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Preface

Why another Android security book? Right now I know of a half dozen books or 
so about hacking Android. I personally wrote one a few years ago called Decompiling 
Android. In the world of hacking we use the term white hat for someone who is trying 
to improve the security of a system and black hat for someone who is trying to exploit 
the weaknesses of a system. In my opinion, most of the existing Android hacking 
books are either black hat books or they tread the line between white hat and black 
hat. Sometimes they benefit a black hat hacker and sometimes the information is use-
ful for someone who wants to write a more secure app. Black hat books are still a great 
resource for understanding how to secure your app, but the focus is on how to attack 
rather than how to protect an app.

What This Book Is About
This book is firmly in the white hat category. It is an Android security book for devel-
opers, for managers, and for security professionals who want to write more secure 
Android apps. It uses examples from the many hundreds of Android apps that we (the 
company I run) have audited over the past three years, and it uses real-world examples 
of what works and doesn’t work from a security perspective. In each chapter we’ll look 
at some examples of how naive coding practices expose apps and how other developers 
have found more secure solutions. 

This book is also written to complement the Android Security Essentials LiveLessons 
video that covers the OWASP (Open Web Application Security Project) Mobile Top 
10 Risks in detail. The OWASP Mobile Top 10 is the de facto standard for Android 
security. And because all security projects are a moving target, the book uses the lat-
est OWASP Mobile Top 10 that has been updated since the LiveLessons video first 
appeared.

What This Book Is Not About
If you own an Android phone you’re probably worried about apps with hidden mal-
ware, or what permissions you should or shouldn’t accept. We won’t be covering those 
issues as the focus of the book is on Android developers who want to write more 
secure Android apps, not someone who owns an Android phone. What’s more, we’re 
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not going to discuss how to root your phone because that really doesn’t have much to 
do with writing secure code. We will touch on its implications for secure apps, but we 
won’t be showing you how to root your phone. From a developer’s perspective, that’s 
why you have an emulator.

Why Care?
Over the past two or three years we’ve downloaded a large number of Android APKs 
and examined them for any security holes. We’ve uncovered a wide range of security 
issues; see Figure P-1 for some examples. These generally fall into the following cat-
egories:

 1. Keys or API information hard coded in the app (static information)

 2. Usernames and passwords and other credentials that are stored insecurely 
(dynamic information)

 3. Sensitive data sent insecurely across the network to a back-end server

 4. Third-party libraries collecting and transmitting back to base ad hoc 
information that they don’t need to perform their job

 5. Test data or other extraneous information stored in the production APK

It’s customary to notify companies that their apps have security issues and are leak-
ing information before releasing the information to the press. This gives the developers 
some time to fix it and release an update before it goes public. Many times in the past 
when we contacted the developers responsible for the security issues, we found that 
security really isn’t on their radar as something to worry about. If you’re developing 
mobile apps, then security needs to become part of your development process.

This book comes from what we’ve seen in our audits of different Android apps. 
The aim here is to provide you with a book of security anti-patterns where you can 
see other people’s mistakes and hopefully not repeat (m)any of them, thereby keeping 
your users more secure than your competition.
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Figure P-1  Dating app insecurity
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What This Book Covers
Here is a breakdown of the book by chapter.

Chapter 1: Android Security Issues
Chapter 1 is an introduction to the security issues on the Android platform. We’ll 
show how to decompile an Android APK and look at some of the industry standard 
guidelines for securing the Android platform.

Chapter 2: Protecting Your Code
In Chapter 2, we’ll look at how to download and reverse engineer an Android APK 
back into Java source in more detail. We’ll also cover how to best protect your code 
using different types of obfuscation tools and techniques that we’ve encountered dur-
ing our audits. We’ll look at the implications of being able to disassemble your code 
into bytecode. And we’ll show how you can use the NDK to hide your algorithms 
and business rules. 

Chapter 3: Authentication
Providing a secure login mechanism for your mobile users is harder than on the 
Web. The trend with mobile devices is to make things as easy as possible for the user. 
Mobile keyboards are small, so it’s unlikely that someone is going to enter more than 
six characters to log in to an app. But if you make it too easy to log in to your app, 
then you run the risk of unauthorized users gaining access to sensitive data by going 
around your authentication. In Chapter 3 we’ll look at how some of the authentication 
mechanisms in our audits have failed, and we’re also going to look at what developers 
have been using to log in to mobile apps that have been a lot more effective.

Chapter 4: Network Communication
In modern browsers, if you connect via secure HTTP, or HTTPS over a secure sock-
ets layer, you’ll get a little green lock, or a gold one depending on your browser, to 
indicate that you’re in a secure encrypted transaction. Developers pay a Certificate 
Authority (CA) to make sure that they are who they say they are. And if you hap-
pen to come across a site that isn’t a valid site, your web browser will alert you pretty 
quickly that something is wrong. Unfortunately, there isn’t anything similar in mobile 
computing—there is no lock or key to comfort the user that any network communica-
tion is encrypted.  

In this chapter we’ll first take a look at how to send information securely across the 
network using SSL. In the second part of the chapter we’ll look at how hackers might 
perform a man-in-the-middle attack using an SSL Proxy that intercepts the communi-
cation and sees whether it’s really secure.
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Chapter 5: Android Databases
One of the most basic questions about Android security and mobile security in gen-
eral is, “What information should you store on a device, and where can you store 
it securely?” Ideally, you would not store or cache anything on the device.  But if 
someone doesn’t have any mobile service—for example, when on an airplane without 
wi-fi—then you’re going to cause some frustration if this person can’t log into the app 
for a number of hours. In this chapter we’ll talk about where you can store data and 
how using the wrong permissions can allow other apps to read your data. Finally, we’ll 
explain how to write data securely to an SD card as well as a SQLite database. 

Chapter 6: Web Server Attacks
Most mobile apps that do real work will in some way connect to a back-end web 
server. If the communication is via a web service, this can either be via SOAP or, more 
commonly, by using a REST web service. In this chapter it’s a case of what’s old is  
new again. We’ll explore how the same security best practices that have applied to web 
servers for the past 20 years apply to web servers used in mobile apps. We’ll also look at 
how we can use logins from other website break-ins to help secure our authentication.

Chapter 7: Third-Party Library Integration
Data leakage from third-party apps is perhaps a less obvious way that someone can 
recover a user’s information from your app. In this chapter we’ll explain the meaning 
behind side channel data leakage and learn how to track what information is being 
passed by your app to other services, with or without your knowledge.

Chapter 8: Device Security
Running your APK on different versions of Android can have different security prob-
lems. In this chapter we’ll look at how Android device fragmentation needs to be 
considered when you’re writing a secure app. Different environments have different 
requirements: Corporations have different requirements than individuals, health care 
needs HIPAA compliance, and government work probably means that your Android 
phone needs to be FIPS compliant. In this chapter we’ll also look at how Samsung 
Knox and SELinux or SEAndroid are being used to make your device more secure.

Chapter 9: The Future
There aren’t many certainties about where Android security is going. But in Chapter 9 
we’re going to look into the crystal ball: Using Android L as well as some open source 
ideas, we’ll do our best to predict what future versions of Android will provide from a 
security perspective. This way, you’ll know what existing security challenges will be 
solved and what new challenges lie ahead. We’ll also look at how Android attacks are 
likely to get more sophisticated in the near future.
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Tools
There are lots of tools that we’ll be using again and again throughout this book. Most 
of them are listed here for convenience.

nn 010, a hex editor that includes a template for disassembling classes.dex files. 010 
does a great job of parsing the classes.dex file (see Figure P-2). It can be found at 
www.sweetscape.com/010editor/. 

nn Abe, the Android Backup Extractor. It is used to convert an Android backup  
into a tar format so that it can be unzipped. It’s available from https:// 
github.com/nelenkov/android-backup-extractor.

nn adb, the Android debug bridge. It comes as part of the Android SDK.
nn apktool, a collection of tools. It includes Smali and Baksmali as well as 

AXMLPrinter2.
nn AXMLPrinter2, which converts the compressed AndroidManifest.xml in an APK 

back into a readable format. It’s available at https://code.google.com/p 
/android4me/downloads/list. 

Figure P-2  010 Editor parsing classes.dex file

http://www.sweetscape.com/010editor/
https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor
https://code.google.com/p/android4me/downloads/list
https://code.google.com/p/android4me/downloads/list
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nn Baksmali and Smali, the Android disassembler and assembler. You can find them 
at https://code.google.com/p/smali/ or as part of apk-tool.

nn Charles Proxy, a tool for testing for man-in-the-middle attacks. It’s available from 
http://www.charlesproxy.com/.

nn Dedexer, a classes.dex dump file. Written by Gabor Paller in Hungary, it’s 
available from http://dedexer.sourceforge.net/.

nn dex2jar, which converts APKs to Java jar files for decompilation. You can find it 
at https://code.google.com/p/dex2jar/.

nn Drozer, an attack tool for Android apps. It’s available from https:// 
www.mwrinfosecurity.com/products/drozer/. 

nn JD-GUI, one of many Java decompilers. You can find it at http://jd.benow.ca/. 
nn Jadx, one of a new breed of Android decompilers. It’s available at https:// 

github.com/skylot/jadx.
nn Keyczar, which we use for our public/private key encryption. You can download 

it from http://keyczar.org.
nn Lint, which comes with the Android SDK.
nn ProGuard and DexGuard, which are obfuscators. ProGuard ships with the 

Android SDK, and DexGuard is available at www.saikoa.com/. 
nn sqlitebrowser, a GUI for SQLite databases. It’s available from http://sqlitebrowser 

.org/.

http://www.charlesproxy.com/
https://code.google.com/p/smali/
http://dedexer.sourceforge.net/
https://code.google.com/p/dex2jar/
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/
http://jd.benow.ca/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
http://keyczar.org
http://www.saikoa.com/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
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5
Android Databases

In Android development, when we say “databases” we primarily mean SQLite and all 
of its variants. These are typically small databases used to store or cache user informa-
tion locally on the device. It would be fair to say that databases and shared preferences 
contain the bulk of an application’s dynamic data that is stored on a phone. In this 
chapter we’re going to look at how developers have used SQLite and, more impor-
tantly, how they have tried to secure that data in progressively more secure ways so 
you don’t make the same mistakes.

Android Database Security Issues
Android databases are typically used to cache application data so that it can be retrieved 
more quickly than doing a web service call to a back-end database server across the 
Internet. Every app will have its own databases folder. So if the app’s package name  
is com.riis.sqlite3, then you can find all its databases in the /data/data/com.riis.sqlite3 
/databases folder. You can see this in Figure 5-1 where we’re doing an adb shell  
command to get us a list of the files in the database folder.

Android databases are not a good place to store sensitive information. As we’ll see 
later in the chapter, it is all too easy for someone to do a backup command and quickly 
find what you’re trying to hide.

Figure 5-1 SQLite databases on your phone
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However, many apps ignore this issue because using SQLite is so convenient for 
storing data. Facebook keeps a lot of its user information in SQLite databases, which 
they have openly admitted is for performance reasons. Figure 5-2 shows a Facebook 
database that’s been taken off an Android device using the adb backup command. The 
“text” column in the threads.db database shows all the thread messages that a user has 
sent and received in Facebook via the website as well as on the mobile app.

SQLite
SQLite is a fully functional database. It has many of the features you would expect in 
a modern database, such as indexes and stored procedures. You can even do an explain 
plan for optimizing your queries to find out exactly where your SQL code is spending 
most of its time.

Any and all of your runtime app information—which includes all the shared pref-
erence files and databases—can be backed up by anyone with access to your phone 
using a USB cable.  Because of an oversight at Google, no one running Android after 
version 4.0 even needs root access—they just need physical access to the phone. To be 
fair, I think this was an intentional feature, not an oversight. The feature just has sig-
nificant unintended consequences.

Figure 5-2 Viewing SQLite databases on your PC using SQLitebrowser
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Note
Section §164.312 of the HIPAA standards says the following:

(a)(1) Standard: Access control. Implement technical policies and procedures for 
electronic information systems that maintain electronic protected health information to 
allow access only to those persons or software programs that have been granted access 
rights as specified in §164.308(a)(4).

Putting any personal health information unencrypted in a SQLite database is not 
HIPAA compliant because we cannot be sure that only persons that have been granted 
access have access to the databases. Under most circumstances encrypted information 
in a SQLite database is also not compliant. A quick way to check whether you have 
an issue is to put the phone in Airplane mode and then see whether there is any sen-
sitive information, or what is known as Protected Health Information (PHI), being 
displayed by the application. This will typically tell you that the information is either 
not encrypted or the encryption key is somewhere on the phone, neither of which is 
HIPAA compliant.

Backing Up the Database Using adb
Let’s look at how to write to a SQLite application and how someone can pull the  
database off the phone. To begin, we need to add a SQLite database to the Android 
HelloWorld app. Listing 5-1 shows how to add a SQLite database to your Android app. 

Listing 5-1 Adding SQLite to your code

package com.riis.sqlite3;
 
import java.io.File;
import android.os.Bundle;
import android.app.Activity;
import android.database.sqlite.SQLiteDatabase;                         // line 7
public class MainActivity extends Activity {
 
@Override
protected void onCreate(Bundle savedInstanceState) {
         super.onCreate(savedInstanceState);
         setContentView(R.layout.activity _ main);
          
         InitializeSQLite3();                                       // line 16
          
    }
 
    private void InitializeSQLite3() {
        
        File databaseFile = getDatabasePath("names.db");
        databaseFile.mkdirs();
        databaseFile.delete();
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        SQLiteDatabase database =                                   // line 26
            SQLiteDatabase.openOrCreateDatabase(databaseFile, null);
         
        database.execSQL("create table user(id integer primary key autoincrement,  
        " + 
                    "first text not null, last text not null, " + //    line 28
                    "username text not null,  password text not null)");
         
        database.execSQL("insert into user(first,last,username, password) " +  
                    "values('Bertie','Ahern','bahern','celia123')");       
                    // line 31
    }
     
}

To add SQLite to your application, import the library (see line 7), initialize the 
SQLite database (see line 26), and then create your tables (see line 28) as well as add 
any initial data (see line 31).

In the example shown we are adding just a single row of data to the database. We 
are adding a first name, a last name, and a corresponding username and password to 
our database.

We can now recover the database using the following steps on a compatible phone:

 1. Compile the code, push it to your phone or emulator, and make sure it  
executes.

 2. Run the app.

 3. Back up the databases using the following command: 
adb backup com.riis.sqlite3

 4. If all is working, device will respond with “Now unlock your device and 
confirm the backup operation.”

 5. On the device or emulator, click Back up my data to enable it to be backed up 
(see Figure 5-3).

 6. The backup file is a tar file with a custom header. We need to download the 
Android Backup Extractor from https://github.com/nelenkov/android-backup-
extractor to get it into a tar format.

 7. Convert your backup.ab file using the following command:
java -jar abe.jar unpack backup.ab backup.tar

 8. Uncompress your tar file using tar -xvf or 7zip if you’re on a Windows 
machine.

https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor
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 9. Change directory to apps/com.riis.sqlite3/db, where you can now find your 
names.db database.

 10. Open names.db in sqlitebrowser from http://sqlitebrowser.org (see Figure 5-4). 
As you see, the user information is in cleartext.

If you don’t have sqlitebrowser, you can always gain access to the sqlite database 
from the command line (refer ahead to Figure 5-6).  

Note that if your backup.ab file is empty, then it’s likely that you have used the 
wrong package name. For commercial apps the best way to find the correct package 
name is to look at the target ID in the app’s Google Play URL (see Figure 5-5 for 
Facebook’s target ID). In this example, to back up the Facebook database you would 
type the following:

adb backup com.facebook.katana

Figure 5-3 Back up my data

http://sqlitebrowser.org
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Figure 5-4 View the backup database data using the SQLite browser.

Figure 5-5 Finding an App’s package name
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Disabling Backup
If anyone with access to your phone can back it up, then we’ll need some way to hide 
the information if we’re going to be HIPAA compliant.

We can start with something simple by disabling backups using the allowBackup 
attribute in the Android Manifest file.  By default this is set to true. Changing it to 
false, as in Listing 5-2, will stop the adb backup command working for any phone, 
even for a full system backup.

However, it would be a mistake to solely rely on this, as a rooted phone has access 
to databases and can still remove them from the phone via Unix commands. Figure 
5-6 shows how someone can shell onto the phone, cd to the databases directory, and 
then dump the database table to view the data.

adb pull can also be used to get the database off the phone. But you may also need 
to run a chmod 777 <filename> to fully open the file’s permissions before you can 
retrieve them.

Listing 5-2 Disabling backup

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    package="com.riis.sqlite3"
    android:versionCode="1"
    android:versionName="1.0" >

Figure 5-6 Viewing the backup database data from command line SQLite
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    <uses-sdk
        android:minSdkVersion="16"
        android:targetSdkVersion="16" />
    <application
        android:allowBackup="false"
        android:icon="@drawable/ic _ launcher"
        android:label="@string/app _ name"
        android:theme="@style/AppTheme" >
        <activity
            android:name="com.riis.sqlite3.MainActivity"
            android:label="@string/app _ name" >
            <intent-filter>
                <action android:name="android.intent.action.MAIN" />
                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>
    </application>
</manifest>

SQLCipher
We’ve seen that it doesn’t take a degree in computer science to gain access to an  
APK’s source code, the static information, and an app’s backup data, the dynamic 
information. Ideally you wouldn’t store any important customer information locally, 
but this isn’t always an option. But, as we’ve seen, any data that is stored in cleartext 
can be found easily. So if you do have to store any sensitive data, it is important to 
encrypt the data in either shared preferences or in a database—or store it some- 
where else. 

Note
Apps using SQLCipher are restricted from export/distribution in certain countries and 
require additional export registration with the US government if the app is distributed 
outside the United States because SQLCipher contains strong encryption. The Play Store 
asks about US export law compliance when you publish an app. This can be a gotcha when 
using SQLCipher for developers who are unaware. The Android OS encryption functionality 
is already compliant via Google’s filings, which no doubt explains why Android ships with a 
cut-down version of Bouncy Castle that does not use strong encryption.

One of the more promising ways to store data securely in a database is using  
SQLCipher, which is an open source library used in conjunction with SQLite.  
SQLCipher can be downloaded from www.sqlcipher.net.

In Listing 5-3 we show how to use SQLCipher to encrypt the data in the database. 
First, add the sqlcipher.jar, commons-codec.jar and guava-r09.jar libraries, which can 
also be found on the sqlcipher.net website. Then change the import statement (line 7) 

http://www.sqlcipher.net
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to import SQLCipher, add a new loadLibs command (line 21) and, as you can see, the 
openOrCreateDatabase now takes a password (line 27).

Listing 5-3 Adding SQLCipher to your SQLite code

package com.riis.sqlite3;
 
import java.io.File;
 
import android.os.Bundle;
import android.app.Activity;
import net.sqlcipher.database.SQLiteDatabase;                          // line 7
 
public class MainActivity extends Activity {
 
    @Override
    protected void onCreate(Bundle savedInstanceState) {
         super.onCreate(savedInstanceState);
         setContentView(R.layout.activity _ main);
          
         InitializeSQLite3();
          
    }
 
    private void InitializeSQLite3() {
        SQLiteDatabase.loadLibs(this);                               // line 21
 
        File databaseFile = getDatabasePath("names.db");
        databaseFile.mkdirs();
        databaseFile.delete();
        SQLiteDatabase database =                                   // line 27  
        SQLiteDatabase.openOrCreateDatabase(databaseFile,"pass123",  
        null);

        database.execSQL("create table user(id integer primary key autoincrement,  
        " + 
                    "first text not null, last text not null, " +
                    "username text not null, password text not null)");
         
        database.execSQL("insert into user(first,last,username, password) " +  
                   "values('Bertie','Ahern','bahern','celia123')");

    }
}

Compile and push the app to the phone. Repeat the earlier steps to back up the 
database onto our computer. You will probably notice that it takes noticeably longer 
to push the app to the phone, as well as to back it up. This is because of the size of the 
added libraries.
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Again, try to open it in sqlitebrowser or by using the SQLite command line tool. 
This time the database won’t open because it’s encrypted with the key pass123.

The best way to open the database is to use the sqlite3 command line tool that 
comes with SQLCipher. A new step is required whereby we need to tell the database 
what the key is before it will allow us to do any SQL queries on the tables.  

sqlite> PRAGMA key='pass123';

Figure 5-7 shows how to view the database using the new password.  
You may also encounter databases that were created with earlier versions of the 

SQLCipher libraries. These can be opened using the following PRAGMA command 
after the PRAGMA key command.

sqlite> PRAGMA key='pass123';

sqlite> PRAGMA kdf _ iter = 4000;

This tells the sqlite tool that the key definition file has a lower iteration count than 
the current version.

Figure 5-7 Viewing an encrypted database from command line SQLite
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Finding the Key
Now that SQLCipher has encrypted the database, our security problem shifts to 
“Where can we hide the key?” If we can find the key, then we’re going to be able  
to open the database, just like we did in Chapter 2. We can take the following steps to 
pull the APK off the device. 

 1. The APK is in the /data/app folder on the phone. It will also be called the same 
package name we used in the adb backup command but with -1.apk appended. 
The complete command to get the APK off the phone is the following:
adb pull /data/app/com.riis.sqlcipher-1.apk

 2. Convert the APK back into a jar file using the dex2jar command:
dex2jar com.riis.sqlcipher-1.apk

 3. We can now view the source using a Java decompiler, in this case JD-GUI. 
Figure 5-8 shows the code for the MainActivity.java file and clearly shows that 
the password is pass123.

In the next section we’ll look at our options for hiding the key.

Figure 5-8 Viewing the SQLCipher key using JD-GUI
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Hiding the Key
One of the most fundamental decisions that you’re going to face as a mobile developer 
is what encryption to use to hide sensitive information and whether you’re going to 
leave the information on the phone or not.  

In this section we’re going to look at a number of different ways that other de- 
velopers have tried to solve this problem. These examples come from real-world 
Android apps that we’ve audited over the years. They each get progressively better  
at hiding an encryption key for the database itself or for fields in the database, such  
as the password.

Security on Android is almost always a battle between security and ease of use. App 
developers want to make it easy for people to use, and they don’t think it’s a good idea 
to make someone log into the phone multiple times.  

And while many of these examples look like very naive implementations, we have 
the benefit of hindsight and can probably assume that the developers were not aware 
that someone could gain access to their code and encryption keys so easily. If you’re 
using some sort of symmetrical key encryption where the encrypted data, as well as 
the encrypted key, are on the phone, then you’re leaving yourself open to attack. 

Ask Each Time
Possibly the safest way to encrypt your database is to ask for the key each time, either 
using a PIN code or a password. The first time the user opens the app they’re asked for 
the key, which is then used to encrypt the database.  

If the user wants to access any data on the app, then the next time they use the app 
they have to remember their key and reenter it. The key is stored in the user’s head 
and not on your phone.  

The downside of this is that the user has to log in to the phone each time they open 
your app.  And depending on the key size it may also be open to a brute-force attack. 
Certainly a four-digit pin code is not very secure. 

Listing 5-4 shows an example of how to use a login password to encrypt the data-
base. The password is captured as the user is logging in on line 31; it’s then passed to 
initializeSQLCipher as a string on line 35 and used as the SQLCipher key when we 
open the database on line 45.

Listing 5-4 Using a Login password to encrypt the database

public class LoginActivity extends Activity {
 
    private Button loginButton;
     
    @Override
    protected void onCreate(Bundle savedInstanceState) {
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        super.onCreate(savedInstanceState);
        setContentView(R.layout.login _ screen);
        initializeViews();
        bindListenersToViews();
         
    }
 
    private void initializeViews() {
        loginButton = (Button) findViewById(R.id.login _ button);
         
    }
     
    private void bindListenersToViews() {
        loginButton.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                     loginToApp();
            }
    });
    }
 
    private void loginToApp() {
        EditText usernameField = (EditText) findViewById(R.id.username _ field);
        EditText passwordField =         // line 31
(EditText) findViewById(R.id.password _ field);
        EditText emailField = (EditText) findViewById(R.id.email _ field);
         
      
        InitializeSQLCipher(passwordField.getText().toString());         // line 35
         
    }
     
    private void InitializeSQLCipher(String pwd) {
        SQLiteDatabase.loadLibs(this);
        File databaseFile = getDatabasePath("names.db");
        databaseFile.mkdirs();
        databaseFile.delete();
         
        SQLiteDatabase database =                                   // line 45
SQLiteDatabase.openOrCreateDatabase(databaseFile, pwd, null);
         
        database.execSQL("create table user(id integer primary key autoincrement,  
        " + 
                    "first text not null, last text not null, " +
                    "username text not null,  password text not null)");
         
        database.execSQL("insert into user(first,last,username, password) " +  
                    "values('Bertie','Ahern','bahern','celia123')"); 
      }
}
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Shared Preferences
The next implementation is to hide the key in the shared preferences and then load 
it each time the app is opened. There are two variations on this theme. A typical app 
will ask the user to encrypt the app the first time and save the key in the shared pref-
erences. Listing 5-5 shows how to write and load our encryption key from a shared 
preferences file.  

Listing 5-5 Storing passwords in the shared preferences file

private void saveLastSuccessfulCreds() {
    String username = 
((EditText) findViewById(R.id.username _ field)).getText().toString();
    String password =                                               // line 3
((EditText) findViewById(R.id.password _ field)).getText().toString(); 

    SharedPreferences.Editor editor = sharedPrefs.edit();
    editor.putString(SettingsActivity.LAST _ USERNAME _ KEY, username);
    editor.putString(SettingsActivity.LAST _ PASSWORD _ KEY, password);    // line 7
    editor.commit();
}
 
private void loadLastSuccessfulCreds() {
    String lastUsername = 
sharedPrefs.getString(SettingsActivity.LAST _ USERNAME _ KEY, "");
    String lastPassword =                                          // line 13
sharedPrefs.getString(SettingsActivity.LAST _ PASSWORD _ KEY, "");
 
    ((EditText) findViewById(R.id.username _ field)).setText(lastUsername);
    ((EditText) findViewById(R.id.password _ field)).setText(lastPassword); //line 16
}

The adb backup command will not only recover the databases, it will also recover 
the shared preferences files. Figure 5-9 shows a screenshot of someone viewing a 
shared preferences file on the phone itself.

Alternatively, the app can load an app-specific username and password when the 
app is first opened. Android will load data from the resources/xml folder and store  
it in shared preferences. Listing 5-6 shows how to load the key from the resources 
folder.

Listing 5-6 Loading the SQLCipher key from the resources folder

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
 
<EditTextPreference
    android:defaultValue="pass1234"
    android:key="myKey" />
 
</PreferenceScreen> 
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The advantage of this is that it’s very easy to use; it encrypts the database without 
any user input. The disadvantage is that it’s very easy for someone to find the key and 
decrypt the phones. For example, the apktool—available from https://code.google.
com/p/android-apktool/—will convert an APK’s resources back into xml using the 
following command:

java –jar apktool.jar d com.riis.sqlcipher-1.apk

In the Code
We can see from the SQLCipher code example earlier in Figure 5-8 that we can’t 
simply hard code our key in the SQLCipher class because someone is going to find 
it when they decompile your APK. If we create a security scale showing level of dif-
ficulty—from 1 to 10, where 1 is your kid brother and 10 is a foreign government—
then we’re close to 1 or 2 in the level of difficulty to reverse engineer an APK to 
decompile the code.  

A couple of years ago, using a single security key for everyone’s app was common 
practice in Android development. More recently, developers have moved to generating 
the key and making it device-specific using the device’s attributes, such as device_id, 
android_id, and any number of phone-specific attributes such as BUILD ID’s, and 
Build.MODEL and Build.MANUFACTURER. This is then concatenated together 

Figure 5-9 Viewing shared preferences files

https://code.google.com/p/android-apktool/%E2%80%94will
https://code.google.com/p/android-apktool/%E2%80%94will
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and is a unique key for that phone or tablet. Listing 5-7 shows how you might do 
that. It takes the device’s unique Android ID and the Device ID (assuming it’s not a 
tablet) as well as a whole array of phone information. All of this information is concat-
enated together and converted into an md5 digest or hash value. 

So far, so good. It protects the app from any potential targeted malware that would 
use a decompiled key to attack the app on lots of different phones. However, although 
the key isn’t the same on every device, the algorithm is the same. And it’s a small step 
if the code can be decompiled to figure out how to recreate the recipe for generating 
the key, so ultimately it’s only slightly more secure than using the same key.  

Listing 5-7 Device-specific keys 

android_id = 
     Secure.getString(getBaseContext().getContentResolver(),Secure.ANDROID _ ID); 
tManager = (TelephonyManager) this.getSystemService(Context.TELEPHONY _ SERVICE);
device _ id = tManager.getDeviceId();
 
 
String str1 = Build.BOARD + Build.BRAND + Build.CPU _ ABI + Build.DEVICE +
     Build.DISPLAY + Build.FINGERPRINT + Build.HOST + Build.ID + Build.MANUFACTURER 
+ 
     Build.MODEL + Build.PRODUCT + Build.TAGS + Build.TYPE + Build.USER;
String key2 = md5(str1 + device _ id + android _ id);

In the NDK
If the Java code in Android can be reverse engineered so easily, then it makes sense to 
write it in some other language that isn’t so easily decompiled. Some developers hide 
their keys in C++ using the Native Developer Kit (NDK). The NDK enables devel-
opers to write code as a C++ library. This can be useful if you want to try to hide any 
keys in binary code. And, unlike Java code, C++ cannot be decompiled, only disas-
sembled.  

Listing 5-8 shows some simple C++ code for returning the “pass123” key to 
encrypt the database.  

Listing 5-8 Hiding the key in the NDK

#include <string.h>
#include <jni.h>
 
jstring Java _ com _ riis _ sqlndk _ MainActivity _ invokeNativeFunction(JNIEnv* env, 
jobject javaThis) {
  return (*env)->NewStringUTF(env, "pass123");
}
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Listing 5-9 shows the Android code to call the NDK method correctly. Line 11 
does the JNI library call, the function is defined on line 14, and then we call the func-
tion that returns the key on line 21. The sqlndk.c file needs to be in a jni folder. And 
because it’s C++ code, we’re going to need a make file. 

Listing 5-9 Calling the NDK code from Android

import java.io.File;
 
import net.sqlcipher.database.SQLiteDatabase;
import android.os.Bundle;
import android.app.Activity;
import android.app.AlertDialog;
 
public class MainActivity extends Activity {
 
    static {
        System.loadLibrary("sqlndk");                                // line 11 
        }
     
    private native String invokeNativeFunction();                     // line 14
     
    @Override
    protected void onCreate(Bundle savedInstanceState) {
         super.onCreate(savedInstanceState);
         setContentView(R.layout.activity _ main);
                
         String sqlkey = invokeNativeFunction();                     // line 21
         new AlertDialog.Builder(this).setMessage(sqlkey).show();
          
        InitializeSQLCipher(sqlkey);
          
         
    }
     
    private void InitializeSQLCipher(String initKey) {
        SQLiteDatabase.loadLibs(this);
        File databaseFile = getDatabasePath("tasks.db");
        databaseFile.mkdirs();
        databaseFile.delete();
        SQLiteDatabase database = 
           SQLiteDatabase.openOrCreateDatabase(databaseFile, initKey, null);
        database.execSQL("create table tasks" +
                 " (id integer primary key autoincrement,title text not null)");
        database.execSQL("insert into tasks(title) values('Placeholder 1')");
    }
}
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Listing 5-10 shows the corresponding Android.mk file. The C++ code is compiled 
using the ndk-build command that comes with the Android NDK tools. ndk-build is 
run from a cgywin command line if you’re on Windows.

Listing 5-10 NDK makefile

LOCAL_PATH := $(call my-dir)
  
include $(CLEAR _ VARS)
  
# Here we give our module name and source file(s)
LOCAL _ MODULE    := sqlndk
LOCAL _ SRC _ FILES := sqlndk.c
  
include $(BUILD _ SHARED _ LIBRARY)

But we’re not there yet. Even though we can no longer decompile the code, we can 
disassemble it. Looking at Figure 5-10 you can see where the library, opened up in a 
hexadecimal editor, shows the key very clearly at the end of the hexidecimal strings in 
the file. 

If you’re going to use the NDK, then choose hexadecimal-like text so that it 
doesn’t stand out in a hex editor. We can also take the earlier approach and use some 
device-specific or app-specific characteristic and generate a unique app key in NDK 
just like we can in native Android code. Listing 5-11 shows how you can use the app 

Figure 5-10 Viewing the NDK password
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ID as a unique key, which will be different every time the app is installed on a differ-
ent phone. It uses a function called getlogin() to find out the login ID, which in this 
case is the app_id.  

Listing 5-11 Using the App ID for the database key

#include <string.h>
#include <jni.h>
#include <unistd.h>
 
jstring Java _ com _ riis _ sqlndk _ MainActivity _ invokeNativeFunction(JNIEnv* env, 
jobject javaThis) {
 
    return (*env)->NewStringUTF(env, (char *)getlogin());
 
}

However, neither of these approaches is ultimately enough to stop someone from 
reading the binary. But it is a better option to consider if you have no other choice 
than to put the API or encryption keys on the device. Disassembled code rapidly 
becomes more difficult to understand as it gets further away from these simple hello-
world examples.

Web Services
The safest option for any type of device is to store the key, or the algorithm for gener-
ating your key, remotely and to access it via secure web services. This has already been 
covered in previous chapters. The disadvantage to this is that the Android device will 
need to be connected to the Internet when you open the database, which might not be 
acceptable to the end user. 

But the message should be clear by now that any keys stored on the phone are open 
to being hacked in ways similar to what we’ve shown in this section. We’ll go into 
more detail in the next chapter about what to do to protect your web server and your 
web server traffic from prying eyes.

SQL Injection
SQL injection refers to when the attacker taints the data with a SQL statement. We 
said earlier that SQLite is a fully functional database, so, just like your SQL Server or 
MySQL box, it is just as susceptible to SQL injection if you are not careful. SQL injec-
tion typically works by adding data to the querystring or adding data in a form field to 
give the hacker access to the database or unauthorized logins. And while SQL injec-
tion is usually something used for attacking a web view or a web service, it can also be 
an attack on an Activity. Figure 5-11 shows a simple SQL injection example. 
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If we look at the checkLogin code in Listing 5-12 we can see that the SQL query is 
passed directly to the database. So if we log in with a username of ' OR 1=1 --' and 
password of test, the query to SQLite will be the following string:

select * from login where USERNAME = '' OR 1=1 --' and PASSWORD = 'test'

Listing 5-12 Login unprotected from SQL injection

public boolean checkLogin(String param1, String param2)
{
    boolean bool = false;
     
    Cursor cursor = db.rawQuery("select * from login where USERNAME = '" +  
    // line 5
        param1 + "' and PASSWORD = '" + param2 + "';", null);  
 
    if (cursor != null) {
        if (cursor.moveToFirst())
             bool = true;
        cursor.close();
    }
    return bool;
} 

Because of the OR 1=1 portion of the string and the --, which comments out the 
rest of the SQL query, this will always be a true condition. The result is that the user 
can log in without needing a real username and password.

To fix this we need to sanitize any user-entered data and assume it can’t be trusted. 
We can do this either by using regular expressions to check that it’s what we’re expect-
ing—for example, a valid email address—or by using SQL prepared statements. Or 
better still, we can do both.

To fix our checkLogin code we’re going to change the SQL to use prepared state-
ments. Listing 5-13 shows a modified checkLogin, which now uses prepared statements 

Figure 5-11 Classic SQL injection attack
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on line 5. Here the injected SQL becomes a parameter and can no longer cut off the 
SQL statement.

Listing 5-13 Protecting code using prepared statements 

public boolean checkSecureLogin(String param1, String param2)
  {
      boolean bool = false;
       
      Cursor cursor = db.rawQuery("select * from login where " +      // line 5
          "USERNAME = ? and PASSWORD = ?", new String[]{param1, param2});
       
      if (cursor != null) {
          if (cursor.moveToFirst())
               bool = true;
          cursor.close();
      }
      return bool;
  }

Conclusion
In this chapter we’ve looked at options to make your databases more secure. If you’re 
going to store customer information, we’ve covered how to use SQLCipher to encrypt 
the data as well as the various schemes developers have used to hide the key and keep 
the data safely encrypted.  

The only 100 percent secure way to hide any encryption key is to keep it off the 
phone, and even then you must make sure it’s transmitted securely and not cached 
anywhere. Every other alternative that we looked at had limitations, some more obvi-
ous than others. None of these alternatives would be HIPAA compliant. Ask yourself 
the question, “Would the security of my app be compromised if someone could read 
my code?” If the answer is yes, then the app is not HIPAA compliant.
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