Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.
About the Author

Denise Donohue, CCIE No. 9566, is a senior solutions architect with Chesapeake NetCraftsmen. She has worked in IT since the mid-1990s. Focusing on network design since 2004, she has consulted on a wide range of networks, private and public, of all sizes, across most industries. She is author or co-author of numerous Cisco Press networking, voice, and design books. Denise lives in Maryland with her wonderfully patient and supportive husband, Kevin, and their two much less patient dogs.

About the Technical Reviewer

Sean Wilkins is an accomplished networking consultant for SR-W Consulting and has been in the field of IT since the mid-1990s, working with companies such as Cisco, Lucent, Verizon, and AT&T, as well as several other private companies. Sean currently holds certifications with Cisco (CCNP/CCDP), Microsoft (MCSE), and CompTIA (A+ and Network+). He also has a Master of Science in information technology with a focus in network architecture and design, a Master of Science in organizational management, a Master’s Certificate in network security, a Bachelor of Science in computer networking, and Associates of Applied Science in computer information systems. In addition to working as a consultant, Sean spends most of his time as a technical writer and editor for various companies; check out his work at his author website: www.infodispersion.com.
Contents at a Glance

How This Book Is Organized xiii
Chapter 1 Networking Overview 1
Chapter 2 IPv6 Overview 9
Chapter 3 RIP 22
Chapter 4 EIGRP 25
Chapter 5 OSPF 43
Chapter 6 Advanced Routing Techniques 65
Chapter 7 BGP and Internet Connectivity 86
Chapter 8 Infrastructure Security 105
Chapter 9 Infrastructure Services 114
Contents

How This Book Is Organized xiii

Chapter 1 Networking Overview 1
IP, TCP, and UDP Operations 1
 IP Operations 1
 TCP Operations 2
 UDP Operations 2

Routing Fundamentals 3
 The Routing Table 3
 Administrative Distance 4
 Choosing a Routing Protocol 5
 Distance Vector Protocols 5
 Link State Protocols 5
 Path Vector Protocols 5

Packet Forwarding 6
 Configuring and Troubleshooting CEF 7

Loop Prevention Mechanisms 8
 Split Horizon 8
 Route Poisoning 8

Chapter 2 IPv6 Overview 9
IPv6 Addressing 10
 Simplifying an IPv6 Address 10
 Special Addresses 11
 IPv6 Host Addressing 12
 Neighbor Discovery Protocol 12
 Manual IP Address Assignment 12
 Manual Network Assignment 13
 Stateless Address Autoconfiguration 14
 Securing NDP 15
 DHCPv6 15
 Renumbering 15

IPv6 Routing 15
 Static Routing 16
 IPv6 Route Summarization 16
Integrating IPv4 and IPv6
Tunneling IPv6 over IPv4
 Manual Tunnels
 GRE Tunnels
 6to4 Tunnels
 ISATAP Tunnels
IPv6 Link Types
 Point-to-Point Links
 Point-to-Multipoint Links
 Multiaccess Links

Chapter 3
RIP
RIP Version 2
 RIPv2 Configuration
RIPng for IPv6
 RIPng Configuration

Chapter 4
EIGRP
EIGRP Overview
EIGRP Neighbor Establishment
 Packet Types
 Neighbor Discovery and Route Exchange
 Unicast Neighbors
 Troubleshooting and Verifying EIGRP Neighbors
EIGRP Route Selection
 EIGRP Metric
 Wide Metrics
 Diffusing Update Algorithm
EIGRP for IPv4
 Basic Configuration
 Optimizing the EIGRP Configuration
 Passive Interface
 Advertising a Default Route
 Summarization
 Load Balancing
 EIGRP Authentication
 EIGRP Stub Routing
EIGRP for IPv6
 Verifying and Troubleshooting EIGRP
EIGRP Named Mode 37
EIGRP Over WAN Links 38
 Layer 3 MPLS WAN 38
 Layer 2 WAN 39
 Frame Relay 39
 EIGRP Over the Top 42

Chapter 5 OSPF 43
OSPF Overview 43
 OSPF Network Structure 43
 OSPF Metric 45

Link-State Advertisements 45
 LSA Operation 46
 LSA Types 46

OSPF Operation 47
 OSPF Packets 47
 OSPF Neighbor Relationships 48

Basic OSPFv2 Configuration 49
 Router ID 50
 Verifying and Troubleshooting OSPF 50

OSPF Network Types 51
 Designated Routers 52
 Nonbroadcast Multiaccess Networks 53
 OSPF over Layer 2 and Layer 3 MPLS 53

Advanced OSPF Configuration 54
 OSPF Summarization 54
 Passive Interface 55
 OSPF Default Routes 55
 Stub and Not-So-Stubby Areas 56
 Virtual Links 56
 OSPF Authentication 57

OSPF for IPv6 59
 OSPFv3 LSAs 60
 Traditional OSPFv3 Configuration 61
 New OSPFv3 Configuration 62
Chapter 6 Advanced Routing Techniques 65

Controlling Routing Updates 65

Route Maps 66

Route Map Syntax 66

Route Map Match and Set Conditions 66

Controlling Route Redistribution Using Route Maps 67

Tagging Routes Using a Route Map 68

Prefix Lists 69

Distribute Lists 70

Passive Interfaces 71

Using Multiple Routing Protocols 71

Configuring Route Redistribution 71

Seed Metric 72

Administrative Distance 73

Planning Route Redistribution 74

Redistribution Techniques 75

Path Control 76

Policy-Based Routing 77

Using IOS IP SLA 79

VRF-Lite 82

Chapter 7 BGP and Internet Connectivity 86

Planning an Internet Connection 86

Types of ISP Connections 86

IP Addressing and AS Numbering 87

BGP Route Options 87

BGP Overview 88

BGP Databases 89

BGP Message Types 89

BGP Next-Hop Selection 90

BGP Next Hop on a Multiaccess Network 91

BGP Synchronization Rule 91

Configuring Basic BGP 91

BGP Network Command 92
BGP Peering 93
 BGP Peering States 93
 Troubleshooting BGP 94
BGP Path Selection 94
 BGP Attributes 94
 BGP Path Selection Criteria 95
 Influencing BGP Path Selection 96
Filtering BGP Routes 97
 Prefix Lists 97
 AS Path Access List 98
 Order of Operations 99
BGP Authentication 99
Verifying BGP 100
Multiprotocol BGP 103

Chapter 8 Infrastructure Security 105
Device Access Control 105
Router Security Features 106
 Access Control Lists 106
 Configuring IPv4 ACLs 107
 Configuring an IPv6 Access List 108
 Unicast Reverse Path Forwarding 108
Tunneling Technologies 109
 GRE Tunnels 110
 Configuring a GRE Tunnel 110
 DMVPN 111
 Easy VPN 111
PPPoE 112

Chapter 9 Infrastructure Services 114
Simple Network Management Protocol 114
 SNMPv2c Configuration 115
 SNMPv3 Configuration 115
Logging 116
 Debug 117
 Syslog 117
 Configuring Syslog 118
Network Time Protocol 119

DHCP 120

DHCP for IPv4 120
 Configuring DHCP for IPv4 120
 IPv4 DHCP Relay Agent 121

DHCP for IPv6 121
 DHCPv6 Process 122
 Configuring Stateful DHCPv6 122
 Configuring Stateless DHCPv6 123
 IPv6 DHCP Relay Agent 123

NetFlow 124

Network Address Translation 125

Configuring Traditional NAT for IPv4 126
 Static NAT 126
 Dynamic NAT 127
 PAT 127

Configuring NAT Virtual Interface 128

NAT64 129
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

- **Italic** indicates arguments for which you supply actual values.

- Vertical bars (|) separate alternative, mutually exclusive elements.

- Square brackets ([]) indicate an optional element.

- Braces ({ }) indicate a required choice.

- Braces within brackets ({[]}) indicate a required choice within an optional element.
How This Book Is Organized

- **Chapter 1, “Networking Overview”**: This chapter provides a review of basic IP, TCP, and UDP operations, such as fragmentation and windowing. It also reviews routing fundamentals including AD, types of protocols, packet forwarding, and loop prevention.

- **Chapter 2, “IPv6 Overview”**: This chapter provides an overview of IPv6 addressing, routing, and route summarization. This rather in-depth introduction to IPv6 covers the IPv6 address format, ways for hosts to acquire their addresses, and IPv6 routing. It also includes strategies for integrating IPv4 and IPv6, such as in various types of tunnels. More detailed applications of IPv6 are covered in the chapters for each routing protocol and for the various technologies.

- **Chapter 3, “RIP”**: Configuring and verifying RIPv2 and RIPng for IPv6 are described in this chapter.

- **Chapter 4, “EIGRP”**: This chapter contains an in-depth description of EIGRP for IPv4 and IPv6 operation and configuration, including neighbor establishment and route exchange. It covers using EIGRP with Frame Relay, Ethernet over MPLS (EoMPLS), and Layer 3 MPLS VPNs. It also includes EIGRP named mode, ways to optimize EIGRP, and securing EIGRP through authentication.

- **Chapter 5, “OSPF”**: Chapter 5 describes OSPF’s structure and operation. It covers OSPF design requirements, neighbor establishment, and LSA information for both OSPFv2 and OSPFv3. The configuration portion provides OSPF configuration for LAN and WAN networks. The chapter additionally covers optimizing and securing OSPF.

- **Chapter 6, “Advanced Routing Techniques”**: This chapter examines various methods of controlling routing updates, such as route maps, prefix lists, and distribute lists. It describes how to configure route maps and how to use them for policy-based routing, controlling route redistribution, and tagging routes. Additionally, techniques such as IP SLA and VRF Lite are covered.

- **Chapter 7, “BGP and Internet Connectivity”**: This chapter gives an overview of BGP operation and basic configuration. BGP path selection is covered, along with ways to influence the path selection and filter routes. Additionally, methods to verify BGP operation are shown. Multi-protocol BGP, using BGP with IPv6 routing, is covered.
- Chapter 8, “Infrastructure Security”: This chapter examines ways to secure the routing infrastructure and the routers themselves, as well as the data transmitted. It looks at IPv4 and IPv6 ACLs, device access control, and various types of traffic tunneling techniques.

- Chapter 9, “Infrastructure Services”: This chapter describes useful network management services, such as SNMP, logging, debugging, and NetFlow. It covers DHCP for both IPv4 and IPv6, NAT for both IPv4 and IPv6, and NAT virtual interface.
RIP Version 2

Routing Information Protocol (RIP) has been in existence since 1988. It is a basic distance vector protocol that uses hop count as its metric, and thus does not pick up any differences in bandwidth between different routes. RIPv2 is a classless protocol—it carries subnet mask information in its updates, enabling you to use various subnet masks in the network. Some other characteristics of RIPv2 include the following:

- Uses UDP port 520.
- All routes advertised every 30 seconds, along with triggered updates due to topology change.
- Administrative distance is 120.
- Updates sent as multicasts to IPv4 address 224.0.0.9.
- Maximum metric (hop count) is 15. A hop count of 16 is considered infinity, poisoning the route.
- Supports plain text and MD5 authentication.
- No neighbor relationship formation process exists—all interfaces participating in RIP send route updates whether or not another RIP router is out of that interface.
- Route summarization is performed at each interface.
- Supports variable-length subnet masks but does auto-summary by default.
- Load balances across up to four equal metric paths by default.

RIP implements split horizon to help prevent routing loops. This does not allow a router to advertise out an interface a route learned via that interface. Split horizon typically comes into play on multiaccess interfaces where advertisements from multiple neighbors are learned via the same interface.
RIPv2 Configuration

To configure RIP, enter the RIP routing process in global configuration mode, and specify the interfaces that will run RIP by using the network command. The router then multicasts its routing table out all interfaces with IP addresses within the networks specified by that command. The passive-interface interface command stops RIP from sending updates out an interface. Use the neighbor ip-address command to inform RIP to send updates as unicasts to the specified neighbor.

Example 3-1 shows the configuration that enables RIP on all interfaces with IP addresses in the 10.0.0.0 range. The version of RIP is set to version 2, interface e0/1 is passive for RIP, and neighbor 10.1.1.2 is on a nonbroadcast network, thus updates are sent as unicast.

Example 3-1 RIPv2 Configuration

```
Router(config)# router rip
Router(config-router)# version 2
Router(config-router)# no auto-summary
Router(config-router)# network 10.0.0.0
Router(config-router)# passive-interface e0/1
Router(config-router)# neighbor 10.1.1.2
```

RIPng for IPv6

RIP next generation (RIPng) is the IPv6 version of RIP and is defined in RFC 2080. Like RIPv2 for IPv4, RIPng is a distance vector routing protocol that uses a hop count for its metric and has a maximum hop count of 15. It uses UDP but on port 521 instead of 520, and still has an administrative distance of 120. RIPng also sends periodic multicast updates—every 30 seconds—to advertise routes. The multicast address is FF02::9. The source address of RIPng updates is the link-local address of the outbound interface.

Two important differences exist between the old RIP and the next-generation RIP. One is that RIPng supports multiple concurrent processes, each identified by a process name. Another is that RIPng is initialized in global configuration mode and then enabled on specific interfaces. There is no network command in RIPng.
RIPng Configuration

Example 3-2 shows the syntax used to apply RIPng to a configuration. Notice that the syntax is similar to traditional RIP. You must first enable IPv6 routing. The global command to enable RIPng is optional; the router creates it automatically when the first interface is enabled for RIPng. You might need the command for additional configuration, such as originating a default route, as shown in Example 3-2.

Example 3-2 RIPng Configuration

```plaintext
Router(config)# ipv6 router rip process-name
!
Router(config)# interface type number
Router(config-if)# ipv6 rip process enable
Router(config-if)# ipv6 rip process default-information originate
```

Like RIP for IPv4, troubleshoot RIPng by looking at the routing table (`show ipv6 route [rip]`), by reviewing the routing protocols (`show ipv6 protocols`), and by watching routing updates propagated between routers (`debug ipv6 rip`).