
CSS ANIMATIONS
AND TRANSITIONS
for the Modern Web

STEVEN BRADLEY

CSS ANIMATIONS
AND TRANSITIONS
for the Modern Web

STEVEN BRADLEY

PEACHPIT PRESS

CSS Animations and Transitions for the Modern Web
Steven Bradley

Copyright © 2015 Steven Bradley Glicksman

Adobe Press books are published by Peachpit, a division of Pearson Education.

For the latest on Adobe Press books, go to www.adobepress.com. To report errors, please send a note to
errata@peachpit.com.

Acquisitions Editor: Victor Gavenda
Development Editor: Robyn G. Thomas
Production Editor: David Van Ness
Technical Editors: Virginia DeBolt and Terry Noel
Copyeditor: Robyn G. Thomas
Proofreader: Liz Welch
Compositor: Danielle Foster
Indexer: Rebecca Plunkett
Cover and Interior Design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Adobe, the Adobe logo, Photoshop, and Illustrator are registered trademarks of Adobe Systems Incorpo-
rated in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Peachpit was aware of the trademark
claim, the designations appear as requested by the owner of the trademark. All other product names and
services identified throughout the book are used in an editorial fashion only and for the benefit of such
companies with no intention of infringement of the trademark. No such use, or the use of any trade name,
is intended to convey endorsement or other affiliation with this book.

Printed and bound in the United States of America

ISBN-13:	978-0-133-98050-9
ISBN-10:	 0-133-98050-2

9  8  7  6  5  4  3  2  1

http://www.adobepress.com

Acknowledgments  iii

Acknowledgments

This book is the work of many people. I’d like to thank the fine people at Adobe
Press. Thank you Victor, Robyn, David, Virginia, and Terry. Many more peo-
ple, who I’ll never know, have had a hand in producing this book—thank you.

I’d also like to thank my family and friends for their general support and encour-
agement. Thank you, Mom, Dad, David, H, and Kristine.

About the Author iv

About the Author

Steven Bradley is a freelance web designer and WordPress devel-
oper who traded the hustle and bustle of his origins in New York
for the blue skies and mountains of Boulder, Colorado. He’s the
author of Design Fundamentals: Elements, Attributes, & Princi-
ples, which is available as an ebook at www.vanseodesign.com/
downloads/learn-design-fundamentals.

In addition to designing and developing websites, he blogs regularly at Van-
seo Design (www.vanseodesign.com/blog) and runs a small business forum
(www.small-business-forum.net) to help freelancers and entrepreneurs get
started on their journey.

When not working, Steve can be found playing softball on a nice evening or
reading on a rainy day. He enjoys hiking the trails of Colorado’s mountains
and is curious about everything.

http://www.vanseodesign.com/downloads/learn-design-fundamentals
http://www.vanseodesign.com/downloads/learn-design-fundamentals
http://www.vanseodesign.com/blog
http://www.small-business-forum.net

Table of Contents  v

Table of Contents

Getting Started  x

Chapter 1	 Introduction  1

Design Layers  2

Animation  3

Transitions  5

Why Transitions and CSS Animation?  6

Browser Support/Polyfills  7

Ready to Get Started?  10

Chapter 2	 Transforms  11

Browser Support and Vendor Prefixes  13

2-dimensional Transforms  14

transform-origin Property  16

2-dimensional Transform Functions  21

Nested Transforms  28

Adding Multiple Transforms to an Element  29

The Transform Rendering Model  30

3-dimensional Transforms  33

perspective Property  34

perspective-origin Property  37

transform-style() Property  39

backface-visibility() Property  43

3-dimensional Transform Functions  52

Summary  55

Table of Contents vi

Chapter 3  Transitions  57

Browser Support  58

Transitions  59

transition-property Property  62

transition-duration Property  66

transition-timing-function Property  68

transition-delay Property  79

transition shorthand Property  81

Starting and Reversing Transitions  82

Transition Events  84

Animatable Properties  89

Animatable Property List Resources  91

Summary  92

Chapter 4  Animations  93

Browser Support  95

Detecting Browser Support  95

Finding JavaScript Libraries for Animation  95

CSS Animations  96

CSS Positioning  96

Smoothing the Animation  98

The @Keyframes Rule  101

animation-* Properties  104

animation-name Property  104

animation-duration Property  106

animation-timing-function Property  107

animation-iteration-count Property  114

animation-direction Property  119

animation-play-state Property  122

Table of Contents  vii

animation-delay Property  125

animation-fill-mode Property  128

animation Shorthand Property  131

Animation Events  131

Types of Animation Events  132

Transition or Animation  141

Similarities  141

Differences  142

Choosing Transitions or Animations  143

Performance  143

Summary  146

Chapter 5  More Realistic Animation  147

Disney’s 12 Principles of Animation  148

Squash and Stretch  149

Anticipation  158

Staging  164

Straight-Ahead Action and Pose-to-Pose Action  168

Follow-through and Overlapping Action  168

Slow In and Slow Out (Ease In and Out)  182

Arcs  182

Secondary Action  195

Timing  196

Exaggeration  197

Solid Drawing  206

Appeal  207

Beyond the 12 Principles  208

Closing Thoughts  209

Table of Contents viii

Chapter 6  Examples  211

How to Use the Examples  212

Navigation Bar  213

Modal Windows  224

Off-canvas Sidebar Navigation  242

Off-canvas Navigation/Sidebar: Take 1  243

Off-canvas Navigation/Sidebar: Take 2  259

Content Switcher  269

Summary  286

Chapter 7  Closing Thoughts  287

Progressive Enhancement  288

Trends  289

Next Steps  290

Thanks  290

Appendix  Resources  291

Chapter 1: Introduction  292

Browser Support  292

Polyfills  292

Chapter 2: Transforms  292

Visual Formatting Model  293

Transform Matrix  293

Chapter 3: Transitions  293

Timing Functions  293

Transition Events  293

Animatable Properties  294

Table of Contents  ix

Chapter 4: Animation  294

Animation Events  294

Transitions vs. Animations  294

Performance  294

Chapter 5: More Realistic Animation  295

Disney’s 12 Principles of Animation  295

Applying Animation Principles to User Interface Design  296

Chapter 6: Examples  296

Effects  296

Index  298

Get ting Started x

Getting Started

CSS continues to evolve as a language, and as it does it gives us a greater abil-
ity to create with code. Transforms, transitions, and CSS animations are good
examples of things we could create only in graphics and animation editors. The
file size of a few lines of code is measured in bytes. The size of a file containing
a moving graphic is measured in megabytes and requires an additional request
to the server. For the sake of performance, look first to doing things with code.

The recent design trend has been to remove signals of depth and other details
used to mimic realistic objects on the screen. Unfortunately, some of those
details also serve a purpose in communicating information in websites and
web apps. Motion is replacing depth as the way to communicate what’s been
removed and adding back delight in a way that’s more in tune with the fluid
and dynamic nature of the web.

This book will start you on your path to adding motion to your designs. It will
show you how to work with transforms, transitions, and CSS animations in
modern browsers, and it will show you how to make changes to CSS proper-
ties over time instead of instantly.

The basics covered in this book will help you understand how to create more
realistic animation and present some practical examples you can apply to the
websites you design and develop.

What’s Inside This Book
Animation is about showing changes over time. We’ll look at some of the
things we can change, namely CSS transforms. Transforms give us the ability
to modify things like the size and position of an element. They do this in a way
that doesn’t interrupt the document flow. In other words, when the element
changes, other elements on the page don’t react. They treat the transformed
element as though it were still in the original state.

Most changes to the elements of a website happen instantly. Mouse over a
button, and it immediately changes color. Mouse out, and the color reverts
back, again instantly. Changes that happen instantaneously aren’t very realis-
tic, which is where transitions come in. We’ll use transitions to alter the time

Gettin g Started  xi

over which these changes occur so they appear more natural. Subtle changes
will add a touch of realism and not be so jarring.

Transitions have a couple of limitations. First, they occur in response to some
action, such as hovering over an element. We can’t initiate a transition with-
out some interaction by a site visitor. Second, you have only a single starting
point and a single end point.

CSS animation isn’t bound by either of these limitations. You can set an ani-
mation to start on its own (or in response to user action). Using keyframes,
you can add as many or as few points between the beginning and end where
you can make additional changes.

At times, you’ll want to use transitions and at other times you’ll prefer anima-
tion. I’ll mention some of these throughout the book.

Once you understand how to work with transforms, transitions, and anima-
tions, and have some idea when to use them in real-world projects, we’ll take
a look at the real world again and think about how you can make your ani-
mation more realistic.

A Note About Images and Examples
One limitation of print is that it’s static. We won’t be able to show actual transi-
tions and animations in this book. The figures in this book show before, after,
and during moments and describe the movement.

However, every example presented in this book has a corresponding live exam-
ple, which you can download, experiment with, and use. Each example is iden-
tified by number in the text, and you can view each in action as a demo to see
what’s being discussed or as a way to double-check your code.

How to Download Code and Example Files
Along with the examples, you’ll be able to download all the code used in this book.

1.	 Go to www.peachpit.com/register and create or log in to your account.

2.	 Enter the book’s ISBN (978-0-133-98050-9), and click Submit.

3.	 On the My Registered Products tab of your account, you should see this
book listed.

http://www.peachpit.com/register

Get ting Started xii

Who Is This Book For?
We assume that you’ve picked up this book because you’re interested in learn-
ing about animating web pages. You should already know how to build web
pages and websites. You might be new to web design, or perhaps you’ve been
developing websites for years. As long as you can create an HTML document
and know how to work with CSS, you’ll be able to follow along and work
through the examples.

Knowing—or at least being able to read—JavaScript will be helpful, although
not necessary. Some of the examples in this book use JavaScript to read and
modify the CSS properties of some HTML elements. The scripts are short and
not too difficult to understand. I’ll explain each when you encounter them.

Most importantly, you should use your imagination. You can combine the
things you learn in this book in multiple ways to create a variety of effects. I
can show you only so many in one book. I’ll point you to resources for more
examples, but you’ll get the most from this book if you experiment on your
own and see what effects you can create.

How Do You Use This Book?
We designed this book to be used in a couple of ways. Naturally you should
read through the text as you would any book. The text will present new infor-
mation and help you understand it. Just as important are the examples accom-
panying the text.

You’ll get more from this (or any technical book) by typing the code in a text
editor. Open your favorite code editor or grab one from the list in the follow-
ing section. Open a few browsers (you should have as many available as pos-
sible). Then start coding and checking to see how your code works.

Type the example code, and modify it. Typing will reinforce everything you
read and will help you develop the muscle memory so you can write it on
your own. Remember to use your imagination. Modify the example code, and
observe what happens.

Gettin g Started  xiii

In code listings throughout the book, a single line of code onscreen might wrap
to two lines in the book. If this happens, the continued line will start with an
arrow, so it might look like this:

The beginning of the code starts here,
p but it continues on this line.

Code that you should type or modify or that you should pay particular atten-
tion to appears highlighted.

-webkit-transform: translateY(0px) scale(1,1);

 -ms-transform: translateY(0px) scale(1,1);

 transform: translateY(0px) scale(1,1);

You’ll find step-by-step instructions to show you how to complete a process.
Note that instruction appears as the numbered step, and a description follows
it, like this:

1.	 Add a div to your HTML with a class of ball and wrap another div with
a class of stage around it.

<div class="stage">

	 <div class="ball"></div>

</div>

The reason for the .stage div is to provide a frame for the animation.
Because you and I are probably looking at browsers open to different widths
and heights, it would be hard to use the browser’s edge as the thing the ball
bounces against. By creating a stage for the ball, we can including it in the
animation and make it more likely we’re both seeing the same thing.

Each example that has a matching file containing all the code is identified in
the text:

We’ll get to those functions momentarily, but for now let’s take a look at a sim-
ple example showing a transform (Example 2.1).

Get ting Started xiv

Tools Required
Although tools like Adobe’s Edge Animate or Tumult’s Hype 2 can create ani-
mation for us, we won’t be using them in this book. We won’t be using Photo-
shop or Maya or any other tool that can create movement. These are all great
tools, but we’re going to create movement by writing code.

That means that the tool requirements are minimal and you should already
have everything you need. You’ll need a code editor, a modern browser, and
working knowledge of HTML and CSS. Oh, and bring your imagination.

If you build websites with any regularity, you probably have a favorite code
editor, and you’re free to use it. In the following sections, you’ll find a few you
can try if you don’t yet have a favorite or just want to try a few new ones. All
the editors listed can be downloaded and used for free.

I’ll be using Adobe Brackets (http://brackets.io). This is an Adobe book after
all, but that’s not the only reason for using it. Brackets is free and open source
under an MIT license.

http://brackets.io

Gettin g Started  xv

Brackets isn’t limited to running on a single platform. It works on Windows,
Mac, and Linux, so if you switch operating systems between home and work,
you can still use it. It has some additional features such as live reload, so you
don’t have to keep refreshing your browser to see the effect of your changes.

Brackets can be extended and already has an active community building exten-
sions for it. Brackets is built using the same technologies you use to develop
websites. It’s built with HTML, CSS, and JavaScript, so you may not need to
wait for someone else to develop an extension. You probably have all the skills
needed to create it yourself.

Brackets isn’t your only choice. The following sections list free editors that you
can use regardless of which platform you use and some specific to an operat-
ing system.

Universal

�� Brackets: http://brackets.io

�� jEdit: www.jedit.org

�� Komodo Edit: http://komodoide.com/komodo-edit

�� KompoZer: http://kompozer.net

�� Sublime Text: www.sublimetext.com (free if you don’t mind a little nagging)

�� Aptana Studio: www.aptana.com/products/studio3

�� Eclipse: www.eclipse.org

�� Emacs: www.gnu.org/software/emacs

�� Vim: www.vim.org

�� Bluefish: http://bluefish.openoffice.nl/index.html

OS X

�� Text Wrangler: www.barebones.com/products/textwrangler

�� SubEthaEdit: www.codingmonkeys.de/subethaedit

http://www.jedit.org
http://brackets.io
http://komodoide.com/komodo-edit
http://kompozer.net
http://www.sublimetext.com
http://www.aptana.com/products/studio3
http://www.eclipse.org
http://www.gnu.org/software/emacs
http://www.vim.org
http://bluefish.openoffice.nl/index.html
http://www.barebones.com/products/textwrangler
http://www.codingmonkeys.de/subethaedit

Get ting Started xvi

Windows

�� Notepad++: http://notepad-plus-plus.org

�� EditPad Lite: www.editpadlite.com

�� HTMLKit: www.chami.com/html-kit

Linux

�� Gedit: https://wiki.gnome.org/Apps/Gedit

�� Kate: http://kate-editor.org

http://notepad-plus-plus.org
http://www.editpadlite.com
http://www.chami.com/html-kit
https://wiki.gnome.org/Apps/Gedit
http://kate-editor.org

Chapter 4

ANIMATIONS

CSS transitions offer you a way to create simple animations that always start
as the result of triggering a CSS property change. Transitions can animate only
between a start and end state, and each state is controlled by existing CSS prop-
erty values. For example, a transition that runs on hover transitions between
values on the element and values on the hover state of the element. Overall,
transitions are a simple way to animate but offer little control over the animation.

CSS animations provide a bit more control. They allow for the creation of mul-
tiple keyframes (Figure 4.1) over which the animation occurs. While they can
start in reaction to a change in CSS property value, they can also run on their
own. An animation executes as soon as the animation property is applied.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB94

Animations can change over many states.

Transitions can change only between two states.

Transitions don’t change property values; they define how the change occurs.
Animations can change property values inside each keyframe.

Transitions change implicitly. You define things at the start and end states, and
you leave it to the browser to determine all the intermediate states. Animations
change explicitly. The animation can define start and end states as well as some
intermediate states. The browser still determines the intermediate states between
keyframes, but the animation gets to define as many keyframes as it wants.

All the things you could change when working with transitions, you can still
change when working with animations. You determine how long the anima-
tion lasts and what timing-function to use between keyframes. You also
get to delay the animation if you like.

In addition, you can decide how many times the animation should run and
in which direction it should run. You can set the animation to be running or
paused. You can even determine which CSS property values apply outside the
time frame in which the animation runs.

Animations have other benefits over transitions as you’ll see in this chapter.
In general, these benefits are about giving you more control. Transitions have
advantages over CSS animations, too. In general, they’re about the simplicity
of transitions.

Figure 4.1
Animation keyframes

Chapter 4  Anim ations 95

Browser Support
Browser support for CSS animations is good. It’s similar to what you saw ear-
lier for transforms and transitions. CSS animations work in all modern brows-
ers. In IE10 and newer, Firefox, and IE Mobile, no vendor prefixes are needed.

Safari, Chrome, Opera, iOS Safari, Android Browser, and Blackberry Browser
all use the -webkit vendor prefix, so you have only the one prefix to deal with.
The animation-fill-mode property isn’t supported in Android below version
2.3. In iOS 6.1 and earlier, animations aren’t supported on pseudo-elements.

As you probably expect by this point, the holdouts are Opera Mini and IE9
and earlier. Unfortunately, there’s no polyfill like there was for transforms
and transitions. The fallback is to create the animation using JavaScript: You
first check to detect CSS animation support and then use one of the available
JavaScript libraries for working with animation.

JavaScript animation is beyond the scope of this book, but the following sec-
tion gives you to a few places where you can find more information.

Detecting Browser Support
Here are some resources for detecting support as well as some JavaScript ani-
mation libraries:

�� https://hacks.mozilla.org/2011/09/detecting-and-generating-css-
animations-in-javascript

�� https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/
Using_CSS_animations/Detecting_CSS_animation_support

Finding JavaScript Libraries for Animation
The most popular library is—without doubt—jQuery, although it’s not the most
performant way to create animations with JavaScript. Here are some other options:

�� http://api.jquery.com/animate

�� www.polymer-project.org/platform/web-animations.html

�� https://github.com/web-animations/web-animations-js

�� http://updates.html5rocks.com/2014/05/Web-Animations---
element-animate-is-now-in-Chrome-36

http://api.jquery.com/animate
http://www.polymer-project.org/platform/web-animations.html
https://github.com/web-animations/web-animations-js
http://updates.html5rocks.com/2014/05/Web-Animations---element-animate-is-now-in-Chrome-36
http://updates.html5rocks.com/2014/05/Web-Animations---element-animate-is-now-in-Chrome-36
https://hacks.mozilla.org/2011/09/detecting-and-generating-css-animations-in-javascript
https://hacks.mozilla.org/2011/09/detecting-and-generating-css-animations-in-javascript
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations/Detecting_CSS_animation_support
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_animations/Detecting_CSS_animation_support

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB96

You could create animations for every browser using JavaScript and ignore
CSS animations completely. If you’re using JavaScript to create the animation
for some browsers, why not use JavaScript for all browsers and not worry so
much about CSS animation support? CSS animations are usually, though not
always, more performant than the same animation in JavaScript.

Another option, and the one I recommend, is to treat CSS animations as part
of the noncritical experience. Use animations to enhance the design and the
design’s aesthetic, but make sure nothing breaks in browsers that don’t support
CSS animations. Your site should still work in any browser that doesn’t support
animations, but it can provide a more enjoyable experience for those that can.

Note that while CSS animations work in modern browsers, you don’t neces-
sarily see the same smoothness. A smooth-running animation in one browser
might look a bit jerky in another, and it’s not always the same browsers looking
smooth or not. It depends on the browser and the specifics of the animation.

CSS Animations
As we’ve been doing throughout this book, let’s start with an example.

CSS Positioning
You’ll make a box slide across the screen from left to right in two ways. The
first way will be to use CSS positioning (Example 4.1).

1.	 Add a div with a class of box to your HTML.

<div class="box"></div>

2.	 Give the .box div dimensions and a background color so you can see it
on the page. Set its position to absolute. Top and left values will be 0
by default, which is fine for this example.

.box {

	 width: 200px;

	 height: 200px;

	 background-color: #393;

	 position: absolute;

}

Chapter 4  Anim ations 97

You need two components to create the animation. The first one declares
the animation on .box. Part of the benefit of the animation property is
the name of a keyframe where you’ll change properties, so you also need
to create this keyframe, which is the second component.

3.	 Add the animation property to .box.

.box {

	 -webkit-animation: slide 5s linear 0s 3;

	 animation: slide 5s linear 0s 3;

}

The first value in the list is slide, which is the name of your keyframe.

4.	 Create the slide keyframe.

@-webkit-keyframes slide {

	 from {

		 left:0

	 }

	 to {

		 left: 600px

	 }

}

@keyframes slide {

	 from {

		 left: 0;

	 }

	 to {

		 left: 600px;

	 }

}

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB98

5.	 Load the file in a browser.

A green square appears in the upper-left corner of your browser. As soon
as the page loads, it moves 600 pixels to the right, jumps back to the upper-
left corner, slides to the right again, and repeats a third time before finally
returning to the upper-left corner and stopping (Figure 4.2).

Instant return

animation: slide 5s linear 0s 3;

from {

 left: 0;

}

to {

 left: 600px;

}

The animation itself probably wasn’t very smooth, but you’ll get to that in a
moment. Let’s talk about what the code is doing, starting with the keyframe.

The keyframe has the name slide. It includes two declarations for the left
property, once in a from state and once in a to state. In the from state, the
left value is 0, and in the to state, the value is 600px. The states from and
to represent the start and end states, so initially the .box is positioned 0 pix-
els from the left edge, and at the end of the animation cycle, it is 600 pixels
from the left edge.

To start the animation, you set the animation shorthand property on the .box div.

animation: slide 5s linear 0s 3;

The animation is calling the keyframe named slide, and it runs for a dura-
tion of 5 seconds. The timing-function is linear. There’s no delay, and the
animation is set to run three times.

Smoothing the Animation
What about the jumpiness in the animation? Let’s modify the example to move
the .box with a transform instead of changing the value of the left property
(Example 4.2). You need to adjust only the keyframe.

Figure 4.2
Slide animation using the
left property

Chapter 4  Anim ations 99

1.	 Replace the keyframe in step 4 of Example 4.1 with the following keyframe:

@-webkit-keyframes slide {

	 to {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

@keyframes slide {

	 to {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

In this code, the translate function moves the .box div 600 pixels to
the right, the same as the left values did in the previous @keyframes
rule. Notice that only the to state is included this time. You don’t need to
include a from state. You really didn’t need it the first time either. The ini-
tial state of the .box div as set on the .box class is exactly what you want
for the from state, so there isn’t a need to explicitly set it in the keyframe.

2.	 Reload your page with this new keyframe.

The same thing happens as before: A green .box moves 600 pixels to the
right three times (Figure 4.3). However, this time the animation runs
smoother. We’ll get to why at the end of the chapter. For now just know
there are multiple ways to create an animation (or a transition), but the
performance of each way can vary.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB100

Instant return

animation: slide 5s linear 0s 3;

from {

}

to {

 -webkit-transform: translate(600px, 0px);

 -ms-transform: translate(600px, 0px);

 transform: translate(600px, 0px);

}

As you can see in the example, animations can reset CSS property values inside
their keyframes. Transitions can’t do this. Although CSS animations affect
property values while running, they don’t by default control values before the
animation starts or after it ends. By default, the intrinsic styles (styles added
directly to the element and not inside keyframes) of the element control the
values outside the time the animation is running. The styles set in the keyframe
are in control while the animation is running, but not necessarily before or
after. You do have a measure of control to change the default.

It’s possible to have multiple animations running at the same time and for each
animation to set different values on the same property. When this happens,
the animation defined last in the list of keyframe names overrides the other
animations, and the value it sets is used.

Animations can start in one of two ways:

�� On page load

�� In reaction to a CSS property change

The start time of an animation is the latter of the time when the style speci-
fying the animation changes (changing the element on hover for example) or
the time the document’s load event is fired—in other words, automatically
after the page has loaded.

Figure 4.3
Slide animation using
translate function

Chapter 4  Anim ations 101

The @Keyframes Rule
Keyframes are the different states of the element being animated. They’re used
to specify different values for the properties being animated at various points
during the animation. A series of keyframes defines the behavior for one cycle
through the animation. Remember animations can repeat multiple times.

You define keyframes inside the @keyframes rule.

@keyframes identifier {

	 List of properties and values

}

An @keyframes rule begins with the @keyframes keyword followed by an
identifier (the keyframe name). Inside the brackets is a list of CSS properties
and values to set the style for the specific states.

Inside each @keyframes rule is a list of percent values or the keywords to and
from. The keyword from is equivalent to 0%, and the keyword to is equivalent
to 100%. When using a percent, the % sign needs to be included. 0 and 100
are invalid values; 0% and 100% are the correct values.

@Keyframes slide {

	 0% {

		 left: 0;

	 }

	 20% {

		 left: 100px;

	 }

	 40% {

		 left: 200px;

	 }

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB102

	 60% {

		 left: 300px;

	 }

	 80% {

		 left: 400px;

	 }

	 100% {

		 left: 500px;

	 }

}

This @keyframes rule could also be written as

@Keyframes slide {

	 from {

		 left: 0;

	 }

	 20% {

		 left: 100px;

	 }

	 40% {

		 left: 200px;

	 }

	 60% {

		 left: 300px;

	 }

Chapter 4  Anim ations 103

	 80% {

		 left: 400px;

	 }

	 to {

		 left: 500px;

	 }

}

Each keyframe selector specifies the percentage of the animation’s duration
that the specific keyframe represents. The keyframe state is specified by the
group of properties and values declared on the selector.

If you don’t set a keyframe at 0% (or from), then the browser constructs a 0%
state using the intrinsic values of the properties being animated. Similarly if
no 100% (or to) keyframe is set, the browser constructs the state from intrin-
sic values. Negative percent values or values greater than 100% are ignored.
Keyframes containing properties that aren’t animatable or contain invalid
properties are ignored.

@keyframes rules don’t cascade. A single animation will never use keyframes
from more than one @keyframes rule. When multiple @keyframes have been
specified on the animation-name property, the last one in the list (ordered by
time) with a matching @keyframes rule controls the animation.

It’s valid for an @keyframes rule to be empty, and because of this it can be
used to hide keyframes previously defined. The empty @keyframes rule should
come later in your CSS to override any @keyframes rule with the same iden-
tifier that appears earlier in your CSS.

1.	 Add the following after the @keyframes rules you set in Example 4.1.

@-webkit-keyframes slide {

}

@keyframes slide {

}

Note

I’m using the words
“keyframe” and
“keyframes” in ways that

might be confusing.
Each percentage value
represents a new
keyframe or state with
its own CSS property
values. Together the
properties and values in
each keyframe make up
a keyframe declaration
block. The @keyframes
rule is the special
@ rule that contains all
the different keyframes
(states) that an animation
runs through.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB104

2.	 Reload your webpage. The animation should no longer run, since an empty
@keyframes rule is called.

3.	 Remove the empty @keyframes rule or place it before the nonempty
@keyframes rule, and the animation will run again.

animation-* Properties
CSS animations offer eight different properties for controlling an animation.
Some are comparable to similarly named transition-* properties, and some
will be new.

animation-name Property
The animation-name property defines a comma-separated list of animations
to apply to the given selector. It’s similar to the transition-property in that
it ultimately defines the properties that are animated. With the transition-
property, those properties are explicitly named. With the animation-name,
an @keyframes rule is explicitly named, and that rule contains the properties
that will be animated.

-webkit-animation-name: slide, drop;

 animation-name: slide, drop;

Each animation-name in the list should match a specific @keyframes rule.

@-webkit-keyframes slide {

	 properties: values;

}

@keyframes slide {

	 properties: values;

}

Chapter 4  Anim ations 105

@-webkit-keyframes drop {

	 properties: values;

}

@keyframes drop {

	 properties: values;

}

If there’s no match in keyframe name (identifier), the animation won’t run. In
addition to the identifier of an @keyframes rule, a value of none is also valid.
When the none keyword value is used, no animation runs. You can use none
to override an animation that’s inherited from a parent element.

-webkit-animation-name: none;

 animation-name: none;

@keyframes change the value of CSS properties. If multiple animations try
to change the value of the same property on an element, the animation clos-
est to the last name in the animation-name list controls the property values.

If multiple animation-names are listed and one is removed, it stops running,
but the other listed animations continue.

Every listed animation-name should have a corresponding value for any oth-
er animation-* properties. If there are too many values in an animation-*
property, any leftover values are ignored. If there aren’t enough values, the list
of values will be repeated until there are enough to match.

Animations are applied to elements with an animation-name value that match-
es the name of an @keyframes rule. Once applied, the animation runs. It runs
once the page loads unless it’s been applied to a trigger, such as :hover. Once
started, an animation continues to run until it finishes or the animation-name
value is removed, such as removing the :hover on the animating element.

An animation ends based on some combination of the animation-duration,
animation-iteration-count, and animation-fill mode properties. You
can also end an animation by setting the animated element’s display prop-
erty to none. This also ends any animations running on descendant elements.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB106

Changing the value of an animation element’s display property to something
other than none immediately starts that animation. It also starts any animations
applied to descendants of the parent element. Changing the value of display
is one more way you can turn on and off an animation.

The values in each keyframe in an @keyframes rule are held as a snapshot
when the animation starts. Changing the intrinsic property on an element
with an animation running has no effect. The values in the animation are in
control until the animation stops.

animation-duration Property
The animation-duration property defines how long an animation lasts
during one cycle of the animation. It’s similar to the transition-duration
property and takes a time value in seconds (s) or milliseconds (ms).

-webkit-animation-duration: 10s;

	 animation-duration: 10s;

Like transition-duration, the default value is 0s, which is why elements
don’t animate automatically even when they’re animatable. Technically, they
are animating, but everything happens in an instant.

Note that animation-duration is the length of one full cycle of the animation.
It’s not the length of each keyframe in the @keyframes rule. For example, if you
set an animation-duration of 10s and have the following @keyframes rule

@Keyframes duration {

	 0% {

		 property: value;

	 }

	 50% {

		 property: value;

	 }

Note

When an animation-
name is added to the
:hover state of an
element, removing the
hover also removes the
animation-name, and
the animation stops.

Chapter 4  Anim ations 107

	 100% {

		 property: value;

	 }

}

the animation will take 10 seconds to get from 0 percent to 100 percent, and
not 10 seconds to go from 0 percent to 50 percent and then 10 seconds more
from 50 percent to 100 percent.

Similarly, when an animation is set to loop multiple times, the animation-
duration is the time it takes to complete one loop or cycle.

animation-timing-function Property
The animation-timing-function property describes an acceleration curve
for each keyframe in a single animation cycle. It’s similar to the transition-
timing-function. You can use any of the keyword timing functions or cre-
ate one of your own.

animation-timing-function: step-start;

animation-timing-function: step-end;

animation-timing-function: steps();

animation-timing-function: ease;

animation-timing-function: linear;

animation-timing-function: ease-in;

animation-timing-function: ease-out;

animation-timing-function: ease-in-out;

animation-timing-function: cubic-bezier();

Note that the animation-timing-function applies between keyframes and
not over the entire animation cycle. This means if you have keyframes at 0%,
50%, and 100% and an animation-timing-function of ease-in, the ani-
mation eases into each of the three keyframes in the @keyframes rule and
not just once at the beginning of the animation.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB108

Let’s try an example to see this more clearly (Example 4.3).

1.	 Add a div with a class of box to your HTML.

<div class="box"></div>

2.	 Give the .box class dimensions and a background-color.

.box {

	 width: 200px;

	 height: 200px;

	 background-color: #393;

}

3.	 Add an animation to the .box div using the individual animation-*
properties.

.box {

	 -webkit-animation-name: slide;

		 animation-name: slide;

	 -webkit-animation-duration: 5s;

	 animation-duration: 5s;

	 -webkit-animation-timing-function: ease-in;

	 animation-timing-function: ease-in;

}

4.	 Finally add an @keyframes rule to your CSS.

@-webkit-keyframes slide {

	 0% {

		 -webkit-transform: translate(0px, 0px);

		 -ms-transform: translate(0px, 0px);

		 transform: translate(0px, 0px);

	 }

Chapter 4  Anim ations 109

	 25% {

		 -webkit-transform: translate(150px, 0px);

		 -ms-transform: translate(150px, 0px);

		 transform: translate(150px, 0px);

	 }

	 50% {

		 -webkit-transform: translate(300px, 0px);

		 -ms-transform: translate(300px, 0px);

		 transform: translate(300px, 0px);

	 }

	 75% {

		 -webkit-transform: translate(450px, 0px);

		 -ms-transform: translate(450px, 0px);

		 transform: translate(450px, 0px);

	 }

	 100% {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

@keyframes slide {

	 0% {

		 -webkit-transform: translate(0px, 0px);

		 -ms-transform: translate(0px, 0px);

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB110

		 transform: translate(0px, 0px);

	 }

	 25% {

		 -webkit-transform: translate(150px, 0px);

		 -ms-transform: translate(150px, 0px);

		 transform: translate(150px, 0px);

	 }

	 50% {

		 -webkit-transform: translate(300px, 0px);

		 -ms-transform: translate(300px, 0px);

		 transform: translate(300px, 0px);

	 }

	 75% {

		 -webkit-transform: translate(450px, 0px);

		 -ms-transform: translate(450px, 0px);

		 transform: translate(450px, 0px);

	 }

	 100% {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

This code adds five keyframes to the @keyframes rule. This should make
it easier to see that the ease-in timing function is running between each
keyframe and not once over the entire animation cycle.

Chapter 4  Anim ations 111

5.	 Load your page in a browser, and observe the timing curve between key-
frames (Figure 4.4).

0% 25% 50% 75% 100%

Setting the ease-in timing function universally on all keyframes

You can override the timing function inside each of the keyframes. When a
timing function is applied inside a keyframe, it’s instructing the animation
to use that function moving from the keyframe with the timing function
applied to the next one (Example 4.4).

6.	 Replace your @keyframes slide rule from Example 4.3 with the follow-
ing rule. Changes in the code are highlighted.

@-webkit-keyframes slide {

	 0% {

		 -webkit-transform: translate(0px, 0px);

		 -ms-transform: translate(0px, 0px);

		 transform: translate(0px, 0px);

	 }

	 25% {

		 -webkit-transform: translate(150px, 0px);

		 -ms-transform: translate(150px, 0px);

		 transform: translate(150px, 0px);

Figure 4.4
Animation timing functions

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB112

	 	 -webkit-animation-timing-function: linear;

	 	 animation-timing-function: linear;

	 }

	 50% {

		 -webkit-transform: translate(300px, 0px);

		 -ms-transform: translate(300px, 0px);

		 transform: translate(300px, 0px);

	 }

	 75% {

		 -webkit-transform: translate(450px, 0px);

		 -ms-transform: translate(450px, 0px);

		 transform: translate(450px, 0px);

	 	 -webkit-animation-timing-function: linear;

	 	 animation-timing-function: linear;

}

	 100% {

		 -webkit-transform: translate(100px, 0px);

		 -ms-transform: translate(100px, 0px);

		 transform: translate(100px, 0px);

	 }

}

@keyframes slide {

	 0% {

		 -webkit-transform: translate(0px, 0px);

		 -ms-transform: translate(0px, 0px);

		 transform: translate(0px, 0px);

	 }

Chapter 4  Anim ations 113

	 25% {

		 -webkit-transform: translate(150px, 0px);

		 -ms-transform: translate(150px, 0px);

		 transform: translate(150px, 0px);

	 	 -webkit-animation-timing-function: linear;

	 	 animation-timing-function: linear;

	 }

	 50% {

		 -webkit-transform: translate(300px, 0px);

		 -ms-transform: translate(300px, 0px);

		 transform: translate(300px, 0px);

	 }

	 75% {

		 -webkit-transform: translate(450px, 0px);

		 -ms-transform: translate(450px, 0px);

		 transform: translate(450px, 0px);

	 	 -webkit-animation-timing-function: linear;

	 	 animation-timing-function: linear;

	 }

	 100% {

		 -webkit-transform: translate(100px, 0px);

		 -ms-transform: translate(100px, 0px);

		 transform: translate(100px, 0px);

	 }

}

In this code, you override the ease-in timing function on two of the
keyframes.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB114

7.	 Reload your page, and observe the difference in the acceleration curve
between keyframes (Figure 4.5).

0%

Ease-in

25%

Linear

50%

Ease-in

Each keyframe can be assigned its own timing function.

75%

Linear

100%

Ease-in

The way timing functions work over keyframes and the ability to override them
on a specific keyframe is powerful and perhaps a bit scary. You have great con-
trol over how your animation accelerates, but you also have the responsibility
to exercise that control. Having an animation ease in between every keyframe
is probably not what you want.

animation-iteration-count Property
Transitions run once when triggered and run once in reverse when the trigger
is removed. Animations can run as many times as you want. The animation-
iteration-count property defines how many times an animation runs, and
it takes as a value any number or the keyword infinite. The latter sets your
animation to run in an endless loop.

-webkit-animation-iteration-count: 3;

 animation-iteration-count: 3;

-webkit-animation-iteration-count: infinite;

 animation-iteration-count: infinite;

Figure 4.5
Animation timing functions
on keyframes

Chapter 4  Anim ations 115

You’ve already seen the animation-iteration-count in action in Exam-
ple 4.1, although that example used the animation shorthand to set all the val-
ues. Because you might be getting tired of sliding boxes and because the rest
of the examples in this chapter are variations of that same sliding box, let’s do
something different here (Example 4.5).

1.	 Start by adding a div with a class of box to your HTML.

<div class="box"></div>

2.	 Instead of giving dimensions and a background-color to the .box div,
set the dimensions to 0px, and add a border with different colors for each
side. Finally, give the border a radius of 50%.

.box {

	 width: 0px;

	 height: 0px;

	 border-width: 100px;

	 border-style: solid;;

	 border-color: #393 #933 #399 #993;

	 border-radius: 50%;

}

3.	 Load your page.

A circle appears with four pie wedges, each a different color.

4.	 Add the following animation-* properties to .box. Note that you’ll be
rotating the .box div this time instead of moving it.

.box {

	 -webkit-animation-name: rotate;

	 animation-name: rotate;

	 -webkit-animation-duration: 4s;

	 animation-duration: 4s;

	 -webkit-animation-timing-function: linear;

	 animation-timing-function: linear;

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB116

	 -webkit-animation-iteration-count: 3;

	 animation-iteration-count: 3;

}

5.	 Create the rotate @keyframes rules to rotate the .box div.

@-webkit-keyframes rotate {

	 0% {

		 -webkit-transform: rotate(0deg);

		 -ms-transform: rotate(0deg);

		 transform: rotate(0deg);

	 }

	 25% {

		 -webkit-transform: rotate(90deg);

		 -ms-transform: rotate(90deg);

		 transform: rotate(90deg);

	 }

	 50% {

		 -webkit-transform: rotate(180deg);

		 -ms-transform: rotate(180deg);

		 transform: rotate(180deg);

	 }

	 75% {

		 -webkit-transform: rotate(270deg);

		 -ms-transform: rotate(270deg);

		 transform: rotate(270deg);

	 }

Chapter 4  Anim ations 117

	 100% {

		 -webkit-transform: rotate(360deg);

		 -ms-transform: rotate(360deg);

		 transform: rotate(360deg);

	 }

}

@keyframes rotate {

	 0% {

		 -webkit-transform: rotate(0deg);

		 -ms-transform: rotate(0deg);

		 transform: rotate(0deg);

	 }

	 25% {

		 -webkit-transform: rotate(90deg);

		 -ms-transform: rotate(90deg);

		 transform: rotate(90deg);

	 }

	 50% {

		 -webkit-transform: rotate(180deg);

		 -ms-transform: rotate(180deg);

		 transform: rotate(180deg);

	 }

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB118

	 75% {

		 -webkit-transform: rotate(270deg);

		 -ms-transform: rotate(270deg);

		 transform: rotate(270deg);

	 }

	 100% {

		 -webkit-transform: rotate(360deg);

		 -ms-transform: rotate(360deg);

		 transform: rotate(360deg);

	 }

}

6.	 Load your code in a browser.

The circular .box div rotates around its center.

If you followed the colors in the example for the borders, the green wedge
should start at the top. Each time the green wedge is back at the top is one
iteration or one animation cycle (Figure 4.6).

0% {
 transform: rotate(0deg);
}

50% {
 transform: rotate(180deg);
}

75% {
 transform: rotate(270deg);
}

25% {
 transform: rotate(90deg);
}

100% {
 transform: rotate(360deg);
}

One iteration of an animation

Figure 4.6
Animation iteration count

Chapter 4  Anim ations 119

animation-direction Property
Another new property is the animation-direction property, which defines
whether an animation runs forward or in reverse on some or all of its cycles.
The animation-direction property takes one of four values:

�� normal specifies that all iterations of the animation are played as specified.

�� reverse specifies that all iterations of the animation are played in the
reverse direction as specified.

�� alternate causes the cycles to alternate between normal and reverse
with normal for the first cycle and all odd iteration counts. Even counts
are reversed.

�� alternate-reverse causes the cycles to alternate between normal and
reverse with reverse for the first cycle and all odd iteration counts. Even
counts are normal.

-webkit-animation-direction: normal;

 animation-direction: normal;

-webkit-animation-direction: alternate-reverse;

 animation-direction: alternate-reverse;

When the animation plays in reverse, the timing functions also run in reverse—
for example, ease-in runs as ease-out.

Until now, the sliding box you’ve been working with slides to the right and
then instantly returns to its initial location. The jump is more than a little jar-
ring. The alternate and alternate-reverse values can remove the jump.
Instead, the box continues to slide right and left until the animation stops.

Let’s go back to the sliding .box div you’ve used through most of this chap-
ter (Example 4.6).

1.	 Start by adding a div with a class of box to your HTML.

<div class="box"></div>

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB120

2.	 Give the .box div dimensions and a background color.

.box {

	 width: 200px;

	 height: 200px;

	 background-color: #393;

}

3.	 Add the animation-* properties to .box. Additions to the code are
highlighted.

.box {

	 -webkit-animation-name: slide;

	 animation-name: slide;

	 -webkit-animation-duration: 5s;

	 animation-duration: 5s;

	 -webkit-animation-timing-function: linear;

	 animation-timing-function: linear;

	 -webkit-animation-iteration-count: 3;

	 animation-iteration-count: 3;

	 -webkit-animation-direction: reverse;

	 animation-direction: reverse;

}

Notice the reverse direction.

Chapter 4  Anim ations 121

4.	 Create the slide keyframe.

@-webkit-keyframes slide {

	 to {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

@keyframes slide {

	 to {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

5.	 Load your page.

First it jumps 600 pixels to the right (so fast that you might not see the .box
on the left before the jump), and then it slides back to its initial location
and repeats the sequence three times.

6.	 Change the value for the animation-direction in step 3 to alternate
(Example 4.7).

-webkit-animation-direction: alternate;

 animation-direction: alternate;

7.	 Reload your page, and observe the difference (Figure 4.7).

Now the .box div slides back and forth between the initial and ending
states. This makes for a much smoother overall animation. Experiment with
the normal and alternate-reverse values.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB122

Iteration 2 alternates and runs in the reverse direction.

Iteration 1 runs normally.

Iteration 3 alternates again to run in the normal direction.

When the animation completes
the .box div jumps instantly
to its initial location.

animation-play-state Property
By default, your animations run as soon as the animation-name property is
assigned. You can change that behavior with the animation-play-state
property, which defines whether an animation is running or paused.

-webkit-animation-play-state: running;

 animation-play-state: running;

-webkit-animation-play-state: paused;

 animation-play-state: paused;

The default value, as you would likely guess, is running. If you change the
value to paused, the animation stops where it is until the animation-play-
state is changed again to running. When paused, the animation displays
whatever state the animation was in at that moment. When the animation is
resumed, it restarts from the state it was paused in.

Figure 4.7
Animation direction

Chapter 4  Anim ations 123

Let’s make one addition to Example 4.7 (Example 4.8).

1.	 Add the animation-play-state property to the .box div from the pre-
vious example. Additions to the code are highlighted.

.box {

	 -webkit-animation-name: slide;

	 animation-name: slide;

	 -webkit-animation-duration: 5s;

	 animation-duration: 5s;

	 -webkit-animation-timing-function: linear;

	 animation-timing-function: linear;

	 -webkit-animation-iteration-count: 3;

	 animation-iteration-count: 3;

	 -webkit-animation-direction: alternate;

	 animation-direction: alternate;

	 -webkit-animation-play-state: paused;

	 animation-play-state: paused;

}

2.	 Reload your page.

Unlike previous examples, this time the animation doesn’t run when the page
is finished loading. To run the animation, you need to change animation-
play-state to running and reload the page.

This isn’t particularly useful if you have to reload the page after changing
the animation-play-state property, but it becomes much more useful
when changing properties via JavaScript or some other trigger.

Let’s modify the example to add triggers.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB124

3.	 Modify your HTML to include play and pause buttons.

<div class="container">

	 <div class="box" id="box"></div>

	 <button id="play">Play</button>

	 <button id="pause">Pause</button>

</div>

The buttons get ids so your JavaScript code has something to hook into.
Notice that the code adds an id of box to the .box div.

The buttons need some styling.

4.	 Add the following to your CSS:

button {

	 padding: 0.5em 1em;

	 border: 1px solid #999;

	 border-radius: 5%;

	 margin-top: 3em;

}

Nothing special. Just a little style to make your buttons look “buttony.” Now
let’s add some JavaScript so the buttons do something.

5.	 Add the following code in the head of your document between <script>
</script> tags.

<script>

var init = function() {

	 var box = document.getElementById('box');

	 var play = document.getElementById('play');

	 var pause = document.getElementById('pause');

Chapter 4  Anim ations 125

	 document.getElementById('play').addEventListener(
	 p 'click', function(){

		 box.style.webkitAnimationPlayState = "running";

		 box.style.animationPlayState = "running";

	 }, false);

	 document.getElementById('pause').addEventListener(
	 p 'click', function(){

		 box.style.webkitAnimationPlayState = "paused";

		 box.style.animationPlayState = "paused";

	 }, false);

};

window.addEventListener('DOMContentLoaded', init, false);

</script>

Hopefully, the script looks somewhat familiar. The last line of code listens
for the page to load and then calls the init function.

Inside the function, you first get hooks to each button and the .box div and
set them to appropriately named variables. Next you add event listeners to each
button, and if a button is clicked, you set the value of animationPlayState
to either running or paused, depending on which button was clicked.

6.	 Reload your page one more time.

You should see the new play and pause buttons. The green box sits in the
top-left corner until you click the Play button to start the animation. Once
the box begins moving, you can click the Pause button to stop the anima-
tion. Clicking Play starts the animation again from the point at which it
was stopped.

animation-delay Property
The animation-delay property defines when an animation starts. It works
the same way the transition-delay property works. Like transition-
delay, values are in units of time and can be positive, 0, or negative.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB126

-webkit-animation-delay: 2s;

 animation-delay: 2s;

-webkit-animation-delay: 0s;

 animation-delay: 0s;

-webkit-animation-delay: -2s;

 animation-delay: -2s;

A positive value delays the animation until some point in the future. A value
of 0 (the default) starts the animation instantly. A negative value appears to
start the animation in the past. It starts instantly, but at a point in the middle
of the animation. The delay works as an offset.

Let’s continue to build on Example 4.8.

1.	 Add an animation-delay to the .box div. Additions to the code are
highlighted (Example 4.9).

.box {

	 -webkit-animation-name: slide;

	 animation-name: slide;

	 -webkit-animation-duration: 5s;

	 animation-duration: 5s;

	 -webkit-animation-timing-function: linear;

	 animation-timing-function: linear;

	 -webkit-animation-iteration-count: 3;

	 animation-iteration-count: 3;

	 -webkit-animation-direction: alternate;

	 animation-direction: alternate;

Chapter 4  Anim ations 127

	 -webkit-animation-play-state: running;

	 animation-play-state: running;

	 -webkit-animation-delay: 2s;

	 animation-delay: 2s;

}

2.	 Reload your page.

The animation does nothing for 2 seconds and then slides back and forth like
before (Figure 4.8). Try using some negative values, and observe the difference.

0s

1s

2s

3s

4s

5s

600px400px200px0px

Begin animation

2s delay

Figure 4.8
Animation delay

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB128

animation-fill-mode Property
You probably had an idea what each animation-* property did before I told
you. Some were familiar after working through transitions, and the property
names give a pretty good clue about what the others do.

The animation-fill-mode property is probably not intuitive to you. You
might be thinking about background colors filling your element or something
like that. The animation-fill-mode property actually defines what values
are applied by an animation outside of its execution time.

By default, an animation affects property values only while it’s running. This
is why the example animations you’ve been working with often jump back to
the initial state when the animation stops. Whatever values are set in each key-
frame are the ones used for a property until either the next keyframe changes
it or the animation stops playing. When the animation stops, the CSS property
values are whatever values were set intrinsically on the element.

The animation-fill-mode property overrides this behavior. It takes four
keyword values.

animation-fill-mode: none | forwards | backwards | both

�� none is the default, and it doesn’t apply any property values in the anima-
tion outside the animation’s execution.

�� backwards applies the property values defined in the first keyframe that
starts the first iteration to the period defined by animation-delay. The
values come from either the 0% (from) or 100% (to) keyframes, depend-
ing on the value of the animation-direction property.

�� forwards applies the property values after the animation stops. If the
animation-iteration-count value is greater than 0, the values applied
are those at the end of the last completed iteration. If the count value equals
0, the values applied are those that start the first iteration.

�� both does what you might expect and applies both the forwards and
backwards values to the animation-fill-mode property.

Chapter 4  Anim ations 129

Once again let’s expand the example we’ve been working with.

1.	 Add an animation-fill-mode to the .box div. Additions to the code are
highlighted. Note that the iteration-count changes to 1 (Example 4.10).

.box {

	 -webkit-animation-name: slide;

	 animation-name: slide;

	 -webkit-animation-duration: 5s;

	 animation-duration: 5s;

	 -webkit-animation-timing-function: linear;

	 animation-timing-function: linear;

	 -webkit-animation-iteration-count: 1;

	 animation-iteration-count: 1;

	 -webkit-animation-direction: alternate;

	 animation-direction: alternate;

 -webkit-animation-play-state: running;

 animation-play-state: running;

	 -webkit-animation-delay: 2s;

	 animation-delay: 2s;

	 -webkit-animation-fill-mode: forwards;

	 animation-fill-mode: forwards;

}

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB130

2.	 Load the page in a browser.

As before, the green box slides to the right when the animation begins.
However, now when it stops it doesn’t jump back to its initial state. Setting
the animation-fill-mode to forwards allows the .box div to hold the
final state in the animation after the animation completes (Figure 4.9).

Slide animation

After animation completes

Initial state Final state

The .box div holds
the final state
values of the slide
animation

 -webkit-animation-fill-mode: forwards;

 animation-fill-mode: forwards;

Experiment with the different animation-fill-mode values to observe what
each does. Change some of the other animation-* property values in combi-
nation with the animation-fill-mode property as well.

For example, use either of the reverse values on the animation-direction
and then use forwards on the animation-fill-mode.

animation-direction: alternate-reverse;

animation-fill-mode: backwards;

Or add a 0% (or from) keyframe in the @keyframes rule so the .box begins
the animation in a different location.

0% {

	 -webkit-transform: translate(75px, 0px);

	 -ms-transform: translate(75px, 0px);

	 transform: translate(75px, 0px);

}

Figure 4.9
Animation fill mode

Chapter 4  Anim ations 131

Make sure there’s a positive animation-delay, and set animation-fill-
mode to backwards.

animation-fill-mode: backwards;

For both changes, observe where the .box div is located before and after the
animation as well as during the animation-delay.

animation Shorthand Property
You can also use the animation shorthand property to set everything at once.
You saw this in the first example in this chapter.

animation: animation-property animation-duration
p animation-timing-function animation-delay
p animation-iteration-count animation-direction
p animation-fill-mode animation-play-state;

If you replace each of the properties with a value, you get something like this:

animation: slide 2s ease 0.5s 2 reverse both running;

To add multiple animations, you separate each definition with a comma like this:

animation: slide 2s ease 0.5s 2 reverse both running,
p bounce 5s ease-in-out 0 3 alternate forwards paused;

Note that the comma occurs between the full definition for each animation.
There are two definitions in this line of code, so a single comma between them
is all you need.

As with transitions, order is important. Just as with the transition shorthand,
the first time value is assigned to the animation-duration property, and the
second time value is assigned to the animation-delay property.

Animation Events
You learned in the last chapter that when a transition completes, it generates
a DOM event. Animations also fire events. They fire an event at the start and
end of an animation as well as the end of each iteration.

Note

The current animation
spec mentions a possible
future addition. At
some point, a / notation
might be added to
the shorthand. If that
happens, you’ll be able
to specify duration and
delay as 10s/2s, where
the numerator (10s) is
the duration and the
denominator (2s) is the
delay. This doesn’t work
now, but is a future
possibility.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB132

Types of Animation Events
Transitions fire an event only when the transition ends. Animations can fire
any of three possible events:

�� An animationstart event fires when the animation starts. If a positive
animation-delay has been set, the event fires when the delay ends. If the
delay is negative, the event fires immediately with an elapsedTime equal
to the absolute value of the delay.

�� An animationend event fires when the animation completes. This event
is similar to the transitionend event.

�� An animationiteration event fires at the end of each iteration of an
animation, except the last one when an animationend event fires instead.
This means animations with zero or one iteration won’t fire an animation-
iteration event.

For transitions the transitionend event offers three read-only values. Simi-
larly there are three read-only values you can access with animation events:

�� animationName is the value of the animation-name property of the ani-
mation that fired the event.

�� elapsedTime is the amount of time the animation has been running, in
seconds, when this transitionend event fires. This time excludes any time
the animation was paused. The elapsedTime for an animationstart
event is 0.0s.

�� pseudoElement is the name (beginning with two colons) of the CSS pseudo-
element on which the animation runs or an empty string if the animation
runs directly on an element. At the moment only Firefox version 23 and
newer supports reading this value, but in practice I’ve yet to get it working.

Animations can have multiple properties animating at the same time. These
can be properties set on a single animation or on multiple animations. An
event is generated for each animation-name value and not for each individ-
ual property being animated.

As long as an animation has a valid @keyframes rule and a nonzero duration,
it generates events, even if the @keyframes rule is empty.

Chapter 4  Anim ations 133

Let’s try an example so we can experiment with these events and their associ-
ated values. You’ve been working with variations of the same example. Why
stop now? You’ve made the box slide to the right and most of the time back to
the left. Let’s add another @keyframes rule that generates a downward slide.
You’ll apply this new rule after the .box finishes the slide animation.

The animation will slide to the right, slide back to its initial position, and then
slide down and back up again (Example 4.11).

1.	 Add div with a class of box and an id of box to your HTML.

The class is used to style the div like you’ve been doing all along, and the
id is used to hook into the element via JavaScript. The class name and
id name don’t need to be the same. You just need to make sure to match
the names you give them in the appropriate place in the code.

<div class="box" id="box"></div>

2.	 Give the .box div dimensions and a background color so you can see it
on the page, and then add an animation using the animation shorthand.

.box {

	 width: 200px;

	 height: 200px;

	 background-color: #393;

	 -webkit-animation: slide 2s linear 0s 2 alternate
	 p both;

	 animation: slide 2s linear 0s 2 alternate
	 p both;

}

Before creating the @keyframes rule, take a look at the shorthand in this
code, and make sense of what it’s doing. It’s calling an @keyframes rule
named slide. Each animation cycle runs a total of 2 seconds. The timing
is linear so there is no acceleration. There’s no delay, and the animation
completes two cycles. It runs once normally and then runs in reverse. Ani-
mation elements hold their state both before and after the animation runs.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB134

3.	 Create the @keyframes rule using translation to move the element 600
pixels to the right.

@-webkit-keyframes slide {

	 100% {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

@keyframes slide {

	 100% {

		 -webkit-transform: translate(600px, 0px);

		 -ms-transform: translate(600px, 0px);

		 transform: translate(600px, 0px);

	 }

}

4.	 Load the page in a browser.

The familiar green .box slides to the right and then slides back left to its
starting point. This animation fires events. You’ll capture those events using
a little JavaScript. Don’t worry, it’s no more complicated than what you did
in the last chapter with transition events, and you’re free to copy the code.

What you’re going to do is listen for one of the animation events and when
it occurs, start a second animation. The .box is probably getting tired of
sliding across the page so a slidedown @keyframes rule seems in order.

Chapter 4  Anim ations 135

5.	 Create an @keyframes rule for a new slidedown animation. Add a trans-
lation transform, and make the .box move 300 pixels down the screen.

@-webkit-keyframes slidedown {

	 to {

		 -webkit-transform: translate(0px, 300px);

		 -ms-transform: translate(0px, 300px);

		 transform: translate(0px, 300px);

	 }

}

@keyframes slidedown {

	 to {

		 -webkit-transform: translate(0px, 300px);

		 -ms-transform: translate(0px, 300px);

		 transform: translate(0px, 300px);

	 }

}

You can reload your page if you’d like, but I’ll save the suspense. Nothing
changes. You’ve created a @keyframe rule, but it’s not attached to any ele-
ment yet. That’s where the events and JavaScript come in.

6.	 Add the following JavaScript between <script></script> tags in the
head of your document:

<script>

var init = function() {

	 var box = document.getElementById("box");

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB136

	 box.addEventListener("webkitAnimationStart",
	 p updateAnimation , false);

	 box.addEventListener("oTAnimationStart",
	 p updateAnimation , false);

	 box.addEventListener("animationstart",
	 p updateAnimation , false);

	 function updateAnimation (e) {

		 box.style.webkitAnimationName = "slidedown";

		 box.style.animationName = "slidedown";

	 }

};

window.addEventListener('DOMContentLoaded', init, false);

</script>

The JavaScript is a modified version of what you saw with transition events.
The last line of code, window.addEventListener('DOMContentLoaded',
init, false);, once again runs an init function after the page con-
tent loads.

In the init function, you first get the element with an id of box and assign
it to a variable named box. Next, you add an event listener (with and without
vendor prefixes) to the box to capture an animationstart event. When
the event is captured, it’s passed to an updateAnimation function. Finally
the updateAnimation function changes the animation-name value to
the slidedown animation created in step 5.

7.	 Reload your page, and observe what happens.

The second animation (slidedown) runs, but the first one (slide) doesn’t.
This happens because the JavaScript captures the event that fires at the start
of the animation and changes which animation is used before slide can run.

Let’s capture a different event (Example 4.12).

Chapter 4  Anim ations 137

8.	 Change your JavaScript to listen for animationiteration, and change its
vendor-prefixed variations. Changes in the code are highlighted.

<script>

var init = function() {

	 var box = document.getElementById("box");

	 box.addEventListener("webkitAnimationIteration", 	
	 p updateAnimation , false);

	 box.addEventListener("oTAnimationIteration", 	
	 p updateAnimation , false);

	 box.addEventListener("animationiteration", 	
	 p updateAnimation , false);

	 function updateAnimation (e) {

		 box.style.webkitAnimationName = "slidedown";

		 box.style.animationName = "slidedown";

	 }

};

window.addEventListener('DOMContentLoaded', init, false);

</script>

9.	 Reload your page.

The slide animation starts and completes a single cycle before it jumps
back to its initial state and begins and completes both iterations of the
slidedown animation.

This time you listened for the event that fires at the end of each iteration
of an animation. The slide animation completes one iteration, the
animationiteration event is fired, and your code starts the slidedown
animation. The slidedown animation completes because the JavaScript
code runs only a single time. No code is listening for the events that the
slidedown animation fires in this example.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB138

10.	Change your JavaScript code to listen for animationend, and change
its vendor-prefixed variations (Example 4.13). Changes in the code are
highlighted.

<script>

var init = function() {

	 var box = document.getElementById("box");

	 box.addEventListener("webkitAnimationEnd", 	
	 p updateAnimation , false);

	 box.addEventListener("oTAnimationEnd", 	
	 p updateAnimation , false);

	 box.addEventListener("animationend", 	
	 p updateAnimation , false);

	 function updateAnimation (e) {

		 box.style.webkitAnimationName = "slidedown";

		 box.style.animationName = "slidedown";

	 }

};

window.addEventListener('DOMContentLoaded', init, false);

</script>

11.	Reload the page.

This time both animations start and complete. First slide moves the .box
to the right before returning. As soon as it completes, an animationend
event is fired. Your JavaScript hears the event and starts the slidedown
animation, which also completes.

Figure 4.10 summarizes listening for each of the three animation events
and starting the slidedown animation after the slide events fire.

Chapter 4  Anim ations 139

The slidedown animation can be set to run
after an animation event fires.

When listening for animationstart, the slide
animation is replaced by the slidedown before
it has a chance to run.

When listening for animationiteration, the first
iteration of the slide animation runs, before
slide is replaced by slidedown. The second
iteration of slide doesn’t have a chance to run.

When listening for animationend, the slide
animation completes both of its iterations
before slide is replaced with slidedown. Both
animations run in their enitrety.

slidedown animation

slide animation

animationiteration
event fires.

animationstart
event fires.

Iteration 2

Iteration 1

Let’s do one more thing: read the read-only values. You can access and read
them at each of the three fired events.

12.	Change your JavaScript code to listen for the animationstart event,
and set an alert to display the animationName that fired the event and
the elapsedTime it’s been running. Changes in the code are highlighted.

<script>

var init = function() {

	 var box = document.getElementById("box");

	 box.addEventListener("webkitAnimationStart", 	
	 p updateAnimation , false);

	 box.addEventListener("oAnimationStart", 	
	 p updateAnimation , false);

	 box.addEventListener("animationstart", 	
	 p updateAnimation , false);

Figure 4.10
Animation events summary

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB140

	 function updateAnimation (e) {

	 	 alert("The " + e.animationName + " animation has 	
	 	 p been running for " + e.elapsedTime + "s");

	 }

};

window.addEventListener('DOMContentLoaded', init, false);

</script>

13.	Reload your page.

As soon as the page loads, the slide animation runs, and an alert pops up
with the message, “The slide animation has been running for 0s.”

Figure 4.11 shows the alerts that display when listening for the animation-
iteration event.

Experiment by changing which event is listened for. Change animationstart
to animationiteration, then to animationend (and their vendor-prefixed
variants), and observe the differences. When listening for the animationiteration
event, your alert should read “The slide animation has been running for 2s,” and
when listening for the animationend event it should read “The slide animation
has been running for 4s.”

Figure 4.11
Animation event read-only
values

Chapter 4  Anim ations 141

Transition or Animation
One of the questions you might be asking yourself is when you should use a
transition and when you should use an animation. You can create most of the
examples in this and the previous chapter using either transitions or anima-
tions. So which should you choose when you want to animate something?

Similarities
You can start to answer that question by thinking about the similarities and dif-
ferences of transitions and animations. One thing they both have in common
is their properties. About half the animation-* properties have a counterpart
transition-* property. The timing functions, for example, are the same, except
for using the word animation or transition to start the property name.

Both can listen for changes to CSS property values and interact with JavaScript
events. Triggering events like those in the following list can make changes in
CSS property values that start either animations or transitions:

�� :hover

�� :link

�� :active

�� :visited

�� :focus

�� :checked

�� :disabled

You can also start transitions and animations through changes in media que-
ries or class changes via simple JavaScript that changes the appropriate prop-
erty values.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB142

Differences
Let’s switch gears and think about the differences. Although both transitions
and animations can run in response to a trigger, only animations can run auto-
matically on page load. Transitions require a trigger to run. If you need your
animation to run automatically, you have only one choice.

Transitions are limited to initial and final state keyframes. Animations can
build as many intermediate keyframes as necessary or desired. This gives you
more control over your animation and allows you to create more complex and
sophisticated animations. Transitions are for simple animations.

Transitions don’t change properties. You set values up front in the CSS intrin-
sic to the specific elements. Transitions define the change only between prop-
erty values and not the values themselves. Animations can change property
values inside each keyframe. The values don’t need to be declared outside the
animation either, making animation more dynamic.

Transitions can’t loop. They run once when triggered and then run in reverse
when the trigger is removed. Otherwise they don’t run. You can loop anima-
tions as many times as you want and set them to run in reverse or alternate
between forward and reverse. Once again CSS animations offer you more con-
trol than CSS transitions.

Once you start using JavaScript to further control your transitions and ani-
mations, it quickly becomes clear that transitions are easier to work with. It’s
more difficult making changes to the values inside keyframes than it is the
intrinsic values on elements.

As a general rule, you’ll write more code using CSS animations as opposed to
CSS transitions, assuming both are trying to do the same thing.

When you get down to it, animations are abstractions of transitions. States are
pulled out from the specific case to work in a more modular fashion. Tran-
sitions are a specific case of the more general animation. If you find yourself
using the same transition code over and over, you might decide to rewrite it
as an animation.

Chapter 4  Anim ations 143

Choosing Transitions or Animations
If what you want to create is a simple animation between two states, keep your
code simpler and lighter, or use JavaScript in the animation, then transitions
are probably a better choice.

If what you want to create is going to be something more complex with a need
for more than two states or if your animation needs to loop or run in either
direction and start itself, animations are your choice.

In general, choose CSS transitions for simple animation that require less con-
trol, but better integration with JavaScript. Choose CSS animations for more
complex and flexible animations that offer you greater control.

There’s one question in regard to transitions and animations you might still
be wondering about: Does one perform better than the other? To answer that
question, let’s look at performance.

Performance
The short answer is that you shouldn’t see any performance difference between
transitions and animations, assuming both are doing the same thing in the same
way. Performance has more to do with what properties are being changed as
opposed to whether those changes happen through transitions or animations.

To render webpages, a browser first calculates the CSS styles that apply to the
HTML elements. Then it lays out the page by working through the geometry
and position for each element. Next comes painting where pixels are filled in
before finally drawing everything to the screen on composite layers. Browsers
use two different execution threads to do all these things and render webpages:
the main thread and the compositor thread.

The main thread is responsible for laying out pages and painting elements. It
computes the CSS styles applied to HTML elements, and it runs JavaScript.
The compositor thread draws bitmaps to the screen via the graphic processing
unit (GPU). It determines which parts of the page are visible or will soon be
visible. It determines what’s likely to be scrolled to next and moves the parts
of the page when someone does scroll. Both threads communicate with each
other, sending and requesting information.

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB144

The main thread tends to be busier for longer periods of time, and while busy
it’s not responsive to input. The compositor thread, on the other hand, tries to
remain responsive because it has to be aware of scrolling.

Main thread responsibilities are more CPU intensive, while compositor respon-
sibilities look to the GPU more frequently. GPUs can draw the same bitmaps
over and over in different positions quickly. They can scale and rotate bitmaps
quickly as well.

To create more performant animations, you generally want to stay away from
layout and painting changes and instead make compositing changes. Com-
positing changes can be made on separate compositing layers, so the browser
doesn’t need to repaint or rework the layout of other layers.

Table 4.1 lists CSS properties that affect layout and painting.

It turns out that there are currently five things browsers can animate cheaply
in terms of performance: translation, scale, rotation, opacity, and some CSS
filters. The first three should have you thinking back to transforms. Anything
beyond animating these five types of properties probably won’t run as smooth.

Consider moving an element to a new location, which is something you’ve
done a few times throughout this book. You can use a transform to move the
element, or you can adjust properties like top and left. The former uses the
GPU, while the latter uses the CPU. You want to take advantage of the GPU
where possible and take advantage of the hardware acceleration it provides. If
you think back to the first example in this chapter, you moved an element by
adjusting its left value and then by applying a translation transform. The
approach using translation ran smoother, and this is why.

It won’t matter whether you use CSS transitions or CSS animations when it
comes to performance, but you should think about performance when creat-
ing either. Transforms, opacity, and some CSS filters don’t require layout or
painting changes and so are preferred properties for animating.

This doesn’t mean you shouldn’t animate other properties. You can still cre-
ate a smooth animation with other properties. Just realize that if you have the
choice, you should opt for changing a transform, opacity, or CSS filter instead
of another property.

Chapter 4  Anim ations 145

Table 4.1.  CSS Properties
PROPERTIES THAT AFFECT LAYOUT PROPERTIES THAT AFFECT PAINTING

width color

height border-style

padding border-radius

margin visibility

display background

border-width text-decoration

border background-size

top background-image

position background-position

font-size background-repeat

float outline-color

text-align outline

overflow-y outline-style

font-weight outline-width

overflow-y box-shadow

left

right

font-family

line-height

vertical-align

clear

white-space

bottom

min-height

CSS ANIM ATIONS AND TR ANSITIONS FOR THE MODERN WEB146

Summary
In time, you can expect browsers to make more CSS properties quicker to
animate. For now, do what you can with what you have. You have enough
control over both transitions and animations to animate many CSS proper-
ties smoothly and create more realistic-looking animations, which brings us
to the next chapter.

INDE X298

Symbols
* (asterisk), 47
@keyframes rule

defining and using, 101–104
naming with animation-name property,

104–105
opening and closing sidebar navigation with,

249–254
squash and stretch, 155–157

A
absolute positioning, 284
accelerating/decelerating transitions, 68–78

ease curves, 74
ease-in curves, 76
ease-out curves, 77
linear curves, 75

actions
adding anticipation to, 159
follow-through and overlapping, 168–181
overlapping and secondary action, 195–196
staging, 165
straight-ahead and pose-to-pose, 168
triggering transitions with, 58

all keyword, 62, 63
alternating animation directions, 19
animation, 93–146. See also animation-* properties;

twelve principles of animation
about, 93–94
additional principles of, 208–209
anticipation in, 158–164
appeal in, 207–208
arcs in, 182–195
CSS positioning creating, 96–98
defining with @keyframes rule, 101–104
delaying, 125–127
Disney’s 12 principles of, 148–149, 295–296
ending, 105
events in, 131–140
exaggeration in, 197–206
firing events, 131
follow-through and overlapping action in,

168–181
importance in web design, 3–5, 289
iteration counts for, 114–118
JavaScript vs. CSS, 96
keyframes for, 94
looping, 114–118, 142, 143
practicing, 290

realistic, 147–148, 295
resources on, 294–296
restraint in, 197, 198, 209
running and pausing, 122–125
running forward or in reverse, 119–122
secondary action in, 195–196
slow in and slow out, 182
smoothing, 72, 98–100
solid drawing in, 206–207
squash and stretch in, 149–158
staging for, 164–167
starting, 100, 106
straight-ahead and pose-to-pose actions for, 168
subtle transitions in, 5–6
timing, 196–197
transitions vs., 57, 94, 141–145, 217, 294
trends in, 211, 289
types of, 6–7
uses for, 211
using multiple, 100

animation-* properties, 104–131
adding to off-canvas sidebar navigation, 248–249
animation-delay, 125–127
animation-direction property, 119–122
animation-fill-mode, 95, 128–131
animation-iteration-count property,

114–118
animation-name, 104–106
animation-play-state, 122–125
animation-timing-function, 107–114
animation-duration, 106–107
shorthand animation property, 131

animationend event, 132, 139
animationiteration event, 132, 139
animationstart event, 132, 139
anticipation, 158–164
appeal, 207–208
arcs, 182–195

B
backface-visibility() property, 43–51
background color transitions

delaying, 79–81
duration of, 66–68
occurring when hovering, 60–61, 63–65
progressive, 60–61
step functions for timing changes in, 69–71

:before and :after pseudo-elements, 58, 62
body property, 212–213

Index

INDE X 299

bounce animation
adding arcs to, 182–195
adding exaggeration to, 197–206
applying solid drawing principle to, 206–207
applying squash and stretch principle, 149–158
creating anticipation in, 158–164
follow-through and overlapping action for,

168–181
secondary actions and ball rotation in, 196
slow in and slow out in, 182
staging and context for, 164–167

bounding box, 19–20
box model

adding padding to, 20
CSS positioning to animate, 96–98
generating DOM events after transitions in,

84–87
inheritance of transform-origin property in,

18–19
layouts in CSS animation, 11
rotating, 14–16, 23
starting/reversing transitions of, 82–83

box-sizing: border-box property, 47, 212–213
browsers. See also IE; Opera Mini

animation support in, 95–96, 146
applying transform matrix in, 26–28
CSS transforms and transitions supported by,

7–9
deciding which to support, 287
preventing Webkit browsers from running non-

Webkit code, 257
resources on, 292
support and vendor prefixes for, 13, 55
transition and animation performance in,

143–144
transition support by, 58, 92
transitioning CSS animatable properties in, 89

buttons
changing text for sidebar navigation, 256–258
modal window, 226–227
triggering animation play with, 123–125

C
card flip

adding to modal window, 234–235, 236, 239–240
backface-visibility() property for, 43–51

Cascading Style Sheets. See CSS
character staging, 164
child elements

controlling 2-D or 3-D rendering of, 39–42
creating new origin for, 18
flattening, 39–42

rendering in 3-D, 41
rotating around parent’s div axis, 42

click events in CSS, 231
color. See also background color transitions

adding to background, 19–20
navigation bar background, 216–217
setting modal window, 228–229

containers
adjusting perspective origin of, 37–39
code for modal window, 226–227

content switcher, 269–285
combining transitions on different properties,

285
event listener for, 273–275
implementing switch statements for, 275–276
listening for page to complete loading, 273
setting up HTML document for, 269–270
sliding content block while modifying opacity

and scale, 275–282
styling window components of, 270–273

coordinate space
stacking contexts in, 30–31
3-dimensional, 34
2-dimensional, 12

CSS (cascading style sheets)
adding multiple transforms to elements, 29–30
animatable properties available for transitions,

89–91
browser support for, 9
choosing transitions or animations, 143
click events in, 231
CSS Shapes Module in future, 11
differences in transitions and animations, 142
overriding preserve-3d value in, 40
polyfills for unsupported, 7–9
properties affecting layout and painting in,

144, 145
similarities in transitions and animations, 141
transformations using, 7
2-dimensional coordinate space for, 12
updated lists of animatable properties, 91
usefulness of JavaScript with, 288
using animations in JavaScript or, 96
visual formatting model for, 11–12

CSSSandpaper polyfill, 13
cubic Bézier curves, 69, 72–78

defining, 72–73
ease curves, 74
ease-in curves, 76
ease-in-out curves, 78
ease-out curves, 77
keywords for, 73, 74–78
linear curves, 75

INDE X300

D
decelerating transitions. See accelerating/decelerating

transitions
delaying

animations, 125–127
transition starts, 79–81

depth cues, 4–5
detecting browser support, 95
Disney Animation (Johnston and Thomas), 148
Disney, Walt, 148–149
Drawn to Life (Stanchfield and Hahn), 208
drop-down menu for navigation bar, 218–223
duration of transitions, 66–68

E
easing

ease curves, 74
ease-in curves, 76, 107–111
ease in/out animation principle, 182
ease-in-out curves, 78
ease-out curves, 77

effects. See also transforms; transitions
resources on, 296–297

elements. See also child elements; pseudo-elements
adding multiple transforms to, 29–30
applying multiple transitions to, 62–63, 92
delaying start of transitions, 79–81
moving to different location, 21–22
numeric values when making smaller, 23
scaling, 22–23
setting transition duration for, 66–68
step functions for timing transitions in, 69–71
translating to different location, 21–22, 52

ending animations, 105, 132, 139
environment for staging, 164–165
event listeners

adding for animation events, 137, 138, 139–140
adding JavaScript, 84
setting up for content switcher, 273–275

events
buttons triggering animation, 123–125
listening for animation, 136, 137–138, 139–140
resources on, 293, 294
transitions firing, 84, 92
types of animation, 131–140

exaggeration, 197–206
example code. See also bounce animation; and specific

examples
content switcher, 269–285
how to use, 212–213
modal windows, 224–241
navigation bar, 213–223

off-canvas sidebar navigation, 242–268
squash and stretch, 150–158

F
Flash animation, 7
flat value for transform-style property, 39
follow-through, 168–181
forms, 227–228
functions

cubic Bézier curves, 69, 72–78
distinguishing 2-D and 3-D, 52
matrix(), 25–28
matrix3d(), 53–54
rotate(), 23, 52
scale(), 22–23, 52
skew(), 24
step, 69–71
3-dimensional, 52–54
translate(), 21–22, 52
2-dimensional transform, 21–28
using multiple transform, 29–30

H
Hahn, Don, 208
hiding/showing

front card face, 46
previously defined @keyframes rule, 103
submenu with opacity, 219–221

hovering
adding animation-name to elements in

:hover state, 106
changing background color when, 60–61, 63–65
reversing transitions when removed, 91–93

HTML
animation using dynamic, 6–7
code for modal windows, 225–226
drop-down menu code in, 218
setting up content switcher document in,

269–270
structuring off-canvas sidebar navigation,

243–246, 260–261

I
icons for menu items, 247
IE (Internet Explorer)

converting CSS transforms to filters in, 13
transitions using, 58
window.getComputedStyle workaround for,

256
workarounds for inline-block method, 216
workaround for preserve-3d, 42

INDE X 301

inheritance for transform-origin property, 18–19
inline-block method, 215–216

J
JavaScript

adding event listeners, 84
animation using, 7
changing animation-name property for

off-canvas sidebar, 254–257
converting transforms to IE filters with, 13
examples used in transform code, 14
finding libraries for animation, 95–96
listening for animation events, 137, 138, 139–140
polyfills for unsupported CSS, 7–9
transitions and ease of control in, 142
usefulness of, 288
using animations in CSS or, 96

Johnston, Ollie, 148
jQuery, 95

K
keyframes. See also @keyframes rule

animation, 94
applying animation-timing-function

between, 107
creating anticipation with, 158–164
defined, 101
defining with @keyframes rule, 101–104
overriding timing functions in, 111, 113, 114
placement of transitions and animations in, 142
resetting property values in, 100
setting up timing with, 197

keywords
all, 62
animation-fill-mode, 128
Bézier curve, 73, 74–78
perspective-origin, 37
transform-origin, 17

L
layers of design needs, 2–3, 288
laying out pages, 143–145
length values in perspective property, 34
libraries for JavaScript animation, 95–96
linear curves, 75
links for navigation bar, 214–217
list items

adding for drop-down menu, 218
displaying horizontally, 215
selecting, 215–216

looping
animations, 114–118, 142, 143
unavailable with transitions, 142

M
matrix math, 25–26, 29
matrix() function, 25–28
matrix3d() function, 53–54
measurements in translate() function, 22
mobile device navigation, 243
modal windows, 224–241

adding card flip to, 234–235, 236
code for opening/closing overlay, 229–231
container and button code for, 226–227
debate over, 224
form labels for, 227–228
HTML code for, 225–226
illustrated, 224–225
moving offscreen, 232–234
scaling to final size, 236–237
setting color and opacity for, 228–229
shrinking, 237–239
using multiple transitional effects in, 239–240

motion. See animation
moving elements to different location, 21–22
ms vendor prefix, 5, 13
multiple animations, 100

N
naming transform property, 16
navigation. See navigation bar; off-canvas sidebar

navigation
navigation bar, 213–223

drop-down menu for, 218–223
illustrated, 213
links for, 214–216
selecting list items from, 215–216
setting background color for, 216–217
setting up horizontal elements for, 215

nested transforms, 28
numbers

about matrices, 25–26
values for making elements smaller, 23

O
objects

applying principle of solid drawing to, 206–207
arcs and motion of, 182–183
rotating around axis, 23
setting origin of transformed, 16–20

INDE X302

objects (continued)
skewing, 24
slow in and slow out of, 182
squashing and stretching, 149–158
staging characters and, 164
visibility of back side of transformed, 43–51

off-canvas sidebar navigation, 242–268
adding animation-* properties to, 248–249
@keyframes rules for opening/closing, 249–254
HTML code for layout, 243–244
icons for menu items, 247
JavaScript changing animation-name property,

254–257
layout for four divs, 244–247
open and closed, 242
preventing Webkit browsers from running non-

Webkit code, 257
second version of, 259–268
suggested enhancements for, 259

opacity
changing as content block slides outside window,

280
combining with scaling effect, 277–279
hiding/showing elements used by browsers, 229
hiding/showing submenu with, 219–221
setting modal window, 228–229, 231–232
transition for changing, 231–232

opening/closing modal window overlay, 229–231
Opera Mini

oTransitionEnd event, 84
transforms with, 13
transitions using, 58

overlapping action, 181, 195–196
overriding

@keyframes rule, 103
preserve-3d value, 40
timing functions in keyframes, 111, 113, 114

P
padding for bounding box, 20
painting elements, 143–145
parent elements

flattening child element on, 39–42
rendering child element in 3-D, 41
rotating child around parent’s div axis, 42

performance
resources on, 294–295
of transitions and animations, 143–144, 217

perspective function, 53
perspective-origin property, 37–39

perspective property
about, 55
setting up 3-dimensional look with, 34–37

polyfills
applying transitions in IE with, 58
resources on, 292
Transformie and CSSSandpaper, 13

pose-to-pose action, 168
positioning

animating box model with CSS, 96–98
relative, 285
using absolute, 284

practicing animation principles, 290
preserve value for transform-style property,

39, 40, 42
progressive enhancement

designing with, 243, 288–289
suggestions for sidebar navigation, 259

properties
affecting layout and painting, 144, 145
applying values to completed animations, 128
CSS animatable, 89–91
effect of transitions and animations on, 142
resources on animatable, 294
setting different values for multiple animation, 100
setting values on transition-*, 92
3-dimensional transform, 34–52, 55
2-dimensional transform, 16–20, 55
using asterisk in, 47

pseudo-elements
:before and :after, 58, 62
support for, 95

R
realistic animation, 147–148, 295
relative positioning, 285
rendering child element in 3-D, 41
resizing. See scaling
resources

animation, 294–295
browser support, 292
detecting browser support, 95
effects, 296–297
performance, 294–295
polyfills, 292
realistic animation, 295–296
transform matrix, 293
transforms, 292
transitions, 293–294
transitions vs. animations, 294–295
twelve principles of animation, 295–296
updated lists of animatable properties, 91

INDE X 303

user interface design, 296
visual formatting model, 293

restraint in animation, 197, 198, 209
reversing

animations, 119–122
transitions, 82–83
transitions when hovering stopped, 91–93

rotate() function, 23, 52
rotations

around origin point, 18–19
bounding box, 19–20
2-D box, 14–16, 23
using 3-dimensional perspective, 36

running and pausing animations, 122–125

S
scale() function, 22–23, 52
scaling

modal window to final size, 236–237, 239–240
shrinking modal windows, 237–240
transform for squash and stretch animation,

153–158
using scale() function, 22–23

secondary action, 195–196
shrinking modal windows, 237–240
skeuomorphic realism, 211, 289
skewing objects, 24
sliding

content block while changing opacity, 280
modal window as it becomes opaque, 232–234,

239–240
modifying content block opacity and scale while,

275–282
off-canvas sidebar on/off canvas, 259–268
smoothing animation for, 98–100
submenu offscreen, 221–222
using CSS positioning in, 96–98

smoothing animation, 98–100
solid drawing, 206–207
squash and stretch, 149–158
stacking contexts, 30–31
staging, 164–167
Stanchfield, Walt, 208
starting animations, 100, 106
states, animation, 142
step functions, 69–71
straight-ahead action, 168
syntax

adding values in step functions, 69
transitioning multiple properties, 62, 81
using asterisk in properties, 47
writing multiple transforms, 29–30

T
:target hack, 231
Thomas, Frank, 148
3-D CSS transforms, 33–52

about, 33–34
backface-visibility() property for, 43–51
browser support for, 7, 8
coordinate space for, 34
distinguishing functions in 2-D and, 52
functions for, 52–54
IE support for, 13
perspective-origin property for, 37–39
perspective property for, 34–37
properties for, 34–52, 55
rotations in 2-D vs., 36–37
transform rendering model for, 30–33

timing
animations, 107–114
applying ease-in-out, 187
overlapping actions with different, 181, 195–196
playing in reverse, 119–122
principle of animation, 196–197
resources on, 293
secondary actions, 195–196
step functions in background color changes,

69–71
transitions, 68–78

transform matrices
math for, 25–26
matrix() function for, 25–28
matrix3d() functions for, 53–54
order in, 29
resources on, 293

transform-origin property
inheritance and, 18–19
perspective-origin property vs., 37, 38
setting values for, 16–20

transform property
about, 14, 55
naming, 16
using perspective function with, 53

transform-style property, 39–42
Transformie polyfill, 13
transforms, 11–55. See also 3-D CSS transforms;

transform matrices; 2-D CSS transforms
about CSS visual formatting model, 11–12
adding multiple transforms to elements, 29–30
browser support and vendor prefixes for, 13, 55
converting to IE filters with JavaScript, 13
creating 2-D rotation, 14–16
functions for 2-D, 21–28
nested, 28
resources on, 292

INDE X304

transforms (continued)
setting fixed point for object, 16–20
transform rendering model for 2- and 3-D,

30–33
used during arcing of bouncing ball, 194
working with, 55–56

transition-* properties
checking mismatched vendor prefixes in, 68
setting values on, 92
transition-delay property, 79–81
transition-duration property, 66–68
transition-property, 62–65
transition-timing-function, 68–78
using shorthand transition property, 81

transitionend event values, 84
transitions, 57–92. See also background color

transitions; transition-* properties
about, 5–6, 57–58, 92
accelerating and decelerating, 68–78
adding multiple transitions to elements, 62–63,

81, 92
adding to background color, 217
animatable property resources, 294
animations vs., 57, 94, 141–145, 217, 294
browser support for, 58, 92
CSS animatable properties for, 89–91
DOM events generated by, 84–88
example code for, 59–62, 63–65
resources on, 293–294
shorthand method for, 81
starting and reversing, 82–83
transition event resources, 293
types of animation for, 6–7
using with drop-down menu, 218–223

translate() function, 21–22, 52
trends in animation, 211, 289
triggering animation play with buttons, 123–125
twelve principles of animation

about, 209–210
additional principles, 208–209
anticipation, 158–164
appeal, 207–208
arcs, 182–195
exaggeration, 197–206
follow-through and overlapping action, 168–181
overview, 148–149
practicing animation principles, 290
resources on, 295–296
secondary action, 195–196
slow in and slow out, 182
solid drawing, 206–207
squash and stretch, 149–158

staging, 164–167
straight-ahead and pose-to-pose actions, 168
timing, 196–197

2-D CSS transforms, 14–33
browser support for, 7, 8
coordinate space for, 12
distinguishing functions in 3-D and, 52
functions for, 21–28
IE support for, 13
properties for, 16–20, 55
rotating box, 14–16
3-D rotations vs., 36–37
transform rendering model for, 30–33

U
underscore hack, 216
user interface design

animation as guide in, 289
animation in, 208, 209, 289
resources on, 296
user expectations of forward and reverse

transitions, 83

V
values

adding for step functions, 69
applying to completed animations, 128
overriding preserve-3d, 40
resetting inside keyframes, 100
setting for transition-* properties, 92
using different values for multiple animation

properties, 100
visibility, 3-D backface, 43–51
visual formatting model, resources on, 293

W
webkit vendor prefix

browser support and, 13, 15
checking mismatches in transition-*

properties, 68
transitions and, 58
webkitTransitionEnd event, 84

website design
about transitions, 5–6
animation in, 3–5, 208, 209, 289
choosing browsers to support, 287
hierarchy of needs in, 2–3, 288
progressive enhancement in, 243, 259, 288–289
trends in, 211, 289

	Table of Contents
	Getting Started
	Chapter 4 Animations
	Browser Support
	Detecting Browser Support
	Finding JavaScript Libraries for Animation

	CSS Animations
	CSS Positioning
	Smoothing the Animation

	The @keyframes Rule
	animation-* Properties
	animation-name Property
	animation-duration Property
	animation-timing-function Property
	animation-iteration-count Property
	animation-direction Property
	animation-play-state Property
	animation-delay Property
	animation- fill-mode Property
	animation Shorthand Property

	Animation Events
	Types of Animation Events

	Transition or Animation
	Similarities
	Differences
	Choosing Transitions or Animations
	Performance

	Summary

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

