network modeling, 365-371

operations, 385

optimizing, 415-419

queries, 405-415

social networks, 401-404

traversal, 387

unions, 385

key-value databases

limitations, 159-162

partitioning, 144-151

patterns, 162-173

keys, 103

constructing, 103-104

locating values, 105-110

mobile applications, 174-177

parameters, 313

relational databases, 4-5

e-commerce applications, 5-6

history of, 19-29

 databases 495

secondary indexes, 345-347

structured values, 151

optimizing values, 155-159

reducing latency, 152-155

values, 110-113

consistency, 49-51

ACID, 54

BASE, 56-59

CAP theorem, 51-54

of data, 42-48

eventual, 57-59

levels, 321-322

monotonic read, 58

sessions, 58

constraints, 24

constructing keys, 103-104

conventions, naming, 145

costs, 31

Couchbase, 478

CQL (Cassandra’s Query
Language), 311

create function, 90

cycles, traversing graphs, 417

Cypher, 408-415

D

Data Definition Language. See DDL

data dictionaries, 22-23

data management. See management

Data Manipulation Language.
See DML

data models, 92

data types

keys, 216-217

values, 216-217

databases

column families

anti-entropy, 323-324

applying, 303-304

architecture, 293-302

big data tools, 348-356

clusters, 314-316

columns, 310-313

comparing to other databases,
286-292

dynamic control over
columns, 280

Google BigTable, 279-285

gossip protocols, 324-325

hinted handoffs, 325-326

implementing, 313-322

indexing, 281, 340-348

keyspaces, 309

locations of data, 282-283

maintaining rows in sorted order,
284-285

partitions, 316

reading/writing atomic rows,
283-284

replication, 322

row keys, 309-310

selecting, 431-432

tables, 332-340

terminology, 308

design, 4-5, 29

availability, 32-33

costs, 31

e-commerce applications, 5-6

flexibility, 31-32

scalability, 29-31

distributed, 299-300

496 databases

document, 182

applying modelers, 248-254

avoiding explicit schema
definitions, 199-201

balancing denormalization/
normalization, 241

basic operations, 201

collections, 218

deleting from collections, 204-206

denormalization, 235

embedded documents, 218-219

executing joins, 245-248

Goldilocks Zone of indexes,
258-260

hierarchies, 265-266

horizontal partitions, 227-231

HTML, 182-187

inserting into collections, 202-204

joins, 243-245

key-value pairs, 187

managing in collections, 188-198

many-to-many relationships, 243,
263-264

modeling common relations, 261

normalization, 233-234

one-to-many relationships,
242-263

partitions, 224

planning mutable documents,
255-258

polymorphic schemas, 223

query processors, 235-236

retrieving from collections,
208-209

schemaless, 220-222

selecting, 430

terminology, 214-217

updating in collections, 206-208

vertical partitions, 225-227

graph, 363-364

advantages of, 372-376

betweenness, 391

bigraphs, 394

closeness, 390-391

degrees, 390

design, 400-401

directed/undirected, 392-393

edges, 381-382

flow networks, 393

intersections, 386

isomorphism, 388-389

loops, 384

multigraphs, 395

network modeling, 365-371

operations, 385

optimizing, 415-419

order/size, 389

paths, 383

properties, 388

queries, 405-415

selecting, 433

social networks, 401-404

terminology, 380

traversal, 387

types of, 392

unions, 385

vertices, 380-381

weighted graphs, 395-396

key-value

architecture, 131-136

arrays, 82-84

associative arrays, 84-85

 design 497

caches, 85-88

features, 91-95

implementing, 137-140

in-memory, 89-90

keys, 103-110

limitations, 159-162

models, 118-131

on-disk, 89-90

partitioning, 144-151

patterns, 162-173

scalability, 95-102

selecting, 429

values, 110-113

key-values case study, 174-177

management

early systems, 6, 17-18

flat file systems, 7-11

hierarchical data model systems,
12-14

network data management
systems, 14-17

relational

history of, 19-29

using with NoSQL, 434-436

selecting, 428

types of, 59, 477-480

column family databases, 69-71

distributed databases, 41-54

document databases, 66-68

graph databases, 71-75

key-value pair databases, 60-65

DDL (Data Definition Language),
24-25

degrees, 390

delete function, 90

DELETE statements, 27

deleting documents from collections,
204-206

denormalization, 28, 155, 235

benefits of, 249-250

document database design,
241-243

overusing, 251-253

tables, 333

depth, traversing graphs, 412

design. See also configuration

collections, 191-193

column family databases

big data tools, 348-356

indexing, 340-348

tables, 332-340

databases, 29

availability, 32-33

costs, 31

early systems, 6, 17-18

flat file systems, 7-11

flexibility, 31-32

hierarchical data model systems,
12-14

network data management
systems, 14-17

scalability, 29-31

document databases, 182

applying modelers, 248-254

avoiding explicit schema
definitions, 199-201

balancing denormalization/
normalization, 241

basic operations, 201

collections, 218

deleting from collections, 204-206

denormalization, 235

embedded documents, 218-219

498 design

executing joins, 245-248

Goldilocks Zone of indexes,
258-260

hierarchies, 265-266

horizontal partitions, 227-231

HTML, 182-187

inserting into collections, 202-204

joins, 243-245

key-value pairs, 187

managing in collections,
188-198

many-to-many relationships, 243,
263-264

modeling common relations, 261

normalization, 233-234

one-to-many relationships, 242,
262-263

partitions, 224

planning mutable documents,
255-258

polymorphic schemas, 223

query processes, 235-236

retrieving from collections,
208-209

schemaless, 220-222

terminology, 214-217

updating in collections, 206-208

vertical partitions, 225-227

graph databases, 363-364,
400-401

advantages of, 372-376

intersections, 386

network modeling, 365-371

operations, 385

optimizing, 415-419

queries, 405-415

social networks, 401-404

traversal, 387

unions, 385

key-value databases

limitations, 159-162

partitioning, 144-151

patterns, 162-173

mobile applications, 174-177

relational databases, 4-5

e-commerce applications, 5-6

history of, 19-29

secondary indexes, 345-347

structured values, 151

optimizing values, 155-159

reducing latency, 152-155

Design Patterns: Elements of
Reusable Object-Oriented
Software, 162

dictionaries, 22-23

Dijkstra algorithms, 395

Dijkstra, Edsger, 395

directed edges, 382. See also edges

directed graphs, 392-393

diseases, infectious, 366-368

distributed databases, 41, 299-300

availability, 44-48

CAP theorem, 51-54

consistency, 42-48

persistent storage, 41-42

quorums, 49-51

distributing data, 230

division, 119

DML (Data Manipulation Language),
25-26

document databases, 66-68, 182

avoiding explicit schema
definitions, 199-201

 epidemiology 499

basic operations, 201

collections

deleting from, 204-206

inserting into, 202-204

managing, 188-198

retrieving from, 208-209

updating in, 206-208

column family databases,
286-292

design

applying modelers, 248-254

balancing denormalization/
normalization, 241

executing joins, 245-248

Goldilocks Zone of indexes,
258-260

hierarchies, 265-266

joins, 243-245

many-to-many relationships, 243,
263-264

modeling common relations, 261

one-to-many relationships, 242,
262-263

planning mutable documents,
255-258

HTML, 182-187

key-value pairs, 187

selecting, 430

terminology, 214-217

collections, 218

denormalization, 235

embedded documents, 218-219

horizontal partitions, 227-231

normalization, 233-234

partitions, 224

polymorphic schemas, 223

query processors, 235-236

schemaless, 220-222

vertical partitions, 225-227

duplicating data, 155

durability, 49, 51, 54

dynamic control over columns, 280

E

early systems, database
management, 6, 17-18

flat file systems, 7-11

hierarchical data model systems,
12-14

network data management
systems, 14-17

e-commerce, 5-6, 433

edges, 381-382

degrees, 390

querying, 411

selecting, 416

elements of graphs, 380

edges, 381-382

loops, 384

paths, 383

vertices, 380-381

embedded documents, 218-219

entities, 120-121, 244

abstract/concrete, 369

aggregation, 166-169

multiple between relations,
375-376

naming conventions, 145

single rows, 335

enumeration

keys, 170-171

tables, 165-166

epidemiology, 389

500 errors, write problems

errors, write problems, 107-110

ETL (extracting, transforming, and
loading data), 350-351

eventual consistency, types of,
57-59

executing joins, 245-248

explicit schema definitions, avoiding,
199-201

Extensible Markup Language.
See XML

extracting, transforming, and
loading data. See ETL

F

Facebook, 370. See also social media

features

column family databases, 286

key-value databases, 91

keys, 103-110

scalability, 95-102

simplicity, 91-92

speed, 93-95

values, 110-113

files, flat file data management
systems, 7-11

filters, Bloom, 319-320

find method, 208

flat file data management systems,
7-11

flexibility

document databases, 190

schemaless databases, 221

flexibility of databases, 31-32

flow networks, 393

for loops, 253

formatting. See also configuration

code, 145-147

document databases

HTML, 182-187

key-value pairs, 187

secondary indexes, 345-347

strings, 123

values, optimizing, 155-159

FoundationDB, 478

functions

addQueryResultsToCache, 88

create, 90

delete, 90

hash, 106-107, 137-138

indexes. See indexes

G

Gamma, Erich, 162

Ganglia, 355

geographic locations, modeling, 365

Global Positioning System. See GPS

Goldilocks Zone of indexes, 258-260

Google

BigTable, 279-285

Cloud Datastore, 478

gossip protocols, 296-299, 324-325

GPS (Global Positioning System), 435

graph databases, 71-75, 363-364

advantages of, 372-376

design, 400-401

queries, 405-410

social networks, 401-404

network modeling, 365-371

operations, 385

intersections, 386

traversal, 387

unions, 385

 indexes 501

properties, 388

betweenness, 391

closeness, 390-391

degrees, 390

order/size, 389

selecting, 433

terminology, 380

edges, 381-382

loops, 384

paths, 383

vertices, 380-381

types of, 392

bigraphs, 394

directed/undirected, 392-393

flow networks, 393

multigraphs, 395

weighted graphs, 395-396

graphs, traversal, 410-417

Gremlin, 410-418

groups, column family databases, 279

guidelines

column family databases, 431-432

databases, 428

document databases, 430

graph databases, 433

indexing, 340-348

key-value databases, 429

table design, 332-340

H
Hadoop, 285

Hadoop File System. See HDFS

handoffs, hinted, 300-302, 325-326

hashes, 122, 150

functions, 106-107, 137-138

partitions, 230

HBase, 285, 293-294, 478

HDFS (Hadoop File System), 293

Helm, Richard, 162

Hernandez, Michael J., 121

hierarchies

data model systems, 12-14

document databases, 265-266

hinted handoffs, 300-302, 325-326

history

early database management
systems, 6, 17-18

flat file systems, 7-11

hierarchical data model systems,
12-14

network data management
systems, 14-17

of relational databases, 19-29

horizontal partitioning, 227-231

hotspotting, avoiding, 337-338

HTML (Hypertext Markup
Language), document
databases, 182-187

Hypertable, 479

I

identifiers, keys, 104. See also keys

if statements, caches, 88

implementation

column family databases, 313-322

key-value databases, 137

collisions, 138

compression, 139-140

hash functions, 137-138

limitations, 149

indexes, 23, 171-173

collections, 217

502 indexes

column family databases, 281,
340-348

Goldilocks Zone of, 258-260

retrieval time, 415

infectious diseases, modeling,
366-368

Infinispan, 479

in-memory caches, 86. See also
arrays, associative

in-memory key-value databases,
89-90

INSERT statements, 27

inserting documents into collections,
202-204

instances, 121, 145

internal structures, 313

intersections of graphs, 386

isolation, ACID, 54

isomorphism, 388-389

J

Jackson, Ralph, 162

JavaScript Object Notation. See JSON

joins

avoiding, 372-375

executing, 245-248

need for, 243-245

tables, 333

JSON (JavaScript Object Notation),
66, 123, 161

K

key-value databases, 60-65

architecture, 131

clusters, 131-133

replication, 135-136

rings, 133

arrays, 82-84

associative arrays, 84-85

caches, 85-88

case study, 174-177

column family databases, 286-292

design

partitioning, 144-151

patterns, 162-173

features, 91

scalability, 95-102

simplicity, 91-92

speed, 93-95

implementing, 137-140, 149

in-memory, 89-90

keys, 103

constructing, 103-104

locating values, 105-110

limitations, 159-162

models, 118-121

keys, 121-123

namespaces, 124-126

partitions, 126-129

schemaless, 129-131

values, 123-124

on-disk, 89-90

selecting, 429

values, 110-113

key-value pairs, 5

document databases, 187

ordered sets of, 215
keys, 60

constructing, 103-104
data types, 216-217
definition of, 121-123
enumerating, 170-171

indexes, 171-173

 management 503

key-value databases, 103

naming conventions, 145

partitioning, 129, 150-151

rows, 309-310, 337-338

shard, 229

TTL, 163-164

values

locating, 105-110

searching, 160-161

keyspaces, 287, 309

L

languages

Cypher, 408-415

query (SQL), 24

DDL, 24-25

DML, 25-26

standard query, 161-162

latency, reducing, 152-155

laws of thermodynamics, 299-300

layers, abstraction, 120

least recently used. See LRU

LevelDB library, 140, 479

levels, consistency, 321-322

licenses, cost of, 31

limitations

of arrays, 84

of flat file data management
systems, 9-11

of hierarchical data management
systems, 14

of key-value databases, 159-162

of network data management
systems, 17

of relational databases, 27-29

of values, 112-113

LinkedIn, 370. See also social media

linking records, 15

links. See edges

list-based partitioning, 231

lists, 122, 266

locating values, 105-110

location of data, 282-283

locations, modeling, 365

logs, commit, 317-318

loops, 384

for, 253

while, 148

LRU (least recently used), 94

Lucene, 162

M
machine learning, searching

patterns, 353

magnetic tape, 7. See also storage

maintenance

availability of data, 44-48

consistency of data, 42-48

management

applications, 26-27

databases

design, 4-5

document databases in
collections, 188-198

early systems, 6, 17-18

e-commerce applications, 5-6

flat file systems, 7-11

hierarchical data model systems,
12-14

network data management
systems, 14-17

distributed databases, 41

availability, 44-48

504 management

CAP theorem, 51-54

consistency, 42-48

persistent storage, 41-42

quorums, 49-51

memory programs, 22

schemaless databases, 222

secondary indexes, 341-344

storage programs, 20-21

many-to-many relationships, 243,
263-264

mapping queries, 406

MapReduce, 354

MapReduce programs, 355

Marklogic, 479

master-slave replication,
scalability, 95

masterless replication, 98-102

MATCH operation, 409

media, social, 370

memory

caches, 86. See also caches

management programs, 22

TTL, 163-164

methods, find, 208

Microsoft Azure DocumentDB, 479

mobile applications, configuring,
174-177

modelers, applying, 248-254

models

common relations, 261

entities, 335

hierarchies, 265-266

key-value databases, 92, 118-121

keys, 121-123

namespaces, 124-126

partition keys, 129

partitions, 126-127

schemaless, 129-131

values, 123-124

master-slave, 97

networks, 365-371

abstract/concrete entities, 369

geographic locations, 365

infectious diseases, 366-368

social media, 370

simplified, 375

MongoDB, 479

monitoring big data, 355-356

monotonic read consistency, 58

moving oversized documents,
avoiding, 258

multigraphs, 395

multiple collections, 194

multiple relations between entities,
375-376

multiplication, 119

multirow transactions, avoiding,
290-291

mutable documents, planning,
255-258

N

N documents, 253

names, columns, 281, 334

namespaces

definition of, 124-126

naming conventions, 146

naming conventions, keys, 145

Neo4j, 479

networks

data management systems, 14-17

flow, 393

 performance 505

modeling, 365-371

abstract/concrete entities, 369

geographic location, 365

infectious diseases, 366-368

social media, 370, 401-404

nodes, 72, 363, 380

HBase, 293-294

properties, 388-389

normalization, 233-234, 241-243

NoSQL databases. See databases

O

on-disk key-value databases, 89-90

one-to-many relationships, 242,
262-263

operations

graph databases, 385, 388-389

betweenness, 391

closeness, 390-391

degrees, 390

intersections, 386

order/size, 389

properties, 388

traversal, 387

unions, 385

MATCH, 409

OpsCenter, 356

optimizing

graph database design, 415-419

key-value databases, 93-102

keys, 103

constructing, 103-104

locating values, 105-110

queries, 372-375

values, 110-113, 155-159

oracle Berkeley DB, 479

Oracle Real Applications Clusters.
See RACs

ordered lists, arrays, 84.
See also arrays

ordered sets of key-value pairs, 215

organization. See management;
storage

OrientDB, 480

oversized documents, avoiding
moving, 258

overusing denormalization, 251-253

P

parameters, configuring, 313

parent-child relationships, 15

parent references, 265

partitioning

algorithms, 230

CAP theorem, 51-54

column family databases, 314-316

definition of, 126-127

key-value databases, 144-151

keys, 129

ranges, 150

types of, 224-231

paths, 383

patterns

code, 145-147

key-value databases, 162-173

searching, 353

peer-to-peer servers, Cassandra,
295-302

performance

caches. See caches

duplicating data, 155

graph databases, 415-419

506 performance

key-value databases, 93-102

keys, 145-147

queries, avoiding joins, 372-375

persistent data storage, 41-42

planning mutable documents,
255-258

polymorphic schemas, 223

populations, 351

predicting with statistics, 351-352

primary indexes, 341.
See also indexes

primary keys, 104. See also keys

processes, column family databases

anti-entropy, 323-324

gossip protocols, 324-325

hinted handoffs, 325-326

implementing, 313-322

replication, 322

processors, queries, 235-236

programs

caches. See caches

memory management, 22

RDBMSs, 20

storage management, 20-21

properties, graph databases

betweenness, 391

closeness, 390-391

degrees, 390

isomorphism, 388-389

order/size, 389

traversal, 388

protocols

column family databases

anti-entropy, 323-324

replication, 322

gossip, 296-299, 324, 325

Q

queries

caches. See caches

Cypher, 408-415

documents, 67

graph databases, 400, 405-415

normalization, 234

processors, 235-236

ranges, 161

subqueries, avoiding, 291-292

query languages, 24

SQL DDL, 24-25

SQL DML, 25-26

quorums, 49-51

R

RACs (Oracle Real Applications
Clusters), 30

random access of data, 9
ranges

key-value database design,
147-148

partitioning, 150, 230
queries, 161

RavenDB, 480
RDBMSs (relational database

management systems), 19-29
read-heavy applications, 259
read/writer operations,

troubleshooting, 155-159
reading

from arrays, 83
atomic rows, 283-284

records
hierarchical data management

systems, 12

linking, 15

 sharing code 507

Redis, 124, 480

reducing

anomalies, 254

latency, 152-155

relational database management
systems. See RDBMSs

relational databases

column family databases,
289-292

design, 4-6

history of, 19-29

NoSQL, using with, 434-436

relationships, 15, 72

common, 261

many-to-many, 243, 263-264

multiple between entities, 375-376

one-to-many, 242, 262-263

remove command, 204

replicas, comparing, 323

replication

column family databases, 322

definition of, 135-136

masterless, 98-102

master-slave, 95

response times, 49-51

retrieval time, optimizing, 415

retrieving documents from
collections, 208-209

Riak, 480

rings, definition of, 133

root nodes, 12

rows, 121. See also column family
databases

atomic, 283-284

indexing, 281

keys, 309-310, 337-338

rules

constraints, 24

Third Normal Form, 234

S

scalability, 29-31

of graph databases, 418-419

key-value databases, 95-102

keys, 123

master-slave replication, 95

masterless replication, 98-102

schemaless, 129-131, 220-222

schemas, 23

explicit definitions, 199-201

polymorphic, 223

searching. See also queries

indexes, 171-173

patterns, 353

values, 105-113, 160-161

secondary indexes. See also indexes

applying, 345-347

managing, 341-344

SELECT statements, 27

selecting

databases, 428

column family, 431-432

document, 430

graph, 433

key-value, 429

edges, 416

separating data, 229

sequential access to data, 7

sessions, consistency, 58

sharding, 227-231

sharing code, 195-198

508 simplicity of key-value databases

simplicity of key-value databases,
91-92

simplified modeling, 375

single rows, 335

sink vertices, 393

sizing

graphs, 389

values, 155-159

SKUs (stock keeping units), 336

social media, modeling, 370

social network designs, 401-404

Solr, 162

sorted sets, 122

sorting rows, 284-285

source vertices, 393

Spark, 354-355

Sparksee, 480

speed, key-value databases, 93-95

SQL (Structured Query Language)

DDL, 24-25

DML, 25-26

Sqrrl, 480

standard query languages, 161-162

state, BASE, 56-59

statements

DELETE, 27

if, 88

INSERT, 27

SELECT, 27

UPDATE, 27

statistics, predicting with, 351-352

stock keeping units. See SKUs

storage

caches. See caches

column family databases,
282-283, 334

flat file data management
systems, 7

keys, 104. See also keys

management programs, 20-21

persistent data, 41-42

rows, 310

values, 110-113

strings, formatting, 123

strong typing values, 110-111

structured value design, 151-159

structures

column family databases, 313-322

columns, 310-313

key-value databases, 91-92

keyspaces, 309

subqueries, avoiding, 291-292

subtraction, 118

subtypes

aggregation, 166-169

code sharing, 195-198

support, range queries, 161

T

tables, 23, 121, 244

column family databases,
332-340

emulating, 165-166

secondary indexes, 345-347

terminology

column family databases, 308-313

keyspaces, 309

row keys, 309-310

document databases, 214-217

collections, 218

denormalization, 235

embedded documents, 218-219

 updating documents in collections 509

horizontal partitions, 227-231

normalization, 233-234

partitions, 224

polymorphic schemas, 223

query processors, 235-236

schemaless, 220-222

vertical partitions, 225-227

graph databases, 380

edges, 381-382

loops, 384

paths, 383

vertices, 380-381

key-value database architecture,
131, 137-140

clusters, 131-133

replication, 135-136

rings, 133

key-value database modeling,
118-121

keys, 121-123

namespaces, 124-126

partition keys, 129

partitions, 126-127

schemaless, 129-131

values, 123-124

thermodynamics, laws of, 299-300

Third Normal Form, 234

time, optimizing retrieval, 415

time stamps, indexing, 281

Time to Live. See TTL

TinkerPop, 418

Titan, 418, 480

tools, big data, 348-356

transactions, 45

ACID, 429. See also ACID

atomic aggregation, 169-170

consistency of, 47-48

multirow, avoiding, 290-291

transportation networks, 393

traversal, graphs, 387, 410-417

troubleshooting

read/write operations, 155-159

write problems, 107-110

TTL (Time to Live) keys, 163-164

types

data. See data types

of databases, 59, 477-480

distributed databases, 41-54

document databases, 66-68

graph databases, 71-75

key-value pair databases, 60-65

of edges, 382

of eventual consistency, 57-59

of graphs, 392

bigraphs, 394

directed/undirected, 392-393

flow networks, 393

multigraphs, 395

weighted graphs, 395-396

of partitions, 224

horizontal, 227-231

vertical, 225-227

U

undirected edges, 382.
See also edges

undirected graphs, 392-393

unions of graphs, 385

update command, 207

UPDATE statements, 27

updating documents in collections,
206-208

510 validation of code

V

validation of code, 222

valueless columns, 334

values, 64, 110-113

arrays. See arrays

atomic aggregation, 169-170

columns

avoiding complex data structures,
339-340

storage, 334

versions, 338

data types, 216-217

definition of, 123-124

indexes, 171-173

key-value databases

architecture terms, 131-136

design, 147-148

modeling terms, 118-131

keys, 105-110, 215

optimizing, 155-159

searching, 112-113, 160-161

structured design, 151-159

versions, column values, 338

vertical partitioning, 225-227

vertices, 380-381, 363. See also
nodes

betweenness, 391

closeness, 390-391

degrees, 390

graph traversal, 387

views, 23

Vlissides, John, 162

W

weight of edges, 382. See also edges

weighted graphs, 395-396

while loops, 148

write-heavy applications, 260-261

write problems, avoiding, 107-110

writing atomic rows, 283-284

X

XML (Extensible Markup
Language), 66

Z

zones, Goldilocks Zone of indexes,
258-260

Zookeeper, 293-294

	Contents
	Preface
	Introduction
	Chapter 8 Designing for Document Databases
	Normalization, Denormalization, and the Search for Proper Balance
	Planning for Mutable Documents
	The Goldilocks Zone of Indexes
	Modeling Common Relations
	Summary
	Case Study: Customer Manifests
	Review Questions
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

