
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133965261
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133965261
https://plusone.google.com/share?url=http://www.informit.com/title/9780133965261
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133965261
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133965261/Free-Sample-Chapter

IOS® 8
 FOR PROGRAMMERS:

AN APP-DRIVEN APPROACH
WITH SWIFT™

VOLUME 1, THIRD EDITION
DEITEL® DEVELOPER SERIES

iOS8fp.book Page i Wednesday, November 26, 2014 7:53 AM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13396526-1
ISBN-10: 0-13-396526-0

Text printed in the United States at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, December 2014

iOS8fp.book Page ii Wednesday, November 26, 2014 7:53 AM

IOS® 8
 FOR PROGRAMMERS:

AN APP-DRIVEN APPROACH
WITH SWIFT™

VOLUME 1, THIRD EDITION
DEITEL® DEVELOPER SERIES

Paul Deitel, Harvey Deitel and Abbey Deitel
Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

iOS8fp.book Page iii Wednesday, November 26, 2014 7:53 AM

Deitel® Ser ies Page
Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
iOS® 8 for Programmers: An App-Driven Approach

with Swift™
Java™ for Programmers, 3/E
JavaScript for Programmers

How To Program Series
Android How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, Early Objects Version, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
(continued in next column)

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android App Development Fundamentals, 2/e
C++ Fundamentals
Java™ Fundamentals, 2/e
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 6 App Development Fundamentals
JavaScript Fundamentals
Swift Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—youtube.com/DeitelTV

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com

www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

iOS8fp.book Page iv Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/CourseSmart/
http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

In Memory of Amar G. Bose, MIT Professor and
Founder and Chairman of the Bose Corporation:

It was a privilege being your student—and members
of the next generation of Deitels, who heard our dad
say how your classes inspired him to do his best work.

You taught us that if we go after the really hard prob-
lems, then great things can happen.
Harvey Deitel
Paul and Abbey Deitel

iOS8fp.book Page v Wednesday, November 26, 2014 7:53 AM

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Apple, iOS, iPhone, iPad, iPod touch, Xcode, Swift, Objective-C, Cocoa and Cocoa Touch are trade-
marks or registered trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

iOS8fp.book Page vi Wednesday, November 26, 2014 7:53 AM

Preface xix

Before You Begin xxvii

1 Introduction to iOS 8 App Development
and Swift 1

1.1 Introduction 2
1.2 iPhone and iPad Sales Data 3
1.3 Gestures 4
1.4 Sensors 5
1.5 Accessibility 6
1.6 iPhone 6 and iPhone 6 Plus 7
1.7 iOS Operating System History and Features 8

1.7.1 iPhone Operating System 9
1.7.2 iPhone OS 2: Introducing Third-Party Apps and the App Store 9
1.7.3 iPhone OS 3 9
1.7.4 iOS 4 9
1.7.5 iOS 5 11
1.7.6 iOS 6 12
1.7.7 iOS 7 15

1.8 iOS 8 16
1.9 Apple Watch 18
1.10 App Store 19
1.11 Objective-C 20
1.12 Swift: Apple’s Programming Language of the Future 20

1.12.1 Key Features 20
1.12.2 Performance 22
1.12.3 Error Prevention 22
1.12.4 Swift Standard Library 23
1.12.5 Swift Apps and the Cocoa® and Cocoa Touch® Frameworks 23
1.12.6 Swift and Objective-C Interoperability 23
1.12.7 Other Apple Swift Resources 24

1.13 Can I Use Swift Exclusively? 24
1.13.1 Objective-C Programmers Who Are Developing New iOS Apps

in Swift 24

Contents

iOS8fp.book Page vii Wednesday, November 26, 2014 7:53 AM

viii Contents

1.13.2 Objective-C Programmers Who Are Enhancing Existing
iOS Apps with Swift 25

1.13.3 Java, C++ and C# Programmers Who Are New to iOS
App Development 25

1.13.4 Rapid Evolution Expected 25
1.13.5 Mixing Swift and Objective-C Code 25

1.14 Cocoa Touch® iOS Frameworks 25
1.15 Xcode 6® Integrated Development Environment 31
1.16 Object Oriented-Programming Review 33

1.16.1 Automobile as an Object 34
1.16.2 Methods and Classes 34
1.16.3 Instantiation 34
1.16.4 Reuse 34
1.16.5 Messages and Method Calls 35
1.16.6 Attributes and Properties 35
1.16.7 Encapsulation and Information Hiding 35
1.16.8 Inheritance 35
1.16.9 Protocols 35
1.16.10 Design Patterns 36

1.17 Test-Driving the Tip Calculator App in the iPhone and
iPad Simulators 36

1.18 What Makes a Great App? 38
1.19 iOS Security 40
1.20 iOS Publications and Forums 41
1.21 Wrap-Up 42

2 Welcome App 43
Dive-Into® Xcode: Introducing Visual User Interface Design with Cocoa
Touch, Interface Builder, Storyboarding and Auto Layout, Universal
Apps, Accessibility, Internationalization
2.1 Introduction 44
2.2 Technologies Overview 45

2.2.1 Xcode and Interface Builder 45
2.2.2 Labels and Image Views 45
2.2.3 Asset Catalogs and Image Sets 46
2.2.4 Running the App 46
2.2.5 Accessibility 46
2.2.6 Internationalization 46

2.3 Creating a Universal App Project with Xcode 46
2.3.1 Launching Xcode 47
2.3.2 Projects and App Templates 47
2.3.3 Creating and Configuring a Project 48

2.4 Xcode Workspace Window 49
2.4.1 Navigator Area 50

iOS8fp.book Page viii Wednesday, November 26, 2014 7:53 AM

Contents ix

2.4.2 Editor Area 50
2.4.3 Utilities Area and Inspectors 51
2.4.4 Debug Area 51
2.4.5 Xcode Toolbar 51
2.4.6 Project Navigator 52
2.4.7 Keyboard Shortcuts 52

2.5 Storyboarding the Welcome App’s UI 52
2.5.1 Configuring the App for Portrait and Landscape Orientations 53
2.5.2 Providing an App Icon 53
2.5.3 Creating an Image Set for the App’s Image 55
2.5.4 Overview of the Storyboard and the Xcode Utilities Area 56
2.5.5 Adding an Image View to the UI 58
2.5.6 Using Inspectors to Configure the Image View 58
2.5.7 Adding and Configuring the Label 60
2.5.8 Using Auto Layout to Support Different Screen Sizes

and Orientations 62
2.6 Running the Welcome App 64

2.6.1 Testing on the iOS Simulator 64
2.6.2 Testing on a Device (for Paid Apple iOS Developer

Program Members Only) 67
2.7 Making Your App Accessible 67

2.7.1 Enabling Accessibility for the Image View 67
2.7.2 Confirming Accessibility Text with the Simulator’s

Accessibility Inspector 68
2.8 Internationalizing Your App 69

2.8.1 Locking Your UI During Translation 70
2.8.2 Exporting Your UI’s String Resources 71
2.8.3 Translating the String Resources 72
2.8.4 Importing the Translated String Resources 72
2.8.5 Testing the App in Spanish 73

2.9 Wrap-Up 74

3 Tip Calculator App 75
Introducing Swift, Text Fields, Sliders, Outlets, Actions, View
Controllers, Event Handling, NSDecimalNumber, NSNumberFormatter
and Automatic Reference Counting
3.1 Introduction 76
3.2 Technologies Overview 77

3.2.1 Swift Programming 77
3.2.2 Swift Apps and the Cocoa Touch® Frameworks 78
3.2.3 Using the UIKit and Foundation Frameworks in Swift Code 79
3.2.4 Creating Labels, a Text Field and a Slider with Interface Builder 79
3.2.5 View Controllers 79
3.2.6 Linking UI Components to Your Swift Code 79

iOS8fp.book Page ix Wednesday, November 26, 2014 7:53 AM

x Contents

3.2.7 Performing Tasks After a View Loads 80
3.2.8 Financial Calculations with NSDecimalNumber 80
3.2.9 Formatting Numbers as Locale-Specific Currency and

Percentage Strings 82
3.2.10 Bridging Between Swift and Objective-C Types 82
3.2.11 Swift Operator Overloading 82
3.2.12 Variable Initialization and Swift Optional Types 82
3.2.13 Value Types vs. Reference Types 83
3.2.14 Code Completion in the Source-Code Editor 84

3.3 Building the App’s UI 85
3.3.1 Creating the Project 85
3.3.2 Configuring the Size Classes for Designing a Portrait

Orientation iPhone App 86
3.3.3 Adding the UI Components 86
3.3.4 Adding the Auto Layout Constraints 93

3.4 Creating Outlets with Interface Builder 96
3.5 Creating Actions with Interface Builder 99
3.6 Class ViewController 100

3.6.1 import Declarations 101
3.6.2 ViewController Class Definition 101
3.6.3 ViewController’s @IBOutlet Properties 102
3.6.4 Other ViewController Properties 103
3.6.5 Overridden UIViewController method viewDidLoad 103
3.6.6 ViewController Action Method calculateTip 104
3.6.7 Global Utility Functions Defined in ViewController.swift 107

3.7 Wrap-Up 109

4 Twitter®
 Searches App 111

Master-Detail Applications, Split View Controllers, Navigation
Controllers, Storyboard Segues, Social Framework Sharing, User Defaults,
iCloud Key–Value Storage, Collections, Web Views, Alert Dialogs
4.1 Introduction 112
4.2 Test-Driving the App 113
4.3 Technologies Overview 120

4.3.1 Master-Detail Application Template 120
4.3.2 Web View—Displaying Web Content in an App 120
4.3.3 Swift: Array and Dictionary Collections 120
4.3.4 NSUserDefaults—Local Key–Value Pair Storage for App Settings 122
4.3.5 iCloud Key–Value Pair Storage with NSUbiquitousKeyValueStore 122
4.3.6 Social Framework 123
4.3.7 Model-View-Controller (MVC) Design Pattern 123
4.3.8 Swift: Conforming to Protocols 124
4.3.9 Swift: Exposing Methods to Cocoa Touch Libraries 125
4.3.10 UIAlertController for Alert Dialogs 125

iOS8fp.book Page x Wednesday, November 26, 2014 7:53 AM

Contents xi

4.3.11 UILongPressGestureRecognizer 125
4.3.12 iOS Design Patterns Used in This App 125
4.3.13 Swift: External Parameter Names 126
4.3.14 Swift: Closures 127

4.4 Building the App’s UI 128
4.4.1 Creating the Project 128
4.4.2 Examining the Default Master-Detail Application 129
4.4.3 Configuring the Master and Detail Views 131
4.4.4 Creating class Model 131

4.5 Class Model 131
4.5.1 ModelDelegate Protocol 132
4.5.2 Model Properties 132
4.5.3 Model Initializer and synchronize Method 133
4.5.4 Methods tagAtIndex, queryForTag and queryForTagAtIndex,

and Property count 136
4.5.5 Method deleteSearchAtIndex 137
4.5.6 Method moveTagAtIndex 137
4.5.7 Method updateUserDefaults 138
4.5.8 Method updateSearches 139
4.5.9 Method performUpdates 140
4.5.10 Method saveQuery 141

4.6 Class MasterViewController 141
4.6.1 MasterViewController Properties and modelDataChanged Method 141
4.6.2 Method awakeFromNib 143
4.6.3 Overridden UIViewController Method viewDidLoad and

Method addButtonPressed 143
4.6.4 Methods tableViewCellLongPressed and

displayLongPressOptions 145
4.6.5 Method displayAddEditSearchAlert 147
4.6.6 Method shareSearch 149
4.6.7 Overridden UIViewController Method prepareForSegue 150
4.6.8 Method urlEncodeString 151
4.6.9 UITableViewDataSource Callback Methods 151

4.7 Class DetailViewController 154
4.7.1 Overridden UIViewController Method viewDidLoad 156
4.7.2 Overridden UIViewController Method viewDidAppear 156
4.7.3 Overridden UIViewController Method viewWillDisappear 156
4.7.4 UIWebViewDelegate Protocol Methods 156

4.8 Wrap-Up 157

5 Flag Quiz App 158
UISegmentedControls, UISwitches, Outlet Collections, View Anima-
tions, UINavigationController, Segues, NSBundle, Scheduling Tasks
with Grand Central Dispatch

iOS8fp.book Page xi Wednesday, November 26, 2014 7:53 AM

xii Contents

5.1 Introduction 159
5.2 Test-Driving the Flag Quiz App 161
5.3 Technologies Overview 165

5.3.1 Designing a Storyboard from Scratch 165
5.3.2 UINavigationController 165
5.3.3 Storyboard Segues 165
5.3.4 UISegmentedControls 165
5.3.5 UISwitches 165
5.3.6 Outlet Collections 166
5.3.7 Using the App’s Main NSBundle to Get a List of Image Filenames 166
5.3.8 Using Grand Central Dispatch to Perform a Task in the Future 166
5.3.9 Applying an Animation to a UIView 167
5.3.10 Darwin Module—Using Predefined C Functions 167
5.3.11 Random-Number Generation 167
5.3.12 Swift Features Introduced 168

5.4 Building the GUI 170
5.4.1 Creating the Project 170
5.4.2 Designing the Storyboard 171
5.4.3 Configuring the View Controller Classes 173
5.4.4 Creating the UI for the QuizViewController 173
5.4.5 Auto Layout Settings for the QuizViewController UI 175
5.4.6 QuizViewController Outlets and Actions 175
5.4.7 Creating the UI for the SettingsViewController 176
5.4.8 SettingsViewController Outlets and Actions 177
5.4.9 Creating Class Model 178
5.4.10 Adding the Flag Images to the App 178

5.5 Model Class 178
5.5.1 ModelDelegate Protocol 178
5.5.2 Model Properties 179
5.5.3 Model Initializer and regionsChanged Method 180
5.5.4 Model Computed Properties 182
5.5.5 Model Methods toggleRegion, setNumberOfGuesses and

notifyDelegate 182
5.5.6 Model Method newQuizCountries 183

5.6 QuizViewController Class 184
5.6.1 Properties 184
5.6.2 Overridden UIViewController Method viewDidLoad, and

Methods settingsChanged and resetQuiz 185
5.6.3 Methods nextQuestion and countryFromFilename 186
5.6.4 Method submitGuess 188
5.6.5 Method shakeFlag 190
5.6.6 Method displayQuizResults 191
5.6.7 Overridden UIViewController Method prepareForSegue 192
5.6.8 Array Extension shuffle 193

5.7 SettingsViewController Class 193
5.7.1 Properties 193

iOS8fp.book Page xii Wednesday, November 26, 2014 7:53 AM

Contents xiii

5.7.2 Overridden UIViewController Method viewDidLoad 194
5.7.3 Event Handlers and Method displayErrorDialog 195
5.7.4 Overridden UIViewController Method viewWillDisappear 196

5.8 Wrap-Up 196

6 Cannon Game App 198
Xcode Game Template, SpriteKit, Animation, Graphics, Sound, Physics,
Collision Detection, Scene Transitions, Listening for Touches
6.1 Introduction 199
6.2 Test-Driving the Cannon Game App 202
6.3 Technologies Overview 203

6.3.1 Xcode Game Template and SpriteKit 203
6.3.2 Adding Sound with the AVFoundation Framework and

AVAudioPlayer 204
6.3.3 SpriteKit Framework Classes 204
6.3.4 SpriteKit Game Loop and Animation Frames 205
6.3.5 Physics 206
6.3.6 Collision Detection and the SKPhysicsContactDelegate Protocol 206
6.3.7 CGGeometry Structures and Functions 207
6.3.8 Overriding UIResponder Method touchesBegan 208
6.3.9 Game-Element Sizes and Velocities Based on Screen Size 208
6.3.10 Swift Features 208
6.3.11 NSLocalizedString 209

6.4 Creating the Project and Classes 209
6.5 Class GameViewController 211

6.5.1 Overridden UIViewController Method viewDidLoad 212
6.5.2 Why Are the AVAudioPlayer Variables Global? 213
6.5.3 Autogenerated Methods That We Deleted from Class

GameViewController 213
6.6 Class Blocker 213

6.6.1 BlockerSize enum and Class Blocker’s Properties 214
6.6.2 Blocker Initializers 214
6.6.3 Methods startMoving, playHitSound and blockerTimePenalty 217

6.7 Class Target 218
6.7.1 TargetSize and TargetColor enums 218
6.7.2 Class Target Properties 219
6.7.3 Target Initializers 219
6.7.4 Methods startMoving, playHitSound and targetTimeBonus 220

6.8 Class Cannon 221
6.8.1 Cannon Properties 221
6.8.2 Cannon Initializers 222
6.8.3 Method rotateToPointAndFire 223
6.8.4 Methods fireCannonball and createCannonball 224

6.9 Class GameScene 226
6.9.1 CollisionCategory struct 226

iOS8fp.book Page xiii Wednesday, November 26, 2014 7:53 AM

xiv Contents

6.9.2 GameScene Class Definition and Properties 227
6.9.3 Overridden SKScene Method didMoveToView 228
6.9.4 Method createLabels 230
6.9.5 SKPhysicsContactDelegate Method didBeginContact and

Supporting Methods 231
6.9.6 Overridden UIResponder Method touchesBegan 233
6.9.7 Overridden SKScene Method update and Method gameOver 234

6.10 Class GameOverScene 235
6.11 Programmatic Internationalization 237
6.12 Wrap-Up 240

7 Doodlz App 242
Multi-Touch Event Handling, Graphics, UIBezierPaths, Drawing
with a Custom UIView Subclass, UIToolbar, UIBarButtonItem,
Accelerometer Sensor and Motion Event Handling
7.1 Introduction 243
7.2 Test-Driving the Doodlz App 244
7.3 Technologies Overview 249

7.3.1 Drawing with UIView Subclasses, Method drawRect,
UIBezierPaths and the UIKit Graphics System 249

7.3.2 Processing Multiple Touch Events 250
7.3.3 Listening for Motion Events 250
7.3.4 Rendering the Drawing as a UIImage 250
7.3.5 Storyboard Loading Initialization 251

7.4 Building the App’s UI and Adding Its Custom Classes 251
7.4.1 Creating the Project 251
7.4.2 Creating the Initial View Controller’s User Interface 252
7.4.3 Creating the Color View Controller’s User Interface 254
7.4.4 Creating the Stroke View Controller’s User Interface 255
7.4.5 Adding the Squiggle Class 257

7.5 ViewController Class 257
7.5.1 ViewController Class Definition, Property and Delegate Methods 257
7.5.2 Overridden UIViewController Method prepareForSeque 258
7.5.3 ViewController Methods undoButtonPressed,

clearButtonPressed and displayEraseDialog 259
7.5.4 Overridden UIResponder Method motionEnded 260
7.5.5 ViewController Method actionButtonPressed 260

7.6 Squiggle Class 261
7.7 DoodleView Class 262

7.7.1 DoodleView Properties 262
7.7.2 DoodleView Initializer 262
7.7.3 DoodleView Methods undo and clear 263
7.7.4 Overridden UIView Method drawRect 263
7.7.5 Overridden UIResponder Methods for Touch Handling 264

iOS8fp.book Page xiv Wednesday, November 26, 2014 7:53 AM

Contents xv

7.7.6 DoodleView Computed Property image 266
7.8 ColorViewController Class 267

7.8.1 ColorViewControllerDelegate Protocol and the Beginning of
Class ColorViewController 267

7.8.2 Overridden UIViewController Method viewDidLoad 268
7.8.3 ColorViewController Methods colorChanged and done 268

7.9 StrokeViewController Class 269
7.9.1 SampleLineView Subclass of UIView 269
7.9.2 StrokeViewControllerDelegate Protocol and the Beginning of

Class StrokeViewController 270
7.9.3 Overridden UIViewController Method viewDidLoad 270
7.9.4 StrokeViewController Methods lineWidthChanged and done 271

7.10 Wrap-Up 271

8 Address Book App 273
Core Data Framework, Master-Detail Template with Core Data
Support, Xcode Data Model Editor, UITableView with Static Cells,
Programmatically Scrolling UITableViews
8.1 Introduction 274
8.2 Test-Driving the Address Book App 276
8.3 Technologies Overview 279

8.3.1 Enabling Core Data Support 279
8.3.2 Data Model and Xcode’s Data Model Editor 280
8.3.3 Core Data Framework Classes and Protocols 280
8.3.4 UITableViewController Cell Styles 281
8.3.5 UITableViewController with Static Cells 281
8.3.6 Listening for Keyboard Show and Hide Notifications 281
8.3.7 Programmatically Scrolling a UITableView 281
8.3.8 UITextFieldDelegate Methods 281

8.4 Creating the Project and Configuring the Data Model 282
8.4.1 Creating the Project 282
8.4.2 Editing the Data Model 282
8.4.3 Generating the Contact Subclass of NSManagedObject 283

8.5 Building the GUI 285
8.5.1 Customizing the MasterViewController 285
8.5.2 Customizing the DetailViewController 285
8.5.3 Adding the AddEditViewController 286
8.5.4 Adding the InstructionsViewController 287

8.6 MasterViewController Class 288
8.6.1 MasterViewController Class, Properties and awakeFromNib

Method 288
8.6.2 Overridden UIViewController Method viewWillAppear and

Method displayFirstContactOrInstructions 289
8.6.3 Overridden UIViewController Method viewDidLoad 290

iOS8fp.book Page xv Wednesday, November 26, 2014 7:53 AM

xvi Contents

8.6.4 Overridden UIViewController Method prepareForSegue 291
8.6.5 AddEditTableViewControllerDelegate Method didSaveContact 292
8.6.6 DetailViewControllerDelegate Method didEditContact 294
8.6.7 Method displayError 294
8.6.8 UITableViewDelegate Methods 294
8.6.9 Autogenerated NSFetchedResultsController and

NSFetchedResultsControllerDelegate Methods 296
8.7 DetailViewController Class 299

8.7.1 DetailViewControllerDelegate Protocol 300
8.7.2 DetailViewController Properties 300
8.7.3 Overridden UIViewController Method viewDidLoad and

Method displayContact 301
8.7.4 AddEditTableViewControllerDelegate Method

didSaveContact 302
8.7.5 Overridden UIViewController Method prepareForSegue 302

8.8 AddEditTableViewController Class 303
8.8.1 AddEditTableViewControllerDelegate Protocol 303
8.8.2 AddEditTableViewController Properties 303
8.8.3 Overridden UIViewController Methods viewWillAppear

and viewWillDisappear 304
8.8.4 Overridden UIViewController Method viewDidLoad 305
8.8.5 Methods keyboardWillShow and keyboardWillHide 306
8.8.6 UITextFieldDelegate Method textFieldShouldReturn 307
8.8.7 @IBAction saveButtonPressed 308

8.9 AppDelegate Class 309
8.9.1 UIApplicationDelegate Protocol Method application:

didFinishLaunchingWithOptions: 309
8.9.2 UISplitViewControllerDelegate Protocol Method 309
8.9.3 Properties and Methods That Support the App’s Core

Data Capabilities 310
8.10 Wrap-Up 311

9 App Store and App Business Issues 312
Introducing the iOS Developer Program and iTunes® Connect
9.1 Introduction 313
9.2 iOS Developer Program: Setting Up Your Profile for Testing and

Submitting Apps 313
9.2.1 Setting Up Your Development Team 314
9.2.2 Provisioning a Device for App Testing 315
9.2.3 TestFlight Beta Testing 316
9.2.4 Creating Explicit App IDs 317

9.3 iOS Human Interface Guidelines 317
9.4 Preparing Your App for Submission through iTunes Connect 318
9.5 Pricing Your App: Fee or Free 321

9.5.1 Paid Apps 321

iOS8fp.book Page xvi Wednesday, November 26, 2014 7:53 AM

Contents xvii

9.5.2 Free Apps 322
9.6 Monetizing Apps 324

9.6.1 Using In-App Purchase to Sell Virtual Goods 324
9.6.2 iAd In-App Advertising 325
9.6.3 App Bundles 326
9.6.4 Developing Custom Apps for Organizations 326

9.7 Managing Your Apps with iTunes Connect 327
9.8 Information You’ll Need for iTunes Connect 328
9.9 iTunes Connect Developer Guide: Steps for Submitting Your App to Apple 330
9.10 Marketing Your App 331
9.11 Other Popular Mobile App Platforms 336
9.12 Tools for Multiple-Platform App Development 336
9.13 Wrap-Up 337

Index 339

iOS8fp.book Page xvii Wednesday, November 26, 2014 7:53 AM

This page intentionally left blank

Welcome to the world of iOS® 8 app development with Apple’s new and rapidly evolving
Swift™ programming language, the Cocoa Touch® frameworks and the Xcode® 6 devel-
opment tools.

iOS® 8 for Programmers: An App-Driven Approach with Swift™, Volume 1, 3/e presents
leading-edge mobile computing technologies for professional software developers. At the
heart of the book is our app-driven approach—we present concepts in the context of seven
completely coded and fully tested iOS 8 apps rather than using code snippets. We’ve always
favored teaching by example—in an app-development world, the best examples are real,
working apps.

Chapters 2–8 each present one app. We begin each of these chapters with an introduc-
tion to the app, an app test-drive showing one or more sample executions and a technologies
overview. Then we proceed with a detailed source code walkthrough. We don’t try to be
exhaustive—our goal is to get you developing apps quickly with the Xcode 6 integrated
development environment, the Swift programming language and the Cocoa Touch frame-
works. All of the source code is available at

We recommend that you keep the code open in the IDE as you read the book. You should
study the apps sequentially because each introduces technologies that are used in subse-
quent apps.

This book is Volume 1 of what will become a multi-volume set. Volume 1 presents
seven fully coded apps of increasingly rich functionality. The apps cover a range of topics
from simple visual programming (without code), to simple programming with Swift, to
more involved programming.

Explosive Growth of the iPhone and iPad Is Creating Opportunity
for Developers
iPhone and iPad device sales have been growing exponentially, creating significant oppor-
tunities for iOS app developers. The first-generation iPhone, released in June 2007, sold
6.1 million units in its initial five quarters of availability.1 The iPhone 5s and the iPhone
5c, released simultaneously in September 2013, sold over nine million combined in the first
three days of availability.2 The most recent iPhone 6 and iPhone 6 Plus, announced in Sep-
tember 2014, pre-sold four million combined in just one day—double the number of

http://www.deitel.com/books/iOS8FP1

1. http://www.apple.com/pr/library/2009/07/21results.html.
2. https://www.apple.com/pr/library/2013/09/23First-Weekend-iPhone-Sales-Top-Nine-

Million-Sets-New-Record.html.

Preface

iOS8fp.book Page xix Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/iOS8FP1
http://www.apple.com/pr/library/2009/07/21results.html
https://www.apple.com/pr/library/2013/09/23First-Weekend-iPhone-Sales-Top-Nine-Million-Sets-New-Record.html
https://www.apple.com/pr/library/2013/09/23First-Weekend-iPhone-Sales-Top-Nine-Million-Sets-New-Record.html

xx Preface

iPhone 5 pre-sales in its first day of pre-order availability.3 Apple sold 10 million iPhone 6
and iPhone 6 Plus units combined in their first weekend of availability.4

Sales of the iPad are equally impressive. The first generation iPad, launched in April
2010, sold 3 million units in its first 80 days of availability5 and over 40 million worldwide
by September 2011.6 The iPad mini with Retina display (the second-generation iPad
mini) and the iPad Air (the fifth-generation iPad) were released in November 2013. In just
the first quarter of 2014, Apple sold a record 26 million iPads.7

There are over 1.3 million apps in the App Store8 and over 75 billion iOS apps have
been downloaded.9 The potential for iOS app developers is enormous.

SafariBooksOnline e-Book and LiveLessons Videos
If you have a subscription to Safari Books Online (www.safaribooksonline.com), check
out the e-book and LiveLessons video versions of iOS® 8 for Programmers: An App-Driven
Approach with Swift. Safari is a subscription service popular with large companies, colleges,
libraries and individuals who would like access to video training and electronic versions of
print publications.

Copyright Notice and Code License
All of the code and iOS apps in the book are copyrighted by Deitel & Associates, Inc. The sample
iOS apps are licensed under a Creative Commons Attribution 3.0 Unported License (http://
creativecommons.org/licenses/by/3.0), with the exception that they may not be reused
in any way in educational tutorials and textbooks, whether free or for a fee and whether
in print or digital format. Additionally, the authors and publisher make no warranty of any
kind, expressed or implied, with regard to these programs or to the documentation contained in
this book. The authors and publisher shall not be liable in any event for incidental or conse-
quential damages in connection with, or arising out of, the furnishing, performance, or use of
these programs. You’re welcome to use the apps in the book as shells for your own apps, building
on their existing functionality. If you have any questions, contact us at deitel@deitel.com.

Intended Audience
This book is part of the Deitel Developer Series intended for experienced programmers who
know object-oriented programming in a C-based programming language such as Objec-
tive-C, Java, C# or C++. Objective-C experience is helpful, but not specifically required.
If you have not worked in any of these languages, you should still be able to learn a good
amount of iOS 8 app development and object-oriented programming in Swift and Cocoa

3. http://techcrunch.com/2014/09/15/apple-sells-4m-iphone-6-and-6-plus-pre-orders-

in-opening-24-hours/.
4. http://www.apple.com/pr/library/2014/09/22First-Weekend-iPhone-Sales-Top-10-

Million-Set-New-Record.html.
5. http://www.ipadinsider.com/tag/ipad-sales-figures/.
6. http://www.statista.com/statistics/180656/sales-of-tablets-and-ipads-in-the-us-

until-2012/.
7. http://www.theverge.com/2014/1/27/5350106/apple-q1-2014-earnings.
8. http://mashable.com/2014/09/09/apple-1-3-million-apps-app-store/.
9. http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-

seen-75-billion-downloads-to-date/.

iOS8fp.book Page xx Wednesday, November 26, 2014 7:53 AM

http://www.safaribooksonline.com
http://www.apple.com/pr/library/2014/09/22First-Weekend-iPhone-Sales-Top-10-Million-Set-New-Record.html
http://www.apple.com/pr/library/2014/09/22First-Weekend-iPhone-Sales-Top-10-Million-Set-New-Record.html
http://techcrunch.com/2014/09/15/apple-sells-4m-iphone-6-and-6-plus-pre-orders-in-opening-24-hours/
http://techcrunch.com/2014/09/15/apple-sells-4m-iphone-6-and-6-plus-pre-orders-in-opening-24-hours/
http://www.ipadinsider.com/tag/ipad-sales-figures/
http://www.statista.com/statistics/180656/sales-of-tablets-and-ipads-in-the-us-until-2012/
http://www.statista.com/statistics/180656/sales-of-tablets-and-ipads-in-the-us-until-2012/
http://www.theverge.com/2014/1/27/5350106/apple-q1-2014-earnings
http://mashable.com/2014/09/09/apple-1-3-million-apps-app-store/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-1-2-million-apps-has-seen-75-billion-downloads-to-date/
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

Preface xxi

Touch by reading the code and our code walkthroughs, running the apps and observing
the results. We review the basics of object-oriented programming in Chapter 1. We also
assume that you’re comfortable with OS X, as you’ll need to work on a Mac to develop
iOS apps. The book does not include exercises.

This book is not a Swift tutorial, but it presents a significant amount of Swift in the
context of iOS 8 app development. If you’re interested in learning Swift, check out our
publications:

• Swift for Programmers print book (www.deitel.com/books/swiftfp). This book
is also available as an e-book on SafariBooksOnline.com, Informit.com, Ama-
zon® Kindle® and a growing number of other electronic platforms.

• Swift Fundamentals: Parts I, II and III LiveLessons videos (www.deitel.com/
books/LiveLessons), available on SafariBooksOnline.com, Informit.com,
Udemy.com and soon on other popular e-learning platforms.

Academic Bundle iOS® 8 for Programmers and Swift™ for Programmers
The Academic Bundle iOS® 8 for Programmers and Swift™ for Programmers is designed for
professionals, students and instructors interested in learning or teaching iOS 8® app de-
velopment with a broader and deeper treatment of Swift. You can conveniently order the
Academic Bundle with one ISBN: 0-13-408775-5. The Academic Bundle includes:

• Swift™ for Programmers (print book)

• iOS® 8 for Programmers: An App-Driven Approach with Swift™, Volume 1, 3/e
(print book)

• Access Code Card for Academic Package to accompany Swift™ for Programmers

• Access Code Card for Academic Package to accompany iOS® 8 for Programmers:
An App-Driven Approach with Swift™, Volume 1, 3/e

The two Access Code Cards for the Academic Packages (when used together) give you ac-
cess to the companion websites, which include self-review questions (with answers), short-
answer questions, programming exercises, programming projects and selected videos cho-
sen to get you up to speed quickly with Xcode 6, visual programming and basic Swift-
based, iOS 8 programming.

Ordering the Books and Supplements Separately
The print books and Access Code Cards may be purchased separately using the following
ISBNs:

• Swift™ for Programmers (print book): ISBN 0-13-402136-3

• Standalone access code card for Academic Package to accompany Swift™ for Pro-
grammers: ISBN 0-13-405818-6

• iOS® 8 for Programmers: An App-Driven Approach with Swift™ (print book):
ISBN 0-13-396526-0

• Standalone access code card for Academic Package to accompany iOS® 8 for
Programmers: An App Driven Approach with Swift™, Volume 1, 3/e: ISBN 0-13-
405825-9

iOS8fp.book Page xxi Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/swiftfp
http://www.deitel.com/books/LiveLessons
http://www.deitel.com/books/LiveLessons

xxii Preface

Instructor Supplements
Instructor supplements are available online at Pearson’s Instructor Resource Center IRC).
The supplements include:

• Solutions Manual with selected solutions to the short-answer exercises.

• Test Item File of multiple-choice examination questions (with answers).

• PowerPoint® slides with the book’s source code and tables.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center.
Certified instructors who adopt the book for their courses can obtain password access
from their regular Pearson sales representatives (www.pearson.com/replocator). Solu-
tions are not provided for “project” exercises.

Key Features of iOS® 8 for Programmers: An App-Driven Approach
with Swift™, Volume 1, 3/e
Here are some of this book’s key features:

App-Driven Approach. Chapters 2–8 each present one completely coded app—we discuss
what the app does, show screen shots of the app in action, test-drive it and overview the
technologies and architecture we’ll use to build it. Then we build the app’s GUI and re-
source files, present the complete code and do a detailed code walkthrough. We discuss
the Swift programming concepts and demonstrate the functionality of the Cocoa Touch
APIs used in the app.

Swift Programming Language. Swift was arguably the most significant announcement at
Apple’s Worldwide Developers Conference in 2014. Although apps can still be pro-
grammed in Objective-C, Swift is Apple’s language of the future for app development and
systems programming.

We’ve programmed all the book’s apps in Swift—previous editions were programmed
in Objective-C. Swift is a contemporary language with simpler syntax than Objective-C.
It enables a clean, concise coding style and has a strong focus on error prevention. Our
own experience with Swift has been that we can develop apps faster and with significantly
less code than when we program in Objective-C.

At the time of this writing, Apple had not as yet published coding guidelines for
Swift—we’ll conform to them when they appear. We use a mix of Apple's Objective-C
coding guidelines and Deitel coding guidelines for this edition.

Cocoa Touch Frameworks. Cocoa Touch is the groups of reusable components (known as
frameworks) for building iOS apps. Throughout this edition, we use many of the Cocoa
Touch features and frameworks, even though they’re programmed mostly in Objective-C.
Apple has made this easy with a technique called “bridging.” We simply call Cocoa Touch
methods and receive the returns transparently—it feels as if Cocoa Touch is written in
Swift.

iOS SDK 8. Between Volumes 1 and 2 of iOS® 8 for Programmers: An App-Driven Ap-
proach with Swift™, Volume 1, 3/e, we cover a broad range of the features included in iOS
Software Development Kit (SDK) 8.

iOS8fp.book Page xxii Wednesday, November 26, 2014 7:53 AM

http://www.pearson.com/replocator

Preface xxiii

Xcode 6. Apple’s Xcode integrated development environment (IDE) and its associated
tools for Mac OS X, combined with the iOS 8 Software Development Kit (SDK), provide
all the software you need to develop and test iOS 8 apps.

Instruments. The Instruments tool, which is packaged with the SDK, is used to inspect
apps while they’re running to check for memory leaks, monitor processor (CPU) usage
and network activity, and review the objects allocated in memory.

iOS Human Interface Guidelines. We encourage you to read Apple’s iOS Human Interface
Guidelines (HIG) and follow them as you design and develop your apps. The HIG discusses
human interface principles, app design strategies, user experience guidelines, iOS technol-
ogy usage guidelines and more. We gradually introduce HIG issues as we encounter them
in the apps we develop. Section 9.3 overviews the HIG, discusses features and functionality
required to get your app accepted on the App Store and lists reasons why Apple rejects apps.

Multimedia. The apps use iOS 8 multimedia capabilities, including graphics, images, ani-
mation and audio. We’ll present video capabilities in Volume 2.

iOS App Design Patterns. This book adheres to Apple’s app coding standards, including
design patterns, such as Model-View-Controller (MVC), Delegation, Target-Action and
Observer.

Features
Syntax Coloring. For readability, we syntax color the code, similar to Xcode’s use of syntax
coloring. Our syntax-coloring conventions are as follows:

Code Highlighting. We highlight the key code segments in each app that exercise the new
technologies the app features.

Using Fonts for Emphasis. We place key terms and the index’s page reference for each
term’s defining occurrence in bold maroon text for easier reference. We emphasize on-
screen components in the bold Helvetica font (e.g., the File menu) and emphasize Swift
program text in the Lucida font (for example, var x = 5).

Source Code. All of the source-code examples are available for download from:

Documentation. All of the manuals that you’ll need to develop iOS 8 apps are available
free at http://developer.apple.com/ios.

Chapter Objectives. Each chapter begins with a list of objectives.

Figures. Abundant tables, source-code listings and iOS screen shots are included.

Index. We include an extensive index, which is especially useful when you use the book as
a reference. Defining occurrences of key terms are highlighted with a bold page number.

comments appear in green

keywords appear in blue
constants and literal values appear in light blue

all other code appears in black

http://www.deitel.com/books/iOS8FP1/

iOS8fp.book Page xxiii Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/iOS8FP1/
http://developer.apple.com/ios

xxiv Preface

iOS® 8 for Programmers: An App-Driven Approach with Swift™,
Volume 2
Volume 2 of this series will contain additional app-development chapters. For the status
of Volume 2 and for continuing book updates, visit

iOS® 8 Fundamentals LiveLessons Video Training Products
Our iOS 8 Fundamentals LiveLessons videos show you what you need to know to start build-
ing robust, powerful iOS apps with the iOS Software Development Kit (SDK) 8, the Swift
programming language, Xcode and Cocoa Touch. It will include approximately 10+ hours
of expert training synchronized with iOS® 8 for Programmers: An App-Driven Approach with
Swift™, Volume 1, 3/e. For additional information about Deitel LiveLessons video products,
visit

or contact us at deitel@deitel.com. You can also access our LiveLessons videos if you
have a subscription to Safari Books Online (www.safaribooksonline.com). You can get a
free 10-day subscription to SafariBooksOnline at

Acknowledgments
We’d like to thank Barbara Deitel for long hours spent researching iOS 8 and its many
related technologies.

Pearson Education Team
We’re fortunate to have worked on this project with the dedicated publishing professionals
at Prentice Hall/Pearson. We appreciate the extraordinary efforts and 19-year mentorship
of our friend and professional colleague Mark L. Taub, Editor-in-Chief of Pearson Tech-
nology Group. Kim Boedigheimer recruited distinguished members of the iOS commu-
nity to review the manuscript and she managed the review process. We selected the cover
art and Chuti Prasertsith designed the cover. John Fuller managed the book’s publication.

Reviewers
We wish to acknowledge the efforts of our current and recent editions reviewers. They
scrutinized the text and the programs and provided countless suggestions for improving
the presentation.

iOS 8 edition reviewers: Scott Bossak (Lead iOS Developer, Thrillist Media Group),
Charles E. Brown (Independent Contractor affiliated with Apple and Adobe), Matt Gal-
loway (iOS Developer and author of Effective Objective-C 2.0), Michael Haberman (Soft-
ware Engineer, Instructor at University of Illinois), Rob McGovern (Indie Developer) and
Rik Watson (Technical Team Lead, HP Enterprise Services).

Earlier iOS editions reviewers: Cory Bohon (Indie Developer at CocoaApp.com and
Writer at Mac|Life), Scott Gustafson (Owner/Developer, Garlic Software LLC), Firoze
Lafeer (Master Developer, Capital One Labs), Dan Lingman (Partner, www.nogotog-

http://www.deitel.com/books/iOS8fp2

www.deitel.com/livelessons

http://www.safaribooksonline.com/register

iOS8fp.book Page xxiv Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/iOS8fp2
http://www.deitel.com/livelessons
http://www.safaribooksonline.com/register
http://www.safaribooksonline.com
http://www.nogoto-games.com

Preface xxv

ames.com), Marcantonio Magnarapa (Chief Mobile Officer, www.bemyeye.com), Nik
Saers (iOS Developer, SAERS), Zach Saul (Founder, Retronyms) and Rik Watson (then
a Senior Software Engineer, Lockheed Martin).

Keeping in Touch with the Authors
As you read the book, we’d appreciate your comments, criticisms, corrections and sugges-
tions for improvement. Please address all correspondence to:

We’ll respond promptly. For updates on this book, visit

subscribe to the Deitel® Buzz Online newsletter at

and join the Deitel social networking communities on

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

• Google+™ (http://google.com/+DeitelFan)

• YouTube® (http://youtube.com/DeitelTV)

Well, there you have it! We hope you enjoy working with iOS® 8 for Programmers: An
App-Driven Approach with Swift, Volume 1 as much as we enjoyed writing it!

Paul, Harvey and Abbey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer designations, and is an Oracle Java Champion. Paul was
also named as a Microsoft® Most Valuable Professional (MVP) for C# in 2012–2014.
Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity,
NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands
Missile Range, Rogue Wave Software, Boeing, SunGard, Nortel Networks, Puma, iRobot,
Invensys and many more. He and his co-author, Dr. Harvey Deitel, are the world’s best-
selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. He has extensive college teaching experience, including earning tenure and
serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications

deitel@deitel.com

http://www.deitel.com/books/iOS8FP1

http://www.deitel.com/newsletter/subscribe.html

iOS8fp.book Page xxv Wednesday, November 26, 2014 7:53 AM

http://www.nogoto-games.com
http://www.bemyeye.com
http://www.deitel.com/books/iOS8FP1/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/deitelfan
http://linkedin.com/company/deitel-&-associates
http://google.com/+DeitelFan
http://youtube.com/DeitelTV

xxvi Preface

have earned international recognition, with translations published in Japanese, German,
Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of pro-
gramming courses to corporate, academic, government and military clients.

Abbey Deitel, President of Deitel & Associates, Inc., is a graduate of Carnegie Mellon
University’s Tepper School of Management where she received a B.S. in Industrial Man-
agement. Abbey has been managing the business operations of Deitel & Associates, Inc.
for 17 years. She has contributed to numerous Deitel & Associates publications including
Swift™ for Programmers and, together with Paul and Harvey, is the co-author of iOS® 8
for Programmers: An App-Driven Approach with Swift™, Volume 1, 3/e, Android for Pro-
grammers: An App-Driven Approach, 2/e, Internet & World Wide Web How to Program, 5/e,
Visual Basic 2012 How to Program, 6/e and Simply Visual Basic 2010, 5/e.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in mobile app de-
velopment, computer programming languages, object technology and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Swift™, Objective-C and iOS® app de-
velopment, Java™, Android app development, C++, C, Visual C#®, Visual Basic®, Py-
thon®, object technology, Internet and web programming and a growing list of additional
programming and software development courses.

Through its 40-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and a wide range of e-book formats, and LiveLessons video courses. Deitel & Associ-
ates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
send an e-mail to deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

iOS8fp.book Page xxvi Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/training
http://www.informit.com/store/sales.aspx
http://www.deitel.com

This section contains information you should review before using this book. Updates will
be posted at:

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Swift code. Our convention is to emphasize on-screen components in a
sans-serif bold Helvetica font (for example, File menu) and to emphasize Swift code and
commands in a sans-serif Lucida font (for example, import UIKit). When building user
interfaces (UIs) using Xcode’s Interface Builder, we also use the bold Helvetica font to refer
to property names for UI components (such as a Label’s Text property).

Conventions for Referencing Menu Items in a Menu
We use the > character to indicate selecting a menu item from a menu. The notation File >
Open… indicates that you should select the Open… menu item from the File menu.

Software Used in this Book
To execute our apps and write your own iOS 8 apps, you must install Xcode 6. You can in-
stall the currently released Xcode version for free from the Mac App Store. When you open
Xcode for the first time, it will download and install additional features required for devel-
opment. For the latest information about Xcode, visit

A Note Regarding the Xcode 6 Toolbar Icons
We developed this book’s examples with Xcode 6 on OS X Yosemite. If you’re running
OS X Mavericks, some Xcode toolbar icons we show in the text may differ on your screen.

Becoming a Registered Apple Developer
Registered developers have access to the online iOS documentation and other resources.
Apple also now makes Xcode pre-release versions (such as the next point release or major
version) available to all registered Apple developers. To register, visit:

To download the next pre-release Xcode version, visit:

http://www.deitel.com/books/iOS8FP1

https://developer.apple.com/xcode

https://developer.apple.com/register

https://developer.apple.com/xcode/downloads

Before You Begin

iOS8fp.book Page xxvii Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/iOS8FP1
https://developer.apple.com/xcode
https://developer.apple.com/register
https://developer.apple.com/xcode/downloads

xxviii Before You Begin

Once you download the DMG (disk image) file, double click it to launch the installer,
then follow the on-screen instructions.

Fee-Based Developer Programs

iOS Developer Program
The fee-based iOS Developer Program allows you to load your iOS apps onto iOS devices
for testing and to submit your apps to the App Store. If you intend to distribute iOS apps,
you’ll need to join the fee-based program. You can sign up at

iOS Developer Enterprise Program
Organizations may register for the iOS Developer Enterprise Program at

which enables developers to deploy proprietary iOS apps to employees within their orga-
nization.

iOS Developer University Program
Colleges and universities interested in offering iOS app-development courses can apply to
the iOS Developer University Program at

Qualifying schools receive free access to all the developer tools and resources. Students can
share their apps with each other and test them on iOS devices.

Adding Your Paid iOS Developer Program Account to Xcode
Xcode can interact with your paid iOS Developer Program account on your behalf so that
you can install apps onto your iOS devices for testing. If you have a paid iOS Developer
Program account, you can add it to Xcode. To do so:

1. Select Xcode > Preferences….

2. In the Accounts tab, click the + button in the lower left corner and select Add Ap-
ple ID….

3. Enter your Apple ID and password, then click Add.

Obtaining the Code Examples
The final versions of the apps you’ll build in this book are available for download as a ZIP
file from

under the heading Download Code Examples and Other Premium Content. When you click
the link to the ZIP file, it will be placed by default in your user account’s Downloads folder.
We assume that the examples are located in the iOS8Examples folder in your user ac-
count’s Documents folder. You can use Finder to move the ZIP file there, then double click
the file to extract its contents.

https://developer.apple.com/programs

https://developer.apple.com/programs/ios/enterprise

https://developer.apple.com/programs/ios/university

http://www.deitel.com/books/iOS8FP1

iOS8fp.book Page xxviii Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/iOS8FP1
https://developer.apple.com/programs
https://developer.apple.com/programs/ios/enterprise
https://developer.apple.com/programs/ios/university

Before You Begin xxix

Xcode Projects
For each app, we provide a project that you can open in Xcode by double clicking its proj-
ect file, which has the .xcodeproj extension. You’ll use these projects to test-drive the apps
before building them.

Configuring Xcode to Display Line Numbers
Many programmers find it helpful to display line numbers in the code editor. To do so:

1. Open Xcode and select Preferences… from the Xcode menu.

2. Select the Text Editing tab, then ensure that the Editing subtab is selected.

3. Check the Line Numbers checkbox.

Configuring Xcode’s Code Indentation Options
Xcode uses four space indents by default. To configure your own indentation preferences:

1. Open Xcode and select Preferences… from the Xcode menu.

2. Select the Text Editing tab, then ensure that the Indentation subtab is selected.

3. Specify your indentation preferences.

You’re now ready to begin working with iOS® 8 for Programmers: An App-Driven Approach
with Swift™, Volume 1, 3/e. We hope you enjoy the book! If you have any questions,
please email us at deitel@deitel.com.

iOS8fp.book Page xxix Wednesday, November 26, 2014 7:53 AM

This page intentionally left blank

3
Tip Calculator App

Introducing Swift, Text Fields, Sliders, Outlets, Actions, View
Controllers, Event Handling, NSDecimalNumber,

NSNumberFormatter and Automatic Reference Counting

O b j e c t i v e s
In this chapter you’ll:

■ Learn basic Swift syntax, keywords and operators.

■ Use object-oriented Swift features, including objects,
classes, inheritance, functions, methods and properties.

■ Use NSDecimalNumbers to perform precise monetary
calculations.

■ Create locale-specific currency and percentage Strings
with NSNumberFormatter.

■ Use Text Fields and Sliders to receive user input.

■ Programmatically manipulate UI components via outlets.

■ Respond to user-interface events with actions.

■ Understand the basics of automatic reference counting
(ARC).

■ Execute an interactive iOS app.

iOS8fp.book Page 75 Wednesday, November 26, 2014 7:53 AM

76 Chapter 3 Tip Calculator App

O
u

tl
in

e

3.1 Introduction
The Tip Calculator app (Fig. 3.1(a))—which you test-drove in Section 1.17—calculates
and displays possible tips and bill totals for a restaurant bill amount. As you enter each dig-
it of an amount by touching the numeric keypad, the app calculates and displays the tip
amount and total bill amount for a 15% tip and a custom tip (Fig. 3.1(b)). You specify
the custom tip percentage by moving a Slider’s thumb—this updates the custom tip per-
centage Labels and displays the custom tip and bill total in the righthand column of yellow
Labels below the Slider (Fig. 3.1(b). We chose 18% as the default custom percentage, be-
cause many restaurants in the U.S. add this tip percentage for parties of six people or more,
but you can easily change this.

First, we’ll overview the technologies used to build the app. Next, you’ll build the
app’s UI using Interface Builder. As you’ll see, Interface Builder’s visual tools can be used
to connect UI components to the app’s code so that you can manipulate the corresponding
UI components programmatically and respond to user interactions with them.

For this app, you’ll write Swift code that responds to user interactions and program-
matically updates the UI. You’ll use Swift object-oriented programming capabilities,
including objects, classes, inheritance, methods and properties, as well as various data
types, operators, control statements and keywords. With our app-driven approach, we’ll
present the app’s complete source code and do a detailed code walkthrough, introducing
the Swift language features as we encounter them.

3.1 Introduction
3.2 Technologies Overview

3.2.1 Swift Programming
3.2.2 Swift Apps and the Cocoa Touch®

Frameworks
3.2.3 Using the UIKit and Foundation

Frameworks in Swift Code
3.2.4 Creating Labels, a Text Field and a

Slider with Interface Builder
3.2.5 View Controllers
3.2.6 Linking UI Components to Your Swift

Code
3.2.7 Performing Tasks After a View Loads
3.2.8 Financial Calculations with

NSDecimalNumber

3.2.9 Formatting Numbers as Locale-
Specific Currency and Percentage
Strings

3.2.10 Bridging Between Swift and
Objective-C Types

3.2.11 Swift Operator Overloading
3.2.12 Variable Initialization and Swift

Optional Types
3.2.13 Value Types vs. Reference Types
3.2.14 Code Completion in the Source-Code

Editor
3.3 Building the App’s UI

3.3.1 Creating the Project

3.3.2 Configuring the Size Classes for
Designing a Portrait Orientation
iPhone App

3.3.3 Adding the UI Components
3.3.4 Adding the Auto Layout Constraints

3.4 Creating Outlets with Interface
Builder

3.5 Creating Actions with Interface
Builder

3.6 Class ViewController
3.6.1 import Declarations
3.6.2 ViewController Class Definition
3.6.3 ViewController’s @IBOutlet

Properties
3.6.4 Other ViewController Properties
3.6.5 Overridden UIViewController

method viewDidLoad
3.6.6 ViewController Action Method

calculateTip

3.6.7 Global Utility Functions Defined in
ViewController.swift

3.7 Wrap-Up

iOS8fp.book Page 76 Wednesday, November 26, 2014 7:53 AM

3.2 Technologies Overview 77

3.2 Technologies Overview
This section introduces the Xcode, Interface Builder and Swift features you’ll use to build
the Tip Calculator app.

3.2.1 Swift Programming
Swift is Apple’s programming language of the future for iOS and OS X development. The
app’s code uses Swift data types, operators, control statements and keywords, and other
language features, including functions, overloaded operators, type inference, variables,
constants and more. We’ll introduce Swift object-oriented programming features, includ-
ing objects, classes, inheritance, methods and properties. We’ll explain each new Swift fea-
ture as we encounter it in the context of the app. Swift is based on many of today’s popular
programming languages, so much of the syntax will be familiar to programmers who use
C-based programming languages, such as Objective-C, Java, C# and C++. For a detailed
introduction to Swift, visit:

Fig. 3.1 | Tip Calculator when the app first loads, then after the user enters the bill amount and
changes the custom tip percentage.

https://developer.apple.com/library/ios/documentation/Swift/

Conceptual/Swift_Programming_Language/

Move Slider’s
thumb to set

the custom tip
percentage

a) Tip Calculator when the
app first loads

b) Tip Calculator after the user enters the bill
amount and changes the custom tip percentage

iOS8fp.book Page 77 Wednesday, November 26, 2014 7:53 AM

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/

78 Chapter 3 Tip Calculator App

3.2.2 Swift Apps and the Cocoa Touch® Frameworks
A great strength of iOS 8 is its rich set of prebuilt components that you can reuse rather than
“reinventing the wheel.” These capabilities are grouped into iOS’s Cocoa Touch frame-
works. These powerful libraries help you create apps that meet Apple’s requirements for the
look-and-feel of iOS apps. The frameworks are written mainly in Objective-C (some are
written in C). Apple has indicated that new frameworks will be developed in Swift.

Foundation Framework
The Foundation framework includes classes for basic types, storing data, working with text
and strings, file-system access, calculating differences in dates and times, inter-app notifica-
tions and much more. In this app, you’ll use Foundation’s NSDecimalNumber and NSNum-
berFormatter classes. Foundation’s class names begin with the prefix NS, because this
framework originated in the NextStep operating system. Throughout the book, we’ll use
many Foundation framework features—for more information, visit:

UIKit Framework
Cocoa Touch’s UIKit framework includes multi-touch UI components appropriate for
mobile apps, event handling (that is, responding to user interactions with the UI) and
more. You’ll use many UIKit features throughout this book.

Other Cocoa Touch Frameworks
Figure 3.2 lists the Cocoa Touch frameworks. You’ll learn features from many of these
frameworks in this book and in iOS 8 for Programmers: An App-Driven Approach, Volume
2. For more information on these frameworks, see the iOS Developer Library Reference
(http://developer.apple.com/ios).

http://bit.ly/iOSFoundationFramework

List of Cocoa Touch frameworks

Cocoa Touch
Layer

AddressBookUI
EventKitUI
GameKit
MapKit
MessageUI
Notification-

Center
PhotosUI
Twitter
UIKit
iAd

Media Layer
AVFoundation

AssetsLibrary
AudioToolbox
AudioUnit
CoreAudio
CoreGraphics
CoreImage
CoreMIDI
CoreText
CoreVideo
GLKit
GameController
ImageIO
MediaAccess-

ibility
MediaPlayer
Metal

OpenAL
OpenGLES
Photos
QuartzCore
SceneKit
SpriteKit

Core Services
Layer

Accounts
AdSupport
AddressBook
CFNetwork
CloudKit
CoreData
CoreFoundation

CoreLocation
CoreMedia
CoreMotion
CoreTelephony
EventKit
Foundation
HealthKit
HomeKit
JavaScriptCore
MobileCore-

Services
Multipeer-

Connectivity
NewsstandKit
PassKit
QuickLook

Social
StoreKit
SystemConfig-

uration
UIAutomation
WebKit

Core OS Layer
Accelerate
CoreBluetooth
ExternalAccessory
LocalAuthen-

tication
Security
System

Fig. 3.2 | List of Cocoa Touch frameworks.

iOS8fp.book Page 78 Wednesday, November 26, 2014 7:53 AM

http://bit.ly/iOSFoundationFramework
http://developer.apple.com/ios

3.2 Technologies Overview 79

3.2.3 Using the UIKit and Foundation Frameworks in Swift Code
To use UIKit framework classes (or classes from any other existing framework), you must
import the framework into each source-code file that uses it (as we do in Section 3.6.1).
This exposes the framework’s capabilities so that you can access them in Swift code. In ad-
dition to UIKit framework UI components, this app also uses various classes from the
Foundation framework, such as NSDecimalNumber and NSNumberFormatter. We do not
import the Foundation framework—its features are available to your code because the
UIKit framework indirectly imports the Foundation framework.

3.2.4 Creating Labels, a Text Field and a Slider with Interface Builder
You’ll again use Interface Builder and auto layout to design this app’s UI, which consists of
Labels for displaying information, a Slider for selecting a custom tip percentage and a Text
Field for receiving the user input. Several Labels are configured identically—we’ll show how
to duplicate components in Interface Builder, so you can build UIs faster. Labels, the Slider
and the Text Field are objects of classes UILabel, UISlider and UITextField, respectively,
and are part the UIKit framework that’s included with each app project you create.

3.2.5 View Controllers
Each scene you define is managed by a view controller object that determines what infor-
mation is displayed. iPad apps sometimes use multiple view controllers in one scene to
make better use of the larger screen size. Each scene represents a view that contains the UI
components displayed on the screen. The view controller also specifies how user interac-
tions with the scene are processed. Class UIViewController defines the basic view control-
ler capabilities. Each view controller you create (or that’s created when you base a new app
on one of Xcode’s app templates) inherits from UIViewController or one of its subclasses.
In this app, Xcode creates the class ViewController to manage the app’s scene, and you’ll
place additional code into that class to implement the Tip Calculator’s logic.

3.2.6 Linking UI Components to Your Swift Code
Properties
You’ll use Interface Builder to generate properties in your view controller for programmati-
cally interacting with the app’s UI components. Swift classes may contain variable properties
and constant properties. Variable properties are read/write and are declared with the var
keyword. Constant properties, which cannot be modified after they’re initialized, are read-
only and are declared with let. These keywords can also be used to declare local and global
variables and constants. A variable property defines a getter and a setter that allow you to
obtain and modify a property’s value, respectively. A constant property defines only a get-
ter for obtaining its value.

@IBOutlet Properties
Each property for programmatically interacting with a UI component is prefixed with
@IBOutlet. This tells Interface Builder that the property is an outlet. You’ll use Interface
Builder to connect a UI control to its corresponding outlet in the view controller using
drag-and-drop techniques. Once connected, the view controller can manipulate the corre-
sponding UI component programmatically. @IBOutlet properties are variable properties
so they can be modified to refer to the UI controls when the storyboard creates them.

iOS8fp.book Page 79 Wednesday, November 26, 2014 7:53 AM

80 Chapter 3 Tip Calculator App

Action Methods
When you interact with a UI component (e.g., touching a Slider or entering text in a Text
Field), a user-interface event occurs. The view controller handles the event with an ac-
tion—an event-handling method that specifies what to do when the event occurs. Each ac-
tion is annotated with @IBAction in your view controller’s class. @IBAction indicates to
Interface Builder that a method can respond to user interactions with UI components.
You’ll use Interface Builder to visually connect an action to a specific user-interface event
using drag-and-drop techniques.

3.2.7 Performing Tasks After a View Loads
When a user launches the Tip Calculator:

• Its main storyboard is loaded.

• The UI components are created.

• An object of the app’s initial view controller class is instantiated.

• Using information stored in the storyboard, the view controller’s @IBOutlets and
@IBActions are connected to the appropriate UI components.

In this app, we have only one view-controller, because the app has only one scene. After
all of the storyboard’s objects are created, iOS calls the view controller’s viewDidLoad
method—here you perform view-specific tasks that can execute only after the scene’s UI
components exits. For example, in this app, you’ll call the method becomeFirstResponder
on the UITextField to make it the active component—as if the user touched it. You’ll con-
figure the UITextField such that when it’s the active component, the numeric keypad is dis-
played in the screen’s lower half. Calling becomeFirstResponder from viewDidLoad causes
iOS to display the keypad immediately after the view loads. (Keypads are not displayed if a
Bluetooth keyboard is connected to the device.) Calling this method also indicates that the
UITextField is the first responder—the first component that will receive notification when
an event occurs. iOS’s responder chain defines the order in which components are notified
that an event occurred. For the complete responder chain details, visit:

3.2.8 Financial Calculations with NSDecimalNumber
Financial calculations performed with Swift’s Float and Double numeric types tend to be
inaccurate due to rounding errors. For precise floating-point calculations, you should in-
stead use objects of the Foundation framework class NSDecimalNumber. This class provides
various methods for creating NSDecimalNumber objects and for performing arithmetic cal-
culations with them. This app uses the class’s methods to perform division, multiplication
and addition.

Swift Numeric Types
Though this app’s calculations use only NSDecimalNumbers, Swift has its own numeric
types, which are defined in the Swift Standard Library. Figure 3.3 shows Swift’s numeric
and boolean types—each type name begins with a capital letter. For the integer types, each
type’s minimum and maximum values can be determined with its min and max proper-
ties—for example, Int.min and Int.max for type Int.

http://bit.ly/iOSResponderChain

iOS8fp.book Page 80 Wednesday, November 26, 2014 7:53 AM

http://bit.ly/iOSResponderChain

3.2 Technologies Overview 81

Swift also supports standard arithmetic operators for use with the numeric types in
Fig. 3.3. The standard arithmetic operators are shown in Fig. 3.4.

Type Description

Integer types
Int Default signed integer type—4 or 8 bytes depending on the platform.

Int8 8-bit (1-byte) signed integer. Values in the range –128 to 127.

Int16 16-bit (2-byte) signed integer. Values in the range –32,768 to 32767.

Int32 32-bit (4-byte) signed integer. Values in the range –2,147,483,648 to
2,147,483,647.

Int64 64-bit (8-byte) signed integer. Values in the range
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

UInt8 8-bit (1-byte) unsigned integer. Values in the range 0 to 255.

UInt16 16-bit (2-byte) unsigned integer. Values in the range 0 to 65,535.

UInt32 32-bit (4-byte) unsigned integer. Values in the range 0 to 4,294,967,295.

UInt64 64-bit (8-byte) unsigned integer. Values in the range 0 to
18,446,744,073,709,551,615.

Floating-point types (conforms to IEEE 754)
Float 4-byte floating-point value.

Negative range:
–3.4028234663852886e+38 to –1.40129846432481707e–45
Positive range:
1.40129846432481707e–45 to 3.4028234663852886e+38

Double 8-byte floating-point value.
Negative range:
–1.7976931348623157e+308 to –4.94065645841246544e–324
Positive range:
4.94065645841246544e–324 to 1.7976931348623157e+308

Boolean type
Bool true or false values.

Fig. 3.3 | Swift numeric and boolean types.

Operation Operator Algebraic expression Swift expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 3.4 | Arithmetic operators in Swift.

x
y--

iOS8fp.book Page 81 Wednesday, November 26, 2014 7:53 AM

82 Chapter 3 Tip Calculator App

3.2.9 Formatting Numbers as Locale-Specific Currency and Percentage
Strings
You’ll use Foundation framework class NSNumberFormatter’s localizedStringFromNumber
method to create locale-specific currency and percentage strings—an important part of in-
ternationalization. You could also add accessibility strings and internationalize the app using
the techniques you learned in Sections 2.7–2.8.

3.2.10 Bridging Between Swift and Objective-C Types
You’ll often pass Swift objects into methods of classes written in Objective-C, such as
those in the Cocoa Touch classes. Swift’s numeric types and its String, Array and Dic-
tionary types can all be used in contexts where their Objective-C equivalents are expect-
ed. Similarly, the Objective-C equivalents (NSString, NSArray, NSMutableArray,
NSDictionary and NSMutableDictionary), when returned to your Swift code, are auto-
matically treated as their Swift counterparts. In this app, for example, you’ll use class
NSNumberFormatter to create locale-specific currency and percentage strings. These are re-
turned from NSNumberFormatter’s methods as NSString objects, but are automatically
treated by Swift as objects of Swift’s type String. This mechanism—known as bridging—
is transparent to you. In fact, when you look at the Swift version of the Cocoa Touch doc-
umentation online or in Xcode, you’ll see the Swift types, not the Objective-C types for
cases in which this bridging occurs.

3.2.11 Swift Operator Overloading
Swift allows operator overloading—you can define your own operators for use with exist-
ing types. In Section 3.6.7, we’ll define overloaded addition, multiplication and division
operators to simplify the NSDecimalNumber arithmetic performed throughout the app’s
logic. As you’ll see, you define an overloaded operator by creating a Swift function, but
with an operator symbol as its name and a parameter list containing parameters that repre-
sent each operand. So, for example, you’d provide two parameters for an overloaded-op-
erator function that defines an addition (+) binary operator—one for each operand.

3.2.12 Variable Initialization and Swift Optional Types
In Swift, every constant and variable you create (including a class’s properties) must be ini-
tialized (or for variables, assigned to) before it’s used in the code; otherwise, a compilation
error occurs. A problem with this requirement occurs when you create @IBOutlet proper-
ties in a view controller using Interface Builder’s drag-and-drop techniques. Such proper-
ties refer to objects that are not created in your code. Rather, they’re created by the
storyboard when the app executes, then the storyboard connects them to the view control-
ler—that is, the storyboard assigns each UI component object to the appropriate property
so that you can programmatically interact with that component.

For scenarios like this in which a variable receives its value at runtime, Swift provides
optional types that can indicate the presence or absence of a value. A variable of an
optional type can be initialized with the value nil, which indicates the absence of a value.

When you create an @IBOutlet with Interface Builder, it declares the property as an
implicitly unwrapped optional type by following the type name with an exclamation point
(!). Properties of such types are initialized by default to nil. Such properties must be declared

iOS8fp.book Page 82 Wednesday, November 26, 2014 7:53 AM

3.2 Technologies Overview 83

as variables (with var) so that they can eventually be assigned actual values of the specified
type. Using optionals like this enables your code to compile because the @IBOutlet proper-
ties are, in fact, initialized—just not to the values they’ll have at runtime.

As you’ll see in later chapters, Swift has various language features for testing whether
an optional has a value and, if so, unwrapping the value so that you can use it—known as
explicit unwrapping. With implicitly unwrapped optionals (like the @IBOutlet proper-
ties), you can simply assume that they’re initialized and use them in your code. If an
implicitly unwrapped optional is nil when you use it, a runtime error occurs. Also, an
optional can be set to nil at any time to indicate that it no longer contains a value.

3.2.13 Value Types vs. Reference Types
Swift’s types are either value types or reference types. Swift’s numeric types, Bool type and
String type are all values types.

Value Types
A value-type constant’s or variable’s value is copied when it’s passed to or returned from a
function or method, when it’s assigned to another variable or when it’s used to initialize a
constant. Note that Swift’s Strings are value types—in most other object-oriented lan-
guages (including Objective-C), Strings are reference types. Swift enables you to define
your own value types as structs and enums (which we discuss in later chapters). Swift’s
numeric types and String type are defined as structs. An enum is often used to define sets
of named constants, but in Swift it’s much more powerful than in most C-based languages.

Reference Types
You’ll define a class and use several existing classes in this chapter. All class types (defined
with the keyword class) are reference types—all other Swift types are value types. A con-
stant or variable of a reference type (often called a reference) is said to refer to an object.
Conceptually this means that the constant or variable stores the object’s location. Unlike
Objective-C, C and C++, that location is not the actual memory address of the object,
rather it’s a handle that enables you to locate the object so you can interact with it.

Both structs and enums in Swift provide many of the same capabilities as classes. In
many contexts where you’d use classes in other languages, Swift idiom prefers structs or
enums. We’ll say more about this later in the book.

Reference-Type Objects That Are Assigned to Constants Are Not Constant Objects
Initializing a constant (declared with let) with a reference-type object simply means that
the constant always refers to the same object. You can still use a reference-type constant to
access read/write properties and to call methods that modify the referenced object.

Assigning References
Reference-type objects are not copied. If you assign a reference-type variable to another vari-
able or use it to initialize a constant, then both refer to the same object in memory.

Performance Tip 3.1
You might think that copying objects introduces a lot of runtime overhead. However, the
Swift compiler optimizes copy operations so that they’re performed only if the copy is mod-
ified in your code—this is known as copy-on-write.

iOS8fp.book Page 83 Wednesday, November 26, 2014 7:53 AM

84 Chapter 3 Tip Calculator App

Comparative Operators for Value Types
Conditions can be formed by using the comparative operators (==, !=, >, <, >= and <=)
summarized in Fig. 3.5. These operators all have the same level of precedence and do not
have associativity in Swift.

Comparative Operators for Reference Types
One key difference between value types and reference types is comparing for equality and
inequality. Only value-type constants and variables can be compared with the == (is equal
to) and != (is not equal to) operators. In addition to the operators in Fig. 3.5, Swift also
provides the === (identical to) and !== (not identical to) operators for comparing refer-
ence-type constants and variables to determine whether they refer to the same object.

3.2.14 Code Completion in the Source-Code Editor
As you type code in the source-code editor, Xcode displays code-completion suggestions
(Fig. 3.6) for class names, method names, property names, and more. It provides one sug-
gestion inline in the code (in gray) and below it displays a list of other suggestions (with
the current inline one highlighted in blue). You can press Enter to select the highlighted
suggestion or you can click an item from the displayed list to choose it. You can press the
Esc key to close the suggestion list and press it again to reopen the list.

Algebraic
operator

Comparative
operator

Sample
condition Meaning of condition

= == x == y x is equal to y

≠ != x != y x is not equal to y

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 3.5 | Comparative operators for value types.

i

Fig. 3.6 | Code-completion suggestions in Xcode.

Inline code-completion suggestion List of all suggestionsRecommended completion is highlighted

iOS8fp.book Page 84 Wednesday, November 26, 2014 7:53 AM

3.3 Building the App’s UI 85

3.3 Building the App’s UI
In this section, you’ll build the Tip Calculator UI using the techniques you learned in
Chapter 2. Here, we’ll show the detailed steps for building the UI—in later chapters, we’ll
focus on new UI features.

3.3.1 Creating the Project
As you did in Section 2.3, begin by creating a new Single View Application iOS project.
Specify the following settings in the Choose options for your new project sheet:

• Product Name: TipCalculator.

• Organization Name: Deitel and Associates, Inc.—or you can use your own or-
ganization name.

• Company Identifier: com.deitel—or you can use your own company identifier or
use edu.self.

• Language—Swift.

• Devices: iPhone—This app is designed for iPhones and iPod touches. The app
will run on iPads, but it will fill most of the screen and be centered, as in Fig. 3.7.

After specifying the settings, click Next, indicate where you’d like to save your project and
click Create to create the project.

Fig. 3.7 | Tip Calculator running in the iPad Air simulator.

iOS8fp.book Page 85 Wednesday, November 26, 2014 7:53 AM

86 Chapter 3 Tip Calculator App

Configuring the App to Support Only Portrait Orientation
In landscape orientation, the numeric keypad would obscure parts of the Tip Calculator’s
UI. For this reason, this app will support only portrait orientation. In the project settings’
General tab that’s displayed in the Xcode Editor area, scroll to the Deployment Info section,
then for Device Orientation ensure that only Portrait is selected. Recall from Section 2.5.1
that most iPhone apps should support portrait, landscape-left and landscape-right orienta-
tions, and most iPad apps should also support upside down orientation. You can learn more
about Apple’s Human Interface Guidelines at:

3.3.2 Configuring the Size Classes for Designing a Portrait Orientation
iPhone App
In Chapter 2, we designed a UI that supported both portrait and landscape orientations
for any iOS device. For that purpose, we used the default size class Any for the design area’s
width and height. In this section, you’ll configure the design area (also called the canvas)
for a tall narrow device, such as an iPhone or iPod touch in portrait orientation. Select
Main.storyboard to display the design area—also known as the canvas. At the bottom of
the canvas, click the Size Classes control to display the size classes tool, then click in the
lower-left corner to specify the size classes Compact Width and Regular Height (Fig. 3.8).

3.3.3 Adding the UI Components
In this section, you’ll add and arrange the UI components to create the basic design. In
Section 3.3.4, you’ll add auto layout constraints to complete the design.

Step 1: Adding the “Bill Amount” Label
First, you’ll add the “Bill Amount” Label to the UI:

1. Drag a Label from the Object library to the scene’s upper-left corner, using the
blue guide lines to position the Label at the recommended distance from the

http://bit.ly/HumanInterfaceGuidelines

Fig. 3.8 | Size classes tool with Compact Width and Regular Height selected.

Size Classes control

Size classes tool

Updates to Compact/Regular
after you click in the lower-left
corner of the size classes tool

iOS8fp.book Page 86 Wednesday, November 26, 2014 7:53 AM

http://bit.ly/HumanInterfaceGuidelines

3.3 Building the App’s UI 87

scene’s top and left (Fig. 3.9). The symbol indicates that you’re adding a new
component to the UI.

2. Double click the Label, type Bill Amount, then press Enter to change its Text at-
tribute.

Step 2: Adding the Label That Displays the Formatted User Input
Next, you’ll add the blue Label that displays the formatted user input:

1. Drag another Label below the “Bill Amount” Label, such that the placement guides
appear as shown in Fig. 3.10. This is where the user input will be displayed.

2. Drag the middle sizing handle at the new Label’s right side until the blue guide
line at the scene’s right side appears (Fig. 3.11).

3. In the Attributes inspector, scroll to the View section and locate the Label’s Back-
ground attribute. Click the attribute’s value, then select Other… to display the
Colors dialog. This dialog has five tabs at the top that allow you to select colors
different ways. For this app, we used the Crayons tab. On the bottom row, select
the Sky (blue) crayon as the color (Fig. 3.12), then set the Opacity to 50%—this
allows the scene’s white background to blend with the Label’s color, resulting in
a lighter blue color. The Label should now appear as shown in Fig. 3.13.

Fig. 3.9 | Adding the “Bill Amount” Label to the scene.

v

Fig. 3.10 | Adding the Label in which the formatted user input will be displayed.

v

Fig. 3.11 | Resizing the Label where the formatted user input will be displayed.

Label with
placement guides

for positioning

Label with
placement guides

for positioning

Placement guides help you
position components so
they’re separated by the
recommended amount of
space as described in
Apple’s Human Interface
Guidelines

iOS8fp.book Page 87 Wednesday, November 26, 2014 7:53 AM

88 Chapter 3 Tip Calculator App

4. A Label’s default height is 21 points. We increased this Label’s height to add space
above and below its text to make it more readable against the colored back-
ground. To do so, drag the bottom-center sizing handle down until the Label’s
height is 30 (Fig. 3.14).

5. With the Label selected, delete the value for its Text property in the Attributes in-
spector. The Label should now be empty.

Step 3: Adding the “Custom Tip Percentage:” Label and a Label to Display the Current
Custom Tip Percentage
Next, you’ll add the Labels in the UI’s third row:

Fig. 3.12 | Selecting the Sky crayon for the Label’s background color.

Fig. 3.13 | Label with Sky blue background and 50% opacity.

Fig. 3.14 | Label with Sky blue background and 50% opacity.

Selected crayon’s name
is displayed here

When you select a crayon, its
name appears above the crayons

Crayons tab selected

The Label’s current
width and height (368
and 30 in this case) are
shown during a resize
operation

iOS8fp.book Page 88 Wednesday, November 26, 2014 7:53 AM

3.3 Building the App’s UI 89

1. Drag another Label onto the scene and position it below the blue Label as shown
in Fig. 3.15.

2. Double click the Label and set its text to Custom Tip Percentage:.

3. Drag another Label onto the scene and position it to the right of the “Custom Tip
Percentage:” Label (Fig. 3.16), then set its text to 18%—the initial custom tip per-
centage we chose in this app, which the app will update when the user moves the
Slider’s thumb. The UI should now appear as shown in Fig. 3.17.

Step 4: Creating the Custom Tip Percentage Slider
You’ll now create the Slider for selecting the custom tip percentage:

1. Drag a Slider from the Object library onto the scene so that it’s the recommended
distance from the “Custom Tip Percentage:” Label, then size and position it as
shown in Fig. 3.18.

2. Use the Attributes inspector to set the Slider’s Minimum value to 0 (the default),
Maximum value to 30 and Current value to 18.

Fig. 3.15 | Adding the “Custom Tip Percentage:” Label to the scene.

Fig. 3.16 | Adding the Label that displays the current custom tip percentage.

Fig. 3.17 | UI design so far.

iOS8fp.book Page 89 Wednesday, November 26, 2014 7:53 AM

90 Chapter 3 Tip Calculator App

Step 5: Adding the “15%” and “18%” Labels
Next, you’ll add two more Labels containing the text 15% and 18% to serve as column
headings for the calculation results. The app will update the “18%” Label when the user
moves the Slider’s thumb. Initially, you’ll position these Labels approximately—later
you’ll position them more precisely. Perform the following steps:

1. Drag another Label onto the scene and use the blue guides to position it the rec-
ommended distance below the Slider (Fig. 3.19), then set its Text to 15% and its
Alignment to centered.

2. Next you’ll duplicate the “15%” Label, which copies all of its settings. Hold the
option key and drag the “15%” Label to the right (Fig. 3.20). You can also dupli-
cate a UI component by selecting it and typing  + D, then moving the copy.
Change the new Label’s text to 18%.

Fig. 3.18 | Creating and sizing the Slider.

Fig. 3.19 | Adding the Label and right aligning it with the blue Label.

Fig. 3.20 | Duplicating the “15%” Label so that you can create the “18%” Label.

iOS8fp.book Page 90 Wednesday, November 26, 2014 7:53 AM

3.3 Building the App’s UI 91

Step 6: Creating the Labels That Display the Tips and Totals
Next, you’ll add four Labels in which the app will display the calculation results:

1. Drag a Label onto the UI until the blue guides appear as in Fig. 3.21.

2. Drag the Label’s bottom-center sizing handle until the Label’s Height is 30, and
drag its left-center sizing handle until the Label’s Width is 156.

3. Use the Attributes inspector to clear the Text attribute, set the Alignment so the
text is centered and set the Background color to Banana, which is located in the
Color dialog’s Crayons tab in the second row from the bottom.

4. Set the Autoshrink property to Minimum Font Scale and change the value to .75—
if the text becomes too wide to fit in the Label, this will allow the text to shrink
to 75% of its original font size to accommodate more text. If you’d like the text
to be able to shrink even more, you can choose a smaller value.

5. Next duplicate the yellow Label by holding the option key and dragging the Label
to the left to create another Label below the “15%” Label.

6. Select both yellow Labels by holding the Shift key and clicking each Label. Hold
the option key and drag any one of the selected Labels down until the blue guides
appear as shown in Fig. 3.22.

Fig. 3.21 | Creating the first yellow Label.

Fig. 3.22 | Creating the second row of yellow Labels.

iOS8fp.book Page 91 Wednesday, November 26, 2014 7:53 AM

92 Chapter 3 Tip Calculator App

7. Now you can center the “15%” and “18%” Labels over their columns. Drag the
“Tip” Label so that the blue guide lines appear as shown in Fig. 3.23. Repeat this
for the “18%” Label to center it over the right column of yellow Labels.

Step 7: Creating the “Tip” and “Total” Labels to the Left of the Yellow Labels
Next you’ll create the “Tip” and “Total” Labels:

1. Drag a Label onto the scene, change its Text to Total, set its Alignment to right
aligned and position it to the left of the second row of yellow Labels as in Fig. 3.24.

2. Hold the option key and drag the “Total” Label up until the blue guides appear as
shown in Fig. 3.25. Change the new Label’s text to Tip, then drag it to the right
so that the right edges of the “Tip” and “Total” Labels align.

Fig. 3.23 | Repositioning the “15%” Label.

Fig. 3.24 | Positioning the “Total” Label.

Fig. 3.25 | Duplicating the “Total” Label so that you can create the “Tip” Label.

iOS8fp.book Page 92 Wednesday, November 26, 2014 7:53 AM

3.3 Building the App’s UI 93

Step 8: Creating the Text Field for Receiving User Input
You’ll now create the Text Field that will receive the user input. Drag a Text Field from the
Object library to the bottom edge of the scene, then use the Attributes inspector to set its Key-
board Type attribute to Number Pad and its Appearance to Dark. This Text Field will be hid-
den behind the numeric keypad when the app first loads. You’ll receive the user’s input
through this Text Field, then format and display it in the blue Label at the top of the scene.

3.3.4 Adding the Auto Layout Constraints
You’ve now completed the Tip Calculator app’s basic UI design, but have not yet added any
auto layout constraints. If you run the app in the simulator or on a device, however, you’ll
notice that—depending on which simulator you use—some of the UI components extend
beyond the trailing edge (Fig. 3.26). In this section, you’ll add auto layout constraints so that
the UI components can adjust to display properly on devices of various sizes and resolutions.

In Chapter 2, you manually added the required auto layout constraints. In this sec-
tion, you’ll use Interface Builder to add missing constraints automatically, then run the
app again to see the results. You’ll then create some additional constraints so that the app
displays correctly in the simulator or on a device.

Step 1: Adding the Missing Auto Layout Constraints
To add the missing auto layout constraints:

1. Click the white background in the design area or select View in the document out-
line window.

2. At the bottom of the canvas, click the Resolve Auto Layout Issues () button
and under All Views in View Controller select Add Missing Constraints.

Interface Builder analyzes the UI components in the design and based on their sizes, loca-
tions and alignment, then creates a set of auto layout constraints for you. In some cases, these
constraints will be enough for your design, but you’ll often need to tweak the results.
Figure 3.27 shows the UI in the iPhone 5s simulator after Interface Builder adds the missing

Fig. 3.26 | App in the iPhone 5s simulator without auto layout constraints added to the UI—
some components flow off the trailing edge (the right side in this screen capture).

iOS8fp.book Page 93 Wednesday, November 26, 2014 7:53 AM

94 Chapter 3 Tip Calculator App

constraints. Now, all of the UI components are completely visible, but some of them are not
sized and positioned correctly. In particular, the yellow Labels should all be the same width.

Step 2: Setting the Yellow Labels to Have Equal Widths
To set the yellow Labels to have equal widths:

1. Select all four yellow Labels by holding the shift key and clicking each one.

2. In the auto layout tools at the bottom of the canvas, click the Pin tools icon ().
Ensure that Equal Widths is checked and click the Add 3 Constraints button, as
shown in Fig. 3.28. Only three constraints are added, because three of the Labels
will be set to have the same width as the fourth.

Fig. 3.27 | App in the simulator after Interface Builder adds the missing auto layout con-
straints—some components are not sized and positioned correctly.

Fig. 3.28 | Setting Equal Widths for the yellow Labels.

iOS8fp.book Page 94 Wednesday, November 26, 2014 7:53 AM

3.3 Building the App’s UI 95

Figure 3.29 shows the UI in the simulator. Setting the yellow Labels to Equal Widths
caused the 18% Label over the right column to disappear and the “Tip” and “Total” Labels
to become too narrow to display.

Step 3: Debugging the Missing “18%” Label
Based on the initial design, the missing “18%” Label should be centered over the right col-
umn of yellow Labels. If you select that Label in the canvas and select the Size inspector in
the Utilities area, you can see the missing Label’s complete set of constraints (Fig. 3.30).

There are two constraints on the “18%” Label’s horizontal positioning:

• The Trailing Space to: Superview constraint specifies that this Label should be 60
points from the scene’s trailing edge.

• The Align Center X to: Label constraint specifies that this Label should be centered
horizontally over the specified Label.

These two constraints conflict with one another—depending on the yellow Label’s width,
the “18%” Label could appear different distances from the scene’s trailing edge. By remov-
ing the Trailing Space to: Superview constraint, we can eliminate the conflict. To do so,
simply click that constraint in the Size inspector and press the delete key. Figure 3.31

Fig. 3.29 | App in the simulator after setting the yellow Labels to equal widths.

Fig. 3.30 | “18%” Label’s constraints.

iOS8fp.book Page 95 Wednesday, November 26, 2014 7:53 AM

96 Chapter 3 Tip Calculator App

shows the final UI in the iPhone 5s simulator, but you can test the UI in other simulators
to confirm that it works correctly in each.

3.4 Creating Outlets with Interface Builder
You’ll now use Interface Builder to create the outlets for the UI components that the app
interacts with programmatically. Figure 3.32 shows the outlet names that we specified
when creating this app. A common naming convention is to use the UI component’s class
name without the UI class prefix at the end of an outlet property’s name—for example,

Fig. 3.31 | App with its final UI running in the simulator.

Fig. 3.32 | Tip Calculator’s UI components labeled with their outlet names.

billAmountLabel

inputTextField

customTipPercentLabel1

customTipPercentLabel2

customTipPercentageSlider

tipCustomLabel

totalCustomLabel

tip15Label

total15Label

iOS8fp.book Page 96 Wednesday, November 26, 2014 7:53 AM

3.4 Creating Outlets with Interface Builder 97

billAmountLabel rather than billAmountUILabel. (At the time of this writing, Apple had
not yet published their Swift coding guidelines.) Interface Builder makes it easy for you to
create outlets for UI components by control dragging from the component into your
source code. To do this, you’ll take advantage of the Xcode Assistant editor.

Opening the Assistant Editor
To create outlets, ensure that your scene’s storyboard is displayed by selecting it in the Project
navigator. Next, select the Assistant editor button () on the Xcode toolbar (or select
View > Assistant Editor > Show Assistant Editor). Xcode’s Editor area splits and the file View-
Controller.swift (Fig. 3.33) is displayed to the right of the storyboard. By default, when
viewing a storyboard, the Assistant editor shows the corresponding view controller’s source
code. However, by clicking Automatic in the jump bar at the top of the Assistant editor, you
can select from options for previewing the UI for different device sizes and orientations, pre-
viewing localized versions of the UI or viewing other files that you’d like to view side-by-side
with the content currently displayed in the editor. The comments in lines 1–7 are autogen-
erated by Xcode—later, we delete these comments and replace them with our own. Delete
the method didReceiveMemoryWarning in lines 18–21 as we will not use it in this app. We’ll
discuss the details of ViewController.swift and add code to it in Section 3.6.

Creating an Outlet
You’ll now create an outlet for the blue Label that displays the user’s input. You need this
outlet to programmatically change the Label’s text to display the input in currency format.
Outlets are declared as properties of a view controller class. To create the outlet:

1. Control drag from the blue Label to below line 11 in ViewController.swift
(Fig. 3.34) and release. This displays a popover for configuring the outlet
(Fig. 3.35).

Fig. 3.33 | ViewController.swift displayed in the Assistant editor.

Jump bar

iOS8fp.book Page 97 Wednesday, November 26, 2014 7:53 AM

98 Chapter 3 Tip Calculator App

2. In the popover, ensure that Outlet is selected for the Connection type, specify the
name billAmountLabel for the outlet’s Name and click Connect.

Xcode inserts the following property declaration in class ViewController:

We’ll explain this code in Section 3.6.3. You can now use this property to programmati-
cally modify the Label’s text.

Creating the Other Outlets
Repeat the steps above to create outlets for the other labeled UI components in Fig. 3.32.
Your code should now appear as shown in Fig. 3.36. In the gray margin to the left of each
outlet property is a small bullseye () symbol indicating that the outlet is connected to a
UI component. Hovering the mouse over that symbol highlights the connected UI com-
ponent in the scene. You can use this to confirm that each outlet is connected properly.

Fig. 3.34 | Control dragging from the scene to the Assistant editor to create an outlet.

Fig. 3.35 | Popover for configuring an outlet.

@IBOutlet weak var billAmountLabel: UILabel!

iOS8fp.book Page 98 Wednesday, November 26, 2014 7:53 AM

3.5 Creating Actions with Interface Builder 99

3.5 Creating Actions with Interface Builder
Now that you’ve created the outlets, you need to create actions (i.e., event handlers) that
can respond to the user-interface events. A Text Field’s Editing Changed event occurs every
time the user changes the Text Field’s contents. If you connect an action to the Text Field
for this event, the Text Field will send a message to the view-controller object to execute
the action each time the event occurs. Similarly, the Value Changed event repeatedly occurs
for a Slider as the user moves the thumb. If you connect an action method to the Slider for
this event, the Slider will send a message to the view controller to execute the action each
time the event occurs.

In this app, you’ll create one action method that’s called for each of these events.
You’ll connect the Text Field and the Slider to this action using the Assistant editor. To do
so, perform the following steps:

1. Control drag from the Text Field in the scene to ViewController.swift between
the right braces (}) at lines 25 and 26 (Fig. 3.37), then release. This displays a
popover for configuring an outlet. From the Connection list in the popover, select
Action to display the options for configuring an action (Fig. 3.38).

Fig. 3.36 | Code after adding outlets for the programmatically manipulated UI components.

Fig. 3.37 | Control dragging to create an action for the Text Field.

iOS8fp.book Page 99 Wednesday, November 26, 2014 7:53 AM

100 Chapter 3 Tip Calculator App

2. In the popover, specify calculateTip for the action’s Name, select Editing
Changed for the Event and click Connect.

Xcode inserts the following empty method definition in the code:

and displays a small bullseye () symbol (Fig. 3.39) in the gray margin to the left of the
method indicating that the action is connected to a UI component. Now, when the user
edits the Text Field, a message will be sent to the ViewController object to execute cal-
culateTip. You’ll define the logic for this method in Section 3.6.6.

Connecting the Slider to Method calculateTip
Recall that calculateTip should also be called as the user changes the custom tip percent-
age. You can simply connect the Slider to this existing action to handle the Slider’s Value
Changed event. To do so, select the Slider in the scene, then hold the control key and drag
from the Slider to the calculateTip: method (Fig. 3.39) and release. This connects the
Slider’s Value Changed event to the action. You’re now ready to implement the app’s logic.

3.6 Class ViewController
Sections 3.6.1–3.6.7 present ViewController.swift, which contains class ViewCon-
troller and several global utility functions that are used throughout the class to format
NSDecimalNumbers as currency and to perform calculations using NSDecimalNumber ob-
jects. We modified the autogenerated comments that Xcode inserted at the beginning of
the source code file.

Fig. 3.38 | Popover for configuring an action.

@IBAction func calculateTip(sender: AnyObject) {
}

Fig. 3.39 | Control dragging to connect an existing @IBAction to the Slider.

iOS8fp.book Page 100 Wednesday, November 26, 2014 7:53 AM

3.6 Class ViewController 101

3.6.1 import Declarations
Recall that to use features from the iOS 8 frameworks, you must import them into your
Swift code. Throughout this app, we use the UIKit framework’s UI component classes. In
Fig. 3.46, line 3 is an import declaration indicating that the program uses features from
the UIKit framework. All import declarations must appear before any other Swift code (ex-
cept comments) in your source-code files.

3.6.2 ViewController Class Definition
In Fig. 3.41, line 5—which was generated by the IDE when you created the project—be-
gins a class definition for class ViewController.

Keyword class and Class Names
The class keyword introduces a class definition and is immediately followed by the class
name (ViewController). Class name identifiers use camel-case naming in which each word
in the identifier begins with a capital letter. Class names (and other type names) begin with
an initial uppercase letter and other identifiers begin with lowercase letters. Each new class
you create becomes a new type that can be used to declare variables and create objects.

Class Body
A left brace (at the end of line 5), {, begins the body of every class definition. A corre-
sponding right brace (at line 82 in Fig. 3.45), }, ends each class definition. By convention,
the contents of a class’s body are indented.

Inheriting from Class UIViewController
The notation : UIViewController in line 5 indicates that class ViewController inherits
from class UIViewController—the UIKit framework superclass of all view controllers. In-
heritance is a form of software reuse in which a new class is created by absorbing an existing
class’s members and enhancing them with new or modified capabilities. This relationship in-
dicates that a ViewController is a UIViewController. It also ensures that ViewController
has the basic capabilities that iOS expects in all view controllers, including methods like

1 // ViewController.swift

2 // Implements the tip calculator's logic
3
4

Fig. 3.40 | import declaration in ViewController.swift.

5

Fig. 3.41 | ViewController class definition and properties.

Error-Prevention Tip 3.1
A class must be defined before you use it in a given source-code file. In an Xcode project, if
you define a class in one .swift file, you can use it in the project’s other source-code files—
which is typical of other object-oriented languages, such as Objective-C, Java, C# and C++.

import UIKit

class ViewController: UIViewController {

iOS8fp.book Page 101 Wednesday, November 26, 2014 7:53 AM

102 Chapter 3 Tip Calculator App

viewDidLoad (Section 3.6.5) that help iOS manage a view controller’s lifecycle. The class on
the left of the : in line 5 is the subclass (derived class) and one on the right is the superclass
(base class). Every scene has its own UIViewController subclass that defines the scene’s event
handlers and other logic. Unlike some object-oriented programming languages, Swift classes
are not required to directly or indirectly inherit from a common superclass.

3.6.3 ViewController’s @IBOutlet Properties
Figure 3.42 shows class ViewController’s nine @IBOutlet property declarations that were
created by Interface Builder when you created the outlets in Section 3.4. Typically, you’ll
define a class’s properties first followed by the class’s methods, but this is not required.

@IBOutlet Property Declarations
The notation @IBOutlet indicates to Xcode that the property references a UI component in
the app’s storyboard. When a scene loads, the UI component objects are created, an object
of the corresponding view-controller class is created and the connections between the view
controller’s outlet properties and the UI components are established. The connection infor-
mation is stored in the storyboard. @IBOutlet properties are declared as variables using the
var keyword, so that the storyboard can assign each UI component object’s reference to the
appropriate outlet once the UI components and view controller object are created.

Automatic Reference Counting (ARC) and Property Attributes
Swift manages the memory for your app’s reference-type objects using automatic reference
counting (ARC), which keeps track of how many references there are to a given object. The
runtime can remove an object from memory only when its reference count becomes 0.

Property attributes can specify whether a class maintains an ownership or nonown-
ership relationship with the referenced object. By default, properties in Swift create strong
references to objects, indicating an ownership relationship. Every strong reference incre-
ments an object’s reference count by 1. When a strong reference no longer refers to an
object, its reference count decrements by 1. The code that manages incrementing and dec-
rementing the reference counts is inserted by the Swift compiler.

The @IBOutlet properties are declared as weak references, because the view controller
does not own the UI components—the view defined by the storyboard that created them
does. A weak reference does not affect the object’s reference count. A view controller does,
however, have a strong reference to its view.

6 // properties for programmatically interacting with UI components

7

8 @IBOutlet weak var customTipPercentLabel1: UILabel!
9 @IBOutlet weak var customTipPercentageSlider: UISlider!

10 @IBOutlet weak var customTipPercentLabel2: UILabel!

11 @IBOutlet weak var tip15Label: UILabel!

12 @IBOutlet weak var total15Label: UILabel!
13 @IBOutlet weak var tipCustomLabel: UILabel!

14 @IBOutlet weak var totalCustomLabel: UILabel!

15 @IBOutlet weak var inputTextField: UITextField!
16

Fig. 3.42 | ViewController’s @IBOutlet properties.

@IBOutlet weak var billAmountLabel: UILabel!

iOS8fp.book Page 102 Wednesday, November 26, 2014 7:53 AM

3.6 Class ViewController 103

Type Annotations and Implicitly Unwrapped Optional Types
A type annotation specifies a variable’s or constant’s type. Type annotations are specified
by following the variable’s or constant’s identifier with a colon (:) and a type name. For
example, line 7 (Fig. 3.42) indicates that billAmountLabel is a UILabel!. Recall from
Section 3.2.12 that the exclamation point indicates an implicitly unwrapped optional type
and that variables of such types are initialized to nil by default. This allows the class to
compile, because these @IBOutlet properties are initialized—they’ll be assigned actual UI
component objects once the UI is created at runtime.

3.6.4 Other ViewController Properties
Figure 3.43 shows class ViewController’s other properties, which you should add below
the @IBOutlet properties. Line 18 defines the constant decimal100 that’s initialized with
an NSDecimalNumber object. Identifiers for Swift constants follow the same camel-case
naming conventions as variables. Class NSDecimalNumber provides many initializers—this
one receives a String parameter containing the initial value ("100.0"), then returns an NS-
DecimalNumber representing the corresponding numeric value. We’ll use decimal100 to
calculate the custom tip percentage by dividing the slider’s value by 100.0. We’ll also use it
to divide the user’s input by 100.0 for placing a decimal point in the bill amount that’s dis-
played at the top of the app. Initializers are commonly called constructors in many other
object-oriented programming languages. Line 19 defines the constant decimal15Percent
that’s initialized with an NSDecimalNumber object representing the value 0.15. We’ll use this
to calculate the 15% tip.

Initializer Parameter Names Are Required
When initializing an object in Swift, you must specify each parameter’s name, followed by
a colon (:) and the argument value. As you type your code, Xcode displays the parameter
names for initializers and methods to help you write code quickly and correctly. Required
parameter names in Swift are known as external parameter names.

Type Inference
Neither constant in Fig. 3.43 was declared with a type annotation. Like many popular lan-
guages, Swift has powerful type inference capabilities and can determine a constant’s or
variable’s type from its initializer value. In lines 18–19, Swift infers from the initializers
that both constants are NSDecimalNumbers.

3.6.5 Overridden UIViewController method viewDidLoad
Method viewDidLoad (Fig. 3.44)—which Xcode generated when it created class ViewCon-
troller—is inherited from superclass UIViewController. You typically override it to de-
fine tasks that can be performed only after the view has been initialized. You should add
lines 25–26 to the method.

17 // NSDecimalNumber constants used in the calculateTip method
18

19

20

Fig. 3.43 | ViewController class definition and properties.

let decimal100 = NSDecimalNumber(string: "100.0")
let decimal15Percent = NSDecimalNumber(string: "0.15")

iOS8fp.book Page 103 Wednesday, November 26, 2014 7:53 AM

104 Chapter 3 Tip Calculator App

A method definition begins with the keyword func (line 22) followed by the func-
tion’s name and parameter list enclosed in required parentheses, then the function’s body
enclosed in braces ({ and }).The parameter list optionally contains a comma-separated list
of parameters with type annotations. This function does not receive any parameters, so its
parameter list is empty—you’ll see a method with parameters in Section 3.6.6. This
method does not return a value, so it does not specify a return type—you’ll see how to
specify return types in Section 3.6.7.

When overriding a superclass method, you declare it with keyword override pre-
ceding the keyword func, and the first statement in the method’s body typically uses the
super keyword to invoke the superclass’s version of the method (line 23). The keyword
super references the object of the class in which the method appears, but is used to access
members inherited from the superclass.

Displaying the Numeric Keypad When the App Begins Executing
In this app, we want inputTextField to be the selected object when the app begins exe-
cuting so that the numeric keypad is displayed immediately. To do this, we use property
inputTextField to invoke the UITextField method becomeFirstResponder, which pro-
grammatically makes inputTextField the active component on the screen—as if the user
touched it. You configured inputTextField such that when it’s selected, the numeric key-
pad is displayed, so line 26 displays this keypad when the view loads.

3.6.6 ViewController Action Method calculateTip
Method calculateTip (Fig. 3.45) is the action (as specified by @IBAction on line 31) that
responds to the Text Field’s Editing Changed event and the Slider’s Value Changed event.
Add the code in lines 32–81 to the body of calculateTip. (If you’re entering the Swift
code as you read this section, you’ll get errors on several statements that perform NSDeci-
malNumber calculations using overloaded operators that you’ll define in Section 3.6.7.)
The method takes one parameter. Each parameter’s name must be declared with a type
annotation specifying the parameter’s type. When a view-controller object receives a mes-
sage from a UI component, it also receives as an argument a reference to that compo-
nent—the event’s sender. Parameter sender’s type—the Swift type AnyObject—
represents any type of object and does not provide any information about the object. For
this reason, the object’s type must be determined at runtime. This dynamic typing is used
for actions (i.e., event handlers), because many different types of objects can generate
events. In action methods that respond to events from multiple UI components, the send-

21 // called when the view loads

22 func viewDidLoad() {

23
24
25 // select inputTextField so keypad displays when the view loads

26
27 }

28

Fig. 3.44 | Overridden UIViewController method viewDidLoad.

override

super.viewDidLoad()

inputTextField.becomeFirstResponder()

iOS8fp.book Page 104 Wednesday, November 26, 2014 7:53 AM

3.6 Class ViewController 105

er is often used to determine which UI component the user interacted with (as we do in
lines 42 and 57).

29 // called when the user edits the text in the inputTextField

30 // or moves the customTipPercentageSlider's thumb

31 {
32 let inputString = // get user input

33

34 // convert slider value to an NSDecimalNumber
35 let sliderValue =

36 NSDecimalNumber(integer: Int())

37
38 // divide sliderValue by decimal100 (100.0) to get tip %

39 let customPercent =

40
41 // did customTipPercentageSlider generate the event?

42 {

43 // thumb moved so update the Labels with new custom percent

44 customTipPercentLabel1.text =
45

46

47 customTipPercentLabel2.text = customTipPercentLabel1.text
48 }

49

50 // if there is a bill amount, calculate tips and totals
51 if ! {

52 // convert to NSDecimalNumber and insert decimal point

53 let billAmount =
54

55

56 // did inputTextField generate the event?
57 {

58 // update billAmountLabel with currency-formatted total

59 billAmountLabel.text = " " + formatAsCurrency(billAmount)
60

61 // calculate and display the 15% tip and total

62 let fifteenTip =
63 tip15Label.text = formatAsCurrency(fifteenTip)

64 total15Label.text =

65 formatAsCurrency()
66 }

67

68 // calculate custom tip and display custom tip and total
69 let customTip =

70 tipCustomLabel.text = formatAsCurrency(customTip)

71 totalCustomLabel.text =
72 formatAsCurrency()

73 }

74 else { // clear all Labels
75 billAmountLabel.text = ""

76 tip15Label.text = ""

Fig. 3.45 | ViewController action method calculateTip. (Part 1 of 2.)

@IBAction func calculateTip(sender: AnyObject)

inputTextField.text

customTipPercentageSlider.value

sliderValue / decimal100

if sender is UISlider

NSNumberFormatter.localizedStringFromNumber(customPercent,

 numberStyle: NSNumberFormatterStyle.PercentStyle)

inputString.isEmpty

NSDecimalNumber(string: inputString) / decimal100

if sender is UITextField

billAmount * decimal15Percent

billAmount + fifteenTip

billAmount * customPercent

billAmount + customTip

iOS8fp.book Page 105 Wednesday, November 26, 2014 7:53 AM

106 Chapter 3 Tip Calculator App

Getting the Current Values of inputTextField and customTipPercentageSlider
Line 32 stores the value of inputTextField’s text property—which contains the user’s
input—in the local String variable inputString—Swift infers type String because UI-
TextField’s text property is a String.

Lines 35–36 get the customTipPercentageSlider’s value property, which contains
a Float value representing the Slider’s thumb position (a value from 0 to 30, as specified in
Section 3.3.3). The value is a Float, so we could get tip percentages like, 3.1, 15.245, etc.
This app uses only whole-number tip percentages, so we convert the value to an Int before
using it to initialize the NSDecimalNumber object that’s assigned to local variable slider-
Value. In this case, we use the NSDecimalNumber initializer that takes an Int value named
integer.

Line 39 uses the overloaded division operator function that we define in Section 3.6.7
to divide sliderValue by 100 (decimal100). This creates an NSDecimalNumber repre-
senting the custom tip percentage that we’ll use in later calculations and that will be dis-
played as a locale-specific percentage String showing the current custom tip percentage.

Updating the Custom Tip Percentage Labels When the Slider Value Changes
Lines 42–48 update customTipPercentLabel1 and customTipPercentLabel2 when the
Slider value changes. Line 42 determines whether the sender is a UISlider object, mean-
ing that the user interacted with the customTipPercentageSlider. The is operator re-
turns true if an object’s class is the same as, or has an is a (inheritance) relationship with,
the class in the right operand.

We perform a similar test at line 57 to determine whether the user interacted with the
inputTextField. Testing the sender argument like this enables you to perform different
tasks, based on the component that caused the event.

Lines 44–46 set the customTipPercentLabel1’s text property to a locale-specific per-
centage String based on the device’s current locale. NSNumberFormatter class method
localizedStringFromNumber returns a String representation of a formatted number.
The method receives two arguments:

• The first is the NSNumber to format. Class NSDecimalNumber is a subclass of NSNum-
ber, so you can use an NSDecimalNumber anywhere that an NSNumber is expected.

• The second argument (which has the external parameter name numberStyle) is a
constant from the enumeration NSNumberFormatterStyle that represents the
formatting to apply to the number—the PercentStyle constant indicates that
the number should be formatted as a percentage. Because the second argument
must be of type NSNumberFormatterStyle, Swift can infer information about the

77 total15Label.text = ""

78 tipCustomLabel.text = ""

79 totalCustomLabel.text = ""
80 }

81 }

82 }
83

Fig. 3.45 | ViewController action method calculateTip. (Part 2 of 2.)

iOS8fp.book Page 106 Wednesday, November 26, 2014 7:53 AM

3.6 Class ViewController 107

method’s argument. As such, it’s possible to write the expression NSNumberFor-
matterStyle.PercentStyle with the shorthand notation:

Line 47 assigns the same String to customTipPercentLabel2’s text property.

Updating the Tip and Total Labels
Lines 51–80 update the tip and total Labels that display the calculation results. Line 51
uses the Swift String type’s isEmpty property to ensure that inputString is not empty—
that is, the user entered a bill amount. If so, lines 53–72 perform the tip and total calcu-
lations and update the corresponding Labels; otherwise, the inputTextField is empty and
lines 75–79 clear all the tip and total Labels and the billAmountLabel by assigning the
empty String literal ("") to their text properties.

Lines 53–54 use inputString to initialize an NSDecimalNumber, then divide it by 100
to place the decimal point in the bill amount—for example, if the user enters 5632, the
amount used for calculating tips and totals is 56.32.

Lines 57–66 execute only if the event’s sender was a UITextField—that is, the user
tapped keypad buttons to enter or remove a digit in this app’s inputTextField. Line 59 dis-
plays the currency-formatted bill amount in billAmountLabel by calling the formatAsCur-
rency method (defined in Section 3.6.7). Line 62 calculates the 15% tip amount by using
an overloaded multiplication operator function for NSDecimalNumbers (defined in
Section 3.6.7). Then line 63 displays the currency-formatted value in the tip15Label. Next,
lines 64–65 calculates and displays the total amount for a 15% tip by using an overloaded
addition operator function for NSDecimalNumbers (defined in Section 3.6.7) to perform the
calculation, then passing the result to the formatAsCurrency function. Lines 69–72 calcu-
late and display the custom tip and total amounts based on the custom tip percentage.

Why an External Name Is Not Required for a Method’s First Argument
You might be wondering why we did not provide a parameter name for the first argument
in the method call at lines 45–46. For method calls, Swift requires external parameter
names for all parameters after the first parameter. Apple’s reasoning for this is that they
want method calls to read like sentences. A method’s name should refer to the first param-
eter, and each subsequent parameter should have a name that’s specified as part of the
method call.

3.6.7 Global Utility Functions Defined in ViewController.swift
Figure 3.46 contains several global utility functions used throughout class ViewCon-
troller. Add lines 84–103 after the closing right brace of class ViewController.

 .PercentStyle

84 // convert a numeric value to localized currency string

85
86
87
88
89

Fig. 3.46 | ViewController.swift global utility and overloaded operator functions. (Part 1 of 2.)

func formatAsCurrency(number: NSNumber) -> String {

 return NSNumberFormatter.localizedStringFromNumber(

 number, numberStyle: NSNumberFormatterStyle.CurrencyStyle)
}

iOS8fp.book Page 107 Wednesday, November 26, 2014 7:53 AM

108 Chapter 3 Tip Calculator App

Defining a Function—formatAsCurrency
Lines 85–88 define the function formatAsCurrency. Like a method definition, a function
definition begins with the keyword func (line 85) followed by the function’s name and
parameter list enclosed in required parentheses, then the function’s body enclosed in brac-
es ({ and }). The primary difference between a method and a function is that a method is
defined in the body of a class definition (or struct or enum definition). Function for-
matAsCurrency receives one parameter (number) of type NSNumber (from the Foundation
framework).

A function may also specify a return type by following the parameter list with -> and
the type the function returns—this function returns a String. A function that does not
specify a return type does not return a value—if you prefer to be explicit, you can specify
the return type Void. A function with a return type uses a return statement (line 86) to
pass a result back to its caller.

 We use formatAsCurrency throughout class ViewController to format NSDecimal-
Numbers as locale-specific currency Strings. NSDecimalNumber is a subclass of NSNumber,
so any NSDecimalNumber can be passed as an argument to this function. An NSNumber
parameter can also receive as an argument any Swift numeric type value—such types are
automatically bridged by the runtime to type NSNumber.

Lines 86–87 invoke NSNumberFormatter class method localizedStringFromNumber,
which returns a locale-specific String representation of a number. This method receives
as arguments the NSNumber to format—formatAsCurrency’s number parameter—and a
constant from the NSNumberFormatterStyle enum that specifies the formatting style—the
constant CurrencyStyle specifies that a locale-specific currency format should be used.
Once again, we could have specified the second argument as .CurrencyStyle, because
Swift knows that the numberStyle parameter must be a constant from the NSNumberFor-
matterStyle enumeration and thus can infer the constant’s type.

Defining Overloaded Operator Functions for Adding, Subtracting and Multiplying
NSDecimalNumbers
Lines 91–93, 96–98 and 101–103 create global functions that overload the addition (+),
multiplication (*) and division (/) operators, respectively. Global functions (also called

90 // overloaded + operator to add NSDecimalNumbers

91
92
93
94
95 // overloaded * operator to multiply NSDecimalNumbers
96 func (left: NSDecimalNumber, right: NSDecimalNumber) -> NSDecimalNumber {

97 return

98 }
99
100 // overloaded / operator to divide NSDecimalNumbers

101 func (left: NSDecimalNumber, right: NSDecimalNumber) -> NSDecimalNumber {
102 return

103 }

Fig. 3.46 | ViewController.swift global utility and overloaded operator functions. (Part 2 of 2.)

func +(left: NSDecimalNumber, right: NSDecimalNumber) -> NSDecimalNumber {

 return left.decimalNumberByAdding(right)

}

*
left.decimalNumberByMultiplyingBy(right)

/

left.decimalNumberByDividingBy(right)

iOS8fp.book Page 108 Wednesday, November 26, 2014 7:53 AM

3.7 Wrap-Up 109

free functions or just functions) are defined outside a type definition (such as a class).
These functions enable us to:

• add two NSDecimalNumbers with the + operator (lines 65 and 72 of Fig. 3.45)

• multiply two NSDecimalNumbers with the * operator (lines 62 and 69 of Fig. 3.45)

• divide two NSDecimalNumbers with the / operator (lines 39 and 54 of Fig. 3.45)

Overloaded operator functions are defined like other global functions, but the function
name is the symbol of the operator being overloaded (Fig. 3.46lines 91, 96 and 101). Each
of these functions receives two NSDecimalNumbers representing the operator’s left and right
operands.

The addition (+) operator function (lines 91–93) returns the result of invoking NSDec-
imalNumber instance method decimalNumberByAdding on the left operand with the right
operand as the method’s argument—this adds the operands. The multiplication (*) oper-
ator function (lines 96–98) returns the result of invoking NSDecimalNumber instance
method decimalNumberByMultiplyingBy on the left operand with the right operand as the
method’s argument—this multiplies the operands. The division (/) operator function (lines
101–103) returns the result of invoking NSDecimalNumber instance method decimalNum-
berByDividingBy on the left operand with the right operand as the method’s argument—
this divides the left operand by the right operand. Since each of these NSDecimalNumber
instance methods receives only one parameter, the parameter’s name is not required in the
method call. Unlike initializers and methods, a global function’s parameter names are not
external parameter names and are not required in function calls unless they’re are explicitly
defined as external parameter names in the function’s definition.

3.7 Wrap-Up
This chapter presented the Tip Calculator app that calculates and displays 15% and custom
tip percentage tips and totals for a restaurant bill. The app uses Text Field and Slider UI
components to receive user input and update suggested tips and bill totals in response to
each user interaction.

We introduced Swift—Apple’s programming language of the future—and several of
its object-oriented programming capabilities, including objects, classes, inheritance,
methods and properties. As you saw, the app’s code required various Swift data types,
operators, control statements and keywords.

You learned about strong and weak references and that only strong references affect
an object’s reference count. You also learned that iOS’s automatic reference counting
(ARC) removes an object from memory only when the object’s reference count becomes 0.

You used Interface Builder to design the app’s UI visually. We showed how to build
your UI faster by duplicating UI components that had similar attribute settings. You
learned that Labels (UILabel), Sliders (UISlider) and Text Fields (UITextField) are part
of iOS’s UIKit framework that’s automatically included with each app you create.

We showed how to use import to give your code access to features in preexisting
frameworks. You learned that a scene is managed by a view-controller object that deter-
mines what information is displayed and how user interactions with the scene’s UI are pro-
cessed. Our view-controller class inherited from class UIViewController, which defines
the base capabilities required by view controllers in iOS.

iOS8fp.book Page 109 Wednesday, November 26, 2014 7:53 AM

110 Chapter 3 Tip Calculator App

You used Interface Builder to generate @IBOutlet properties (outlets) in your view
controller for programmatically interacting with the app’s UI components. You used
visual tools in Interface Builder to connect a UI control to a corresponding outlet in the
view controller. Once a connection was made, the view controller was able to manipulate
the corresponding UI component programmatically.

You saw that interacting with a UI component caused a user-interface event and sent
a message from the UI component to an action (event-handling method) in the view con-
troller. You learned that an action is declared in Swift code as an @IBAction. You used
visual tools in Interface Builder to connect the action to specific user-interface events.

Next, you learned that after all the objects in a storyboard are created, iOS sends a
viewDidLoad message to the corresponding view controller so that it can perform view-
specific tasks that can be executed only after the UI components in the view exist. You also
called the UITextField’s becomeFirstResponder method in viewDidLoad so that iOS
would display this keypad immediately after the view loaded.

You used NSDecimalNumbers for precise financial calculations. You also used class
NSNumberFormatter to create locale-specific currency and percentage string representa-
tions of NSDecimalNumbers. You used Swift’s operator overloading capabilities to simplify
NSDecimalNumber calculations.

In the next chapter, we present the Twitter Searches app, which allows you to save
your favorite (possibly lengthy) Twitter search strings with easy-to-remember short tag
names. You’ll store the search strings and their short tag names in Foundation framework
collections. You’ll also use iCloud key–value pair storage so that you can sync your query
between all your iOS devices that have the Twitter Searches app installed.

iOS8fp.book Page 110 Wednesday, November 26, 2014 7:53 AM

This page intentionally left blank

Symbols
! for explicitly unwrapping an

optional 149
!= (not equals) operator 84
!== (not identical to) operator 84
? for unwrapping a non-nil

optional 149
?? (nil coalescing operator) 296
... (closed range) operator 168
..< (half-open range) operator

168, 169
{, left brace 101
}, right brace 101
* (multiplication) operator 81
/ (division) operator 81
% (remainder) operator 81
- (subtraction) operator 81
+ (addition) operator 81
< (less than) operator 84
<= (less than or equal) operator 84

== (is equal to) operator 84
=== (identical to) operator 84
> (greater than) operator 84
>= (greater than or equal to)

operator 84

Numerics
100 Destinations 29

A
A8 64-bit chip 7
Accelerate framework 29
accelerometer 5, 9
accelerometer sensor 243, 250
access modifier 132

internal 132
private 132
public 132

Accessibility 6, 12, 40, 46, 67
Accessibility Programming

Guide for iOS 40

Accessibility (cont.)
accessibility strings 44
Accessibilty Inspector 68
Large Text 7
UIAccessibility protocol

68

VoiceOver 6
White on Black 7
Zoom 7

accessories 29
Accounts framework 28
action 80

create 99
action (event handler) 99
activity 17
Ad 315
Ad Hoc distribution 315
Ad Hoc provisioning profile

317
adaptive design 31
Add Missing Constraints 93
addition 81
addLineToPoint method of class

UIBezierPath 265
addObserver method of class

NSNotificationCenter 135
AddressBook framework 28
AddressBookUI framework 26
addTextFieldWithConfigurati

onHandler method of class
UIAlertController 148

admin 314, 315, 316
adopt a protocol 124
AdSupport framework 28
advertising networks

AdMob 335
Conversant 335
Flurry 335
InMobi 335
Inneractive 335
Leadbolt 335
Millennial Media 335

advertising networks (cont.)
mMedia 335
Mobclix 335
Nexage 335

advertising networks (cont.)
Smaato 335
Tapjoy 335

advertising revenue 325
Agent (for a development team)

315
AirDrop 15, 117
AirPrint 243, 248
AirPrint 11
Alignment attribute of a Label 91
allObjects property of class

NSSet 233
allowsRotation property of

class SKPhysicsBody 216
alpha property of a UIView 167
altimeter sensor 250
Amazon Mobile app 323
Ambient light sensor 6
Android for Programmers website

xix
animated transition 205
animateWithDuration method

of class UIView 189, 190
animation xxiii, 163, 201, 281
animation frame 204
anonymous function 20, 127
AnyObject generic object type

104
AnyObject type (Swift) 122
API 25
app approval process 313
App Bundle 326
app extension 16
app icons 54
app ID 314, 315, 317
app name 49
app platforms

Amazon Kindle 336

Index

iOS8fp.book Page 339 Wednesday, November 26, 2014 7:53 AM

340 Index

app platforms (cont.)
Android 336
BlackBerry 336
iPhone 336
Windows Mobile 336

App Preview 320
app record 330
app review 333
app review and

recommendation sites 333
App Store xxviii, 313, 314, 316,

322, 324, 333
Books category 19
Business category 19
Catalogs category 19
Education category 19
Entertainment category 19
Finance category 19
Food and Drink category 19
Games category 19
Health and Fitness category

19
Kids category 19
Lifestyle category 19
Medical category 19
Music category 19
Navigation category 19
News category 19
Newsstand category 19
Photo and Video category 19
Productivity category 19
Reference category 19
Social Networking category 19

Sports category 19
Travel category 19
Utilities category 19
Weather category 19

App Store approval 318
App Store distribution 315
App Store Marketing Guidelines

331
App Store Resource Center 314
App Store Review Guidelines 318
app templates 48

Game 48
Master-Detail Application 48,

120, 128, 129, 282
Page-Based Application 48
Single View Application 48
Tabbed Application 48

AppDelegate class 138, 288,
309

app-driven approach xxii, 2
AppKit 26
Apple Developer Program roles

admin 314, 315
team member 314, 315

Apple Pay 8, 18, 28
Apple Push Notification 10
Apple Watch 8, 18
Apple World Wide Developer

Conference (WWDC) 16
Application Loader 331
applicationDidEnterBackgrou

nd method of the
UIApplicationDelegate
protocol 139

application-level events 138
applyImpulse method of class

SKPhysicsBody 217
arc4random UNIX function

167
arc4random_uniform UNIX

function 167
ARGB color scheme 245
arithmetic operators 81
array bounds checking 21
Array Swift Standard Library

type 120
Array type (Swift) 23, 82, 120,

121, 122
element type 121
empty literal 133
filter method 140, 183,

196
removeAll method 263
removeAtIndex method 137
removeLast method 263
values property 196

arrayForKey method of class
NSUserDefaults 135

as operator 135
aspect ratio 59
asset catalog 46, 54, 166, 210
AssetsLibrary framework 27
Assistant editor (Xcode) 32, 51,

97, 99
AssistiveTouch 7
attribute of a class 33
Attributes inspector 59

audio xxiii
AudioToolbox framework 27
AudioUnit framework 27
authentication 40
authorization 40
auto layout 13, 31, 45, 57, 62,

93
auto layout constraints

adding 93
Equal Widths 94
equality constraint 175
missing 93

auto-image stabilization 8
automatic reference counting

(ARC) 102
auto-renewable subscription

325
Autoshrink 61, 91
AV Foundation framework 27
AVAudioPlayer class 204, 211,

212
play method 204

AVFoundation framework 27
awakeFromNib method of class

UIView 288

B
back button 172
Background attribute of a GUI

component 87
backgroundColor property of a

UIView 167
barometer sensor 8, 250
base class 102
base internationalization 70
base language

(internationalization) 70, 71
becomeFirstResponder method

of a GUI component 80, 104
behavior

of a class 34
Beta App Review 316
beta testing 316
beta testing an app 316
blood pressure monitor 17
Bluetooth 18, 29
body of a class definition 101
Bool type 81
bounds property of a UIView 167
brand awareness 322

iOS8fp.book Page 340 Wednesday, November 26, 2014 7:53 AM

Index 341

branding apps
Amazon Mobile 323
Bank of America 323
Best Buy 323
Epicurious Recipe 323
ESPN ScoreCenter 323
ING Direct ATM Finder

323
NFL Mobile 323
Nike Training Club 323
NYTimes 323
Pocket Agent 323
Progressive Insurance 323
UPS Mobile 323
USA Today 323
Wells Fargo Mobile 323

Breakpoint navigator 50
bridging 23
bridging between Swift and

Objective-C types 82, 82,
108, 121
Apple’s Using Swift with

Cocoa and Objective-C
guide 122

downcast 122
bullseye symbol for an outlet or

action 98
bundle ID 49, 329
bundle ID search string 317
bundle seed ID 317

C
C Standard Library 167
C# xx
C++ xx
CALayer class 250

renderInContext method
266

camera 8
Camera app 11
Cannon Game app 27
CarPlay 16
categoryBitMask property of

class SKPhysicsBody 207,
216, 219

center property of a UIView 167
CFNetwork framework 28
CFTimeInterval 205, 218
CGFloat struct 207

CGGeometry 207
CGFloat 207
CGPoint 207
CGPointMake 207
CGRectMake 208
CGSize 208
CGSizeMake 208
CGVector 208

CGPath Reference 261
CGPoint struct 207
CGPointMake function 207
CGRect struct 249
CGRectMake function 208
CGSize struct 208
CGSizeMake function 208
CGVector struct 208
characteristics of great apps 39
check-in 332
class 34

constructor 133
default constructor 133
definition 101
name 101
property 35

class keyword 83, 101
class names

camel case naming 101
Classes

AppDelegate 288, 309
AVAudioPlayer 204, 211,

212, 218
CALayer 250
NSArray 23, 82, 121, 122
NSBundle 166, 181
NSData 122
NSDate 122
NSDecimalNumber 78, 79, 80
NSDictionary 23, 82, 121,

122
NSEntityDescription 280,

292
NSFetchedResultsControl-

ler 280, 291, 296
NSFetchedResultsSection-

Info 293
NSFetchRequest 281, 297
NSIndexPath 152, 289
NSManagedObject 280, 291,

301

Classes (cont.)
NSManagedObjectContext

280, 288, 292, 294, 296,
310

NSManagedObjectModel 280,
310

NSMutableArray 23, 82, 121
NSMutableDictionary 23,

82, 121
NSMutableString 23
NSNotificationCenter 122,

306
NSNumber 106, 108, 122
NSNumberFormatter 78, 79,

82, 106
NSPersistentStore-

Coordinator 280, 310
NSSortDescriptor 297
NSString 23, 82, 122
NSUbiquitousKeyValueStore

122
NSUserDefaultsl 122
SKAction 205, 205
SKConstraint 206
SKLabelNode 204
SKNode 204, 215, 221
SKPhysicsBody 204, 206,

207, 215, 217
SKPhysicsWorld 204
SKScene 204, 205, 211, 212
SKShapeNode 205, 221, 222
SKSpriteNode 204, 214, 219
SKTexture 205
SKTransition 205
SKView 204, 211
UIActivityViewController

123, 124, 243
UIAlertAction 125, 146
UIAlertController 125
UIBarButtonItem 243, 257,

272
UIBezierPath 250, 250, 261
UIDevice 143
UIGestureRecognizer 125
UIImageView 45, 58
UILabel 45, 79
UILongPressGesture-

Recognizer 125
UINavigationController

130, 165

iOS8fp.book Page 341 Wednesday, November 26, 2014 7:53 AM

342 Index

Classes (cont.)
UIResponder 208, 257, 260
UISegmentedControl 165,

193
UISlider 79
UISplitViewController

130, 289
UISwitch 193, 194
UITableView 120, 151, 152
UITableViewCellEditing-

Style 154
UITableViewController

130
UITextField 79
UIToolbar 243, 257, 272
UITouch 243, 250
UIViewController 79, 103
UIWebView 116, 120

click-through rate (CTR) 325
closure 20, 189

accessing an enclosing class’s
members 149

trailing closure 141
closure (anonymous function)

127, 140
empty parameter list 127
expression 127
fully typed 127
inferred types 127
inferred types and implicit

return 128
operator function 128
shorthand argument names

128
Cloud Kit 17
Cloud Kit dashboard 17
CloudKit framework 28
Cocoa xix
Cocoa frameworks 23, 25
Cocoa Touch xxii, 45, 57, 78,

78
Cocoa Touch frameworks 3, 23,

26, 78
Accelerate 29
Accounts 28
AddressBook 28
AddressBookUI 26
AdSupport 28
AssetsLibrary 27
AudioToolbox 27

Cocoa Touch frameworks
(cont.)
AudioUnit 27
AVFoundation 27
CFNetwork 28
CloudKit 28
CoreAudio 27
CoreBluetooth 29
CoreData 28
CoreFoundation 28
CoreGraphics 27
CoreLocation 28
CoreMedia 28
CoreMidi 27
CoreMotion 28
CoreTelephony 28
CoreText 27
CoreVideo 27
EventKit 28
EventKitUI 26
ExternalAccessory 29
GameController 27
GameKit 26
GLKit 27
HealthKit 28
HomeKit 28
iAd 26
ImageIO 27
JavaScriptCore 28
LocalAuthentication 29
MapKit 26
MediaAccessibility 27
MediaPlayer 27
MessageUI 26
Metal 27
MobileCoreServices 28
MultipeerConnectivity 28
NewsstandKit 28
NotificationCenter 26
OpenAL 27
OpenGLES 27
PassKit 28
PhotosUI 26
PushKit 28
QuartzCore 27
QuickLook 28
SceneKit 27
Security 29
Social 28
SpriteKit 27

Cocoa Touch frameworks
(cont.)
StoreKit 29
System 29
SystemConfiguration 29
Twitter 26
UIAutomation 29
UIKit 26
WebKit 29

code-completion suggestions 84
code highlighting 3
code license xx
code security 40
code signing 40, 316
Code Snippet library 57
code walkthrough 3
Collection views 13
Collections

NSArray 121
NSDictionary 121

collision detection 206
precise 206

collisionBitMask of an
SKPhysicsBody 207

color
opacity 87

company identifier 49, 49, 85,
128, 170, 209, 251, 282

comparative operators 84
compass 6
component 33
componentsSeparatedByString

method of class NSString 181
computed property 136, 169,

182
get accessor 182
set accessor 182
syntax 182

conform to (implement) a
protocol 35

conform to a protocol 124
connect a GUI control to a

corresponding 79
Connection type 98
Connections inspector 59
constant property 79
consumables 325
contactTestBitMask property

of class SKPhysicsBody 207,
216, 219

iOS8fp.book Page 342 Wednesday, November 26, 2014 7:53 AM

Index 343

context-sensitive help 51
contract information 320
convenience initializer (Swift)

216
copy and paste 9
copying an image to the

clipboard 243
copy-on-write 83
Core Animation framework

249, 250
Core Animation Programming

Guide 250
Core Data framework

@NSManaged attribute 284
 274, 280, 282, 294

Core Data Programming
Guide 288

data model 280
Data Model editor 280
entity 280
managed object 292
unmanaged object 292

Core Data support
Master-Detail Application

template 279, 280
Single View Application

template 279
Core Graphics Framework 207
Core Motion framework 250
Core Motion Framework

Reference 250
CoreAudio framework 27
CoreBluetooth framework 29
CoreData framework 28
CoreFoundation framework 28
CoreGraphics framework 27
CoreLocation framework 28
CoreMedia framework 28
CoreMidi framework 27
CoreMotion framework 9, 28
CoreTelephony framework 28
CoreText framework 27
CoreVideo framework 27
cos function 224
countElements global Swift

function 170, 188
CPU xxiii
crash report 328
create an action in Interface

Builder 99

create an outlet in Interface
Builder 97

Creating an iTunes Connect
Record for an App 330

cross fade transition 205
cross-platform mobile-

development tools 336
Adobe Air 337
Appcelerator 337
PhoneGap 337
QT 337
RhoMobile 337
Sencha Touch 337

cryptographic services 40
CTR (click-through rate) 325
currency format 97
currency formatting 38
CurrencyStyle constant of the

NSNumberFormatterStyle
enumeration 108

custom keyboard 16
cut text 9

D
Darwin module 167
data model in Core Data 275,

280, 280, 284, 294
.xcdatamodeld filename

extension 280
Data Model editor (Xcode)

280, 282
data store 280
Debug area (Xcode) 49, 51
Debug navigator 50
debugger 32
decimalNumberByAdding

method of class
NSDecimalNumber 109

decimalNumberByDividingBy:
method of class
NSDecimalNumber 109

decimalNumberByMultiplyingB

y: method of class
NSDecimalNumber 109

declaration
import 101

default constructor 133
defaultCenter method of class

NSNotificationCenter 135
defaults system 122

defaultStore method of class
NSUbiquitousKeyValueStore
135

definition
class 101

deinit keyword 304
deinitializer (Swift) 304
Deitel Facebook page 332
Deitel® Buzz Online Newsletter

337
Deitel® Training 337
Delegation design pattern 125
deleteRowsAtIndexPaths

method of class UITableView
154

Deployment Info 53
dequeueReusableCellWithIden

tifier method of class
UITableView 152

derived class 102
design pattern xxiii, 126

Delegation 125
Observer 126
Target-Action 125

designated initializer (Swift) 216
designing a storyboard from

scratch 165
details view 120
Development Certificate 314,

315, 316
development team 314
Device Orientation 53
Devices project setting 49
Dictionary type (Swift) 120,

121, 122
empty literal 133
removeValueForKey method

137
subscripting notation 136
updateValue method 141
values property 263

Dictionary type in Swift 23, 82
dictionaryForKey method of

class NSUserDefaults 134
didApplyConstraints method

of class SKScene 206
didBeginContact method of the

protocol
SKPhysicsContactDelegate
207

iOS8fp.book Page 343 Wednesday, November 26, 2014 7:53 AM

344 Index

didEndContact method of the
protocol
SKPhysicsContactDelegate
207

didEvaluateActions method of
class SKScene 205

didFinishUpdate method of
class SKScene 206

didMoveToView method of class
SKScene 213, 228

didSimulatePhysics method of
class SKScene 206

digital certificate 316
Digital Crown 18
Digital Touch 18
disabilities 46, 67
dispatch_after function from

the Grand Central Dispatch
library 166, 190

dispatch_get_main_queue 190
dispatch_queue_t 190
dispatch_time 190
DISPATCH_TIME_NOW 190
dispatch_time_t 190
distribution certificate 316
division 81
Do Not Disturb phone setting 15
dock connector 29
document outline window 63
documentation

Accessibility Programming
Guide for iOS 40, 41

App Distribution Guide 317
App Store Marketing and

Advertising Guidelines for
Developers 331

App Store Review Guidelines
318

Cocoa Core Competencies 41
Coding Guidelines for Cocoa

41
Game Center Programming

Guide 41
Getting Started 41
iCloud Design Guide 122
iOS Application

Programming Guide 41
iOS Human Interface

Guidelines 39, 41, 313,
317

documentation (cont.)
Objective-C Runtime

Programming Guide 41
Preferences and Settings

Programming Guide 122
Programming with Objective-

C 41
Sample Code 41
SDK Compatibility Guide 41
Social Framework Reference

41, 123
Store Kit Framework

Reference 325
Store Kit Programming Guide

325
Swift Standard Library

Reference 41
The Swift Programming

Language 41
What’s New in iOS 8 41
What’s New in Xcode 41
Xcode Overview 41

DocumentPicker 16
door-opening transition 237
doors closing transition 205
doors opening transition 205
doorway transition 205
double tap gesture 33
Double type 80, 81
double-tap gesture 5
downcast 122
drag gesture 5, 33
Drawing and Printing Guide for

iOS 248
drawRect method of class

UIView 249
drive sales 322
duplicate existing GUI

components 79
dynamic prototypes (table cells)

281
dynamically typed 104

E
earnings 322
edge-based physics bodies 206
Editing Changed event for a Text

Field 99, 104
Editor area (Xcode) 49, 50
element type of an Array 121

empty String 107
empty string (@"") 107
enabled property of a UI

control 186
encapsulation 35
entity in Core Data 280
enum keyword 83
Equal Widths constraint 94
event handler 99
event-handling method 80
EventKit framework 9, 28
EventKitUI framework 26
Events

Editing Changed event for a
Text Field 99, 104

Value Changed event for a
Slider 99, 104

explicit app ID 317
explicitly unwrap an optional

with ! 149
explicitly unwrapping an

optional 83
extension keyword 170, 193
external parameter name 137

to use local parameter
name 126

for a function parameter 126
external parameter names 103
ExternalAccessory framework

29
Eyes Free 14

F
Facebook 13, 332

Deitel page 332, 333
Facebook integration 13
FaceTime 10, 14
factory settings 41
fade transition 205
fee-based app 19
file in the Project navigator 52
File inspector 51
File System Programming Guide

248
File Template library 57
filter method of Array 140,

183, 196
financial calculations 80
financial transaction 324
Find My iPhone 41
Find navigator 50

iOS8fp.book Page 344 Wednesday, November 26, 2014 7:53 AM

Index 345

Finder window 37
fingerprint authentication 6
first responder 80, 307
Fisher-Yates shuffle 193
fitness tracker 17
Fix-it 32
flick 33
flick gesture 5
flip transition 205
Float type 80, 81
for…in loop statement 168
Foundation 25, 78
Foundation Framework 121
Foundation framework 79, 80,

82, 108
fourth-generation iPad 4
frame property of a UIView 167,

190
frames-per-second (FPS) 201,

205
Frameworks

Core Data 280
Core Graphics 207
Foundation 79
Metal 203
OpenGL ES 204
SceneKit 203
SpriteKit 203
Store Kit 324
UIKit 57, 79, 101

free app 19, 321, 322
Free Applications contract 320
free function 109
free subscription 325
freemium app monetization

model 323
friction property of class

SKPhysicsBody 215
fully qualified name 284
fully typed closure expression

127
func keyword 104, 108
function 109

external parameter name
126

free 109
global 108
with multiple return values

21

Functions
countElements 188
join 188
stride 169, 169
swap 193

G
Game Center 12, 15, 315, 317
Game Center app 11
Game Center Programming

Guide 41
game loop 201, 204, 205, 234
Game project 209
game technologies 203
Game template 48, 203
GameController framework 15,

27
GameKit framework 12, 26

local-player authentication
12

matchmaking 12
player display name 12
player timeout 12

games 39
generic type 121
generics 21
gesture 4, 33

double tap 5
drag 5
flick 5
pinch 5
shake 5
swipe 5
tap 5
touch and hold 5

gestures
shake 257

get accessor of a computed
property 182

getRed method of class UIColor
268

Git 49
Glances 18
GLKit framework 27
global function 108

countElements 188
join 188
swap 193

Google Maps 29
GPS sensor 6, 250

Grand Central Dispatch (GCD)
9, 166, 190
dispatch_after function

166, 190
dispatch_get_main_queue

190
dispatch_queue_t 190
dispatch_time 190
DISPATCH_TIME_NOW 190
dispatch_time_t 190
NSEC_PER_SEC 190

Grand Central Dispatch (GCD)
Grand Central Dispatch

Reference 166
graphics xxiii
graphics context 250, 251
greater than or equal to

constraint 175
group in the Project navigator 52
GUI Components

Image View 45
Label 45, 86, 87
naming convention 96
Slider 37, 76

GUI components
Web View 120

guide lines 58
Guided Access 7
gyroscope 9
gyroscope sensor 250

H
half-open range operator (..

168, 169
Handoff 17
hashtag 333
HDR (High Dynamic Range)

Photos 10
HealthKit Framework 17
HealthKit framework 28
hearing impaired 6
height or a GUI component 88
hide status bar 210
HIG (Human Interface

Guidelines) 58
High Dynamic Range (HDR)

Photos 10
HomeKit framework 17, 28
Human Interface Guidelines

(HIG) 58, 86

iOS8fp.book Page 345 Wednesday, November 26, 2014 7:53 AM

346 Index

I
i-Newswire 334
iAd 10, 13, 321
iAd framework 26
iAd Network 325
iAd Programming Guide 326
iAd Workbench 327
@IBAction 104
@IBAction event-handling

method 80
@IBOutlet property 79, 102
iCloud 11, 11, 17, 26, 41, 113,

122, 315, 317
account 113
iCloud Storage APIs 11
iOS Simulator 119
key–value pair store 122
notification 139
NSUbiquitousKeyValue-

Store 122
NSUbiquitousKeyValue-

StoreDidChange-

Externally-

Notification 135
sync data across devices 113
turn on support 129

iCloud Design Guide 122
iCloud Shared Albums 17
icon 318, 319
icon design firms 319
IDE (integrated development

environment) xxiii, 31
identical to (===) operator 84
identifiers

camel case naming 101
Identifying Your App in iTunes

Connect 330
Identity inspector 59
ignoresSiblingOrder property

of class SKScene 213
Image attribute 59
image set 46, 54
Image View 45, 58, 59
ImageIO framework 27
images xxiii
Images.xcassets 54
implement (conform to) a

protocol 35
implicitly unwrapped optional

82, 103, 179

import declaration 101
#import preprocessor directive

79
in-app advertising 321, 325
In-App Purchase 313, 315, 317,

321, 324, 325
In-App Purchase

Configuration Guide for
iTunes Connect 325

in keyword
introduce a closure’s body

127
In-App Purchase 13
information hiding 35
inheritance 35, 101, 103
inherits 101
init keyword 134
initial 171
initial view controller 171
initializer 133, 217

convenience 216
designated 216
required 216

initializers 103
inout parameters 193
insertRowsAtIndexPaths

method of class UITableView
149

insertSegmentWithTitle
method of class
UISegmentedControl 188

inspector 51, 58
Attributes 59
Connections 59
File 51
Identity 59
Quick Help 51
Size 59

instance 34
Instruments 32
Instruments tool xxiii
Int type 81
Int16 type 81
Int32 type 81
Int64 type 81
Int8 type 81
integerForKey method of class

NSUserDefaults 180
integrated development

environment (IDE) xxiii, 31

inter-app audio 15
Interface Builder 20, 31, 44, 45

duplicate existing GUI
components 79

Pin tools 94
internal

access modifier 132
international App Stores 319
internationalization 46, 64, 69,

209, 237
base language 70, 71
lock your components for

localization 70
Internationalization and

Localization Guide 70
Internet public relations

resources
ClickPress 334
i-Newswire 334
Marketwire 334
Mobility PR 335
openPR 334
PR Leap 334
Press Release Writing 335
PRLog 334
PRWeb 334

ion-strengthened glass 7
iOS 9
iOS 4.x 11
iOS 6

Social Framework 123
iOS 8 xix, 6, 16, 18
iOS 8 for Programmers website

xix
iOS app templates 48
iOS defaults system 122

NSUserDefaults 122
iOS Dev Center 331
iOS Developer Enterprise

Program xxviii
iOS Developer Forums 41
iOS Developer Library Reference

26, 78
iOS Developer Program xxviii,

33, 64, 313, 314, 314, 315
iOS Developer University

Program xxviii
iOS Distribution Certificate

315
iOS game technologies 203

iOS8fp.book Page 346 Wednesday, November 26, 2014 7:53 AM

Index 347

iOS Human Interface Guidelines
39, 313, 317

iOS Paid Applications contract
320

iOS Simulator 32, 44, 46, 64,
313, 314

iOS Team Provisioning Profile
315

iOS wildcard app ID 315
iPad xx, 4
iPad 2 4
iPad Air xx, 4
iPad Mini 4
iPad, first generation 4
iPad, The New 4
iPhone 3G 3
iPhone 3GS 3
iPhone 4 3, 9
iPhone 4S 3
iPhone 5 3
iPhone 5c xix, 3
iPhone 5s xix, 3
iPhone 6 xix, 4
iPhone 6 Plus xix, 4
iPhone OS 9
iPhone OS 2 9
iPhone OS 3 9
iPhone sales 3
iPod touch 2
is operator 106
isEmpty property of type String

107
iSight camera 8
Issue navigator 50
iTunes 9, 325
iTunes Connect 313, 314, 327

Agreements, Tax & Banking
Information 327

iAd 327
My Apps 327
Payments and Financial

Reports 327
record for your app 330
Resources and Help 327
Sales and Trend Reports 327
TestFlight beta testing 316
Users and Roles 327

iTunes Connect Developer Guide
313, 316, 330

iTunes Connect Modules 327

J
Java xx
JavaScriptCore framework 28
join global Swift function 170,

188
jump bar (Assistant editor) 97

K
kCGLineCapRound 261
kCGLineJoinRound 261
key type 121
keyboard

how to display 80, 104
keyboard shortcuts 52
Keyboard Type attribute of a Text

Field 93
key–value pairs 21
Keywords 318, 319

class 83, 101
deinit 304
enum 83
extension 170, 193
func 104, 108
import 101
init 134
internal 132
let 79
mutating 193
nil 82
override 104
private 132
protocol 132
public 132
required 216
return 108
self 134
static 209, 226
struct 83
super 104
var 79, 102

L
Label 45, 60, 88

Alignment attribute 61, 91
Font attribute 61
Lines attribute 61
Text attribute 61

lambda 20
landscape keyboard 5, 9
landscape orientation 53, 56

language support 9
Large Text accessibility feature 7
launch image 320
launch images 54
launch screen 320
leaderboard 12
leading edge of a view 64
left brace, { 101
let keyword 79
Library window 58
light sensor 250
linearDamping property of class

SKPhysicsBody 216
lineCapStyle property of class

UIBezierPath 261
lineJoinStyle property of class

UIBezierPath 261
lineWidth property of class

UIBezierPath 261
LLVM Compiler 32
local variable 134
LocalAuthentication framework

29
locale-specific currency string

38, 108
locale-specific percentage string

106
localizable String 209
localization 69, 209, 237, 329

lock GUI components 70
localize 44
localizedStringFromNumber

method of class
NSNumberFormatter 82, 106,
108

local-player authentication 12
locate your iPhone 41
location simulation 32
locationInView method of class

UITouch 265
lock your components for

localization 70
All Properties 70
entire storyboard 70
Localizable Properties 70
Non-localizable Properties 70
Nothing 70

loop statement
for…in 168
while 168

iOS8fp.book Page 347 Wednesday, November 26, 2014 7:53 AM

348 Index

M
Mac xxi
magnetometer sensor 6, 9, 250
Mail app 12
main bundle 166, 181, 197
mainBundle method of class

NSBundle 181
managed object 292
MapKit framework 13, 26
Maps 15
Maps app 13
Marketwire 334
mashup 29
Master-Detail Application

template 48, 120, 128, 129,
275, 282
Core Data support 279, 280

master-list view 120
max property of an integer type

80
Media library 57
MediaAccessibility framework

15, 27
MediaPlayer framework 27
memory leak xxiii
memory leaks 52
message 99
MessageUI framework 15, 26
Metal 48
Metal framework 27, 203
method 34, 102

call 35
camel case naming 101
local variable 134

micro blogging 332, 333
microphone 9
min property of an integer type

80
Minimum Font Scale 61, 91
missing auto layout constraints

93
mobile advertising networks

325, 335
AdMob 335
Conversant 335
Flurry 335
InMobi 335
Inneractive 335
Leadbolt 335
Millennial Media 335

mobile advertising networks
(cont.)
mMedia 335
Mobclix 335
Nexage 335
Smaato 335
Tapjoy 335

mobile app platforms 336
Mobile Core Services

framework 28
MobileCoreServices framework

28
Mode attribute 59
Model-View-Controller (MVC)

design pattern xxiii, 36, 123
moisture sensor 250
monetary values 38
monetizing apps 313, 322, 324,

325
motion data 9
motionEnded method of class

UIResponder 250, 257, 260
move in transition 205
moveToPoint method of class

UIBezierPath 265
multimedia xxiii
Multimedia Programming Guide

204
MultipeerConnectivity

framework 15, 28
multipleTouchEnabled

property of class UIView 262
multiplication 81
multitasking 9
multi-touch gestures 7
multi-touch GUI components

26
mutating keyword 193
MVC (Model-View-Controller)

36
MVC (Model-view-controller)

xxiii

N
namespace 284
naming convention

GUI components 96
Navigation Controller 171
navigation controller

back button 172
root view controller 171

Navigator area (Xcode) 49, 50,
51

Navigators 50
Breakpoint 50
Debug 50
Issue 50
Log 50
Project 50, 52
Search 50
Symbol 50

near-field communication
(NFC) 8

nested functions 22
nested types 22
network activity xxiii
networkActivityIndicator-

Visible property of class
UIApplication 156

Newsstand app 11
Newsstand Kit 11
NewsstandKit framework 28
NeXTSTEP operating system

20, 78
NFC sensor 6
nil 296
nil coalescing operator ?? 296
nil keyword 82
nonconsumables 325
non-deterministic random

numbers 167
not identical to (!==) operator

84
Notification Center 11
NotificationCenter framework

26
notifications 122

NSNotificationCenter 122
register to receive 135

NSArray class 23, 82, 121, 122
NSBundle class 166, 181

mainBundle method 181
pathForResource method

212
pathsForResourcesOfType

method 181
NSData class 122
NSDate class 122
NSDecimalNumber class 78, 79,

80
decimalNumberByAdding

method 109

iOS8fp.book Page 348 Wednesday, November 26, 2014 7:53 AM

Index 349

NSDecimalNumber class (cont.)
decimalNumberByDividingB

y method 109
decimalNumberByMultiplyi

ngBy method 109
NSDictionary class 23, 82, 121,

122
NSEC_PER_SEC 190
NSEntityDescription class

280, 292
NSFetchedResultsController

class 280, 291, 296
NSFetchedResultsControllerD

elegate protocol 280, 288,
297

NSFetchedResultsSectionInfo
class 293

NSFetchRequest class 281, 297
NSIndexPath class 152, 289

row property 152
NSLocalizedString function

209, 237
@NSManaged attribute 284
NSManagedObject class 280,

291, 301
valueForKey method 305

NSManagedObjectContext class
280, 288, 292, 294, 296, 310
save method 293

NSManagedObjectModel class
280, 310

NSMutableArray class 23, 82,
121

NSMutableDictionary class 23,
82, 121

NSMutableString class 23
NSNotification class 139

userInfo property 139
NSNotificationCenter class

122, 306
addObserver method 135
defaultCenter method 135
keyboard notifications 281

NSNumber class 106, 108, 122
NSNumberFormatter class 78,

79, 82, 106
localizedStringFromNumbe

r method 82, 106, 108
NSNumberFormatterStyle enum

106

NSPersistentStoreCoordinato

r class 280, 310
NSSet class

allObjects property 233
NSSortDescriptor class 297
NSString class 23, 82, 122

componentsSeparatedByStr

ing method 181
stringByAddingPercentEnc

odingWithAllowedCharac

ters method 151
NSUbiquitousKeyValueStore

class 122, 140
defaultStore method 135
removeObjectForKey

method 137
setObject method 141
synchronize method 136

NSUbiquitousKeyValueStoreDi

dChangeExternallyNotifica

tion 135
NSUbiquitousKeyValueStoreSe

rverChange 139
NSUserDefaults class 122

arrayForKey method 135
dictionaryForKey method

134
integerForKey method 180
setObject method 138
standardUserDefaults

method 134
when to synchronize 138

NSUserDefaults
methodusKeyValueStore
class
synchronize method 138

numberOfSectionsInTableView
method of the
UITableViewDataSource
protocol 152

numeric keypad 36, 76, 80, 86
display 104

numeric types (Swift) 122
numeric types in Swift 23, 80,

82

O
@objc attribute 125
object 33
Object library 57

Objective-C xx, 2, 20, 31
parameter type 104
property 79
subclass 102
superclass 102

Observer design pattern 126
observer object 126
on property of class UISwitch

194
opacity of a color 87
OpenAL framework 27
OpenGL 249
OpenGL ES 27, 32, 48
OpenGL ES framework 204
OpenGLES 27
openPR 334
OpenStep 25
operator overloading 21, 82
Operators

- (subtraction) 81
... (closed range) 168
..< (half-open range) 168,

169
* (multiplication) 81
/ (division) 81
% (remainder) 81
+ (addition) 81
nil coalescing operator ??

296
optional 21

explicitly unwrap an
optional with ! 149

explicitly unwrapped 83
implicitly unwrapped 179
optional binding 135, 284
optional chaining 208, 265,

284
optional type 82, 83
unwrap an optional with ?

149
optional types

implicitly unwrapped 82
orientation change 33
outlet 79

create 96, 97
outlet collection 160, 166, 174,

185, 193
outlet popover 177
outlet property name 96
overflow checking 21

iOS8fp.book Page 349 Wednesday, November 26, 2014 7:53 AM

350 Index

overloaded division operator 106
override keyword 104
Overview of iTunes Connect

330

P
Page-Based Application template

48
paid app 321
parameter

inout 193
type annotation 134

parameter type 104
Pass Kit 13
Passbook app 8, 13, 14
pass-by-reference 268
passes 13
PassKit framework 28
paste text 9
pathForResource method of

class NSBundle 212
pathsForResourcesOfType

method of class NSBundle 181
payment 325
PC free device activation and

iOS updates 11
peer-to-peer games 9
PercentStyle constant 106
performance issues 52
persistent data store 280
PhoneGap 336
photo sharing 14, 332
Photos framework 17
PhotosUI framework 17, 26
physics 216
physics attributes 204
physics engine 201
physics simulation 205, 206
Pin tools in Interface Builder 94
pinch gesture 5, 33
pixel density 54
placeholder property of a

UITextField 148
play method of class

AVAudioPlayer 204
playground 31
PNG image 166
portrait orientation 53, 56
PR Leap 334
precise collision detection 206

Preferences and Settings
Programming Guide 122

preferredDisplayMode
property of class
UISplitViewController 309

prefersStatusBarHidden
method of class
UIViewController 213

prepareForSegue method of
class UIViewController 150,
192, 258

presentScene method of class
SKScene 213

press release writing 335
price 19, 322
price tier 329
Pricing Matrix 329
pricing your app 321
principle of least privilege 40
printing with AirPrint 243
privacy 41
private

access modifier 132
PRLog 334
processor xxiii
Programmableweb 29
programmatically select a

component 80, 104
programming languages

Objective-C 23
project 47
project name 49
Project navigator 50, 52
Project Structure group 52
promotional code 327
property 35, 102

computed 79, 169
constant 79
variable 79

property attribute 102
weak 102

property declaration 98
Protocol

UISplitViewControllerDel

egate 309
protocol 35, 124, 178

adopt 124
conform to 35, 124
similar to an interface in

other programming
languages 35, 124

protocol keyword 132
Protocols

NSFetchedResultsControll

erDelegate 280, 288,
297

SKPhysicsContactDelegate
207, 219, 226

SKSceneDelegate 206
UITableViewDataSource

151
UITableViewDelegate 281,

294
UIWebViewDelegate 156

protocols
UIApplicationDelegate

139, 309
prototype cell

Reuse Identifier 130
prototype cell of a UITableView

130
provision 315
Provisioning Profile 314, 315
proximity sensor 6, 250
public

access modifier 132
public relations 334
purchasing interface 325
Push Notification 10
push notifications 315, 317
push transition 205
PushKit framework 28

Q
Quartz 249
Quartz Core framework 27, 250
Quick Help inspector 51
QuickLook framework 28

R
random numbers

arc4random UNIX function
167

arc4random_uniform UNIX
function 167

rating apps 328
rawValue of an enum constant

218
Read-Eval-Print-Loop (REPL)

31

iOS8fp.book Page 350 Wednesday, November 26, 2014 7:53 AM

Index 351

Receipt Validation Programming
Guide 325

recent projects 47
record for your app in iTunes

Connect 330
refer to an object 83
reference 83
reference count 102
reference type 83
references type 209
register to receive notifications

135
reinventing the wheel 78
relational database 280
relationship segue 171
release date 328
remainder operator, % 81
Reminders app 11, 13
Remote Wipe 41
removeAll method of Array 263
removeAllSegments method of

class UISegmentedControl
186

removeAtIndex method of type
Array 137

removeLast method of Array
263

removeObjectForKey method of
class
NSUbiquitousKeyValueStore
137

removeValueForKey method of
type Dictionary 137

render a sprite 205
renderInContext method of

class CALayer 266
rendering loop 201
REPL (Read-Eval-Print-Loop)

31
Report navigator 50
required initializer (Swift) 217
required keyword 216
Resolve Auto Layout Issues 93
responder chain 80, 307
restitution property of class

SKPhysicsBody 215
Retina HD display 7
return keyword 108
return type of a method or

function 108

reusable software components
33

reuse 34, 78
reuse identifier for a

UITableView cell 152
Reuse Identifier for a

UITableView prototype cell
130

reveal transition 205
review and recommendation

sites 333
RGB 245
Rhapsody 25
right brace, } 101
risk assessment 40
root SKNode 204
root view controller 165, 171
rotate 33
rotateToAngle method of class

SKAction 224
routing app 13
row property of an NSIndexPath

152
Run button (Xcode) 38
runAction method of class

SKNode 224

S
Safari app 11
sandboxing 40
save method of class

NSManagedObjectContext
293

saving an image 243
scene 56
SceneKit 48
SceneKit framework 17, 27, 203
Scheme selector (Xcode) 38
SCM (source-code

management) repository 47
scope 284
screenshot 318, 320, 329
search operators (Twitter) 112
security 8, 40
Security framework 29
security system 17
segue (storyboard) 150, 165,

172, 193
segue in a storyboard 131
segue popover 172, 254, 256

select a component
programmatically 80, 104

selectedSegmentIndex
property of class
UISegmentedControl 194

selecting multiple GUI
components 91

selector 125, 135
@selector attrubute 135
Selector type 135
selectRowAtIndexPath method

of class UITableView 289
self keyword 134
send a message to an object 35
sender of an event 104
sensor 5

accelerometer 5, 243
Ambient light sensor 6
compass 6
GPS 6
magnetic sensor 6
proximity sensor 6
three-axis gyro 5

sensors
accelerometer 250
altimeter 250
barometer 250
GPS 250
gyroscope 250
light 250
magnetometer 250
moisture 250
proximity 250

set accessor of a computed
property 182

setObject method of class
NSUbiquitousKeyValueStore
141

setObject method of class
NSUserDefaults 138

setStroke method of class
UIColor 262

shadow a property 134
shake gesture 5, 257
sharing an image 243
sharing options 118
sheet 47, 49
shouldAutorotate method of

class UIViewController 213

iOS8fp.book Page 351 Wednesday, November 26, 2014 7:53 AM

352 Index

shuffle
Fisher-Yates 193

simple touch events 208
simulator 44, 46, 64
sin function 224
Sina Weibo 13
Single View Application template

48, 85, 170, 251
Core Data support 279

Siri 12, 18
Eyes Free 14

size class 56
Any 86
Compact Width 86
Regular Height 86

Size inspector 59, 95
SKAction class 205

rotateToAngle method 224
SKColor class 214
SKConstraint class 206
SKLabelNode class 204
SKNode class 204, 215, 221

runAction method 224
SKPhysicsBody class 204, 206,

207, 215, 217
allowsRotation property

216
applyImpulse method 217
categoryBitMask property

207, 216, 219
collisionBitMask 207
contactTestBitMask

property 207, 216, 219
friction property 215
linearDamping property 216
restitution property 215
usePreciseCollisionDetec

tion property 216
SKPhysicsContactDelegate

protocol 207, 219, 226
didBeginContact method

207
didEndContact method 207

SKPhysicsWorld class 204
SKScene class 204, 205, 211,

212
didApplyConstraints

method 206
didEvaluateActions

method 205

SKScene class (cont.)
didFinishUpdate method

206
didMoveToView method 213
didSimulatePhysics

method 206
ignoresSiblingOrder

property 213
presentScene method 213
touchesBegan method 237
update method 205

SKSceneDelegate protocol 206
SKSceneScaleMode 212
SKShapeNode class 205, 221,

222
SKSpriteNode class 204, 214,

219
initializer 214

SKTexture class 205, 214
SKTransition class 205
SKView class 204, 211
Slider 37, 76

thumb 37, 76, 89, 90
thumb position 106
Value Changed event 99, 104

SMS 117
Social Framework 117, 123
Social framework 13, 28
Social Framework Reference 41,

123
social media sites 332
social networking 332
sound 210
source code 3
source-code control system 49
source-code management

(SCM) repository 47
sprite 201, 210
SpriteKit 17, 48, 210

SKAction 205
SKConstraint 206
SKLabelNode 204
SKNode 204, 215, 221
SKPhysicsBody 204, 206,

207, 215, 217
SKPhysicsContactDelegate

207, 219, 226
SKPhysicsWorld 204
SKScene 204, 205, 211, 212
SKSceneDelegate 206
SKShapeNode 205, 221, 222

SpriteKit (cont.)
SKSpriteNode 204, 214, 219
SKTexture 205
SKTransition 205
SKView 204, 211

SpriteKit framework 15, 27,
199, 203, 204

SQLite 280, 310
Standard editor (Xcode) 50
standardUserDefaults method

of class NSUserDefaults 134
State Preservation 13
Statements

for…in 168
while 168

static cells in a
UITableViewController
281, 286

static keyword 209, 226
status bar

hide 210
StepStone 20
stopLoading method of class

UIWebView 156
Store Kit framework 324, 325
Store Kit Framework Reference

325
Store Kit Programming Guide

325
stored property 136, 169
StoreKit framework 11, 15, 29
storyboard 31, 56

design from scratch 165
segue 165, 193

storyboarding 45
stride global function 169, 169

closed-range 169
half-open range 169

String interpolation 22
String type

isEmpty 107
String type (Swift) 122
String type in Swift 23, 82
stringByAddingPercentEncodi

ngWithAllowedCharacters
method of class NSString 151

stroke method of class
UIBezierPath 250, 261, 262,
263

strong reference 102

iOS8fp.book Page 352 Wednesday, November 26, 2014 7:53 AM

Index 353

struct keyword 83
subclass 35, 102, 217
subject object 126
submitting apps for approval

330
Submitting Your App 331
subscription 325
super keyword 104
superclass 35, 102
supportedInterfaceOrientati

ons method of class
UIViewController 213

swap global function 169, 193
Swift xxi, 3, 20, 23, 76

AnyObject type 122
Apple publications 24
Array type 120, 121, 122
as operator 135
Blog 24
convenience initializer 216
deinitializer 304
designated initializer 216
Dictionary type 120, 121,

122
numeric types 122
operator overloading 82
pass-by-reference 268
required initializer 216, 217
sample code 24
static keyword 209, 226
String type 122
Swift Programming Language

iBook 24
Swift Standard Library 23
Swift Standard Library

Reference 23
type constant 209, 226
type variable 209, 213

Swift for Programmers
(www.deitel.com/books/
swiftfp/) xxi

Swift global function
countElements 188
join 188
swap 193

Swift programming language
xxii

Swift Programming Language
book (Apple) 209

Swift Standard Library 80
countElements global

function 170
join global function 170
swap global function 169

Swift types
Array 23, 82
Dictionary 23, 82
numeric 23, 80, 82
String 23, 82

swipe gesture 5, 33
Symbol navigator 50
synchronize method of class

NSUbiquitousKeyValueStore
136

synchronize method of class
NSUserDefaults 138

syntax coloring 3
System framework 29
SystemConfiguration

framework 29

T
tab bar 48
Tabbed Application template 48
tableView method of protocol

UITableViewDataSource for
getting the cell at a given
index 152

tableView method of protocol
UITableViewDataSource for
responding to an edit 154

tableView method of protocol
UITableViewDataSource for
the number of rows in a
section 152

tableView method of protocol
UITableViewDataSource that
determines whether a cell is
editable 153

tableView method of protocol
UITableViewDataSource that
determines whether a cell is
movable 154

tap gesture 5, 33
Taptic Engine 18
Target-Action design pattern

125
target-language attribute

(XLIFF) 72, 238

Team Agent 320
team member 314, 315, 316
Technical Support Incident

(TSI) 314
template 48
Test navigator 50
TestFlight besta testing 316
TestFlight FAQ 316
Text Field 86, 87

Editing Changed event 99,
104

Keyboard Type attribute 93
Text property 88
Text property of a Label 88
text property of a UILabel 106,

107
text property of a UITextField

106
textFieldShouldReturn

method of
protocolUITextFieldDelegat
e 307

thermostat 17
thread safe UI 166
threat modeling 40
three-axis gyro 5
thumb of a Slider 37, 76, 89, 90
thumb position of a Slider 106
titleForSegmentAtIndex

method of class
UISegmentedControl 188

touch and hold gesture 5, 33
touch event 250
touch events

simple 208
Touch ID Authentication 17
Touch ID sensor 6
touchesBegan method of an

SKScene 237
touchesBegan method of class

UIResponder 208, 250, 265
touchesCancelled method of

class UIResponder 250, 266
touchesEnded method of class

UIResponder 250, 265
touchesMoved method of class

UIResponder 250, 265
TouchID 8
trailing closure syntax 141
trailing edge of a scene 93
trailing edge of a view 64

iOS8fp.book Page 353 Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/swiftfp/
http://www.deitel.com/books/swiftfp/

354 Index

transform property of a UIView
167

transition
door opening 237

TSI (Technical Support
Incident) 314

tuple 21
tweet 333
Twitter 13, 29, 333

@deitel 333
hashtag 333
tweet 333

Twitter account API 11
Twitter framework 13, 26
Twitter integration 11
Twitter search 112

operators 114
Twitter Searches app 13, 28
two-finger drag 33
type annotation 103, 121

parameter 134
type constant 209, 226
type inference 20, 103
type safe 121
type variable 209, 213
Types

Bool 81
Double 81
Float 81
Int 81
Int16 81
Int32 81
Int64 81
Int8 81
max property of each integer

type 80
min property of each integer

type 80
UInt16 81
UInt32 81
UInt64 81
UInt8 81

types
Double 80
Float 80
Void 108

U
UI components are not thread

safe 166

UIAccessibility protocol 68
UIActivityViewController

class 123, 124, 243
UIAlertAction class 125, 146
UIAlertController class 125

addTextFieldWithConfigur

ationHandler method
148

UIApplication class 156
networkActivityIndicator

Visible property 156
UIApplicationDelegate

protocol 139, 309
applicationDidEnterBackg

round method 139
UIAutomation framework 29
UIBarButtonItem class 243,

257, 272
UIBezierPath class 250, 261

addLineToPoint method
265

lineCapStyle property 261
lineJoinStyle property

261
lineWidth property 261
moveToPoint method 265
stroke method 250, 261,

262, 263
UIColor class

getRed method 268
setStroke method 262

UIDevice class 143
userInterfaceIdiom

property 143
UIEventSubtype enum 260
UIGestureRecognizer class 125
UIGraphicsBeginImage-

ContextWithOptions
function 266

UIGraphicsGetCurrent-

Context function 267
UIGraphicsGetImageFrom-

CurrentContext function
267

UIImage class
capture UIView as image 243

UIImageView class 45, 58
UIKeyboardAnimationDuration

UserInfoKey 306

UIKit framework 26, 26, 57,
79, 101
UILabel 79
UISlider 79
UITextField 79
UIViewController 79

UIKit functions 251
UIGraphicsBeginImageCont

extWithOptions 266
UIGraphicsGetCurrentCont

ext 267
UIGraphicsGetImageFromCu

rrentContext 267
UIKit graphics system 249
UILabel class 45, 79

text property 106, 107
UILongPressGestureRecognize

r class 125
UINavigationController class

130, 165, 171
root view controller 165

UInt16 type 81
UInt32 type 81
UInt64 type 81
UInt8 type 81
UIResponder class 208, 257,

260
motionEnded method 250,

257, 260
touchesBegan method 208,

250, 265
touchesCancelled method

250, 266
touchesEnded method 250,

265
touchesMoved method 250,

265
UISegmentedControl class 165,

193
insertSegmentWithTitle

method 188
removeAllSegments method

186
selectedSegmentIndex

property 194
titleForSegmentAtIndex

method 188
UISlider class 79

value property 106

iOS8fp.book Page 354 Wednesday, November 26, 2014 7:53 AM

Index 355

UISplitViewController class
130, 289
preferredDisplayMode

property 309
UISplitViewControllerDelega

te protocol 309
UISwitch class 193, 194

on property 194
UITableView class 120, 151,

152
deleteRowsAtIndexPaths

method 154
dequeueReusableCellWithI

dentifier method 152
insertRowsAtIndexPaths

method 149
reuse identifier 152
selectRowAtIndexPath

method 289
UITableViewCell 275
UITableViewCell class 152

dynamic prototypes 281
UITableViewCellEditingStyle

class 154
UITableViewController 275
UITableViewController class

130, 281
cell styles 281
dynamic prototype 281
static cells 286

UITableViewDataSource
protocol 151
numberOfSectionsInTableV

iew method 152
tableView method for

getting the cell at a given
index 152

tableView method for
responding to an edit 154

tableView method for the
number of rows in a
section 152

tableView method that
determines whether a cell
is editable 153

tableView method that
determines whether a cell
is movable 154

UITableViewDelegate protocol
281, 294

UITextField class 79
placeholder property 148
text property 106

UITextFieldDelegate protocol
textFieldShouldReturn

method 307
UIToolbar class 243, 257, 272
UITouch class 243, 250

locationInView method 265
UIView animation 281
UIView class

alpha property 167
animateWithDuration

method 189, 190
awakeFromNib method 288
backgroundColor property

167
bounds property 167
center property 167
drawRect method 249
frame property 167, 190
multipleTouchEnabled

property 262
properties that can be

animated 167
save as image 243
transform property 167
view animation 167

UIViewController class 79, 103
prefersStatusBarHidden

method 213
prepareForSegue method

150, 192, 258
shouldAutorotate method

213
supportedInterfaceOrient

ations method 213
viewWillAppear method

289
viewWillDisappear method

304
UIWebView class 116, 120

stopLoading method 156
UIWebViewDelegate protocol

156
webView method 156
webViewDidFinishLoad:

method 156
webViewDidStartLoad:

method 156

unified storyboards 17
unique ID of a GUI component

70
unit tests 52
universal app 2, 40, 44, 46, 49,

52
unmanaged object 292
unwrap an optional with ? 149
unwrapping an optional value

83
update method of class SKScene

205
updateValue method of type

Dictionary 141
upload an app’s binary 331
Use Core Data checkbox 279
usePreciseCollisionDetectio

n property of class
SKPhysicsBody 216

user facing String 237
user interface (UI) 3, 45
user interface events 99
userInfo property of class

NSNotification 139
userInterfaceIdiom property

of class UIDevice 143
Using Swift with Cocoa and

Objective-C iBook 24, 25,
122

utilities 39
Utilities area (Xcode) 49, 51

V
Value Changed event for a Slider

99, 104
value property of a UISlider

106
value type 21, 83, 121, 209
valueForKey method of class

NSManagedObject 305
values property of a

Dictionary 263
values property of Array 196
var keyword 79, 102
variable

reference type 83
variable names

came case naming 101
variable property 79
Version editor (Xcode) 32, 51

iOS8fp.book Page 355 Wednesday, November 26, 2014 7:53 AM

356 Index

video 320
video sharing 332
view animation 159, 163, 167,

189, 190
view controller 79

initial 171
view debugger 32
viewDidAppear method of class

UIViewController 156
viewDidLoad message 80, 143,

156
viewWillAppear method of class

UIViewController 289
viewWillDisappear method of

class UIViewController 156,
304

viral marketing 332
viral video 333
virtual goods 324, 324
vision impaired 6
VoiceOver 6, 46, 67, 69

enable/disable 67
Void type 108
Volume Purchase Program

(VPP) 326
volume-based physics bodies

206
VPP (Volume Purchase

Program) 326

W
WatchKit 18
weak property attribute 102
web services 29

Amazon eCommerce 30
eBay 30
Facebook 30
Flickr 30
Foursquare 30
Google Maps 30
Groupon 30
Instagram 30
Last.fm 30
LinkedIn 30
Microsoft Bing 30
Netflix 30
PayPal 30
Salesforce.com 30
Skype 30
Twitter 30

web services (cont.)
WeatherBug 30
Wikipedia 30
Yahoo Search 30
YouTube 30
Zillow 30

Web View 120
WebKit framework 29
webView method of protocol

UIWebViewDelegate 156
webViewDidFinishLoad:

method of protocol
UIWebViewDelegate 156

webViewDidStartLoad: method
of protocol
UIWebViewDelegate 156

Welcome app 26
Welcome to Xcode window 47
while loop statement 168
White on Black accessibility

feature 7
workspace window 49
WWDC (Apple World Wide

Developer Conference) 16
www.deitel.com/books/iOS8FP

3
www.deitel.com/books/

iPhonefp/ (iPhone for
Programmers website) xxiii

X
.xcdatamodeld filename

extension 280
Xcode xix, 3, 37, 45

Assistant editor 51, 97, 99
code-completion suggestions

84
Data Model editor 280
Debug area 49, 51
Editor area 49, 50
Game project 209
Navigator area 49, 50, 51
Single View Application

project 85, 170, 251
Standard editor 50
Utilities area 49, 51
Version editor 51

Xcode 6 xxiii, 31
Xcode Groups

project structure 52
Xcode IDE 44

Xcode Libraries
Code Snippet 57
File Template 57
Media 57
Object 57

Xcode navigators
Breakpoint 50
Debug 50
Find 50
Issue 50
Project 50, 52
Report 50
Symbol 50
Test 50

Xcode templates
Game 203

Xcode toolbar 51
Xcode Windows

Library 58
Welcome to Xcode 47

XCTest 32
XLIFF

XML Localization
Interchange File Format
70, 71, 238

XML Localization Interchange
File Format (XLIFF) 70, 71,
238

Y
Yellow Box API 25

Z
Zoom accessibility feature 7

iOS8fp.book Page 356 Wednesday, November 26, 2014 7:53 AM

http://www.deitel.com/books/iOS8FP
http://www.deitel.com/books/iPhonefp/
http://www.deitel.com/books/iPhonefp/

	Contents
	Preface
	Before You Begin
	3 Tip Calculator App: Introducing Swift, Text Fields, Sliders, Outlets, Actions, View Controllers, Event Handling, NSDecimalNumber, NSNumberFormatter and Automatic Reference Counting
	3.1 Introduction
	3.2 Technologies Overview
	3.2.1 Swift Programming
	3.2.2 Swift Apps and the Cocoa Touch® Frameworks
	3.2.3 Using the UIKit and Foundation Frameworks in Swift Code
	3.2.4 Creating Labels, a Text Field and a Slider with Interface Builder
	3.2.5 View Controllers
	3.2.6 Linking UI Components to Your Swift Code
	3.2.7 Performing Tasks After a View Loads
	3.2.8 Financial Calculations with NSDecimalNumber
	3.2.9 Formatting Numbers as Locale-Specific Currency and Percentage Strings
	3.2.10 Bridging Between Swift and Objective-C Types
	3.2.11 Swift Operator Overloading
	3.2.12 Variable Initialization and Swift Optional Types
	3.2.13 Value Types vs. Reference Types
	3.2.14 Code Completion in the Source-Code Editor

	3.3 Building the App's UI
	3.3.1 Creating the Project
	3.3.2 Configuring the Size Classes for Designing a Portrait Orientation iPhone App
	3.3.3 Adding the UI Components
	3.3.4 Adding the Auto Layout Constraints

	3.4 Creating Outlets with Interface Builder
	3.5 Creating Actions with Interface Builder
	3.6 Class ViewController
	3.6.1 import Declarations
	3.6.2 ViewController Class Definition
	3.6.3 ViewController's @IBOutlet Properties
	3.6.4 Other ViewController Properties
	3.6.5 Overridden UIViewController method viewDidLoad
	3.6.6 ViewController Action Method calculateTip
	3.6.7 Global Utility Functions Defined in ViewController.swift

	3.7 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

