
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133993325
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133993325
https://plusone.google.com/share?url=http://www.informit.com/title/9780133993325
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133993325
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133993325/Free-Sample-Chapter

Bulletproof
Android™

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Bulletproof
Android™

Practical Advice for
Building Secure Apps

Godfrey Nolan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the desig-
nations have been printed with initial capital letters or in all capitals.

Android is a trademark of Google.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Nolan, Godfrey.
 Bulletproof Android : practical advice for building secure apps / Godfrey
Nolan.
 pages cm
 Includes index.
 ISBN 978-0-13-399332-5 (pbk. : alk. paper)
 1. Android (Electronic resource) 2. Application software—Development.
3. Computer security. I. Title.
 QA76.774.A53N654 2014
 005.8—dc23
 2014039900

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from
this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-399332-5
ISBN-10: 0-13-399332-9

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, December 2014

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Senior
Development
Editor
Chris Zahn

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Project Editor
Eclipse Publishing
Services

Copy Editor
Diane Freed

Indexer
Jack Lewis

Proofreader
Melissa Panagos

Technical
Reviewers
Matt Insko
Dave Truxall

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
Eclipse Publishing
Services

❖

This book is dedicated to my son and daughter, Rory and Dayna,

for making me laugh so much over the years.

I’m hoping you too will get to write your own books and plays,

and have the pleasure of one day dedicating them to your own kids.

❖

This page intentionally left blank

Contents at a Glance

 Contents ix

 Preface xiii

 Acknowledgments xxi

 About the Author xxiii

1 Android Security Issues 1

2 Protecting Your Code 19

3 Authentication 51

4 Network Communication 87

5 Android Databases 109

6 Web Server Attacks 131

7 Third Party Library Integration 151

8 Device Security 167

9 The Future 179

 Index 195

This page intentionally left blank

Contents

Preface xiii

Acknowledgments xxi

About the Author xxiii

 1 Android Security Issues 1

Why Android? 1

Decompiling an APK 4

Art for Art’s Sake 7

Guidelines 7

PCI Mobile Payment Acceptance Security
Guidelines 7

Google Security 9

HIPAA Secure 10

OWASP Top 10 Mobile Risks (2014) 14

Forrester Research’s Top 10 Nontechnical
Security Issues in Mobile App Development 16

Securing the Device 17

SEAndroid 17

Federal Information Processing Standard (FIPS) 18

Conclusion 18

 2 Protecting Your Code 19

Looking into the classes.dex File 19

Obfuscation Best Practices 24

No Obfuscation 26

ProGuard 27

DexGuard 32

Security Through Obscurity 38

Testing 38

Smali 39

Helloworld 39

Remove App Store Check 43

Hiding Business Rules in the NDK 48

Conclusion 49

Contentsx

 3 Authentication 51

Secure Logins 51

Understanding Best Practices for
User Authentication and Account Validation 54

Take 1 55

Take 2 56

Take 3 59

Take 4 62

Application Licensing with LVL 65

OAuth 77

OAuth with Facebook 78

Web and Mobile Session Management 82

Vulnerability 84

User Behavior 84

Two (or More) Factor Authentication 85

Conclusion 86

 4 Network Communication 87

HTTP(S) Connection 88

Symmetric Keys 92

Asymmetric Keys 94

Ineffective SSL 99

Man-in-the-Middle Demo 100

Root Your Phone 102

Charles Proxy Test 103

Conclusion 107

 5 Android Databases 109

Android Database Security Issues 109

SQLite 110

Backing Up the Database Using adb 111

Disabling Backup 115

SQLCipher 116

Finding the Key 119

Hiding the Key 120

Ask Each Time 120

Shared Preferences 122

Contents xi

In the Code 123

In the NDK 124

Web Services 127

SQL Injection 127

Conclusion 129

 6 Web Server Attacks 131

Web Services 131

OWASP Web Services Cheat Sheet 133

Replay Attacks 135

Cross Platform 135

WebView Attacks 140

SQL Injection 142

XSS 145

Cloud 146

OWASP Web Top 10 Risks 146

OWASP Cloud Top 10 Risks 148

HIPAA Web Server Compliance 149

Conclusion 150

 7 Third-Party Library Integration 151

Transferring the Risk 152

Permissions 152

Installing Third-Party Apps 154

Installing Crittercism 154

Installing Crashlytics 157

Trust but Verify 160

Decompiling SDKs 160

Man in the Middle 163

Conclusion 165

 8 Device Security 167

Wiping Your Device 168

Fragmentation 168

adb Backup 169

Logs 169

Device Encryption 172

SEAndroid 174

Contentsxii

FIPS 140-2 176

Mobile Device Management 177

Conclusion 178

 9 The Future 179

More Sophisticated Attacks 179

Internet of Things 186

Android Wearables 186

Ford Sync AppID 187

Audits and Compliance 188

Tools 190

Drozer 191

OWASP Mobile Top 10 Risks 193

Lint 193

Conclusion 194

Index 195

Preface

Why another Android security book? Right now I know of a half dozen books or
so about hacking Android. I personally wrote one a few years ago called Decompiling
Android. In the world of hacking we use the term white hat for someone who is trying
to improve the security of a system and black hat for someone who is trying to exploit
the weaknesses of a system. In my opinion, most of the existing Android hacking
books are either black hat books or they tread the line between white hat and black
hat. Sometimes they benefit a black hat hacker and sometimes the information is use-
ful for someone who wants to write a more secure app. Black hat books are still a great
resource for understanding how to secure your app, but the focus is on how to attack
rather than how to protect an app.

What This Book Is About
This book is firmly in the white hat category. It is an Android security book for devel-
opers, for managers, and for security professionals who want to write more secure
Android apps. It uses examples from the many hundreds of Android apps that we (the
company I run) have audited over the past three years, and it uses real-world examples
of what works and doesn’t work from a security perspective. In each chapter we’ll look
at some examples of how naive coding practices expose apps and how other developers
have found more secure solutions.

This book is also written to complement the Android Security Essentials LiveLessons
video that covers the OWASP (Open Web Application Security Project) Mobile Top
10 Risks in detail. The OWASP Mobile Top 10 is the de facto standard for Android
security. And because all security projects are a moving target, the book uses the lat-
est OWASP Mobile Top 10 that has been updated since the LiveLessons video first
appeared.

What This Book Is Not About
If you own an Android phone you’re probably worried about apps with hidden mal-
ware, or what permissions you should or shouldn’t accept. We won’t be covering those
issues as the focus of the book is on Android developers who want to write more
secure Android apps, not someone who owns an Android phone. What’s more, we’re

Prefacexiv

not going to discuss how to root your phone because that really doesn’t have much to
do with writing secure code. We will touch on its implications for secure apps, but we
won’t be showing you how to root your phone. From a developer’s perspective, that’s
why you have an emulator.

Why Care?
Over the past two or three years we’ve downloaded a large number of Android APKs
and examined them for any security holes. We’ve uncovered a wide range of security
issues; see Figure P-1 for some examples. These generally fall into the following cat-
egories:

 1. Keys or API information hard coded in the app (static information)

 2. Usernames and passwords and other credentials that are stored insecurely
(dynamic information)

 3. Sensitive data sent insecurely across the network to a back-end server

 4. Third-party libraries collecting and transmitting back to base ad hoc
information that they don’t need to perform their job

 5. Test data or other extraneous information stored in the production APK

It’s customary to notify companies that their apps have security issues and are leak-
ing information before releasing the information to the press. This gives the developers
some time to fix it and release an update before it goes public. Many times in the past
when we contacted the developers responsible for the security issues, we found that
security really isn’t on their radar as something to worry about. If you’re developing
mobile apps, then security needs to become part of your development process.

This book comes from what we’ve seen in our audits of different Android apps.
The aim here is to provide you with a book of security anti-patterns where you can
see other people’s mistakes and hopefully not repeat (m)any of them, thereby keeping
your users more secure than your competition.

xv Why Care?

Figure P-1 Dating app insecurity

Prefacexvi

What This Book Covers
Here is a breakdown of the book by chapter.

Chapter 1: Android Security Issues
Chapter 1 is an introduction to the security issues on the Android platform. We’ll
show how to decompile an Android APK and look at some of the industry standard
guidelines for securing the Android platform.

Chapter 2: Protecting Your Code
In Chapter 2, we’ll look at how to download and reverse engineer an Android APK
back into Java source in more detail. We’ll also cover how to best protect your code
using different types of obfuscation tools and techniques that we’ve encountered dur-
ing our audits. We’ll look at the implications of being able to disassemble your code
into bytecode. And we’ll show how you can use the NDK to hide your algorithms
and business rules.

Chapter 3: Authentication
Providing a secure login mechanism for your mobile users is harder than on the
Web. The trend with mobile devices is to make things as easy as possible for the user.
Mobile keyboards are small, so it’s unlikely that someone is going to enter more than
six characters to log in to an app. But if you make it too easy to log in to your app,
then you run the risk of unauthorized users gaining access to sensitive data by going
around your authentication. In Chapter 3 we’ll look at how some of the authentication
mechanisms in our audits have failed, and we’re also going to look at what developers
have been using to log in to mobile apps that have been a lot more effective.

Chapter 4: Network Communication
In modern browsers, if you connect via secure HTTP, or HTTPS over a secure sock-
ets layer, you’ll get a little green lock, or a gold one depending on your browser, to
indicate that you’re in a secure encrypted transaction. Developers pay a Certificate
Authority (CA) to make sure that they are who they say they are. And if you hap-
pen to come across a site that isn’t a valid site, your web browser will alert you pretty
quickly that something is wrong. Unfortunately, there isn’t anything similar in mobile
computing—there is no lock or key to comfort the user that any network communica-
tion is encrypted.

In this chapter we’ll first take a look at how to send information securely across the
network using SSL. In the second part of the chapter we’ll look at how hackers might
perform a man-in-the-middle attack using an SSL Proxy that intercepts the communi-
cation and sees whether it’s really secure.

xviiWhat This Book Covers

Chapter 5: Android Databases
One of the most basic questions about Android security and mobile security in gen-
eral is, “What information should you store on a device, and where can you store
it securely?” Ideally, you would not store or cache anything on the device. But if
someone doesn’t have any mobile service—for example, when on an airplane without
wi-fi—then you’re going to cause some frustration if this person can’t log into the app
for a number of hours. In this chapter we’ll talk about where you can store data and
how using the wrong permissions can allow other apps to read your data. Finally, we’ll
explain how to write data securely to an SD card as well as a SQLite database.

Chapter 6: Web Server Attacks
Most mobile apps that do real work will in some way connect to a back-end web
server. If the communication is via a web service, this can either be via SOAP or, more
commonly, by using a REST web service. In this chapter it’s a case of what’s old is
new again. We’ll explore how the same security best practices that have applied to web
servers for the past 20 years apply to web servers used in mobile apps. We’ll also look at
how we can use logins from other website break-ins to help secure our authentication.

Chapter 7: Third-Party Library Integration
Data leakage from third-party apps is perhaps a less obvious way that someone can
recover a user’s information from your app. In this chapter we’ll explain the meaning
behind side channel data leakage and learn how to track what information is being
passed by your app to other services, with or without your knowledge.

Chapter 8: Device Security
Running your APK on different versions of Android can have different security prob-
lems. In this chapter we’ll look at how Android device fragmentation needs to be
considered when you’re writing a secure app. Different environments have different
requirements: Corporations have different requirements than individuals, health care
needs HIPAA compliance, and government work probably means that your Android
phone needs to be FIPS compliant. In this chapter we’ll also look at how Samsung
Knox and SELinux or SEAndroid are being used to make your device more secure.

Chapter 9: The Future
There aren’t many certainties about where Android security is going. But in Chapter 9
we’re going to look into the crystal ball: Using Android L as well as some open source
ideas, we’ll do our best to predict what future versions of Android will provide from a
security perspective. This way, you’ll know what existing security challenges will be
solved and what new challenges lie ahead. We’ll also look at how Android attacks are
likely to get more sophisticated in the near future.

Prefacexviii

Tools
There are lots of tools that we’ll be using again and again throughout this book. Most
of them are listed here for convenience.

nn 010, a hex editor that includes a template for disassembling classes.dex files. 010
does a great job of parsing the classes.dex file (see Figure P-2). It can be found at
www.sweetscape.com/010editor/.

nn Abe, the Android Backup Extractor. It is used to convert an Android backup
into a tar format so that it can be unzipped. It’s available from https://
github.com/nelenkov/android-backup-extractor.

nn adb, the Android debug bridge. It comes as part of the Android SDK.
nn apktool, a collection of tools. It includes Smali and Baksmali as well as

AXMLPrinter2.
nn AXMLPrinter2, which converts the compressed AndroidManifest.xml in an APK

back into a readable format. It’s available at https://code.google.com/p
/android4me/downloads/list.

Figure P-2 010 Editor parsing classes.dex file

http://www.sweetscape.com/010editor/
https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor
https://code.google.com/p/android4me/downloads/list
https://code.google.com/p/android4me/downloads/list

Tools xix

nn Baksmali and Smali, the Android disassembler and assembler. You can find them
at https://code.google.com/p/smali/ or as part of apk-tool.

nn Charles Proxy, a tool for testing for man-in-the-middle attacks. It’s available from
http://www.charlesproxy.com/.

nn Dedexer, a classes.dex dump file. Written by Gabor Paller in Hungary, it’s
available from http://dedexer.sourceforge.net/.

nn dex2jar, which converts APKs to Java jar files for decompilation. You can find it
at https://code.google.com/p/dex2jar/.

nn Drozer, an attack tool for Android apps. It’s available from https://
www.mwrinfosecurity.com/products/drozer/.

nn JD-GUI, one of many Java decompilers. You can find it at http://jd.benow.ca/.
nn Jadx, one of a new breed of Android decompilers. It’s available at https://

github.com/skylot/jadx.
nn Keyczar, which we use for our public/private key encryption. You can download

it from http://keyczar.org.
nn Lint, which comes with the Android SDK.
nn ProGuard and DexGuard, which are obfuscators. ProGuard ships with the

Android SDK, and DexGuard is available at www.saikoa.com/.
nn sqlitebrowser, a GUI for SQLite databases. It’s available from http://sqlitebrowser

.org/.

http://www.charlesproxy.com/
https://code.google.com/p/smali/
http://dedexer.sourceforge.net/
https://code.google.com/p/dex2jar/
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/
http://jd.benow.ca/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
http://keyczar.org
http://www.saikoa.com/
http://sqlitebrowser.org/
http://sqlitebrowser.org/

This page intentionally left blank

Acknowledgments

Laura Lewin—I lost count of the number of times Laura hounded me on items that
were due or, more often than not, overdue. I sincerely appreciate your patience.

David Truxall and Matt Insko—Thanks to my two technical reviewers. I’ve
worked with good reviewers and bad reviewers in the past. The better ones try the
code, make suggestions for things you missed, and help get you to the finish line with-
out losing your mind. Dave and Matt are the best.

Cameron Beyer and Paul Moon—Thanks for your help with the coding, especially
when I wasn’t very specific about what I was trying to do. J

Chris Zahn—Thanks for the editing. Your quality and speed are amazing.

This page intentionally left blank

About the Author

Godfrey Nolan is founder and president of the mobile and web development com-
pany RIIS LLC based in Troy, Michigan, and Belfast, Northern Ireland. This is his
fourth book. He has had a healthy obsession with reverse engineering bytecode since
he wrote “Decompile Once, Run Anywhere,” which first appeared in Web Techniques
magazine way back in September 1997. Godfrey is originally from Dublin, Ireland.

This page intentionally left blank

This page intentionally left blank

5
Android Databases

In Android development, when we say “databases” we primarily mean SQLite and all
of its variants. These are typically small databases used to store or cache user informa-
tion locally on the device. It would be fair to say that databases and shared preferences
contain the bulk of an application’s dynamic data that is stored on a phone. In this
chapter we’re going to look at how developers have used SQLite and, more impor-
tantly, how they have tried to secure that data in progressively more secure ways so
you don’t make the same mistakes.

Android Database Security Issues
Android databases are typically used to cache application data so that it can be retrieved
more quickly than doing a web service call to a back-end database server across the
Internet. Every app will have its own databases folder. So if the app’s package name
is com.riis.sqlite3, then you can find all its databases in the /data/data/com.riis.sqlite3
/databases folder. You can see this in Figure 5-1 where we’re doing an adb shell
command to get us a list of the files in the database folder.

Android databases are not a good place to store sensitive information. As we’ll see
later in the chapter, it is all too easy for someone to do a backup command and quickly
find what you’re trying to hide.

Figure 5-1 SQLite databases on your phone

Chapter 5 Android Databases110

However, many apps ignore this issue because using SQLite is so convenient for
storing data. Facebook keeps a lot of its user information in SQLite databases, which
they have openly admitted is for performance reasons. Figure 5-2 shows a Facebook
database that’s been taken off an Android device using the adb backup command. The
“text” column in the threads.db database shows all the thread messages that a user has
sent and received in Facebook via the website as well as on the mobile app.

SQLite
SQLite is a fully functional database. It has many of the features you would expect in
a modern database, such as indexes and stored procedures. You can even do an explain
plan for optimizing your queries to find out exactly where your SQL code is spending
most of its time.

Any and all of your runtime app information—which includes all the shared pref-
erence files and databases—can be backed up by anyone with access to your phone
using a USB cable. Because of an oversight at Google, no one running Android after
version 4.0 even needs root access—they just need physical access to the phone. To be
fair, I think this was an intentional feature, not an oversight. The feature just has sig-
nificant unintended consequences.

Figure 5-2 Viewing SQLite databases on your PC using SQLitebrowser

SQLite 111

Note
Section §164.312 of the HIPAA standards says the following:

(a)(1) Standard: Access control. Implement technical policies and procedures for
electronic information systems that maintain electronic protected health information to
allow access only to those persons or software programs that have been granted access
rights as specified in §164.308(a)(4).

Putting any personal health information unencrypted in a SQLite database is not
HIPAA compliant because we cannot be sure that only persons that have been granted
access have access to the databases. Under most circumstances encrypted information
in a SQLite database is also not compliant. A quick way to check whether you have
an issue is to put the phone in Airplane mode and then see whether there is any sen-
sitive information, or what is known as Protected Health Information (PHI), being
displayed by the application. This will typically tell you that the information is either
not encrypted or the encryption key is somewhere on the phone, neither of which is
HIPAA compliant.

Backing Up the Database Using adb
Let’s look at how to write to a SQLite application and how someone can pull the
database off the phone. To begin, we need to add a SQLite database to the Android
HelloWorld app. Listing 5-1 shows how to add a SQLite database to your Android app.

Listing 5-1 Adding SQLite to your code

package com.riis.sqlite3;

import java.io.File;
import android.os.Bundle;
import android.app.Activity;
import android.database.sqlite.SQLiteDatabase; // line 7
public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity _ main);

 InitializeSQLite3(); // line 16

 }

 private void InitializeSQLite3() {

 File databaseFile = getDatabasePath("names.db");
 databaseFile.mkdirs();
 databaseFile.delete();

Chapter 5 Android Databases112

 SQLiteDatabase database = // line 26
 SQLiteDatabase.openOrCreateDatabase(databaseFile, null);

 database.execSQL("create table user(id integer primary key autoincrement,
 " +
 "first text not null, last text not null, " + // line 28
 "username text not null, password text not null)");

 database.execSQL("insert into user(first,last,username, password) " +
 "values('Bertie','Ahern','bahern','celia123')");
 // line 31
 }

}

To add SQLite to your application, import the library (see line 7), initialize the
SQLite database (see line 26), and then create your tables (see line 28) as well as add
any initial data (see line 31).

In the example shown we are adding just a single row of data to the database. We
are adding a first name, a last name, and a corresponding username and password to
our database.

We can now recover the database using the following steps on a compatible phone:

 1. Compile the code, push it to your phone or emulator, and make sure it
executes.

 2. Run the app.

 3. Back up the databases using the following command:
adb backup com.riis.sqlite3

 4. If all is working, device will respond with “Now unlock your device and
confirm the backup operation.”

 5. On the device or emulator, click Back up my data to enable it to be backed up
(see Figure 5-3).

 6. The backup file is a tar file with a custom header. We need to download the
Android Backup Extractor from https://github.com/nelenkov/android-backup-
extractor to get it into a tar format.

 7. Convert your backup.ab file using the following command:
java -jar abe.jar unpack backup.ab backup.tar

 8. Uncompress your tar file using tar -xvf or 7zip if you’re on a Windows
machine.

https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor

SQLite 113

 9. Change directory to apps/com.riis.sqlite3/db, where you can now find your
names.db database.

 10. Open names.db in sqlitebrowser from http://sqlitebrowser.org (see Figure 5-4).
As you see, the user information is in cleartext.

If you don’t have sqlitebrowser, you can always gain access to the sqlite database
from the command line (refer ahead to Figure 5-6).

Note that if your backup.ab file is empty, then it’s likely that you have used the
wrong package name. For commercial apps the best way to find the correct package
name is to look at the target ID in the app’s Google Play URL (see Figure 5-5 for
Facebook’s target ID). In this example, to back up the Facebook database you would
type the following:

adb backup com.facebook.katana

Figure 5-3 Back up my data

http://sqlitebrowser.org

Chapter 5 Android Databases114

Figure 5-4 View the backup database data using the SQLite browser.

Figure 5-5 Finding an App’s package name

SQLite 115

Disabling Backup
If anyone with access to your phone can back it up, then we’ll need some way to hide
the information if we’re going to be HIPAA compliant.

We can start with something simple by disabling backups using the allowBackup
attribute in the Android Manifest file. By default this is set to true. Changing it to
false, as in Listing 5-2, will stop the adb backup command working for any phone,
even for a full system backup.

However, it would be a mistake to solely rely on this, as a rooted phone has access
to databases and can still remove them from the phone via Unix commands. Figure
5-6 shows how someone can shell onto the phone, cd to the databases directory, and
then dump the database table to view the data.

adb pull can also be used to get the database off the phone. But you may also need
to run a chmod 777 <filename> to fully open the file’s permissions before you can
retrieve them.

Listing 5-2 Disabling backup

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.riis.sqlite3"
 android:versionCode="1"
 android:versionName="1.0" >

Figure 5-6 Viewing the backup database data from command line SQLite

Chapter 5 Android Databases116

 <uses-sdk
 android:minSdkVersion="16"
 android:targetSdkVersion="16" />
 <application
 android:allowBackup="false"
 android:icon="@drawable/ic _ launcher"
 android:label="@string/app _ name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.riis.sqlite3.MainActivity"
 android:label="@string/app _ name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

SQLCipher
We’ve seen that it doesn’t take a degree in computer science to gain access to an
APK’s source code, the static information, and an app’s backup data, the dynamic
information. Ideally you wouldn’t store any important customer information locally,
but this isn’t always an option. But, as we’ve seen, any data that is stored in cleartext
can be found easily. So if you do have to store any sensitive data, it is important to
encrypt the data in either shared preferences or in a database—or store it some-
where else.

Note
Apps using SQLCipher are restricted from export/distribution in certain countries and
require additional export registration with the US government if the app is distributed
outside the United States because SQLCipher contains strong encryption. The Play Store
asks about US export law compliance when you publish an app. This can be a gotcha when
using SQLCipher for developers who are unaware. The Android OS encryption functionality
is already compliant via Google’s filings, which no doubt explains why Android ships with a
cut-down version of Bouncy Castle that does not use strong encryption.

One of the more promising ways to store data securely in a database is using
SQLCipher, which is an open source library used in conjunction with SQLite.
SQLCipher can be downloaded from www.sqlcipher.net.

In Listing 5-3 we show how to use SQLCipher to encrypt the data in the database.
First, add the sqlcipher.jar, commons-codec.jar and guava-r09.jar libraries, which can
also be found on the sqlcipher.net website. Then change the import statement (line 7)

http://www.sqlcipher.net

SQLCipher 117

to import SQLCipher, add a new loadLibs command (line 21) and, as you can see, the
openOrCreateDatabase now takes a password (line 27).

Listing 5-3 Adding SQLCipher to your SQLite code

package com.riis.sqlite3;

import java.io.File;

import android.os.Bundle;
import android.app.Activity;
import net.sqlcipher.database.SQLiteDatabase; // line 7

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity _ main);

 InitializeSQLite3();

 }

 private void InitializeSQLite3() {
 SQLiteDatabase.loadLibs(this); // line 21

 File databaseFile = getDatabasePath("names.db");
 databaseFile.mkdirs();
 databaseFile.delete();
 SQLiteDatabase database = // line 27
 SQLiteDatabase.openOrCreateDatabase(databaseFile,"pass123",
 null);

 database.execSQL("create table user(id integer primary key autoincrement,
 " +
 "first text not null, last text not null, " +
 "username text not null, password text not null)");

 database.execSQL("insert into user(first,last,username, password) " +
 "values('Bertie','Ahern','bahern','celia123')");

 }
}

Compile and push the app to the phone. Repeat the earlier steps to back up the
database onto our computer. You will probably notice that it takes noticeably longer
to push the app to the phone, as well as to back it up. This is because of the size of the
added libraries.

Chapter 5 Android Databases118

Again, try to open it in sqlitebrowser or by using the SQLite command line tool.
This time the database won’t open because it’s encrypted with the key pass123.

The best way to open the database is to use the sqlite3 command line tool that
comes with SQLCipher. A new step is required whereby we need to tell the database
what the key is before it will allow us to do any SQL queries on the tables.

sqlite> PRAGMA key='pass123';

Figure 5-7 shows how to view the database using the new password.
You may also encounter databases that were created with earlier versions of the

SQLCipher libraries. These can be opened using the following PRAGMA command
after the PRAGMA key command.

sqlite> PRAGMA key='pass123';

sqlite> PRAGMA kdf _ iter = 4000;

This tells the sqlite tool that the key definition file has a lower iteration count than
the current version.

Figure 5-7 Viewing an encrypted database from command line SQLite

SQLCipher 119

Finding the Key
Now that SQLCipher has encrypted the database, our security problem shifts to
“Where can we hide the key?” If we can find the key, then we’re going to be able
to open the database, just like we did in Chapter 2. We can take the following steps to
pull the APK off the device.

 1. The APK is in the /data/app folder on the phone. It will also be called the same
package name we used in the adb backup command but with -1.apk appended.
The complete command to get the APK off the phone is the following:
adb pull /data/app/com.riis.sqlcipher-1.apk

 2. Convert the APK back into a jar file using the dex2jar command:
dex2jar com.riis.sqlcipher-1.apk

 3. We can now view the source using a Java decompiler, in this case JD-GUI.
Figure 5-8 shows the code for the MainActivity.java file and clearly shows that
the password is pass123.

In the next section we’ll look at our options for hiding the key.

Figure 5-8 Viewing the SQLCipher key using JD-GUI

Chapter 5 Android Databases120

Hiding the Key
One of the most fundamental decisions that you’re going to face as a mobile developer
is what encryption to use to hide sensitive information and whether you’re going to
leave the information on the phone or not.

In this section we’re going to look at a number of different ways that other de-
velopers have tried to solve this problem. These examples come from real-world
Android apps that we’ve audited over the years. They each get progressively better
at hiding an encryption key for the database itself or for fields in the database, such
as the password.

Security on Android is almost always a battle between security and ease of use. App
developers want to make it easy for people to use, and they don’t think it’s a good idea
to make someone log into the phone multiple times.

And while many of these examples look like very naive implementations, we have
the benefit of hindsight and can probably assume that the developers were not aware
that someone could gain access to their code and encryption keys so easily. If you’re
using some sort of symmetrical key encryption where the encrypted data, as well as
the encrypted key, are on the phone, then you’re leaving yourself open to attack.

Ask Each Time
Possibly the safest way to encrypt your database is to ask for the key each time, either
using a PIN code or a password. The first time the user opens the app they’re asked for
the key, which is then used to encrypt the database.

If the user wants to access any data on the app, then the next time they use the app
they have to remember their key and reenter it. The key is stored in the user’s head
and not on your phone.

The downside of this is that the user has to log in to the phone each time they open
your app. And depending on the key size it may also be open to a brute-force attack.
Certainly a four-digit pin code is not very secure.

Listing 5-4 shows an example of how to use a login password to encrypt the data-
base. The password is captured as the user is logging in on line 31; it’s then passed to
initializeSQLCipher as a string on line 35 and used as the SQLCipher key when we
open the database on line 45.

Listing 5-4 Using a Login password to encrypt the database

public class LoginActivity extends Activity {

 private Button loginButton;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

Hiding the Key 121

 super.onCreate(savedInstanceState);
 setContentView(R.layout.login _ screen);
 initializeViews();
 bindListenersToViews();

 }

 private void initializeViews() {
 loginButton = (Button) findViewById(R.id.login _ button);

 }

 private void bindListenersToViews() {
 loginButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 loginToApp();
 }
 });
 }

 private void loginToApp() {
 EditText usernameField = (EditText) findViewById(R.id.username _ field);
 EditText passwordField = // line 31
(EditText) findViewById(R.id.password _ field);
 EditText emailField = (EditText) findViewById(R.id.email _ field);

 InitializeSQLCipher(passwordField.getText().toString()); // line 35

 }

 private void InitializeSQLCipher(String pwd) {
 SQLiteDatabase.loadLibs(this);
 File databaseFile = getDatabasePath("names.db");
 databaseFile.mkdirs();
 databaseFile.delete();

 SQLiteDatabase database = // line 45
SQLiteDatabase.openOrCreateDatabase(databaseFile, pwd, null);

 database.execSQL("create table user(id integer primary key autoincrement,
 " +
 "first text not null, last text not null, " +
 "username text not null, password text not null)");

 database.execSQL("insert into user(first,last,username, password) " +
 "values('Bertie','Ahern','bahern','celia123')");
 }
}

Chapter 5 Android Databases122

Shared Preferences
The next implementation is to hide the key in the shared preferences and then load
it each time the app is opened. There are two variations on this theme. A typical app
will ask the user to encrypt the app the first time and save the key in the shared pref-
erences. Listing 5-5 shows how to write and load our encryption key from a shared
preferences file.

Listing 5-5 Storing passwords in the shared preferences file

private void saveLastSuccessfulCreds() {
 String username =
((EditText) findViewById(R.id.username _ field)).getText().toString();
 String password = // line 3
((EditText) findViewById(R.id.password _ field)).getText().toString();

 SharedPreferences.Editor editor = sharedPrefs.edit();
 editor.putString(SettingsActivity.LAST _ USERNAME _ KEY, username);
 editor.putString(SettingsActivity.LAST _ PASSWORD _ KEY, password); // line 7
 editor.commit();
}

private void loadLastSuccessfulCreds() {
 String lastUsername =
sharedPrefs.getString(SettingsActivity.LAST _ USERNAME _ KEY, "");
 String lastPassword = // line 13
sharedPrefs.getString(SettingsActivity.LAST _ PASSWORD _ KEY, "");

 ((EditText) findViewById(R.id.username _ field)).setText(lastUsername);
 ((EditText) findViewById(R.id.password _ field)).setText(lastPassword); //line 16
}

The adb backup command will not only recover the databases, it will also recover
the shared preferences files. Figure 5-9 shows a screenshot of someone viewing a
shared preferences file on the phone itself.

Alternatively, the app can load an app-specific username and password when the
app is first opened. Android will load data from the resources/xml folder and store
it in shared preferences. Listing 5-6 shows how to load the key from the resources
folder.

Listing 5-6 Loading the SQLCipher key from the resources folder

<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android" >

<EditTextPreference
 android:defaultValue="pass1234"
 android:key="myKey" />

</PreferenceScreen>

Hiding the Key 123

The advantage of this is that it’s very easy to use; it encrypts the database without
any user input. The disadvantage is that it’s very easy for someone to find the key and
decrypt the phones. For example, the apktool—available from https://code.google.
com/p/android-apktool/—will convert an APK’s resources back into xml using the
following command:

java –jar apktool.jar d com.riis.sqlcipher-1.apk

In the Code
We can see from the SQLCipher code example earlier in Figure 5-8 that we can’t
simply hard code our key in the SQLCipher class because someone is going to find
it when they decompile your APK. If we create a security scale showing level of dif-
ficulty—from 1 to 10, where 1 is your kid brother and 10 is a foreign government—
then we’re close to 1 or 2 in the level of difficulty to reverse engineer an APK to
decompile the code.

A couple of years ago, using a single security key for everyone’s app was common
practice in Android development. More recently, developers have moved to generating
the key and making it device-specific using the device’s attributes, such as device_id,
android_id, and any number of phone-specific attributes such as BUILD ID’s, and
Build.MODEL and Build.MANUFACTURER. This is then concatenated together

Figure 5-9 Viewing shared preferences files

https://code.google.com/p/android-apktool/%E2%80%94will
https://code.google.com/p/android-apktool/%E2%80%94will

Chapter 5 Android Databases124

and is a unique key for that phone or tablet. Listing 5-7 shows how you might do
that. It takes the device’s unique Android ID and the Device ID (assuming it’s not a
tablet) as well as a whole array of phone information. All of this information is concat-
enated together and converted into an md5 digest or hash value.

So far, so good. It protects the app from any potential targeted malware that would
use a decompiled key to attack the app on lots of different phones. However, although
the key isn’t the same on every device, the algorithm is the same. And it’s a small step
if the code can be decompiled to figure out how to recreate the recipe for generating
the key, so ultimately it’s only slightly more secure than using the same key.

Listing 5-7 Device-specific keys

android_id =
 Secure.getString(getBaseContext().getContentResolver(),Secure.ANDROID _ ID);
tManager = (TelephonyManager) this.getSystemService(Context.TELEPHONY _ SERVICE);
device _ id = tManager.getDeviceId();

String str1 = Build.BOARD + Build.BRAND + Build.CPU _ ABI + Build.DEVICE +
 Build.DISPLAY + Build.FINGERPRINT + Build.HOST + Build.ID + Build.MANUFACTURER
+
 Build.MODEL + Build.PRODUCT + Build.TAGS + Build.TYPE + Build.USER;
String key2 = md5(str1 + device _ id + android _ id);

In the NDK
If the Java code in Android can be reverse engineered so easily, then it makes sense to
write it in some other language that isn’t so easily decompiled. Some developers hide
their keys in C++ using the Native Developer Kit (NDK). The NDK enables devel-
opers to write code as a C++ library. This can be useful if you want to try to hide any
keys in binary code. And, unlike Java code, C++ cannot be decompiled, only disas-
sembled.

Listing 5-8 shows some simple C++ code for returning the “pass123” key to
encrypt the database.

Listing 5-8 Hiding the key in the NDK

#include <string.h>
#include <jni.h>

jstring Java _ com _ riis _ sqlndk _ MainActivity _ invokeNativeFunction(JNIEnv* env,
jobject javaThis) {
 return (*env)->NewStringUTF(env, "pass123");
}

Hiding the Key 125

Listing 5-9 shows the Android code to call the NDK method correctly. Line 11
does the JNI library call, the function is defined on line 14, and then we call the func-
tion that returns the key on line 21. The sqlndk.c file needs to be in a jni folder. And
because it’s C++ code, we’re going to need a make file.

Listing 5-9 Calling the NDK code from Android

import java.io.File;

import net.sqlcipher.database.SQLiteDatabase;
import android.os.Bundle;
import android.app.Activity;
import android.app.AlertDialog;

public class MainActivity extends Activity {

 static {
 System.loadLibrary("sqlndk"); // line 11
 }

 private native String invokeNativeFunction(); // line 14

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity _ main);

 String sqlkey = invokeNativeFunction(); // line 21
 new AlertDialog.Builder(this).setMessage(sqlkey).show();

 InitializeSQLCipher(sqlkey);

 }

 private void InitializeSQLCipher(String initKey) {
 SQLiteDatabase.loadLibs(this);
 File databaseFile = getDatabasePath("tasks.db");
 databaseFile.mkdirs();
 databaseFile.delete();
 SQLiteDatabase database =
 SQLiteDatabase.openOrCreateDatabase(databaseFile, initKey, null);
 database.execSQL("create table tasks" +
 " (id integer primary key autoincrement,title text not null)");
 database.execSQL("insert into tasks(title) values('Placeholder 1')");
 }
}

Chapter 5 Android Databases126

Listing 5-10 shows the corresponding Android.mk file. The C++ code is compiled
using the ndk-build command that comes with the Android NDK tools. ndk-build is
run from a cgywin command line if you’re on Windows.

Listing 5-10 NDK makefile

LOCAL_PATH := $(call my-dir)

include $(CLEAR _ VARS)

Here we give our module name and source file(s)
LOCAL _ MODULE := sqlndk
LOCAL _ SRC _ FILES := sqlndk.c

include $(BUILD _ SHARED _ LIBRARY)

But we’re not there yet. Even though we can no longer decompile the code, we can
disassemble it. Looking at Figure 5-10 you can see where the library, opened up in a
hexadecimal editor, shows the key very clearly at the end of the hexidecimal strings in
the file.

If you’re going to use the NDK, then choose hexadecimal-like text so that it
doesn’t stand out in a hex editor. We can also take the earlier approach and use some
device-specific or app-specific characteristic and generate a unique app key in NDK
just like we can in native Android code. Listing 5-11 shows how you can use the app

Figure 5-10 Viewing the NDK password

SQL Injection 127

ID as a unique key, which will be different every time the app is installed on a differ-
ent phone. It uses a function called getlogin() to find out the login ID, which in this
case is the app_id.

Listing 5-11 Using the App ID for the database key

#include <string.h>
#include <jni.h>
#include <unistd.h>

jstring Java _ com _ riis _ sqlndk _ MainActivity _ invokeNativeFunction(JNIEnv* env,
jobject javaThis) {

 return (*env)->NewStringUTF(env, (char *)getlogin());

}

However, neither of these approaches is ultimately enough to stop someone from
reading the binary. But it is a better option to consider if you have no other choice
than to put the API or encryption keys on the device. Disassembled code rapidly
becomes more difficult to understand as it gets further away from these simple hello-
world examples.

Web Services
The safest option for any type of device is to store the key, or the algorithm for gener-
ating your key, remotely and to access it via secure web services. This has already been
covered in previous chapters. The disadvantage to this is that the Android device will
need to be connected to the Internet when you open the database, which might not be
acceptable to the end user.

But the message should be clear by now that any keys stored on the phone are open
to being hacked in ways similar to what we’ve shown in this section. We’ll go into
more detail in the next chapter about what to do to protect your web server and your
web server traffic from prying eyes.

SQL Injection
SQL injection refers to when the attacker taints the data with a SQL statement. We
said earlier that SQLite is a fully functional database, so, just like your SQL Server or
MySQL box, it is just as susceptible to SQL injection if you are not careful. SQL injec-
tion typically works by adding data to the querystring or adding data in a form field to
give the hacker access to the database or unauthorized logins. And while SQL injec-
tion is usually something used for attacking a web view or a web service, it can also be
an attack on an Activity. Figure 5-11 shows a simple SQL injection example.

Chapter 5 Android Databases128

If we look at the checkLogin code in Listing 5-12 we can see that the SQL query is
passed directly to the database. So if we log in with a username of ' OR 1=1 --' and
password of test, the query to SQLite will be the following string:

select * from login where USERNAME = '' OR 1=1 --' and PASSWORD = 'test'

Listing 5-12 Login unprotected from SQL injection

public boolean checkLogin(String param1, String param2)
{
 boolean bool = false;

 Cursor cursor = db.rawQuery("select * from login where USERNAME = '" +
 // line 5
 param1 + "' and PASSWORD = '" + param2 + "';", null);

 if (cursor != null) {
 if (cursor.moveToFirst())
 bool = true;
 cursor.close();
 }
 return bool;
}

Because of the OR 1=1 portion of the string and the --, which comments out the
rest of the SQL query, this will always be a true condition. The result is that the user
can log in without needing a real username and password.

To fix this we need to sanitize any user-entered data and assume it can’t be trusted.
We can do this either by using regular expressions to check that it’s what we’re expect-
ing—for example, a valid email address—or by using SQL prepared statements. Or
better still, we can do both.

To fix our checkLogin code we’re going to change the SQL to use prepared state-
ments. Listing 5-13 shows a modified checkLogin, which now uses prepared statements

Figure 5-11 Classic SQL injection attack

Conclusion 129

on line 5. Here the injected SQL becomes a parameter and can no longer cut off the
SQL statement.

Listing 5-13 Protecting code using prepared statements

public boolean checkSecureLogin(String param1, String param2)
 {
 boolean bool = false;

 Cursor cursor = db.rawQuery("select * from login where " + // line 5
 "USERNAME = ? and PASSWORD = ?", new String[]{param1, param2});

 if (cursor != null) {
 if (cursor.moveToFirst())
 bool = true;
 cursor.close();
 }
 return bool;
 }

Conclusion
In this chapter we’ve looked at options to make your databases more secure. If you’re
going to store customer information, we’ve covered how to use SQLCipher to encrypt
the data as well as the various schemes developers have used to hide the key and keep
the data safely encrypted.

The only 100 percent secure way to hide any encryption key is to keep it off the
phone, and even then you must make sure it’s transmitted securely and not cached
anywhere. Every other alternative that we looked at had limitations, some more obvi-
ous than others. None of these alternatives would be HIPAA compliant. Ask yourself
the question, “Would the security of my app be compromised if someone could read
my code?” If the answer is yes, then the app is not HIPAA compliant.

This page intentionally left blank

Numbers
010 hex editor, xviii

37signals, OAuth support, 77

A
Abe (Android Backup Extractor), xviii

Access control

authentication best practices, 54–55

function-level, 147

gaining superuser access, 102–103

Access control lists (ACLs), HIMMS guidelines,
189

Accessory devices

Ford Sync API, 187–188

wearables, 186–187

Accountability, OWASP Cloud top 10 risks, 148

ACLs (access control lists), HIMMS guidelines,
189

adb command

backing up Android database, 111–114

backing up Android devices, 169

decompiling APK, 4

description of, xviii

AdMob hack, Pandora and, 152–154

AES symmetric key algorithm, 92–93

Ahead-Of-Time (AOT) compilers, 7

Air Watch MDM solution, from VMware, 177–178

allowBackup attribute, disabling backup
functionality, 115–116

Android application package. See APK (Android
application package)

Android apps. See Apps

Android Backup Extractor (Abe), xviii

Android HelloWorld app, 39–41

Android OSs

adb backup introduced in Ice Cream Sandwich,
169

Android L release, 190

ART (Android Runtime) and, 7

cross-platform apps and, 135

device security and, 167

encryption functionality, 116

encryption to be default in Android L,
173

fragmentation and, 168

Google App Encryption in Jelly Bean,
65

Linux and, 17

rooting the phone to test security of data
transmission, 102

SEAndroid security policies and, 174–175

Android L, 173, 178, 190

Android Runtime (ART)

overview of, 7

replacing DVM, 190

Android Silver, 191

Android Studio, 191

AndroidID, supplementing authentication process,
59–62

AntiLVL test suite

example code, 68–74

for removing license checking, 68

Index

196 AOT (Ahead-Of-Time) compilers

AOT (Ahead-Of-Time) compilers, 7

API keys

asymmetric encryption of, 94–99

insecure coding practices, 179

protecting, 88–92, 131

replay attacks and, 135

symmetric encryption of, 92–94

APK (Android application package)

comparing Android security with iOS,
1–2

decompiling, 4–6, 28–29

disassembly, 43–45

pulling off devices, 119

reasons for adding third-party libraries,
151

reassembly, 45–48

third-parties libraries and, 190

apktool

description of, xviii

reassembly of APK, 45–48

AppID

Ford Sync AppID, 187–188

using as encryption key for Android
database, 127

Application licenses. See Licenses, application

Apps

adding LVL to, 65–66

adding SQLite database to, 111–114

Android HelloWorld app, 39–41

cross-platform. See Cross-platform apps

finding package name of, 114

hybrid. See Hybrid apps

installing Crashlytics app, 157–159

installing Critercism app, 154–156

mobile. See Mobile apps

protecting in Google Play, 65

risk of third-party libraries and, 152

session management, 82–84

Smali HelloWorld app, 41–43

testing logins on, 85

ART (Android Runtime)

overview of, 7

replacing DVM, 190

Assembly/disassembly

Android HelloWorld app, 39–41

disassembly example (remove app store
check), 43–48

Smali and Baksmali for classes.dex files,
39

Smali HelloWorld app, 41–43

Asymmetric keys. See also Encryption

compared with symmetric, 92

securing network communications,
94–99

Attacks/hacks

hacking mobile apps and websites, 131

hacking usernames and passwords, 53

increasing sophistication of, 179–186

man-in-the-middle. See MITM (man-in-
the-middle) attacks

replay attacks, 135

SQL injection. See SQL injection attacks

WebView. See WebView attacks

Audits, 188–190

Authentication

adding licensing verification library,
65–66

AntiLVL test suite, 68–74

applying licensing verification library,
66

best practices, 54–55

decompiling LVL code, 75–77

encrypting passwords, 62–65

examples, 55–65

Google licensing guidelines, 66–68

licensing applications, 65

managing web and mobile sessions,
82–84

OAuth and, 77–78

OAuth use with Facebook, 78–82

OWASP guidelines, 15, 133, 146

197Colberg, Christian

securing logins, 51–54

supplementing authentication process
with AndroidID, 59–62

two (or more) factor authentication,
85

usernames and passwords and, 84–85

validating email, 57–58

Authorization, OWASP guidelines, 15, 133

Availability, OWASP guidelines, 132

AXMLPrinter2, xviii

B
BAA (Business Associate Agreement), 150

Backing up Android database

adb for, 111–114

disabling backup functionality, 115–116

Backing up Android devices, 169

Baksmali

assembly/disassembly of classes.dex files,
39

description of, xix

Binary code, OWASP guidelines, 16

Bring Your Own Device (BYOD), 177

Build process, 3

Burp Suite, SQL injection attack with, 142–144

Business Associate Agreement (BAA), 150

Business continuity, OWASP Cloud top 10 risks,
148

Business needs, Forrester Research top 10
security issues, 16

Business rules, hiding, 48–49

BYOD (Bring Your Own Device), 177

Bytecode, obfuscation of, 38

C
C++

disassembly, 48–49

hiding encryption keys in C++,
124–127

Calabash, testing logins, 85

CAs (Certificate Authorities)

encryption providers, 87

server authentication, 133

SSL certifications from, 99–100, 104

Charles Proxy

description of, xix

generating SSL certificates with, 99

MITM (man-in-the-middle) attacks on
third-party apps, 163

testing security of network traffic,
103–107

viewing network traffic with, 91–92

Classes.dex

converting into jar files, 6

converting into Java .class format, 5

file structure, 19–23

securing Android in future and, 190

Clients

authentication best practices, 54

OWASP client-side security guidelines,
15

Closure tool, for obfuscation of code in cross-
platform app, 139–140

Cloud, OWASP risks, 146–149

CLR (Common Language Runtime), 190

Code protection

Android HelloWorld app, 39–41

classes.dex file structure, 19–23

DexGuard obfuscator, 32–37

disassembly example (remove app store
check), 43–48

hiding business rules in NDK, 48–49

obfuscation best practices, 24–25

ProGuard obfuscator, 27–32

security through obscurity, 38

Smali HelloWorld app, 41–43

taxonomy of obfuscation, 34

testing and obfuscation, 38–39

viewing APK without obfuscation,
26–27

Colberg, Christian, 32

198 Common Language Runtime (CLR)

Common Language Runtime (CLR), 190

Communication security

HIMMS guidelines, 190

networking and. See Network
communication security

Compilers/decompilers

AOT (Ahead-Of-Time) compilers, 7

converting VM code back to source
code, 2

decompiled code without obfuscation,
26–27

decompiling APK, 4–6

decompiling LVL code, 75–77

decompiling SDK’s, 160–163

DexGuard decompiler, 35

ProGuard decompiler, 28–29

securing Android in future and, 190

Compliance. See Regulatory compliance

Component vulnerability, OWASP Top 10 risks,
147

Confidentiality, OWASP Web Services Cheat
Sheet, 133

Configuration files, ProGuard, 27

Crashlytics app, installing, 157–159

credentials.xml file, 52

Critercism app, 154–156

Cross-platform apps

Closure for obfuscation of code, 139–140

commenting code, 135–137

JavaScript compressors for obfuscation of
code, 137–139

overview of, 135

Cross-site request forgery (CSRF), 147

Cross-Site Scripting. See XSS (Cross-Site
Scripting)

Cryptography. See also Encryption

Android libraries, 87

FIPS 140-2 standard, 176–177

OWASP guidelines, 15

CSRF (cross-site request forgery), 147

Cucumber, login testing with, 85

Cydia Impactor, gaining superuser access,
102–103

D
DAC (Discretionary Access Control), 174

Dalvik Debug Monitor Server (DDMS), 169

Dalvik Virtual Machine. See DVM (Dalvik Virtual
Machine)

DashO

obfuscation with, 34

securing Android in future and, 190

Data

leakage and storage, 15

OWASP Cloud top 10 risks, 148–149

sensitive. See Sensitive data

Databases

backing using adb, 111–114

disabling backup, 115–116

encrypting data using SQLCipher, 116–118

finding the encryption key, 119

hiding encryption keys by using device-
specific keys, 123–124

hiding encryption keys in C++ using
NDK, 124–127

hiding encryption keys in shared
preferences, 122–123

hiding encryption keys using web
services, 127

overview of, 109

requiring encryption key be used for each
access, 120–121

security issues, 109–110

SQL injection attacks and, 127–129

SQLite and, 110–111

DDMS (Dalvik Debug Monitor Server), 169

Debugging, logs and, 169–172

Decompilers. See Compilers/decompilers

Dedexer, xix

Defect tracking apps

installing Crashlytics app, 157–159

installing Critercism app, 154–156

199Encryption, of Android database

Design, Forrester Research top 10 security issues,
17

Developers/development, Forrester Research top
10 security issues, 16–17

Device ID

authentication, 51–53

protecting apps in Google Play, 65

Device security

backing up with adb, 169

encryption, 172–174

FIPS 140-2 standard, 18, 176–177

fragmentation and, 168

HIMMS guidelines, 189

logs, 169–172

MDM (Mobile Device Management),
177–178

overview of, 17, 167–168

SEAndroid for identifying security gaps,
174–175

wiping devices, 168

Device-specific keys, hiding encryption keys, 123–124

Dex files, 2. See also Classes.dex

dex2jar tool

changing Android bytecode into Java
bytecode, 22

converting classes.dex into jar files, 6

converting dex files into Java .class
format, 5

description of, xix

securing Android in future and, 190

DexGuard

code protection, 35–37

description of, xix

enabling, 34–35

securing Android in future and, 190

Disassemblers. See Assembly/disassembly

Discretionary Access Control (DAC), 174

Dropbox, OAuth support, 77

Drozer

description of, xix

penetration testing with, 191–193

DVM (Dalvik Virtual Machine)

Android running on, 1

JIT (Just in Time) compiler in, 7

securing Android in future and, 190

Smali files as ASCII representation of
Dalvik opcodes, 39

dx command, converting jar files into dex files, 2

E
Education lacking, Forrester Research top 10

security issues, 16

electronic protected health information (ePHI),
188

Email

authentication best practices, 54

authentication examples, 55–56

validating email addresses, 57–58

Encryption

to be default in Android L, 173

device security, 172–174

FIPS 140-2 standard, 176–177

generating encryption key, 62–63

Google App Encryption, 65

HIPAA compliance, 189

insecure coding practices, 179

message integrity and confidentiality, 133

of network communication using
asymmetric keys, 94–99

of network communication using
symmetric keys, 92–94

OWASP Cloud top 10 risks, 149

of passwords, 63–65

preventing replay attacks, 135

for sensitive data, 55

wiping devices and, 168

Encryption, of Android database

finding the encryption key, 119

hiding encryption keys by using device-
specific keys, 123–124

hiding encryption keys in NDK,
124–127

200 Encryption, of Android database (Continued)

Encryption, of Android database (Continued)

hiding encryption keys in shared
preferences, 122–123

hiding encryption keys using web
services, 127

requiring encryption key be used for each
access, 120–121

using SQLCipher, 116–118

ePHI (electronic protected health information),
188

F
Facebook

data security and, xv

OAuth support, 77

Factory reset, wiping devices, 168

Federal Information Processing Standard (FIPS)
140-2 device standard, 18, 176–177

FIPS (Federal Information Processing Standard)
140-2 standard, 18, 176–177

Firesheep app, 99

Ford Sync AppID, 187–188

Forrester Research, top 10 nontechnical mobile
security risks, 16–17

Forwarding, handling unvalidated redirects, 147

Fragmentation, device security and, 168

G
GitHub, OAuth support, 77

GoDaddy, sources of SSL certs, 104

Google

App Encryption, 65

licensing guidelines, 66–68

protecting apps in Google Play, 65

Security Best Practices, 9–10

Guidelines, security

Forrester Research’s top 10 nontechnical
mobile security risks, 16–17

Google Security Best Practices, 9–10

overview of, 7

OWASP Top 10 mobile risks, 14–16

PCI Mobile Payment Acceptance
Security Guidelines, 7–8

Security Risk Assessment Tool for testing
HIPAA compliance, 10–14

H
Hardware, fragmentation and, 168

Health Information Network (HIN), 189

Health Insurance Portability and Accountability
Act. See HIPAA (Health Insurance Portability
and Accountability Act)

Healthcare Information and Management Systems
Society (HIMMS), 189–190

HealthIT.gov, Security Risk Assessment Tool, 10

HelloWorld apps

Android, 39–41

Smali, 41–43

HIMMS (Healthcare Information and Management
Systems Society), 189–190

HIN (Health Information Network), 189

HIPAA (Health Insurance Portability and
Accountability Act)

device security and, 167

encryption of sensitive data required in, 173

regulatory compliance, 148

requirements, 188–190

Security Risk Assessment Tool for, 10–14

sensitive data and, 88

third-parties libraries and, 152

unencrypted data in SQLite database not
compliant with, 111

web server compliance, 149–150

HTTP/HTTPS

connecting using API keys, 88

connection security and, 87

effectiveness of SSL and, 99

example calls to Weather Underground,
88–91

testing security of network traffic with
Charles Proxy, 103–107

testing SSL security with man-in-the-
middle attack, 100–102

201Libraries

testing third-party apps with man-in-the-
middle attacks, 163

viewing network traffic with Charles
Proxy, 91–92

Human factors, Forrester Research top 10
security issues, 16

Hybrid apps

cross-platform apps compared with, 140

securing, 131

I
Ice Cream Sandwich (Android 4.0), 102, 173

IDA Pro, hexadecimal editor, 48–49

Incidence analysis, 149

Information Technology Management Reform Act
(1996), 18

Infrastructure security, 149

Insecure Direct Object References, OWASP Top
10 risks, 146

Intent sniffer, 186

Intents, hijacking Android Intent, 180–185

Internet of Things (IoT)

Ford Sync AppID, 187–188

wearables, 186–187

iOS

binary code and, 1

comparing Android security with, 1–2

cross-platform apps and, 135

Objective-C code and, 49

PCI Mobile Payment Acceptance
Security Guidelines and, 7

IoT (Internet of Things)

Ford Sync AppID, 187–188

wearables, 186–187

J
Jadx, xix

jar files

adding third-party libraries to APK, 151

converting classes.dex files into, 6

converting into dex files, 2

Java decompilers, 2

Java Virtual Machine (JVM), 190

JavaScript compressors, for obfuscation of code
in cross-platform app, 137–139

JD-GUI

decompiling SDK of third-party library,
160–163

description of, xix

pulling APK off devices, 119

securing Android in future and, 190

Jelly Bean (Android 4.1), 169. See also Android
OSs

JIT (Just in Time) compiler, in DVM, 7

Just in Time (JIT) compiler, in DVM, 7

JVM (Java Virtual Machine), 190

K
Keyczar

description of, xix

getting asymmetric key from, 95

Keys, encryption

asymmetric keys, 94–99

encrypting sensitive data, 55

message integrity and, 133

symmetric keys, 92–94

KitKat. See also Android OSs

ART (Android Runtime) and, 7

fragmentation and, 168

SEAndroid and, 17, 174–175

L
Least privilege principle, HIMMS guidelines,

189

Libraries

cryptography, 87, 176

licensing verification. See LVL (licensing
verification library)

PHP Nonce Library, 135

third-party. See Third-parties libraries

202 Licenses, application

Licenses, application

adding licensing verification library to
apps, 65–66

AntiLVL test suite, 68–74

applying licensing verification library,
66

decompiling LVL code, 75–77

Google licensing guidelines, 66–68

overview of, 65

licensing verification library. See LVL (licensing
verification library)

Lint

description of, xix

tagging security issues, 193

LogCat, filtering logs with, 169

Logins

hijacking Android Intent, 180–185

OWASP login session guidelines, 15

policies, 56–57

securing, 51–54

SQL injection attacks and, 128–129

testing on Android apps, 85

using login password to encrypt Android
database, 120–121

Logs, device security and, 169–172

LVL (licensing verification library)

adding to apps, 65–66

AntiLVL test suite, 68–74

applying, 66

decompiling LVL code, 75–77

Google licensing guidelines, 66–68

M
MAC (Mandatory Access Control), 174–175

Man-in-the-middle attacks. See MITM (man-in-
the-middle) attacks

mapping.txt file, ProGuard, 29–31

MDM (Mobile Device Management), 177–178

Message integrity, OWASP Web Services Cheat
Sheet, 133

Middleware Mandatory Access Control (MMAC),
175

MITM (man-in-the-middle) attacks

preventing, 133

rooting the phone and, 102–103

testing security of network traffic with
Charles Proxy, 103–107

testing SSL security, 100–102

third-parties libraries and, 163

MMAC (Middleware Mandatory Access Control),
175

Mobile apps. See also Apps

data security and, xv

hacking, 131

HIPAA compliance, 189

session management, 82–84

WebView attacks, 140–142

Mobile Device Management (MDM), 177–178

Moto 360, wearables, 187

N
National Institute of Standards and Technology

(NIST), 18

NDK (Native Developer Kit)

hiding business rules in, 48–49

hiding encryption keys in C++, 124–127

Network communication security

encryption using asymmetric keys,
94–99

encryption using symmetric keys,
92–94

HTTP/HTTPS connections and,
88–92

overview of, 87–88

rooting the phone to test security of data
transmission, 102–103

SSL and, 99–100

testing security of network traffic with
Charles Proxy, 103–107

testing SSL by performing man-in-the-
middle attack, 100–102

203Private keys

NIST (National Institute of Standards and
Technology), 18

Nonce, preventing replay attacks, 135

O
OAuth

handling unvalidated redirects, 147

overview of, 77–78

session management, 82–84

used with Facebook, 78–82

Obfuscation

best practices, 24–25

in cross-platform app, 137–140

decompiled code without obfuscation,
26–27

DexGuard obfuscator, 34–37

effectiveness of obfuscators, 38

ProGuard obfuscator, 27–32

securing Android in future and, 190

taxonomy of, 33–34

testing and, 38–39

Obfuscators

Google licensing guidelines and, 66

types of, 24

Open Web Application Security Project. See
OWASP (Open Web Application Security Project)

OpenSSL FIPS library, cryptographic libraries, 176

OSs (operating system). See Android OSs

OTA (Over the Air) updates, 168

OWASP (Open Web Application Security Project)

Cloud top 10 risks, 148–149

mobile top 10 risks, 14–16, 193

Web Services Cheat Sheet, 133–134

web services top 10 risks, 146–147

P
Pandora, AdMob hack and, 152–154

Passwords

authentication examples, 55–56

best practices, 54

encrypting, 63–65

hacking, 53

hiding encryption keys in C++ using
NDK, 124–127

HIMMS guidelines, 190

insecure coding practices, 179

protecting Android database, 120–121

securing logins, 51

sending over SSL, 99

storing in shared preferences file, 122–123

user behavior and, 84–85

PCI Mobile Payment Acceptance Security
Guidelines, 7–8, 188

Penetration testing

with Drozer, 191–193

testing security configuration, 147

Permissions

least privilege principle, 189

third-parties libraries and, 152–154

trust but verify approach to third-party
apps, 160

PHI (protected health information)

checking security of sensive data, 111

encryption required in HIPAA, 173

ePHI (electronic protected health
information), 188

security of, 10, 14

third-parties libraries and, 152

PHP Nonce Library, 135

Physical security, OWASP Cloud top 10 risks, 149

Policies, HIMMS guidelines, 189–190

Privacy

Forrester Research top 10 security issues,
17

regulatory compliance, 148

Private keys. See also Encryption

in asymmetric encryption, 92

encrypting sensitive data, 55

message integrity and, 133

204 ProGuard

ProGuard

classes.dex file structure, 19–23

decompiling APK, 28–29

description of, xix

effectiveness of obfuscators, 38

enabling, 27–28

example of decompiled GUI, 32

files used by, 31

limitations of, 34

logs and, 170, 172

mapping.txt file, 29–31

obfuscation best practices, 24–27

obfuscation taxonomy, 33–34

overview of, 19

securing Android in future and, 190

testing and obfuscation, 38–39

Protected health information. See PHI (protected
health information)

Proxy server, testing SSL security by performing
man-in-the-middle attack, 100–102

Public keys

in asymmetric encryption, 92

encrypting sensitive data, 55

message integrity and, 133

Public Law 104-106, Information Technology
Management Reform Act, 18

Q
QA (quality assurance), Forrester Research top 10

security issues, 17

R
Redirects, handling unvalidated, 147

Regulatory compliance

HIPAA requirements, 188–190

overview of, 148

OWASP Cloud top 10 risks, 148

Security Risk Assessment Tool for testing
HIPAA compliance, 10–14

third-parties libraries and, 152

web servers and, 149–150

Replay attacks, 135

Resources inadequacy, Forrester Research top 10
security issues, 16

RESTful

OWASP Web Services Cheat Sheet, 132

web services, 132

Root the phone, to test security of data
transmission, 102–103

S
SAML (Security Assertion Markup Language), 148

SDKs (software development kits)

Android Wear SDK, 186–187

decompiling SDK of third-party library,
160–163

MITM (man-in-the-middle) attacks on
third-party SDKs, 163

SE (Security Enhanced) Android

for identifying device security gaps, 174–175

overview of, 17

securing Android in future and, 190

SE (Security Enhanced) Linux, 17, 174–175

Security

ART (Android Runtime) and, 7

benefits of Android, 1–2

code protection, 19

databases and, 109–110

decompiling an APK, 4–6

of devices. See Device security

FIPS (Federal Information Processing
Standard), 18

Forrester Research’s top 10 nontechnical
mobile security risks, 16–17

Google Security Best Practices, 9–10

of network communication. See Network
communication security

OWASP Top 10 mobile risks, 14–16

PCI Mobile Payment Acceptance
Security Guidelines, 7–8

SE (Security Enhanced) Android, 17

205Symmetric keys

security lists (guidelines), 7

Security Risk Assessment Tool for testing
HIPAA compliance, 10–14

Security Assertion Markup Language (SAML), 148

Security Enhanced (SE) Android. See SE (Security
Enhanced) Android

Security Enhanced (SE) Linux, 17, 174–175

Security Requirements for Cryptographic Modules
Standard, 176

Security Risk Assessment (SRA) Tool, for testing
HIPAA compliance, 10–14

Sensitive data. See also PHI (protected health
information)

checking security of, 111

defined, 87–88

encrypting, 55, 116–118

OWASP Top 10 risks, 147

security issues with Android databases,
109–110

Servers

authentication best practices, 54

HIPAA compliance, 149–150

weak server-side control, 14–15

web services. See Web services

Session management

OWASP Top 10 risks, 146

web and mobile apps, 82–84

Session tokens, sending over SSL, 99

Shared preferences

hiding encryption keys, 122–123

insecure coding practices, 179

SQLite, 110

Smali

for assembly/disassembly of classes.dex
files, 39

description of, xix

disassembly of APK into, 43–45

HelloWorld app, 41–43

SOAP

OWASP Web Services Cheat Sheet, 133

web services, 132

Software, fragmentation and, 168

Software development kits. See SDKs (software
development kits)

SOX, regulatory compliance, 148

SQL injection attacks

Android databases and, 127–129

OWASP guidelines, 15

OWASP Top 10 risks, 146

WebView attacks, 142–144

SQLCipher

encrypting Android databases, 116–118

finding the SQLite encryption key, 119

hiding encryption keys by using device-
specific keys, 123–124

loading encryption keys from resource
folder, 122–123

viewing SQLite encryption keys, 119

SQLite

adding SQLCipher, 116–118

backing database using adb, 111–114

disabling backup, 115–116

overview of, 110–111

SQL injection attacks, 127–129

use for Android databases, 109

sqlitebrowser

description of, xix

viewing SQLite databases, 110–111

SRA (Security Risk Assessment) Tool, for testing
HIPAA compliance, 10–14

SSL

overview of, 99–100

preventing man-in-the-middle attack,
133

rooting the phone to test security of data
transmission, 102–103

testing SSL by performing man-in-the-
middle attack, 100–102

Superuser access, gaining, 102–103

Symmetric keys. See also Encryption

asymmetric keys compared with, 94

encryption/decryption example, 93–94

206 Symmetric keys (Continued)

Symmetric keys (Continued)

securing network communications,
92–93

T
Third-parties libraries

APK (Android application package) and,
190

decompiling SDK’s, 160–163

installing, 154

installing Crashlytics app, 157–159

installing Critercism app, 154–156

MITM (man-in-the-middle) attacks and,
163

overview of, 151–152

permissions and, 152–154

transferring risks, 152

trusting and verifying, 160

Tokens

sending session tokens over SSL, 99

in session management, 82–84

Tools

in future of Android, 190–191

list of commonly used, xviii–xix

Transformations, security through obscurity, 38

Transport layer, OWASP guidelines, 15

Trust

SQL injection attacks, 15

trust but verify approach, 160

Two (or more) factor authentication, 54, 85

U
URLs, handling unvalidated redirects, 147

User identity, OWASP Cloud top 10 risks, 148

Usernames

authentication examples, 55–56

hacking, 53

insecure coding practices, 179

securing logins, 51

sending over SSL, 99

user behavior and, 84–85

V
Verification, “trust but verify” approach, 160

Verisign, sources of SSL certificates, 104

Virtual machines. See VMs (virtual machines)

Virus protection, OWASP Web Services Cheat
Sheet, 134

VMs (virtual machines)

ART (Android Runtime), 7

DVM (Dalvik Virtual Machine), 1

securing Android in future and, 190

VMware Air Watch MDM solution, 177–178

Vulnerabilities, OWASP Top 10 risks, 147

W
Wearables, 186–187

Weather Underground

Charles Proxy test of security of network
traffic, 103–107

HTTP/HTTPS calls to, 88–91, 98

Web, session management, 82–84

Web browsers, session management, 82–84

Web servers

HIPAA compliance, 149–150

weak server-side control, 14–15

Web Service Description Language (WSDL), 132

Web services, 131

asymmetric key encryption of API keys,
94–99

cross-platform apps and, 135–140

hiding encryption keys in, 127

HIPAA compliance and, 149–150

overview of, 131–132

OWASP Cloud Top 10 risks, 148–149

OWASP Top 10 risks, 146–147

OWASP Web Services Cheat Sheet,
133–134

207XSS (Cross-Site Scripting)

protecting API keys, 88–92, 131

replay attacks, 135

SQL injection attacks, 142–144

WebView attacks, 140–142

XSS (Cross Site Scripting) issues, 145–146

Websites, hacking, 131

WebView attacks

overview of, 140–142

SQL injection attacks, 142–144

XSS (Cross Site Scripting) issues, 145–146

Wiping devices, 168

WSDL (Web Service Description Language), 132

X
XSD, validation of soap messages, 133

XSS (Cross-Site Scripting)

OWASP Top 10 risks, 146

OWASP Web Services Cheat Sheet,
134

WebView attacks, 142, 145–146

	Contents
	Preface
	Acknowledgments
	About the Author
	5 Android Databases
	Android Database Security Issues
	SQLite
	Backing Up the Database Using adb
	Disabling Backup

	SQLCipher
	Finding the Key

	Hiding the Key
	Ask Each Time
	Shared Preferences
	In the Code
	In the NDK
	Web Services

	SQL Injection
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

