Godfrey Nolan

Bulletproof

Android

Practical Advice for Building Secure Apps

SHARE WITH OTHERS

¥ 9 5 A W

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133993325
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133993325
https://plusone.google.com/share?url=http://www.informit.com/title/9780133993325
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133993325
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133993325/Free-Sample-Chapter

Bulletproof
Android

Developer’s Library Series

~
Secand Eation

- -

Tare! . Development - X
Flogtaminiig lo Android with the Force.com e iPhone
Objective-C 2.0 Wireless Application Platform Developer's Cookbook

A complete introduction 1o the ObjectiveC Development Building Applications with the

Ianguage for Mac 0S X and iFhone development Building Business Applications in the Cloud iPhone 3.0 SDK

Developer's Library

Developer's Library

Developer's Library Developer's Library

vvAddison-Wesley

Visit developers-library.com for a complete list of available products

he Developer’s Library Series from Addison-Wesley provides
Tpracticing programmers with unique, high-quality references and
tutorials on the latest programming languages and technologies they
use in their daily work. All books in the Developer’s Library are written by
expert technology practitioners who are exceptionally skilled at organizing
and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-
source programming languages and databases, Linux programming,
Microsoft, and Java, to Web development, social networking platforms,
Mac/iPhone programming, and Android programming.

PEARSON
—

#Addison-Wesley Cisco Press ExaMCcRAM IBM gy 33 PRENTICE g4AMSE | Safari’

Press. oo

nnnnnnnnnnn

Bulletproof
Android

Practical Advice for
Building Secure Apps

Godfrey Nolan

vvAddison-Wesley

Upper Saddle River, NJ e Boston e Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich e Paris ® Madrid
Capetown e Sydney e Tokyo e Singapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the desig-
nations have been printed with initial capital letters or in all capitals.

Android is a trademark of Google.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,

or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Nolan, Godfrey.
Bulletproof Android : practical advice for building secure apps / Godfrey
Nolan.
pages cm
Includes index.
ISBN 978-0-13-399332-5 (pbk. : alk. paper)
1. Android (Electronic resource) 2. Application software—Development.
3. Computer security. . Title.
QA76.774.A53N654 2014
005.8—dc23
2014039900

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-399332-5
ISBN-10: 0-13-399332-9

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, December 2014

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Senior
Development
Editor

Chris Zahn

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Project Editor

Eclipse Publishing
Services

Copy Editor
Diane Freed

Indexer
Jack Lewis

Proofreader
Melissa Panagos

Technical
Reviewers
Matt Insko
Dave Truxall

Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith

Compositor
Eclipse Publishing
Services

K7
0’0

This book is dedicated to my son and daughter, Rory and Dayna,
for making me laugh so much over the years.
I'm hoping you too will get to write your own books and plays,

and have the pleasure of one day dedicating them to your own kids.

R
"0

This page intentionally left blank

Contents at a Glance

Contents ix

Preface xiii
Acknowledgments xxi
About the Author xxiii
Android Security Issues 1
Protecting Your Code 19

Authentication 51

Android Databases 109
Web Server Attacks 131
Third Party Library Integration
Device Security 167

© 0 N O o b W N PR

The Future 179
Index 195

Network Communication 87

This page intentionally left blank

Contents

Preface xiii
Acknowledgments xxi
About the Author xxiii

1 Android Security Issues 1
Why Android? 1
Decompiling an APK 4
Art for Art's Sake 7
Guidelines 7

PCIl Mobile Payment Acceptance Security
Guidelines 7

Google Security 9
HIPAA Secure 10
OWASP Top 10 Mobile Risks (2014) 14

Forrester Research’s Top 10 Nontechnical
Security Issues in Mobile App Development 16

Securing the Device 17

SEAndroid 17

Federal Information Processing Standard (FIPS) 18
Conclusion 18

2 Protecting Your Code 19
Looking into the classes.dex File 19
Obfuscation Best Practices 24
No Obfuscation 26
ProGuard 27
DexGuard 32
Security Through Obscurity 38
Testing 38
Smali 39
Helloworld &g
Remove App Store Check 43
Hiding Business Rules in the NDK 48
Conclusion 49

Contents

3 Authentication 51
Secure Logins 51

Understanding Best Practices for
User Authentication and Account Validation

Take 1 55

Take 2 56

Take 3 59

Take 4 62
Application Licensing with LVL 65
OAuth 77

OAuth with Facebook 78
Web and Mobile Session Management
Vulnerability 84

User Behavior 84

Two (or More) Factor Authentication 85

Conclusion 86

4 Network Communication 87
HTTP(S) Connection 88
Symmetric Keys 92
Asymmetric Keys 94
Ineffective SSL 99

Man-in-the-Middle Demo 100

Root Your Phone 102

Charles Proxy Test 103
Conclusion 107

5 Android Databases 109
Android Database Security Issues 109
SQLite 110
Backing Up the Database Using adb
Disabling Backup 115
SQLCipher 116
Finding the Key 119
Hiding the Key 120
Ask Each Time 120
Shared Preferences 122

54

82

111

In the Code 123

In the NDK 124

Web Services 127
SQL Injection 127
Conclusion 129

Web Server Attacks 131
Web Services 131
OWASP Web Services Cheat Sheet
Replay Attacks 135
Cross Platform 135
WebView Attacks 140
SQL Injection 142
XSS 145
Cloud 146
OWASP Web Top 10 Risks 146
OWASP Cloud Top 10 Risks 148
HIPAA Web Server Compliance 149
Conclusion 150

Third-Party Library Integration 151
Transferring the Risk 152
Permissions 152
Installing Third-Party Apps 154
Installing Crittercism 154
Installing Crashlytics 157
Trust but Verify 160
Decompiling SDKs 160
Man in the Middle 163
Conclusion 165

Device Security 167
Wiping Your Device 168
Fragmentation 168
adb Backup 169
Logs 169
Device Encryption 172
SEAndroid 174

133

Contents

Xi

Xii Contents

FIPS 140-2 176
Mobile Device Management 177
Conclusion 178

9 The Future 179
More Sophisticated Attacks 179
Internet of Things 186
Android Wearables 186
Ford Sync AppID 187
Audits and Compliance 188
Tools 190
Drozer 191
OWASP Mobile Top 10 Risks 193
Lint 193
Conclusion 194

Index 195

Preface

Why another Android security book? Right now I know of a half dozen books or

so about hacking Android. I personally wrote one a few years ago called Decompiling
Android. In the world of hacking we use the term white hat for someone who is trying
to improve the security of a system and black hat for someone who is trying to exploit
the weaknesses of a system. In my opinion, most of the existing Android hacking
books are either black hat books or they tread the line between white hat and black
hat. Sometimes they benefit a black hat hacker and sometimes the information is use-
ful for someone who wants to write a more secure app. Black hat books are still a great
resource for understanding how to secure your app, but the focus is on how to attack
rather than how to protect an app.

What This Book Is About

This book is firmly in the white hat category. It is an Android security book for devel-
opers, for managers, and for security professionals who want to write more secure
Android apps. It uses examples from the many hundreds of Android apps that we (the
company I run) have audited over the past three years, and it uses real-world examples
of what works and doesn’t work from a security perspective. In each chapter we’ll look
at some examples of how naive coding practices expose apps and how other developers
have found more secure solutions.

This book is also written to complement the Android Security Essentials LiveLessons
video that covers the OWASP (Open Web Application Security Project) Mobile Top
10 Risks in detail. The OWASP Mobile Top 10 is the de facto standard for Android
security. And because all security projects are a moving target, the book uses the lat-
est OWASP Mobile Top 10 that has been updated since the LiveLessons video first
appeared.

What This Book Is Not About

If you own an Android phone you’re probably worried about apps with hidden mal-
ware, or what permissions you should or shouldn’t accept. We won’t be covering those
issues as the focus of the book is on Android developers who want to write more
secure Android apps, not someone who owns an Android phone. What’s more, we'’re

Xiv

Preface

not going to discuss how to root your phone because that really doesn’t have much to
do with writing secure code. We will touch on its implications for secure apps, but we
won’t be showing you how to root your phone. From a developer’s perspective, that’s
why you have an emulator.

Why Care?

Over the past two or three years we've downloaded a large number of Android APKs
and examined them for any security holes. We’ve uncovered a wide range of security
issues; see Figure P-1 for some examples. These generally fall into the following cat-
egories:

1. Keys or API information hard coded in the app (static information)

2. Usernames and passwords and other credentials that are stored insecurely
(dynamic information)

3. Sensitive data sent insecurely across the network to a back-end server

4. Third-party libraries collecting and transmitting back to base ad hoc
information that they don’t need to perform their job

5. Test data or other extraneous information stored in the production APK

It’s customary to notify companies that their apps have security issues and are leak-
ing information before releasing the information to the press. This gives the developers
some time to fix it and release an update before it goes public. Many times in the past
when we contacted the developers responsible for the security issues, we found that
security really isn’t on their radar as something to worry about. If you're developing
mobile apps, then security needs to become part of your development process.

This book comes from what we’ve seen in our audits of different Android apps.

The aim here is to provide you with a book of security anti-patterns where you can
see other people’s mistakes and hopefully not repeat (m)any of them, thereby keeping
your users more secure than your competition.

Why Care? XV

Home > Security

Opinion

Evan Schuman: Your data exposed -- Delta,
Facebook, others latest to fall into mobile

app trap

Match.com and eHarmony also among those now saying, 'We didn't know
our mobile apps did that'

By Evan Schuman
Februery 18, 2014 08:02 AMET CJ 1 Comment

@ snere| 17 EJ 84 @ Y« =S

Computerworld - Mobile apps are presenting far too many surprises. Users
who love the apps on their smartphones and tablets have no idea how much
data those apps are retaining, or how easy it would be for someone else to
access that data. But consumers aren't the only ones in the dark. Mobile's
data dangers are also largely unknown to IT executives, app developers,
marketers -- pretty much everyone, really.

The latest app providers to say as much include Delta Air Lines, Facebook,
eHarmony and Match.com.

And what has happened with the Delta app over the past few days, since a
security researcher found a wide ranae of problems with maior Android mobile

Figure P-1 Dating app insecurity

XVi

Preface

What This Book Covers

Here is a breakdown of the book by chapter.

Chapter 1: Android Security Issues

Chapter 1 is an introduction to the security issues on the Android platform. We’ll
show how to decompile an Android APK and look at some of the industry standard
guidelines for securing the Android platform.

Chapter 2: Protecting Your Code

In Chapter 2, we’ll look at how to download and reverse engineer an Android APK
back into Java source in more detail. We’ll also cover how to best protect your code
using different types of obfuscation tools and techniques that we’ve encountered dur-
ing our audits. We’ll look at the implications of being able to disassemble your code
into bytecode. And we’ll show how you can use the NDK to hide your algorithms
and business rules.

Chapter 3: Authentication

Providing a secure login mechanism for your mobile users is harder than on the

Web. The trend with mobile devices is to make things as easy as possible for the user.
Mobile keyboards are small, so it’s unlikely that someone is going to enter more than
six characters to log in to an app. But if you make it too easy to log in to your app,
then you run the risk of unauthorized users gaining access to sensitive data by going
around your authentication. In Chapter 3 we’ll look at how some of the authentication
mechanisms in our audits have failed, and we’re also going to look at what developers
have been using to log in to mobile apps that have been a lot more effective.

Chapter 4: Network Communication

In modern browsers, if you connect via secure HTTP, or HTTPS over a secure sock-
ets layer, you’ll get a little green lock, or a gold one depending on your browser, to
indicate that youre in a secure encrypted transaction. Developers pay a Certificate
Authority (CA) to make sure that they are who they say they are. And if you hap-

pen to come across a site that isn’t a valid site, your web browser will alert you pretty
quickly that something is wrong. Unfortunately, there isn’t anything similar in mobile
computing—there is no lock or key to comfort the user that any network communica-
tion is encrypted.

In this chapter we’ll first take a look at how to send information securely across the
network using SSL. In the second part of the chapter we’ll look at how hackers might
perform a man-in-the-middle attack using an SSL Proxy that intercepts the communi-
cation and sees whether it’s really secure.

What This Book Covers

Chapter 5: Android Databases

One of the most basic questions about Android security and mobile security in gen-
eral is, “What information should you store on a device, and where can you store

it securely?” Ideally, you would not store or cache anything on the device. But if
someone doesn’t have any mobile service—for example, when on an airplane without
wi-fi—then you’re going to cause some frustration if this person can’t log into the app
for a number of hours. In this chapter we’ll talk about where you can store data and
how using the wrong permissions can allow other apps to read your data. Finally, we’ll
explain how to write data securely to an SD card as well as a SQLite database.

Chapter 6: Web Server Attacks

Most mobile apps that do real work will in some way connect to a back-end web
server. If the communication is via a web service, this can either be via SOAP or, more
commonly, by using a REST web service. In this chapter it’s a case of what’s old is
new again. We'll explore how the same security best practices that have applied to web
servers for the past 20 years apply to web servers used in mobile apps. We’ll also look at
how we can use logins from other website break-ins to help secure our authentication.

Chapter 7: Third-Party Library Integration

Data leakage from third-party apps is perhaps a less obvious way that someone can
recover a user’s information from your app. In this chapter we’ll explain the meaning
behind side channel data leakage and learn how to track what information is being
passed by your app to other services, with or without your knowledge.

Chapter 8: Device Security

Running your APK on different versions of Android can have different security prob-
lems. In this chapter we’ll look at how Android device fragmentation needs to be
considered when you’re writing a secure app. Different environments have different
requirements: Corporations have different requirements than individuals, health care
needs HIPAA compliance, and government work probably means that your Android
phone needs to be FIPS compliant. In this chapter we’ll also look at how Samsung
Knox and SELinux or SEAndroid are being used to make your device more secure.

Chapter 9: The Future

There aren’t many certainties about where Android security is going. But in Chapter 9
we’re going to look into the crystal ball: Using Android L as well as some open source
ideas, we’ll do our best to predict what future versions of Android will provide from a
security perspective. This way, you’ll know what existing security challenges will be
solved and what new challenges lie ahead. We’ll also look at how Android attacks are
likely to get more sophisticated in the near future.

XVii

Xviii

Preface

Tools

There are lots of tools that we’ll be using again and again throughout this book. Most
of them are listed here for convenience.

= 010, a hex editor that includes a template for disassembling classes.dex files. 010
does a great job of parsing the classes.dex file (see Figure P-2). It can be found at
www.sweetscape.com/010editor/.

= Abe, the Android Backup Extractor. It is used to convert an Android backup
into a tar format so that it can be unzipped. It’s available from https://
github.com/nelenkov/android-backup-extractor.

= adb, the Android debug bridge. It comes as part of the Android SDK.

= apktool, a collection of tools. It includes Smali and Baksmali as well as
AXMLPrinter2.

= AXMLPrinter2, which converts the compressed AndroidManifest.xml in an APK
back into a readable format. It’s available at https://code.google.com/p
/android4me/downloads/list.

@ 010 Editor - C\Users\godfrey\Dropbox\VERBATIM\clients\pearson\WritingSecureAndroidApps\chap1\com.riis.callqueue.. — =] n
Eile Edit Search Yiew Fgrmat Scripts Templates Jools Window Heip
D-B-Hd@P20 D EDE PRPod VR TNE BBk WEl

Startup classes dex & 1]

Open Files |
[CUsers\gadtrey\. \classes.dex
= ChUsers.\DEXTemplate.bt

* Favorite Files

* Recent Files

T Bookmarked Files

0070h: FC 6C 0B 00 FE 6C 0B O0 01 6D 08 0D OF €D OB 00 4l..pl.
0080h: 22 6D 0B 00 3E €D 08 00 41 6D 08 00 45 6D 08 00 “m..>m..
0090h: 4B 6D 08 00 4E €D 08 00 52 6D 08 00 &1 6D 08 00 Km..Nm..
O0ACh: &6 6D OB 00 6B 6D 08 00 6F 6D 0B 00 74 6D 08 00 fm..km..

ARmAL. A EN AG A TR En NG AA 83 En AG AR B8 En AB AR e e

Ternplate Results - DEXTemplote. bt
Name

IHH
fEEEG

9 Fles 0 Explorer struct header_jter g
- e [struct dex_magic magic dex 035 on 8h ;. Magic value
[¥ i :
uint checksum 6E8049017h 8h 4h Alder32 checksum of rest of f...
Type Value 2 » SHAT signature(20] 6A4F9E522DCC...Ch 14h SHA-1 signature of rest of file

Signed Byte 100 wint file_size 951088 200 4h - File size in bytes

;'i':r':d"!;::rft" ;2355 uint header_size 112 24 ah Header size in bytes

Unsigned Sh... 25056 uint endian_tag 123456780 28n 4h Endianness tag

Signed Int 175662436 uint link_size 0 ZCh 4h : Size of link section

Unsigned Int 175662436 uint link_off o 300 4h File offset of link section

Signed Intf4 14974455192773988 uint map_off 104796 340 4h File offset of map list

T e e A uintstring_jds size 5502 W : Coumi of stringsin the sring ..

Double 1.17928646356871... uint string_ids_off 12 3ch 4h File offset of string ID list

Half Float 1380 uint type_ids_size 789 40n 4h : Count of types in the type 1D ...

String t::x:t:?iﬂuﬂ v int type._ids_off 2120 4an 4h File offset of type ID list

@ A |13 vorisbies | Bor » uinl pmlo_fﬁsji?e ‘.I‘IBE. Mih 4h i ?mﬂol‘ l[el:ns in the method... N
Sefected: 112 [70n] bytes (Range: 0 [Oh] to 111 [6Fh]) Start:0[0h] Sel: 112 [70h] Size: 951088 ANSI LIT W OVR

Figure P-2

010 Editor parsing classes.dex file

http://www.sweetscape.com/010editor/
https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor
https://code.google.com/p/android4me/downloads/list
https://code.google.com/p/android4me/downloads/list

Tools Xix

= Baksmali and Smali, the Android disassembler and assembler. You can find them
at https://code.google.com/p/smali/ or as part of apk-tool.

= Charles Proxy, a tool for testing for man-in-the-middle attacks. It’s available from
http://www.charlesproxy.com/.

= Dedexer, a classes.dex dump file. Written by Gabor Paller in Hungary, it’s
available from http://dedexer.sourceforge.net/.

= dex2jar, which converts APKs to Java jar files for decompilation. You can find it
at https://code.google.com/p/dex2jar/.

= Drozer, an attack tool for Android apps. It’s available from https://
www.mwrinfosecurity.com/products/drozer/.

= JD-GUI, one of many Java decompilers. You can find it at http://jd.benow.ca/.

= Jadx, one of a new breed of Android decompilers. It’s available at https://
github.com/skylot/jadx.

s Keyczar, which we use for our public/private key encryption. You can download
it from http://keyczar.org.

= Lint, which comes with the Android SDK.

= ProGuard and DexGuard, which are obfuscators. ProGuard ships with the
Android SDK, and DexGuard is available at www.saikoa.com/.

= sqlitebrowser, a GUI for SQLite databases. It’s available from http://sqlitebrowser
.org/.

http://www.charlesproxy.com/
https://code.google.com/p/smali/
http://dedexer.sourceforge.net/
https://code.google.com/p/dex2jar/
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/
http://jd.benow.ca/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
http://keyczar.org
http://www.saikoa.com/
http://sqlitebrowser.org/
http://sqlitebrowser.org/

This page intentionally left blank

Acknowledgments

Laura Lewin—I lost count of the number of times Laura hounded me on items that
were due or, more often than not, overdue. I sincerely appreciate your patience.

David Truxall and Matt Insko—Thanks to my two technical reviewers. I've
worked with good reviewers and bad reviewers in the past. The better ones try the
code, make suggestions for things you missed, and help get you to the finish line with-
out losing your mind. Dave and Matt are the best.

Cameron Beyer and Paul Moon—Thanks for your help with the coding, especially
when I wasn’t very specific about what I was trying to do. ©

Chris Zahn—Thanks for the editing. Your quality and speed are amazing.

This page intentionally left blank

About the Author

Godfrey Nolan is founder and president of the mobile and web development com-
pany RIIS LLC based in Troy, Michigan, and Belfast, Northern Ireland. This is his
fourth book. He has had a healthy obsession with reverse engineering bytecode since
he wrote “Decompile Once, Run Anywhere,” which first appeared in Web Techniques
magazine way back in September 1997. Godfrey is originally from Dublin, Ireland.

This page intentionally left blank

This page intentionally left blank

Android Databases

n Android development, when we say “databases” we primarily mean SQLite and all
of its variants. These are typically small databases used to store or cache user informa-
tion locally on the device. It would be fair to say that databases and shared preferences
contain the bulk of an application’s dynamic data that is stored on a phone. In this
chapter we're going to look at how developers have used SQLite and, more impor-
tantly, how they have tried to secure that data in progressively more secure ways so
you don’t make the same mistakes.

Android Database Security Issues

Android databases are typically used to cache application data so that it can be retrieved
more quickly than doing a web service call to a back-end database server across the
Internet. Every app will have its own databases folder. So if the app’s package name
is com.riis.sqlite3, then you can find all its databases in the /data/data/com.riis.sqlite3
/databases folder. You can see this in Figure 5-1 where we’re doing an adb shell
command to get us a list of the files in the database folder.

Android databases are not a good place to store sensitive information. As we’ll see
later in the chapter, it is all too easy for someone to do a backup command and quickly
find what you're trying to hide.

C:\Users\Admin>adb shell ls /data/data/com.riis.sqlite3/databases
tasks.db
tasks.db-journal

C:\Users\Admin>

Figure 5-1 SQLite databases on your phone

110

Chapter 5 Android Databases

However, many apps ignore this issue because using SQLite is so convenient for
storing data. Facebook keeps a lot of its user information in SQLite databases, which
they have openly admitted is for performance reasons. Figure 5-2 shows a Facebook
database that’s been taken off an Android device using the adb backup command. The
“text” column in the threads.db database shows all the thread messages that a user has
sent and received in Facebook via the website as well as on the mobile app.

ESQL:te Database Browser - C;/Users/Admin/Dropbox/VERBATIM/clients/pearson/AndroidSecurityEssential.. — O

Dﬁﬁl'ﬂ mn‘ym} & |

Database Structure Browse Data | Execute SQU |

Table: [messages -] il] l

msa_id | thread id mestamp | timestamo <
m_mid. 1381456734522 5ef t_a&osElqux\fxpmvnMsgsomom Ha\-e ever played a game of cards .{ "amall™;"71+ 31456734519
m_mid, 1381444657983,658 t_aSoBEhg2FzVap+ 3V 3863000000 It may not be fair , . ., but people are ¢ {"email™;"15:31444657551
! im_mld 1380713610561 ech t_aSoBEhq2FzVzp+3ViY 10757000000 read this and stop I:lamlnq all parties b/ {"email™;"71:30713610514 =
a4 |m_id. 1915t 2V2p+ 3V 28345000000 'you can't make... “emall":"71:73567927927
~ m_mid, 13708 b ZVzp+ IV _Forgot to call Colm yesterday, It was hi {"emall™;"71 T0876989233
_E" m_mid,1370766274384:3a2 t_aSo8ERG2ZFZVZD+ V174418000000 The sacret is to limit what you say on &{"email”™:"71: 70786274377
¢ |m_mid. 1370786233559 65 t_aSo8Ehq2FzVzp+3VTY 33637000000 _Not really sure why you were upset by |{"email”:"71:70786233552
H !m mid, 1365594 Dah t_; ZVzp+ VY 38557000000 His Imswmhlmlmldhaw "emall™;"71- 35594788552
|m_mid, 1365593070349;b0a t_aSo8Ehq2FzVzp+ V170897000000 okidoki - didn't feel mediati {"email”;"15; 2
1 Im_jd 450346138372835 t_aSoBEhq2FzVzp+3VTv31891000000 My initial knee fjerk reaction was to say | {"email™;"71:35561381830
(11 |m_id.122650804584181 t_aSoSEhq2Fz\zp+ 3VIh78750000000 This your year {"emall™:"71:31912176207
12 Im_id 415894441812175 t_aSoBEhq2FzVzp+3VIv39%68%000000 Did you see this ? hitp://politicalwire.c {"email™;"71-32412136215
:‘ ‘@ __Im_id,515836541767061 t_aSoBEhq2FaVep+3VY38787000000 Tl\at £ awesome - funrry how american ("emaﬂ‘ 5159918568047
12 |m_id.1 11 |t Q2F2Vzp+3VI35 hittp:/ fwewwirist 145750865509
" m_id. 7576t ZVZp+ VIV I case you missed this hitp:/ /www. v
|t im_id.135907943211669 LMEM?FZV!IHM\WW Quote the boy. Of course 1 don't know & {"
1/ Im_id,199821553463392 L_MEInZFszn+3\JI\MODDDDDD can you give ciara some dosh when you.
. m_id.31 25605 ZVzp+ 3T Oh dear, dragonriders unite
.rn_ld 1921 33'!403?241? LMEI‘O?FZV'!DHVI\ 55824000000 anne mecaffery died, the ship who san {
i ot 2Vzp+ 3V hitp: {exiledonline.com/wn-38-ra-vs-al {"
m_rnlcl 1379524031393 :4fb5 t_id 606150223744400 31458000000 'Blah, blah, blah, Ginger, blah, blah, biah
m_mid, 1379524877612,854 t_id 696180223744400 77912000000, Seriously - no one should be subjected {

we|m_mid, 1379524 739368: 9e4 t_id.696180223744400 39434000000 You missed Tory Tohme too . See you r "
Ja__|m_mid.1379516978092:a79 t_jd.696180223744400 79568000000 T'm out - fust got yanked into a funding {" 14 79516978193
| m_mid.1379511714558:e50 t_Id.696180223744400 14996000000 We still good for today? 1179511714436
. lm_mid, 1379105619010:abb t_id,696180223744400 19775000000 I'm ood for noon at Changs lol [14 79105618516
24 m_mid.1378946252402:00b t_id 696180223744400 32693000000 Good by me. Jimmy? {"emall™:"11 78946252236
m m_mid. 1378932373703:553 t_id 696180223744400 73945000000 Weds noon at PF Changs? {"emall”:"71: 78932373670 =
£ m mid 137RAIA TSIRR-AS T I AORIRNI 3744400 7577 1 am name {Mamail™ "1 TRAIA1 75134 J
4 1|

< |1-z00rme - Goto: |fo

Figure 5-2 Viewing SQLite databases on your PC using SQLitebrowser

SQLite

SQLite is a fully functional database. It has many of the features you would expect in
a modern database, such as indexes and stored procedures. You can even do an explain
plan for optimizing your queries to find out exactly where your SQL code is spending
most of its time.

Any and all of your runtime app information—which includes all the shared pref-
erence files and databases—can be backed up by anyone with access to your phone
using a USB cable. Because of an oversight at Google, no one running Android after
version 4.0 even needs root access—they just need physical access to the phone. To be
fair, I think this was an intentional feature, not an oversight. The feature just has sig-
nificant unintended consequences.

SQLite 111

Note

Section §164.312 of the HIPAA standards says the following:
(a)(1) Standard: Access control. Implement technical policies and procedures for
electronic information systems that maintain electronic protected health information to

allow access only to those persons or software programs that have been granted access
rights as specified in §164.308(a)(4).

Putting any personal health information unencrypted in a SQLite database is not
HIPAA compliant because we cannot be sure that only persons that have been granted
access have access to the databases. Under most circumstances encrypted information
in a SQLite database is also not compliant. A quick way to check whether you have
an issue is to put the phone in Airplane mode and then see whether there is any sen-
sitive information, or what is known as Protected Health Information (PHI), being
displayed by the application. This will typically tell you that the information is either
not encrypted or the encryption key is somewhere on the phone, neither of which is
HIPAA compliant.

Backing Up the Database Using adb

Let’s look at how to write to a SQLite application and how someone can pull the
database off the phone. To begin, we need to add a SQLite database to the Android
HelloWorld app. Listing 5-1 shows how to add a SQLite database to your Android app.

Listing 5-1 Adding SQLite to your code

package com.riis.sqglite3;

import java.io.File;

import android.os.Bundle;

import android.app.Activity;

import android.database.sglite.SQLiteDatabase; // line 7
public class MainActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

InitializeSQLite3(); // line 16

}
private void InitializeSQLite3() {
File databaseFile = getDatabasePath("names.db");

databaseFile.mkdirs();
databaseFile.delete();

112

Chapter 5 Android Databases

SQLiteDatabase database = // line 26
SQLiteDatabase.openOrCreateDatabase(databaseFile, null);

database.execSQL("create table user(id integer primary key autoincrement,
T
"first text not null, last text not null, " + // line 28
"username text not null, password text not null)");

database.execSQL("insert into user(first,last,username, password) " +
"values('Bertie','Ahern','bahern','celial23")");
// line 31

To add SQLite to your application, import the library (see line 7), initialize the
SQLite database (see line 26), and then create your tables (see line 28) as well as add
any initial data (see line 31).

In the example shown we are adding just a single row of data to the database. We

are adding a first name, a last name, and a corresponding username and password to

our database.

We can now recover the database using the following steps on a compatible phone:

1.

Compile the code, push it to your phone or emulator, and make sure it
executes.

. Run the app.

. Back up the databases using the following command:

adb backup com.riis.sqlite3

. If all is working, device will respond with “Now unlock your device and

confirm the backup operation.”

. On the device or emulator, click Back up my data to enable it to be backed up

(see Figure 5-3).

. The backup file is a tar file with a custom header. We need to download the

Android Backup Extractor from https://github.com/nelenkov/android-backup-
extractor to get it into a tar format.

. Convert your backup.ab file using the following command:

java -jar abe.jar unpack backup.ab backup.tar

. Uncompress your tar file using tar -xvf or 7zip if youre on a Windows

machine.

https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor

SQLite 113

- 5554est - o IEl

I8 Full backup

Do not back up Back up my data

Figure 5-3 Back up my data

9. Change directory to apps/com.riis.sqlite3/db, where you can now find your
names.db database.

10. Open names.db in sqlitebrowser from http://sqlitebrowser.org (see Figure 5-4).
As you see, the user information is in cleartext.

If you don’t have sqlitebrowser, you can always gain access to the sqlite database
from the command line (refer ahead to Figure 5-6).

Note that if your backup.ab file is empty, then it’s likely that you have used the
wrong package name. For commercial apps the best way to find the correct package
name is to look at the target ID in the app’s Google Play URL (see Figure 5-5 for
Facebook’s target ID). In this example, to back up the Facebook database you would
type the following:

adb backup com.facebook.katana

http://sqlitebrowser.org

114 Chapter 5 Android Databases

& sQlite Database Browser - C:/Users/Admin/Drop... — =
File Edit View Help

DeH° @efao et B W

Database Structure Browse Data | Execute SQL |

Table: [user -] 0\| New Record | Delete Record

id | first | last I usemname | password
3 1Bertie Ahern bahern [FE[ESFE]

< 1-10of1 > Go to: |0

Figure 5-4 View the backup database data using the SQLite browser.

=1 -
B Facebook - Andioid App: %
€ - C £ hitpsy/play.googlecom;/store;apps/dekails?id = com.facebook katana i =
b Google play rch BEl o & ® s« @ |
=== : Facebook
My apps Faceboak - Wy 5 3014
Social
Shop __—
Games 0 Thas app is compatble wah af of your devces
< Edors Choice bk A o[£ 16151381
+ Top Deveiopsr
841 +5608038 Recommend this os Google

Figure 5-5 Finding an App’s package name

SQLite

= C\WINDOWS\system32\cmd.exe - adb shell - D -

C:\Users\Admin>adb shell
root@android:/ # cd /data/data/com.riis.sqlite3/databases
cd /data/data/com.riis.sqlite3/databa
root@android: /data/data/com.riis.sqlite3/databases # sqlite3 names.db
sqlite3 names.db
SQLite version 3.7.11 2012-03-20 11:35:50
Enter “.help” for instructions
Enter SOL statements terminated with a ";"
sqlite> .dump
.dump
PRAGMA foreign_keys=0FF;
BEGIN TRANSACTION;
TABLE android_metadata (locale TEXT)
INTO “android_metadata™ UALUES(en_US');
TABLE user(id integer primary key autoincrement, first text not null
not null, username text not null, password text not null);
INTO user UALUES(1, ‘Bertie’, 'Ahern’, hern’, ‘celial23’)
quence;
_sequence” UALUES('user’,1);

Figure 5-6 Viewing the backup database data from command line SQLite

Disabling Backup

If anyone with access to your phone can back it up, then we’ll need some way to hide
the information if we’re going to be HIPAA compliant.

We can start with something simple by disabling backups using the allowBackup
attribute in the Android Manifest file. By default this is set to true. Changing it to
false, as in Listing 5-2, will stop the adb backup command working for any phone,
even for a full system backup.

However, it would be a mistake to solely rely on this, as a rooted phone has access
to databases and can still remove them from the phone via Unix commands. Figure
5-6 shows how someone can shell onto the phone, cd to the databases directory, and
then dump the database table to view the data.

adb pull can also be used to get the database off the phone. But you may also need
to run a chmod 777 <filename> to fully open the file’s permissions before you can
retrieve them.

Listing 5-2 Disabling backup

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.riis.sqlite3"
android:versionCode="1"
android:versionName="1.0" >

115

116

Chapter 5 Android Databases

<uses-sdk
android:minSdkVersion="16"
android:targetSdkVersion="16" />
<application
android:allowBackup="false"
android:icon="@drawable/ic _launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >
<activity
android:name="com.riis.sqlite3.MainActivity"
android:label="@string/app name" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

SQLCipher

We’ve seen that it doesn’t take a degree in computer science to gain access to an
APK’s source code, the static information, and an app’s backup data, the dynamic
information. Ideally you wouldn’t store any important customer information locally,
but this isn’t always an option. But, as we’ve seen, any data that is stored in cleartext
can be found easily. So if you do have to store any sensitive data, it is important to
encrypt the data in either shared preferences or in a database—or store it some-
where else.

Note

Apps using SQLCipher are restricted from export/distribution in certain countries and
require additional export registration with the US government if the app is distributed
outside the United States because SQLCipher contains strong encryption. The Play Store
asks about US export law compliance when you publish an app. This can be a gotcha when
using SQLCipher for developers who are unaware. The Android OS encryption functionality
is already compliant via Google’s filings, which no doubt explains why Android ships with a
cut-down version of Bouncy Castle that does not use strong encryption.

One of the more promising ways to store data securely in a database is using
SQLCipher, which is an open source library used in conjunction with SQLite.
SQLCipher can be downloaded from www.sqlcipher.net.

In Listing 5-3 we show how to use SQLCipher to encrypt the data in the database.
First, add the sqlcipherjar, commons-codec jar and guava-r09jar libraries, which can
also be found on the sqglcipher.net website. Then change the import statement (line 7)

http://www.sqlcipher.net

SQLCipher

to import SQLCipher, add a new loadLibs command (line 21) and, as you can see, the
openOrCreateDatabase now takes a password (line 27).

Listing 5-3 Adding SQLCipher to your SQLite code

package com.riis.sqlite3;

import
import
import

import

public

java.io.File;

android.os.Bundle;

android.app.Activity;

net.sglcipher.database.SQLiteDatabase; // line 7

class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {

}

super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

InitializeSQLite3();

private void InitializeSQLite3() {

SQLiteDatabase.loadLibs(this); // line 21

File databaseFile = getDatabasePath("names.db");

databaseFile.mkdirs();

databaseFile.delete();

SQLiteDatabase database = // line 27
SQLiteDatabase.openOrCreateDatabase(databaseFile,"pass123",

null);

database.execSQL("create table user(id integer primary key autoincrement,

"
+
"first text not null, last text not null, " +
"username text not null, password text not null)");
database.execSQL("insert into user(first,last,username, password) " +

"values('Bertie','Ahern','bahern','celial23")");

Compile and push the app to the phone. Repeat the earlier steps to back up the
database onto our computer. You will probably notice that it takes noticeably longer
to push the app to the phone, as well as to back it up. This is because of the size of the
added libraries.

117

118

Chapter 5 Android Databases

Again, try to open it in sqlitebrowser or by using the SQLite command line tool.
This time the database won’t open because it’s encrypted with the key pass123.

The best way to open the database is to use the sqglite3 command line tool that
comes with SQLCipher. A new step is required whereby we need to tell the database
what the key is before it will allow us to do any SQL queries on the tables.

sqlite> PRAGMA key='passl23';

Figure 5-7 shows how to view the database using the new password.

You may also encounter databases that were created with earlier versions of the
SQLCipher libraries. These can be opened using the following PRAGMA command
after the PRAGMA key command.

sqlite> PRAGMA key='passl23';
sqlite> PRAGMA kdf iter = 4000;

This tells the sqlite tool that the key definition file has a lower iteration count than
the current version.

B C\WINDOWS\system32\cmd.exe - sqlite3.exe names.db - O

c:\Users\Admin\Downloads>cd apps\com.riis.sqlcipher\db

c:\Users\Admin\Downloads\apps\com.riis.sqlcipher\db>sqlite3.exe names.db
SQLCipher version 3.8.0.2 2013-09-83 17:11:13
Enter “.help” for instructions
Enter SQL statements terminated with a “;"
sqlite> PRAGMA key:='pass123’
sqlite> .dump
PRAGMA foreign_keys=0FF;
BEGIN TRANSACTION;
A TABLE android_metadata (locale TEXT);
INTO "android_metadata” UALUES('en_US');
TABLE user(id integer primary key autoincrement, first text not null,
not null, username text not null, password text not null]
INTO "user” UALUES(1, 'Bertie’, 'Ahern’, 'bahern’, ‘celial23');
FROM sqlite_sequence;
INTO "sqlite_sequence” UALUES('user' K 1);

Figure 5-7 Viewing an encrypted database from command line SQLite

SQLCipher 119

Finding the Key

Now that SQLCipher has encrypted the database, our security problem shifts to
“Where can we hide the key?” If we can find the key, then we’re going to be able

to open the database, just like we did in Chapter 2. We can take the following steps to
pull the APK off the device.

1. The APK is in the /data/app folder on the phone. It will also be called the same
package name we used in the adb backup command but with -1.apk appended.
The complete command to get the APK off the phone is the following:

adb pull /data/app/com.riis.sqglcipher-1l.apk
2. Convert the APK back into a jar file using the dex2jar command:
dex2jar com.riis.sqglcipher-l.apk
3. We can now view the source using a Java decompiler, in this case JD-GUI.

Figure 5-8 shows the code for the MainActivity.java file and clearly shows that
the password is pass123.

In the next section we’ll look at our options for hiding the key.

= Jawa Decompiler - MainActivity, class - s EN
File Edit Navigste Semch Help
AR AR

eom s sqleipher-1_dexdjarjar 5|
" :desumn.ﬂ prrererr—— —
£ com |
i kage com.riis. sgleiphes:
i B geeghcemmen rackee ey
& rsqlcipher +import android.app.Acsivity:
¥ [f] BuldConfig
£ [0 Pablic class MAinACtivity extends Activity

i
eample private veid InitializeSQLCipher()
E i
| 5 -icadlibelthin):
File localfile = gesDatabasefach("names.db”):
=i

SCLiceDavabase localSQr
1loealffliveDarabase exessiL [~c:
lecaligliteletabase. execsil("inan:

1

File, “pass123®, mghl);
=y key sursineresed Ter mull, last text ner null, usesname Text !

=e, pasrwssd] valoes| *darn’, ‘bahasnt, tcelialadt)f):

protected woid onCreate(Basdle parssiusdle)
i
super.eaCreste (pazazSusdle) ;
senfeatemtView (113098304002
Inisialisedgloipherils
1
t

Figure 5-8 Viewing the SQLCipher key using JD-GUI

120

Chapter 5 Android Databases

Hiding the Key

One of the most fundamental decisions that you're going to face as a mobile developer
is what encryption to use to hide sensitive information and whether you’re going to
leave the information on the phone or not.

In this section we’re going to look at a number of different ways that other de-
velopers have tried to solve this problem. These examples come from real-world
Android apps that we’ve audited over the years. They each get progressively better
at hiding an encryption key for the database itself or for fields in the database, such
as the password.

Security on Android is almost always a battle between security and ease of use. App
developers want to make it easy for people to use, and they don’t think it’s a good idea
to make someone log into the phone multiple times.

And while many of these examples look like very naive implementations, we have
the benefit of hindsight and can probably assume that the developers were not aware
that someone could gain access to their code and encryption keys so easily. If you're
using some sort of symmetrical key encryption where the encrypted data, as well as
the encrypted key, are on the phone, then youre leaving yourself open to attack.

Ask Each Time

Possibly the safest way to encrypt your database is to ask for the key each time, either
using a PIN code or a password. The first time the user opens the app they’re asked for
the key, which is then used to encrypt the database.

If the user wants to access any data on the app, then the next time they use the app
they have to remember their key and reenter it. The key is stored in the user’s head
and not on your phone.

The downside of this is that the user has to log in to the phone each time they open
your app. And depending on the key size it may also be open to a brute-force attack.
Certainly a four-digit pin code is not very secure.

Listing 5-4 shows an example of how to use a login password to encrypt the data-
base. The password is captured as the user is logging in on line 31; it’s then passed to
initializeSQLCipher as a string on line 35 and used as the SQLCipher key when we
open the database on line 45.

Listing 5-4 Using a Login password to encrypt the database

public class LoginActivity extends Activity {
private Button loginButton;

@Override
protected void onCreate(Bundle savedInstanceState) {

Hiding the Key 121

super.onCreate(savedInstanceState);
setContentView(R.layout.login screen);
initializeViews();
bindListenersToViews();

}

private void initializeViews() {
loginButton = (Button) findViewById(R.id.login button);

}

private void bindListenersToViews() {
loginButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
loginToApp();
}
Hi
}

private void loginToApp() {
EditText usernameField = (EditText) findViewById(R.id.username field);

EditText passwordField = // line 31
(EditText) findViewById(R.id.password field);
EditText emailField = (EditText) findViewById(R.id.email field);

InitializeSQLCipher(passwordField.getText().toString()); // line 35

}

private void InitializeSQLCipher(String pwd) {
SQLiteDatabase.loadLibs(this);
File databaseFile = getDatabasePath("names.db");
databaseFile.mkdirs();
databaseFile.delete();

SQLiteDatabase database = // line 45
SQLiteDatabase.openOrCreateDatabase(databaseFile, pwd, null);

database.execSQL("create table user(id integer primary key autoincrement,

-
"first text not null, last text not null, " +
"username text not null, password text not null)");

database.execSQL("insert into user(first,last,username, password) " +

"values('Bertie','Ahern’','bahern’','celial23")");

122

Chapter 5 Android Databases

Shared Preferences

The next implementation is to hide the key in the shared preferences and then load
it each time the app is opened. There are two variations on this theme. A typical app
will ask the user to encrypt the app the first time and save the key in the shared pref-
erences. Listing 5-5 shows how to write and load our encryption key from a shared
preferences file.

Listing 5-5 Storing passwords in the shared preferences file

private void saveLastSuccessfulCreds() {

String username =
((EditText) findViewById(R.id.username field)).getText().toString();

String password = // line 3
((EditText) findViewById(R.id.password field)).getText().toString();

SharedPreferences.Editor editor = sharedPrefs.edit();
editor.putString(SettingsActivity.LAST USERNAME KEY, username);
editor.putString(SettingsActivity.LAST PASSWORD KEY, password); // line 7
editor.commit();

}

private void loadLastSuccessfulCreds() {

String lastUsername =
sharedPrefs.getString(SettingsActivity.LAST USERNAME KEY, "");

String lastPassword = // line 13
sharedPrefs.getString(SettingsActivity.LAST PASSWORD _KEY, "");

((EditText) findViewById(R.id.username field)).setText(lastUsername);
((EditText) findViewByld(R.id.password field)).setText(lastPassword); //line 16

The adb backup command will not only recover the databases, it will also recover
the shared preferences files. Figure 5-9 shows a screenshot of someone viewing a
shared preferences file on the phone itself.

Alternatively, the app can load an app-specific username and password when the
app is first opened. Android will load data from the resources/xml folder and store
it in shared preferences. Listing 5-6 shows how to load the key from the resources
folder.

Listing 5-6 Loading the SQLCipher key from the resources folder

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >
<EditTextPreference

android:defaultValue="passl234"

android:key="myKey" />

</PreferenceScreen>

Hiding the Key

= C:AWINDOWS\system32\cmd.exe - o IES

:\Users\godfrey>adb shell cat /data/data/com.riis.callcenter/shared_prefs/myx
<?xml version='1.0" encoding='utf-8' standalone='yes' ?>
<map>
ring name:="lastUsername”>gnolanUser1@xdp.broadsoft.com</string>
<{string name="lastURL">https://xsp2.xdp.broadsoft.com¢{/string>
</map>

C:) s\godfrey>

Figure 5-9 Viewing shared preferences files

The advantage of this is that it’s very easy to use; it encrypts the database without
any user input. The disadvantage is that it’s very easy for someone to find the key and
decrypt the phones. For example, the apktool—available from https://code.google.
com/p/android-apktool/—will convert an APK’s resources back into xml using the

following command:

java —jar apktool.jar d com.riis.sglcipher-l.apk

In the Code

We can see from the SQLCipher code example earlier in Figure 5-8 that we can’t
simply hard code our key in the SQLCipher class because someone is going to find
it when they decompile your APK. If we create a security scale showing level of dif-
ficulty—from 1 to 10, where 1 is your kid brother and 10 is a foreign government—
then we’re close to 1 or 2 in the level of difficulty to reverse engineer an APK to
decompile the code.

A couple of years ago, using a single security key for everyone’s app was common
practice in Android development. More recently, developers have moved to generating
the key and making it device-specific using the device’s attributes, such as device_id,
android_id, and any number of phone-specific attributes such as BUILD ID’s, and
Build. MODEL and Build MANUFACTURER. This is then concatenated together

123

https://code.google.com/p/android-apktool/%E2%80%94will
https://code.google.com/p/android-apktool/%E2%80%94will

124

Chapter 5 Android Databases

and is a unique key for that phone or tablet. Listing 5-7 shows how you might do

that. It takes the device’s unique Android ID and the Device ID (assuming it’s not a
tablet) as well as a whole array of phone information. All of this information is concat-
enated together and converted into an md5 digest or hash value.

So far, so good. It protects the app from any potential targeted malware that would
use a decompiled key to attack the app on lots of different phones. However, although
the key 1sn’t the same on every device, the algorithm is the same. And it’s a small step
if the code can be decompiled to figure out how to recreate the recipe for generating
the key, so ultimately it’s only slightly more secure than using the same key.

Listing 5-7 Device-specific keys

android id =

Secure.getString(getBaseContext().getContentResolver(),Secure.ANDROID _1ID);
tManager = (TelephonyManager) this.getSystemService(Context.TELEPHONY SERVICE);
device id = tManager.getDevicelId();

String strl = Build.BOARD + Build.BRAND + Build.CPU ABI + Build.DEVICE +
Build.DISPLAY + Build.FINGERPRINT + Build.HOST + Build.ID + Build.MANUFACTURER
+
Build.MODEL + Build.PRODUCT + Build.TAGS + Build.TYPE + Build.USER;
String key2 = md5(strl + device id + android id);

In the NDK

If the Java code in Android can be reverse engineered so easily, then it makes sense to
write it in some other language that isn’t so easily decompiled. Some developers hide
their keys in C++ using the Native Developer Kit (NDK). The NDK enables devel-
opers to write code as a C++ library. This can be useful if you want to try to hide any
keys in binary code. And, unlike Java code, C++ cannot be decompiled, only disas-
sembled.

Listing 5-8 shows some simple C++ code for returning the “pass123” key to
encrypt the database.

Listing 5-8 Hiding the key in the NDK

#include <string.h>
#include <jni.h>

jstring Java com riis sglndk MainActivity invokeNativeFunction(JNIEnv* env,
jobject javaThis) {
return (*env)->NewStringUTF(env, "passl23");

}

Hiding the Key

Listing 5-9 shows the Android code to call the NDK method correctly. Line 11
does the JNI library call, the function is defined on line 14, and then we call the func-
tion that returns the key on line 21. The sqlndk.c file needs to be in a jni folder. And
because it’s C++ code, we're going to need a make file.

Listing 5-9 Calling the NDK code from Android

import java.io.File;

import net.sqglcipher.database.SQLiteDatabase;
import android.os.Bundle;

import android.app.Activity;

import android.app.AlertDialog;

public class MainActivity extends Activity {

static {
System.loadLibrary("sqlndk"); // line 11
}
private native String invokeNativeFunction(); // line 14
@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

String sqglkey = invokeNativeFunction(); // line 21
new AlertDialog.Builder(this).setMessage(sqglkey).show();

InitializeSQLCipher(sglkey);

}

private void InitializeSQLCipher(String initKey) {
SQLiteDatabase.loadLibs(this);
File databaseFile = getDatabasePath("tasks.db");
databaseFile.mkdirs();
databaseFile.delete();
SQLiteDatabase database =
SQLiteDatabase.openOrCreateDatabase(databaseFile, initKey, null);
database.execSQL("create table tasks" +
" (id integer primary key autoincrement,title text not null)");
database.execSQL("insert into tasks(title) values('Placeholder 1")");

125

126

Chapter 5 Android Databases

Listing 5-10 shows the corresponding Android.mk file. The C++ code is compiled
using the ndk-build command that comes with the Android NDXK tools. ndk-build is
run from a cgywin command line if you’re on Windows.

Listing 5-10 NDK makefile
LOCAL PATH := $(call my-dir)

include $(CLEAR _ VARS)

Here we give our module name and source file(s)
LOCAL _ MODULE := sglndk

LOCAL SRC _FILES := sqglndk.c

include $(BUILD SHARED LIBRARY)

But we're not there yet. Even though we can no longer decompile the code, we can
disassemble it. Looking at Figure 5-10 you can see where the library, opened up in a
hexadecimal editor, shows the key very clearly at the end of the hexidecimal strings in
the file.

If you're going to use the NDK, then choose hexadecimal-like text so that it
doesn’t stand out in a hex editor. We can also take the earlier approach and use some
device-specific or app-specific characteristic and generate a unique app key in NDK
just like we can in native Android code. Listing 5-11 shows how you can use the app

1FCD: 00 30 BD E5 OC 20 A0 E3 01 30 AD E1 F2 FB FF EB .03a. 3.0 adye
1FDO: OC 30 9D ES 4C 30 93 ES 07 20 D3 ES 02 31 83 E0 .0ALO4. 04.14
1FED: 08 00 B3 E2 14 DO BD E2 00 BO BD E8 08 40 2D E9 ..A.B4.%@.08-&
1FF0: E0 FA FF EB 08 40 2D E9 DE FA FF EB 08 Bl 01 81 aoge.@-épaye.:.
N e e T

2040: 00 00 00 00 7C EB FF 7F B4 FF FF 7F 8C EB FF
2050: BO BO BO 80 9C EB FF 7F BO AF 04 80 €8 ED FF

Figure 5-10 Viewing the NDK password

SQL Injection

ID as a unique key, which will be different every time the app is installed on a differ-
ent phone. It uses a function called getlogin() to find out the login ID, which in this
case is the app_id.

Listing 5-11 Using the App ID for the database key

#include <string.h>
#include <jni.h>
#include <unistd.h>

jstring Java com riis sglndk MainActivity invokeNativeFunction(JNIEnv* env,
jobject javaThis) {

return (*env)->NewStringUTF(env, (char *)getlogin());

However, neither of these approaches is ultimately enough to stop someone from
reading the binary. But it is a better option to consider if you have no other choice
than to put the API or encryption keys on the device. Disassembled code rapidly
becomes more difficult to understand as it gets further away from these simple hello-
world examples.

Web Services

The safest option for any type of device is to store the key, or the algorithm for gener-
ating your key, remotely and to access it via secure web services. This has already been
covered in previous chapters. The disadvantage to this is that the Android device will
need to be connected to the Internet when you open the database, which might not be
acceptable to the end user.

But the message should be clear by now that any keys stored on the phone are open
to being hacked in ways similar to what we’ve shown in this section. We’ll go into
more detail in the next chapter about what to do to protect your web server and your
web server traffic from prying eyes.

SQL Injection

SQL injection refers to when the attacker taints the data with a SQL statement. We
said earlier that SQLite is a fully functional database, so, just like your SQL Server or
MySQL box, it is just as susceptible to SQL injection if you are not careful. SQL injec-
tion typically works by adding data to the querystring or adding data in a form field to
give the hacker access to the database or unauthorized logins. And while SQL injec-
tion is usually something used for attacking a web view or a web service, it can also be
an attack on an Activity. Figure 5-11 shows a simple SQL injection example.

127

128

Chapter 5 Android Databases

®ignIn
Figure 5-11 Classic SQL injection attack

If we look at the checkLogin code in Listing 5-12 we can see that the SQL query is
passed directly to the database. So if we log in with a username of ' OrR 1=1 --' and
password of test, the query to SQLite will be the following string:

select * from login where USERNAME = '' OR 1=1 --' and PASSWORD = 'test'

Listing 5-12 Login unprotected from SQL injection

public boolean checkLogin(String paraml, String param?2)
{

boolean bool = false;

Cursor cursor = db.rawQuery("select * from login where USERNAME = '" +
// line 5

paraml + "' and PASSWORD = '" + param2 + "';", null);
if (cursor != null) {

if (cursor.moveToFirst())
bool = true;
cursor.close();
}
return bool;

Because of the OR 1=1 portion of the string and the --, which comments out the
rest of the SQL query, this will always be a true condition. The result is that the user
can log in without needing a real username and password.

To fix this we need to sanitize any user-entered data and assume it can’t be trusted.
We can do this either by using regular expressions to check that it’s what we’re expect-
ing—for example, a valid email address—or by using SQL prepared statements. Or
better still, we can do both.

To fix our checkLogin code we're going to change the SQL to use prepared state-
ments. Listing 5-13 shows a modified checkLogin, which now uses prepared statements

Conclusion

on line 5. Here the injected SQL becomes a parameter and can no longer cut off the
SQL statement.

Listing 5-13 Protecting code using prepared statements

public boolean checkSecureLogin(String paraml, String param2)
{

boolean bool = false;

Cursor cursor = db.rawQuery("select * from login where " + // line 5
"USERNAME = ? and PASSWORD = ?", new String[]{paraml, param2});

if (cursor !'= null) {
if (cursor.moveToFirst())
bool = true;
cursor.close();
}

return bool;

Conclusion

In this chapter we’ve looked at options to make your databases more secure. If you're
going to store customer information, we’ve covered how to use SQLCipher to encrypt
the data as well as the various schemes developers have used to hide the key and keep
the data safely encrypted.

The only 100 percent secure way to hide any encryption key is to keep it off the
phone, and even then you must make sure it’s transmitted securely and not cached
anywhere. Every other alternative that we looked at had limitations, some more obvi-
ous than others. None of these alternatives would be HIPAA compliant. Ask yourself
the question, “Would the security of my app be compromised if someone could read
my code?” If the answer is yes, then the app is not HIPAA compliant.

129

This page intentionally left blank

Numbers

010 hex editor, xviii
37signals, OAuth support, 77

A

Abe (Android Backup Extractor), xviii
Access control
authentication best practices, 54-55
function-level, 147
gaining superuser access, 102-103

Access control lists (ACLs), HIMMS guidelines,
189

Accessory devices
Ford Sync API, 187-188
wearables, 186—-187
Accountability, OWASP Cloud top 10 risks, 148

ACLs (access control lists), HIMMS guidelines,
189

adb command
backing up Android database, 111-114
backing up Android devices, 169
decompiling APK, 4
description of, xviii
AdMob hack, Pandora and, 152-154
AES symmetric key algorithm, 92-93
Ahead-Of-Time (AOT) compilers, 7
Air Watch MDM solution, from VMware, 177-178

allowBackup attribute, disabling backup
functionality, 115-116

Android application package. See APK (Android
application package)

Index

Android apps. See Apps

Android Backup Extractor (Abe), xviii
Android HelloWorld app, 39-41
Android OSs

adb backup introduced in Ice Cream Sandwich,
169

Android L release, 190

ART (Android Runtime) and, 7
cross-platform apps and, 135
device security and, 167
encryption functionality, 116

encryption to be default in Android L,
173

fragmentation and, 168

Google App Encryption in Jelly Bean,
65

Linux and, 17

rooting the phone to test security of data
transmission, 102

SEAndroid security policies and, 174-175
Android L, 173, 178, 190
Android Runtime (ART)
overview of, 7
replacing DVM, 190
Android Silver, 191
Android Studio, 191

AndroidID, supplementing authentication process,
59-62

AntiLVL test suite
example code, 68-74

for removing license checking, 68

196

AOT (Ahead-Of-Time) compilers

AOT (Ahead-Of-Time) compilers, 7
API keys
asymmetric encryption of, 94-99
insecure coding practices, 179
protecting, 88-92, 131
replay attacks and, 135
symmetric encryption of, 92—94
APK (Android application package)

comparing Android security with 10S,
1-2

decompiling, 4-6, 28-29
disassembly, 43—45
pulling oft devices, 119

reasons for adding third-party libraries,
151

reassembly, 45—48

third-parties libraries and, 190
apktool

description of, xviii

reassembly of APK, 45—48
AppID

Ford Sync AppID, 187-188

using as encryption key for Android
database, 127

Application licenses. See Licenses, application
Apps
adding LVL to, 65-66
adding SQLite database to, 111-114
Android HelloWorld app, 39-41
cross-platform. See Cross-platform apps
finding package name of, 114
hybrid. See Hybrid apps
installing Crashlytics app, 157-159
installing Critercism app, 154-156
mobile. See Mobile apps
protecting in Google Play, 65
risk of third-party libraries and, 152
session management, 82—84
Smali HelloWorld app, 41-43
testing logins on, 85

ART (Android Runtime)

overview of, 7

replacing DVM, 190
Assembly/disassembly

Android HelloWorld app, 39—-41

disassembly example (remove app store
check), 43-48

Smali and Baksmali for classes.dex files,
39

Smali HelloWorld app, 41-43
Asymmetric keys. See also Encryption
compared with symmetric, 92

securing network communications,

94-99
Attacks/hacks
hacking mobile apps and websites, 131
hacking usernames and passwords, 53
increasing sophistication of, 179-186

man-in-the-middle. See MITM (man-in-
the-middle) attacks

replay attacks, 135
SQL injection. See SQL injection attacks
WebView. See WebView attacks

Audits, 188-190

Authentication

adding licensing verification library,
6566

AntiLVL test suite, 68—74

applying licensing verification library,
66

best practices, 54—55

decompiling LVL code, 7577
encrypting passwords, 62—65
examples, 55-65

Google licensing guidelines, 66—68
licensing applications, 65

managing web and mobile sessions,
82-84

OAuth and, 77-78
OAuth use with Facebook, 78—82
OWASP guidelines, 15, 133, 146

securing logins, 51-54

supplementing authentication process
with AndroidID, 59-62

two (or more) factor authentication,
85

usernames and passwords and, 84—85
validating email, 57-58
Authorization, OWASP guidelines, 15, 133
Availability, OWASP guidelines, 132
AXMLPrinter2, xviii

B

BAA (Business Associate Agreement), 150
Backing up Android database

adb for, 111-114

disabling backup functionality, 115-116
Backing up Android devices, 169
Baksmali

assembly/disassembly of classes.dex files,

39
description of, xix
Binary code, OWASP guidelines, 16
Bring Your Own Device (BYOD), 177
Build process, 3
Burp Suite, SQL injection attack with, 142-144
Business Associate Agreement (BAA), 150

Business continuity, OWASP Cloud top 10 risks,
148

Business needs, Forrester Research top 10
security issues, 16

Business rules, hiding, 48-49
BYOD (Bring Your Own Device), 177

Bytecode, obfuscation of, 38

C

C++
disassembly, 48—49

hiding encryption keys in C++,
124-127

Calabash, testing logins, 85

Colberg, Christian

CAs (Certificate Authorities)

encryption providers, 87

server authentication, 133

SSL certifications from, 99-100, 104
Charles Proxy

description of, xix

generating SSL certificates with, 99

MITM (man-in-the-middle) attacks on
third-party apps, 163

testing security of network traffic,
103-107

viewing network traffic with, 91-92
Classes.dex

converting into jar files, 6

converting into Java .class format, 5

file structure, 19-23

securing Android in future and, 190
Clients

authentication best practices, 54

OWASP client-side security guidelines,
15

Closure tool, for obfuscation of code in cross-
platform app, 139-140

Cloud, OWASP risks, 146-149

CLR (Common Language Runtime), 190

Code protection
Android HelloWorld app, 39-41
classes.dex file structure, 19-23
DexGuard obfuscator, 32-37

disassembly example (remove app store
check), 43—-48

hiding business rules in NDK, 48—-49
obfuscation best practices, 2425
ProGuard obfuscator, 27-32

security through obscurity, 38

Smali HelloWorld app, 41-43
taxonomy of obfuscation, 34

testing and obfuscation, 38-39

viewing APK without obfuscation,
26-27

Colberg, Christian, 32

197

198

Common Language Runtime (CLR)

Common Language Runtime (CLR), 190
Communication security
HIMMS guidelines, 190

networking and. See Network
communication security

Compilers/decompilers
AOT (Ahead-Of-Time) compilers, 7

converting VM code back to source
code, 2

decompiled code without obfuscation,
26-27

decompiling APK, 4-6
decompiling LVL code, 75-77
decompiling SDK’s, 160-163
DexGuard decompiler, 35
ProGuard decompiler, 2829
securing Android in future and, 190
Compliance. See Regulatory compliance

Component vulnerability, OWASP Top 10 risks,
147

Confidentiality, OWASP Web Services Cheat
Sheet, 133

Configuration files, ProGuard, 27
Crashlytics app, installing, 157-159
credentials.xml file, 52
Critercism app, 154-156
Cross-platform apps
Closure for obfuscation of code, 139—140
commenting code, 135-137

JavaScript compressors for obfuscation of
code, 137-139

overview of, 135
Cross-site request forgery (CSRF), 147

Cross-Site Scripting. See XSS (Cross-Site
Scripting)

Cryptography. See also Encryption
Android libraries, 87
FIPS 140-2 standard, 176177
OWASP guidelines, 15

CSRF (cross-site request forgery), 147

Cucumber, login testing with, 85

Cydia Impactor, gaining superuser access,
102-103

D

DAC (Discretionary Access Control), 174
Dalvik Debug Monitor Server (DDMS), 169

Dalvik Virtual Machine. See DVM (Dalvik Virtual
Machine)

DashO

obfuscation with, 34

securing Android in future and, 190
Data
leakage and storage, 15
OWASP Cloud top 10 risks, 148—149
sensitive. See Sensitive data
Databases
backing using adb, 111-114
disabling backup, 115-116
encrypting data using SQLCipher, 116-118
finding the encryption key, 119

hiding encryption keys by using device-
specific keys, 123-124

hiding encryption keys in C++ using
NDK, 124-127

hiding encryption keys in shared
preferences, 122-123

hiding encryption keys using web
services, 127

overview of, 109

requiring encryption key be used for each
access, 120-121

security issues, 109-110
SQL injection attacks and, 127-129
SQLite and, 110-111
DDMS (Dalvik Debug Monitor Server), 169
Debugging, logs and, 169-172
Decompilers. See Compilers/decompilers
Dedexer, xix
Defect tracking apps
installing Crashlytics app, 157-159
installing Critercism app, 154-156

Design, Forrester Research top 10 security issues,
17

Developers/development, Forrester Research top
10 security issues, 16-17

Device ID
authentication, 51-53
protecting apps in Google Play, 65
Device security
backing up with adb, 169
encryption, 172-174
FIPS 140-2 standard, 18, 176177
fragmentation and, 168
HIMMS guidelines, 189
logs, 169—-172

MDM (Mobile Device Management),
177-178

overview of, 17, 167-168

SEAndroid for identifying security gaps,
174-175

wiping devices, 168
Device-specific keys, hiding encryption keys, 123-124
Dex files, 2. See also Classes.dex
dex2jar tool

changing Android bytecode into Java
bytecode, 22

converting classes.dex into jar files, 6

converting dex files into Java .class
format, 5

description of, xix

securing Android in future and, 190
DexGuard

code protection, 35-37

description of, xix

enabling, 34-35

securing Android in future and, 190
Disassemblers. See Assembly/disassembly
Discretionary Access Control (DAC), 174
Dropbox, OAuth support, 77
Drozer

description of, xix

penetration testing with, 191-193

Encryption, of Android database

DVM (Dalvik Virtual Machine)
Android running on, 1
JIT (Just in Time) compiler in, 7
securing Android in future and, 190

Smali files as ASCII representation of
Dalvik opcodes, 39

dx command, converting jar files into dex files, 2

E

Education lacking, Forrester Research top 10
security issues, 16

electronic protected health information (ePHI),
188

Email
authentication best practices, 54
authentication examples, 55-56
validating email addresses, 57-58
Encryption
to be default in Android L, 173
device security, 172-174
FIPS 140-2 standard, 176177
generating encryption key, 62-63
Google App Encryption, 65
HIPAA compliance, 189
insecure coding practices, 179
message integrity and confidentiality, 133

of network communication using
asymmetric keys, 94—99

of network communication using
symmetric keys, 92-94

OWASP Cloud top 10 risks, 149

of passwords, 63—65

preventing replay attacks, 135

for sensitive data, 55

wiping devices and, 168

Encryption, of Android database

finding the encryption key, 119

hiding encryption keys by using device-
specific keys, 123—-124

hiding encryption keys in NDK,
124-127

199

200

Encryption, of Android database (Continued)

Encryption, of Android database (Continued)

hiding encryption keys in shared
preferences, 122-123

hiding encryption keys using web
services, 127

requiring encryption key be used for each
access, 120121

using SQLCipher, 116-118

ePHI (electronic protected health information),
188

PCI Mobile Payment Acceptance
Security Guidelines, 7-8

Security Risk Assessment Tool for testing
HIPAA compliance, 10-14

H

Facebook
data security and, xv
OAuth support, 77

Factory reset, wiping devices, 168

Federal Information Processing Standard (FIPS)
140-2 device standard, 18, 176-177

FIPS (Federal Information Processing Standard)
140-2 standard, 18, 176-177

Firesheep app, 99
Ford Sync ApplD, 187-188

Forrester Research, top 10 nontechnical mobile
security risks, 16-17

Forwarding, handling unvalidated redirects, 147

Fragmentation, device security and, 168

G

GitHub, OAuth support, 77
GoDaddy, sources of SSL certs, 104
Google
App Encryption, 65
licensing guidelines, 66—68
protecting apps in Google Play, 65
Security Best Practices, 9-10
Guidelines, security

Forrester Research’s top 10 nontechnical
mobile security risks, 1617

Google Security Best Practices, 9-10
overview of, 7
OWASP Top 10 mobile risks, 14-16

Hardware, fragmentation and, 168
Health Information Network (HIN), 189

Health Insurance Portability and Accountability
Act. See HIPAA (Health Insurance Portability
and Accountability Act)

Healthcare Information and Management Systems
Society (HIMMS), 189-190

HealthIT.gov, Security Risk Assessment Tool, 10
HelloWorld apps

Android, 39—-41

Smali, 41-43

HIMMS (Healthcare Information and Management
Systems Society), 189-190

HIN (Health Information Network), 189

HIPAA (Health Insurance Portability and
Accountability Act)

device security and, 167

encryption of sensitive data required in, 173
regulatory compliance, 148

requirements, 188—190

Security Risk Assessment Tool for, 10-14
sensitive data and, 88

third-parties libraries and, 152

unencrypted data in SQLite database not
compliant with, 111

web server compliance, 149-150
HTTP/HTTPS

connecting using API keys, 88

connection security and, 87

effectiveness of SSL and, 99

example calls to Weather Underground,
88-91

testing security of network traffic with
Charles Proxy, 103-107

testing SSL security with man-in-the-
middle attack, 100102

testing third-party apps with man-in-the-
middle attacks, 163

viewing network traffic with Charles
Proxy, 91-92

Human factors, Forrester Research top 10
security issues, 16

Hybrid apps
cross-platform apps compared with, 140

securing, 131

Ice Cream Sandwich (Android 4.0), 102, 173
IDA Pro, hexadecimal editor, 48-49

Incidence analysis, 149

Information Technology Management Reform Act
(1996), 18

Infrastructure security, 149

Insecure Direct Object References, OWASP Top
10 risks, 146

Intent sniffer, 186
Intents, hijacking Android Intent, 180-185
Internet of Things (loT)
Ford Sync ApplD, 187-188
wearables, 186—187
i0S
binary code and, 1
comparing Android security with, 1-2
cross-platform apps and, 135
Objective-C code and, 49

PCI Mobile Payment Acceptance
Security Guidelines and, 7

loT (Internet of Things)
Ford Sync AppID, 187-188
wearables, 186—187

Jadx, xix
jar files
adding third-party libraries to APK, 151

converting classes.dex files into, 6

Libraries 201

converting into dex files, 2
Java decompilers, 2
Java Virtual Machine (JVM), 190

JavaScript compressors, for obfuscation of code
in cross-platform app, 137-139

JD-GUI

decompiling SDK of third-party library,
160-163

description of, xix
pulling APK off devices, 119
securing Android in future and, 190

Jelly Bean (Android 4.1), 169. See also Android
0Ss

JIT (Just in Time) compiler, in DVM, 7
Just in Time (JIT) compiler, in DVM, 7
JVM (Java Virtual Machine), 190

K

Keyczar
description of, xix
getting asymmetric key from, 95
Keys, encryption
asymmetric keys, 94-99
encrypting sensitive data, 55
message integrity and, 133
symmetric keys, 92-94
KitKat. See also Android OSs
ART (Android Runtime) and, 7
fragmentation and, 168
SEAndroid and, 17, 174-175

L

Least privilege principle, HIMMS guidelines,
189

Libraries
cryptography, 87, 176

licensing verification. See LVL (licensing
verification library)

PHP Nonce Library, 135
third-party. See Third-parties libraries

Licenses, application

Licenses, application

adding licensing verification library to
apps, 65—66

AntiLVL test suite, 68—74

applying licensing verification library,
66

decompiling LVL code, 7577

Google licensing guidelines, 66—68

overview of, 65

licensing verification library. See LVL (licensing
verification library)

Lint
description of, xix
tagging security issues, 193

LogCat, filtering logs with, 169

Logins
hijacking Android Intent, 180—185
OWASP login session guidelines, 15
policies, 56-57
securing, 51-54
SQL injection attacks and, 128-129
testing on Android apps, 85

using login password to encrypt Android
database, 120-121

Logs, device security and, 169-172

LVL (licensing verification library)
adding to apps, 65—-66
AntiLVL test suite, 68—74
applying, 66
decompiling LVL code, 7577
Google licensing guidelines, 66—68

M

MAC (Mandatory Access Control), 174-175

Man-in-the-middle attacks. See MITM (man-in-
the-middle) attacks

mapping.txt file, ProGuard, 29-31
MDM (Mobile Device Management), 177-178

Message integrity, OWASP Web Services Cheat
Sheet, 133

Middleware Mandatory Access Control (MMAC),
175

MITM (man-in-the-middle) attacks
preventing, 133
rooting the phone and, 102-103

testing security of network traffic with
Charles Proxy, 103-107

testing SSL security, 100-102
third-parties libraries and, 163

MMAC (Middleware Mandatory Access Control),
175

Mobile apps. See also Apps
data security and, xv
hacking, 131
HIPAA compliance, 189
session management, 82—84
WebView attacks, 140—-142
Mobile Device Management (MDM), 177-178
Moto 360, wearables, 187

N

National Institute of Standards and Technology
(NIST), 18

NDK (Native Developer Kit)
hiding business rules in, 48—49
hiding encryption keys in C++, 124-127
Network communication security

encryption using asymmetric keys,
94-99

encryption using symmetric keys,
92-94

HTTP/HTTPS connections and,
88-92

overview of, 87—88

rooting the phone to test security of data
transmission, 102—103

SSL and, 99-100

testing security of network traffic with
Charles Proxy, 103-107

testing SSL by performing man-in-the-
middle attack, 100102

NIST (National Institute of Standards and
Technology), 18

Nonce, preventing replay attacks, 135

0)

OAuth

handling unvalidated redirects, 147

overview of, 77-78

session management, 82—84

used with Facebook, 78—82
Obfuscation

best practices, 24-25

in cross-platform app, 137-140

decompiled code without obtuscation,
26-27

DexGuard obfuscator, 34-37
effectiveness of obfuscators, 38
ProGuard obfuscator, 27-32
securing Android in future and, 190
taxonomy of, 33-34
testing and, 38-39

Obfuscators
Google licensing guidelines and, 66
types of, 24

Open Web Application Security Project. See
OWASP (Open Web Application Security Project)

OpenSSL FIPS library, cryptographic libraries, 176
0Ss (operating system). See Android 0Ss
OTA (Over the Air) updates, 168
OWASP (Open Web Application Security Project)
Cloud top 10 risks, 148-149
mobile top 10 risks, 14-16, 193
Web Services Cheat Sheet, 133—-134
web services top 10 risks, 146-147

P

Pandora, AdMob hack and, 152-154
Passwords

authentication examples, 55-56

Private keys 203

best practices, 54

encrypting, 63—65

hacking, 53

hiding encryption keys in C++ using
NDK, 124-127

HIMMS guidelines, 190

insecure coding practices, 179

protecting Android database, 120-121

securing logins, 51

sending over SSL, 99

storing in shared preferences file, 122-123

user behavior and, 84—85

PCl Mobile Payment Acceptance Security
Guidelines, 7-8, 188

Penetration testing
with Drozer, 191-193
testing security configuration, 147
Permissions
least privilege principle, 189
third-parties libraries and, 152-154

trust but verify approach to third-party
apps, 160

PHI (protected health information)
checking security of sensive data, 111
encryption required in HIPAA, 173

ePHI (electronic protected health
information), 188

security of, 10, 14
third-parties libraries and, 152
PHP Nonce Library, 135
Physical security, OWASP Cloud top 10 risks, 149
Policies, HIMMS guidelines, 189-190
Privacy

Forrester Research top 10 security issues,
17

regulatory compliance, 148
Private keys. See also Encryption

in asymmetric encryption, 92

encrypting sensitive data, 55

message integrity and, 133

ProGuard

ProGuard
classes.dex file structure, 19-23
decompiling APK, 28-29
description of, xix
etfectiveness of obtfuscators, 38
enabling, 27-28
example of decompiled GUI, 32
files used by, 31
limitations of, 34
logs and, 170, 172
mapping.txt file, 29-31
obfuscation best practices, 2427
obfuscation taxonomy, 33-34
overview of, 19
securing Android in future and, 190
testing and obfuscation, 38—39

Protected health information. See PHI (protected
health information)

Proxy server, testing SSL security by performing
man-in-the-middle attack, 100-102

Public keys
in asymmetric encryption, 92
encrypting sensitive data, 55
message integrity and, 133

Public Law 104-106, Information Technology
Management Reform Act, 18

Q

QA (quality assurance), Forrester Research top 10
security issues, 17

R

Redirects, handling unvalidated, 147
Regulatory compliance
HIPAA requirements, 188-190
overview of, 148
OWASP Cloud top 10 risks, 148

Security Risk Assessment Tool for testing
HIPAA compliance, 10-14

third-parties libraries and, 152

web servers and, 149-150
Replay attacks, 135

Resources inadequacy, Forrester Research top 10
security issues, 16

RESTful
OWASP Web Services Cheat Sheet, 132
web services, 132

Root the phone, to test security of data
transmission, 102-103

S

SAML (Security Assertion Markup Language), 148
SDKs (software development kits)
Android Wear SDK, 186—187

decompiling SDK of third-party library,
160-163

MITM (man-in-the-middle) attacks on
third-party SDKs, 163

SE (Security Enhanced) Android

for identifying device security gaps, 174-175

overview of, 17

securing Android in future and, 190
SE (Security Enhanced) Linux, 17, 174-175
Security

ART (Android Runtime) and, 7

benefits of Android, 1-2

code protection, 19

databases and, 109-110

decompiling an APK, 4-6

of devices. See Device security

FIPS (Federal Information Processing
Standard), 18

Forrester Research’s top 10 nontechnical
mobile security risks, 16—17

Google Security Best Practices, 9-10

of network communication. See Network
communication security

OWASP Top 10 mobile risks, 14-16

PCI Mobile Payment Acceptance
Security Guidelines, 7-8

SE (Security Enhanced) Android, 17

security lists (guidelines), 7

Security Risk Assessment Tool for testing
HIPAA compliance, 10-14

Security Assertion Markup Language (SAML), 148

Security Enhanced (SE) Android. See SE (Security
Enhanced) Android

Security Enhanced (SE) Linux, 17, 174-175

Security Requirements for Cryptographic Modules
Standard, 176

Security Risk Assessment (SRA) Tool, for testing
HIPAA compliance, 10-14

Sensitive data. See also PHI (protected health
information)

checking security of, 111
defined, 87—-88
encrypting, 55, 116—118
OWASP Top 10 risks, 147

security issues with Android databases,
109-110

Servers
authentication best practices, 54
HIPAA compliance, 149-150
weak server-side control, 14—15
web services. See Web services
Session management
OWASP Top 10 risks, 146
web and mobile apps, 82—-84
Session tokens, sending over SSL, 99
Shared preferences
hiding encryption keys, 122-123
insecure coding practices, 179
SQLite, 110
Smali

for assembly/disassembly of classes.dex
files, 39

description of, xix
disassembly of APK into, 43—45
HelloWorld app, 41-43
SOAP
OWASP Web Services Cheat Sheet, 133

web services, 132

Symmetric keys

Software, fragmentation and, 168

Software development kits. See SDKs (software
development kits)

SOX, regulatory compliance, 148

SQL injection attacks
Android databases and, 127-129
OWASP guidelines, 15
OWASP Top 10 risks, 146
WebView attacks, 142—-144

SQLCipher
encrypting Android databases, 116—118
finding the SQLite encryption key, 119

hiding encryption keys by using device-
specific keys, 123—-124

loading encryption keys from resource
folder, 122—123

viewing SQLite encryption keys, 119
SQLite

adding SQLCipher, 116118

backing database using adb, 111-114

disabling backup, 115-116

overview of, 110-111

SQL injection attacks, 127-129

use for Android databases, 109
sqlitebrowser

description of, xix

viewing SQLite databases, 110-111

SRA (Security Risk Assessment) Tool, for testing
HIPAA compliance, 10-14

SSL
overview of, 99-100

preventing man-in-the-middle attack,
133

rooting the phone to test security of data
transmission, 102—103

testing SSL by performing man-in-the-
middle attack, 100-102

Superuser access, gaining, 102-103
Symmetric keys. See also Encryption
asymmetric keys compared with, 94

encryption/decryption example, 93-94

205

206

Symmetric keys (Continued)

Symmetric keys (Continued)

securing network communications,
92-93

T

Third-parties libraries

APK (Android application package) and,
190

decompiling SDK’s, 160-163
installing, 154

installing Crashlytics app, 157-159
installing Critercism app, 154-156

MITM (man-in-the-middle) attacks and,

163

overview of, 151-152

permissions and, 152-154

transferring risks, 152

trusting and verifying, 160
Tokens

sending session tokens over SSL, 99

in session management, 82—84
Tools

in future of Android, 190-191

list of commonly used, xviii—xix
Transformations, security through obscurity, 38
Transport layer, OWASP guidelines, 15
Trust

SQL injection attacks, 15

trust but verify approach, 160

Two (or more) factor authentication, 54, 85

U

URLSs, handling unvalidated redirects, 147
User identity, OWASP Cloud top 10 risks, 148
Usernames

authentication examples, 55-56

hacking, 53

insecure coding practices, 179

securing logins, 51

sending over SSL, 99
user behavior and, 84-85

\%

Verification, “trust but verify” approach, 160
Verisign, sources of SSL certificates, 104
Virtual machines. See VMs (virtual machines)

Virus protection, OWASP Web Services Cheat
Sheet, 134

VMs (virtual machines)

ART (Android Runtime), 7

DVM (Dalvik Virtual Machine), 1

securing Android in future and, 190
VMware Air Watch MDM solution, 177-178
Vulnerabilities, OWASP Top 10 risks, 147

W

Wearables, 186-187
Weather Underground

Charles Proxy test of security of network
traffic, 103-107

HTTP/HTTPS calls to, 88-91, 98
Web, session management, 82-84
Web browsers, session management, 82-84
Web servers

HIPAA compliance, 149-150

weak server-side control, 14-15
Web Service Description Language (WSDL), 132
Web services, 131

asymmetric key encryption of API keys,
94-99

cross-platform apps and, 135-140
hiding encryption keys in, 127
HIPAA compliance and, 149-150
overview of, 131-132

OWASP Cloud Top 10 risks, 148149
OWASP Top 10 risks, 146147

OWASP Web Services Cheat Sheet,
133-134

protecting API keys, 88-92, 131

replay attacks, 135

SQL injection attacks, 142-144

WebView attacks, 140142

XSS (Cross Site Scripting) issues, 145-146
Websites, hacking, 131
WebView attacks

overview of, 140—142

SQL injection attacks, 142-144

XSS (Cross Site Scripting) issues, 145-146

XSS (Cross-Site Scripting)

Wiping devices, 168
WSDL (Web Service Description Language), 132

X

XSD, validation of soap messages, 133
XSS (Cross-Site Scripting)
OWASP Top 10 risks, 146

OWASP Web Services Cheat Sheet,
134

WebView attacks, 142, 145-146

207

	Contents
	Preface
	Acknowledgments
	About the Author
	5 Android Databases
	Android Database Security Issues
	SQLite
	Backing Up the Database Using adb
	Disabling Backup

	SQLCipher
	Finding the Key

	Hiding the Key
	Ask Each Time
	Shared Preferences
	In the Code
	In the NDK
	Web Services

	SQL Injection
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

