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Preface

“Whatever there be of progress in life comes not through 
adaptation but through daring.”

—HENRY MILLER

It is difficult to avoid discussions about data. Individuals are con-

cerned about keeping their personal data private. Companies struggle 

to keep data out of the hands of cybercriminals. Governments and 

businesses have an insatiable appetite for data. IT analysts trip over 

themselves coming up with new terms to describe data: Big Data, 

streaming data, high-velocity data, and unstructured data. There is no 

shortage of terms for ways to store data: databases, data stores, data 

warehouses, and data lakes. Someone has gone so far as to coin the 

phrase data swamp.

While others engage in sometimes heated discussions about data, 

there are those who need to collect, process, analyze, and manage 

data. This book is for them.

NoSQL databases emerged from unmet needs. Data management tools 

that worked well for decades could not keep up with demands of Inter-

net applications. Hundreds and thousands of business professionals 

using corporate databases were no longer the most challenging use 

case. Companies such as Google, Amazon, Facebook, and Yahoo! had 

to meet the needs of users that measured in the millions.

The theoretically well-grounded relational data model that had served 

us so well needed help. Specialized applications, like Web crawling 

and online shopping cart management, motivated the enhancement 

and creation of nonrelational databases, including key-value, docu-

ment, column family, and graph databases. Relational databases are 

still needed and face no risk of being replaced by NoSQL databases. 
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Instead, NoSQL databases offer additional options with different per-

formance and functional characteristics.

This book is intended as a guide to introduce NoSQL databases, to 

discuss when they work well and when they do not, and, perhaps most 

important, to describe how to use them effectively to meet your data 

management needs.

You can find PowerPoints, chapter quizzes, and an accompanying 

instructor’s guide in Pearson’s Instructor Resource Center (IRC) via the 

website pearsonhighered.com.
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Introduction

“Just when I think I have learned the way to live, life changes.”
—HUGH PRATHER

Databases are like television. There was a time in the history of both 

when you had few options to choose from and all the choices were dis-

appointingly similar. Times have changed. The database management 

system is no longer synonymous with relational databases, and televi-

sion is no longer limited to a handful of networks broadcasting indis-

tinguishable programs.

Names like PostgreSQL, MySQL, Oracle, Microsoft SQL Server, and 

IBM DB2 are well known in the IT community, even among profes-

sionals outside the data management arena. Relational databases 

have been the choice of data management professionals for decades. 

They meet the needs of businesses tracking packages and account 

balances as well as scientists studying bacteria and human diseases. 

They keep data logically organized and easily retrieved. One of their 

most important characteristics is their ability to give multiple users a 

consistent view of data no matter how many changes are under way 

within the database.

Many of us in the database community thought we understood how to 

live with databases. Then life changed. Actually, the Internet changed. 

The Internet emerged from a military-sponsored network called 

ARPANET to become a platform for academic collaboration and even-

tually for commercial and personal use. The volume and types of data 

expanded. In addition to keeping our checking account balances, we 

want our computers to find the latest news, help with homework, and 

summarize reviews of new films. Now, many of us depend on the Inter-

net to keep in touch with family, network with colleagues, and pursue 

professional education and development.
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It is no surprise that such radical changes in data management 

requirements have led to radically new ways to manage data. The 

latest generation of data management tools is collectively known as 

NoSQL databases. The name reflects what these systems are not 

instead of what they are. We can attribute this to the well-earned dom-

inance of relational databases, which use a language called SQL.

NoSQL databases fall into four broad categories: key-value, document, 

column family, and graph databases. (Search-oriented systems, such 

as Solr and Elasticsearch are sometimes included in the extended 

family of NoSQL databases. They are outside the scope of this book.)

Key-value databases employ a simple model that enables you to store 

and look up a datum (also known as the value) using an identifier 

(also known as the key). BerkleyDB, released in the mid-1990s, was 

an early key-value database used in applications for which relational 

databases were not a good fit.

Document databases expand on the ideas of key-value databases to 

organize groups of key values into a logical structure known as a 

document. Document databases are high-performance, flexible data 

management systems that are increasingly used in a broad range of 

data management tasks.

Column family databases share superficial similarities to relational 

databases. The name of the first implementation of a column fam-

ily database, Google BigTable, hints at the connection to relational 

databases and their core data structure, the table. Column family 

databases are used for some of the largest and most demanding, 

data-intensive applications.

Graph databases are well suited to modeling networks—that is, 

things connected to other things. The range of use cases spans com-

puters communicating with other computers to people interacting 

with each other.



 Introduction xxvii

This is a dynamic time in database system research and development. 

We have well-established and widely used relational databases that are 

good fits for many data management problems. We have long-estab-

lished alternatives, such as key-value databases, as well as more recent 

designs, including document, column family, and graph databases.

One of the disadvantages of this state of affairs is that decision mak-

ing is more challenging. This book is designed to lessen that challenge. 

After reading this book, you should have an understanding of NoSQL 

options and when to use them.

Keep in mind that NoSQL databases are changing rapidly. By the 

time you read this, your favorite NoSQL database might have fea-

tures not mentioned here. Watch for increasing support for transac-

tions. How database management systems handle transactions is an 

important distinguishing feature of these systems. (If you are unfa-

miliar with transactions, don’t worry. You will soon know about them 

if you keep reading.)

Who Should Read This Book?

This book is designed for anyone interested in learning how to use 

NoSQL databases. Novice database developers, seasoned relational 

data modelers, and experienced NoSQL developers will find something 

of value in this book.

Novice developers will learn basic principles and design criteria of data 

management in the opening chapters of the book. You’ll also get a bit 

of data management history because, as we all know, history has a 

habit of repeating itself.

There are comparisons to relational databases throughout the book. 

If you are well versed in relational database design, these compar-

isons might help you quickly grasp and assess the value of NoSQL 

database features.
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For those who have worked with some NoSQL databases, this book may 

help you get up to speed with other types of NoSQL databases. Key-value 

and document databases are widely used, but if you haven’t encoun-

tered column family or graph databases, then this book can help.

If you are comfortable working with a variety of NoSQL databases but 

want to know more about the internals of these distributed systems, 

this book is a starting place. You’ll become familiar with implementa-

tion features such as quorums, Bloom filters, and anti-entropy. The ref-

erences will point you to resources to help you delve deeper if you’d like.

This book does not try to duplicate documentation available with 

NoSQL databases. There is no better place to learn how to insert data 

into a database than from the documentation. On the other hand, 

documentation rarely has the level of explanation, discussion of pros 

and cons, and advice about best practices provided in a book such 

as NoSQL for Mere Mortals. Read this book as a complement to, not a 

replacement for, database documentation.

The Purpose of This Book

The purpose of this book is to help someone with an interest in data to 

use NoSQL databases to help solve problems. The book is built on the 

assumption that the reader is not a seasoned database professional. 

If you are comfortable working with Excel, then you are ready for the 

topics covered in this book.

With this book, you’ll not only learn about NoSQL databases, but also 

how to apply design principles and best practices to solve your data 

management requirements. This is a book that will take you into the 

internals of NoSQL database management systems to explain how dis-

tributed databases work and what to do (and not do) to build scalable, 

reliable applications.

The hallmark of this book is pragmatism. Everything in this book is 

designed to help you use NoSQL databases to solve problems. There is 
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a bit of computer science theory scattered through the pages but only 

to provide more explanation about certain key topics. If you are well 

versed in theory, feel free to skip over it.

How to Read This Book

For those who are new to database systems, start with Chapters 1 and 

2. These will provide sufficient background to read the other chapters.

If you are familiar with relational databases and their predecessors, 

you can skip Chapter 1. If you are already experienced with NoSQL, 

you could skip Chapter 2; however, it does discuss all four major types 

of NoSQL databases, so you might want to at least skim the sections 

on types you are less familiar with.

Everyone should read Part II. It is referenced throughout the other 

parts of the book. Parts III, IV, and V could be read in any order, but 

there are some references to content in earlier chapters. To achieve 

the best understanding of each type of NoSQL database, read all three 

chapters in Parts II, III, IV, and V.

Chapter 15 assumes familiarity with the content in the other chap-

ters, but you might be able to skip parts on NoSQL databases you are 

sufficiently familiar with. If your goal is to understand how to choose 

between NoSQL options, be sure to read Chapter 15.

How This Book Is Organized

Here’s an overview of what you’ll find in each part and each chapter.

Part I: Introduction

NoSQL databases did not appear out of nowhere. This part provides 

a background on relational databases and earlier data management 

systems.
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Chapter 1, “Different Databases for Different Requirements,” intro-

duces relational databases and their precursor data management 

systems along with a discussion about today’s need for the alternative 

approaches provided by NoSQL databases.

Chapter 2, “Variety of NoSQL Databases,” explores key functionality 

in databases, challenges to implementing distributed databases, and 

the trade-offs you’ll find in different types of databases. The chapter 

includes an introduction to a series of case studies describing realistic 

applications of various NoSQL databases.

Part II: Key-Value Databases

In this part, you learn how to use key-value databases and how to 

avoid potential problems with them.

Chapter 3, “Introduction to Key-Value Databases,” provides an over-

view of the simplest of the NoSQL database types. 

Chapter 4, “Key-Value Database Terminology,” introduces the vocab-

ulary you need to understand the structure and function of key-value 

databases.

Chapter 5, “Designing for Key-Value Databases,” covers principles of 

designing key-value databases, the limitations of key-value databases, 

and design patterns used in key-value databases. The chapter con-

cludes with a case study describing a realistic use case of key-value 

databases.

Part III: Document Databases

This part delves into the widely used document database and pro-

vides guidance on how to effectively implement document database 

applications.
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Chapter 6, “Introduction to Document Databases,” describes the 

basic characteristics of document databases, introduces the concept 

of schemaless databases, and discusses basic operations on docu-

ment databases.

Chapter 7, “Document Database Terminology,” acquaints you with the 

vocabulary of document databases.

Chapter 8, “Designing for Document Databases,” delves into the 

benefits of normalization and denormalization, planning for mutable 

documents, tips on indexing, as well as common design patterns. The 

chapter concludes with a case study using document databases for a 

business application.

Part IV: Column Family Databases

This part covers Big Data applications and the need for column family 

databases.

Chapter 9, “Introduction to Column Family Databases,” describes the 

Google BigTable design, the difference between key-value, document, 

and column family databases as well as architectures used in column 

family databases.

Chapter 10, “Column Family Database Terminology,” introduces the 

vocabulary of column family databases. If you’ve always wondered 

“what is anti-entropy?” this chapter is for you.

Chapter 11, “Designing for Column Family Databases,” offers guide-

lines for designing tables, indexing, partitioning, and working with 

Big Data.

Part V: Graph Databases

This part covers graph databases and use cases where they are partic-

ularly appropriate.
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Chapter 12, “Introduction to Graph Databases,” discusses graph and 

network modeling as well as the benefits of graph databases.

Chapter 13, “Graph Database Terminology,” introduces the vocabulary 

of graph theory, the branch of math underlying graph databases.

Chapter 14, “Designing for Graph Databases,” covers tips for graph 

database design, traps to watch for, and methods for querying a 

graph database. This chapter concludes with a case study example 

of graph database applied to a business problem.

Part VI: Choosing a Database for Your Application

This part deals with applying what you have learned in the rest of the 

book.

Chapter 15, “Guidelines for Selecting a Database,” builds on the previ-

ous chapters to outline factors that you should consider when selecting 

a database for your application.

Part VII: Appendices

Appendix A, “Answers to Chapter Review Questions,” contains the 

review questions at the end of each chapter along with answers.

Appendix B, “List of NoSQL Databases,” provides a nonexhaustive list 

of NoSQL databases, many of which are open source or otherwise free 

to use.

The Glossary contains definitions of NoSQL terminology used through-

out the book.
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8
Designing for Document 

Databases

“Making good decisions is a crucial skill at every level.”
—PETER DRUCKER

AUTHOR AND MANAGEMENT CONSULTANT

Topics Covered In This Chapter

Normalization, Denormalization, and the Search for Proper 

Balance

Planning for Mutable Documents

The Goldilocks Zone of Indexes

Modeling Common Relations

Case Study: Customer Manifests

Designers have many options when it comes to designing document 

databases. The flexible structure of JSON and XML documents is a 

key factor in this—flexibility. If a designer wants to embed lists within 

lists within a document, she can. If another designer wants to cre-

ate separate collections to separate types of data, then he can. This 

freedom should not be construed to mean all data models are equally 

good—they are not.

The goal of this chapter is to help you understand ways of assessing 

document database models and choosing the best techniques for 

your needs.

Relational database designers can reference rules of normalization 

to help them assess data models. A typical relational data model is 
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designed to avoid data anomalies when inserts, updates, or deletes are 

performed. For example, if a database maintained multiple copies of 

a customer’s current address, it is possible that one or more of those 

addresses are updated but others are not. In that case, which of the 

current databases is actually the current one?

In another case, if you do not store customer information separately 

from the customer’s orders, then all records of the customer could be 

deleted if all her orders are deleted. The rules for avoiding these anom-

alies are logical and easy to learn from example.

❖ Note Document database modelers depend more on heuristics, or 

rules of thumb, when designing databases. The rules are not formal, 

logical rules like normalization rules. You cannot, for example, tell 

by looking at a description of a document database model whether 

or not it will perform efficiently. You must consider how users will 

query the database, how much inserting will be done, and how often 

and in what ways documents will be updated.

In this chapter, you learn about normalization and denormaliza-

tion and how it applies to document database modeling. You also 

learn about the impact of updating documents, especially when the 

size of documents changes. Indexes can significantly improve query 

response times, but this must be balanced against the extra time that 

is needed to update indexes when documents are inserted or updated. 

Several design patterns have emerged in the practice of document 

database design. These are introduced and discussed toward the end 

of the chapter.

This chapter concludes with a case study covering the use of a doc-

ument database for tracking the contents of shipments made by the 

fictitious transportation company introduced in earlier chapters.



 Normalization, Denormalization, and the Search for Proper Balance 241

Normalization, Denormalization, and 
the Search for Proper Balance

Unless you have      worked with relational databases, you probably would 

not guess that normalization has to do with eliminating redundancy. 

Redundant data is considered a bad, or at least undesirable, thing in 

the theory of relational database design. Redundant data is the root of 

anomalies, such as two current addresses when only one is allowed.

In theory, a data modeler will want to eliminate redundancy to 

minimize the chance of introducing anomalies. As Albert Einstein 

observed, “In theory, theory and practice are the same. In practice, 

they are not.” There are times where performance in relational data-

bases is poor because of the normalized model. Consider the data 

model shown in Figure 8.1.

Customer
Addresses

Orders

Order
Items

Customers
Customer

Credit
History

Promotions

Products
Daily

Inventory
Levels

Figure 8.1 Normalized databases have separate tables for entities. Data about 
entities is isolated and redundant data is avoided.

Figure 8.1 depicts a simple normalized model of customers, orders, and 

products. Even this simple model requires eight tables to capture a 

basic set of data about the entities. These include the following:
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• Customers table with fields such as name, customer ID, and so on

• Loyalty Program Members, with fields such as date joined, 

amount spent since joining, and customer ID

• Customer Addresses, with fields such as street, city, state, start 

date, end date, and customer ID

• Customer Credit Histories report with fields such as credit cate-

gory, start date, end date, and customer ID

• Orders, with fields such as order ID, customer ID, ship date, and 

so on

• Order Items, with fields such as order ID, order item ID, product 

ID, quantity, cost, and so on

• Products, with fields such as product ID, product name, product 

description, and so on

• Daily Inventory Levels, with fields such as product ID, date, 

quantity available, and so on

• Promotions, with fields such as promotion ID, promotion descrip-

tion, start date, and so on

• Promotion to Customers, with fields such as promotion ID and 

customer ID

Each box in Figure 8.1 represents an entity in the data model. The 

lines between entities indicate the kind of relationship between the 

entities.

One-to-Many Relations

When a single line ends        at an entity, then one of those rows partici-

pates in a single relation. When there are three branching lines ending 

at an entity, then there are one or more rows in that relationship. For 

example, the relation between Customer and Orders indicates that a 
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customer can have one or more orders, but there is only one customer 

associated with each order.

This kind of relation is called a one-to-many relationship.

Many-to-Many Relations

Now consider the relation        between Customers and Promotions. There 

are branching lines at both ends of the relationship. This indicates 

that customers can have many promotions associated with them. It 

also means that promotions can have many customers related to them. 

For example, a customer might receive promotions that are targeted to 

all customers in their geographic area as well as promotions targeted 

to the types of products the customer buys most frequently.

Similarly, a promotion will likely target many customers. The sales 

and marketing team might create promotions designed to improve the 

sale of headphones by targeting all customers who bought new phones 

or tablets in the past three months. The team might have a special 

offer on Bluetooth speakers for anyone who bought a laptop or desktop 

computer in the last year. Again, there will be many customers in this 

category (at least the sales team hopes so), so there will be many cus-

tomers associated with this promotion.

These types of relations are known as many-to-many relationships.

The Need for Joins

Developers of applications     using relational databases often have to 

work with data from multiple tables. Consider the Order Items and 

Products entities shown in Figure 8.2.
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Order_Items Products

Order_Item_ID
Order_ID
Quantity
Cost_Per_Unit
Product_ID

Product_ID
Product_Description
Product_Name
Product_Category
List_Price

Figure 8.2 Products and Order Items are in a one-to-many relationship. To 
retrieve Product data about an Order item, they need to share an attribute that 
serves as a common reference. In this case, Product_ID is the shared attribute. 

If you were designing a report that lists an order with all the items on 

the order, you would probably need to include attributes such as the 

name of the product, the cost per unit, and the quantity. The name of 

the product is in the Product table, and the other two attributes are in 

the Order Items table (see Figure 8.3).

❖ Note If you are familiar with the difference in logical and phys-

ical data models, you will notice a mix of terminology. Figures 8.1 

and 8.2 depict logical models, and parts of these models are referred 

to as entities  and attributes . If you were to write a report using the 

database, you would work with an implementation of the physical 

model.

For physical models, the terms tables  and columns  are used to refer 

to the same structures that are called entities and attributes in the 

logical data model. There are differences between entities and tables; 

for example, tables have locations on disks or in other data struc-

tures called table spaces. Entities do not have such properties.

For the purpose of this chapter, entities should be considered synon-

ymous with tables and attributes should be considered synonymous 

with columns.
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Order Items
Order_Item_ID Order_ID

1298
1299
1300
1301
1302

789
789
790
790
790

1
2
1
1
3

$25.99
$20.00
$12.50
$20.00
$12.99

345
372
591
372
413

Quantity Cost_Per_Unit Product_ID

Products
Product_ID Product_Description

345

372

413

420

591

Easy clean tablet cover that
fits most 10"  Android tablets.
Lightweight blue ear buds
with comfort fit.

Pack of 100 individually
wrapped screen wipes.

60"×48" whiteboard with
marker and eraser holder.

Set of 10 dry erase markers.

Easy Clean Cover

Acme Ear Buds
10-Pack Markers

Large Whiteboard
Screen Clean
Wipes

Electronic Accessories

Electronic Accessories
Office Supplies

Office Supplies

Office Supplies

25.99

20
15

56.99

12.99

Product_Name Product_Category List_Price

Figure 8.3 To be joined, tables must share a common value known as a 
foreign key.

In relational databases, modelers     often start with designs like the one 

you saw earlier in Figure 8.1. Normalized models such as this minimize 

redundant data and avoid the potential for data anomalies. Document 

database designers, however, often try to store related data together in 

the same document. This would be equivalent to storing related data in 

one table of a relational database. You might wonder why data modelers 

choose different approaches to their design. It has to do with the trade-

offs between performance and potential data anomalies.

To understand why normalizing data models can adversely affect per-

formance, let’s look at an example with multiple joins.

Executing Joins: The Heavy Lifting of Relational Databases 

Imagine you are an analyst      and you have decided to develop a promo-

tion for customers who have bought electronic accessories in the past 

12 months. The first thing you want to do is understand who those 

customers are, where they live, and how often they buy from your busi-

ness. You can do this by querying the Customer table.
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You do not want all customers, though—just those who have bought 

electronic accessories. That information is not stored in the Customer 

table, so you look to the Orders table. The Orders table has some infor-

mation you need, such as the date of purchase. This enables you to 

filter for only orders made in the past 12 months.

The Orders table, however, does not have information on electronic 

accessories, so you look to the Order Items table. This does not have 

the information you are looking for, so you turn to the Products table. 

Here, you find the information you need. The Products table has a 

column called Product_Category, which indicates if a product is an 

electronic accessory or some other product category. You can use this 

column to filter for electronic accessory items.

At this point, you have all the data you need. The Customer table has 

information about customers, such as their names and customer IDs. 

The Orders table has order date information, so you can select only 

orders from the past 12 months. It also allows you to join to the Order_

Items table, which can tell you which orders contained products in the 

electronic accessories category. The category information is not directly 

available in the Order_Items table, but you can join the Order_Items 

table to the Products table to get the product category (see Figure 8.4).

Tables

Customers

Orders

Order Items

Product

Columns

Customer_Name
Customer_ID

Customer_ID
Order_ID
Order_Date

Order_ID
Product_ID

Product_ID
Product_Category

Figure 8.4 Analyzing customers who bought a particular type of product 
requires three joins between four tables.
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To get a sense of how      much work is involved in joining tables, let’s 

consider pseudocode for printing the name of customers who have pur-

chased electronic accessories in the last 12 months:

for cust in get_customers():
   for order in get_customer_orders(cust.customer_id):
      if today() - 365 <= order.order_date:
         for order_item in get_order_items
           (order.order_id):
          if 'electronic accessories' =
              get_product_category(order_item.product_id):
                 customer_set = add_item
                   (customer_set,cust.name);

for customer_name in customer_set:
   print customer_name;

In this example, the functions get _ customers, get _ customer _

orders, and get _ order _ items return a list of rows. In the case of 

get _ customers(), all customers are returned.

Each time get _ customer _ orders is called, it is given a customer _

id. Only orders with that customer ID are returned. Each time get _

order _ items is called, it is given an order _ id. Only order items 

with that order _ id are returned.

The dot notation indicates a field in the row returned. For example, 

order.order _ date returns the order _ date on a particular order. 

Similarly, cust.name returns the name of the customer currently refer-

enced by the cust variable.

Executing Joins Example

Now to really see how      much work is involved, let’s walk through an 

example. Let’s assume there are 10,000 customers in the database. 

The first for loop will execute 10,000 times. Each time it executes, it 

will look up all orders for the customer. If each of the 10,000 customers 
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has, on average, 10 orders, then the for order loop will execute 

100,000 times. Each time it executes, it will check the order date.

Let’s say there are 20,000 orders that have been placed in the last 

year. The for order _ item loop will execute 20,000 times. It will per-

form a check and add a customer name to a set of customer names if 

at least one of the order items was an electronic accessory.

Looping through rows of tables and looking for matches is one—rather 

inefficient—way of performing joins. The performance of this join could 

be improved. For example, indexes could be used to more quickly find 

all orders placed within the last year. Similarly, indexes could be used 

to find the products that are in the electronic accessory category.

Databases implement query optimizers to come up with the best way of 

fetching and joining data. In addition to using indexes to narrow down 

the number of rows they have to work with, they may use other tech-

niques to match rows. They could, for example, calculate hash values 

of foreign keys to quickly determine which rows have matching values.

The query optimizer may also sort rows first and then merge rows from 

multiple tables more efficiently than if the rows were not sorted. These 

techniques can work well in some cases and not in others. Database 

researchers and vendors have made advances in query optimization 

techniques, but executing joins on large data sets can still      be time 

consuming and resource intensive.

What Would a Document Database Modeler Do?

Document data modelers have      a different approach to data modeling 

than most relational database modelers. Document database modelers 

and application developers are probably using a document database for 

its scalability, its flexibility, or both. For those using document data-

bases, avoiding data anomalies is still important, but they are willing 

to assume more responsibility to prevent them in return for scalability 

and flexibility.
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For example, if there are redundant copies of customer addresses in 

the database, an application developer could implement a customer 

address update function that updates all copies of an address. She 

would always use that function to update an address to avoid intro-

ducing a data anomaly. As you can see, developers will write more code 

to avoid anomalies in a document database, but will have less need for 

database tuning and query optimization in the future.

So how do document data modelers and application developers get 

better performance? They minimize the need for joins. This process is 

known as denormalization. The basic idea is that data models should 

store data that is used together in a single data structure, such as a 

table in a relational database or a document in a document database.

The Joy of Denormalization

To see the benefits of        denormalization, let’s start with a simple exam-

ple: order items and products. Recall that the Order _ Items entity had 

the following attributes:

• order _ item _ ID

• order _ id

• quantity

• cost _ per _ unit

• product _ id

The Products entity has the following attributes:

• product _ ID

• product _ description

• product _ name

• product _ category

• list _ price
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An example of an order items document is

{ 
order_item_ID : 834838,
   order_ID: 8827,
   quantity: 3,
   cost_per_unit: 8.50,
   product_ID: 3648
}

An example of a product document is

{
   product_ID: 3648,
   product_description: "1 package laser printer paper. 
     100% recycled.",
   product_name : "Eco-friendly Printer Paper",
   product_category : "office supplies",
   list_price : 9.00
}

If you implemented two        collections and maintained these separate 

documents, then you would have to query the order items collection 

for the order item you were interested in and then query the products 

document for information about the product with product _ ID 3648. 

You would perform two lookups to get the information you need about 

one order item.

By denormalizing the design, you could create a collection of docu-

ments that would require only one lookup operation. A denormalized 

version of the order item collection would have, for example:

 { 
order_item_ID : 834838,
   order_ID: 8827,
   quantity: 3,
   cost_per_unit: 8.50,
   product :
        {
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             product_description: "1 package laser printer 
               paper. 100% recycled.",
             product_name : "Eco-friendly Printer Paper",
             product_category : "office supplies",
             list_price : 9.00
        }
}

❖ Note Notice that you no longer need to maintain product _ ID 

fields. Those were used as database references (or foreign keys in 

relational database parlance) in the Order _ Items document.

Avoid Overusing Denormalization

Denormalization, like        all good things, can be used in excess. The goal 

is to keep data that is frequently used together in the document. This 

allows the document database to minimize the number of times it 

must read from persistent storage, a relatively slow process even when 

using solid state devices (SSDs). At the same time, you do not want to 

allow extraneous information to creep into your denormalized collec-

tion (see Figure 8.5).

{       }
{       }
{       }
{       }
{       }
{       }
{       }
{       }

Small
Documents

Large
Documents

Figure 8.5 Large documents can lead to fewer documents retrieved when a 
block of data is read from persistent storage. This can increase the total number 
of data block reads to retrieve a collection or subset of collections.
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To answer the question “how much denormalization is too much?” you 

should consider the queries your application will issue to the docu-

ment database.

Let’s assume you will use two types of queries: one to generate invoices 

and packing slips for customers and one to generate management 

reports. Also, assume that 95% of the queries will be in the invoice 

and packing slip category and 5% of the queries will be for manage-

ment reports.

Invoices and packing slips should include, among other fields, the 

following:

• order_ID

• quantity

• cost_per_unit

• product_name

Management reports tend to aggregate information across groups or 

categories. For these reports, queries would include product category 

information along with aggregate measures, such as total number 

sold. A management report showing the top 25 selling products would 

likely include a product description.

Based on these        query requirements, you might decide it is better to 

not store product description, list price, and product category in the 

Order _ Items collection. The next version of the Order _ Items docu-

ment would then look like this:

{ 
   order_item_ID : 834838,
   order_ID: 8827,
   quantity: 3,
   cost_per_unit: 8.50,
   product_name : "Eco-friendly Printer Paper"
}
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and we would maintain a Products collection with all the relevant 

product details; for example:

{
     product_description: "1 package laser printer paper. 
       100% recycled.",
     product_name : "Eco-friendly Printer Paper",
     product_category : 'office supplies',
     list_price : 9.00
   }

Product _ name is stored redundantly in both the Order _ Items col-

lection and in the Products collection. This model uses slightly more 

storage but allows application developers to retrieve information        for the 

bulk of their queries in a single lookup operation.

Just Say No to Joins, Sometimes

Never say never when designing NoSQL models. There are best prac-

tices, guidelines, and design patterns that will help you build scalable 

and maintainable applications. None of them should be followed dog-

matically, especially in the presence of evidence that breaking those 

best practices, guidelines, or design patterns will give your application 

better performance, more functionality, or greater maintainability.

If your application requirements are such that storing related informa-

tion in two or more collections is an optimal design choice, then make 

that choice. You can implement joins in your application code. A worst-

case scenario is joining two large collections with   two for loops, such as

for doc1 in collection1:
   for doc2 in collection2:
         <do something with both documents>

If there are N documents       in collection1 and M documents in collec-

tion2, this statement would execute N × M times. The execution time 

for such loops can grow quickly. If the first collection has 100,000 doc-

uments and the second has 500,000, then the statement would exe-

cute 50,000,000,000 (5 × 105) times. If you are dealing with collections 
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this large, you will want to use indexes, filtering, and, in some cases, 

sorting to optimize your join by reducing the number of overall opera-

tions performed (see Figure 8.6).

Collection
1

Collection
2

× =

All-to-All
Comparison

Figure 8.6 Simple join operations that compare all documents in one collection 
to all documents in another collection can lead to poor performance on large 
collections. Joins such as this can be improved by using indexes, filtering, and, 
in some cases, sorting.

Normalization is a useful      technique for reducing the chances of intro-

ducing data   anomalies. Denormalization is also useful, but for (obvi-

ously) different reasons. Specifically, denormalization is employed to 

improve query performance. When using document databases, data 

modelers and developers often employ denormalization as readily as 

relational data modelers employ normalization.

❖ Tip Remember to use your queries as a guide to help strike the 

right balance of normalization and denormalization. Too much of 

either can adversely affect performance. Too much normalization 

leads to queries requiring joins. Too much denormalization leads to 

large documents that will likely lead to unnecessary data reads from 

persistent storage and other adverse effects.

There is another less-obvious consideration to keep in mind when 

designing documents and collections: the potential for documents to 

change size. Documents that are likely to change size are known as 

mutable documents.



 Planning for Mutable Documents 255

Planning for Mutable Documents

Things change. Things      have been changing since the Big Bang. Things 

will most likely continue to change. It helps to keep these facts in mind 

when designing databases.

Some documents will change frequently, and others will change infre-

quently. A document that keeps a counter of the number of times a 

web page is viewed could change hundreds of times per minute. A 

table that stores server event log data may only change when there is 

an error in the load process that copies event data from a server to the 

document database. When designing a document database, consider 

not just how frequently a document will change, but also how the size 

of the document may change.

Incrementing a counter or correcting an error in a field will not sig-

nificantly change the size of a document. However, consider the fol-

lowing scenarios:

• Trucks in a company fleet transmit location, fuel consumption, 

and other operating metrics every three minutes to a fleet man-

agement database.

• The price of every stock traded on every exchange in the world is 

checked every minute. If there is a change since the last check, 

the new price information is written to the database.

• A stream of social networking posts is streamed to an applica-

tion, which summarizes the number of posts; overall sentiment 

of the post; and the names of any companies, celebrities, public 

officials, or organizations. The database is continuously updated 

with this information.

Over time, the number      of data sets written to the database increases. 

How should an application designer structure the documents to handle 

such input streams? One option is to create a new document for each 
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new set of data. In the case of the trucks transmitting operational 

data, this would include a truck ID, time, location data, and so on:

{
   truck_id: 'T87V12',
   time: '08:10:00',
   date :  '27-May-2015',
   driver_name: 'Jane Washington',
   fuel_consumption_rate: '14.8 mpg',
   …
}

Each truck would transmit 20 data sets per hour, or assuming a 

10-hour operations day, 200 data sets per day. The truck _ id, date, 

and driver _ name would be the same for all 200 documents. This looks 

like an obvious candidate for embedding a document with the opera-

tional data in a document about the truck used on a particular day. This 

could be done with an array holding the operational data documents:

{
   truck_id: 'T87V12',
   date :  '27-May-2015',
   driver_name: 'Jane Washington',
   operational_data: 
              [
                 {time : '00:01',
                  fuel_consumption_rate: '14.8 mpg',
                  …},
                   {time : '00:04',
                  fuel_consumption_rate: '12.2 mpg',
                  …},
                   {time : '00:07',
                  fuel_consumption_rate: '15.1 mpg',
                  …},
               ...]
}

The document would      start with a single operational record in the 

array, and at the end of the 10-hour shift, it would have 200 entries in 

the array.
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From a logical modeling perspective, this is a perfectly fine way to 

structure the document, assuming this approach fits your query 

requirements. From a physical model perspective, however, there is a 
potential performance problem.

When a document is created, the database management system allo-
cates a certain amount of space for the document. This is usually 
enough to fit the document as it exists plus some room for growth. If 
the document grows larger than the size allocated for it, the document 
may be moved to another location. This will require the database man-

agement system to read the existing document and copy it to another 

location, and free the previously used storage space (see Figure 8.7).

{
  .
  .
  .
  .
  .
}

Original
Document

Allocated
Space

Sufficient
Space

Insert Large
Field

Additional Space Required

Copy to
New Location

{
  .
  .
  .
  .
  .
  .
  .
  .
}

{
  
  
  
  
  
  }
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Space

Figure 8.7 When documents grow larger than the amount of space allocated for 
them, they may be moved to another location. This puts additional load on the 
storage systems and can adversely affect performance.



258 Chapter 8 Designing for Document Databases

Avoid Moving Oversized Documents

One way to avoid this         problem of moving oversized documents is to 

allocate sufficient space for the document at the time the document 

is created. In the case of the truck operations document, you could 

create the document with an array of 200 embedded documents with 

the time and other fields specified with default values. When the actual 

data is transmitted to the database, the corresponding array entry is 

updated with the actual values (see Figure 8.8).

{truck_id: ‘T8V12’
  date: ‘27-May-2015’
 operational_data:
      [{time: ‘00 : 00’,
        fuel_consumption_rate: 0.0}
       {time: ‘00 : 00’,
        fuel_consumption_rate: 0.0}
        .
        .
        .
        .
       {time: ‘00 : 00’,
        fuel_consumption_rate: 0.0}
        ] 

200 Embedded
Documents with
Default Values

Figure 8.8 Creating documents with sufficient space for anticipated growth 
reduces the need to relocate documents.

Consider the life cycle of a document and when possible plan for antic-

ipated growth. Creating a document with sufficient space for the full 

life of the document can help to avoid I/O overhead.

The Goldilocks Zone of Indexes

Astronomers have coined       the term Goldilocks Zone to describe the zone 

around a star that could sustain a habitable planet. In essence, the 

zone that is not too close to the sun (too hot) or too far away (too cold) 

is just right. When you design a document database, you also want to 

try to identify the right number of indexes. You do not want too few, 

which could lead to poor read performance, and you do not want too 

many, which could lead to poor write performance.
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Read-Heavy Applications

Some applications have   a high percentage of read operations relative to 

the number of write operations. Business intelligence and other ana-

lytic applications can fall into this category. Read-heavy applications 

should have indexes on virtually all fields used to help filter results. For 

example, if it was common for users to query documents from a partic-

ular sales region or with order items in a certain product category, then 

the sales region and product category fields should be indexed.

It is sometimes difficult to know which fields will be used to filter 

results. This can occur in business intelligence applications. An ana-

lyst may explore data sets and choose a variety of different fields as 

filters. Each time he runs a new query, he may learn something new 

that leads him to issue another query with a different set of filter fields. 

This iterative process can continue as long as the analyst gains insight 

from queries.

Read-heavy applications can have a large number of indexes, espe-

cially when the query patterns are unknown. It is not unusual to index 

most fields that could be used to filter results in an analytic applica-

tion (see Figure 8.9).

Analyst
Formulates
New Query

Analyst

Analyst Gets
Query Results

1
Analyst
Issues
Query

Analytic
Document

DB

3

2

Figure 8.9 Querying analytic databases is an iterative process. Virtually any 
field could potentially be used to filter results. In such cases, indexes may be 
created on most fields.
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Write-Heavy Applications

Write-heavy applications   are those with relatively high percentages of 

write operations relative to read operations. The document database 

that receives the truck sensor data described previously would likely 

be a write-heavy database. Because indexes are data structures that 

must be created and updated, their use will         consume CPU, persistent 

storage, and memory resources and increase the time needed to insert 

or update a document in the database.

Data modelers tend to try to minimize the number of indexes in write-

heavy applications. Essential indexes, such as those created for fields 

storing the identifiers of related documents, should be in place. As with 

other design choices, deciding on the number of indexes in a write-

heavy application is a matter of balancing competing interests.

Fewer indexes typically correlate with faster updates but potentially 

slower reads. If users performing read operations can tolerate some 

delay in receiving results, then minimizing indexes should be con-

sidered. If, however, it is important for users to have low-latency que-

ries against a write-heavy database, consider implementing a second 

database that aggregates the data according to the time-intensive read 

queries. This is the basic model used in business intelligence.

Transaction processing systems are designed for fast writes and tar-

geted reads. Data is copied from that database using an extraction, 

transformation, and load (ETL) process and placed in a data mart or 

data warehouse. The latter two types of databases are usually heavily 

indexed to improve query response time (see Figure 8.10).
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Document
DB Tuned

for
Writes

Write-Heavy
Transaction
Database

Read-Heavy
Analytics
Database

Extraction,
Transformation,

and Load Process

Document
DB Tuned

for
Reads

Figure 8.10 When both   write-heavy and read-heavy applications must be sup-
ported, a two-database solution may be the best option.

❖ Tip Identifying the right set of indexes for your application can 

take some experimentation. Start with the queries you expect to 

support and implement indexes to reduce the time needed to execute 

the most important and the most frequently executed. If you find the 

need for both read-heavy and write-heavy applications, consider a 

two-database solution with one database tuned for each type.

Modeling Common Relations

As you gather requirements       and design a document database, you will 

likely find the need for one or more of three common relations:

• One-to-many relations

• Many-to-many relations

• Hierarchies
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The first two involve relations between two collections, whereas the 

third can entail an arbitrary number of related documents within a 

collection. You learned about one-to-one and one-to-many relations 

previously in the discussion of normalization. At that point, the focus 

was on the need for joins when normalizing data models. Here, the 

focus is on how to efficiently implement such relationships in docu-

ment databases. The following sections discuss design patterns for 

modeling these three kinds of relations.

One-to-Many Relations in Document Databases

One-to-many relations are      the simplest of the three relations. This 

relation occurs when an instance of an entity has one or more related 

instances of another entity. The following are some examples:

• One order can have many order items.

• One apartment building can have many apartments.

• One organization can have many departments.

• One product can have many parts.

This is an example in which the typical model of document database 

differs from that of a relational database. In the case of a one-to-many 

relation, both entities are modeled using a document embedded within 

another document. For example:

{
   customer_id: 76123,
   name: 'Acme Data Modeling Services',
   person_or_business: 'business',
   address : [
                     { street: '276 North Amber St',
                        city: 'Vancouver',
                        state: 'WA',
                        zip: 99076} ,
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                     { street: '89 Morton St',
                        city: 'Salem',
                        state: 'NH',
                        zip: 01097}
                    ]
   }

The basic pattern is that the one entity in a one-to-many relation is 

the primary document, and the many entities are represented as an 

array of embedded documents. The primary document has fields 

about the one entity,      and the embedded documents have fields about 

the many entities.

Many-to-Many Relations in Document Databases

A many-to-many relation      occurs when instances of two entities can 

both be related to multiple instances of another entity. The following 

are some examples:

• Doctors can have many patients and patients can have many 

doctors.

• Operating system user groups can have many users and users 

can be in many operating system user groups.

• Students can be enrolled in many courses and courses can have 

many students enrolled.

• People can join many clubs and clubs can have many members.

Many-to-many relations are modeled using two collections—one for 

each type of entity. Each collection maintains a list of identifiers that 

reference related entities. For example, a document with course data 

would include an array of student IDs, and a student document would 

include a list of course IDs, as in the following:
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Courses:

{
  { courseID: 'C1667',
     title: 'Introduction to Anthropology',
     instructor: 'Dr. Margret Austin',      
     credits: 3,
     enrolledStudents: ['S1837', 'S3737', 'S9825' … 
       'S1847'] },
  { courseID: 'C2873',
     title: 'Algorithms and Data Structures',
     instructor: 'Dr. Susan Johnson',      
     credits: 3,
     enrolledStudents: ['S1837','S3737', 'S4321', 'S9825' 
       … 'S1847'] },
  { courseID: C3876,
     title: 'Macroeconomics',
     instructor: 'Dr. James Schulen',      
     credits: 3,
     enrolledStudents: ['S1837', 'S4321', 'S1470', 'S9825' 
       … 'S1847'] },
  ...

Students:

{
 {studentID:'S1837',
   name: 'Brian Nelson',
   gradYear: 2018,
   courses: ['C1667', C2873,'C3876']},
 {studentID: 'S3737',
   name: 'Yolanda Deltor',
        gradYear: 2017,
        courses: [ 'C1667','C2873']},
    …
}

The pattern minimizes      duplicate data by referencing related docu-

ments with identifiers instead of embedded documents.

Care must be taken when updating many-to-many relationships so 

that both entities are correctly updated. Also remember that document 
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databases will not catch referential integrity errors as a relational data-

base will. Document databases will allow you to insert a student docu-

ment with a courseID that does not correspond to an existing course.

Modeling Hierarchies in Document Databases

Hierarchies describe instances      of entities in some kind of parent-child 

or part-subpart relation. The product _ category attribute introduced 

earlier is an example where a hierarchy could help represent relations 

between different product categories (see Figure 8.11).

Product_Categories

Office Furniture Office Supplies Electronics

Desk Chair Cabinets

Writing
Instruments

Pens Pencils

Organizers

Phones

iPhone Android

TabletsElectronic
Accessories

Packing
Supplies

Figure 8.11 Hierarchies describe parent-child or part-subpart relations.

There are a few different ways to model hierarchical relations. Each 

works well with particular types of queries.

Parent or Child References

A simple technique is to keep   a reference to either the parent or the 

children of an entity. Using the data depicted in Figure 8.11, you could 

model product categories with references to their parents:

{
   {productCategoryID: 'PC233', name:'Pencils', 
     parentID:'PC72'},
   {productCategoryID: 'PC72', name:'Writing Instruments', 
     parentID: 'PC37''},
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   {productCategoryID: 'PC37', name:'Office Supplies', 
     parentID: 'P01'},
   {productCategoryID: 'P01', name:'Product Categories' }
}

Notice that the root of the hierarchy, 'Product Categories', does not 

have a parent and so has no parent field in its document.

This pattern is useful if you      frequently have to show a specific instance 

and then display the more general type of that category.

A similar pattern works with child references:

{
   {productCategoryID: 'P01', name:'Product Categories', 
     childrenIDs: ['P37','P39','P41']},
    {productCategoryID: 'PC37', name:'Office Supplies', 
      childrenIDs: ['PC72','PC73','PC74'']},
     {productCategoryID: 'PC72', name:'Writing 
       Instruments', childrenIDs: ['PC233','PC234']'},
      {productCategoryID: 'PC233', name:'Pencils'}
}

The bottom nodes of the hierarchy, such as 'Pencils', do not have 

children and therefore do not have a childrenIDs field.

This pattern is useful if you routinely need to retrieve the children or 

subparts of the instance modeled in the document. For example, if you 

had to support a user interface that allowed users to drill down, you 

could use this pattern to fetch all the children or subparts of the cur-

rent      level of the hierarchy displayed in the interface.

Listing All Ancestors

Instead of just listing the        parent in a child document, you could keep 

a list of all ancestors. For example, the 'Pencils' category could be 

structured in a document as

{productCategoryID: 'PC233', name:'Pencils', 
  ancestors:['PC72', 'PC37', 'P01']}
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This pattern is useful when you have to know the full path from any 

point in the hierarchy back to the root.

An advantage of this pattern is that you can retrieve the full path to 

the root in a single read operation. Using a parent or child reference 

requires multiple reads, one for each additional level of the hierarchy.

A disadvantage of this approach is that changes to the hierarchy may 

require many write operations. The higher up in the hierarchy the 

change is, the more documents will have to be updated. For exam-

ple, if a new level was introduced between 'Product Category' and 

'Office Supplies', all documents below the new entry would have to 

be updated. If you added a new level to the bottom of the hierarchy—

for example, below 'Pencils' you add 'Mechanical Pencils' and 

'Non-mechanical Pencils'—then no existing documents would have 

to change. 

❖ Note One-to-many, many-to-many, and hierarchies are com-

mon patterns in document databases. The patterns described here 

are useful in many situations, but you should always evaluate the 

utility of a pattern with reference to the kinds of queries you will 

execute and the expected changes that will occur over the lives of 

the documents. Patterns should support the way you will query and 

maintain documents by making those operations faster or less com-

plicated than other options.

Summary

This chapter concludes the examination of document databases by 

considering several key issues you should consider when modeling for 

document databases.
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Normalization and denormalization are both useful practices. Normal-

ization helps to reduce the chance of data anomalies while denormal-

ization is introduced to improve performance. Denormalization is a 

common practice in document database modeling. One of the advan-

tages of denormalization is that it reduces or eliminates the need for 

joins. Joins can be complex and/or resource-intensive operations. It 

helps to avoid them when you can, but there will likely be times you 

will have to implement joins in your applications. Document data-

bases, as a rule, do not support joins.

In addition to considering the logical aspects of modeling, you should 

consider the physical implementation of your design. Mutable doc-

uments, in particular, can adversely affect performance. Mutable 

documents that grow in size beyond the storage allocated for them 

may have to be moved in persistent storage, such as on disks. This 

need for additional writing of data can slow down your applications’ 

update operations.

Indexes are another important implementation topic. The goal is to 

have the right number of indexes for your application. All instances 

should help improve query performance. Indexes that would help with 

query performance may be avoided if they would adversely impact 

write performance in a noticeable way. You will have to balance bene-

fits of faster query response with the cost of slower inserts and updates 

when indexes are in place.

Finally, it helps to use design patterns when modeling common rela-

tions such as one-to-many, many-to-many, and hierarchies. Some-

times embedded documents are called for, whereas in other cases, 

references to other document identifiers are a better option when mod-

eling these relations.

Part IV, “Column Family Databases,” introduces wide column data-

bases. These are another important type of NoSQL database and are 

especially important for managing large data sets with potentially 

billions of rows and millions of columns.
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Case Study: Customer Manifests

Chapter 1, “Different Databases for Different Requirements,” intro-

duced TransGlobal Transport and Shipping (TGTS), a fictitious trans-

portation company that coordinates the movement of goods around 

the globe for businesses of all sizes. As business has grown, TGTS is 

transporting and tracking more complicated and varied shipments. 

Analysts have gathered requirements and some basic estimates about 

the number of containers that will be shipped. They found a mix of 

common fields for all containers and specialized fields for different 

types of containers.

All containers will require a core set of fields such as customer name, 

origination facility, destination facility, summary of contents, number 

of items in container, a hazardous material indicator, an expiration 

date for perishable items such as fruit, a destination facility, and a 

delivery point of contact and contact information.

In addition, some containers will require specialized information. 

Hazardous materials must be accompanied by a material safety data 

sheet (MSDS), which includes information for emergency responders 

who may have to handle the hazardous materials. Perishable foods 

must also have details about food inspections, such as the name of the 

person who performed the inspection, the agency responsible for the 

inspection, and contact information of the agency.

The analyst found that 70%–80% of the queries would return a sin-

gle manifest record. These are typically searched for by a manifest 

identifier or by customer name, date of shipment, and originating 

facility. The remaining 20%–30% would be mostly summary reports 

by customers showing a subset of common information. Occasionally, 

managers will run summary reports by type of shipment (for example, 

hazardous materials, perishable foods), but this is rarely needed.
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Executives inform the analysts that the company has plans to sub-

stantially grow the business in the next 12 to 18 months. The analysts 

realize that they may have many different types of cargo in the future 

with specialized information, just as hazardous materials and perish-

able foods have specialized fields. They also realize they must plan for 

future scaling up and the need to support new fields in the database. 

They concluded that a document database that supports horizontal 

scaling and a flexible schema is required.

The analysts start the document and collection design process by con-

sidering fields that are common to most manifests. They decided on a 

collection called Manifests with the following fields:

• Customer name

• Customer contact person’s name

• Customer address

• Customer phone number

• Customer fax

• Customer email

• Origination facility

• Destination facility

• Shipping date

• Expected delivery date

• Number of items in container

They also determine fields they should track for perishable foods and 

hazardous materials. They decide that both sets of specialized fields 

should be grouped into their own documents. The next question they 

have to decide is, should those documents be embedded with manifest 

documents or should they be in a separate collection?
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Embed or Not Embed?

The analysts review sample reports that managers have asked for and 

realize that the perishable foods fields are routinely reported along 

with the common fields in the manifest. They decide to embed the per-

ishable foods within the manifest document.

They review sample reports and find no reference to the MSDS for 

hazardous materials. They ask a number of managers and execu-

tives about this apparent oversight. They are eventually directed to 

a compliance officer. She explains that the MSDS is required for all 

hazardous materials shipments. The company must demonstrate to 

regulators that their database includes MSDSs and must make the 

information available in the event of an emergency. The compliance 

officer and analyst conclude they need to define an additional report 

for facility managers who will run the report and print MSDS informa-

tion in the event of an emergency.

Because the MSDS information is infrequently used, they decide to 

store it in a separate collection. The Manifest collection will include a 

field called msdsID that will reference the corresponding MSDS docu-

ment. This approach has the added benefit that the compliance officer 

can easily run a report listing any hazardous material shipments that 

do not have an msdsID. This allows her to catch any missing MSDSs 

and continue to comply with regulations.

Choosing Indexes

The analysts anticipate a mix of read and write operations with 

approximately 60%–65% reads and 35%–40% writes. They would 

like to maximize the speed of both reads and writes, so they carefully 

weigh the set of indexes to create.

Because most of the reads will be looks for single manifests, they decide 

to focus on that report first. The manifest identifier is a logical choice for 

index field because it is used to retrieve manifest doccuments.
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Analysts can also look up manifests by customer name, shipment 

date, and origination facility. The analysts consider creating three 

indexes: one for each field. They realize, however, that they will rarely 

need to list all shipments by date or by origination facility, so they 

decide against separate indexes for those fields.

Instead, they create a single index on all three fields: customer name, 

shipment date, and origination facility. With this index, the database 

can determine if a manifest exists for a particular customer, shipping 

date, and origination facility by checking the index only; there is no 

need to check the actual collection of documents, thus reducing the 

number of read operations that have to be performed.

Separate Collections by Type?

The analysts realize that they are working with a small number of 

manifest types, but there may be many more in the future. For exam-

ple, the company does not ship frozen goods now, but there has been 

discussion about providing that service. The analysts know that if you 

frequently filter documents by type, it can be an indicator that they 

should use separate collections for each type.

They soon realize they are the exception to that rule because they do 

not know all the types they may have. The number of types can grow 

quite large, and managing a large number of collections is less prefera-

ble to managing types within a single collection.

By using requirements for reports and keeping in mind some basic 

design principles, the analysts are able to quickly create an initial 

schema for tracking a complex set of shipment manifests.
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Review Questions

1. What are the advantages of normalization?

2.  What are the advantages of denormalization?

3. Why are joins such costly operations?

4. How do document database modelers avoid costly joins?

5. How can adding data to a document cause more work for the I/O 

subsystem in addition to adding the data to a document?

6. How can you, as a document database modeler, help avoid that 

extra work mentioned in Question 5?

7. Describe a situation where it would make sense to have many 

indexes on your document collections.

8. What would cause you to minimize the number of indexes on your 

document collection?

9. Describe how to model a many-to-many relationship.

10. Describe three ways to model hierarchies in a document database.
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hierarchical data model systems, 
12-14

network data management 
systems, 14-17

scalability, 29-31

document databases, 182

avoiding explicit schema 
definitions, 199-201

basic operations, 201

collections, 218

deleting from collections, 204-206

denormalization, 235

embedded documents, 218-219

horizontal partitions, 227-231

HTML, 182-187

inserting into collections, 202-204

key-value pairs, 187

managing in collections, 188-198

normalization, 233-234

partitions, 224

polymorphic schemas, 223

query processors, 235-236

retrieving from collections, 
208-209

schemaless, 220-222

terminology, 214-217

updating in collections, 206-208

vertical partitions, 225-227

graph databases, 363-364, 
400-401

advantages of, 372-376

intersections, 386

network modeling, 365-371

operations, 385

optimizing, 415-419

queries, 405-415

social networks, 401-404

traversal, 387

unions, 385

key-value databases

limitations, 159-162

partitioning, 144-151

patterns, 162-173

keys, 103

constructing, 103-104

locating values, 105-110

mobile applications, 174-177

parameters, 313

relational databases, 4-5

e-commerce applications, 5-6

history of, 19-29
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secondary indexes, 345-347

structured values, 151

optimizing values, 155-159

reducing latency, 152-155

values, 110-113

consistency, 49-51

ACID, 54

BASE, 56-59

CAP theorem, 51-54

of data, 42-48

eventual, 57-59

levels, 321-322

monotonic read, 58

sessions, 58

constraints, 24

constructing keys, 103-104

conventions, naming, 145

costs, 31

Couchbase, 478

CQL (Cassandra’s Query 
Language), 311

create function, 90

cycles, traversing graphs, 417

Cypher, 408-415

D

Data Definition Language. See DDL

data dictionaries, 22-23

data management. See management

Data Manipulation Language. 
See DML

data models, 92

data types

keys, 216-217

values, 216-217

databases

column families

anti-entropy, 323-324

applying, 303-304

architecture, 293-302

big data tools, 348-356

clusters, 314-316

columns, 310-313

comparing to other databases, 
286-292

dynamic control over 
columns, 280

Google BigTable, 279-285

gossip protocols, 324-325

hinted handoffs, 325-326

implementing, 313-322

indexing, 281, 340-348

keyspaces, 309

locations of data, 282-283

maintaining rows in sorted order, 
284-285

partitions, 316

reading/writing atomic rows, 
283-284

replication, 322

row keys, 309-310

selecting, 431-432

tables, 332-340

terminology, 308

design, 4-5, 29

availability, 32-33

costs, 31

e-commerce applications, 5-6

flexibility, 31-32

scalability, 29-31

distributed, 299-300
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document, 182

applying modelers, 248-254

avoiding explicit schema 
definitions, 199-201

balancing denormalization/
normalization, 241

basic operations, 201

collections, 218

deleting from collections, 204-206

denormalization, 235

embedded documents, 218-219

executing joins, 245-248

Goldilocks Zone of indexes, 
258-260

hierarchies, 265-266

horizontal partitions, 227-231

HTML, 182-187

inserting into collections, 202-204

joins, 243-245

key-value pairs, 187

managing in collections, 188-198

many-to-many relationships, 243, 
263-264

modeling common relations, 261

normalization, 233-234

one-to-many relationships, 
242-263

partitions, 224

planning mutable documents, 
255-258

polymorphic schemas, 223

query processors, 235-236

retrieving from collections, 
208-209

schemaless, 220-222

selecting, 430

terminology, 214-217

updating in collections, 206-208

vertical partitions, 225-227

graph, 363-364

advantages of, 372-376

betweenness, 391

bigraphs, 394

closeness, 390-391

degrees, 390

design, 400-401

directed/undirected, 392-393

edges, 381-382

flow networks, 393

intersections, 386

isomorphism, 388-389

loops, 384

multigraphs, 395

network modeling, 365-371

operations, 385

optimizing, 415-419

order/size, 389

paths, 383

properties, 388

queries, 405-415

selecting, 433

social networks, 401-404

terminology, 380

traversal, 387

types of, 392

unions, 385

vertices, 380-381

weighted graphs, 395-396

key-value

architecture, 131-136

arrays, 82-84

associative arrays, 84-85
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caches, 85-88

features, 91-95

implementing, 137-140

in-memory, 89-90

keys, 103-110

limitations, 159-162

models, 118-131

on-disk, 89-90

partitioning, 144-151

patterns, 162-173

scalability, 95-102

selecting, 429

values, 110-113

key-values case study, 174-177

management

early systems, 6, 17-18

flat file systems, 7-11

hierarchical data model systems, 
12-14

network data management 
systems, 14-17

relational

history of, 19-29

using with NoSQL, 434-436

selecting, 428

types of, 59, 477-480

column family databases, 69-71

distributed databases, 41-54

document databases, 66-68

graph databases, 71-75

key-value pair databases, 60-65

DDL (Data Definition Language), 
24-25

degrees, 390

delete function, 90

DELETE statements, 27

deleting documents from collections, 
204-206

denormalization, 28, 155, 235

benefits of, 249-250

document database design, 
241-243

overusing, 251-253

tables, 333

depth, traversing graphs, 412

design. See also configuration

collections, 191-193

column family databases

big data tools, 348-356

indexing, 340-348

tables, 332-340

databases, 29

availability, 32-33

costs, 31

early systems, 6, 17-18

flat file systems, 7-11

flexibility, 31-32

hierarchical data model systems, 
12-14

network data management 
systems, 14-17

scalability, 29-31

document databases, 182

applying modelers, 248-254

avoiding explicit schema 
definitions, 199-201

balancing denormalization/
normalization, 241

basic operations, 201

collections, 218

deleting from collections, 204-206

denormalization, 235

embedded documents, 218-219
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executing joins, 245-248

Goldilocks Zone of indexes, 
258-260

hierarchies, 265-266

horizontal partitions, 227-231

HTML, 182-187

inserting into collections, 202-204

joins, 243-245

key-value pairs, 187

managing in collections, 
188-198

many-to-many relationships, 243, 
263-264

modeling common relations, 261

normalization, 233-234

one-to-many relationships, 242, 
262-263

partitions, 224

planning mutable documents, 
255-258

polymorphic schemas, 223

query processes, 235-236

retrieving from collections, 
208-209

schemaless, 220-222

terminology, 214-217

updating in collections, 206-208

vertical partitions, 225-227

graph databases, 363-364, 
400-401

advantages of, 372-376

intersections, 386

network modeling, 365-371

operations, 385

optimizing, 415-419

queries, 405-415

social networks, 401-404

traversal, 387

unions, 385

key-value databases

limitations, 159-162

partitioning, 144-151

patterns, 162-173

mobile applications, 174-177

relational databases, 4-5

e-commerce applications, 5-6

history of, 19-29

secondary indexes, 345-347

structured values, 151

optimizing values, 155-159

reducing latency, 152-155

Design Patterns: Elements of 
Reusable Object-Oriented 
Software, 162

dictionaries, 22-23

Dijkstra algorithms, 395

Dijkstra, Edsger, 395

directed edges, 382. See also edges

directed graphs, 392-393

diseases, infectious, 366-368

distributed databases, 41, 299-300

availability, 44-48

CAP theorem, 51-54

consistency, 42-48

persistent storage, 41-42

quorums, 49-51

distributing data, 230

division, 119

DML (Data Manipulation Language), 
25-26

document databases, 66-68, 182

avoiding explicit schema 
definitions, 199-201
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basic operations, 201

collections

deleting from, 204-206

inserting into, 202-204

managing, 188-198

retrieving from, 208-209

updating in, 206-208

column family databases, 
286-292

design

applying modelers, 248-254

balancing denormalization/
normalization, 241

executing joins, 245-248

Goldilocks Zone of indexes, 
258-260

hierarchies, 265-266

joins, 243-245

many-to-many relationships, 243, 
263-264

modeling common relations, 261

one-to-many relationships, 242, 
262-263

planning mutable documents, 
255-258

HTML, 182-187

key-value pairs, 187

selecting, 430

terminology, 214-217

collections, 218

denormalization, 235

embedded documents, 218-219

horizontal partitions, 227-231

normalization, 233-234

partitions, 224

polymorphic schemas, 223

query processors, 235-236

schemaless, 220-222

vertical partitions, 225-227

duplicating data, 155

durability, 49, 51, 54

dynamic control over columns, 280

E

early systems, database 
management, 6, 17-18

flat file systems, 7-11

hierarchical data model systems, 
12-14

network data management 
systems, 14-17

e-commerce, 5-6, 433

edges, 381-382

degrees, 390

querying, 411

selecting, 416

elements of graphs, 380

edges, 381-382

loops, 384

paths, 383

vertices, 380-381

embedded documents, 218-219

entities, 120-121, 244

abstract/concrete, 369

aggregation, 166-169

multiple between relations, 
375-376

naming conventions, 145

single rows, 335

enumeration

keys, 170-171

tables, 165-166

epidemiology, 389



500 errors, write problems 

errors, write problems, 107-110

ETL (extracting, transforming, and 
loading data), 350-351

eventual consistency, types of, 
57-59

executing joins, 245-248

explicit schema definitions, avoiding, 
199-201

Extensible Markup Language. 
See XML

extracting, transforming, and 
loading data. See ETL

F

Facebook, 370. See also social media

features

column family databases, 286

key-value databases, 91

keys, 103-110

scalability, 95-102

simplicity, 91-92

speed, 93-95

values, 110-113

files, flat file data management 
systems, 7-11

filters, Bloom, 319-320

find method, 208

flat file data management systems, 
7-11

flexibility

document databases, 190

schemaless databases, 221

flexibility of databases, 31-32

flow networks, 393

for loops, 253

formatting. See also configuration

code, 145-147

document databases

HTML, 182-187

key-value pairs, 187

secondary indexes, 345-347

strings, 123

values, optimizing, 155-159

FoundationDB, 478

functions

addQueryResultsToCache, 88

create, 90

delete, 90

hash, 106-107, 137-138

indexes. See indexes

G

Gamma, Erich, 162

Ganglia, 355

geographic locations, modeling, 365

Global Positioning System. See GPS

Goldilocks Zone of indexes, 258-260

Google

BigTable, 279-285

Cloud Datastore, 478

gossip protocols, 296-299, 324-325

GPS (Global Positioning System), 435

graph databases, 71-75, 363-364

advantages of, 372-376

design, 400-401

queries, 405-410

social networks, 401-404

network modeling, 365-371

operations, 385

intersections, 386

traversal, 387

unions, 385
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properties, 388

betweenness, 391

closeness, 390-391

degrees, 390

order/size, 389

selecting, 433

terminology, 380

edges, 381-382

loops, 384

paths, 383

vertices, 380-381

types of, 392

bigraphs, 394

directed/undirected, 392-393

flow networks, 393

multigraphs, 395

weighted graphs, 395-396

graphs, traversal, 410-417

Gremlin, 410-418

groups, column family databases, 279

guidelines

column family databases, 431-432

databases, 428

document databases, 430

graph databases, 433

indexing, 340-348

key-value databases, 429

table design, 332-340

H
Hadoop, 285

Hadoop File System. See HDFS

handoffs, hinted, 300-302, 325-326

hashes, 122, 150

functions, 106-107, 137-138

partitions, 230

HBase, 285, 293-294, 478

HDFS (Hadoop File System), 293

Helm, Richard, 162

Hernandez, Michael J., 121

hierarchies

data model systems, 12-14

document databases, 265-266

hinted handoffs, 300-302, 325-326

history

early database management 
systems, 6, 17-18

flat file systems, 7-11

hierarchical data model systems, 
12-14

network data management 
systems, 14-17

of relational databases, 19-29

horizontal partitioning, 227-231

hotspotting, avoiding, 337-338

HTML (Hypertext Markup 
Language), document 
databases, 182-187

Hypertable, 479

I

identifiers, keys, 104. See also keys

if statements, caches, 88

implementation 

column family databases, 313-322

key-value databases, 137

collisions, 138

compression, 139-140

hash functions, 137-138

limitations, 149

indexes, 23, 171-173

collections, 217
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column family databases, 281, 
340-348

Goldilocks Zone of, 258-260

retrieval time, 415

infectious diseases, modeling, 
366-368

Infinispan, 479

in-memory caches, 86. See also 
arrays, associative

in-memory key-value databases, 
89-90

INSERT statements, 27

inserting documents into collections, 
202-204

instances, 121, 145

internal structures, 313

intersections of graphs, 386

isolation, ACID, 54

isomorphism, 388-389

J

Jackson, Ralph, 162

JavaScript Object Notation. See JSON

joins

avoiding, 372-375

executing, 245-248

need for, 243-245

tables, 333

JSON (JavaScript Object Notation), 
66, 123, 161

K

key-value databases, 60-65

architecture, 131

clusters, 131-133

replication, 135-136

rings, 133

arrays, 82-84

associative arrays, 84-85

caches, 85-88

case study, 174-177

column family databases, 286-292

design

partitioning, 144-151

patterns, 162-173

features, 91

scalability, 95-102

simplicity, 91-92

speed, 93-95

implementing, 137-140, 149

in-memory, 89-90

keys, 103

constructing, 103-104

locating values, 105-110

limitations, 159-162

models, 118-121

keys, 121-123

namespaces, 124-126

partitions, 126-129

schemaless, 129-131

values, 123-124

on-disk, 89-90

selecting, 429

values, 110-113

key-value pairs, 5

document databases, 187

ordered sets of, 215
keys, 60

constructing, 103-104
data types, 216-217
definition of, 121-123
enumerating, 170-171

indexes, 171-173
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key-value databases, 103

naming conventions, 145

partitioning, 129, 150-151

rows, 309-310, 337-338

shard, 229

TTL, 163-164

values

locating, 105-110

searching, 160-161

keyspaces, 287, 309

L

languages

Cypher, 408-415

query (SQL), 24

DDL, 24-25

DML, 25-26

standard query, 161-162

latency, reducing, 152-155

laws of thermodynamics, 299-300

layers, abstraction, 120

least recently used. See LRU

LevelDB library, 140, 479

levels, consistency, 321-322

licenses, cost of, 31

limitations

of arrays, 84

of flat file data management 
systems, 9-11

of hierarchical data management 
systems, 14

of key-value databases, 159-162

of network data management 
systems, 17

of relational databases, 27-29

of values, 112-113

LinkedIn, 370. See also social media

linking records, 15

links. See edges

list-based partitioning, 231

lists, 122, 266

locating values, 105-110

location of data, 282-283

locations, modeling, 365

logs, commit, 317-318

loops, 384

for, 253

while, 148

LRU (least recently used), 94

Lucene, 162

M
machine learning, searching 

patterns, 353

magnetic tape, 7. See also storage

maintenance

availability of data, 44-48

consistency of data, 42-48

management

applications, 26-27

databases

design, 4-5

document databases in 
collections, 188-198

early systems, 6, 17-18

e-commerce applications, 5-6

flat file systems, 7-11

hierarchical data model systems, 
12-14

network data management 
systems, 14-17

distributed databases, 41

availability, 44-48
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CAP theorem, 51-54

consistency, 42-48

persistent storage, 41-42

quorums, 49-51

memory programs, 22

schemaless databases, 222

secondary indexes, 341-344

storage programs, 20-21

many-to-many relationships, 243, 
263-264

mapping queries, 406

MapReduce, 354

MapReduce programs, 355

Marklogic, 479

master-slave replication, 
scalability, 95

masterless replication, 98-102

MATCH operation, 409

media, social, 370

memory

caches, 86. See also caches

management programs, 22

TTL, 163-164

methods, find, 208

Microsoft Azure DocumentDB, 479

mobile applications, configuring, 
174-177

modelers, applying, 248-254

models

common relations, 261

entities, 335

hierarchies, 265-266

key-value databases, 92, 118-121

keys, 121-123

namespaces, 124-126

partition keys, 129

partitions, 126-127

schemaless, 129-131

values, 123-124

master-slave, 97

networks, 365-371

abstract/concrete entities, 369

geographic locations, 365

infectious diseases, 366-368

social media, 370

simplified, 375

MongoDB, 479

monitoring big data, 355-356

monotonic read consistency, 58

moving oversized documents, 
avoiding, 258

multigraphs, 395

multiple collections, 194

multiple relations between entities, 
375-376

multiplication, 119

multirow transactions, avoiding, 
290-291

mutable documents, planning, 
255-258

N

N documents, 253

names, columns, 281, 334

namespaces

definition of, 124-126

naming conventions, 146

naming conventions, keys, 145

Neo4j, 479

networks

data management systems, 14-17

flow, 393
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modeling, 365-371

abstract/concrete entities, 369

geographic location, 365

infectious diseases, 366-368

social media, 370, 401-404

nodes, 72, 363, 380

HBase, 293-294

properties, 388-389

normalization, 233-234, 241-243

NoSQL databases. See databases

O

on-disk key-value databases, 89-90

one-to-many relationships, 242, 
262-263

operations

graph databases, 385, 388-389

betweenness, 391

closeness, 390-391

degrees, 390

intersections, 386

order/size, 389

properties, 388

traversal, 387

unions, 385

MATCH, 409

OpsCenter, 356

optimizing

graph database design, 415-419

key-value databases, 93-102

keys, 103

constructing, 103-104

locating values, 105-110

queries, 372-375

values, 110-113, 155-159

oracle Berkeley DB, 479

Oracle Real Applications Clusters. 
See RACs

ordered lists, arrays, 84. 
See also arrays

ordered sets of key-value pairs, 215

organization. See management; 
storage

OrientDB, 480

oversized documents, avoiding 
moving, 258

overusing denormalization, 251-253

P

parameters, configuring, 313

parent-child relationships, 15

parent references, 265

partitioning

algorithms, 230

CAP theorem, 51-54

column family databases, 314-316

definition of, 126-127

key-value databases, 144-151

keys, 129

ranges, 150

types of, 224-231

paths, 383

patterns

code, 145-147

key-value databases, 162-173

searching, 353

peer-to-peer servers, Cassandra, 
295-302

performance

caches. See caches 

duplicating data, 155

graph databases, 415-419
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key-value databases, 93-102

keys, 145-147

queries, avoiding joins, 372-375

persistent data storage, 41-42

planning mutable documents, 
255-258

polymorphic schemas, 223

populations, 351

predicting with statistics, 351-352

primary indexes, 341. 
See also indexes

primary keys, 104. See also keys

processes, column family databases

anti-entropy, 323-324

gossip protocols, 324-325

hinted handoffs, 325-326

implementing, 313-322

replication, 322

processors, queries, 235-236

programs

caches. See caches

memory management, 22

RDBMSs, 20

storage management, 20-21

properties, graph databases

betweenness, 391

closeness, 390-391

degrees, 390

isomorphism, 388-389

order/size, 389

traversal, 388

protocols

column family databases

anti-entropy, 323-324

replication, 322

gossip, 296-299, 324, 325

Q

queries

caches. See caches

Cypher, 408-415

documents, 67

graph databases, 400, 405-415

normalization, 234

processors, 235-236

ranges, 161

subqueries, avoiding, 291-292

query languages, 24

SQL DDL, 24-25

SQL DML, 25-26

quorums, 49-51

R

RACs (Oracle Real Applications 
Clusters), 30

random access of data, 9
ranges

key-value database design, 
147-148

partitioning, 150, 230
queries, 161

RavenDB, 480
RDBMSs (relational database 

management systems), 19-29
read-heavy applications, 259
read/writer operations, 

troubleshooting, 155-159
reading

from arrays, 83
atomic rows, 283-284

records
hierarchical data management 

systems, 12

linking, 15
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Redis, 124, 480

reducing

anomalies, 254

latency, 152-155

relational database management 
systems. See RDBMSs

relational databases

column family databases, 
289-292

design, 4-6

history of, 19-29

NoSQL, using with, 434-436

relationships, 15, 72

common, 261

many-to-many, 243, 263-264

multiple between entities, 375-376

one-to-many, 242, 262-263

remove command, 204

replicas, comparing, 323

replication

column family databases, 322

definition of, 135-136

masterless, 98-102

master-slave, 95

response times, 49-51

retrieval time, optimizing, 415

retrieving documents from 
collections, 208-209

Riak, 480

rings, definition of, 133

root nodes, 12

rows, 121. See also column family 
databases

atomic, 283-284

indexing, 281

keys, 309-310, 337-338

rules

constraints, 24

Third Normal Form, 234

S

scalability, 29-31

of graph databases, 418-419

key-value databases, 95-102

keys, 123

master-slave replication, 95

masterless replication, 98-102

schemaless, 129-131, 220-222

schemas, 23

explicit definitions, 199-201

polymorphic, 223

searching. See also queries

indexes, 171-173

patterns, 353

values, 105-113, 160-161

secondary indexes. See also indexes

applying, 345-347

managing, 341-344

SELECT statements, 27

selecting

databases, 428

column family, 431-432

document, 430

graph, 433

key-value, 429

edges, 416

separating data, 229

sequential access to data, 7

sessions, consistency, 58

sharding, 227-231

sharing code, 195-198



508 simplicity of key-value databases 

simplicity of key-value databases, 
91-92

simplified modeling, 375

single rows, 335

sink vertices, 393

sizing

graphs, 389

values, 155-159

SKUs (stock keeping units), 336

social media, modeling, 370

social network designs, 401-404

Solr, 162

sorted sets, 122

sorting rows, 284-285

source vertices, 393

Spark, 354-355

Sparksee, 480

speed, key-value databases, 93-95

SQL (Structured Query Language)

DDL, 24-25

DML, 25-26

Sqrrl, 480

standard query languages, 161-162

state, BASE, 56-59

statements

DELETE, 27

if, 88

INSERT, 27

SELECT, 27

UPDATE, 27

statistics, predicting with, 351-352

stock keeping units. See SKUs

storage

caches. See caches

column family databases, 
282-283, 334

flat file data management 
systems, 7

keys, 104. See also keys

management programs, 20-21

persistent data, 41-42

rows, 310

values, 110-113

strings, formatting, 123

strong typing values, 110-111

structured value design, 151-159

structures

column family databases, 313-322

columns, 310-313

key-value databases, 91-92

keyspaces, 309

subqueries, avoiding, 291-292

subtraction, 118

subtypes

aggregation, 166-169

code sharing, 195-198

support, range queries, 161

T

tables, 23, 121, 244

column family databases, 
332-340

emulating, 165-166

secondary indexes, 345-347

terminology

column family databases, 308-313

keyspaces, 309

row keys, 309-310

document databases, 214-217

collections, 218

denormalization, 235

embedded documents, 218-219
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horizontal partitions, 227-231

normalization, 233-234

partitions, 224

polymorphic schemas, 223

query processors, 235-236

schemaless, 220-222

vertical partitions, 225-227

graph databases, 380

edges, 381-382

loops, 384

paths, 383

vertices, 380-381

key-value database architecture, 
131, 137-140

clusters, 131-133

replication, 135-136

rings, 133

key-value database modeling, 
118-121

keys, 121-123

namespaces, 124-126

partition keys, 129

partitions, 126-127

schemaless, 129-131

values, 123-124

thermodynamics, laws of, 299-300

Third Normal Form, 234

time, optimizing retrieval, 415

time stamps, indexing, 281

Time to Live. See TTL

TinkerPop, 418

Titan, 418, 480

tools, big data, 348-356

transactions, 45

ACID, 429. See also ACID

atomic aggregation, 169-170

consistency of, 47-48

multirow, avoiding, 290-291

transportation networks, 393

traversal, graphs, 387, 410-417

troubleshooting

read/write operations, 155-159

write problems, 107-110

TTL (Time to Live) keys, 163-164

types

data. See data types

of databases, 59, 477-480

distributed databases, 41-54

document databases, 66-68

graph databases, 71-75

key-value pair databases, 60-65

of edges, 382

of eventual consistency, 57-59

of graphs, 392

bigraphs, 394

directed/undirected, 392-393

flow networks, 393

multigraphs, 395

weighted graphs, 395-396

of partitions, 224

horizontal, 227-231

vertical, 225-227

U

undirected edges, 382. 
See also edges

undirected graphs, 392-393

unions of graphs, 385

update command, 207

UPDATE statements, 27

updating documents in collections, 
206-208
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V

validation of code, 222

valueless columns, 334

values, 64, 110-113

arrays. See arrays

atomic aggregation, 169-170

columns

avoiding complex data structures, 
339-340

storage, 334

versions, 338

data types, 216-217

definition of, 123-124

indexes, 171-173

key-value databases

architecture terms, 131-136

design, 147-148

modeling terms, 118-131

keys, 105-110, 215

optimizing, 155-159

searching, 112-113, 160-161

structured design, 151-159

versions, column values, 338

vertical partitioning, 225-227

vertices, 380-381, 363. See also 
nodes

betweenness, 391

closeness, 390-391

degrees, 390

graph traversal, 387

views, 23

Vlissides, John, 162

W

weight of edges, 382. See also edges

weighted graphs, 395-396

while loops, 148

write-heavy applications, 260-261

write problems, avoiding, 107-110

writing atomic rows, 283-284

X

XML (Extensible Markup 
Language), 66

Z

zones, Goldilocks Zone of indexes, 
258-260

Zookeeper, 293-294
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