
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134000022
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134000022
https://plusone.google.com/share?url=http://www.informit.com/title/9780134000022
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134000022
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134000022/Free-Sample-Chapter

Linux® Firewalls

Fourth Edition

This page intentionally left blank

Linux® Firewalls
Enhancing Security with

nftables and Beyond

Fourth Edition

Steve Suehring

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Suehring, Steve.
 Linux firewalls : enhancing security with nftables and beyond.—Fourth edition / Steve Suehring.
 pages cm
 Earlier ed. authored by Robert L. Ziegler.
 Includes bibliographical references and index.
 ISBN 978-0-13-400002-2 (pbk. : alk. paper)—ISBN 0-13-400002-1 (pbk. : alk. paper)
 1. Computers—Access control. 2. Firewalls (Computer security) 3. Linux. 4. Operating systems
(Computers) I. Title.
 QA76.9.A25Z54 2015
 005.8—dc2

2014043643

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

Permission is granted to copy, distribute, and/or modify Figures 3.1 through 3.4 under the terms
of the GNU Free Documentation License, Version 1.3, or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in Appendix D, “GNU Free Documentation License.”

ISBN-13: 978-0-13-400002-2
ISBN-10: 0-13-400002-1
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, January 2015

�

This book is dedicated to Jim Leu,
without whom I couldn’t have written a book on Linux.

�

This page intentionally left blank

viivii

Contents at a Glance
Contents ix

 Preface xix

 About the Author xxi

I: Packet Filtering and Basic Security Measures 1

 1 Preliminary Concepts Underlying Packet-Filtering
Firewalls 3

 2 Packet-Filtering Concepts 25

 3 iptables: The Legacy Linux Firewall Administration
Program 51

 4 nftables: The Linux Firewall Administration
Program 83

 5 Building and Installing a Standalone Firewall 95

II: Advanced Issues, Multiple Firewalls, and Perimeter
Networks 143

 6 Firewall Optimization 145

 7 Packet Forwarding 179

 8 NAT—Network Address Translation 197

 9 Debugging the Firewall Rules 211

 10 Virtual Private Networks 229

III: Beyond iptables and nftables 235

 11 Intrusion Detection and Response 237

 12 Intrusion Detection Tools 249

 13 Network Monitoring and Attack Detection 263

 14 Filesystem Integrity 295

viii viii Contents at a Glance

IV: Appendices 311

 A Security Resources 313

 B Firewall Examples and Support Scripts 315

 C Glossary 351

 D GNU Free Documentation License 363

 Index 371

ixix

Contents
Preface xix

 About the Author xxi

I: Packet Filtering and Basic Security Measures 1

 1 Preliminary Concepts Underlying Packet-Filtering
Firewalls 3

The OSI Networking Model 5

Connectionless versus Connection-Oriented
Protocols 7

Next Steps 7

The Internet Protocol 7

IP Addressing and Subnetting 8

IP Fragmentation 11

Broadcasting and Multicasting 11

ICMP 12

Transport Mechanisms 14

UDP 14

TCP 14

Don’t Forget Address Resolution Protocol 17

Hostnames and IP Addresses 18

IP Addresses and Ethernet Addresses 18

Routing: Getting a Packet from Here to There 19

Service Ports: The Door to the Programs on Your
System 19

A Typical TCP Connection: Visiting a Remote
Website 20

Summary 23

 2 Packet-Filtering Concepts 25

A Packet-Filtering Firewall 26

Choosing a Default Packet-Filtering Policy 29

Rejecting versus Denying a Packet 31

Filtering Incoming Packets 31

Remote Source Address Filtering 31

Local Destination Address Filtering 34

x x Contents

Remote Source Port Filtering 35

Local Destination Port Filtering 35

Incoming TCP Connection State Filtering 35

Probes and Scans 36

Denial-of-Service Attacks 39

Source-Routed Packets 46

Filtering Outgoing Packets 46

Local Source Address Filtering 47

Remote Destination Address Filtering 47

Local Source Port Filtering 48

Remote Destination Port Filtering 48

Outgoing TCP Connection State Filtering 48

Private versus Public Network Services 49

Protecting Nonsecure Local Services 50

Selecting Services to Run 50

Summary 50

 3 iptables: The Legacy Linux Firewall Administration
Program 51

Differences between IPFW and Netfilter Firewall
Mechanisms 51

IPFW Packet Traversal 52

Netfilter Packet Traversal 54

Basic iptables Syntax 54

iptables Features 55

NAT Table Features 58

mangle Table Features 60

iptables Syntax 61

filter Table Commands 62

filter Table Target Extensions 67

filter Table Match Extensions 68

nat Table Target Extensions 79

mangle Table Commands 81

Summary 82

 4 nftables: The Linux Firewall Administration
Program 83

Differences between iptables and nftables 83

Basic nftables Syntax 83

xixiContents xi

nftables Features 84

nftables Syntax 85

Table Syntax 85

Chain Syntax 86

Rule Syntax 87

Basic nftables Operations 91

nftables File Syntax 92

Summary 93

 5 Building and Installing a Standalone Firewall 95

The Linux Firewall Administration Programs 96

Build versus Buy: The Linux Kernel 97

Source and Destination Addressing Options 98

Initializing the Firewall 99

Symbolic Constants Used in the Firewall
Examples 100

Enabling Kernel-Monitoring Support 101

Removing Any Preexisting Rules 103

Resetting Default Policies and Stopping
the Firewall 104

Enabling the Loopback Interface 105

Defining the Default Policy 106

Using Connection State to Bypass Rule
Checking 107

Source Address Spoofing and Other Bad
Addresses 108

Protecting Services on Assigned Unprivileged Ports 112

Common Local TCP Services Assigned
to Unprivileged Ports 113

Common Local UDP Services Assigned
to Unprivileged Ports 116

Enabling Basic, Required Internet Services 117

Allowing DNS (UDP/TCP Port 53) 118

Enabling Common TCP Services 122

Email (TCP SMTP Port 25, POP Port 110,
IMAP Port 143) 123

SSH (TCP Port 22) 128

FTP (TCP Ports 21, 20) 130

Generic TCP Service 133

xii xii Contents

Enabling Common UDP Services 134

Accessing Your ISP’s DHCP Server
(UDP Ports 67, 68) 134

Accessing Remote Network Time Servers
(UDP Port 123) 136

Logging Dropped Incoming Packets 138

Logging Dropped Outgoing Packets 138

Installing the Firewall 139

Tips for Debugging the Firewall Script 139

Starting the Firewall on Boot with Red Hat
and SUSE 140

Starting the Firewall on Boot with Debian 141

Installing a Firewall with a Dynamic IP Address 141

Summary 141

II: Advanced Issues, Multiple Firewalls,
and Perimeter Networks 143

 6 Firewall Optimization 145

Rule Organization 145

Begin with Rules That Block Traffic on High
Ports 145

Use the State Module for ESTABLISHED
and RELATED Matches 146

Consider the Transport Protocol 146

Place Firewall Rules for Heavily Used Services
as Early as Possible 147

Use Traffic Flow to Determine Where to Place Rules
for Multiple Network Interfaces 147

User-Defined Chains 148

Optimized Examples 151

The Optimized iptables Script 151

Firewall Initialization 153

Installing the Chains 155

Building the User-Defined EXT-input
and EXT-output Chains 157

tcp-state-flags 165

connection-tracking 166

local-dhcp-client-query and
remote-dhcp-server-response 166

xiiixiiiContents xiii

source-address-check 167

destination-address-check 168

Logging Dropped Packets with iptables 168

The Optimized nftables Script 170

Firewall Initialization 170

Building the Rules Files 172

Logging Dropped Packets with nftables 175

What Did Optimization Buy? 176

iptables Optimization 176

nftables Optimization 177

Summary 177

 7 Packet Forwarding 179

The Limitations of a Standalone Firewall 179

Basic Gateway Firewall Setups 181

LAN Security Issues 182

Configuration Options for a Trusted Home LAN 183

LAN Access to the Gateway Firewall 184

LAN Access to Other LANs: Forwarding Local Traffic
among Multiple LANs 186

Configuration Options for a Larger or Less Trusted
LAN 188

Dividing Address Space to Create Multiple
Networks 188

Selective Internal Access by Host, Address Range,
or Port 190

Summary 195

 8 NAT—Network Address Translation 197

The Conceptual Background of NAT 197

NAT Semantics with iptables and nftables 201

Source NAT 203

Destination NAT 205

Examples of SNAT and Private LANs 206

Masquerading LAN Traffic to the Internet 206

Applying Standard NAT to LAN Traffic
to the Internet 208

Examples of DNAT, LANs, and Proxies 209

Host Forwarding 209

Summary 210

xiv xiv Contents

9 Debugging the Firewall Rules 211

General Firewall Development Tips 211

Listing the Firewall Rules 213

iptables Table Listing Example 213

nftables Table Listing Example 216

Interpreting the System Logs 217

syslog Configuration 217

Firewall Log Messages: What Do They Mean? 220

Checking for Open Ports 223

netstat -a [-n -p -A inet] 224

Checking a Process Bound to a Particular Port
with fuser 226

Nmap 227

Summary 227

 10 Virtual Private Networks 229

Overview of Virtual Private Networks 229

VPN Protocols 229

PPTP and L2TP 229

IPsec 230

Linux and VPN Products 232

Openswan/Libreswan 233

OpenVPN 233

PPTP 233

VPN and Firewalls 233

Summary 234

III: Beyond iptables and nftables 235

11 Intrusion Detection and Response 237

Detecting Intrusions 237

Symptoms Suggesting That the System Might
Be Compromised 238

System Log Indications 239

System Configuration Indications 239

Filesystem Indications 240

User Account Indications 240

Security Audit Tool Indications 241

System Performance Indications 241

xvxvContents xv

What to Do If Your System Is Compromised 241

Incident Reporting 243

Why Report an Incident? 243

What Kinds of Incidents Might You Report? 244

To Whom Do You Report an Incident? 246

What Information Do You Supply? 246

Summary 247

 12 Intrusion Detection Tools 249

Intrusion Detection Toolkit: Network Tools 249

Switches and Hubs and Why You Care 250

ARPWatch 251

Rootkit Checkers 251

Running Chkrootkit 251

What If Chkrootkit Says the Computer
Is Infected? 253

Limitations of Chkrootkit and Similar Tools 253

Using Chkrootkit Securely 254

When Should Chkrootkit Be Run? 255

Filesystem Integrity 255

Log Monitoring 256

Swatch 256

How to Not Become Compromised 257

Secure Often 257

Update Often 258

Test Often 259

Summary 261

 13 Network Monitoring and Attack Detection 263

Listening to the Ether 263

Three Valuable Tools 264

TCPDump: A Simple Overview 265

Obtaining and Installing TCPDump 266

TCPDump Options 267

TCPDump Expressions 269

Beyond the Basics with TCPDump 272

xvi xvi Contents

Using TCPDump to Capture Specific Protocols 272

Using TCPDump in the Real World 272

Attacks through the Eyes of TCPDump 280

Recording Traffic with TCPDump 284

Automated Intrusion Monitoring with Snort 286

Obtaining and Installing Snort 287

Configuring Snort 288

Testing Snort 289

Receiving Alerts 290

Final Thoughts on Snort 291

Monitoring with ARPWatch 291

Summary 293

 14 Filesystem Integrity 295

Filesystem Integrity Defined 295

Practical Filesystem Integrity 295

Installing AIDE 296

Configuring AIDE 297

Creating an AIDE Configuration File 297

A Sample AIDE Configuration File 299

Initializing the AIDE Database 300

Scheduling AIDE to Run Automatically 301

Monitoring AIDE for Bad Things 301

Cleaning Up the AIDE Database 302

Changing the Output of the AIDE Report 303

Obtaining More Verbose Output 305

Defining Macros in AIDE 306

The Types of AIDE Checks 307

Summary 310

IV: Appendices 311

A Security Resources 313

Security Information Sources 313

Reference Papers and FAQs 314

 B Firewall Examples and Support Scripts 315

iptables Firewall for a Standalone System
from Chapter 5 315

xviixviiContents xvii

nftables Firewall for a Standalone System
from Chapter 5 328

Optimized iptables Firewall from Chapter 6 332

nftables Firewall from Chapter 6 345

 C Glossary 351

 D GNU Free Documentation License 363

0. Preamble 363

1. Applicability and Definitions 363

2. Verbatim Copying 365

3. Copying in Quantity 365

4. Modifications 366

5. Combining Documents 367

6. Collections of Documents 368

7. Aggregation with Independent Works 368

8. Translation 368

9. Termination 369

10. Future Revisions of this License 369

11. Relicensing 370

 Index 371

This page intentionally left blank

Preface

Welcome to the fourth edition of Linux® Firewalls. The book looks at what it takes to
build a firewall using a computer running Linux. The material covered includes some
basics of networking, IP, and security before jumping into iptables and nftables, the
latest firewall software in Linux.

A reader of this book should be running a Linux computer, whether standalone or as
a firewall or Internet gateway. The book shows how to build a firewall for a single client
computer such as a desktop and also shows how to build a firewall behind which multiple
computers can be hosted on a local network.

The final part of the book shows aspects of computer and network security beyond
iptables and nftables. This includes intrusion detection, filesystem monitoring, and
listening to network traffic. The book is largely Linux agnostic, meaning that just about
any popular flavor of Linux will work with the material with little or no adaptation.

Acknowledgments
I’d like to thank my wife, family, and friends for their unending support. Thanks also to
Robert P.J. Day and Andrew Prowant for reviewing the manuscript.

This page intentionally left blank

About the Author

Steve Suehring is a technology architect specializing in Linux and Windows systems
and development. Steve has written several books and magazine articles on a wide range
of technologies. During his tenure as an editor at LinuxWorld magazine, Steve wrote and
edited articles and reviews on Linux security and advocacy including a feature story on
the use of Linux in Formula One auto racing.

This page intentionally left blank

This page intentionally left blank

2
Packet-Filtering Concepts

What is a firewall? Over the years, the term has changed in meaning. According to
RFC 2647, “Benchmarking Terminology for Firewall Performance,” a firewall is “a device
or group of devices that enforces an access control policy between networks.” This defi-
nition is very broad, purposefully so in fact. A firewall can encompass many layers of the
OSI model and may refer to a device that does packet filtering, performs packet inspec-
tion and filtering, implements a policy on an application at a higher layer, or does any of
these and more.

A nonstateful, or stateless, firewall usually performs some packet filtering based solely
on the IP layer (Layer 3) of the OSI model, though sometimes higher-layer protocols are
involved in this type of firewall. An example of this type of device might include a bor-
der router that sits at the edge of a network and implements one or more access lists to
prevent various types of malicious traffic from entering the network. Some might argue
that this type of device isn’t a firewall at all. However, it certainly appears to fit within the
RFC definition.

A border router access list might implement many different policies depending on
which interface the packet was received on. It’s typical to filter certain packets at the edge
of the network connecting to the Internet. These packets are discussed later in this chapter.

As opposed to a stateless firewall, a stateful firewall is one that keeps track of the pack-
ets previously seen within a given session and applies the access policy to packets based
on what has already been seen for the given connection. A stateful firewall implies the
basic packet-filtering capabilities of a stateless firewall as well. A stateful firewall will, for
example, keep track of the stages of the TCP three-way handshake and reject packets that
appear out of sequence for that handshake. Being connectionless, UDP is somewhat trick-
ier to handle for a stateful firewall because there’s no state to speak of. However, a stateful
firewall tracks recent UDP exchanges to ensure that a packet that has been received relates
to a recent outgoing packet.

An Application-level gateway (ALG), sometimes referred to an as an Application-layer gate-
way, is yet another form of firewall. Unlike the stateless firewall, which has knowledge of
the Network and possibly Transport layers, an ALG primarily handles Layer 7, the Applica-
tion layer of the OSI model. ALGs typically have deep knowledge of the application data

26 Chapter 2 Packet-Filtering Concepts

being passed and can thus look for any deviation from the normal traffic for the application
in question.

An ALG will typically reside between the client and the real server and will, for all
intents and purposes, mimic the behavior of the real server to the client. In effect, local
traffic never leaves the LAN, and remote traffic never enters the LAN.

ALG sometimes also refers to a module, or piece of software that assists another fire-
wall. Many firewalls come with an FTP ALG to support FTP’s port mode data channel,
where the client tells the server what local port to connect to so that it can open the data
channel. The server initiates the incoming data channel connection (whereas, usually, the
client initiates all connections). ALGs are frequently required to pass multimedia protocols
through a firewall because multimedia sessions often use multiple connections initiated
from both ends and generally use TCP and UDP together.

ALG is a proxy. Another form of proxy is a circuit-level proxy. Circuit-level proxies don’t
usually have application-specific knowledge, but they can enforce access and authoriza-
tion policies, and they serve as termination points in what would otherwise be an end-
to-end connection. SOCKS is an example of a circuit-level proxy. The proxy server acts
as a termination point for both sides of the connection, but the server doesn’t have any
application-specific knowledge.

In each of these cases, the firewall’s purpose is to enforce the access control or security
policies that you define. Security policies are essentially about access control—who is and
is not allowed to perform which actions on the servers and networks under your control.

Though not necessarily specific to a firewall, firewalls many times find themselves
performing additional tasks, some of which might include Network Address Translation
(NAT), antivirus checking, event notification, URL filtering, user authentication, and
Network-layer encryption.

This book covers the ideas behind a packet-filtering firewall, both static and dynamic,
or stateless and stateful. Each of the approaches mentioned controls which services can be
accessed and by whom. Each approach has its strengths and advantages based on the dif-
fering information available at the various OSI reference model layers.

Chapter 1, “Preliminary Concepts Underlying Packet-Filtering Firewalls,” introduced
the concepts and information a firewall is based on. This chapter introduces how this
information is used to implement firewall rules.

A Packet-Filtering Firewall
At its most basic level, a packet-filtering firewall consists of a list of acceptance and denial
rules. These rules explicitly define which packets will and will not be allowed through the
network interface. The firewall rules use the packet header fields described in Chapter 1 to
decide whether to forward a packet to its destination, to silently throw away the packet, or
to block the packet and return an error condition to the sending machine. These rules can
be based on a wide array of factors, including the source or destination IP addresses, the
source and (more commonly) destination ports, and portions of individual packets such as
the TCP header flags, the types of protocol, the MAC address, and more.

A Packet-Filtering Firewall 27

MAC address filtering is not common on Internet-connected firewalls. Using MAC
filtering, the firewall blocks or allows only certain MAC addresses. However, in all likeli-
hood you see only one MAC address, the one from the router just upstream from your
firewall. This means that every host on the Internet will appear to have the same MAC
address as far as your firewall can see. A common error among new firewall administrators
is to attempt to use MAC filtering on an Internet firewall.

Using a hybrid of the TCP/IP reference model, a packet-filtering firewall functions at
the Network and Transport layers, as shown in Figure 2.1.

The overall idea is that you need to very carefully control what passes between the
Internet and the machine that you have connected directly to the Internet. On the exter-
nal interface to the Internet, you individually filter what’s coming in from the outside and
what’s going out from the machine as exactly and explicitly as possible.

For a single-machine setup, it might be helpful to think of the network interface as an
I/O pair. The firewall independently filters what comes in and what goes out through the
interface. The input filtering and the output filtering can, and likely do, have completely
different rules. Figure 2.2 depicts processing for rules in a flowchart.

This sounds pretty powerful, and it is; but it isn’t a surefire security mechanism. It’s
only part of the story, just one layer in the multilayered approach to data security. Not
all application communication protocols lend themselves to packet filtering. This type of

Telnet Client Web Server

Application Layer

Client and server
programs

Transport Layer

TCP and UDP protocols
and service ports

Network Layer

IP packets, IP
addresses, and ICMP

messages

Datalink Layer

Ethernet frames and
MAC addresses

Firewall

TCP/UDP source and destination ports

TCP connection state flags

IP source and destination addresses

IP ICMP control codes

Network Interface Card

Physical Layer

Copper wire, fiberoptic
cable, microwave, radio

Figure 2.1 Firewall placement in the TCP/IP reference model

28 Chapter 2 Packet-Filtering Concepts

filtering is too low-level to allow fine-grained authentication and access control. These
security services must be furnished at higher levels. IP doesn’t have the capability to verify
that the sender is who he or she claims to be. The only identifying information available
at this level is the source address in the IP packet header. The source address can be modi-
fied with little difficulty. One level up, neither the Network layer nor the Transport layer
can verify that the application data is correct. Nevertheless, the packet level allows greater,
simpler control over direct port access, packet contents, and correct communication pro-
tocols than can easily or conveniently be done at higher levels.

Without packet-level filtering, higher-level filtering and proxy security measures are
either crippled or potentially ineffective. To some extent, at least, they must rely on the
correctness of the underlying communication protocol. Each layer in the security protocol
stack adds another piece that other layers can’t easily provide.

Figure 2.2 Input and output flowchart

Network interface

Match Rule 3?Incoming packet

Input chain

Match Rule 1?
Match Rule 2?

Match Rule 2?

No

Match Rule 3?

No

No

Match Rule 1?

Output chain

Outgoing packet

No

Choosing a Default Packet-Filtering Policy 29

Choosing a Default Packet-Filtering Policy
As stated earlier in this chapter, a firewall is a device to implement an access control policy.
A large part of this policy is the decision on a default firewall policy.

There are two basic approaches to a default firewall policy:

 � Deny everything by default, and explicitly allow selected packets through.
 � Accept everything by default, and explicitly deny selected packets from passing through.

Without question, the deny-everything policy is the recommended approach. This
approach makes it easier to set up a secure firewall, but each service and related protocol
transaction that you want must be enabled explicitly (see Figure 2.3). This means that you

Figure 2.3 The deny-everything-by-default policy

Yes Accept

IP packet

Firewall chain

Match Rule 1? Accept

Match Rule 2?

No

Yes

Yes

Match Rule 3?

No

Policy: DENY

No

Accept

30 Chapter 2 Packet-Filtering Concepts

must understand the communication protocol for each service you enable. The deny-
everything approach requires more work up front to enable Internet access. Some com-
mercial firewall products support only the deny-everything policy.

The accept-everything policy makes it much easier to get up and running right away,
but it forces you to anticipate every conceivable access type that you might want to dis-
able (see Figure 2.4). The danger is that you won’t anticipate a dangerous access type until
it’s too late, or you’ll later enable an insecure service without first blocking external access
to it. In the end, developing a secure accept-everything firewall is much more work, much
more difficult, almost always much less secure, and, therefore, much more error-prone.

Figure 2.4 The accept-everything-by-default policy

Yes Deny

IP packet

Firewall chain

Match Rule 1? Deny

Match Rule 2?

No

Yes

Yes

Match Rule 3?

No

Policy: ACCEPT

No

Deny

Filtering Incoming Packets 31

Rejecting versus Denying a Packet
The Netfilter firewall mechanism in iptables and nftables gives you the option of
either rejecting or dropping packets. What’s the difference? As shown in Figure 2.5, when
a packet is rejected, the packet is thrown away and an ICMP error message is returned to
the sender. When a packet is dropped, the packet is simply thrown away without any noti-
fication to the sender.

Silently dropping the packet is almost always the better choice, for three reasons. First,
sending an error response doubles the network traffic. The majority of dropped packets
are dropped because they are malevolent, not because they represent an innocent attempt
to access a service you don’t happen to offer. Second, a packet that you respond to can be
used in a denial-of-service (DoS) attack. Third, any response, even an error message, gives
the would-be attacker potentially useful information.

Filtering Incoming Packets
The input side of the external interface I/O pair, the input rule set, is the more interesting
in terms of securing your site. As mentioned earlier, you can filter based on source address,
destination address, source port, destination port, TCP status flags, and other criteria.
You’ll learn about all these pieces of information at one point or another in the following
sections.

Remote Source Address Filtering
At the packet level, the only means of identifying the IP packet’s sender is the source
address in the packet header. This fact allows for the possibility of source address spoof-
ing, in which the sender places an incorrect address rather than his or her own address in
the source field. The address might be a nonexistent address, or it might be a legitimate
address belonging to someone else. This can allow unsavory types to break into your

Figure 2.5 Rejecting versus denying a packet

Return error
to sender

Reject? Deny?

Yes

No

Yes

No

Packet

Discard

32 Chapter 2 Packet-Filtering Concepts

system by appearing as local, trusted traffic; appearing to be you while attacking other
sites; pretending to be someone else while attacking you; keeping your system bogged
down responding to nonexistent addresses; or otherwise misleading you as to the source of
incoming messages.

It’s important to remember that you usually can’t detect spoofed addresses. The address
might be legitimate and routable but might not belong to the packet’s sender. The next
section describes the spoofed addresses you can detect.

Source Address Spoofing and Illegal Addresses
There are several major classes of source addresses you should deny on your external
interface in all cases. These are incoming packets claiming to be from the following:

 � Your IP address—You will never see legal incoming packets claiming to be
from your machine. Because the source address is the only information available
and it can be modified, this is one of the forms of legitimate address spoofing you
can detect at the packet-filtering level. Incoming packets claiming to be from your
machine are spoofed. You can’t be certain whether other incoming packets are com-
ing from where they claim to be. (Note that some operating systems crash if they
receive a packet in which both the source and the destination addresses belong to
the host’s network interface.)

 � Your LAN addresses—You will rarely see legal incoming packets on the external,
Internet interface claiming to be from your LAN. It’s possible to see such packets if
the LAN has multiple access points to the Internet, but it would probably be a sign
of a misconfigured local network. In most cases, such a packet would be part of an
attempt to gain access to your site by exploiting your local trust relationships.

 � Class A, B, and C private IP addresses—These three sets of addresses in the
historical Class A, B, and C ranges are reserved for use in private LANs. They aren’t
intended for use on the Internet. As such, these addresses can be used by any site
internally without the need to purchase registered IP addresses. Your machine
should never see incoming packets from these source addresses:

 � Class A private addresses are assigned the range from 10.0.0.0 to
10.255.255.255.

 � Class B private addresses are assigned the range from 172.16.0.0 to
172.31.255.255.

 � Class C private addresses are assigned the range from 192.168.0.0 to
192.168.255.255.

 � Class D multicast IP addresses—IP addresses in the Class D range are set
aside for use as destination addresses when participating in a multicast network
broadcast, such as an audiocast or a videocast. They range from 224.0.0.0 to
239.255.255.255. Your machine should never see packets from these source
addresses.

Filtering Incoming Packets 33

 � Class E reserved IP addresses—IP addresses in the Class E range were set aside
for future and experimental use and are not assigned publicly. They range from
240.0.0.0 to 247.255.255.255. Your machine should never see packets from
these source addresses—and mostly likely won’t. (Because the entire address range is
permanently reserved up through 255.255.255.255, the Class E range can realisti-
cally be defined as 240.0.0.0 to 255.255.255.255. In fact, some sources define
the Class E address range to be exactly that.)

 � Loopback interface addresses—The loopback interface is a private network
interface used by the Linux system for local, network-based services. Rather than
sending local traffic through the network interface driver, the operating system
takes a shortcut through the loopback interface as a performance improvement. By
definition, loopback traffic is targeted for the system generating it. It doesn’t go out
on the network. The loopback address range is 127.0.0.0 to 127.255.255.255.
You’ll usually see it referred to as 127.0.0.1, localhost, or the loopback
interface, lo.

 � Malformed broadcast addresses—Broadcast addresses are special addresses
applying to all machines on a network. Address 0.0.0.0 is a special broadcast
source address. A legitimate broadcast source address will be either 0.0.0.0 or a
regular IP address. DHCP clients and servers will see incoming broadcast packets
from source address 0.0.0.0. This is the only legal use of this source address. It is
not a legitimate point-to-point, unicast source address. When seen as the source
address in a regular, point-to-point, nonbroadcast packet, the address is forged, or the
sender isn’t fully configured.

 � Class A network 0 addresses—As suggested previously, any source address in the
0.0.0.0 through 0.255.255.255 range is illegal as a unicast address.

 � Link local network addresses—DHCP clients sometimes assign themselves a
link local address when they can’t get an address from a server. These addresses range
from 169.254.0.0 to 169.254.255.255.

 � Carrier-grade NAT—There are IPs that are marked for use by Internet providers
that should never appear on a public network, the public Internet. These addresses
can, however, be used in cloud scenarios, and therefore, if your server is hosted at a
cloud provider, you may see these addresses. The carrier-grade NAT addresses range
from 100.64.0.0 to 100.127.255.255.

 � TEST-NET addresses—The address space from 192.0.2.0 to 192.0.2.255 is
reserved for test networks.

Blocking Problem Sites
Another common, but less frequently used, source address–filtering scheme is to block
all access from a selected machine or, more typically, from an entire network’s IP address
block. This is how the Internet community tends to deal with problem sites and ISPs that

34 Chapter 2 Packet-Filtering Concepts

don’t police their users. If a site develops a reputation as a bad Internet neighbor, other
sites tend to block it across the board.

On the individual level, blocking all access from selected networks is convenient when
individuals in the remote network are habitually making a nuisance of themselves. This has
historically been used as a means to fight unsolicited email, with some people going so far
as to block an entire country’s range of IP addresses.

Limiting Incoming Packets to Selected Remote Hosts
You might want to accept certain kinds of incoming packets from only specific external
sites or individuals. In these cases, the firewall rules will define either specific IP addresses
or a limited range of IP source addresses that these packets will be accepted from.

The first class of incoming packets is from remote servers responding to your requests.
Although some services, such as web or FTP services, can be expected to be coming from
anywhere, other services will legitimately be coming from only your ISP or specially
chosen trusted hosts. Examples of servers that are probably offered only through your ISP
are POP mail service, Domain Name Service (DNS) name server responses, and possible
DHCP or dynamic IP address assignments.

The second class of incoming packets is from remote clients accessing services offered
from your site. Again, although some incoming service connections, such as connections
to your web server, can be expected to be coming from anywhere, other local services will
be offered to only a few trusted remote users or friends. Examples of restricted local ser-
vices might be ssh and ping.

Local Destination Address Filtering
Filtering incoming packets based on the destination address is not much of an issue.
Under normal operation, your network interface card ignores regular packets that aren’t
addressed to it. The exception is broadcast packets, which are broadcast to all hosts on the
network.

The IPv4 address 255.255.255.255 is the general broadcast destination address. It
refers to all hosts on the immediate physical network segment, and it is called a limited
broadcast. A broadcast address can be defined more explicitly as the highest address in a
given subnet of IP addresses. For example, if your ISP’s network address is 192.168.10.0
with a 24-bit subnet mask (255.255.255.0) and your IP address is 192.168.10.30, you
would see broadcast packets addressed to 192.168.10.255 from your ISP. On the other
hand, if you have a smaller range of IP addresses, say a /30 (255.255.255.252), then you
have a total of four addresses: one network, two for hosts, and the broadcast. For example,
consider the network 10.3.7.4/30. In this network, 10.3.7.4 is the network address,
the two hosts would be 10.3.7.5 and 10.3.7.6, and the broadcast address would be
10.3.7.7. This /30 subnet configuration type is typically used between routers, though
the actual addresses themselves may vary. The only way to know what the broadcast
address will be for a given subnet is to know both an IP address within the subnet and the
subnet mask. These types of broadcasts are called directed subnet broadcasts and are delivered
to all hosts on that network.

Filtering Incoming Packets 35

Broadcast-to-destination address 0.0.0.0 is similar to the situation of point-to-point
packets claiming to be from the broadcast source address mentioned earlier, in the section
“Source Address Spoofing and Illegal Addresses.” Here, broadcast packets are directed to
source address 0.0.0.0 rather than to the destination address, 255.255.255.255. In this
case, there is little question about the packet’s intent. This is an attempt to identify your
system as a Linux machine. For historical reasons, networking code derived from BSD
UNIX returns an ICMP Type 3 error message in response to 0.0.0.0 being used as the
broadcast destination address. Other operating systems silently discard the packet. As such,
this is a good example of why dropping versus rejecting a packet makes a difference. In
this case, the error message itself is what the probe is looking for.

Remote Source Port Filtering
Incoming requests and connections from remote clients to your local servers will have a
source port in the unprivileged range. If you are hosting a web server, all incoming con-
nections to your web server should have a source port between 1024 and 65535. (That
the server port identifies the service is the intention but not the guarantee. You cannot be
certain that the server you expect is running at the port you expect.)

Incoming responses and connections from remote servers that you contacted will have
the source port that is assigned to the particular service. If you connect to a remote web-
site, all incoming messages from the remote server will have the source port set to 80 (or
whatever port the local client specified), the http service port number.

Local Destination Port Filtering
The destination port in incoming packets identifies the program or service on your
computer that the packet is intended for. As with the source port, all incoming requests
from remote clients to your services generally follow the same pattern, and all incoming
responses from remote services to your local clients follow a different pattern.

Incoming requests and connections from remote clients to your local servers will set
the destination port to the service number that you assigned to the particular service. For
example, an incoming packet destined for your local web server would normally have the
destination port set to 80, the http service port number.

Incoming responses from remote servers that you contacted will have a destination
port in the unprivileged range. If you connect to a remote website, all incoming messages
from the remote server will have a destination port between 1024 and 65535.

Incoming TCP Connection State Filtering
Incoming TCP packet acceptance rules can make use of the connection state flags associ-
ated with TCP connections. All TCP connections adhere to the same set of connection
states. These states differ between client and server because of the three-way handshake
during connection establishment. As such, the firewall can distinguish between incoming
traffic from remote clients and incoming traffic from remote servers.

36 Chapter 2 Packet-Filtering Concepts

Incoming TCP packets from remote clients will have the SYN flag set in the first packet
received as part of the three-way connection establishment handshake. The first connec-
tion request will have the SYN flag set, but not the ACK flag.

Incoming packets from remote servers will always be responses to the initial connec-
tion request initiated from your local client program. Every TCP packet received from
a remote server will have the ACK flag set. Your local client firewall rules will require all
incoming packets from remote servers to have the ACK flag set. Servers do not normally
attempt to initiate connections to client programs.

Probes and Scans
A probe is an attempt to connect to or get a response from an individual service port. A
scan is a series of probes to a set of different service ports. Scans are often automated.

Unfortunately, probes and scans are rarely innocent anymore. They are most likely the
initial information-gathering phase, looking for interesting vulnerabilities before launch-
ing an attack. Automated scan tools are widespread, and coordinated efforts by groups of
hackers are common. The security, or lack thereof, of many hosts on the Internet, along
with the proliferation of worms, viruses, and zombied machines, makes scans a constant
issue on the Internet.

General Port Scans
General port scans are indiscriminate probes across a large block of service ports, possibly
the entire range (see Figure 2.6). These scans are somewhat less frequent—or, at least, less
obvious—as more sophisticated, targeted stealth tools become available.

Targeted Port Scans
Targeted port scans look for specific vulnerabilities (see Figure 2.7). The newer, more
sophisticated tools attempt to identify the hardware, operating system, and software
versions. These tools are designed to identify targets that might be prone to a specific
vulnerability.

Common Service Port Targets
Common targets often are individually probed as well as scanned. The attacker might
be looking for a specific vulnerability, such as an insecure mail server, an unpatched web
server, or an open remote procedure call (RPC) portmap daemon.

A more extensive list of ports can be found at http://www.iana.org/assignments/port-
numbers. Only a few common ports are mentioned here, to give you the idea:

 � Incoming packets from reserved port 0 are always bogus. This port isn’t used
legitimately.

 � Probes of TCP ports 0 to 5 are a signature of the sscan program.
 � ssh (22/tcp), smtp (25/tcp), dns (53/tcp/udp), pop-3 (110/tcp), imap (143/
tcp), and snmp (161/udp), are favorite target ports. They represent some of the
most potentially vulnerable openings to a system, whether intrinsically, due to

http://www.iana.org/assignments/portnumbers
http://www.iana.org/assignments/portnumbers

Filtering Incoming Packets 37

Figure 2.6 A general port scan

Service Ports

TCP and/or UDP

1023

Up to 65,536 Probes

0

65535

General Scan

Figure 2.7 A targeted port scan

Service Ports

TCP and/or UDP

ssh (tcp 22)

smtp (tcp 25)

pop-3 (tcp 110)

sunrpc (udp 111)

imap (tcp 143)

Targeted Scan
5 Probes

38 Chapter 2 Packet-Filtering Concepts

common configuration errors, or due to known flaws in the software. Because
these services are so common, they are good examples of why you want to either
not offer them to the outside world, or very carefully offer them with controlled
outside access. NetBIOS (137-139/tcp/udp) and Server Message Block (SMB) on
Windows (445/tcp) probes are tediously common. They typically pose no threat to
a Linux system unless Samba is used on the system. The typical target is a Windows
system, in this case, but the scans are all too common.

Stealth Scans
Stealth port scans, by definition, aren’t meant to be detectable. They are based on how the
TCP protocol stack responds to unexpected packets, or packets with illegal state flag com-
binations. For example, consider an incoming packet that has the ACK flag set but has no
related connection. If the ACK were sent to a port with a listening server attached, the TCP
stack wouldn’t find a related connection and would return a TCP RST message to tell the
sender to reset the connection. If the ACK were sent to an unused port, the system would
simply return a TCP RST message as an error indication, just as the firewall might return
an ICMP error message by default.

The issue is further complicated because some firewalls test only for the SYN flag or
the ACK flag. If neither is set, or if the packet contains some other combination of flags,
the firewall implementation might pass the packet up to the TCP code. Depending on
the TCP state flag combination and the operating system receiving the packet, the system
will respond with an RST or with silence. This mechanism can be used to help identify
the operating system that the target system is running. In any of these cases, the receiving
system isn’t likely to log the event.

Inducing a target host to generate an RST packet in this manner also can be used to
map a network, determining the IP addresses of systems listening on the network. This is
especially helpful if the target system isn’t a server and its firewall has been set to silently
drop unwanted packets.

Avoiding Paranoia: Responding to Port Scans
Firewall logs normally show all kinds of failed connection attempts. Probes are the most
common thing you’ll see reported in your logs.

Are people probing your system this often? Yes, they are. Is your system compromised?
No, it isn’t. Well, not necessarily. The ports are blocked. The firewall is doing its job. These
are failed connection attempts that the firewall denied.

At what point do you personally decide to report a probe? At what point is it impor-
tant enough to take the time to report it? At what point do you say that enough is enough
and get on with your life, or should you be writing abuse@some.system each time?
There are no “right” answers. How you respond is a personal judgment call and depends
in part on the resources available to you, how sensitive the information at your site is, and
how critical the Internet connection is to your site. For obvious probes and scans, there is
no clear-cut answer. It depends on your own personality and comfort level how you per-
sonally define a serious probe, and your social conscience.

Filtering Incoming Packets 39

With that in mind, these are some workable guidelines.
The most common attempts are a combination of automated probing, mistakes, legiti-

mate attempts based on the history of the Internet, ignorance, curiosity, and misbehaving
software.

You can almost always safely ignore individual, isolated, single connection attempts to
telnet, ssh, ftp, finger, or any other port for a common service that you’re not pro-
viding. Probes and scans are a fact of life on the Internet, are all too frequent, and usually
don’t pose a risk. They are kind of like door-to-door salespeople, commercial phone calls,
wrong phone numbers, and junk postal mail. For me, at least, there isn’t enough time in
the day to respond to each one.

On the other hand, some probers are more persistent. You might decide to add firewall
rules to block them completely, or possibly even their entire IP address space.

Scans of a subset of the ports known to be potential security holes are typically the
precursor to an attack if an open port is found. More inclusive scans are usually part of a
broader scan for openings throughout a domain or subnet. Current hacking tools probe a
subset of these ports one after the other.

Occasionally, you’ll see serious hacking attempts. This is unquestionably a time to take
action. Write them. Report them. Double-check your security. Observe what they’re
doing. Block them. Block their IP address block.

Some system administrators take every occurrence seriously because, even if their
machine is secure, other people’s machines might not be. The next person might not even
have the capability of knowing that he or she is being probed. Reporting probes is the
socially responsible thing to do, for everyone’s sake.

How should you respond to port scans? If you write these people, their postmaster,
their uplink service provider network operations center (NOC), or the network address
block coordinator, try to be polite. Give them the benefit of the doubt. Overreactions are
misplaced more often than not. What might appear as a serious hacking attempt to you
is often a curious kid playing with a new program. A polite word to the abuser, root, or
postmaster can sometimes take care of the problem. More people need to be educated
about Netiquette than need their network accounts rescinded. And they might be inno-
cent of anything. Just as often, the person’s system is compromised and that person has no
idea what’s going on and will be grateful for the information.

Probes aren’t the only hostile traffic you’ll see, however. Although probes are harmless
in and of themselves, DoS attacks are not.

Denial-of-Service Attacks
DoS attacks are based on the idea of flooding your system with packets to disrupt or seri-
ously degrade your Internet connection, tying up local servers to the extent that legiti-
mate requests can’t be honored or, in the worst case, crashing your system altogether. The
two most common results are keeping the system too busy to do anything useful and
tying up critical system resources.

40 Chapter 2 Packet-Filtering Concepts

You can’t protect against DoS attacks completely. They can take as many different
forms as the attacker’s imagination allows. Anything that results in a response from your
system, anything that results in your system allocating resources (including logging of the
attack), anything that induces a remote site to stop communicating with you—all can be
used in a DoS attack.

More on Denial-of-Service Attacks
For further information on DoS attacks, see the “Denial of Service” paper available at
http://www.cert.org.

These attacks usually involve one of several classic patterns, including TCP SYN flood-
ing, ping flooding, UDP flooding, fragmentation bombs, buffer overflows, and ICMP
routing redirect bombs.

TCP SYN Flooding
A TCP SYN flood attack consumes your system resources until no more incoming TCP
connections are possible (see Figure 2.8). The attack makes use of the basic TCP three-
way handshaking protocol during connection establishment, in conjunction with IP
source address spoofing.

The attacker spoofs his or her source address as a private address and initiates a con-
nection to one of your TCP-based services. Appearing to be a client attempting to open
a TCP connection, the attacker sends you an artificially generated SYN message. Your
machine responds by sending an acknowledgment, a SYN-ACK. However, in this case, the

Figure 2.8 A TCP SYN flood

T opology
F i le E d it L o cat e V ie w H elp

Moun t
431 7437
1950 79%
/

Net work
T ra f fi c H elp

SYN

Aaargh!
I can’t take it
anymore!

http://www.cert.org

Filtering Incoming Packets 41

address that you’re replying to isn’t the attacker’s address. In fact, because the address is pri-
vate, there is no one out there to respond. The spoofed host won’t return an RST message
to tear down the half-opened connection.

The final stage of TCP connection establishment, receiving an ACK in response, will
never happen. Consequently, finite network connection resources are consumed. The
connection remains in a half-opened state until the connection attempt times out. The
attacker floods your port with connection request after connection request, faster than the
TCP timeouts release the resources. If this continues, all resources will be in use and no
more incoming connection requests can be accepted. This applies not only to the service
being probed, but to all new connections as well.

Several aids are available to Linux users. The first is source address filtering, described
previously. This filters out the most commonly used spoofed source addresses, but there is
no guarantee that the spoofed address falls within the categories you can anticipate and
filter against.

The second is to enable your kernel’s SYN cookie module, a specific retardant to the
resource starvation caused by SYN flooding. When the connection queue begins to get
full, the system starts responding to SYN requests with SYN cookies rather than SYN-ACKs,
and it frees the queue slot. Thus, the queue never fills completely. The cookie has a short
timeout; the client must respond to it within a short period before the serving host will
respond with the expected SYN-ACK. The cookie is a sequence number that is generated
based on the original sequence number in the SYN, the source and destination addresses
and ports, and a secret value. If the response to the cookie matches the result of the hash-
ing algorithm, the server is reasonably well assured that the SYN is valid.

Depending on the particular release, you may or may not need to enable the SYN
cookie protection within the kernel by using the command echo 1 > /proc/sys/net/
ipv4/tcp_syncookies. Some distributions and kernel versions require you to explicitly
configure the option into the kernel using make config, make menuconfig, or make
xconfig and then recompile and install the new kernel.

SYN Flooding and IP Spoofing
For more information on SYN flooding and IP spoofing, see CERT Advisory CA-96.21, “TCP
SYN Flooding and IP Spoofing Attacks,” at http://www.cert.org.

ping Flooding
Any message that elicits a response from your machine can be used to degrade your net-
work connection by forcing the system to spend most of its time responding. The ICMP
echo request message sent by ping is a common culprit. An attack called Smurf, and its
variants, forces a system to expend its resources processing echo replies. One method of
accomplishing this is to spoof the victim’s source address and broadcast an echo request
to an entire network of hosts. A single spoofed request message can result in hundreds or
thousands of resulting replies being sent to the victim. Another way of accomplishing a
similar result is to install trojans on compromised hosts across the Internet and time them

http://www.cert.org

42 Chapter 2 Packet-Filtering Concepts

to each send echo requests to the same host simultaneously. Finally, a simple ping flood
in which the attacker sends more echo requests and floods the data connection is another
method for a DoS, though it’s becoming less common. A typical ping flood is shown in
Figure 2.9.

Ping of Death
An older exploit called the Ping of Death involved sending very large ping packets. Vulner-
able systems could crash as a result. Linux is not vulnerable to this exploit, nor are many
other current UNIX operating systems. If your firewall is protecting older systems or per-
sonal computers, those systems could be vulnerable.

The Ping of Death exploit gives an idea of how the simplest protocols and message
interactions can be used by the creative hacker. Not all attacks are attempts to break into
your computer. Some are merely destructive. In this case, the goal is to crash the machine.
(System crashes also might be an indicator that you need to check your system for
installed trojan programs. You might have been duped into loading a trojan program, but
the program itself might require a system reboot to activate.)

ping is a very useful basic networking tool. You might not want to disable ping alto-
gether. In today’s Internet environment, conservative folks recommend disabling incoming
ping or at least severely limiting from whom you accept echo requests. Because of ping’s
history of involvement in DoS attacks, many sites no longer respond to external ping
requests from any but selected sources. This has always seemed to be an overreaction to
the relatively small threat of a DoS based on ICMP when compared to the more ubiqui-
tous and dangerous threats against applications and other protocols within the stack.

Figure 2.9 A ping flood

Topology
FileEdit LocateView Help

Mount
4 3 1 743 7
1 9 50 7 9 %
/

Network
Traffic Help Ping Echo Request

Victim's Spoo f e d
Source Address
Broadcast
Destination Address

Victim

Atta ck e r

Net w o r k

Echo Reply

Topology
FileEdit LocateView Help

Mount
4 3 1 743 7
1 9 50 7 9 %
/

Network
Traffic Help

Net w o r k

Filtering Incoming Packets 43

Dropping ping requests isn’t a solution for the victim host, however. Regardless of
how the recipient of the flood reacts to the packets, the system (or network) can still be
overwhelmed in the process of inspecting and dropping a flood of requests.

UDP Flooding
The UDP protocol is especially useful as a DoS tool. Unlike TCP, UDP is stateless.
Flow-control mechanisms aren’t included. There are no connection state flags. Datagram
sequence numbers aren’t used. No information is maintained on which packet is expected
next. There is not always a way to differentiate client traffic from server traffic based on
port numbers. Without state, there is no way to distinguish an expected incoming response
from an unsolicited packet arriving unexpectedly. It’s relatively easy to keep a system so
busy responding to incoming UDP probes that no bandwidth is left for legitimate net-
work traffic.

Because UDP services are susceptible to these types of attacks (as opposed to
 connection-oriented TCP services), many sites disable all UDP ports that aren’t absolutely
necessary. As mentioned earlier, almost all common Internet services are TCP based. The
firewall we’ll build in Chapter 5, “Building and Installing a Standalone Firewall,” carefully
limits UDP traffic to only those remote hosts providing necessary UDP services.

The classic UDP flood attack either involves two victim machines or works in the
same way the Smurf ping flood does (see Figure 2.10). A single spoofed packet from the
attacker’s UDP echo port, directed to a host’s UDP chargen port, can result in an infi-
nite loop of network traffic. The echo and chargen services are network test services.
 chargen generates an ASCII string. echo returns the data sent to the port.

Figure 2.10 A UDP flood

M ou n t
4 31 7 437 1950
7 9% /
0 2 63 1 96 3 47358
9 3% /u s

F ile E dit L ocat e V i Hwe elp

1 2 3 4 5 6 7

0

1 00

2 00

3 00

4 00

5 00

E

D

C
B

A

Network
Traffic Help

Topology
File EditLocateView Help

Mou n t
43 1 743 7
19 50 79%
/

Network
Traffic Help

Source Address : Victi m
Destination Address : Inte r media r y

Source P o r t : UDP 7 - ech o
Destination P o r t : UDP 19 - charge n

Source Address : Inte r media r y
Destination Address : Victi m
Source P o r t : UDP 7- charge n

Source Address : Victi m
Destination Address : Inte r media r y

Source P o r t : UDP 7 - ech o
Destination P o r t : UDP 19 - charge n

44 Chapter 2 Packet-Filtering Concepts

UDP Port Denial-of-Service Attacks
For a fuller description of a DoS exploit using these UDP services, see CERT Advisory
CA-96.01, “UDP Port Denial-of-Service Attack,” at http://www.cert.org.

Fragmentation Bombs
Different underlying network technologies (such as Ethernet, Asynchronous Transfer
Mode [ATM], and token ring) define different limits on the size of the Layer 2 frame. As
a packet is passed on from one router to the next along the path from the source machine
to the destination machine, network gateway routers might need to cut the packet into
smaller pieces, called fragments, before passing them on to the next network. In a legitimate
fragmentation, the first fragment contains the usual source and destination port numbers
contained in the UDP or TCP transport header. The following fragments do not.

For example, although the maximum theoretical packet length is 65,535 bytes, the
maximum Ethernet frame size (Maximum Transmission Unit, or MTU) is 1500 bytes.

When a packet is fragmented, intermediate routers do not reassemble the packet. The
packets are reassembled either at the destination host or by its adjacent router.

Because intermediate fragmentation is ultimately more costly than sending smaller,
nonfragmented packets, current systems often do MTU discovery with the target host
at the beginning of a connection. This is done by sending a packet with the Don't
 Fragment option set in the IP header options field (the only generally legitimate current
use of the IP options field). If an intermediate router must fragment the packet, it drops
the packet and returns an ICMP 3 error, fragmentation-required.

One type of fragmentation attack involves artificially constructing very small packets.
One-byte packets crash some operating systems. Current operating systems usually test for
this condition.

Another use of small fragments is constructing the initial fragment so that the UDP or
TCP source and destination ports are contained in the second fragment. (All networks’
MTU sizes are large enough to carry a standard 40-byte IP and transport header.) Packet-
filtering firewalls often allow these fragments through because the information that they
filter on is not present. This form of attack is useful to get packets through the firewall that
would not otherwise be allowed.

The Ping of Death exploit mentioned earlier is an example of using fragmentation to
carry an illegally large ICMP message. When the ping request is reconstructed, the entire
packet size is larger than 65,535 bytes, causing some systems to crash.

A classic example of a fragmentation exploit is the Teardrop attack. The method can
be used to bypass a firewall or to crash a system. The first fragment is constructed to go
to an allowed service. (Many firewalls don’t inspect fragments after the first packet.) If
it is allowed, the subsequent fragments will be passed through and reassembled by the
target host. If the first packet is dropped, the subsequent packets will pass through the
firewall, but the end host will have nothing to reconstruct and eventually will discard the
partial packet.

http://www.cert.org

Filtering Incoming Packets 45

The data offset fields in the subsequent fragments can be altered to overwrite the port
information in the first fragment to access a disallowed service. The offset also can be
altered so that offsets used in packet reassembly turn out to be negative numbers. Because
kernel byte-copy routines usually use unsigned numbers, the negative value is treated as
a very large positive number; the resulting copy trashes kernel memory and the system
crashes.

Firewall machines and machines that do NAT for other local hosts should be config-
ured to reassemble the packets before delivering them to the local target. Some of the
iptables features require the system to reassemble packets before forwarding the packet
to the destination host, and reassembly is done automatically.

Buffer Overflows
Buffer overflow exploits can’t be protected against by a filtering firewall. The exploits
fall into two main categories. The first is simply to cause a system or server to crash by
overwriting its data space or runtime stack. The second requires technical expertise and
knowledge of the hardware and system software or server version being attacked. The
purpose of the overflow is to overwrite the program’s runtime stack so that the call return
stack contains a program and a jump to it. This program usually starts up a shell with root
privilege.

Many of the current vulnerabilities in servers are a result of buffer overflows. It’s
important to install and keep up-to-date all the newest patches and software revisions.

ICMP Redirect Bombs
ICMP redirect message Type 5 tells the target system to change its in-memory routing
tables in favor of a shorter route. Redirects are sent by routers to their adjacent hosts. Their
intention is to inform the host that a shorter path is available (that is, the host and new
router are on the same network, and the new router is the router that the original would
route the packet to as its next hop).

Redirects arrive on an almost-daily basis. They rarely originate from the adjacent
router. For residential or business sites connected to an ISP, it’s very unlikely that your
adjacent router will generate a redirect message.

If your host uses static routing and honors redirect messages, it’s possible for someone
to fool your system into thinking that a remote machine is one of your local machines or
one of your ISP’s machines, or even to fool your system into forwarding all traffic to some
other remote host.

Denial-of-Service Attacks and Other System Resources
Network connectivity isn’t the only concern in DoS attacks. Here are some examples of
other areas to keep in mind while configuring your system:

 � Your filesystem can overflow if your system is forced to write enormous numbers
of messages to the error logs, or if your system is flooded with many copies of large
email messages. You might want to configure resource limits and set up a separate
partition for rapidly growing or changing filesystems.

46 Chapter 2 Packet-Filtering Concepts

Email Denial-of-Service Exploits
For a description of a DoS exploit using email, see “Email Bombing and Spamming” at
http://www.cert.org.

� System memory, process table slots, CPU cycles, and other resources can be
exhausted by repeated, rapid invocations of network services. You can do little
about this other than setting any configurable limits for each individual service,
enabling SYN cookies, and denying rather than rejecting packets sent to unsupported
service ports.

Source-Routed Packets
Source-routed packets employ a rarely used IP option that allows the originator to define
the route taken between two machines, rather than letting the intermediate routers
determine the path. As with ICMP redirects, this feature can allow someone to fool your
system into thinking that it’s talking to a local machine, an ISP machine, or some other
trusted host, or to create the necessary packet flow for a man-in-the-middle attack.

Source routing has few legitimate uses in current networks. Some routers ignore the
option. Some firewalls discard packets containing the option.

Filtering Outgoing Packets
If your environment represents a trusted environment, filtering outgoing packets might
not appear to be as critical as filtering incoming packets. Your system won’t respond to
incoming messages that the firewall doesn’t pass through. Residential sites often take this
approach. Nevertheless, even for residential sites, symmetric filtering is important, particu-
larly if the firewall protects Microsoft Windows machines. For commercial sites, outgoing
filtering is inarguably important.

If your firewall protects a LAN of Microsoft Windows systems, controlling outgoing
traffic becomes much more important. Compromised Windows machines have historically
been (and continue to be) used in coordinated DoS attacks and other outbound attacks.
For this reason especially, it’s important to filter what leaves your network.

Filtering outgoing messages also allows you to run LAN services without leaking into
the Internet, where these packets don’t belong. It’s not only a question of disallowing
external access to local LAN services. It’s also a question of not broadcasting local system
information onto the Internet. Examples of this would be if you were running a local
DHCPD, NTP, SMB, or other server for internal use. Other obnoxious services might be
broadcasting wall or syslogd messages.

A related source is some of the personal computer software, which sometimes ignores
the Internet service port protocols and reserved assignments. This is the personal com-
puter equivalent of running a program designed for LAN use on an Internet-connected
machine.

http://www.cert.org

Filtering Outgoing Packets 47

A final reason is simply to keep local traffic local that isn’t intended to leave the LAN
but that conceivably could. Keeping local traffic local is a good idea from a security stand-
point but also as a means for bandwidth conservation.

Local Source Address Filtering
Filtering outgoing packets based on the source address is easy. For a small site or a single
computer connected to the Internet, the source address is always your computer’s IP
address during normal operation. There is no reason to allow an outgoing packet to have
any other source address, and the firewall should enforce this.

For people whose IP address is dynamically assigned by their ISP, a brief exception
exists during address assignment. This exception is specific to DHCP and is the one case
in which a host broadcasts messages using 0.0.0.0 as its source address.

For people with a LAN whose firewall machine has a dynamically assigned IP address,
limiting outgoing packets to contain the source address of the firewall machine’s IP
address is mandatory. It protects you from several fairly common configuration mistakes
that appear as cases of source address spoofing or illegal source addresses to remote hosts.

If your users or their software aren’t 100% trustworthy, it’s important to ensure that
local traffic contains legitimate, local addresses only, to avoid participating in DoS attacks
using source address spoofing.

This last point is especially important. RFC 2827, “Network Ingress Filtering: Defeat-
ing Denial of Service Attacks Which Employ IP Source Address Spoofing” (updated by
RFC 3704, “Ingress Filtering for Multihomed Networks”), is a current “best practices”
document speaking to exactly this point. Ideally, every router should filter out the obvi-
ous illegal source addresses and ensure that traffic leaving the local network contains only
routable source addresses belonging to that network.

Remote Destination Address Filtering
As with incoming packets, you might want to allow certain kinds of outgoing packets to
be addressed only to specific remote networks or individual machines. In these cases, the
firewall rules will define either specific IP addresses or a limited range of IP destination
addresses to which these packets will be allowed.

The first class of outgoing packets to filter by destination address is packets destined to
remote servers that you’ve contacted. Although some packets, such as those going to web
or FTP servers, can be expected to be destined to anywhere on the Internet, other remote
services will legitimately be offered from only your ISP or specially chosen trusted hosts.
Examples of services that are probably offered only through your ISP are mail services
such as SMTP or POP3, DNS services, DHCP dynamic IP address assignment, and the
Usenet news service.

The second class of outgoing packets to filter by destination address is packets des-
tined to remote clients who are accessing a service offered from your site. Again, although
some outgoing service connections, such as responses from your local web server, can be

48 Chapter 2 Packet-Filtering Concepts

expected to be going anywhere, other local services will be offered to only a few trusted
remote sites or friends. Examples of restricted local services might be telnet, SSH, Samba-
based services, and RPC services accessed via portmap. Not only will the firewall rules
deny general incoming connections to these services, but the rules also won’t allow out-
going responses from these services to just anyone.

Local Source Port Filtering
Explicitly defining which service ports on your network can be used for outgoing con-
nections serves two purposes—one for your client programs and one for your server
programs. Specifying the source ports allowed for your outgoing connections helps ensure
that your programs are behaving correctly, and it protects other people from any local
network traffic that doesn’t belong on the Internet.

Outgoing connections from your local clients will almost always originate from an
unprivileged source port. Limiting your clients to the unprivileged ports in the firewall
rules helps protect other people from potential mistakes on your end by ensuring that
your client programs are behaving as expected.

Outgoing packets from your local server programs will always originate from their
assigned service port and will be in response to a request received. Limiting your servers
to their assigned ports at the firewall level ensures that your server programs are function-
ing correctly at the protocol level. More important, it helps protect any private, local net-
work services that you might be running from outside access. It also helps protect remote
sites from being bothered by network traffic that should remain confined to your local
systems.

Remote Destination Port Filtering
Your local client programs are designed to connect to network servers offering their ser-
vices from their assigned service ports. From this perspective, limiting your local clients to
connect only to their associated server’s service port ensures protocol correctness. Limit-
ing your client connections to specific destination ports serves a couple of other purposes
as well. First, it helps guard against local, private network client programs inadvertently
attempting to access servers on the Internet. Second, it does much to disallow outgoing
mistakes, port scans, and other mischief potentially originating from your site.

Your local server programs will almost always participate in connections originat-
ing from unprivileged ports. The firewall rules limit your servers’ outgoing traffic to only
unprivileged destination ports.

Outgoing TCP Connection State Filtering
Outgoing TCP packet acceptance rules can make use of the connection state flags associ-
ated with TCP connections, just as the incoming rules do. All TCP connections adhere to
the same set of connection states, which differs between client and server.

Private versus Public Network Services 49

Outgoing TCP packets from local clients will have the SYN flag set in the first packet
sent as part of the three-way connection establishment handshake. The initial connection
request will have the SYN flag set, but not the ACK flag. Your local client firewall rules will
allow outgoing packets with either the SYN or the ACK flag set.

Outgoing packets from local servers will always be responses to an initial connection
request initiated from a remote client program. Every packet sent from your servers will
have the ACK flag set. Your local server firewall rules will require all outgoing packets from
your servers to have the ACK flag set.

Private versus Public Network Services
One of the easiest ways to inadvertently allow uninvited intrusions is to allow outside
access to local services that are designed only for LAN use. Some services, if offered
locally, should never cross the boundary between your LAN and the Internet beyond.
Some of these services annoy your neighbors, some provide information you’d be better
off keeping to yourself, and some represent glaring security holes if they’re available out-
side your LAN.

Some of the earliest network services, the r-*-based commands in particular, were
designed for local sharing and ease of access across multiple lab machines in a trusted
environment. Some of the later services were intended for Internet access, but they were
designed at a time when the Internet was basically an extended community of academi-
cians and researchers. The Internet was a relatively open, safe place. As the Internet grew
into a global network including general public access, it developed into a completely
untrusted environment.

Lots of Linux network services are designed to provide local information about user
accounts on the system, which programs are running and which resources are in use, sys-
tem status, network status, and similar information from other machines connected over
the network. Not all of these informational services represent security holes in and of
themselves. It’s not that someone can use them directly to gain unauthorized access to
your system. It’s that they provide information about your system and user accounts that
can be useful to someone who is looking for known vulnerabilities. They might also sup-
ply information such as usernames, addresses, phone numbers, and so forth, which you
don’t want to be readily available to everyone who asks.

Some of the more dangerous network services are designed to provide LAN access to
shared filesystems and devices, such as a networked printer or fax machine.

Some services are difficult to configure correctly and some are difficult to configure
securely. Entire books are devoted to configuring some of the more complicated Linux
services. Specific service configuration is beyond the scope of this book.

Some services just don’t make sense in a home or small-office setting. Some are
intended to manage large networks, provide Internet routing service, provide large data-
base informational services, support two-way encryption and authentication, and so forth.

50 Chapter 2 Packet-Filtering Concepts

Protecting Nonsecure Local Services
The easiest way to protect yourself is to not offer the service. But what if you need one of
these services locally? Not all services can be protected adequately at the packet-filtering
level. File-sharing software, instant messaging services, and UDP-based RPC services are
notoriously difficult to secure at the packet-filtering level.

One way to safeguard your computer is to not host network services on the firewall
machine that you don’t intend for public use. If the service isn’t available, there’s nothing
for a remote client to connect to. Let firewalls be firewalls.

A packet-filtering firewall doesn’t offer complete security. Some programs require
higher-level security measures than can be provided at the packet-filtering level. Some
programs are too problematic to risk running on a firewall machine, even on a less secure
residential host.

Small sites such as those in the home often won’t have a supply of computers avail-
able to enforce access security policies by running private services on other machines.
Compromises must be made, particularly for required services that are provided solely by
Linux. Nevertheless, small sites with a LAN should not be running file-sharing or other
private LAN services on the firewall, such as Samba. The machine should not have unnec-
essary user accounts. Unneeded system software should be removed from the system. The
machine should have no function other than that of a security gateway.

Selecting Services to Run
When all is said and done, only you can decide which services you need or want. The first
step in securing your system is to decide which services and daemons you intend to run
on the firewall machine, as well as behind the firewall in the private LAN. Each service has
its own security considerations. When it comes to selecting services to run under Linux or
any other operating system, the general rule of thumb is to run only network services that
you need and understand. It’s important to understand a network service, what it does and
who it’s intended for, before you run it—especially on a machine connected directly to
the Internet.

Summary
Between this and the preceding chapter, the basics of networking and firewalls have been
laid out. The next chapter digs deeper into iptables itself.

Index

: (colon), command-line syntax, 62

[] (square brackets), command-line syntax, 62

(pound sign), comment indicator, 297

| (pipe symbol), command-line syntax, 62

< > (angle brackets), command-line
syntax, 62

0.0.0.0 IP address

definition, 110
denying packets addressed to, 109

255.255.255.255 IP address, denying
packets originating from, 109

A
-a option, 224

-a (- -handle) option, 85–86

-A option, 224

Accept packet and stop processing, 87

ACCEPT rule

defining a default policy, 106
definition, 351

accept statement, 87

accept-everything-by-default policy,
29–30, 351. See also Default policies.

ACK flag, 16, 351

add command

nftables, chain syntax, 86–87
nftables, table syntax, 85–86

Adding

chains to a table, 86–87
rules, 87
tables, 85–86

372 Index

Address families, 84

Address information, displaying numerically,
85–86

Address Resolution Protocol (ARP), 17–18

Addresses. See Ethernet addresses; IP
addresses.

addrtype match extension, 77

AIDE (Advanced Intrusion Detection
Environment)

changing report output, 303–306
checksum checks, 310
configuration files, 297–300
configuring, 297–301
defining macros, 306–307
grouped checks, 309
initializing the database, 300
installing, 296–297
monitoring, 301–302
report verbosity, 305–306
running automatically, 301
standard checks, 308–309
types of checks, 307–310
updating the database, 302–303

Alerts from the Snort program, 290–291

ALG (application-level gateway). See also
Proxies, application-level.

definition, 351
description, 25–26

Angle brackets (< >), command-line
syntax, 62

Application layer, 6

Applied Cryptography, 310

Arithmetic operators, 271

ARP (Address Resolution Protocol), 17–18

arp address family, 84

ARP header expressions, 91

ARP packets, 18

ARP spoofing, 264

ARPWatch daemon, 265, 291–293

Attack detection. See also Intrusion
detection.

ARP spoofing, 264
capturing network traffic. See Snort

program.
hub environment vs. switched, 263
mirror ports, 263–264
monitoring ARP traffic. See

ARPWatch daemon.
overview, 263–264
packet capture and analysis. See

TCPDump.
span ports, 263–264

AUTH port, 351

Authentication, definition, 351

Authentication header, in VPNs, 230–231

Authorization, definition, 351

B
Basic NAT, 58, 199

Bastille Linux, 258

Bastion firewalls

definition, 3, 354
limitations of, 179–180
packet forwarding, 179–180

Bidirectional NAT, 58, 199

BIND (Berkeley Internet Name Domain), 351

Bit flags, TCP, 15–16

Blocking

directed broadcasts, 110
limited broadcasts, 110
local TCP services, 113–115
problem sites, 33–34

Books and publications

Applied Cryptography, 310
“Denial of Service,” 40
“Email Bombing and Spamming,” 46
FAQs, 314

Index 373

“Help Defeat Denial of Services
Attacks: Step-by-Step,” 314

“Internet Firewalls: Frequently Asked
Questions,” 314

“Multicast over TCP/IP HOW
TO,” 111

reference papers, 314
RFC 1112 “Host Extensions for IP

Multicasting,” 111
RFC 1122 “Requirements for

Internet Hosts—Communication
Layers,” 102

RFC 1458 “Requirements for
Multicast Protocols,” 111

RFC 1631 “The IP Network Address
Translator (NAT),” 197

RFC 1700 “Assigned Numbers,” 113
RFC 1812 “Requirements for IP

Version 4 Routers,” 102
RFC 2196 “Site Security

Handbook,” 238
RFC 2236 “Internet Group

Management Protocol Version
2,” 111

RFC 2474, “Definition of the
Differentiated Services Field
(DS Field) in the IPv4 and IPv6
Headers,” 77

RFC 2475, “An Architecture for
Differentiated Services,” 77

RFC 2588 “IP Multicast and
Firewalls,” 111

RFC 2647 “Benchmarking
Terminology for Firewall
Performance,” 25

RFC 2663 “IP Network Address
Translator (NAT) Terminology and
Considerations,” 198

RFC 2827 “Network Ingress
Filtering: Defeating Denial of Service
Attacks . . . ,” 47

RFC 2990 “Next Steps for the IP
QoS Architecture,” 77

RFC 3022 “Traditional IP Network
Address Translator (Traditional
NAT),” 197

RFC 3168 “The Addition of Explicit
Congestion Notification (ECN) to
IP,” 77

RFC 3260 “New Terminology and
Clarifications for Diffserv,” 77

RFC 3704 “Ingress Filtering for
Multihomed Networks,” 47

security information, 313
“Service Name and Transport

Protocol Port Number Registry
(IANA),” 314

“Steps for Recovering from a UNIX
or NT System Compromise,” 238

“TCP SYN Flooding and IP Spoofing
Attacks,” 41

TCP/IP Illustrated, Volume 1, Second
Edition, 7

“UDP Port Denial-of-Service
Attack,” 43

BOOTP (Bootstrap Protocol), 351

BOOTPC port, 351

bootpd program, definition, 351

BOOTPS port, 351

Border router, definition, 352

Branching, 149

bridge address family, 84

Broadcast, definition, 352

Broadcast addresses, 8, 9, 11

broadcast primitive, 271

Broadcasting, 11–12

Buffer overflows, 45

C
CERT (Computer Emergency Response

Team), 352

Chain commands on individual rules, 64

Chain types, nftables, 87

374 Index

Chains. See also User-defined chains.

adding to a table, 86–87
built-in, 61
clearing, 85–86
creating, 86
definition, 352
deleting, 86
displaying for tables, 85–86
FORWARD, 60–61
INPUT, 60–61
nat table, 61
in nftables. See nftables, chain

syntax.
operations on, 62–63
OUTPUT, 59–61
POSTROUTING, 59–61
PREROUTING, 59–61
renaming, 86
user-defined, 54–55

Checksums

AIDE checks, 310
definition, 352
TCP (Transmission Control

Protocol), 15
Chkrootkit program

downloading, 251
false negatives, 252
false positives, 252
infection reports, 253
limitations, 253–254
run schedule, 255
running, 251–253
using securely, 254–255

Choke firewalls, 181–182, 354

chroot program/system call, 352

CIDR (Classless Inter-Domain
Routing), 352

Circuit gateway. See Proxies, circuit-level.

Class, network address, 352

Clearing chains and rules, 85

Client/server model, 352–353

CLOSED state, 17

CLOSE_WAIT state, 17

Colon (:), command-line syntax, 62

Command-line input, enabling, 85

Command-line options, nftables, 85

Commands, filter table, 62–67

Commands and subcommands,
nftables, 83

Compromised machines. See Attack
detection; Intrusion detection.

Computer Emergency Response Team
(CERT), 352

Configuration files, AIDE, 297–300

Configuring

AIDE, 297–301
email services. See Email services,

initializing.
firewalls. See Initializing firewalls;

Installing firewalls.
internal LANs, 191–192
multiple LANs, 192–195
Snort program, 288–289

Connection state, initializing
firewalls, 107

Connection tracking expressions, 88–89

Connectionless vs. connection-oriented
protocols, 7

connectionstate-policy file, 170, 173

connection-tracking chain, 151, 166

Conntrack expressions, 88–89

Conservation of addresses, 10

Continue processing packets, 87

continue statement, 87

Countermeasures. See Intrusion prevention.

create command, 86

CWR flag, 16

Index 375

D
Daemons. See also specific daemons.

definition, 353
listening on service ports, 19

DARPA network model, 6

Database, AIDE

initializing, 300
updating, 302–303

Datalink layer, 6, 353

Debian, initializing firewalls, 140

- -debug option, 85

Debugging

enabling, 85
firewall scripts, 139–140

Debugging, firewall rules

firewall development tips, 211–212
fuser command, 226–227
iptables -L INPUT, 214–215
iptables -n -L INPUT, 215–216
iptables table listing, 213–214
iptables -v -L INPUT, 216
listing firewall rules, 213–217
log message priorities, 218
log messages, interpreting, 220–223
network security auditing, 227
nftables listing example, 216–217
Nmap tool, 227
open ports, checking for, 223–227
output reporting conventions, 226
port-bound processes, checking for,

226–227
syslog configuration, 217–220
system logs, 217–223
verbosity, 216

Default policies. See also accept-everything-
by-default policy; Deny-everything-by-default
policy.

accept-everything-by-default, 29–30

definition, 353
deny-everything-by-default, 29–30
packet-filtering, 31–32

delete command, nftables

chain syntax, 86
rule syntax, 87
table syntax, 85

Deleting

chains, 86
rules, 87
tables, 85

Demilitarized zone (DMZ), 180, 353

Demultiplexing, 6

“Denial of Service,” 40

Denial of service (DoS) attacks. See DoS
(denial of service) attacks.

Deny-everything-by-default policy. See also
Default policies.

debugging, 211–212
definition, 353
description, 30
shortcomings, 114

Denying packets vs. rejecting, 31

Destination addresses, NAT, 202

Destination NAT (DNAT), 205–206,
209–210

destination-address-check chain, 151, 168

Detecting intrusions. See Intrusion detection.

DHCP (Dynamic Host Configuration
Protocol), 353

DHCPACK messages, 135

DHCPDECLINE messages, 135

DHCPDISCOVER messages, 135

DHCPINFORM messages, 135

DHCPNAK messages, 135

DHCPOFFER messages, 135

DHCPRELEASE messages, 135

DHCPREQUEST messages, 135

Directed broadcasts, 12, 110

376 Index

Direction qualifier, TCPDump, 270–271

Directories, including in a search path, 85

Disallowing incoming packets, 108–109

DMZ (demilitarized zone), 180, 353

DNAT (destination NAT), 205–206,
209–210

DNAT target extensions, 56, 58, 80–81

DNS (Domain Name Service)

definition, 18, 353
DNS lookups, as a client, 120–121
DNS lookups, as a forwarding server,

121–122
enabling, 117–122
zone transfers, 118

DNS BIND port usage, 121

DNS lookups, 120–122

DNS protocol, 119

DNS traffic, identifying, 157

dns-policy file, 170

Documentation. See Books and
publications.

Domains, 18

DoS (denial of service) attacks. See also
Filtering incoming packets.

buffer overflows, 45
countermeasures, 41
definition, 353
e-mail exploits, 46
enabling the SYN cookie module, 41
filesystem overflow, 45
fragmentation bombs, 44–45
ping, disabling, 42
ping flooding, 41–42
Ping of Death, 42–43
redirect bombs, 45
Smurf attack, 41
source address filtering, 40–41
TCP SYN flooding, 40–41

Teardrop attack, 44
UDP flooding, 43

Dotted decimal notation, 8

Dotted quad notation, 8

Drop packet and stop processing, 88

DROP rule

defining a default policy, 106
definition, 353

drop statement, 88

Dropping packets, 108, 112, 138

Dual-homed computer, 353. See also
Multihomed computer.

Dynamic Host Configuration Protocol
(DHCP), 353

Dynamically assigned address, 353

E
ECE flag, 16

“Email Bombing and Spamming,” 46

Email services, DoS (denial of service)
attacks, 46

Email services, initializing

hosting a mail server, 127–128
mail protocols, 124
overview, 123
receiving mail, 125–127
relaying outgoing mail, 124
sending mail to external mail

servers, 125
sending over SMTP, 123

Encapsulation, 6

End-to-end transparency, 4

Error messages

ICMP Type 3 error message, 35, 44
iptables, selecting, 57
output stream, 304
STDERR, standard error stream, 304

Index 377

ESP (encapsulating security payload), 231–232

ESTABLISHED packets, 73

ESTABLISHED state, 17

established state expression, 89

Ethernet addresses, 18

Ethernet cards, identifying, 18

Ethernet frame, 353

Exploits and attacks. See Attack detection;
Intrusion detection.

Expressions, nftables

ARP header expressions, 91
IPv4 payload expressions, 90
IPv6 header expressions, 90
TCP header expressions, 90
UDP header expressions, 91

Expressions, TCPDump, 269–271

Extensions. See Statements.

External rules files, 170

EXT-icmp-in chain, 152, 164

EXT-icmp-out chain, 152, 164

EXT-input chains, 151, 157

EXT-log-in chain, 152, 168–170

EXT-log-out chain, 152, 168–170

EXT-output chains, 151, 157

F
-f (- -file) option, 85

Facilities, 217–218

Fall, Kevin R., 7

False negatives/positives, 252

File syntax, nftables, 92

File Transfer Protocol (FTP). See FTP (File
Transfer Protocol).

Files, including, 85

Filesystem integrity

basic integrity checks, 295
checksums, 295–296
definition, 295–296

intrusion indications, 240
software for checking, 255–256. See

also AIDE (Advanced Intrusion
Detection Environment).

Filesystem overflow, DoS (denial of service)
attacks, 46

Filter, firewall rule, 354

filter chains, 87

filter table

description, 54–55
feature extensions, 56
flushing the chain, 103
match extensions, 56
syntax. See iptables syntax, filter table.
target extensions, 56

Filtering incoming packets. See also DoS
(denial of service) attacks; Packet-filtering
firewalls.

blocking problem sites, 33–34
illegal addresses, 32–33
limited broadcast, 34
limiting incoming packets to selected

hosts, 34
by local destination address, 34–35
by local destination port, 35
probes, 36–39
by remote source address, 31–34
by remote source port, 35
scans, 36–39
source address spoofing, 32–33
source-routed packets, 46
by TCP connection state, 35–36

Filtering iptables log messages, 57

Filtering outgoing packets. See also Packet-
filtering firewalls.

by local source address, 47
by local source port, 48
by outgoing TCP connection state,

48–49

378 Index

Filtering outgoing packets. See also Packet-
filtering firewalls. (continued)

overview, 46–47
by remote destination address, 47–48
by remote destination port, 48

FIN flag, 16

finger program, 354

FIN_WAIT_2 state, 17

Firewall Administration Program. See Iptables.

Firewall initialization, optimization example,
153–154, 170–172

Firewall logs. See Logging.

Firewall rules, listing, 213–217

Firewalls

basic. See Bastion firewalls.
bastion. See Bastion firewalls.
choke, 181–182, 354
combining with VPNs, 233–234
definition, 3, 25, 354
development tips, 211–212
dual-homed, 354
initializing. See Initializing firewalls.
installing. See Installing firewalls.
NAT-enabled routers as, 4
nonstateful. See Stateless firewalls.
packet-filtering. See Packet-filtering

firewalls.
purpose of, 3–4
router devices as, 4
screened-host, 354
screened-subnet, 354
standalone. See Bastion firewalls.
stateful, 25
stateless, 25
transparency, 4

Firewalls, examples (code listings)

iptables, 315–328
nftables, 328–332

Flooding

packet, 354
ping, 41–42
TCP SYN, 40–41
UDP, 43

flush command, nftables

chain syntax, 86
table syntax, 85

Flushing the chains

definition, 103–104
effect on default policy, 211
nftables, chain syntax, 86
nftables, table syntax, 85

Forward, definition, 354

FORWARD chains, mangle table, 61

forward hooks, 85

Forwarding. See also Packet forwarding.

host, 209–210
NAT, 201
port, 59

Fragment, definition, 355

Fragmentation bombs, 44–45

Frames, OSI (Open System
Interconnection), 6

FTP (File Transfer Protocol)

anonymous, 355
authenticated, 355
definition, 355
initializing firewalls, 130–133
on unprivileged ports, 114

Full NAT, 201

fuser command, 226–227

G
Gateway, definition, 355

Gateway firewall setups, packet forwarding,
181–182

Index 379

gateway primitive, 271

Generic routing encapsulation, 230

goto statement, 88

greater primitive, 271

Grouped checks, AIDE, 309

H
-h (- -help) option, 85

Hacks. See Attack detection; Intrusion
detection.

- -handle (-a) option, 85–86

header expressions

ARP, 91
IPv6, 90
TCP, 90
UDP, 91

Header flags, TCP, 283

Headers

authentication, VPNs, 230–231
IPv4 addressing, 8
IPv6, 8
TCP, 15

Help, displaying, 85

Host forwarding, example, 209–210

Hostnames, IP addressing, 18

hosts.allow, TCP wrappers’ configuration
file, 355

hosts.deny, TCP wrappers’ configuration
file, 355

HOWTO documents, 355

hping3 program, 260

HTTP (Hypertext Transfer Protocol), 355

HTTP conversations, capturing,
273–277

Hub environment vs. switched, 263

Hubs

definition, 355
intrusion detection, 250

I
-i (- -interactive) option, 85

-I (- -includepath) option, 85

IANA (Internet Assigned Numbers Authority),
19–20, 355

ICMP (Internet Control Message Protocol),
12 –14, 355

icmp filter table match options, 66–67

ICMP traffic, optimization example, 163–165

ICMP Type 3 error message, 35, 44

icmp-policy file, 170

identd server, 355

IGMP (Internet Group Management
Protocol), 111

IKE (Internet Key Exchange), 232

Illegal addresses, 32–33

IMAP (Internet Message Access
Protocol), 355

Impossible addresses, logging, 102

Incident reporting, intrusions detected.
See Intrusion response, incident
reporting.

Including files, 85

Incoming multicast packets, 111

Incoming packets. See Filtering incoming
packets.

inet address family, 84

inetd server, definition, 355

Infection reports, 253

Initializing firewalls. See also Installing
firewalls.

connection state, 107
on Debian, 140
DNS (Domain Name Service),

enabling, 117–122
flushing the chain, 103–104
FTP, 130–133
generic TCP service, 133–134
impossible addresses, logging, 102

380 Index

Initializing firewalls. See also Installing
firewalls. (continued)

inadvertent lockout, 100
Internet services, enabling, 117–122
kernel-monitoring, enabling, 101–102
logging, 108, 109
log_martians command, 102
loopback interface, enabling, 105
preexisting rules, removing from

chains. See Flushing the chain.
on Red Hat, 140
redirect messages, disabling, 102
remotely, 100
rule checking, bypassing, 107
rule invocations, 99–100
scalability, 107
source address validation,

disabling, 102
source-routed packets, disabling, 101
spoofing source addresses, 108–112
SSH (Secure Shell), 128–130
stopping the firewall, 104–105
on SUSE, 140
SYN cookies, enabling, 102
TCP services, enabling, 122–128
timeouts, 107
UDP services, enabling, 134–138

Initializing firewalls, bad addresses

address 0.0.0.0, 109–110
address 255.255.255.255, 109
directed broadcasts, 110
disallowing incoming packets, 108–109
dropping packets, 108, 112, 138
incoming multicast packets, 111
limited broadcasts, 110
logging dropped packets, 138
multicast packets with non-UDP

protocol, 111

multicast registration and routing,
111–112

spoofed multicast network packets,
110–111

Initializing firewalls, default policies

defining, 106
resetting, 104–105
rules, 106

Initializing firewalls, email services

hosting a mail server, 127–128
mail protocols, 124
overview, 123
receiving mail, 125–127
relaying outgoing mail, 124
sending mail to external mail

servers, 125
sending over SMTP, 123

Initializing firewalls, shell script

executing, 99–100
symbolic constants for names and

addresses, 100
INPUT chains, mangle table, 61

input hooks, 84

insert command, 87

Installing

AIDE, 296–297
Snort program, 287–288
TCPDump, 266–267
user-defined chains, optimization

example, 155–156
Installing firewalls. See also Initializing

firewalls.

with dynamic IP addresses, 141
firewall script, 139–140
start argument, 139
starting and stopping the firewall,

140–141
stop argument, 139

Index 381

Internet Assigned Numbers Authority (IANA),
19–20, 355

Internet Control Message Protocol (ICMP),
12–14, 355

Internet Group Management Protocol
(IGMP), 111

Internet Key Exchange (IKE), 232

Internet Message Access Protocol
(IMAP), 355

Internet Protocol (IP), 7, 12–14

Internet Protocol Security (IPSec), 230. See
also IP addresses.

Internet services, enabling, 117–122

Intrusion detection. See also Attack
detection; Intrusion response.

human role in, 237–238
overview, 237–238

Intrusion detection, symptoms

filesystem indications, 240
overview, 238–239
security audit tool indications, 241
system configuration indications,

239–240
system log indications, 239
system performance indications, 241
user account indications, 240–241

Intrusion detection toolkit

establishing traffic baselines, 250
filesystem integrity software, 255–256
hubs, 250
limitations of tools, 253–254
log monitoring, 256–257
monitoring SSH login failures,

256–257
network sniffers, 249
network tools, 249–250
ntop program, 250
rootkit checkers, 251

rootkits, 251
Snort, 249–250
Swatch program, 256–257
switches, 250
TCPDump, 249

Intrusion detection toolkit, Chkrootkit
program

downloading, 251
false negatives, 252
false positives, 252
infection reports, 253
limitations, 253–254
run schedule, 255
running, 251–253
using securely, 254–255

Intrusion prevention

Bastille Linux, 258
DoS (denial of service) attacks, 41
hping3 program, 260
Nikto program, 260
Nmap (Network Mapper) program,

259–260
open ports, testing for, 260
overview, 257
penetration testing, 259–260
secure often, 257–258
test often, 259–260
update often, 258–259
web servers, testing, 260

Intrusion response

checklist, 242–243
documenting your actions, 242
keeping a log, 242
overview, 241–243
snapshot the system logs, 242

Intrusion response, incident reporting

designating a report recipient, 246

382 Index

Intrusion response, incident reporting
(continued)

kinds of reportable incidents, 244–245
overview, 243
reasons for, 243–244
recommended information, 246–247

INVALID packets, 73

invalid state expression, 89

invalid-policy file, 170, 173

IP (Internet Protocol), 7, 12–14

ip address family, 84

IP addresses. See also IPSec.

0.0.0.0, 109–110
255.255.255.255, 109
bad addresses. See Initializing firewalls,

bad addresses.
broadcast, 8, 9, 11
broadcasting, 11–12
conservation of addresses, 10
directed broadcasts, 12
DNS (Domain Name Service), 18
domains, 18
dotted decimal notation, 8
dotted quad notation, 8
Ethernet addresses, 18
hostnames, 18
illegal, 32–33
for IPv4, 8–9
for IPv6, 8
limited broadcasts, 8, 12
linking physical devices to IP

addresses. See ARP (Address
Resolution Protocol).

loopback, 8
masking, 99
multicast, 9–10
multicasting, 11–12
network, 8

network domains, 18
network-directed broadcasts, 8
overview, 8–11
special, 7
subnetting, 8–11
subscribers, 11–12
symbolic names for, 18, 98
syntax, 9
unicast, 9

IP datagrams

definition, 355
maximum size, 11
MTU (Maximum Transmission

Unit), 11
splitting. See IP fragmentation.

IP fragmentation, 11

ip6 address family, 84

ipchains module

definition, 355
in earlier distributions, 96
vs. iptables, 52

IPFW (IP firewall) mechanism. See also
Ipfwadm module.

definition, 355
vs. Netfilter, 51–54. See also Netfilter

firewall.
in older distributions, 96
packet traversal, 52–54

ipfwadm module, 96, 356

iprange match extension, 77–78

IPSec (Internet Protocol Security), 230. See
also IP addresses.

$IPT, 97

iptables

definition, 356
error messages, selecting, 57
filter log messages, 57
filter table, 54–56

Index 383

firewall example (code listing), 315–328
vs. ipchains, 52
-L INPUT, 214–215
load feature, potential bugs, 140–141
mangle table, 54–55, 56, 60–61
match extensions, 56
-n -L INPUT, 215–216
NAPT (Network Address and Port

Translation), 58
vs. nftables, 83
packet matching, 57
QUEUE target, 57
REJECT target, 57
RETURN target, 58
save feature, potential bugs, 140–141
script, optimization example, 151–152
shell script, shebang line (first line), 97
syntax, 54–55
TOS field, 57
user-defined chains, 54–55

iptables command

defining rules, 97
definition, 54
enabling filter table commands, 62
location, setting, 97
syntax, 55

iptables syntax

chain commands on individual
rules, 64

FORWARD chains, 61
icmp filter table match options, 66–67
INPUT chains, 61
list chain command, options, 63
LOG target extension, 67
mangle table, 61, 81–82
mark target extension, 81–82
nat table, 61

nat table target extensions, 79–82
OUTPUT chains, 61
POSTROUTING chains, 61
PREROUTING chains, 61
primary tables, 61
REJECT target extension, 68

iptables syntax, filter table

addrtype match extension, 77
built-in chains, 61
commands, 62–67
iprange match extension, 77–78
length match extension, 78–79
limit match extension, 70–71
LOG target extension, 67
mac match extension, 75
mark match extension, 76
match extensions, 68–79
match operations, 62, 64
multiport match extension, 69–70
operations on entire chains, 62–63
operations on rules, 62
owner match extension, 75–76
REJECT target extension, 68
rule options, 64–65
state match extension, 71–75
target extensions, 67–68
tcp match options, 65
tos match extension, 76–77
udp match options, 66
ULOG target extension, 57, 68
unclean match extension, 77

iptables syntax, nat table

DNAT target extensions, 80–81
MASQUERADE target extensions, 80
REDIRECT target extensions, 81
SNAT target extensions, 79–80
target extensions, 79–81

384 Index

iptables table listing, 213–214

iptables -v -L INPUT, 216

IPv4 addressing

address shortage, 4
classes, 8–9
dotted decimal notation, 8
dotted quad notation, 8
header, 8
IP addressing, 8–9

IPv4 payload expressions, 90

IPv6

header, 8
header expressions, 90
IP addressing, 8

J
-j LOG target, 108, 138

jump statement, 88

K
Kernel-monitoring, enabling, 101–102

klogd daemon, 356

L
-L command, 223

L2TP (Layer 2 Tunneling Protocol), 229–230

LAND attack, 284

LANs (local area networks)

definition, 356
NAT example, 209–210
security, packet forwarding, 182–183

LANs, packet forwarding on a larger or less
trusted

configuring an internal LAN, 191–192
configuring multiple LANs, 192–195
creating multiple networks, 188–190

dividing address space, 188–190
overview, 188
selective internal access, 190–195
subnetting, 188–190

LANs, packet forwarding on a trusted

forwarding local traffic, 186–188
LAN access to the gateway firewall,

184–186
multiple LANs, 186–188

length match extension, 78–79

less primitive, 271

Libreswan program, 233

limit match extension, 70–71

Limit reached on matching received
packets, 88

limit statement, 88

Limited broadcasts

blocking, 110
broadcasting, 12
definition, 8
filtering incoming packets, 34

Limiting incoming packets to selected
hosts, 34

Linux

output streams, 304
VPNs (Virtual Private Networks),

232–233
Linux Firewall Administration Program. See

Iptables.

Linux kernel, custom vs. stock, 97–98

list chain command, options, 63

list command, nftables

chain syntax, 86
table syntax, 85–86

Local destination address,filtering by,
34–35

Local destination port, filtering incoming
packets, 35

Index 385

Local source address, filtering outgoing
packets, 47

Local source port, filtering outgoing
packets, 48

local_dhcp_client_query chain, 166–167

local_dns_client_request chain, 159–161

local_dns_server_query chain, 151, 158

localhost, definition, 356

localhost-policy file, 170, 172

local_tcp_client_request chain, 152

local_tcp_server_response chain, 152,
161–162

local_udp_client_request chain, 152, 163

lockd daemon, 116

Lockout, inadvertent, 100, 139–140

Log messages

filtering, 57
interpreting, 220–223
priorities, 218

Log monitoring for intrusion detection,
256–257

Log packets, 88

log statement, 88

LOG target extension, 67

Logging (administrator’s journal), 242

Logging (system logs)

as debugging tools, 217–223
dropped packets, 138, 168–170,

175–176
initializing firewalls, 108, 109
intrusion indications, 239
port scans, 38
snapshotting as intrusion response, 242

log_martians command, 102

log-policy file, 170

log-tcp-state chain, 152, 165–166

Loopback addresses, 8

Loopback interface, 105, 356

M
MAC addresses

definition, 17
identifying Ethernet cards, 18
packet-filtering firewalls, 27

mac match extension, 75

Macros, in AIDE, 306–307

Man pages, definition, 356

mangle table

built-in chains, 61
command syntax, 81–82
description, 54–55
FORWARD chains, 60
INPUT chains, 60
MARK extension, 56, 81–82
marking, 60
OUTPUT chains, 60
POSTROUTING chains, 60
PREROUTING chains, 60
target extensions, 56
TOS extension, 56
TOS field, 60

MARK extension, 56

mark match extension, 76

mark target extension, 81–82

Masking IP addresses, 99

MASQUERADE, 203–204

MASQUERADE target extensions, 57, 59, 80

Masquerading. See also NAPT (Network
Address and Port Translation); NAT
(Network Address Translation).

definition, 356
description, 201
in earlier Linux versions, 52
in iptables, 59
LAN traffic to the Internet, example,

206–208

386 Index

Match extensions, filter table, 68–79

Match operations, filter table, 62, 64

MD5 algorithm, 356

Meta expressions, 89

Mirror ports, 263–264

Monitoring

AIDE, 301–302
ARP traffic. See ARPWatch daemon.
for automated intrusion detection. See

Snort program.
kernel-monitoring, enabling, 101–102
logs, 256–257
networks with ARPWatch daemon,

291–293
sessions, 72
Snort alerts, 290–291
SSH login failures, 256–257
system logs, 256–257

MSS (Maximum Segment Size), 17

MTU (Maximum Transmission Unit), 11, 356

Multicast addresses, 9–10

“Multicast over TCP/IP HOW TO,” 111

Multicast packets, 111, 356

Multicast registration and routing, 111–112

Multicasting, 11–12

Multihomed computer, 356. See also Dual-
homed computer.

multiport match extension, 69–70, 114

N
-n option, 224

-n (- -numeric) option, 85–86

Name server, primary, 356

Name server, secondary, 356

Naming firewall scripts, 139

NAPT (Network Address and Port
Translation), 58, 199. See also
Masquerading.

NAT (Network Address Translation). See also
Masquerading.

advantages of, 199–200
basic, 199
bidirectional, 199
definition, 4, 356–357
destination addresses, 202
disadvantages of, 200
DNAT (destination NAT), 205–206
forwarding, 201
full, 201
introduction, 197–198
in iptables, 52
MASQUERADE, 203–204
masquerading, 201
NAPT (Network Address and

Port Translation), 199. See also
Masquerading.

nat table syntax, 203
REDIRECT destination NAT,

205–206
semantics, 201–206
SNAT (source NAT), 203–204
source NAT. See SNAT (source

NAT).
traditional, 198–199
with transport-mode IPSec, 200
twice, 199

NAT (Network Address Translation), examples

DNAT (destination NAT), 209–210
host forwarding, 209–210
LANs, 209–210
masquerading LAN traffic to the

Internet, 206–208
proxies, 209–210
SNAT and private LANs, 206–208
standard NAT, LAN traffic on the

Internet, 208

Index 387

nat chains, 87

nat table

basic NAT, 58
bidirectional NAT, 58
built-in chains, 61
definition, 54–55
DNAT target extensions, 56, 58
feature overview, 58–60
flushing the chain, 103
MASQUERADE target extensions,

57, 59
NAPT (Network Address and Port

Translation), 58
OUTPUT chains, 59
port forwarding, 59
POSTROUTING chains, 59
PREROUTING chains, 59
REDIRECT target extensions, 57
RETURN target, 58
SNAT target extensions, 56, 58, 59
syntax, 203. See also iptables syntax,

nat table.
target extensions, 56, 56–58, 79–82
traditional unidirectional outbound

NAT, 58
twice NAT, 58

NAT-enabled routers as firewalls, 4

Netfilter firewall mechanism

definition, 357
as firewall administration program, 96
vs. IPFW, 51–54
packet traversal, 54

Netfilter Tables. See Nftables.

netstat command, 224–226

netstat program, 357

Network Address and Port Translation
(NAPT), 58, 199. See also Masquerading.

Network address class, 352

Network Address Translation (NAT). See NAT
(Network Address Translation).

Network addresses, 8

Network domains, 18

Network File System (NFS), 357

Network layer, 6, 357

Network Mapper (Nmap)

definition, 357
description, 227
identifying open ports and available

devices, 259–260, 281–282
intrusion detection, 259–260

Network models, 6. See also OSI (Open
System Interconnection) model layers.

Network News Transfer Protocol (NNTP), 357

Network security auditing, 227

Network sniffers, 249

Network Time Protocol (NTP), 137, 357

Network tools, 249–250

Network-directed broadcasts, 8

Networks. See also LANs; VPNs (Virtual
Private Networks).

private vs. public, 50
protecting nonsecure local services, 50
selecting services to run, 50
subnetting, 8–11

NEW packets, 73

new state expression, 89

NFS (Network File System), 357

nft command syntax, 83

nft program

definition, 357
as firewall administration program, 96
version number, displaying, 85

nftables

add command, 86–87
adding chains to a table, 86–87
address families, 84

388 Index

nftables (continued)
arp address family, 84
bridge address family, 84
chain syntax, 86–87
chain types, 87
clearing chains, 86
command-line options, 85
create command, 86
creating chains, 86
definition, 357
delete command, 86
deleting chains, 86
displaying rules in a chain, 86
file syntax, 92
as firewall administration program, 96
firewall example (code listing),

328–332
flush command, 86
forward hooks, 85
inet address family, 84
input hooks, 84
ip address family, 84
ip6 address family, 84
vs. iptables, 83
list command, 86
listing, example, 216–217
nft command syntax, 83
output hooks, 85
postrouting hooks, 85
prerouting hooks, 84
rename command, 86
renaming chains, 86
rule subcommand, 84
script, optimization example, 170
table subcommand, 84
typical commands and

subcommands, 83

nftables, basic operations

ARP header expressions, 91
IPv4 payload expressions, 90
IPv6 header expressions, 90
TCP header expressions, 90
UDP header expressions, 91

nftables, command-line options

-a (--handle) option, 85–86
address information, displaying

numerically, 85–86
--debug option, 85
debugging, enabling, 85
directories, including in a search

path, 85
enabling command-line input, 85
-f (--file) option, 85
-h (--help) option, 85
help, displaying, 85
-i (--interactive) option, 85
-I (--includepath) option, 85
including files, 85
-n (--numeric) option, 85–86
nft version number, displaying, 85
port information, displaying

numerically, 85–86
rule handles, displaying, 85–86
-v (--version) option, 85

nftables, expressions

connection tracking expressions,
88–89

established state expression, 89
invalid state expression, 89
meta expressions, 89
new state expression, 89
payload expressions, 88
related state expression, 89
state expressions, 89
untracked state expression, 89

Index 389

nftables, rule syntax

accept packet and stop processing, 87
accept statement, 87
add command, 87
adding rules, 87
continue processing packets, 87
continue statement, 87
delete command, 87
deleting rules, 87
drop packet and stop processing, 88
drop statement, 88
goto statement, 88
insert command, 87
jump statement, 88
limit reached on matching received

packets, 88
limit statement, 88
log packets, 88
log statement, 88
prepend a rule on a chain, 87
queue statement, 88
reject statement, 88
return processing to the calling

chain, 88
return statement, 88
send processing to a specified chain,

don’t return, 88
send processing to a specified chain,

return, 88
statements and verdicts, 87–88
stop and reject the packet, 88
stop and send packets to the user-space

process, 88
nftables, table syntax

add command, 85–86
adding a table, 85–86
clearing all chains and rules for a

table, 85

default tables, 85–86
delete command, 85
deleting a table, 85
displaying chains and rules for a table,

85–86
flush command, 85
list command, 85–86
table syntax, 85–86

nft-vars file, 170

Nikto program, 260

Nmap (Network Mapper)

definition, 357
description, 227
identifying open ports and available

devices, 259–260, 281–282
intrusion detection, 259–260

NNTP (Network News Transfer Protocol), 357

NS flag, 16

ntop program, 250

NTP (Network Time Protocol), 137, 357

ntpd daemon, 137

- -numeric (-n) option, 85–86

O
Open Shortest Path First (OSPF), 357

Open System Interconnection (OSI)
model layers. See OSI (Open System
Interconnection) model layers.

Openswan program, 233

OpenVPN program, 233

Optimization

external rules files, 170
goal of, 176–177
ICMP traffic, 163–165
iptables, 176–177
nftables, 177
rc.firewall script, 173–175

390 Index

Optimization (continued)
source address checking, bypassing,

162–163
TCP, enabling local server traffic, 161
TCP traffic, enabling from local

clients, 159–161
UDP, local client traffic, 162

Optimization, examples

connection-tracking chain, 166
destination-address-check chain, 168
EXT-icmp-in chain, 164
EXT-icmp-out chain, 164
EXT-input chains, building, 157
EXT-log-in chain, 168–170
EXT-log-out chain, 168–170
EXT-output chains, building, 157
firewall initialization, 153–154, 170–172
ICMP traffic, 163–165
installing user-defined chains, 155–156
iptables firewall (code listing), 332–345
iptables script, 151–152
local_dhcp_client_query chain,

166–167
local_dns_client_request chain,

159–161
local_dns_server_query chain, 158
local_tcp_server_response chain,

161–162
local_udp_client_request chain, 163
logging dropped packets, 168–170
log-tcp-state chain, 165–166
nftables firewall (code listing),

345–349
nftables script, 170
rc.firewall script, 345–349
remote_dhcp_server_response chain,

166–167
remote_dns_server_query chain, 158

remote_dns_server_response chain,
159–161

remote_tcp_client_request chain,
161–162

remote_udp_server_response
chain, 163

source address checking, bypassing,
162–163

source-address-check chain, 167–168
TCP, enabling local server traffic, 161
TCP traffic, enabling from local

clients, 159–161
tcp-state-flags chain, 165
UDP, local client traffic, 162

Optimization, rule organization

building rules files, 172–176
bypassing spoofing rules, 146
connection state, enabling, 173
creating tables, 172
external rules files, 170
heavily used services, 147
ICMP rules, placing, 147
ICMP traffic, 175
incoming packet rules, placing,

146–147
invalid traffic, dropping, 173
local client traffic, over TCP, 174
local server traffic, over TCP, 175
localhost traffic, enabling, 172
rc.firewall script, 173–175
state module for ESTABLISHED and

RELATED matches, 146
traffic, enabling, 173–174
traffic flow to determine rule

placement, 147–148
transport protocols, 146–147
UDP rules, placing, 147
where to begin, 145

Index 391

Optimization, user-defined chains

branching, 149
characteristics of, 150–151
connection-tracking, 151, 166
destination-address-check, 151, 168
DNS traffic, identifying, 157
EXT-icmp-in, 152, 164
EXT-icmp-out, 152, 164
EXT-input, 151
EXT-log-in, 152, 168–170
EXT-log-out, 152, 168–170
EXT-output, 151
local_dhcp_client_query, 166–167
local_dns_client_request, 159–161
local_dns_server_query, 151, 158
local_tcp_client_request, 152
local_tcp_server_response, 152,

161–162
local_udp_client_request, 152, 163
logging dropped packets, 168–170,

175–176
log-tcp-state, 152, 165–166
remote_dhcp_server_response, 152,

166–167
remote_dns_server_query, 158
remote_dns_server_response, 151,

159–161
remote_tcp_client_request, 152,

161–162
remote_tcp_server_response, 152
remote_udp_server_response, 152, 163
source-address-check, 151, 167–168
tcp-state-flags, 151, 165
USER_CHAINS variable, 151

OSI (Open System Interconnection) model
layers

Application, 6
connectionless vs. connection-oriented

protocols, 7

Datalink, 6
definition, 357
demultiplexing, 6
encapsulation, 6
frames, 6
Network, 6
overview, 5–6
Physical, 6
Presentation, 6
Session, 6
Transport layer, 6
Transport protocols. See TCP

(Transmission Control Protocol);
UDP (User Datagram Protocol).

OSPF (Open Shortest Path First), 357

Outgoing TCP connection state, filtering
outgoing packets, 48–49

OUTPUT chains

mangle table, 61
nat table, 59, 61

output hooks, 85

owner match extension, 75–76

P
-p option, 224

Packet forwarding

choke firewalls, 181–182
DMZ (demilitarized zone), 180
gateway firewall setups, 181–182
LAN security, 182–183
limitations of a bastion firewall,

179–180
perimeter networks, 180

Packet forwarding, on a larger or less trusted
LAN

configuring an internal LAN, 191–192
configuring multiple LANs, 192–195
creating multiple networks, 188–190

392 Index

Packet forwarding, on a larger or less trusted
LAN (continued)

dividing address space, 188–190
overview, 188
selective internal access, 190–195
subnetting, 188–190

Packet forwarding, on a trusted home LAN

forwarding local traffic, 186–188
LAN access to the gateway firewall,

184–186
multiple LANs, 186–188

Packet matching, iptables, 57

Packet-filtering firewalls. See also Filtering
incoming packets; Filtering outgoing
packets.

accept-everything-by-default policy,
29–30

default policy, 29–30
deny-everything-by-default policy,

29–30
MAC address filtering, 27
overview, 26–28
rejecting packets vs. denying packets, 31

Packets

definition, 357
destination address, specifying, 98–99
dropped, logging, 138
dropping, 108, 112, 138
filtering. See Filtering incoming

packets; Filtering outgoing packets;
Packet-filtering firewalls.

fragments, 44
logging, 88
source address, specifying, 98–99

PATH variable, 357

Payload expressions, 88

Peer-to-peer communication protocol, 357

Penetration testing, 259–260

Penetrations. See Attack detection; Intrusion
detection.

Perimeter networks, packet
forwarding, 180

Physical devices, linking to IP addresses.
See ARP (Address Resolution
Protocol).

Physical layer, 6, 357

PID (process ID), 358

ping flooding, 41–42

Ping of Death, 42–43

pings

capturing, 279
definition, 358
disabling, 42

Pipe symbol (|), command-line syntax, 62

Point-to-Point Tunneling Protocol (PPTP),
229–230, 233

Policy defaults. See Default policies.

POP (Post Office Protocol), 358

Port forwarding, 59

Port information, displaying numerically,
85–86

Port numbers

mapping to service names, 19–20
numeric vs. symbolic, 96–97

Port scans

definition, 36–38, 358
in firewall logs, 38
general, 36
for open ports, 281–282
responding to, 38–39
stealth, 38
targeted, 36–38
threat level, 38–39

portmap daemon

definition, 358
description, 113

Ports

common scan targets, 36–38
definition, 358

Index 393

privileged, 358. See also Unprivileged
ports.

service ports, 19–23
Ports, open

checking for, 223–227
scanning for, 281–282
testing for, 260

Post Office Protocol (POP), 358

POSTROUTING chains, 59, 61

postrouting hooks, 85

Pound sign (#), comment
indicator, 297

PPTP (Point-to-Point Tunneling Protocol),
229–230, 233

pptpd daemon, 233

Prepend a rule on a chain, 87

PREROUTING chains, 59, 61

prerouting hooks, 84

Presentation layer, 6

Primitives for TCPDump, 271

Private networks vs. public, 49–50

Probes, definition, 36, 358

Process ID (PID), 358

Protocol qualifier, TCPDump, 271

Proxies

application-level, 358. See also ALG
(application-level gateway).

circuit-level, 358–359
definition, 358
example, 209–210

PSH flag, 16

Public networks vs. private, 49–50

Q
QoS (Quality of Service), 359

Queries, capturing, 279

queue statement, 88

QUEUE target, 57

R
RARP (Reverse Address Resolution

Protocol), 359

rc.firewall script, 173–175

Recording traffic, 284–286

Red Hat, initializing firewalls, 140

Redirect bombs, 45

REDIRECT destination NAT, 205–206

redirect messages, disabling, 102

REDIRECT target extensions, 57, 81

REJECT rule, 106, 359

reject statement, 88

REJECT target extension, 57, 68

Rejecting packets vs. denying, 31

RELATED packets, 73

related state expression, 89

Remote destination address, filtering
outgoing packets, 47–48

Remote destination port, filtering outgoing
packets, 48

Remote procedure call (RPC), 359

Remote source address, filtering incoming
packets, 31–34

Remote source port, filtering incoming
packets, 35

remote_dhcp_server_response chain, 152,
166–167

remote_dns_server_query chain, 158

remote_dns_server_response chain, 151,
159–161

Remotely initializing firewalls, 100

remote_tcp_client_request chain, 152,
161–162

remote_tcp_server_response
chain, 152

remote_udp_server_response chain,
152, 163

rename command, 86

Renaming chains, 86

394 Index

Report output, AIDE, 303–306

Report verbosity, AIDE, 305–306

Reporting intrusions. See Intrusion response,
incident reporting.

Request For Comments (RFC), 359

Resolver, 359

Resources. See Books and publications.

Responding to intrusions. See Intrusion
response.

Return processing to the calling chain, 88

return statement, 88

RETURN target, 58

Reverse Address Resolution Protocol
(RARP), 359

RFC (Request For Comments), 359

RFC 1112 “Host Extensions for IP
Multicasting,” 111

RFC 1122 “Requirements for Internet
Hosts—Communication Layers,” 102

RFC 1458 “Requirements for Multicast
Protocols,” 111

RFC 1631 “The IP Network Address
Translator (NAT),” 197

RFC 1700 “Assigned Numbers,” 113

RFC 1812 “Requirements for IP Version 4
Routers,” 102

RFC 2196 “Site Security Handbook,” 238

RFC 2236 “Internet Group Management
Protocol Version 2,” 111

RFC 2474, “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and
IPv6 Headers,” 77

RFC 2475, “An Architecture for Differentiated
Services,” 77

RFC 2588 “IP Multicast and Firewalls,” 111

RFC 2647 “Benchmarking Terminology for
Firewall Performance,” 25

RFC 2663 “IP Network Address
Translator (NAT) Terminology and
Considerations,” 198

RFC 2827 “Network Ingress Filtering:
Defeating Denial of Service Attacks . . . ,” 47

RFC 2990 “Next Steps for the IP QoS
Architecture,” 77

RFC 3022 “Traditional IP Network Address
Translator (Traditional NAT),” 197

RFC 3168 “The Addition of Explicit
Congestion Notification (ECN) to IP,” 77

RFC 3260 “New Terminology and
Clarifications for Diffserv,” 77

RFC 3704 “Ingress Filtering for Multihomed
Networks,” 47

RIP (Routing Information Protocol), 359

Rootkit checkers, 251

Rootkits, 251

route chains, 87

Router devices as firewalls, 4

Routing protocols, 19

RPC (remote procedure call), 359

RST flag, 16

Rule organization

building rules files, 172–176
bypassing spoofing rules, 146
connection state, enabling, 173
creating tables, 172
external rules files, 170
heavily used services, 147
ICMP rules, placing, 147
ICMP traffic, 175
incoming packet rules, placing, 146–147
invalid traffic, dropping, 173
local client traffic, over TCP, 174
local server traffic, over TCP, 175
localhost traffic, enabling, 172
rc.firewall script, 173–175
state module for ESTABLISHED and

RELATED matches, 146
traffic, enabling, 173–174

Index 395

traffic flow to determine rule
placement, 147–148

transport protocols, 146–147
UDP rules, placing, 147
where to begin, 145

rule subcommand, 84

Rules. See also Filter, firewall; Firewall;
nftables, rule syntax.

adding, 87
checking, bypassing, 107
clearing, 85
definition order, 96
deleting, 87
filter table operations on, 62
flushing the chain, 103
handles, displaying, 85–86
invocations, initializing firewalls, 99–100
listing, 85–86, 213–217
options, filter table, 64–65
packet addresses, specifying, 98–99
prepending on a chain, 87
removing from chains. See Flushing

the chain.
Runlevel, 359

S
Scalability, initializing firewalls, 107

Scanning for open ports. See Port scans.

Schneier, Bruce, 310

Screened host. See Firewalls, screened-host.

Screened subnet. See Firewalls, screened-
subnet.

Scripts, definition, 359

Secure Shell (SSH) protocol. See SSH (Secure
Shell) protocol.

Secure Sockets Layer (SSL) protocol, 360

Securing often, as intrusion prevention,
257–258

Security associations, VPNs, 232

Security audit tools, intrusion
indications, 241

Segments, TCP, 15, 359

Send processing to a specified chain, don’t
return, 88

Send processing to a specified chain,
return, 88

Server programs. See Daemons.

Service names, mapping to port numbers,
19–20

Service ports, 19–23

Session layer, 6

Session monitoring, maintaining state
information, 72

setgid program, 359

setuid program, 359

setup-tables file, 170, 172

Shebang line (first script line), 97

Shell, definition, 359

SMTP (Simple Mail Transfer Protocol), 360

SMTP conversations, capturing, 277–278

Smurf attack, 41, 282–283

Snapshotting the system logs, 242

SNAT (source NAT)

and private LANs, example, 206–208
semantics, 203–204
target extensions, nat table, 56, 58, 59,

79–80
SNMP (Simple Network Management

Protocol), 360

Snort program

configuring, 288–289
description, 249–250, 265
installing, 287–288

Snort program, automated intrusion
monitoring

obtaining, 287–288
overview, 286

396 Index

Snort program, automated intrusion
monitoring (continued)

receiving alerts, 290–291
with Swatch, 290–291
testing, 289–290

Socket, definition, 360

SOCKS package, 360

Source address checking, bypassing,
162–163

Source addresses

filtering, 41
spoofing. See Spoofing source

addresses.
validation, disabling, 102

source-address-check chain, 151, 167–168

Source-routed packets

disabling, 101
filtering, 46

Span ports, 263–264

Special addresses, 7

Splitting IP datagrams. See IP fragmentation.

Spoofing source addresses

definition, 360
initializing firewalls, 108–112
multicast network packets, 110–111
overview, 32–33

Square brackets ([]), command-line
syntax, 62

squid Web cache, blocking TCP-based
services, 114

SSH conversations, capturing, 278

SSH (Secure Shell) protocol

definition, 360
initializing firewalls, 128–130
login failures, monitoring, 256–257

SSL (Secure Sockets Layer) protocol, 360

Standalone firewall. See Bastion firewall.

Standard checks, AIDE, 308–309

Standard NAT, LAN traffic on the
Internet, 208

start argument, 139

Starting and stopping firewalls, 140–141

State expressions, 89

state match extension, 71–75

Stateless firewalls, 25

Statements, rule syntax, 87–88

Statements and verdicts, 87–88

Statistically assigned address, 360

STDERR, standard error stream, 304

STDIN, standard input stream, 304

STDOUT, standard output stream, 304

Stealth port scans, 38

“Steps for Recovering from a UNIX or NT
System Compromise,” 238

Stevens, Richard W., 7

stop argument, 139

Stop processing rules and

reject the packet, 88
send packets to the user-space

process, 88
Stopping and starting firewalls, 104–105,

140–141

Subnet layer, definition, 360

Subnetting, 10–11

Subscribers, 11–12

SUSE, initializing firewalls, 140

Swatch program, 256–257, 290–291

Switched environment vs. hub, 263

Switches, intrusion detection, 250

Symbolic names for

hosts, 98
IP addresses, 18, 98
port numbers, 96–97

SYN cookies, enabling, 41, 102

SYN flag, 16, 360

SYN packets, 16

Index 397

SYN segments, 16

SYN_ACK packets, 17

SYN_ACK segments, 17

SYN_RCVD state, 17

SYN_SENT state, 16

syslog configuration, 217–220

syslog.conf file, 360

syslogd daemon, 360

System configuration, intrusion indication,
239–240

System logs

as debugging tools, 217–223
dropped packets, 138, 168–170,

175–176
initializing firewalls, 108, 109
intrusion indications, 239
port scans, 38
snapshotting as intrusion response, 242

System performance, intrusion
indications, 241

T
table subcommand, 84

Table syntax, nftables, 85–86

Tables

adding, 85–86
clearing chains and rules, 85
deleting, 85
displaying chains and rules, 85–86

Target extensions

filter table, 67–68
mangle table, 56
nat table, 56, 56–58, 79–81

Targeted port scans, 36–38

TCP (Transmission Control Protocol)

a typical connection, 20–23
bit flags, 15–16. See also specific flags.

checksums, 15
CLOSED state, 17
CLOSE_WAIT state, 17
connections, 16–17
definition, 14–15, 360
enabling, 122–128
ESTABLISHED state, 17
FIN_WAIT_2 state, 17
generic, initializing firewalls, 133–134
header, 15
MSS (Maximum Segment Size), 17
protocol tables, 116–117
segments, 15
SYN packets, 16
SYN segments, 16
SYN_ACK packets, 17
SYN_ACK segments, 17
SYN_RCVD state, 17
SYN_SENT state, 16
three-way handshake, 16
TIME_WAIT state, 17
traffic, enabling from local clients,

159–161
TCP, enabling local server traffic, 161

TCP connection state, filtering incoming
packets, 35–36

TCP header expressions, 90

TCP header flags, 283

tcp match options, 65

TCP SYN flooding, 40–41

“TCP SYN Flooding and IP Spoofing Attacks,”41

tcp-client-policy file, 170

TCPDump

arithmetic operators, 271
broadcast primitive, 271
description, 249, 265
direction qualifier, 270–271

398 Index

TCPDump (continued)
expressions, 269–271
gateway primitive, 271
greater primitive, 271
installing, 266–267
less primitive, 271
obtaining, 266–267
options, 266–269
overview, 265–266
primitives, 271
protocol qualifier, 271
type qualifier, 269–270

TCPDump, attack detection

LAND attack, 284
Nmap (Network Mapper), 281–282
overview, 280–281
recording traffic, 284–286
scanning for open ports, 281–282
Smurf attacks, 282–283
TCP header flags, 283
Xmas Tree attack, 283

TCPDump, capturing

HTTP conversations, 273–277
other TCP-based protocols,

278–279
pings, 279
queries, 279
SMTP conversations, 277–278
SSH conversations, 278

TCP/IP reference model

definition, 360
firewall placement, 27
layers, 6

tcp-server-policy file, 170

tcp-state-flags chain, 151, 165

tcp_wrapper scheme, 360

Teardrop attack, 44

Testing

as intrusion prevention, 259–260
for open ports, 260
penetration, 259–260
Snort program, 289–290
web servers, 260

TFTP (Trivial File Transfer Protocol), 360

Three-way handshake, 16, 361

Time To Live (TTL), 361

Timeouts, initializing firewalls, 107

TIME_WAIT state, 17

TOS (Type of Service), 361

TOS extension, 56

TOS field, 57

tos match extension, 76–77

traceroute tool, 361

Traditional NAT, 198–199

Traditional unidirectional outbound
NAT, 58

Traffic baselines, establishing, 250

Transmission Control Protocol (TCP).
See TCP (Transmission Control
Protocol).

Transparency, firewalls, 4

Transport layer, 6

Transport layer, definition, 361

Transport mode, VPNs, 231

Transport protocols. See TCP (Transmission
Control Protocol); UDP (User Datagram
Protocol).

Trivial File Transfer Protocol
(TFTP), 360

TTL (Time To Live), 361

Tunnel mode, VPNs, 231

Tuples, 72

Twice NAT, 58, 199

Type of Service (TOS), 361

Type qualifier, 269–270

Index 399

U
UDP (User Datagram Protocol)

definition, 14, 361
flooding, 43
local client traffic, 162
protocol tables, 116–117

UDP (User Datagram Protocol), enabling

accessing your ISP’s DHCP server,
134–136

DHCP message types, 135
DHCP protocol, 136
overview, 134–138
remote network time servers,

accessing, 136–138
UDP header expressions, 91

udp match options, 66

“UDP Port Denial-of-Service Attack,” 43

ULOG target extension, 57, 68

unclean match extension, 77

Unicast, definition, 361

Unicast addresses, 9

Unprivileged ports

definition, 358
official port number assignments, 113
port range, syntax, 114
port scans, 113
purpose of, 19

Unprivileged ports, protecting services on

blocking local TCP services, 113–115
common local TCP services, 113–115
common local UDP services, 116
deny-by-default, shortcomings, 114
disallowing connections, 114–115
FTP, 114
official port number assignments, 113
overview, 112–113
port range, syntax, 114

port scans, 113
TCP service protocol tables, 116–117
UDP service protocol tables, 116–117

untracked state expression, 89

Updating, as intrusion prevention, 258–259

URG flag, 16

User accounts, intrusion indications, 240–241

User Datagram Protocol (UDP). See UDP
(User Datagram Protocol).

USER_CHAINS variable chain, 151

User-defined chains

branching, 149
characteristics of, 150–151
connection-tracking, 151, 166
destination-address-check, 151, 168
DNS traffic, identifying, 157
EXT-icmp-in, 152, 164
EXT-icmp-out, 152, 164
EXT-input, 151
EXT-log-in, 152, 168–170
EXT-log-out, 152, 168–170
EXT-output, 151
local_dhcp_client_query, 166–167
local_dns_client_request, 159–161
local_dns_server_query, 151, 158
local_tcp_client_request, 152
local_tcp_server_response, 152, 161–162
local_udp_client_request, 152, 163
logging dropped packets, 168–170,

175–176
log-tcp-state, 152, 165–166
remote_dhcp_server_response, 152,

166–167
remote_dns_server_query, 158
remote_dns_server_response, 151,

159–161
remote_tcp_client_request, 152,

161–162

400 Index

User-defined chains (continued)
remote_tcp_server_response, 152
remote_udp_server_response, 152, 163
source-address-check, 151, 167–168
tcp-state-flags, 151, 165
USER_CHAINS variable, 151

UUCP protocol, 361

V
-v (- -version) option, 85

Verbosity of output, 216

VPNs (Virtual Private Networks)

authentication header, 230–231
combining with firewalls, 233–234
ESP (encapsulating security payload),

231–232
generic routing encapsulation, 230
IKE (Internet Key Exchange), 232
IPSec (Internet Protocol Security), 230
L2TP (Layer 2 Tunneling Protocol),

229–230
Libreswan program, 233
Linux, 232–233

Openswan program, 233
OpenVPN program, 233
overview, 229
PPTP (Point-to-Point Tunneling

Protocol), 229–230, 233
protocols, 229–232
security associations, 232
transport mode, 231
tunnel mode, 231

W
Web servers, testing, 260

World-readable, 361

World-writable, 361

X
X Windows, 361

Xmas Tree attack, 283

Z
Zone transfers, 118

	Contents
	Preface
	About the Author
	2 Packet-Filtering Concepts
	A Packet-Filtering Firewall
	Choosing a Default Packet-Filtering Policy
	Rejecting versus Denying a Packet
	Filtering Incoming Packets
	Filtering Outgoing Packets
	Private versus Public Network Services
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

