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Preface

Why another Android security book? Right now I know of a half dozen books or

so about hacking Android. I personally wrote one a few years ago called Decompiling
Android. In the world of hacking we use the term white hat for someone who is trying
to improve the security of a system and black hat for someone who is trying to exploit
the weaknesses of a system. In my opinion, most of the existing Android hacking
books are either black hat books or they tread the line between white hat and black
hat. Sometimes they benefit a black hat hacker and sometimes the information is use-
ful for someone who wants to write a more secure app. Black hat books are still a great
resource for understanding how to secure your app, but the focus is on how to attack
rather than how to protect an app.

What This Book Is About

This book is firmly in the white hat category. It is an Android security book for devel-
opers, for managers, and for security professionals who want to write more secure
Android apps. It uses examples from the many hundreds of Android apps that we (the
company I run) have audited over the past three years, and it uses real-world examples
of what works and doesn’t work from a security perspective. In each chapter we’ll look
at some examples of how naive coding practices expose apps and how other developers
have found more secure solutions.

This book is also written to complement the Android Security Essentials LiveLessons
video that covers the OWASP (Open Web Application Security Project) Mobile Top
10 Risks in detail. The OWASP Mobile Top 10 is the de facto standard for Android
security. And because all security projects are a moving target, the book uses the lat-
est OWASP Mobile Top 10 that has been updated since the LiveLessons video first
appeared.

What This Book Is Not About

If you own an Android phone you’re probably worried about apps with hidden mal-
ware, or what permissions you should or shouldn’t accept. We won’t be covering those
issues as the focus of the book is on Android developers who want to write more
secure Android apps, not someone who owns an Android phone. What’s more, we'’re
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not going to discuss how to root your phone because that really doesn’t have much to
do with writing secure code. We will touch on its implications for secure apps, but we
won’t be showing you how to root your phone. From a developer’s perspective, that’s
why you have an emulator.

Why Care?

Over the past two or three years we've downloaded a large number of Android APKs
and examined them for any security holes. We’ve uncovered a wide range of security
issues; see Figure P-1 for some examples. These generally fall into the following cat-
egories:

1. Keys or API information hard coded in the app (static information)

2. Usernames and passwords and other credentials that are stored insecurely
(dynamic information)

3. Sensitive data sent insecurely across the network to a back-end server

4. Third-party libraries collecting and transmitting back to base ad hoc
information that they don’t need to perform their job

5. Test data or other extraneous information stored in the production APK

It’s customary to notify companies that their apps have security issues and are leak-
ing information before releasing the information to the press. This gives the developers
some time to fix it and release an update before it goes public. Many times in the past
when we contacted the developers responsible for the security issues, we found that
security really isn’t on their radar as something to worry about. If you're developing
mobile apps, then security needs to become part of your development process.

This book comes from what we’ve seen in our audits of different Android apps.

The aim here is to provide you with a book of security anti-patterns where you can
see other people’s mistakes and hopefully not repeat (m)any of them, thereby keeping
your users more secure than your competition.
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Opinion

Evan Schuman: Your data exposed -- Delta,
Facebook, others latest to fall into mobile

app trap

Match.com and eHarmony also among those now saying, 'We didn't know
our mobile apps did that'

By Evan Schuman
Februery 18, 2014 08:02 AMET CJ 1 Comment

@ snere| 17 EJ 84 @ Y« =S

Computerworld - Mobile apps are presenting far too many surprises. Users
who love the apps on their smartphones and tablets have no idea how much
data those apps are retaining, or how easy it would be for someone else to
access that data. But consumers aren't the only ones in the dark. Mobile's
data dangers are also largely unknown to IT executives, app developers,
marketers -- pretty much everyone, really.

The latest app providers to say as much include Delta Air Lines, Facebook,
eHarmony and Match.com.

And what has happened with the Delta app over the past few days, since a
security researcher found a wide ranae of problems with maior Android mobile

Figure P-1 Dating app insecurity
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What This Book Covers

Here is a breakdown of the book by chapter.

Chapter 1: Android Security Issues

Chapter 1 is an introduction to the security issues on the Android platform. We’ll
show how to decompile an Android APK and look at some of the industry standard
guidelines for securing the Android platform.

Chapter 2: Protecting Your Code

In Chapter 2, we’ll look at how to download and reverse engineer an Android APK
back into Java source in more detail. We’ll also cover how to best protect your code
using different types of obfuscation tools and techniques that we’ve encountered dur-
ing our audits. We’ll look at the implications of being able to disassemble your code
into bytecode. And we’ll show how you can use the NDK to hide your algorithms
and business rules.

Chapter 3: Authentication

Providing a secure login mechanism for your mobile users is harder than on the

Web. The trend with mobile devices is to make things as easy as possible for the user.
Mobile keyboards are small, so it’s unlikely that someone is going to enter more than
six characters to log in to an app. But if you make it too easy to log in to your app,
then you run the risk of unauthorized users gaining access to sensitive data by going
around your authentication. In Chapter 3 we’ll look at how some of the authentication
mechanisms in our audits have failed, and we’re also going to look at what developers
have been using to log in to mobile apps that have been a lot more effective.

Chapter 4: Network Communication

In modern browsers, if you connect via secure HTTP, or HTTPS over a secure sock-
ets layer, you’ll get a little green lock, or a gold one depending on your browser, to
indicate that youre in a secure encrypted transaction. Developers pay a Certificate
Authority (CA) to make sure that they are who they say they are. And if you hap-

pen to come across a site that isn’t a valid site, your web browser will alert you pretty
quickly that something is wrong. Unfortunately, there isn’t anything similar in mobile
computing—there is no lock or key to comfort the user that any network communica-
tion is encrypted.

In this chapter we’ll first take a look at how to send information securely across the
network using SSL. In the second part of the chapter we’ll look at how hackers might
perform a man-in-the-middle attack using an SSL Proxy that intercepts the communi-
cation and sees whether it’s really secure.
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Chapter 5: Android Databases

One of the most basic questions about Android security and mobile security in gen-
eral is, “What information should you store on a device, and where can you store

it securely?” Ideally, you would not store or cache anything on the device. But if
someone doesn’t have any mobile service—for example, when on an airplane without
wi-fi—then you’re going to cause some frustration if this person can’t log into the app
for a number of hours. In this chapter we’ll talk about where you can store data and
how using the wrong permissions can allow other apps to read your data. Finally, we’ll
explain how to write data securely to an SD card as well as a SQLite database.

Chapter 6: Web Server Attacks

Most mobile apps that do real work will in some way connect to a back-end web
server. If the communication is via a web service, this can either be via SOAP or, more
commonly, by using a REST web service. In this chapter it’s a case of what’s old is
new again. We'll explore how the same security best practices that have applied to web
servers for the past 20 years apply to web servers used in mobile apps. We’ll also look at
how we can use logins from other website break-ins to help secure our authentication.

Chapter 7: Third-Party Library Integration

Data leakage from third-party apps is perhaps a less obvious way that someone can
recover a user’s information from your app. In this chapter we’ll explain the meaning
behind side channel data leakage and learn how to track what information is being
passed by your app to other services, with or without your knowledge.

Chapter 8: Device Security

Running your APK on different versions of Android can have different security prob-
lems. In this chapter we’ll look at how Android device fragmentation needs to be
considered when you’re writing a secure app. Different environments have different
requirements: Corporations have different requirements than individuals, health care
needs HIPAA compliance, and government work probably means that your Android
phone needs to be FIPS compliant. In this chapter we’ll also look at how Samsung
Knox and SELinux or SEAndroid are being used to make your device more secure.

Chapter 9: The Future

There aren’t many certainties about where Android security is going. But in Chapter 9
we’re going to look into the crystal ball: Using Android L as well as some open source
ideas, we’ll do our best to predict what future versions of Android will provide from a
security perspective. This way, you’ll know what existing security challenges will be
solved and what new challenges lie ahead. We’ll also look at how Android attacks are
likely to get more sophisticated in the near future.

XVii
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Tools

There are lots of tools that we’ll be using again and again throughout this book. Most
of them are listed here for convenience.

= 010, a hex editor that includes a template for disassembling classes.dex files. 010
does a great job of parsing the classes.dex file (see Figure P-2). It can be found at
www.sweetscape.com/010editor/.

= Abe, the Android Backup Extractor. It is used to convert an Android backup
into a tar format so that it can be unzipped. It’s available from https://
github.com/nelenkov/android-backup-extractor.

= adb, the Android debug bridge. It comes as part of the Android SDK.

= apktool, a collection of tools. It includes Smali and Baksmali as well as
AXMLPrinter2.

= AXMLPrinter2, which converts the compressed AndroidManifest.xml in an APK
back into a readable format. It’s available at https://code.google.com/p
/android4me/downloads/list.

@ 010 Editor - C\Users\godfrey\Dropbox\VERBATIM\clients\pearson\WritingSecureAndroidApps\chap1\com.riis.callqueue.. — =] n
Eile Edit Search Yiew Fgrmat Scripts Templates Jools Window Heip
D-B-Hd@P20 D EDE PRPod VR TNE BBk WEl

Startup classes dex & 1]

Open Files |
[ CUsers\gadtrey\. \classes.dex
= ChUsers.\DEXTemplate.bt

* Favorite Files

* Recent Files

T Bookmarked Files

0070h: FC 6C 0B 00 FE 6C 0B O0 01 6D 08 0D OF €D OB 00 4l..pl.
0080h: 22 6D 0B 00 3E €D 08 00 41 6D 08 00 45 6D 08 00 “m..>m..
0090h: 4B 6D 08 00 4E €D 08 00 52 6D 08 00 &1 6D 08 00 Km..Nm..
O0ACh: &6 6D OB 00 6B 6D 08 00 6F 6D 0B 00 74 6D 08 00 fm..km..

ARmAL. A EN AG A TR En NG AA 83 En AG AR B8 En AB AR e e

Ternplate Results - DEXTemplote. bt
Name

IHH
fEEEG

9 Fles 0 Explorer struct header_jter g
- e [ struct dex_magic magic  dex 035 on 8h ;. Magic value
[ ¥ i :
uint checksum 6E8049017h 8h 4h Alder32 checksum of rest of f...
Type Value 2 » SHAT signature(20] 6A4F9E522DCC...Ch 14h SHA-1 signature of rest of file

Signed Byte 100 wint file_size 951088 200 4h - File size in bytes

;'i':r':d"!;::rft" ;2355 uint header_size 112 24 ah Header size in bytes

Unsigned Sh... 25056 uint endian_tag 123456780 28n 4h Endianness tag

Signed Int 175662436 uint link_size 0 ZCh 4h : Size of link section

Unsigned Int 175662436 uint link_off o 300 4h File offset of link section

Signed Intf4 14974455192773988 uint map_off 104796 340 4h File offset of map list

T e e A uintstring_jds size 5502 W : Coumi of stringsin the sring ..

Double 1.17928646356871... uint string_ids_off 12 3ch 4h File offset of string ID list

Half Float 1380 uint type_ids_size 789 40n 4h :  Count of types in the type 1D ...

String t::x:t:?iﬂuﬂ v int type._ids_off 2120 4an 4h File offset of type ID list

@ A |13 vorisbies | Bor » uinl pmlo_fﬁsji?e ‘.I‘IBE. Mih 4h i ?mﬂol‘ l[el:ns in the method... N
Sefected: 112 [70n] bytes (Range: 0 [Oh] to 111 [6Fh]) Start:0[0h]  Sel: 112 [70h] Size: 951088 ANSI LIT W OVR

Figure P-2

010 Editor parsing classes.dex file
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= Baksmali and Smali, the Android disassembler and assembler. You can find them
at https://code.google.com/p/smali/ or as part of apk-tool.

= Charles Proxy, a tool for testing for man-in-the-middle attacks. It’s available from
http://www.charlesproxy.com/.

= Dedexer, a classes.dex dump file. Written by Gabor Paller in Hungary, it’s
available from http://dedexer.sourceforge.net/.

= dex2jar, which converts APKs to Java jar files for decompilation. You can find it
at https://code.google.com/p/dex2jar/.

= Drozer, an attack tool for Android apps. It’s available from https://
www.mwrinfosecurity.com/products/drozer/.

= JD-GUI, one of many Java decompilers. You can find it at http://jd.benow.ca/.

= Jadx, one of a new breed of Android decompilers. It’s available at https://
github.com/skylot/jadx.

s Keyczar, which we use for our public/private key encryption. You can download
it from http://keyczar.org.

= Lint, which comes with the Android SDK.

= ProGuard and DexGuard, which are obfuscators. ProGuard ships with the
Android SDK, and DexGuard is available at www.saikoa.com/.

= sqlitebrowser, a GUI for SQLite databases. It’s available from http://sqlitebrowser
.org/.
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Android Databases

n Android development, when we say “databases” we primarily mean SQLite and all
of its variants. These are typically small databases used to store or cache user informa-
tion locally on the device. It would be fair to say that databases and shared preferences
contain the bulk of an application’s dynamic data that is stored on a phone. In this
chapter we're going to look at how developers have used SQLite and, more impor-
tantly, how they have tried to secure that data in progressively more secure ways so
you don’t make the same mistakes.

Android Database Security Issues

Android databases are typically used to cache application data so that it can be retrieved
more quickly than doing a web service call to a back-end database server across the
Internet. Every app will have its own databases folder. So if the app’s package name
is com.riis.sqlite3, then you can find all its databases in the /data/data/com.riis.sqlite3
/databases folder. You can see this in Figure 5-1 where we’re doing an adb shell
command to get us a list of the files in the database folder.

Android databases are not a good place to store sensitive information. As we’ll see
later in the chapter, it is all too easy for someone to do a backup command and quickly
find what you're trying to hide.

C:\Users\Admin>adb shell ls /data/data/com.riis.sqlite3/databases
tasks.db
tasks.db-journal

C:\Users\Admin>

Figure 5-1 SQLite databases on your phone
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However, many apps ignore this issue because using SQLite is so convenient for
storing data. Facebook keeps a lot of its user information in SQLite databases, which
they have openly admitted is for performance reasons. Figure 5-2 shows a Facebook
database that’s been taken off an Android device using the adb backup command. The
“text” column in the threads.db database shows all the thread messages that a user has
sent and received in Facebook via the website as well as on the mobile app.

ESQL:te Database Browser - C;/Users/Admin/Dropbox/VERBATIM/clients/pearson/AndroidSecurityEssential.. — O

Dﬁﬁl'ﬂ mn‘ym} & |

Database Structure  Browse Data | Execute SQU |

Table: [messages -] il ] l

msa_id | thread id mestamp | timestamo <
m_mid. 1381456734522 5ef t_a&osElqux\fxpmvnMsgsomom Ha\-e ever played a game of cards .{ "amall™;"71+ 31456734519
m_mid, 1381444657983,658 t_aSoBEhg2FzVap+ 3V 3863000000 It may not be fair , . ., but people are ¢ {"email™;"15:31444657551
! im_mld 1380713610561 ech t_aSoBEhq2FzVzp+3ViY 10757000000 read this and stop I:lamlnq all parties b/ {"email™;"71:30713610514 =
a4 |m_id. 1915t 2V2p+ 3V 28345000000 'you can't make... “emall":"71:73567927927
~ m_mid, 13708 b ZVzp+ IV _Forgot to call Colm yesterday, It was hi {"emall™;"71 T0876989233
_E" m_mid,1370766274384:3a2 t_aSo8ERG2ZFZVZD+ V174418000000 The sacret is to limit what you say on &{"email”™:"71: 70786274377
¢ |m_mid. 1370786233559 65 t_aSo8Ehq2FzVzp+3VTY 33637000000 _Not really sure why you were upset by |{"email”:"71:70786233552
H !m mid, 1365594 Dah t_; ZVzp+ VY 38557000000 His Imswmhlmlmldhaw "emall™;"71- 35594788552
|m_mid, 1365593070349;b0a t_aSo8Ehq2FzVzp+ V170897000000 okidoki - didn't feel mediati {"email”;"15; 2
1 Im_jd 450346138372835  t_aSoBEhq2FzVzp+3VTv31891000000 My initial knee fjerk reaction was to say | {"email™;"71:35561381830
(11 |m_id.122650804584181 t_aSoSEhq2Fz\zp+ 3VIh78750000000 This your year {"emall™:"71:31912176207
12 Im_id 415894441812175  t_aSoBEhq2FzVzp+3VIv39%68%000000 Did you see this ? hitp://politicalwire.c {"email™;"71-32412136215
:‘ ‘@ __Im_id,515836541767061 t_aSoBEhq2FaVep+3VY38787000000 Tl\at £ awesome - funrry how american ("emaﬂ‘ 5159918568047
12 |m_id.1 11 |t Q2F2Vzp+3VI35 hittp:/ fwewwirist 145750865509
" m_id. 7576t ZVZp+ VIV I case you missed this hitp:/ /www. v
|t im_id.135907943211669 LMEM?FZV!IHM\WW Quote the boy. Of course 1 don't know & {"
1/ Im_id,199821553463392 L_MEInZFszn+3\JI\MODDDDDD can you give ciara some dosh when you.
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Figure 5-2  Viewing SQLite databases on your PC using SQLitebrowser

SQLite

SQLite is a fully functional database. It has many of the features you would expect in
a modern database, such as indexes and stored procedures. You can even do an explain
plan for optimizing your queries to find out exactly where your SQL code is spending
most of its time.

Any and all of your runtime app information—which includes all the shared pref-
erence files and databases—can be backed up by anyone with access to your phone
using a USB cable. Because of an oversight at Google, no one running Android after
version 4.0 even needs root access—they just need physical access to the phone. To be
fair, I think this was an intentional feature, not an oversight. The feature just has sig-
nificant unintended consequences.
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Note

Section §164.312 of the HIPAA standards says the following:
(a)(1) Standard: Access control. Implement technical policies and procedures for
electronic information systems that maintain electronic protected health information to

allow access only to those persons or software programs that have been granted access
rights as specified in §164.308(a)(4).

Putting any personal health information unencrypted in a SQLite database is not
HIPAA compliant because we cannot be sure that only persons that have been granted
access have access to the databases. Under most circumstances encrypted information
in a SQLite database is also not compliant. A quick way to check whether you have
an issue is to put the phone in Airplane mode and then see whether there is any sen-
sitive information, or what is known as Protected Health Information (PHI), being
displayed by the application. This will typically tell you that the information is either
not encrypted or the encryption key is somewhere on the phone, neither of which is
HIPAA compliant.

Backing Up the Database Using adb

Let’s look at how to write to a SQLite application and how someone can pull the
database off the phone. To begin, we need to add a SQLite database to the Android
HelloWorld app. Listing 5-1 shows how to add a SQLite database to your Android app.

Listing 5-1 Adding SQLite to your code

package com.riis.sqglite3;

import java.io.File;

import android.os.Bundle;

import android.app.Activity;

import android.database.sglite.SQLiteDatabase; // line 7
public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

InitializeSQLite3(); // line 16

}
private void InitializeSQLite3() {
File databaseFile = getDatabasePath("names.db");

databaseFile.mkdirs();
databaseFile.delete();
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SQLiteDatabase database = // line 26
SQLiteDatabase.openOrCreateDatabase(databaseFile, null);

database.execSQL("create table user(id integer primary key autoincrement,
T
"first text not null, last text not null, " + // line 28
"username text not null, password text not null)");

database.execSQL("insert into user(first,last,username, password) " +
"values('Bertie','Ahern','bahern','celial23")");
// line 31

To add SQLite to your application, import the library (see line 7), initialize the
SQLite database (see line 26), and then create your tables (see line 28) as well as add
any initial data (see line 31).

In the example shown we are adding just a single row of data to the database. We

are adding a first name, a last name, and a corresponding username and password to

our database.

We can now recover the database using the following steps on a compatible phone:

1.

Compile the code, push it to your phone or emulator, and make sure it
executes.

. Run the app.

. Back up the databases using the following command:

adb backup com.riis.sqlite3

. If all is working, device will respond with “Now unlock your device and

confirm the backup operation.”

. On the device or emulator, click Back up my data to enable it to be backed up

(see Figure 5-3).

. The backup file is a tar file with a custom header. We need to download the

Android Backup Extractor from https://github.com/nelenkov/android-backup-
extractor to get it into a tar format.

. Convert your backup.ab file using the following command:

java -jar abe.jar unpack backup.ab backup.tar

. Uncompress your tar file using tar -xvf or 7zip if youre on a Windows

machine.


https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor
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I8 Full backup

Do not back up Back up my data

Figure 5-3 Back up my data

9. Change directory to apps/com.riis.sqlite3/db, where you can now find your
names.db database.

10. Open names.db in sqlitebrowser from http://sqlitebrowser.org (see Figure 5-4).
As you see, the user information is in cleartext.

If you don’t have sqlitebrowser, you can always gain access to the sqlite database
from the command line (refer ahead to Figure 5-6).

Note that if your backup.ab file is empty, then it’s likely that you have used the
wrong package name. For commercial apps the best way to find the correct package
name is to look at the target ID in the app’s Google Play URL (see Figure 5-5 for
Facebook’s target ID). In this example, to back up the Facebook database you would
type the following:

adb backup com.facebook.katana


http://sqlitebrowser.org
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Figure 5-4  View the backup database data using the SQLite browser.
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Figure 5-5 Finding an App’s package name
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= C\WINDOWS\system32\cmd.exe - adb shell - D -

C:\Users\Admin>adb shell
root@android:/ # cd /data/data/com.riis.sqlite3/databases
cd /data/data/com.riis.sqlite3/databa
root@android: /data/data/com.riis.sqlite3/databases # sqlite3 names.db
sqlite3 names.db
SQLite version 3.7.11 2012-03-20 11:35:50
Enter “.help” for instructions
Enter SOL statements terminated with a ";"
sqlite> .dump
.dump
PRAGMA foreign_keys=0FF;
BEGIN TRANSACTION;
TABLE android_metadata (locale TEXT)
INTO “android_metadata™ UALUES( en_US');
TABLE user(id integer primary key autoincrement, first text not null
not null, username text not null, password text not null);
INTO user UALUES(1, ‘Bertie’, 'Ahern’, hern’, ‘celial23’)
quence;
_sequence” UALUES( 'user’,1);

Figure 5-6 Viewing the backup database data from command line SQLite

Disabling Backup

If anyone with access to your phone can back it up, then we’ll need some way to hide
the information if we’re going to be HIPAA compliant.

We can start with something simple by disabling backups using the allowBackup
attribute in the Android Manifest file. By default this is set to true. Changing it to
false, as in Listing 5-2, will stop the adb backup command working for any phone,
even for a full system backup.

However, it would be a mistake to solely rely on this, as a rooted phone has access
to databases and can still remove them from the phone via Unix commands. Figure
5-6 shows how someone can shell onto the phone, cd to the databases directory, and
then dump the database table to view the data.

adb pull can also be used to get the database off the phone. But you may also need
to run a chmod 777 <filename> to fully open the file’s permissions before you can
retrieve them.

Listing 5-2 Disabling backup

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.riis.sqlite3"
android:versionCode="1"
android:versionName="1.0" >

115



116

Chapter 5 Android Databases

<uses-sdk
android:minSdkVersion="16"
android:targetSdkVersion="16" />
<application
android:allowBackup="false"
android:icon="@drawable/ic _launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >
<activity
android:name="com.riis.sqlite3.MainActivity"
android:label="@string/app name" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

SQLCipher

We’ve seen that it doesn’t take a degree in computer science to gain access to an
APK’s source code, the static information, and an app’s backup data, the dynamic
information. Ideally you wouldn’t store any important customer information locally,
but this isn’t always an option. But, as we’ve seen, any data that is stored in cleartext
can be found easily. So if you do have to store any sensitive data, it is important to
encrypt the data in either shared preferences or in a database—or store it some-
where else.

Note

Apps using SQLCipher are restricted from export/distribution in certain countries and
require additional export registration with the US government if the app is distributed
outside the United States because SQLCipher contains strong encryption. The Play Store
asks about US export law compliance when you publish an app. This can be a gotcha when
using SQLCipher for developers who are unaware. The Android OS encryption functionality
is already compliant via Google’s filings, which no doubt explains why Android ships with a
cut-down version of Bouncy Castle that does not use strong encryption.

One of the more promising ways to store data securely in a database is using
SQLCipher, which is an open source library used in conjunction with SQLite.
SQLCipher can be downloaded from www.sqlcipher.net.

In Listing 5-3 we show how to use SQLCipher to encrypt the data in the database.
First, add the sqlcipherjar, commons-codec jar and guava-r09jar libraries, which can
also be found on the sqglcipher.net website. Then change the import statement (line 7)


http://www.sqlcipher.net

SQLCipher

to import SQLCipher, add a new loadLibs command (line 21) and, as you can see, the
openOrCreateDatabase now takes a password (line 27).

Listing 5-3 Adding SQLCipher to your SQLite code

package com.riis.sqlite3;

import
import
import

import

public

java.io.File;

android.os.Bundle;

android.app.Activity;

net.sglcipher.database.SQLiteDatabase; // line 7

class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

}

super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

InitializeSQLite3();

private void InitializeSQLite3() {

SQLiteDatabase.loadLibs(this); // line 21

File databaseFile = getDatabasePath("names.db");

databaseFile.mkdirs();

databaseFile.delete();

SQLiteDatabase database = // line 27
SQLiteDatabase.openOrCreateDatabase(databaseFile,"pass123",

null);

database.execSQL("create table user(id integer primary key autoincrement,

"
+
"first text not null, last text not null, " +
"username text not null, password text not null)");
database.execSQL("insert into user(first,last,username, password) " +

"values('Bertie','Ahern','bahern','celial23")");

Compile and push the app to the phone. Repeat the earlier steps to back up the
database onto our computer. You will probably notice that it takes noticeably longer
to push the app to the phone, as well as to back it up. This is because of the size of the
added libraries.
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Again, try to open it in sqlitebrowser or by using the SQLite command line tool.
This time the database won’t open because it’s encrypted with the key pass123.

The best way to open the database is to use the sqglite3 command line tool that
comes with SQLCipher. A new step is required whereby we need to tell the database
what the key is before it will allow us to do any SQL queries on the tables.

sqlite> PRAGMA key='passl23';

Figure 5-7 shows how to view the database using the new password.

You may also encounter databases that were created with earlier versions of the
SQLCipher libraries. These can be opened using the following PRAGMA command
after the PRAGMA key command.

sqlite> PRAGMA key='passl23';
sqlite> PRAGMA kdf iter = 4000;

This tells the sqlite tool that the key definition file has a lower iteration count than
the current version.

B C\WINDOWS\system32\cmd.exe - sqlite3.exe names.db - O

c:\Users\Admin\Downloads>cd apps\com.riis.sqlcipher\db

c:\Users\Admin\Downloads\apps\com.riis.sqlcipher\db>sqlite3.exe names.db
SQLCipher version 3.8.0.2 2013-09-83 17:11:13
Enter “.help” for instructions
Enter SQL statements terminated with a “;"
sqlite> PRAGMA key:='pass123’
sqlite> .dump
PRAGMA foreign_keys=0FF;
BEGIN TRANSACTION;
A TABLE android_metadata (locale TEXT);
INTO "android_metadata” UALUES( 'en_US');
TABLE user(id integer primary key autoincrement, first text not null,
not null, username text not null, password text not null]
INTO "user” UALUES(1, 'Bertie’, 'Ahern’, 'bahern’, ‘celial23');
FROM sqlite_sequence;
INTO "sqlite_sequence” UALUES( 'user' K 1);

Figure 5-7 Viewing an encrypted database from command line SQLite
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Finding the Key

Now that SQLCipher has encrypted the database, our security problem shifts to
“Where can we hide the key?” If we can find the key, then we’re going to be able

to open the database, just like we did in Chapter 2. We can take the following steps to
pull the APK off the device.

1. The APK is in the /data/app folder on the phone. It will also be called the same
package name we used in the adb backup command but with -1.apk appended.
The complete command to get the APK off the phone is the following:

adb pull /data/app/com.riis.sqglcipher-1l.apk
2. Convert the APK back into a jar file using the dex2jar command:
dex2jar com.riis.sqglcipher-l.apk
3. We can now view the source using a Java decompiler, in this case JD-GUI.

Figure 5-8 shows the code for the MainActivity.java file and clearly shows that
the password is pass123.

In the next section we’ll look at our options for hiding the key.
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Figure 5-8 Viewing the SQLCipher key using JD-GUI
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Hiding the Key

One of the most fundamental decisions that you're going to face as a mobile developer
is what encryption to use to hide sensitive information and whether you’re going to
leave the information on the phone or not.

In this section we’re going to look at a number of different ways that other de-
velopers have tried to solve this problem. These examples come from real-world
Android apps that we’ve audited over the years. They each get progressively better
at hiding an encryption key for the database itself or for fields in the database, such
as the password.

Security on Android is almost always a battle between security and ease of use. App
developers want to make it easy for people to use, and they don’t think it’s a good idea
to make someone log into the phone multiple times.

And while many of these examples look like very naive implementations, we have
the benefit of hindsight and can probably assume that the developers were not aware
that someone could gain access to their code and encryption keys so easily. If you're
using some sort of symmetrical key encryption where the encrypted data, as well as
the encrypted key, are on the phone, then youre leaving yourself open to attack.

Ask Each Time

Possibly the safest way to encrypt your database is to ask for the key each time, either
using a PIN code or a password. The first time the user opens the app they’re asked for
the key, which is then used to encrypt the database.

If the user wants to access any data on the app, then the next time they use the app
they have to remember their key and reenter it. The key is stored in the user’s head
and not on your phone.

The downside of this is that the user has to log in to the phone each time they open
your app. And depending on the key size it may also be open to a brute-force attack.
Certainly a four-digit pin code is not very secure.

Listing 5-4 shows an example of how to use a login password to encrypt the data-
base. The password is captured as the user is logging in on line 31; it’s then passed to
initializeSQLCipher as a string on line 35 and used as the SQLCipher key when we
open the database on line 45.

Listing 5-4 Using a Login password to encrypt the database

public class LoginActivity extends Activity {
private Button loginButton;

@Override
protected void onCreate(Bundle savedInstanceState) {
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super.onCreate(savedInstanceState);
setContentView(R.layout.login screen);
initializeViews();
bindListenersToViews();

}

private void initializeViews() {
loginButton = (Button) findViewById(R.id.login button);

}

private void bindListenersToViews() {
loginButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
loginToApp();
}
Hi
}

private void loginToApp() {
EditText usernameField = (EditText) findViewById(R.id.username field);

EditText passwordField = // line 31
(EditText) findViewById(R.id.password field);
EditText emailField = (EditText) findViewById(R.id.email field);

InitializeSQLCipher(passwordField.getText().toString()); // line 35

}

private void InitializeSQLCipher(String pwd) {
SQLiteDatabase.loadLibs(this);
File databaseFile = getDatabasePath("names.db");
databaseFile.mkdirs();
databaseFile.delete();

SQLiteDatabase database = // line 45
SQLiteDatabase.openOrCreateDatabase(databaseFile, pwd, null);

database.execSQL("create table user(id integer primary key autoincrement,

-
"first text not null, last text not null, " +
"username text not null, password text not null)");

database.execSQL("insert into user(first,last,username, password) " +

"values('Bertie','Ahern’','bahern’','celial23")");
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Shared Preferences

The next implementation is to hide the key in the shared preferences and then load
it each time the app is opened. There are two variations on this theme. A typical app
will ask the user to encrypt the app the first time and save the key in the shared pref-
erences. Listing 5-5 shows how to write and load our encryption key from a shared
preferences file.

Listing 5-5 Storing passwords in the shared preferences file

private void saveLastSuccessfulCreds() {

String username =
((EditText) findViewById(R.id.username field)).getText().toString();

String password = // line 3
((EditText) findViewById(R.id.password field)).getText().toString();

SharedPreferences.Editor editor = sharedPrefs.edit();
editor.putString(SettingsActivity.LAST USERNAME KEY, username);
editor.putString(SettingsActivity.LAST PASSWORD KEY, password); // line 7
editor.commit();

}

private void loadLastSuccessfulCreds() {

String lastUsername =
sharedPrefs.getString(SettingsActivity.LAST USERNAME KEY, "");

String lastPassword = // line 13
sharedPrefs.getString(SettingsActivity.LAST PASSWORD _KEY, "");

((EditText) findViewById(R.id.username field)).setText(lastUsername);
((EditText) findViewByld(R.id.password field)).setText(lastPassword); //line 16

The adb backup command will not only recover the databases, it will also recover
the shared preferences files. Figure 5-9 shows a screenshot of someone viewing a
shared preferences file on the phone itself.

Alternatively, the app can load an app-specific username and password when the
app is first opened. Android will load data from the resources/xml folder and store
it in shared preferences. Listing 5-6 shows how to load the key from the resources
folder.

Listing 5-6 Loading the SQLCipher key from the resources folder

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
<EditTextPreference

android:defaultValue="passl234"

android:key="myKey" />

</PreferenceScreen>
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= C:AWINDOWS\system32\cmd.exe - o IES

:\Users\godfrey>adb shell cat /data/data/com.riis.callcenter/shared_prefs/myx
<?xml version='1.0" encoding='utf-8' standalone='yes' ?>
<map>
ring name:="lastUsername”>gnolanUser1@xdp.broadsoft.com</string>
<{string name="lastURL">https://xsp2.xdp.broadsoft.com¢{/string>
</map>

C:) s\godfrey>

Figure 5-9 Viewing shared preferences files

The advantage of this is that it’s very easy to use; it encrypts the database without
any user input. The disadvantage is that it’s very easy for someone to find the key and
decrypt the phones. For example, the apktool—available from https://code.google.
com/p/android-apktool/—will convert an APK’s resources back into xml using the

following command:

java —jar apktool.jar d com.riis.sglcipher-l.apk

In the Code

We can see from the SQLCipher code example earlier in Figure 5-8 that we can’t
simply hard code our key in the SQLCipher class because someone is going to find
it when they decompile your APK. If we create a security scale showing level of dif-
ficulty—from 1 to 10, where 1 is your kid brother and 10 is a foreign government—
then we’re close to 1 or 2 in the level of difficulty to reverse engineer an APK to
decompile the code.

A couple of years ago, using a single security key for everyone’s app was common
practice in Android development. More recently, developers have moved to generating
the key and making it device-specific using the device’s attributes, such as device_id,
android_id, and any number of phone-specific attributes such as BUILD ID’s, and
Build. MODEL and Build MANUFACTURER. This is then concatenated together
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and is a unique key for that phone or tablet. Listing 5-7 shows how you might do

that. It takes the device’s unique Android ID and the Device ID (assuming it’s not a
tablet) as well as a whole array of phone information. All of this information is concat-
enated together and converted into an md5 digest or hash value.

So far, so good. It protects the app from any potential targeted malware that would
use a decompiled key to attack the app on lots of different phones. However, although
the key 1sn’t the same on every device, the algorithm is the same. And it’s a small step
if the code can be decompiled to figure out how to recreate the recipe for generating
the key, so ultimately it’s only slightly more secure than using the same key.

Listing 5-7 Device-specific keys

android id =

Secure.getString(getBaseContext().getContentResolver(),Secure.ANDROID _1ID);
tManager = (TelephonyManager) this.getSystemService(Context.TELEPHONY SERVICE);
device id = tManager.getDevicelId();

String strl = Build.BOARD + Build.BRAND + Build.CPU ABI + Build.DEVICE +
Build.DISPLAY + Build.FINGERPRINT + Build.HOST + Build.ID + Build.MANUFACTURER
+
Build.MODEL + Build.PRODUCT + Build.TAGS + Build.TYPE + Build.USER;
String key2 = md5(strl + device id + android id);

In the NDK

If the Java code in Android can be reverse engineered so easily, then it makes sense to
write it in some other language that isn’t so easily decompiled. Some developers hide
their keys in C++ using the Native Developer Kit (NDK). The NDK enables devel-
opers to write code as a C++ library. This can be useful if you want to try to hide any
keys in binary code. And, unlike Java code, C++ cannot be decompiled, only disas-
sembled.

Listing 5-8 shows some simple C++ code for returning the “pass123” key to
encrypt the database.

Listing 5-8 Hiding the key in the NDK

#include <string.h>
#include <jni.h>

jstring Java com riis sglndk MainActivity invokeNativeFunction(JNIEnv* env,
jobject javaThis) {
return (*env)->NewStringUTF(env, "passl23");

}
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Listing 5-9 shows the Android code to call the NDK method correctly. Line 11
does the JNI library call, the function is defined on line 14, and then we call the func-
tion that returns the key on line 21. The sqlndk.c file needs to be in a jni folder. And
because it’s C++ code, we're going to need a make file.

Listing 5-9 Calling the NDK code from Android

import java.io.File;

import net.sqglcipher.database.SQLiteDatabase;
import android.os.Bundle;

import android.app.Activity;

import android.app.AlertDialog;

public class MainActivity extends Activity {

static {
System.loadLibrary("sqlndk"); // line 11
}
private native String invokeNativeFunction(); // line 14
@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

String sqglkey = invokeNativeFunction(); // line 21
new AlertDialog.Builder(this).setMessage(sqglkey).show();

InitializeSQLCipher(sglkey);

}

private void InitializeSQLCipher(String initKey) {
SQLiteDatabase.loadLibs(this);
File databaseFile = getDatabasePath("tasks.db");
databaseFile.mkdirs();
databaseFile.delete();
SQLiteDatabase database =
SQLiteDatabase.openOrCreateDatabase(databaseFile, initKey, null);
database.execSQL("create table tasks" +
" (id integer primary key autoincrement,title text not null)");
database.execSQL("insert into tasks(title) values('Placeholder 1")");
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Listing 5-10 shows the corresponding Android.mk file. The C++ code is compiled
using the ndk-build command that comes with the Android NDXK tools. ndk-build is
run from a cgywin command line if you’re on Windows.

Listing 5-10 NDK makefile
LOCAL PATH := $(call my-dir)

include $(CLEAR _ VARS)

# Here we give our module name and source file(s)
LOCAL _ MODULE := sglndk

LOCAL SRC _FILES := sqglndk.c

include $(BUILD SHARED LIBRARY)

But we're not there yet. Even though we can no longer decompile the code, we can
disassemble it. Looking at Figure 5-10 you can see where the library, opened up in a
hexadecimal editor, shows the key very clearly at the end of the hexidecimal strings in
the file.

If you're going to use the NDK, then choose hexadecimal-like text so that it
doesn’t stand out in a hex editor. We can also take the earlier approach and use some
device-specific or app-specific characteristic and generate a unique app key in NDK
just like we can in native Android code. Listing 5-11 shows how you can use the app

1FCD: 00 30 BD E5 OC 20 A0 E3 01 30 AD E1 F2 FB FF EB .03a. 3.0 adye
1FDO: OC 30 9D ES 4C 30 93 ES 07 20 D3 ES 02 31 83 E0 .0ALO4. 04.14
1FED: 08 00 B3 E2 14 DO BD E2 00 BO BD E8 08 40 2D E9 ..A.B4.%@.08-&
1FF0: E0 FA FF EB 08 40 2D E9 DE FA FF EB 08 Bl 01 81 aoge.@-épaye.:.
N e e T

2040: 00 00 00 00 7C EB FF 7F B4 FF FF 7F 8C EB FF
2050: BO BO BO 80 9C EB FF 7F BO AF 04 80 €8 ED FF

Figure 5-10 Viewing the NDK password
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ID as a unique key, which will be different every time the app is installed on a differ-
ent phone. It uses a function called getlogin() to find out the login ID, which in this
case is the app_id.

Listing 5-11 Using the App ID for the database key

#include <string.h>
#include <jni.h>
#include <unistd.h>

jstring Java com riis sglndk MainActivity invokeNativeFunction(JNIEnv* env,
jobject javaThis) {

return (*env)->NewStringUTF(env, (char *)getlogin());

However, neither of these approaches is ultimately enough to stop someone from
reading the binary. But it is a better option to consider if you have no other choice
than to put the API or encryption keys on the device. Disassembled code rapidly
becomes more difficult to understand as it gets further away from these simple hello-
world examples.

Web Services

The safest option for any type of device is to store the key, or the algorithm for gener-
ating your key, remotely and to access it via secure web services. This has already been
covered in previous chapters. The disadvantage to this is that the Android device will
need to be connected to the Internet when you open the database, which might not be
acceptable to the end user.

But the message should be clear by now that any keys stored on the phone are open
to being hacked in ways similar to what we’ve shown in this section. We’ll go into
more detail in the next chapter about what to do to protect your web server and your
web server traffic from prying eyes.

SQL Injection

SQL injection refers to when the attacker taints the data with a SQL statement. We
said earlier that SQLite is a fully functional database, so, just like your SQL Server or
MySQL box, it is just as susceptible to SQL injection if you are not careful. SQL injec-
tion typically works by adding data to the querystring or adding data in a form field to
give the hacker access to the database or unauthorized logins. And while SQL injec-
tion is usually something used for attacking a web view or a web service, it can also be
an attack on an Activity. Figure 5-11 shows a simple SQL injection example.
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®ignIn
Figure 5-11 Classic SQL injection attack

If we look at the checkLogin code in Listing 5-12 we can see that the SQL query is
passed directly to the database. So if we log in with a username of ' OrR 1=1 --' and
password of test, the query to SQLite will be the following string:

select * from login where USERNAME = '' OR 1=1 --' and PASSWORD = 'test'

Listing 5-12 Login unprotected from SQL injection

public boolean checkLogin(String paraml, String param?2)
{

boolean bool = false;

Cursor cursor = db.rawQuery("select * from login where USERNAME = '" +
// line 5

paraml + "' and PASSWORD = '" + param2 + "';", null);
if (cursor != null) {

if (cursor.moveToFirst())
bool = true;
cursor.close();
}
return bool;

Because of the OR 1=1 portion of the string and the --, which comments out the
rest of the SQL query, this will always be a true condition. The result is that the user
can log in without needing a real username and password.

To fix this we need to sanitize any user-entered data and assume it can’t be trusted.
We can do this either by using regular expressions to check that it’s what we’re expect-
ing—for example, a valid email address—or by using SQL prepared statements. Or
better still, we can do both.

To fix our checkLogin code we're going to change the SQL to use prepared state-
ments. Listing 5-13 shows a modified checkLogin, which now uses prepared statements



Conclusion

on line 5. Here the injected SQL becomes a parameter and can no longer cut off the
SQL statement.

Listing 5-13 Protecting code using prepared statements

public boolean checkSecureLogin(String paraml, String param2)
{

boolean bool = false;

Cursor cursor = db.rawQuery("select * from login where " + // line 5
"USERNAME = ? and PASSWORD = ?", new String[]{paraml, param2});

if (cursor !'= null) {
if (cursor.moveToFirst())
bool = true;
cursor.close();
}

return bool;

Conclusion

In this chapter we’ve looked at options to make your databases more secure. If you're
going to store customer information, we’ve covered how to use SQLCipher to encrypt
the data as well as the various schemes developers have used to hide the key and keep
the data safely encrypted.

The only 100 percent secure way to hide any encryption key is to keep it off the
phone, and even then you must make sure it’s transmitted securely and not cached
anywhere. Every other alternative that we looked at had limitations, some more obvi-
ous than others. None of these alternatives would be HIPAA compliant. Ask yourself
the question, “Would the security of my app be compromised if someone could read
my code?” If the answer is yes, then the app is not HIPAA compliant.
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