
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133859034
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133859034
https://plusone.google.com/share?url=http://www.informit.com/title/9780133859034
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133859034
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133859034/Free-Sample-Chapter

SOA with Java
Realizing Service-Orientation

with Java Technologies

Thomas Erl, Andre Tost,
Satadru Roy, and Philip Thomas

PRENTICE HALL

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPE TOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Editor-in-Chief
Mark Taub

Senior Acquisitions
Editor
Trina MacDonald

Development Editor
Teejay Keepence

Managing Editor
Kristy Hart

Copy Editors
Teejay Keepence
Maria Lee

Senior Indexer
Cheryl Lenser

Proofreader
Maria Lee

Publishing Coordinator
Olivia Basegio

Cover Designer
Thomas Erl

Compositor
Jasper Paladino

Photos
Thomas Erl

Graphics
Jasper Paladino

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, mar-
keting focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Control Number: 2014939738

Copyright © 2014 Arcitura Education Inc.

All rights reserved. Printed in the United States of America. This publi-
cation is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permis-
sion to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-13-385903-4

ISBN-10: 0-13-385903-7

Text printed in the United States on recycled paper at Courier in West-
ford, Massachusetts.

First printing: June 2014

To my family and friends.

—Thomas Erl

Thanks go to my wife and my boys for their

continued understanding, patience and support.

—Andre Tost

I’d like to express my sincere thanks to Thomas Erl for giving me the

opportunity to work on this book. It has been a privilege to be associated

with him and along the way, I have learned a lot about service-orientation.

I’d also like to thank Mark Taub at Pearson for supplying technical

 books supporting my work.

—Satadru Roy

To my wife, Sarah, for her tireless support.

—Philip Thomas

blank25.pdf 25 5/4/10 9:31:04 AM

This page intentionally left blank

Contents at a Glance

Foreword . xix

CHAPTER 1: Introduction .1

CHAPTER 2: Case Study Examples .11

PART I: FUNDAMENTALS
CHAPTER 3: Fundamental SOA Concepts .21

CHAPTER 4: Basic Java Distributed Technologies . 39

CHAPTER 5: Web-Based Service Technologies .81

CHAPTER 6: Building Web-Based Services with Java . 111

PART II: SERVICES
CHAPTER 7: Service-Orientation Principles with Java Web-Based Services 139

CHAPTER 8: Utility Services with Java .211

CHAPTER 9: Entity Services with Java .261

PART III: SERVICE COMPOSITION AND INFRASTRUCTURE
CHAPTER 10: Task Services with Java. .307

CHAPTER 11: Service Composition with Java . 335

CHAPTER 12: ESB as SOA Infrastructure .379

PART IV: AP PENDICES
APPENDIX A: Case Study Conclusion . 405

APPENDIX B: Service-Orientation Principles Reference . 409

APPENDIX C: SOA Design Patterns Reference .425

APPENDIX D: The Annotated SOA Manifesto .519

About the Authors . 533

About the Foreword Contributor . 535

About the Contributors. .537

Index . 539

blank25.pdf 25 5/4/10 9:31:04 AM

This page intentionally left blank

Contents

Foreword. xix

CHAPTER 1: Introduction .1

1.1 About This Book . 2

Objectives of This Book .2

Who This Book Is For .2

What This Book Does Not Cover .3

1.2 Prerequisite Reading . 3

How This Book Is Organized .4

Part I: Fundamentals .4

Chapter 3: Fundamental SOA Concepts . 5

Chapter 4: Basic Java Distributed Technologies 5

Chapter 5: Web-Based Service Technologies . 5

Chapter 6: Building Web-Based Services with Java 5

Part II: Services .5

Chapter 7: Service-Orientation Principles

 with Java Web-Based Services . 5

Chapter 8: Utility Services with Java . 5

Chapter 9: Entity Services with Java . 6

Part III: Service Composition and Infrastructure 6

Chapter 10: Task Services with Java . 6

Chapter 11: Service Composition with Java . 6

Chapter 12: ESB as SOA Infrastructure. 6

Part IV: Appendices .6

Appendix A: Case Study Conclusion . 6

Appendix B: Service-Orientation Principles Reference 6

Appendix C: SOA Design Patterns Reference . 7

Appendix D: The Annotated SOA Manifesto. 7

1.3 How Principles and Patterns Are Used in This Book. 7

1.4 Symbols and Figures. 7

1.5 Additional Information . 7

Updates, Errata, and Resources (www.servicetechbooks.com) . . .8

Referenced Specifications (www.servicetechspecs.com)8

http://www.servicetechspecs.com
http://www.servicetechbooks.com

viii Contents

The Service Technology Magazine (www.servicetechmag.com) . .8

Service-Orientation (www.serviceorientation.com) 8

What Is REST? (www.whatisrest.com) .8

What Is Cloud? (www.whatiscloud.com) .8

SOA and Cloud Computing Design Patterns

(www.soapatterns.org, www.cloudpatterns.org) 8

SOA Certified (SOACP) Professional (www.soaschool.com)9

Cloud Certified Professional (CCP) (www.cloudschool.com).9

Big Data Science Certified Professional (BDSCP)

(www.bigdatascienceschool.com) .9

Notification Service .9

CHAPTER 2: Case Study Examples . 11

2.1 How Case Study Examples Are Used 12

Style Characteristics. .12

Relationship to Abstract Content .12

Code Samples .12

2.2 Case Study Background: NovoBank. 13

Technical Infrastructure .13

Automation Solutions .13

Business Obstacles and Goals .14

Future IT Roadmap. .15

1. Build Reusable Business Services . 15

2. Consolidate Information . 16

3. Improve Channel Experience . 16

4. Build Services Infrastructure . 16

2.3 Case Study Background: SmartCredit Co. 16

Technical Infrastructure .17

Automation Solutions .17

Business Goals .17

Future IT Roadmap. .18

http://www.servicetechmag.com
http://www.serviceorientation.com
http://www.whatisrest.com
http://www.whatiscloud.com
http://www.cloudpatterns.org
http://www.soaschool.com
http://www.cloudschool.com
http://www.bigdatascienceschool.com
http://www.soapatterns.org

Contents ix

PART I: FUNDAMENTALS

CHAPTER 3: Fundamental SOA Concepts21

3.1 Basic Terminology and Concepts .22

Service-Oriented Computing . 22

Service-Orientation .24

Service-Oriented Architecture (SOA) .27

SOA Manifesto . 28

Services . 29

Cloud Computing . 29

IT Resources . 30

Service Models. 30

Agnostic Logic and Non-Agnostic Logic . 31

Service Inventory .32

Service Portfolio .32

Service Candidate . 33

Service Contract. 33

Service-Related Granularity . 34

Service Profiles. 35

SOA Design Patterns . 36

3.2 Further Reading .38

CHAPTER 4: Basic Java Distributed Technologies39

4.1 Java Distributed Computing Basics 40

Java SE Architecture .41

Java EE Architecture .41

The Beginning of Java EE . 41

Application Packaging and Deployment 44

Deployment Descriptors . 44

Java EE Architectural Tiers. 45

4.2 Java Distributed Technologies and APIs.46

Java SE APIs . 46

RMI . 46

RMI / IIOP . 47

JNDI . 48

JDBC. 49

x Contents

Java EE APIs . 49

Contexts and Dependency Injection. 49

JTA. 50

Java EE Connector Architecture . 51

EJB . 51

Session EJBs . 52

Persistence Entities . 53

Service-Orientation Principles and the EJB Model 55

JMS . 56

Message-Driven Beans. 58

Security in Java EE . 58

4.3 XML Standards and Java APIs . 59

XML . 59

XML Schema Definition .61

XSLT . 63

JAXP. 63

JAXB . 64

4.4 Building Services with Java Components 64

Components as Services . 65

Application Protocols . 65

Service Contracts. 68

Location. 68

Operations. 69

Messages . 69

Further Considerations . 70

Components as Services and Service-Orientation 71

Standardized Service Contract . 71

Service Loose Coupling . 71

Service Abstraction . 72

Service Discoverability . 72

4.5 Java Vendor Platforms . 74

GlassFish Enterprise Server .74

IBM WebSphere Application Server. .75

IBM WebSphere Application Server Community Edition78

Oracle WebLogic Server .79

Contents xi

CHAPTER 5: Web-Based Service Technologies. 81

5.1 SOAP-Based Web Services . 82

Extensibility of Web Services Standards (WS-*) 88

WS-Addressing . 89

SOAP with Attachments (SwA) . 90

WS-ReliableMessaging. 91

WS-Transaction . 92

WS-Security. 93

WS-Policy . 94

Web Services Distributed Management . 95

Common Web Services Middleware . 95

Enterprise Service Bus (ESB) . 95

Orchestration . 97

Management and Monitoring . 99

Registries and Repositories . 99

Service Construction and Assembly . 100

5.2 REST Services . 101

HTTP Response Codes .102

Resources and Addresses. .103

Service Request . 104

Service Response . 104

Service Request . 104

Service Response . 104

HTTP Methods .106

Resource Representations .108

The ACCEPT Header .109

CHAPTER 6: Building Web-Based Services with Java 111

6.1 JAX-WS . 112

SAAJ .115

Handlers. .118

Web Services Engines and Toolkits .119

JAXR .120

6.2 Java Implementations of WS-* Standards. 122

Advanced Web Services Standards and Frameworks 122

Service Component Architecture .123

Spring-WS .124

xii Contents

6.3 JAX-RS . 124

Implementing JAX-RS .125

Implementing REST Services. .129

Scalability .130

Statelessness . 131

Uniform Contract . 131

Cacheability . 131

Addressability . 132

Security .132

REST Service Support .134

PART II: SERVICES

CHAPTER 7: Service-Orientation Principles with
Java Web-Based Services . 139

7.1 Service Reusability . 140

Agnostic Functional Contexts. .140

Highly Generic Service Logic .141

Generic and Extensible Service Contracts 144

Concurrent Access to Service Logic .145

7.2 Standardized Service Contract . 151

Top-Down vs. Bottom-Up. .151

Mapping Between Java and WSDL .152

Wrapped Document/Literal Contracts .153

Implicit and Explicit Headers .154

Explicit Headers . 154

Implicit Headers . 157

No Headers . 159

Data Mapping with REST .159

Conversion Between JSON and POJOs . 161

Binary Data in Web Services. 165

Binary Data in REST Services . 170

Use of Industry Standards .175

Contents xiii

7.3 Service Loose Coupling . 176

Separation of Contract and Implementation 177

Independent Functional Contexts .179

Service Consumer Coupling .180

7.4 Service Abstraction . 184

Abstracting Technology Details .185

Hiding Service Details .185

Document Constraints .188

7.5 Service Composability. 189

Runtime Environment Efficiency. .190

Service Contract Flexibility .192

Standards-Based Runtime .193

7.6 Service Autonomy . 194

Well-Defined Functional Boundary. .194

Runtime Environment Control. .195

High Concurrency .196

7.7 Service Statelessness . 197

Orchestration Infrastructure .198

Session State .198

Storing State. .199

7.8 Service Discoverability .204

Design-Time Discoverability. 204

Runtime Discoverability . 205

Service Registries . 208

CHAPTER 8: Utility Services with Java 211

8.1 Inside the Java Utility Service . 212

Architectural Considerations .212

Utility Service Taxonomy . 220

8.2 Utility Service Design and Implementation 221

Utility Service Design .221

Utility Services and Java Editions . 226

Utility Services in Java SE . 226

Utility Services in Java EE . 227

xiv Contents

Utility Services and Open-Source Frameworks 229

Spring Framework . 229

Transaction Management . 229

Data Access Objects . 230

Object-Relational Mapping. 230

JMS . 230

JMX . 230

JCA . 231

Spring MVC . 231

Hibernate. 231

Commons Logging and Log4J . 231

Utility Services as Web-Based Services 231

Sending XML Data as a String . 232

Utilizing <xsd:any/> . 233

Provider-Style Web Service Logic in JAX-WS 234

Building REST Utility Services. 236

Testing Considerations. 238

Packaging Considerations . 239

8.3 Utility Service Types . 240

Omni Utility Services .240

Design Considerations . 241

Service Implementation. 241

Service Consumption . 241

Resource Utility Services .248

Persistence/Data Access Resources . 248

Messaging Resources . 248

Transaction Resources . 249

Design Considerations . 249

Service Implementation. 251

Service Consumption . 251

Micro-Utility Services . 253

Design Considerations . 253

Service Implementation. 253

Service Consumption . 254

Wrapper Utility Services. .257

Design Considerations . 258

Service Implementation. 259

Service Consumption . 259

Contents xv

CHAPTER 9: Entity Services with Java 261

9.1 Inside the Java Entity Service .262

Architectural Considerations . 263

Domain Entities vs. Message Entities. 265

Data Aggregation . 266

Data Access Modes. 267

Change Notifications . 268

9.2 Java Entity Service Design and Implementation. 270

Entity Service Design .270

Designing Domain Entities and Message Entities 271

Designing Stateless Entity Services . 272

Designing Business-Relevant Entity Services 273

Designing Generic Entity Services . 273

Designing Aggregating Entity Services . 275

Entity Service Implementation .278

Java Editions . 278

Entity Services as Web-Based Services 282

Entity Web Services Using SOAP . 283

REST Entity Services .291

Read-Only and Read-Write Resources. 292

Resource Granularity. 292

Resource Creation and Location. 292

Request Message . 292

Response Message . 293

Resource Relationships . 294

Request Message . 294

Response Message . 294

Request Message . 295

Resource Collections . 295

Request Message . 295

Response Message . 295

Aggregate Entities. 297

Request Message . 298

Response Message . 298

Open-Source Frameworks . 302

Testing Considerations. 302

Java Packaging Considerations. 303

xvi Contents

PART III: SERVICE COMPOSITION AND INFRASTRUCTURE

CHAPTER 10: Task Services with Java307

10.1 Inside a Task Service. .308

Performance Considerations .315

10.2 Building Task Services . 316

Implementation Considerations .316

Web-Based Task Services . 320

Task Services with SOAP and WSDL . 320

Task Services with REST . 324

Testing Considerations. 332

Packaging Considerations . 334

CHAPTER 11: Service Composition with Java.335

11.1 Inside Service Compositions .336

Service Composition Roles . 336

Compositions and MEPs . 337

Synchronous and Asynchronous Invocation 338

Service Level Agreements (SLAs) . 339

11.2 Java Service Composition Design

and Implementation .340

Composition Logic: Coding vs. Orchestration 340

REST Service Composition Considerations341

Composition Member Endpoints . 344

Error Handling . 345

Schema Type Reuse . 353

Web-Based Services vs. Java Components 359

Packaging, Testing and Deploying Composed Services. 362

11.3 Service and Service Composition

Performance Guidelines .368

Measuring Performance. 368

Testing Performance .370

Caching .371

Data Grids . 371

REST Caching . 372

Contents xvii

Scaling Out Services with State .374

Handling Failures .375

Parsing and Marshaling .376

CHAPTER 12: ESB as SOA Infrastructure 379

12.1 Basic Traditional Messaging Frameworks 380

RPC vs. Messaging .381

Technology Coupling . 382

Spatial Coupling . 382

Temporal Coupling . 382

Message Producers and Message Consumers 385

12.2 Basic Service Messaging Frameworks 389

Basic Service Message Processing without ESBs. 389

Message Routing without an ESB. 390

Message Transformation without an ESB . 391

Basic Service Message Processing with ESBs 392

Message Routing with an ESB . 392

Message Transformation with an ESB. 392

12.3 Common ESB Features Relevant to SOA 397

Service Lookup and Invocation .397

Service Processing . 399

Service Composition Support .401

REST API Management Support . 402

PART IV: APPENDICES

APPENDIX A: Case Study Conclusion 405

A.1 NovoBank .406

A.2 SmartCredit Co. . 407

APPENDIX B: Service-Orientation
Principles Reference .409

xviii Contents

APPENDIX C: SOA Design Patterns Reference 425

APPENDIX D: The Annotated SOA Manifesto. 519

About the Authors .533

Thomas Erl .533

Andre Tost .533

Satadru Roy .534

Philip Thomas .534

About the Foreword Contributor .535

Mark Little. .535

About the Contributors .537

Raj Balasubramanian. 537

David Chou . 537

Thomas Plunkett .538

Index .539

Chapter 1

Introduction

Foreword

by Mark Little

Over the past decade SOA has moved out of the hype and into mainstream develop-
ment, becoming a standard part of any architect’s repertoire. Although its roots go
back beyond CORBA, SOA came to the forefront with the advent of two technology
waves: Web Services and the Enterprise Service Bus (ESB). As REST picked up adoption
beyond the Web, so it too became useful within the SOA paradigm. Of course, with
the rise of cloud and mobile industries, SOA’s applicability has continued to grow and
we are seeing more and more business-critical deployments that are examples of good
SOA implementations.

In parallel to the evolution and adoption of SOA, the Java language and platform have
grown in maturity and dominance within the industry. In fact, the fi rst ESB was written
in Java and so are the most popular Web service stacks, such as Apache CXF. As relevant
standards have evolved, such as Java Enterprise Edition, so too have they embraced
more and more service-orientation principles, offering new APIs and development
approaches. It is therefore no surprise that SOA and Java appear together more often
than not in real-world deployments across a range of industry sectors.

Building good service-oriented applications is often a challenge, not just for individual
developers but also at the organizational level. Even with a range of interfaces, frame-
works, and other tools aimed at making SOA development easier, it is often diffi cult to
know which to use and when. In terms of open standards, Java offers the richest suite of
such aids, but at the same time can complicate a developer’s life by their sheer number.

xx Foreword

As Shakespeare once said: “We suffer a lot the few things we lack and we enjoy too little
the many things we have.”

The authors of this book have created a great resource for anyone new to Java to learn
how to translate SOA practices into reality. Likewise, it’s a must-have book for Java
developers to see how they can use their Java experiences when developing service-
oriented applications. Rather than just throw out example code for this or that frame-
work in isolation, the authors have pulled together some wonderful case studies. These
case studies are used throughout the book and help put everything into perspective.

It’s nice to see that the authors have also made this book self-contained. Far too often
we are introduced to books, particularly those in a series, that can only be read if you’ve
also purchased other books that came before and perhaps even some that come after-
wards. Not so here. We have introductory chapters that spend a lot of time ensuring
that even the most novice reader has all of the information they need at their fi ngertips.
Very refreshing, especially when you consider that some of these chapters could be
books in their own right! So whether you are a Java expert who needs to learn about
SOA, or an SOA expert who needs to learn about Java, this book has all of the details
you need. The Java background text covers the latest Java EE 7 specifi cation, including
topics such as JTA/JCA, EJB3, CDI, JPA, and JMS.

One of the dominant SOA implementation approaches today remains SOAP-based Web
services. The WS-* standards are the most widely adopted cross-vendor standards rel-
evant to SOA and are used extensively in enterprises both inside and outside of the
cloud. This book pulls together the often confusing plethora of standards and imple-
mentation approaches in a coherent manner, offering the reader an easier on-ramp to
this critical area than is available elsewhere. In terms of how Java interfaces with Web-
based services, the authors cover standards such as JAX-WS, JAX-RS and their Spring
equivalents. Copious amounts of code are used to help illustrate critical points such
as how to get the best throughput or security for your applications. The chapter called
Service-Orientation Principles with Java Web-Based Services is one of the best of its
kind, covering details such as WSDL, data mapping with REST and how to achieve
loose coupling.

What also helps to positively differentiate this book from others in this area are chap-
ters on how to build specifi c types of services in Java following service-orientation prin-
ciples and getting them to perform well at the same time: this isn’t a book that is just
heavy on theory, but it more than complements any theory with a very heavy practical
aspect, making it ideal for architects and developers alike. If you’re looking for how to

Foreword xxi

build individual services or, more likely as your applications grow, composite services
in a way that does not break service-orientation principles, then the authors have cre-
ated a book that you need to have on your shelf, well read, or next to your computer.
The code in chapters such as Service Composition with Java is presented in such a way
and with the right context that you should be able to use much of it as a template for you
and your teams.

Another technology which is often used within SOA deployments, but also just as often
misunderstood, is the Enterprise Service Bus. Like REST, some people love the ESB
whilst others believe they bring nothing of value. This book helps to shed some light on
the ESB and inject some much needed reality to the debate, allowing you to select the
right tool for the right job. ESBs aren’t a global panacea for everything SOA-related. But
neither are they something which should be ignored, and the authors help to make this
clear in a succinct manner.

Whether you’re a Java developer looking for a book to explain SOA or an SOA expert
looking for something to help you turn those ideas into a Java reality, this is the book for
you. It also doesn’t matter whether you are a software developer, an architect, working
in a team, or by yourself, this book works on many levels and is relevant to you as you
move through the SOA design and development phases.

Dr. Mark Little, Red Hat

blank25.pdf 25 5/4/10 9:31:04 AM

This page intentionally left blank

Acknowledgments

 • Claude Baillargeon, La Capitale

 • Chris Barran

 • Antonio Bruno, UBS Wealth Management

 • Jason Burrows, Pacifi c Blue Cross

 • David Chou, Microsoft

 • Leonid Felikson

 • Olaf Heimburger, Oracle

 • Khanderao Kand, Guavus

 • Anish Karmarkar, Oracle

 • Kris Kothumb

 • Dennis Lamarre, System Science Corporation

 • Briana Lee

 • Beth Liang, HeathWallace

 • Karl Lopes

 • Anil Luthra

 • Damian Maschek, Deutsche Bahn Systel GmbH

 • Veeru Mehta

 • Paulo Merson

 • Prakash Narayan

 • Songlin Qiu

 • Antony Reynolds, Oracle

 • Rich Rosen

 • Sam Rostam

 • Sanjay Singh

xxiv Acknowledgments

 • Dennis Sosnoski

 • Kanu Tripathi

 • Sameer Tyagi

 • Clemens Utschig, Boehringer Ingelheim Pharma

 • Matt Wright, Oracle

 • Kareem Yusuf PhD, IBM

Chapter 1

Introduction

1.1 About This Book

1.2 Prerequisite Reading

1.3 How Principles and Patterns Are Used in This Book

1.4 Symbols and Figures

1.5 Additional Information

1.1 About This Book

The Java platform has evolved signifi cantly over the past decade and has become a pre-
ferred platform for building Web-based enterprise applications. The service-orientation
paradigm introduces a number of requirements and design principles that formalize
the application of Java platforms and technologies in support of the strategic goals of
service-oriented computing. This book explores service-oriented solution design and
implementation through the application of techniques and best practices that utilize
Java technology advances.

Objectives of This Book

This book was written with the following primary goals in mind:

 • to provide coverage of contemporary Java distributed technologies and modern
service technologies

 • to document the application of service-orientation principles to the Java
technology platform

 • to explore the application of SOA design patterns to various Java technologies and
solutions built with these technologies

 • to provide coverage of Java infrastructure extensions relevant to service-
oriented solutions

Who This Book Is For

This book can be used as a tutorial and reference text intended for the following types
of readers:

 • experienced Java developers and architects who want to learn how to apply
service-orientation principles and select SOA design patterns in order to create
shared services and service-oriented solutions

 • enterprise architects that want to learn more about how to position and establish
Java platforms and technologies within an IT enterprise that has or will undergo
SOA adoption

 • developers who want to build solutions using modern Java service technologies

1.2 Prerequisite Reading 3

What This Book Does Not Cover

This is not a “how-to” book for Java. Although the chapters in Part I contain a great deal
of introductory coverage of Java distributed technologies, the overall purpose of this
book is to explore the intersection of Java technologies and the application of service-
orientation principles and SOA design patterns. You should not proceed to read this
book if you are new to Java.

1.2 Prerequisite Reading

This book assumes you have a basic knowledge of:

 • Java technologies, APIs, and standards

 • fundamental XML concepts

 • fundamental service-orientation

If you have not yet worked with XML, you can read some of the brief tutorials published
at www.servicetechspecs.com. If you are new to SOA, you can get a basic understand-
ing of service-oriented computing, service-orientation, and related design patterns by
studying the content at the following Web sites:

 • www.serviceorientation.com

 • www.soapatterns.org

 • www.soa-manifesto.com

To ensure that you have a clear understanding of key terms used and referenced in the
upcoming chapters, you can also visit the online master glossary for this book series at
www.soaglossary.com to look up defi nitions for terms that may not be fully described
in this book.

Here are some recommendations for additional books that elaborate on key topics cov-
ered by this title:

 • SOA Principles of Service Design – A comprehensive documentation of the service-
orientation design paradigm with full descriptions of all of the principles refer-
enced in this book. Concise profi les of these principles are provided in
Appendix B.

http://www.servicetechspecs.com
http://www.serviceorientation.com
http://www.soapatterns.org
http://www.soa-manifesto.com
http://www.soaglossary.com

4 Chapter 1: Introduction

 • SOA Design Patterns – This is the offi cial SOA design pattern catalog containing
descriptions and examples for most of the patterns referenced in this book. You
can also look up concise descriptions for these patterns at www.soapatterns.org
and in Appendix C.

 • Web Service Contract Design & Versioning for SOA – Any content pertaining to
WSDL, SOAP, and XML Schema development and design, development, and ver-
sioning will be aided by the detailed coverage in this title.

 • SOA with REST: Principles, Patterns & Constraints for Building Enterprise Solutions
with REST – REST service development and implementation is covered from vari-
ous perspectives in the upcoming chapters. This book provides detailed coverage
of associated REST technology, architecture, and design constraints.

 • Service-Oriented Architecture: Concepts, Technology, and Design – The coverage
of service-oriented analysis and design processes in this title supplements the
technology-centric focus of this book with methodology-related topics.

For more information, visit www.servicetechbooks.com.

How This Book Is Organized

This book begins with Chapters 1 and 2 providing introductory content and case study
background information respectively. All subsequent chapters are grouped into the fol-
lowing parts:

 • Part I: Fundamentals

 • Part II: Services

 • Part III: Service Composition and Infrastructure

 • Part IV: Appendices

Part I: Fundamentals

The four chapters in this part cover introductory topics related to SOA, service-orienta-
tion, Web-based services technology, and Java. Note that these chapters do not contain
case study content.

http://www.soapatterns.org
http://www.servicetechbooks.com

1.2 Prerequisite Reading 5

Chapter 3: Fundamental SOA Concepts

This chapter provides an overview of key terms and concepts associated with SOA,
service-orientation, and service-oriented computing.

Chapter 4: Basic Java Distributed Technologies

With an emphasis on Java EE, this chapter introduces Java technologies and APIs
relevant to this book. Open-source and commercial Java vendor platforms are
further referenced.

Chapter 5: Web-Based Service Technologies

This chapter provides a concise overview of the industry standards and conventions
that form the basis for SOAP-based Web services and REST services. A series of exam-
ples is provided for each service implementation medium.

Chapter 6: Building Web-Based Services with Java

This chapter focuses on the JAX-WS standard for SOAP-based Web services and the
JAX-RS standard for REST services, and provides numerous examples that demonstrate
basic design and implementation.

Part II: Services

This part of the book contains a set of chapters that highlight key Java design consider-
ations introduced by service-orientation principles, and further explores their applica-
tion to the creation of Java-based utility and entity services.

Chapter 7: Service-Orientation Principles with Java Web-Based Services

This chapter documents each of the eight service-orientation design principles as they
affect and relate to the use of Java-based technology for both SOAP-based Web services
and REST services.

Chapter 8: Utility Services with Java

The unique design considerations that come with building utility services with Java are
addressed in a series of sections that explore architecture, design, and implementation,
further supported by a number of examples.

6 Chapter 1: Introduction

Chapter 9: Entity Services with Java

This chapter discusses the development of entity services with Java with an emphasis
on service contract and message standardization, data access, and processing.

Part III: Service Composition and Infrastructure

The fi nal set of chapters build upon Parts I and II to tackle the design and implementa-
tion of entire Java-based service-oriented solutions. Topics covered range from service
composition to ESB-related infrastructure considerations.

Chapter 10: Task Services with Java

This chapter discusses the characteristics, design, and implementation considerations
of building task services with Java and further addresses preliminary service composi-
tion issues in preparation for Chapter 11.

Chapter 11: Service Composition with Java

This chapter covers a spectrum of topics that pertain to and further expand upon many
of the areas already covered in preceding chapters to focus on the design, implementa-
tion, and performance of services aggregated into Java-based service compositions.

Chapter 12: ESB as SOA Infrastructure

This chapter highlights the use of ESB-based middleware and infrastructure in relation
to service-oriented solution and service composition architecture and implementation.

Part IV: Appendices

Appendix A: Case Study Conclusion

This appendix provides a conclusion of the case study storylines fi rst established in
Chapter 2.

Appendix B: Service-Orientation Principles Reference

This appendix provides the profi le tables (originally from SOA Principles of Service
Design) for the service-orientation design principles referenced in this book.

1.5 Additional Information 7

Appendix C: SOA Design Patterns Reference

This appendix provides the profi le tables from the design patterns documented in the
books SOA Design Patterns and SOA with REST: Principles, Patterns & Constraints for
Building Enterprise Solutions with REST.

Appendix D: The Annotated SOA Manifesto

This appendix provides the annotated version of the SOA Manifesto declaration, which
is also published at www.soa-manifesto.com.

1.3 How Principles and Patterns Are Used in This Book

As part of its exploration of service-orientation in relation to Java technologies and
platforms, this book references and uses established design principles and patterns
throughout its chapters.

Service-orientation design principles and SOA design patterns are always capitalized,
as follows:

“...the Service Loose Coupling principle is supported via the application of the Decoupled Con-
tract pattern...”

Note, as also demonstrated in this sample statement, a principle or a pattern can be
referenced with or without being qualifi ed. In other words, the statement “..when the
Decoupled Contract pattern is applied...” has the same meaning as “...when Decoupled Con-
tract is applied...”

1.4 Symbols and Figures

This book contains a series diagrams that are referred to as fi gures. The primary symbols
used throughout all fi gures are individually described in the symbol legend located on
the inside of the front cover.

Symbol legend posters can also be downloaded from www.arcitura.com/notation.

1.5 Additional Information

These sections provide supplementary information and resources for the Prentice Hall
Service Technology Series from Thomas Erl.

http://www.soa-manifesto.com
http://www.arcitura.com/notation

8 Chapter 1: Introduction

Updates, Errata, and Resources (www.servicetechbooks.com)

Information about other series titles and various supporting resources can be found at
the offi cial book series Web site: www.servicetechbooks.com. You are encouraged to
visit this site regularly to check for content changes and corrections.

Referenced Specifi cations (www.servicetechspecs.com)

This site provides a central portal to the original specifi cation documents created and
maintained by primary industry standards organizations.

The Service Technology Magazine (www.servicetechmag.com)

The Service Technology Magazine is a monthly publication provided by Arcitura
Education Inc. and Prentice Hall and is offi cially associated with the Prentice Hall
Service Technology Series from Thomas Erl. The Service Technology Magazine is dedi-
cated to publishing specialized articles, case studies, and papers by industry experts
and professionals.

Service-Orientation (www.serviceorientation.com)

This site provides papers, book excerpts, and various content dedicated to describing
and defi ning the service-orientation paradigm, associated principles, and the service-
oriented technology architectural model, including online access to the service-orienta-
tion principle profi les published in Appendix B.

What Is REST? (www.whatisrest.com)

This Web site provides a concise overview of REST architecture and the offi cial con-
straints that are referenced throughout this book.

What Is Cloud? (www.whatiscloud.com)

A reference site dedicated to fundamental cloud computing topics.

SOA and Cloud Computing Design Patterns (www.soapatterns.org,

www.cloudpatterns.org)

The offi cial SOA and cloud computing design pattern catalogs are published on these
sites. The www.soapatterns.org site provides online access to the pattern profi les pub-
lished in Appendix C.

http://www.servicetechbooks.com
http://www.servicetechspecs.com
http://www.servicetechmag.com
http://www.servicetechbooks.com
http://www.serviceorientation.com
http://www.whatisrest.com
http://www.whatiscloud.com
http://www.soapatterns.org
http://www.cloudpatterns.org
http://www.soapatterns.org

1.5 Additional Information 9

SOA Certifi ed Professional (SOACP) (www.soaschool.com)

The offi cial site for the SOA Certifi ed Professional (SOACP) curriculum dedicated to
specialized areas of service-oriented architecture and service-orientation, including
analysis, architecture, governance, security, development, and quality assurance.

Cloud Certifi ed Professional (CCP) (www.cloudschool.com)

The offi cial site for the Cloud Certifi ed Professional (CCP) curriculum dedicated to
specialized areas of cloud computing, including technology, architecture, governance,
security, capacity, virtualization, and storage.

Big Data Science Certifi ed Professional (BDSCP)

(www.bigdatascienceschool.com)

The offi cial site for the Big Data Science Certifi ed Professional (BDSCP) curriculum ded-
icated to specialized areas of data science, analytics, data analysis, machine learning,
and Big Data solution engineering.

Notifi cation Service

To be automatically notifi ed of new book releases in this series, new supplemen-
tary content for this title, or key changes to the aforementioned resource sites,
use the notifi cation form at www.servicetechbooks.com or send a blank e-mail
to notify@arcitura.com.

http://www.soaschool.com
http://www.cloudschool.com
http://www.bigdatascienceschool.com
http://www.servicetechbooks.com

blank25.pdf 25 5/4/10 9:31:04 AM

This page intentionally left blank

blank25.pdf 25 5/4/10 9:31:04 AM

This page intentionally left blank

Chapter 7

Service-Orientation Principles with
Java Web-Based Services
7.1 Service Reusability

7.2 Standardized Service Contract

7.3 Service Loose Coupling

7.4 Service Abstraction

7.5 Service Composability

7.6 Service Autonomy

7.7 Service Statelessness

7.8 Service Discoverability

Building services for service-oriented solutions requires the application of the
service-orientation paradigm whose established design principles drive many

Java service contract and implementation decisions. In certain cases, the programming
language and runtime environment used for services can also be infl uenced by these
guiding principles. This chapter visits each of the eight service-orientation principles in
depth to highlight considerations specifi c to design and development with Java.

NOTE

The service-orientation principles are formally documented in the series
title SOA Principles of Service Design. Concise profi les of the principles
are also available in Appendix B and at www.serviceorientation.com.

 7.1 Service Reusability

The following are common design characteristics associated with reusable services:

 • The service is defi ned by an agnostic functional context.

 • The service logic is highly generic.

 • The service has a generic and extensible contract.

 • The service logic can be accessed concurrently.

Let’s take a closer look at each of these characteristics in relation to Java.

Agnostic Functional Contexts

Ensuring that the logic encapsulated by a service is agnostic to any particular func-
tional context allows for the building of service interfaces independent of one particu-
lar business process or functional domain. The term “context” refers to the service’s
functional scope. An agnostic functional context is not specifi c to any one purpose and
is therefore considered multi-purpose. A non-agnostic functional context, on the other
hand, is intentionally single-purpose.

A checkpoint that can be part of a regular code review or service interface quality gate
is to look at the imports in a Java interface or implementation class for a service. Java

http://www.serviceorientation.com

7.1 Service Reusability 141

interfaces and classes are often structured according to the applicable business domain,
and focusing on the list of imported packages can help identify dependencies in the
code. Returning to the simplifi ed order management example, the Java service interface
for the Credit Check service is seen in Example 7.1.

import com.acme.businessobjects.om.Order;
public interface CreditCheck {
 public boolean hasGoodCredit(Order order);
}

Example 7.1

The import statement indicates that the service logic depends on the functional con-
text of order management. Such a dependency cannot always be avoided if a service
is developed specifi cally for a particular business domain at the cost of its reusability.
Utility services are generally agnostic and reusable, as explained in Chapter 8.

Highly Generic Service Logic

Generic Java service logic refers to logic independent of its service contract. In the Java
world, this means that a Java service interface is created with no mapping for the data
types referenced in the service contract.

The javax.xml.ws.Provider interface avoids dependency on the service contract
when using the JAX-WS programming model for SOAP-based Web services. An incom-
ing message can be received by the service as a SAAJ javax.xml.soap.SOAPMessage
with the Provider interface, which allows the entire message to be parsed or navigated
as a DOM tree, as seen in Example 7.2.

@ServiceMode(value=Service.Mode.MESSAGE)
@WebServiceProvider()
public class GenericProviderImpl implements
 Provider<javax.xml.soap.SOAPMessage> {
 public SOAPMessage invoke(SOAPMessage message) {
 // read and process SOAPMessage...
 }
}

Example 7.2

For the same SOAP-based Web service, the request message can be alternatively read as
a javax.xml.transform.Source. As shown in Example 7.3, the message can be treated

142 Chapter 7: Service-Orientation Principles with Java Web-Based Services

as a plain XML document with no relationship to SOAP. Only the payload of the request
message can be retrieved. Developers can ignore the SOAP envelope or SOAP header to
focus on the content in the body of the message.

@ServiceMode(value=Service.Mode.PAYLOAD)
@WebServiceProvider()
public class GenericProviderImpl implements
 Provider<javax.xml.transform.Source> {
 public Source invoke(Source source) {
 // read and process SOAPMessage...
 }
}

Example 7.3

In both Examples 7.2 and 7.3, the response data returns in the same way the request
data was received. If the request is received in an object of type SOAPMessage, then a
new SOAPMessage object must be built for the response. Correspondingly, a new Source
object must be returned if Source is used.

Generic Java types can capture the appropriate MIME media type or resource repre-
sentation format produced or consumed by a target resource when building a REST
service. For text-based request/response entities, Java String, char[], and the char-
acter-based java.io.Reader or Writer interfaces can be used in the resource meth-
ods. For completely generic entity representations, which can include binary content, a
java.io.InputStream, OutputStream, or a raw stream of bytes can be used as byte[].
For XML-based resource representations, the javax.xml.transform.Source type can
be used to handle XML documents at a higher level than a raw stream.

As seen in Example 7.4, a slightly reworked customer resource example of the REST ser-
vice from the Chapter 6 uses an InputStream. The contents of an entity are extracted in
the incoming request to keep the service contract generic.

@Post
@Consumes("application/xml")
public void createCustomer(
 InputStream in){
 //extract customer from request
 Customer customer = extractCustomer(in);
 //create customer in system;
}

Example 7.4

7.1 Service Reusability 143

Similarly, javax.xml.transform.Source can extract the customer information from
the incoming request. JAX-RS relies on a bottom-up service design philosophy for
building REST APIs except when using WADL. Using generic types, such as java.
lang.Object or byte[], on a JAX-RS resource interface should be suffi cient to keep the
service contract generic. However, consider what corresponding data types will be used
in the WSDL for SOAP-based Web services.

Avoid the use of concrete data types on the Java service interface. The payload of a
message is cast into a Java object, such as a byte array or string. The service contract,
such as the WSDL for a Web service, must match the generic type, such as java.lang.
Object maps to xsd:anyType, byte[], which maps to xsd:hexBinary, and java.lang.
String maps to xsd:string. The matching generic types require specifi c code to be
developed in both the service consumer and service for the data to be inserted into the
request/response messages.

In Example 7.5, the public class employs a byte array on its interface to hide the details
of the data processed by the service.

@WebService
public class OrderProcessing {
 public void processOrder(Order order,
 byte[] additionalData) {
 // process request...
 }
}

Example 7.5

Supertypes in the service interface can aid in generalizing a service contract. For exam-
ple, a service returns detailed account information for a bank’s customer. When creat-
ing a data model for the different types of information provided by the different types
of accounts, take advantage of inheritance in XML Schema. A superclass called Account
can be created in Java, with a number of subclasses defi ned for each type of account,
such as checking, savings, loans, and mortgages. A return type of Account which
includes all of the different types of accounts can be specifi ed in the service interface.

The considerations for supertypes are the same for both SOAP and REST services. As
in both cases, the XML Java marshaling/unmarshaling is handled by JAXB for XML
and MOXy or JSON-P for JSON. MOXy is a framework for marshaling/unmarshaling
between JSON and Java objects. JSON-P (Java API for JSON Processing) supports low-
level JSON parsing in Java EE 7.

144 Chapter 7: Service-Orientation Principles with Java Web-Based Services

A generic service implementation can serve multiple types of request/response mes-
sages, which generally increases reuse opportunities. However, the service logic must
be implemented to handle different types of messages. Type-specifi c code uses lan-
guage-specifi c data types. Tooling can generate code that automatically parses mes-
sages into the right Java objects, although at the cost of increased coupling. If generic
types are used, the processing of incoming and outgoing messages is left to the service
implementer. However, generic types offer greater fl exibility in terms of type-indepen-
dence and loose coupling.

Generalizing service logic also applies to the service consumer. For example, JAX-WS
defi nes a generic service invocation API using the javax.xml.ws Dispatch interface.
Services can be invoked with unknown interfaces when the service consumer code is
developed. Similar to how the use of the Provider interface supports handling requests
from different types of service consumers, the use of the Dispatch API allows a ser-
vice consumer to interact with different types of services. For REST service clients, if a
JAX-RS implementation is used, all the generic Java types the JAX-RS implementation
supports can be used to build requests and consume responses. However, generic ser-
vice logic requires the client code to handle different types of messages and have some
knowledge about the message formats expected.

Generic and Extensible Service Contracts

Service logic can be made generic for reuse across a wide range of scenarios and adapted
to changes in its environment, such as by changing and evolving services or service con-
sumers. A service contract can be made generic by restricting the dependencies on data
types referred to in the service contract and limiting the services composed inside the
service logic to a minimum. When translated into Java-specifi c terms, reduce or elimi-
nate the number of business-domain-specifi c classes in the service implementation.

Creating a generic service contract means applying generic types like string, hex-
Binary, or anyType in the schema type defi nitions for a Web service. Alternatively,
message formats can be defi ned in a service contract with schema inheritance to use
common supertypes, and the runtime allowed to determine which concrete subtype
is used. Generic types are not only true for the top-level elements in a message but can
also be used within a type defi nition. In Example 7.6, the schema describes a Customer
type with a number of well-defi ned fi elds and a generic part.

7.1 Service Reusability 145

<xs:complexType name="Customer">
 <xs:sequence>
 <xs:element name="accounts" type="ns:Account"
 nillable="true" maxOccurs="unbounded"
 minOccurs="0"/>
 <xs:element name="address" type="ns:Address"
 minOccurs="0"/>
 <xs:element name="customerId" type="xs:string"
 minOccurs="0"/>
 <xs:element name="name" type="ns:Name" minOccurs="0"/>
 <xs:element name="orderHistory" type="ns:OrderArray"
 nillable="true" maxOccurs="unbounded"
 minOccurs="0"/>
 <xs:any/>
 </xs:sequence>
</xs:complexType>

Example 7.6

When used in a service contract, the schema in Example 7.6 allows the service to process
messages that have a fi xed part at the beginning and a variable part at the end, which is
represented by the <xs:any> element. SOAP-based Web services can use the Dispatch
APIs in the service logic and Provider APIs in the service consumer logic without affect-
ing how the service contract is built.

Service consumer logic can be implemented generically even if a detailed and specifi c
service contract is provided. For REST services, the same considerations hold true for
resource representations. XML-based representations can use highly specifi c types
while the JAX-RS resource class can leverage generic Java types. The programmer then
becomes responsible for performing the type mapping between XML and Java in the
service logic.

 Concurrent Access to Service Logic

A particular instance of a shared service will almost always be used by multiple service
consumers simultaneously at runtime. How the service is deployed and the character-
istics of the service’s runtime environment as infl uences on service reuse are signifi cant
design considerations.

For example, each service request starts a new process that executes the service logic
for the request, which ensures that the processing of one request does not affect the
processing of another request. Each execution is completely independent of other execu-
tions and creates a new thread in the process. However, starting a new process is a

146 Chapter 7: Service-Orientation Principles with Java Web-Based Services

relatively expensive operation in terms of system resources and execution time in most
runtime environments. Sharing services in this way is ineffi cient.

All service requests executed within the same process share all the resources assigned
to that process, which provides a lightweight method of serving multiple concurrent
requests to the same service. Starting a new thread is an inexpensive operation on most
systems. Most, if not all, Web service engines work this way. Implementing services
in a multithreaded environment requires adherence to the basic rules of concurrent
Java programming.

CASE STUDY EXAMPLE

As part of an initiative to comply with recently introduced legal obligations, the
NovoBank IT team decides to create a Document Manager service that stores docu-
ments for auditing purposes. The service supports storing and retrieving XML docu-
ments. To maximize the reusability of this service, the NovoBank IT team creates a
generic service contract and fl exible service implementation to handle different types
of documents, which can be extended over time.

Initially, the service will have the operations of store and retrieve. The ser-
vice contract does not imply any structure of the documents stored, as shown in
Example 7.7.

<definitions targetNamespace="http://utility.services.novobank.com/"
 name="DocumentManagerService" xmlns:tns="http://utility.services.
 novobank.com/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema version="1.0" targetNamespace="http://utility.
 services.novobank.com/" xmlns:xs="http://www.w3.org/2001/
 XMLSchema">
 <xs:element name="retrieve" type="ns1:retrieve"
 xmlns:ns1="http://utility.services.novobank.com/"/>
 <xs:complexType name="retrieve">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="retrieveResponse" type="ns2:retrieveResponse"
 xmlns:ns2="http://utility.services.novobank.com/"/>

7.1 Service Reusability 147

 <xs:complexType name="retrieveResponse">
 <xs:sequence>
 <xs:any processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="store" type="ns3:store"
 xmlns:ns3="http://utility.services.novobank.com/"/>
 <xs:complexType name="store">
 <xs:sequence>
 <xs:any processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="storeResponse" type="ns4:storeResponse"
 xmlns:ns4="http://utility.services.novobank.com/"/>
 <xs:complexType name="storeResponse"/>
 </xs:schema>
 </types>
 <message name="store">
 <part name="parameters" element="tns:store"/>
 </message>
 <message name="storeResponse">
 <part name="parameters" element="tns:storeResponse"/>
 </message>
 <message name="retrieve">
 <part name="parameters" element="tns:retrieve"/>
 </message>
 <message name="retrieveResponse">
 <part name="parameters" element="tns:retrieveResponse"/>
 </message>
 <portType name="DocumentManager">
 <operation name="store">
 <input message="tns:store"/>
 <output message="tns:storeResponse"/>
 </operation>
 <operation name="retrieve">
 <input message="tns:retrieve"/>
 <output message="tns:retrieveResponse"/>
 </operation>
 </portType>
 <binding name="DocumentManagerPortBinding"
 type="tns:DocumentManager">
 ...
 </binding>
 <service name="DocumentManagerService">
 ...

148 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 </service>
</definitions>

Example 7.7
NovoBank’s service contract for the Document Manager service is deliberately generic.

Example 7.7 shows that the content of the stored messages is represented by an
<xs:any/> element, which means that any well-formed XML can be inserted in the
content. The <xs: any/> element allows the Document Manager service to be reused
across many different types of messages and documents.

The development team decides to create a fl exible implementation of the service
which is independent of the specifi c type of document being sent or retrieved. The
service must extend without affecting the existing implementation, preparing sup-
port for more specifi c processing of specifi c document types. A fl exible implemen-
tation is achieved with a handler and factory. The implementation leverages the
javax.xml.ws.Provider interface and delegates the processing of each message to
a handler. The handler instance is then retrieved via a factory.

Example 7.8 shows the implementation class for the Document Manager service in
the detailed source code.

package com.novobank.services.utility;
import javax.xml.transform.Source;
import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@ServiceMode(value=Service.Mode.PAYLOAD)
@WebServiceProvider
public class DocumentManager implements Provider<Source> {
 public Source invoke(Source source) {
 DocumentHandler handler =
 DocumentHandlerFactory.instance().getHandler(source);
 handler.process(source);
 return null;
 }
}

Example 7.8
The implementation of the Document Manager service utilizes a factory to retrieve a handler.

7.1 Service Reusability 149

This class implements the Provider interface, so that any invocation of the service is
directed to the invoke() method. The @ServiceMode annotation indicates that only
the actual content of the SOAP body should be passed into the implementation.

In the implementation of the invoke() method, a single instance of a class called
DocumentHandlerFactory is used to retrieve a DocumentHandler for this message.
Example 7.9 shows the source code for the DocumentHandler interface.

package com.novobank.services.utility;
import javax.xml.transform.Source;
public interface DocumentHandler {
 public void process(Source source);
}

Example 7.9
The source code for the DocumentHandler interface

The DocumentHandler interface only defi nes the process() method, which processes
the message. Different implementations of the interface that process messages in dif-
ferent ways can exist. The message content is passed into the process() method as a
stream of type javax.xml.transform.Source. When revisiting the source code for
the Document Manager service in Example 7.2, the message returned by the factory
can be seen to be passed to the handler.

A part of the source code for the factory is presented in Example 7.10.

package com.novobank.services.utility;
import javax.xml.transform.Source;
public class DocumentHandlerFactory {
 protected static DocumentHandlerFactory theInstance = new
 DocumentHandlerFactory();
 public static DocumentHandlerFactory instance() {
 return theInstance;
 }
 protected DocumentHandlerFactory() {}
 public DocumentHandler getHandler(Source source) {
 DocumentHandler handler = null;
 // the code where the message is parsed and
 // the appropriate handler is retrieved would be here.
 return handler;

150 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 }
}

Example 7.10
The DocumentHandlerFactory source code

The message is parsed to the point where an appropriate handler can be found. Han-
dlers are registered via several mechanisms that can include hardcoding into the
factory class, retrieval from a fi le, or lookup in a registry. The concrete DocumentHan-
dler implementation chosen for a particular message is often based on the root ele-
ment of the passed message. The root element typically provides adequate indication
of the nature of the message.

Using the factory mechanism, where the service implementation class calls a factory
to retrieve a handler to process the message, allows new handlers to be later added
without affecting the existing code. The combination of a generic service defi nition
using the <xs:any/> element, a fl exible service implementation using the Provider
interface, and a factory to delegate the processing of the message ensures maximum
reusability of the service across a variety of environments and domains.

SUMMARY OF KEY POINTS

• For SOAP-based Web services, the JAX-WS standard offers ways of imple-
menting service logic as generic and therefore capable of handling different
types of messages.

• For REST services, Java generic types can be used in JAX-RS-based
resource implementations. The request/response entities are treated as a
raw sequence of bytes or characters.

• Using generic data types for domain entities or resource representations
allows the service to be reused across a greater number of potential
service consumers.

7.2 Standardized Service Contract 151

7.2 Standardized Service Contract

A foundational criterion in service-orientation is that a service have a well-defi ned
and standardized contract. When building Web services with SOAP and WS-*, por-
table machine-readable service contracts are mandatory between different platforms
as WSDL documents and associated XML schema artifacts describing the service data
model. The fi nite set of widely used HTTP verbs for REST services form an implicit ser-
vice contract. However, describing the entity representations for capture in a portable
and machine-independent format is the same as SOAP and WS-*.

For REST services, capturing and communicating various aspects of resources can be
necessary, such as the set of resources, relationships between resources, HTTP verbs
allowed on resources, and supported resource representation formats. Standards, such
as WADL, can be used to satisfy the mandatory requirements. Having a standards-
based service contract exist separate from the service logic, with service data entities
described in a platform-neutral and technology-neutral format, constitutes a service by
common defi nition. Even the self-describing contract of HTTP verbs for a REST service
establishes a standards-based service contract. Recall the standards used for service
contracts, such as WSDL/WADL and XML Schema, from Chapter 5.

 Top-Down vs. Bottom-Up

Ensuring that services are business-aligned and not strictly IT-driven is necessary
when identifying services for a service portfolio in an SOA. Services are derived from a
decomposition of a company’s core business processes and a collection of key business
entities. For a top-down approach, services are identifi ed and interfaces are designed
by creating appropriate schema artifacts to model either the operating data and WSDL-
based service contracts, or model REST resources and resource methods. The completed
service interface is implemented in code.

However, enterprises can have irreplaceable mission-critical applications in place.
Therefore, another aspect of fi nding services is assessing existing applications and com-
ponents to be refactored as services for a bottom-up approach. This includes creating
standard service contracts, such as WSDL defi nitions or REST resource models, for the
existing components.

Tooling provides support for both approaches in a Java world. For SOAP-based Web
services, tools play a more prominent role than in Java-based REST services. JAX-WS
defi nes the wsimport tool, which takes an existing WSDL defi nition as input to generate
Java skeletons. These skeletons can be used as the starting point for implementing the

152 Chapter 7: Service-Orientation Principles with Java Web-Based Services

actual service logic. Similarly, the wsgen tool generates WSDL from existing Java code.
The mapping between WSDL/XML schema and Java is an important function associ-
ated with the wsimport tool.

Machine-readable contracts are also necessary for REST services. JAX-RS, if WADL is
not used, starts with a resource model to implement the resources in Java. Consider
the contract as a logical collection of the resource model, with the supported resource
methods, resource representations, and any hyperlinks embedded in the representa-
tions allowing navigability between resources. If WADL is used, tools like wadl2java
can generate code artifacts. Initiatives exist to help generate WADL from annotated
JAX-RS classes for a bottom-up approach, although these recent developments can have
limited usefulness.

Some SOA projects will employ both a bottom-up and a top-down approach to identify
and design services and service contracts, which often results in a meet-in-the-middle
approach. Service defi nitions and Java interfaces are tuned and adjusted until a good
match is found.

Sometimes an XML schema defi nition developed as part of the service design cannot
map well into Java code. Conversely, existing Java code may not easily map into an XML
schema. Java code that does not precisely map to a service interface designed as part of
a top-down approach can exist. In this case, the Service Façade pattern can be applied
to insert a thin service wrapper to satisfy the service interface and adapt incoming and
outgoing data to the format supported by the existing Java code.

 Mapping Between Java and WSDL

WSDL is the dominant method of expressing the contract of a Java component. While
typically related to Web services, the language can also be utilized for other types of
services. Formalization and standardization of the relationship between Java and WSDL
has made this possible, such as the work completed on the JAX-RPC standard.

The JAX-RPC standard initially defi ned basic tasks, such as “a service portType is
mapped to a Java interface” and “an operation is mapped to a method.” However, for-
malizing allows the defi nitions described in the JAX-RPC standard to defi ne how an
existing Java component (a class or interface) can generate a WSDL defi nition, and vice
versa. Consequently, most contemporary Java IDEs support generating one from the
other without requiring any manual work.

7.2 Standardized Service Contract 153

JAX-WS, the successor standard for JAX-RPC, builds on top of its predecessor’s defi ni-
tions and delegates all the issues of mapping between Java and XML to the JAXB speci-
fi cation (as discussed in Chapter 6). These sections serve to highlight some of the issues
raised when creating standard service contracts from Java or creating Java skeletons
from existing service contracts. The majority of the details explained in the next section
apply specifi cally to Web services.

Wrapped Document/Literal Contracts

The WSDL standard identifi es a variety of styles for transmitting information between
a service consumer and service. Most of the styles are specifi c for the chosen message
and network protocol, and specifi ed in a section of the WSDL defi nition called the bind-
ing. A common binding found in a WSDL defi nition uses SOAP as the message protocol
and HTTP as the network transport. Assume that SOAP/HTTP is the protocol used for
the services presented as examples.

The portType is a binding-neutral part of a service defi nition in WSDL that describes
the messages that travel in and out of a service. Reusable across multiple protocols, the
portType is not bound to the use of a Web service. Any service, even if invoked locally,
can be described by a WSDL portType, which allows service interfaces to be defi ned in
a language-neutral fashion regardless of whether the service logic will be implemented
in Java or another language.

As discussed in Chapter 5, the WSDL binding information defi nes the message format
and protocol details for Web services. For SOAP-based bindings, two key attributes
known as the encoding style and the invocation style determine how messages are
encoded and how services are invoked.

The wrapped document/literal style supported by default in all Java environments for
services dictates that an exchange should be literal. Literal means that no encoding
happens in the message, so the payload of the message is a literal instantiation of the
schema descriptions in the <types> element of the WSDL. The invocation style is docu-
ment. Document means that the runtime environment should generate a direct copy of
the input and output messages as defi ned in the portType and not just an arbitrary part
of the message. Wrapped means that the payload of the message includes a wrapper
element with the same name as the operation invoked.

In order to understand how the WSDL standard relates to Java, let’s review Example 7.11
to expose the following class as a service and create a standardized contract.

154 Chapter 7: Service-Orientation Principles with Java Web-Based Services

package pack;
import javax.jws.*;
@WebService
public class Echo {
 public String echo(String msg) {
 return msg;
 }
}

Example 7.11

Using the wrapped document/literal style implements a wrapper element called "echo"
after the echo() method in the public class. Echo is included in the XML schema associ-
ated with this service. An excerpt in the resulting schema is provided in Example 7.12.

...
 <xs:element name="echo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
...

Example 7.12

Wrapping a message in one additional element named after the operation is prevalent
and the default in any commonly used tool. Note that naming the global element after
the operation is common practice and not required by the specifi cation.

 Implicit and Explicit Headers

Transferring information as part of the <Header> portion of the SOAP message, to be
added to the WSDL defi nition, is another important part of the binding information
for SOAP. This section discusses how to bind the information with explicit, implicit, or
no headers.

Explicit Headers

Header data is part of the messages referenced in the portType of the service, which is
often called an explicit header. The header defi nition in the SOAP binding refers to a
message part either included in the input message or the output message of an operation.

7.2 Standardized Service Contract 155

In Example 7.13, assume an Echo service takes a string as input and returns that string
as the response. A timestamp must also be added into the header of the SOAP request
message, indicating the time at which the request was sent.

<definitions targetNamespace="http://pack/" name="EchoService"
 xmlns:tns="http://pack/" xmlns:xs="http://www.w3.org/2001/
 XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema targetNamespace="http://pack/">
 <xs:element name="echo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="timestamp" type="xs:dateTime"/>
 </xs:schema>
 </types>
 <message name="echo">
 <part name="parameters" element="tns:echo"/>
 <part name="timestamp" element="tns:timestamp"/>
 </message>
 <message name="echoResponse">
 <part name="parameters" element="tns:echoResponse"/>
 </message>
 <portType name="Echo">
 <operation name="echo">
 <input message="tns:echo"/>
 <output message="tns:echoResponse"/>
 </operation>
 </portType>
 <binding name="EchoPortBinding" type="tns:Echo">
 <soap:binding transport="http://schemas.xmlsoap.org/ soap/http"
 style="document"/>
 <operation name="echo">
 <soap:operation soapAction=""/>
 <input>
 <soap:body parts="parameters" use="literal"/>

156 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 <soap:header message="tns:echo" part="timestamp"
 use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
...
</definitions>

Example 7.13
The Echo service WSDL definition with an explicit header contains a timestamp.

Example 7.13 contains an extract of the respective WSDL defi nition for an Echo service
that shows:

 • an additional element in the schema, called "timestamp" of type xs:dateTime

 • an additional part in the input message defi nition, which refers to the
timestamp element

 • an additional defi nition for the header in the SOAP binding, which indicates that
the timestamp element should be carried in the SOAP header of the
request message

The header binding shown in Example 7.14 refers to a part also included in the portType
of the service, the input message, and the Java service interface generated by the JAX-WS
wsimport tool. Note that the import statements are left out.

@WebService(name = "Echo", targetNamespace = "http://pack/")
@SOAPBinding(parameterStyle = ParameterStyle.BARE)
public interface Echo {
 @WebMethod
 @WebResult(name = "echoResponse", targetNamespace = "http://pack/",
 partName = "parameters")
 public EchoResponse echo(
 @WebParam(name = "echo", targetNamespace = "http://pack/",
 partName = "parameters")
 Echo_Type parameters,
 @WebParam(name = "timestamp", targetNamespace = "http://pack/",
 header = true, partName = "timestamp")
 XMLGregorianCalendar timestamp);
}

Example 7.14

7.2 Standardized Service Contract 157

The service interface includes a parameter for the explicit header and indicates two
parameters: one that contains the string wrapped into the Echo_Type class and another
that carries the timestamp element. Note that nothing in the interface indicates that the
timestamp will go into the SOAP header, as this information is only contained in the
WSDL defi nition.

Implicit Headers

Assume that the header data is not part of the portType but instead uses a message
part unused in any input or output message, known as an implicit header. The header
information is not included in the portType of the service or in the Java interface.
Example 7.15 shows that the WSDL for the Echo service has been changed to include an
explicit header.

<definitions targetNamespace="http://pack/" name="EchoService"
 xmlns:tns="http://pack/" xmlns:xs="http://www.w3.org/2001/
 XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 ... (this part is as before) ...
 <message name="echo">
 <part name="parameters" element="tns:echo"/>
 </message>
 <message name="echoResponse">
 <part name="parameters" element="tns:echoResponse"/>
 </message>
 <message name="header">
 <part name="timestamp" element="tns:timestamp"/>
 </message>
 <portType name="Echo">
 <operation name="echo">
 <input message="tns:echo"/>
 <output message="tns:echoResponse"/>
 </operation>
 </portType>
 <binding name="EchoPortBinding" type="tns:Echo">
 <soap:binding transport="http://schemas.xmlsoap.org/ soap/http"
 style="document"/>
 <operation name="echo">
 <soap:operation soapAction=""/>
 <input>
 <soap:body parts="parameters" use="literal"/>
 <soap:header message="tns:header" part="timestamp"
 use="literal"/>
 </input>

158 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 ...
</definitions>

Example 7.15
A WSDL definition contains an implicit header for an Echo service.

The WSDL defi nition presented in Example 7.15 is not that much different from Exam-
ple 7.13, with a separate message defi ned for the header. The separate message has a sig-
nifi cant impact on the Java interface seen in Example 7.16, where the import statements
have been omitted again.

@WebService(name = "Echo", targetNamespace = "http://pack/")
public interface Echo {
 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "echo",
 targetNamespace = "http://pack/", className = "pack.Echo_Type")
 @ResponseWrapper(localName = "echoResponse",
 targetNamespace = "http://pack/", className = "pack.EchoResponse")
 public String echo(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);
}

Example 7.16
The service interface does not include the implicit header.

The interface in Example 7.16 takes a simple string parameter, and does not refer to the
timestamp element or use the Echo_Type class to wrap the input message. The implicit
header defi nition requires extra work on the service implementer by the service client
developer to ensure the appropriate header information is inserted into the message.
The implicit header defi nition cannot simply be passed to the service proxy as a param-
eter. In both cases, JAX-WS handlers can be leveraged to process the SOAP header, or
intermediaries inserted between service consumer and service can manage all header
information, such as part of an ESB.

The header portion of a service message should only contain contextual information,
omitting any business connotation. The implementations of the service consumer and

7.2 Standardized Service Contract 159

the service should only deal with business logic and not with infrastructure-level infor-
mation. The use of implicit headers is common, although extra code to generate and
process the headers must be written.

No Headers

A fi nal option is to put no header information in the WSDL defi nition, which can appear
to leave the contract incomplete but is actually preferable. Headers typically contain
information independent from the business payload being exchanged between services.
Recall a timestamp that had been inserted into the SOAP message presented in Exam-
ples 7.13 and 7.15. Inserting a timestamp might be a defi ned company policy across all
services, and a common method for doing so can be established. Adding this detail to
each WSDL defi nition is not required and creates an unnecessary dependency between
the business-relevant service contract and technical cross-service policy.

Data Mapping with REST

XML schemas can be used to represent service data elements, with JAXB and JAX-WS
generating the mapped Java classes and Web service artifacts for SOAP-style Web ser-
vice implementations. For REST services, the JAX-RS service implementations are simi-
lar. When the convenience of code generation is needed, JAXB annotated POJOs can be
used as the service entities in JAX-RS resource classes. Behind the scenes, the JAX-RS
runtime will marshal the Java objects to the appropriate MIME-type representations for
the entities, such as application/xml. A customer object annotated with JAXB annota-
tions is shown in Example 7.17.

@XmlRootElement(name="customer")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 private int id;
 private String name;

 public Customer() {}
 //...other attributes omitted
 //...getters and setters for id and name
 //...
}

Example 7.17

160 Chapter 7: Service-Orientation Principles with Java Web-Based Services

The resource methods in the JAX-RS implementation that produce or consume cus-
tomer information in the form of XML can be seen in Example 7.18.

//...retrieve customer and return xml representation
@Get
@Path("id")
@Produces("application/xml")
public Customer getCustomer(
 @PathParam("id") Long id){
 Customer cust = findCustomer(id);
 return cust;
}
//...create customer with an xml input
@POST
@Consumes("application/xml")
public void createCustomer(
 Customer cust){
 //...create customer in the system
 Customer customer = createCustomer(cust);
 //...
}

Example 7.18

The JAX-RS implementation automatically handles the marshaling and unmarshaling
of the XML-based resource representation to and from JAXB objects. Generic types,
such as a javax.xml.transform.Source, can be handled in the resource class to keep
the resource class independent of any specifi c types defi ned in the domain, such as a
customer type. However, extra work is required to handle the extraction of the cus-
tomer information from the Source object seen in Example 7.19.

@PUT
@Path("id")
@Consumes("application/xml")
public void updateCustomer(@PathParam("id") Long id,
 javax.xml.transform.Source cust) {
 // do all the hard work to
 // extract customer info in
 // extractCustomer()
 updateCustomer(id, extractCustomer(cust));
}

Example 7.19

7.2 Standardized Service Contract 161

JAX-RS supports alternate MIME types, such as JSON. Just as JAXB handles the bind-
ing of XML to and from Java objects, numerous frameworks exist that handle mapping
JSON representations to Java objects and vice versa. Some commonly used frameworks
for mapping between JSON and Java are MOXy, Jackson, and Jettison.

In the Jersey implementation of JAX-RS 2.0, the default mechanism for binding JSON
data to Java objects leverages the MOXy framework. When the Jersey runtime is con-
fi gured to use MOXy, the runtime will automatically perform binding between Java
objects (POJOs or JAXB-based) and a JSON representation. Jackson or Jettison can also
perform similar binding with appropriate runtime confi guration. A low-level JSON
parsing approach can be achieved with the newly introduced JSON-P API (Java API for
JSON Processing) in Java EE 7. JSON-P should not be confused with JSONP (JSON with
Padding), which is a JavaScript communication technique used to avoid certain types
of browser restrictions.

Conversion Between JSON and POJOs

Given the same customer representation as illustrated in Example 7.20, no special code is
required to handle an incoming JSON document or return a JSON-based representation.

//...
@GET
@Path("id")
@Produces("application/json")
public Customer getCustomer(
@PathParam("id") Long id){
 return findCustomer(id);
}

Example 7.20

The returned customer representation would be a JSON string, such as {"name":"John
Doe","id":"1234" ... }.

The same JAXB objects can be used for handling JSON media types that would nor-
mally be used for XML representation. The addition of another MIME type in the
@Produces can be seen in Example 7.21.

@GET
@Path("id")
@Produces("application/json", "application/xml")

162 Chapter 7: Service-Orientation Principles with Java Web-Based Services

public Customer getCustomer(
//...

Example 7.21

The JAX-RS runtime returns an appropriate representation (XML or JSON) that is deter-
mined by the client’s preference. In spite of the convenience offered by JSON binding
frameworks like MOXy or Jackson, greater control over the processing of the JSON input
and output can be a requirement, as opposed to letting the JAX-RS runtime perform an
automatic binding between JSON and Java objects.

For example, REST service operations must consume or produce only selective parts
of large JSON documents, as converting the whole JSON document to a complete Java
object graph can cause signifi cant resource overheads. In such cases, a JSON parsing
mechanism based on a streaming approach can be more suitable. JSON-P APIs allow a
developer complete control over how JSON documents are processed. JSON-P supports
two programming models, the JSON-P object model and the JSON-P streaming model.

The JSON-P object model creates a tree of Java objects representing a JSON docu-
ment. The JsonObject class offers methods to add objects, arrays, and other primitive
attributes to build a JSON document, while a JsonValue class allows attributes to be
extracted from the Java object representing the JSON document. Despite the advantage
of convenience, processing large documents with the object model can create substan-
tial memory overheads, as maintaining a large tree of Java objects imposes signifi cant
demands on the Java heap memory. This API is similar to the Java DOM API for XML
parsing (javax.xml.parsers.DocumentBuilder).

In comparison, the JSON-P streaming model uses an event parser that reads or writes
JSON data one element at a time. The JsonParser can read a JSON document as a
stream containing a sequence of events, offer hooks for intercepting events, and per-
form appropriate actions. The streaming model helps avoid reading the entire docu-
ment into memory and offers substantial performance benefi ts. The API is similar to the
StAX Iterator APIs for processing XML documents in a streaming fashion (javax.xml.
stream.XMLEventReader). The JsonGenerator class is used to write JSON documents
in a streaming fashion similar to javax.xml.stream.XMLEventWriter in StAX API.

JSON-P does not offer binding between JSON and Java. Frameworks, such as MOXy or
Jackson, are similar to JAXB in how they will need to be leveraged to perform conver-
sion between Java objects and JSON.

7.2 Standardized Service Contract 163

CASE STUDY EXAMPLE

SmartCredit launches an aggressive expansion campaign with the intention of offer-
ing premium credit cards with cashback offers to high-value customer prospects
across a retail chain’s locations. After signing an agreement with the retail chain,
SmartCredit obtains prospect data from all the retail stores containing prospect
names, e-mail addresses, and net transaction values at the end of every month. An
internal Prospect Analyzer application will process the data to target prospects with
high monthly transaction values and send out e-mails with new premium credit
card offers.

The retail chain’s IT department sends customer data to SmartCredit in large JSON
documents containing prospect information. However, the SmartCredit Prospect
Analyzer service is only interested in prospects that spend in excess of 2,000 dol-
lars during the month. A fragment of a typical monthly JSON extract from the retail
stores is provided in Example 7.22.

"txnsummary":{
"date":"2014-01-31T23:30:00-0800",
"store":"Fashion Trends #132",
"txn": [
 {
 "type":"cash",
 "amount":235.50,
 "e-mail":null
 },
 {
 "type":"credit",
 "amount":3565.00,
 "e-mail":"jane@doe.com"
 }
]}

Example 7.22

SmartCredit IT accepts the prospect and transaction data through an HTTP POST
from the retail stores at the end of every month. A REST API that consumes this
JSON data and extracts the prospects for marketing campaigns is built. After review-
ing the size of the monthly feed, a SmartCredit architect quickly realizes that mem-
ory limitations will prevent a typical JSON-Java binding approach from working for

164 Chapter 7: Service-Orientation Principles with Java Web-Based Services

such large payloads. In addition, SmartCredit is only interested in processing selec-
tive parts of the payload, such as credit card transactions with amounts greater than
2,000 dollars.

Converting the entire JSON data into Java objects is a waste of time, memory, and
resources. The JSON-P streaming API is a suitable option for allowing selective pro-
cessing of only the data sections meeting the given criteria. A simplifi ed version of
the fi nal resource class is illustrated in Example 7.23.

import javax.ws.rs.Consumes;
import javax.ws.rs.Path;
import javax.ws.rs.POST;
import javax.ws.rs.core.MediaType;
import java.io.Reader;
import javax.json.Json;
import javax.json.streaming.JsonParser;
import javax.json.streaming.JsonParser.Event
@Path("upload")
@Consumes(MediaType.APPLICATION_JSON)
public class ProspectFilteringResource {
 private final double THRESHOLD = 2000.00;
 @POST
 public void filter(final Reader transactions) {
 JsonParser parser = Json.createParser(transactions);
 Event event = null;
 while(parser.hasNext()) {
 event = parser.next();
 if(event == Event.KEY_NAME&&"type".equals(parser.getString()))
 {
 event = parser.next(); //advance to Event.VALUE_STRING for
 the actual value of "type"
 if("credit".equals(parser.getString()) {
 parser.next(); //Event.KEY_NAME for "amount"
 event = parser.next(); //Event.VALUE_NUMBER for amount
 value
 if(parser.getBigDecimal().doubleValue() > THRESHOLD) {
 parser.next(); //advance to Event.KEY_NAME for "e-mail"
 parser.next(); //advance to Event.VALUE_STRING for
 e-mail info
 String e-mail = parser.getString();
 addToCampaignList(e-mail);
 }
 }
 }

7.2 Standardized Service Contract 165

 }
 }
 private void addToCampaignList(String e-mail) {
 // actual logic of adding e-mail to campaign list
 }
}

Example 7.23
The JSON-P streaming API can parse a large JSON document selectively.

The code uses the streaming API to advance the parser to consume only specifi c
events and avoids reading the entire JSON data structure into memory, which would
have been the case using the standard JSON-Java binding approach. One drawback
to the JSON-P approach is the cumbersome maneuvering of the event stream in the
application code, although such trade-offs are often necessary in real-world usage.

Binary Data in Web Services

Candidates looking to utilize a service-oriented solution often require the transfer of
large amounts of data kept in some binary format, such as a JPEG image fi le. The Java
language offers support for handling binary data in its JavaBeans Activation Frame-
work (JAF) as well as classes and interfaces in other packages, which depend on the
format. For example, the java.awt.Image class hierarchy supports image formats, such
as JPEG. The JAXB specifi cation defi nes how to map certain Java types to XML schema,
such as the mapping of a java.awt.Image type to base64Binary.

Binary formats without a special Java type associated can use the javax.activation.
DataHandler class defi ned in JAF. However, byte[] is the most generic way of repre-
senting binary data in Java. JAXB defi nes that a byte[] is mapped to base64Binary
and hexBinary.

When generating a WSDL contract from a Java interface, binary data types are mapped
using JAXB mapping rules. Generating the reverse is not as straightforward. An XML
schema element of type base64Binary can map into multiple different Java types. By
default, byte[] is used. Indicating that an element declared as base64Binary in the
schema should be mapped to java.awt.Image in the Java service implementation can
be performed in a number of ways. Binary data can be transferred in a SOAP message
or inline, which means binary data is encoded into text and sent like any other data in
the message.

166 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Transferring the data inline maintains interoperability between different vendor envi-
ronments, but is ineffective when dealing with large pieces of binary data, such as a
CAD drawing of an airplane. The text encoding increases the size of the message by
an average of 25%. The MTOM is an alternative to text encoding, which describes how
parts of a message can be transferred in separate parts of a MIME-encoded multipart
message. The binary content is removed from the SOAP payload, given a MIME type,
and transferred separately.

JAXB provides support for MTOM, which must be explicitly enabled for the JAX-WS
runtime. JAX-WS plugs into this support when building and parsing messages with
attachments. An element defi nition can be annotated in an XML schema document with
two specifi c attributes indicating which MIME type to give the element. When using
MTOM, the contentType and expectedContentTypes attributes demonstrate how to
MIME-encode the element and determine which Java type the element is mapped to in
the Java service interface.

Nothing in the schema or in any of the Java code indicates whether the binary data is
transferred as an attachment using MTOM or inserted directly into the SOAP envelope.
In JAX-WS, distinguishing the difference is defi ned either by a setting on the service
confi guration fi le or programmatically. The following case study example illustrates a
SOAP-based Web service managing attachments via MTOM.

CASE STUDY EXAMPLE

NovoBank offers a remote method of opening an account from its Web site for cus-
tomers to download a form, fi ll it out, and mail or fax it to a branch offi ce. Alterna-
tively, customers can fi ll out the form in branch and provide the completed form to a
bank employee. The forms are scanned in at the branch offi ce for further processing
by NovoBank’s back-end system before being archived.

To reduce processing time, the bank wants to offer customers and employees a Web
application that accepts an uploaded binary image of the form to send to the bank.
Internally, the Open Account service uses a Web service that takes the binary image
as a parameter. To simplify the implementation of the associated service logic in Java,
the service contract uses the expectedContentType attribute in its schema to indi-
cate that the scanned image is formatted as a JPEG document. The resulting WSDL
defi nition is shown in Example 7.24 with parts of the WSDL document omitted
for brevity.

7.2 Standardized Service Contract 167

<definitions targetNamespace= "http://personalbanking.services.
 novobank.com/" name="AccountService"
 xmlns:tns="http://personal banking.services.novobank.com/"
 xmlns:xsd="http://www.w3.org/ 2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns=http://schemas.xmlsoap.org/wsdl/
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <types>
 <xsd:schema>
 <xs:element name="openAccount" type="ns1:openAccount"
 xmlns:ns1="http://personalbanking.services.novobank.com/"/>
 <xsd:complexType name="openAccount">
 <xsd:sequence>
 <xsd:element name="arg0" type="xsd:base64Binary"
 xmime:expectedContetTypes="image/jpeg" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 ...
 </xsd:schema>
 </types>
 <message name="openAccount">
 <part name="parameters" element="tns:openAccount"/>
 </message>
 <message name="openAccountResponse">
 <part name="parameters" element="tns:openAccountResponse"/>
 </message>
 <portType name="Account">
 <operation name="openAccount">
 <input message="tns:openAccount"/>
 <output message="tns:openAccountResponse"/>
 </operation>
 </portType>
</definitions>

Example 7.24
The WSDL for NovoBank’s Open Account service with an MTOM content type definition will now accept the JPEG format.

An element of type base64Binary will be mapped to a byte[] in the Java inter-
face. However, the additional annotation of the parameter element, using the
expectedContentTypes attribute, leads to the following Java interface presented in
Example 7.25.

168 Chapter 7: Service-Orientation Principles with Java Web-Based Services

package com.novobank.services.personalbanking;
import java.awt.Image;
// other imports omitted
@WebService(name = "Account", targetNamespace = "http://
 personalbanking.services.novobank.com/")
public interface Account {

 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "openAccount",
 targetNamespace = "http://personalbanking.services.novobank.
 com/", className = "com.novobank.services.personalbanking.
 OpenAccount")
 @ResponseWrapper(localName = "openAccountResponse",
 targetNamespace = "http://personalbanking.services.novobank.
 com/", className = "com.novobank.services.personal banking.
 OpenAccountResponse")
 public String openAccount(
 @WebParam(name = "arg0", targetNamespace = "")
 Image arg0);
}

Example 7.25
The content type is mapped to the appropriate Java type in the service interface.

Note how the parameter passed to the service implementation is mapped to the
java.awt.Image type. Defi ning whether MTOM is used to transfer the form image
as an attachment can be performed programmatically using JAX-WS, or in the client
or the endpoint confi guration for the service endpoint. A sample client for the new
Open Account service is shown in Example 7.26.

package com.novobank.services.personalbanking.client;
import java.awt.Image;
import java.awt.Toolkit;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPBinding;

public class AccountServiceClient {
 public static void main(String[] args) {
 Image image = Toolkit.getDefaultToolkit().getImage("c:\\temp\\
 java.jpg");
 Account serviceProxy = new AccountService(). getAccountPort();
 SOAPBinding binding = (SOAPBinding)((BindingProvider)
 serviceProxy).getBinding();

7.2 Standardized Service Contract 169

 binding.setMTOMEnabled(true);
 String accountNumber = serviceProxy.openAccount(image);
 System.out.println("returned account number is
 "+accountNumber);
 }
}

Example 7.26
A Java client enables MTOM transport.

After deploying the service and running the test client listed in Example 7.26, the
SOAP message sent can be reviewed by executing the client in Example 7.27.

POST /attachment/account HTTP/1.1
Content-Length: 13897
SOAPAction: ""
Content-Type: Multipart/Related; type="application/xop+xml";
boundary="----=_Part_0_14949315.1177991007796"; start-info="text/
xml"
Accept: text/xml, application/xop+xml, text/html, image/gif, image/
jpeg, *; q=.2, */*; q=.2
User-Agent: Java/1.5.0_11
Host: 127.0.0.1:8081
Connection: keep-alive

------=_Part_0_14949315.1177991007796
Content-Type: application/xop+xml; type="text/xml"; charset=utf-8

<?xml version="1.0" ?><soapenv:Envelope xmlns:soapenv=http://
schemas.xmlsoap.org/soap/envelope/ xmlns:xsd=http://www.w3.org/2001/
XMLSchema xmlns:ns1="http://personalbanking.services.novobank.
com/">/"><soapenv:Body><ns1:openAccount><arg0><xop:Include
xmlns:xop="http://www.w3.org/2004/08/xop/include" href="cid:f17b4f2b-
db2c-4bc5-96d1-2d4857aaa5b8@example.jaxws.sun.com"></xop:Include></
arg0></ns1:openAccount></soapenv:Body></soapenv:Envelope>

------=_Part_0_14949315.1177991007796
Content-Type: application/octet-stream
Content-ID: <f17b4f2b-db2c-4bc5-96d1-2d4857aaa5b8@example.jaxws.sun.
com>
Content-transfer-encoding: binary_KýÝ_ÔF-¡úÞr*îÉu1_)Š1áñ}K²£•Ñ\
êKQZ_Ý4Ï¡É)*G’~ªohBïýfÙÈï¦zùì£_Ö(Ö &_Èõmâoå¨\Ó\(ò¹åq€ºÊ _W¶èÁh";_
ÐÚ´z0"ç5WÃ"_üv|DÜî7IÚù_é6³ÈÚ1•lëÉäl›BîöWÈ"ý|›i"ì™Åã]ÓÉÝ9ƒ_"7Üý¶j9{
ßáÉ?w(_"86‹ü£Ã_´?_:Ž§òÔŠvM¦éÈë4_ŸÊ"=ƒÑ]™EýÕ×Ès˜Hýå÷©?7‹â""¨r{‹â³¯

170 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Rè<...R×©Ô]z_í Ù4_ÿBîùš_?ÿPé3ê
... the rest of the data omitted ...
------=_Part_0_14949315.1177991007796--

Example 7.27
A SOAP message with an MTOM-compliant binary part

The request message is divided into the SOAP message, including reference to the
binary data, and the binary data sent as an attachment. The message can be handled
more effi ciently and does not impact the processing of the remaining XML informa-
tion. Again, whether the data is sent as an attachment or not is not defi ned in the
service contract (the WSDL defi nition).

Binary Data in REST Services

JAX-RS supports the conversion of resource representations into Java types, such as
byte[] or java.io.InputStream, in resource methods. To produce or consume
binary data from resource methods, JAX-RS runtime handles the conversion through
a number of built-in content handlers that map MIME-type representations to byte[],
java.io.InputStream, and java.io.File. If binary content must be handled as a raw
stream of bytes in a resource method, the corresponding resource method is seen in
Example 7.28.

@Get
@Produces("image/jpg")
public byte[] getPhoto() {
 java.io.Image img = getImage();
 return new java.io.File(img);
}

@Post
@Consumes("application/octet-stream")
public void processFile(byte[] bytes) {
 //...process raw bytes
}

Example 7.28

7.2 Standardized Service Contract 171

The java.io.File type can help process large binary content in a resource method,
such as an attachment containing medical images, as seen in Example 7.29.

@POST
@Consumes("image/*")
public void processImage(File file) {
 //...process image file
}

Example 7.29

The JAX-RS runtime streams the contents to a temporary fi le on the disk to avoid stor-
ing the entire content in memory. For complete control over content handling, JAX-RS
offers several low-level utilities which can be useful for custom marshaling/unmar-
shaling of various content types. The javax.ws.rs.ext.MessageBodyReader and
javax.ws.rs.ext.MessageBodyWriter interfaces can be implemented by developers
to convert streams to Java types and vice versa.

Back-and-forth conversion is useful when mapping custom MIME types to the domain-
specifi c Java types. The classes that handle the mapping are annotated with the
@Provider annotation and generically referred to as JAX-RS entity providers. Entity
providers are used by the JAX-RS runtime to perform custom mapping.

A special case of javax.ws.rs.ext.MessageBodyWriter is the javax.ws.rs.

core.StreamingOutput callback interface, which is a wrapper around a
java.io.OutputStream. JAX-RS does not allow direct writes to an OutputStream.
The callback interface exposes a write method allowing developers to customize the
streaming of the response entity. Example 7.30 demonstrates the gzip format used to
compress a response entity.

import javax.ws.rs.core.StreamingOutput;
...
@GET
@Produces("application/gzip-compressed")
public StreamingOutput getCompressedEntity() {

NOTE

Indicate the MIME type through an appropriate @Produces annotation,
such as a JPG image, so that the runtime can set the right content-type
for the returned resource representation.

172 Chapter 7: Service-Orientation Principles with Java Web-Based Services

return new StreamingOutput() {
 public void write(OutputStream out)
 throws IOException, WebApplicationException {
 try {
 ...
 GZipOutputStream gz =
 new GZipOutputStream(out);
 //...get array of bytes
 // to write to zipped stream
 byte[] buf = getBytes();
 gz.write(buf, 0, buf.length);
 gz.finish();
 gz.close();
 ...
 } catch(Exception e) { ... }
 }
 };
}

Example 7.30

For mixed content containing both text and binary payload, entity providers can be
used to perform custom marshaling, while multipart MIME representations are suit-
able for dealing with mixed payloads. JAX-RS standards do not mandate support for
handling mixed MIME multipart content types apart from multipart FORM data (mul-
tipart/form-data), which is useful for HTML FORM posts but has limited use in a sys-
tem-to-system interaction context. Various JAX-RS implementations, such as Jersey and
RESTEasy, provide support for mixed multipart data. Handling mixed content with
binary data is common, as seen in the following case study example for SmartCredit’s
Submit Credit Application service.

CASE STUDY EXAMPLE

SmartCredit is building a REST service known as the Submit Credit Application ser-
vice that is intended for service consumers to submit credit card applications. Apart
from basic information such as customer details, the supporting information in the
form of various collaterals, such as mortgage papers and loan approvals, must be
scanned as images and attached to the application.

The SmartCredit application development team considered using Base64 encod-
ing, but moved onto other alternatives after realizing a substantial size bloat would

7.2 Standardized Service Contract 173

result. The development team decides on the mixed multipart representation for the
application data. The multipart application data will have the customer information
in an XML format as the fi rst part, and a series of images in the subsequent parts.

A sample multipart application request over HTTP is shown in Example 7.31.

POST /creditapps/ HTTP/1.1
Host: smartcredit.com
Content-Type: multipart/mixed; boundary=xyzw

--xyzw
Content-Id: <abcdefgh-1>
Content-Type: application/xml
<customer>
 <name>John Doe</name>
 <Address>...</Address>
 ...

--xyzw
Content-Id: <abcdefgh-2>
Content-Type: image/jpg
...
&_Èõmâoå¨\Ó\(ò¹åq ºÊ _W¶èÁh";_ÐÚ´z0"ç5WÃ"_üv|DÜî7IÚù_
é6³ÈÚ1•lëÉäl›BîöWÈ"ý|›i"ì™Åã]ÓÉÝ9ƒ_"7Üý¶j9{ßáÉ?w(_"86‹ü£Ã_´?_:Ž§òÔŠv
M¦éÈë4_ŸÊ"=ƒÑ]™EýÕ×Ès˜Hý...rest of the binary data goes here
--xyzw—

Example 7.31

The SmartCredit service development team considered using a custom JAX-RS Entity
Provider to handle the mixed multipart data, but realized the reference JAX-RS
implementation Jersey already provides support for mixed multipart data through
an add-on called jersey-media-multipart. The key classes leveraged in this imple-
mentation include:

 • The org.glassfish.jersey.media.multipart.BodyPartEntity represents the
entity of a part when a MIME Multipart entity is received and parsed.

 • The org.glassfish.jersey.media.multipart.BodyPart is a mutable model
representing a body part nested inside a MIME Multipart entity.

The resource class method that handles the submitted application can be seen in
Example 7.32.

174 Chapter 7: Service-Orientation Principles with Java Web-Based Services

import org.glassfish.jersey.media.multipart.MultiPart;
import org.glassfish.jersey.media.multipart.BodyPart;
import org.glassfish.jersey.media.multipart.BodyPartEntity;
import javax.ws.rs.core.Response;
...

import com.smartcredit.domain.Customer;
...

@Path("/creditapps")
public class CreditAppResource {

 @POST
 @Consumes("multipart/mixed")
 public Response post(MultiPart multiPart) {
 // First part contains a Customer object
 Customer customer =
 multiPart.getBodyParts().get(0).
 getEntityAs(Customer.class);

 // process customer information
 processCustomer(customer);

 // get the second part which is a scanned image
 BodyPartEntity bpe =
 (BodyPartEntity) multiPart.getBodyParts().
 get(1).getEntity();
 try {
 InputStream source = bpe.getInputStream();
 //process scanned image
 }

 // Similarly, process other images in the multipart
 // content, if any...

 //If everything was fine, return Response 200
 return Response.status(Response.Status.OK).build();

 //else if there were errors...
 return Response.status(Response.Status.BAD_REQUEST).
 build();
}

Example 7.32

7.2 Standardized Service Contract 175

In the code fragment, the @Consumes annotation indicates that a resource representa-
tion of multipart/mixed is expected. In this case, the payload contains customer data
in XML and one or more scanned images. The following Jersey utilities perform dif-
ferent steps in managing the mixed multipart data:

 • com.sun.jersey.multipart.MultiPart.getBodyParts() returns a list of com.
sun.jersey.multipart.BodyParts.

 • BodyPart.getEntityAs(Class<T> cls) returns the entity converted to the
passed-in class type.

 • com.smartcredit.domain.Customer is a regular JAXB-annotated Java class.
Since the fi rst entity in the multipart message is known to be the customer entity,
the BodyPart.getEntityAs(Customer.class) method is used to unmarshal
the XML entity body into a JAXB customer object.

 • BodyPart.getEntity() returns the entity object to be unmarshaled from
a request. The entity object is known to be a BodyPartEntity and is
cast accordingly.

 • BodyPartEntity.getInputStream() returns the raw contents, which in this
case are the contents of the scanned image.

Note that by using the MIME multipart utilities in Jersey, the development team is
able to avoid writing much of the plumbing code that would otherwise be necessary
to deal with multipart MIME messages.

Use of Industry Standards

The use of industry standards in developing service contracts builds on the IT-specifi c
standards and seldom offers challenges when using Java as the language and runtime
environment. Many industries have established data formats that ensure interoperabil-
ity between business partners, suppliers, and between systems within an enterprise,
such as the ACORD standard for insurance, HL7 for the healthcare industry, or SWIFT
for banking.

Used primarily to exchange information between companies or independent units
within an enterprise, industry standards are prime candidates for use as part of the ser-
vice contract. Industry standards are generally expressed as XML schema defi nitions,

176 Chapter 7: Service-Orientation Principles with Java Web-Based Services

which can be directly referenced in a service contract or serve as the basis for a
specifi c schema.

Before the advent of JAXB 2.0 which supports the full set of XML schema constructs, a
common issue was the inability to map all of the elements used in an industry schema
into Java because such mapping was not defi ned. JAXB 2.x nearly resolves this issue,
but cases still occur where a large and complex industry standard schema cannot be
handled by a data binding tool like JAXB. Using an industry standard unchanged in a
service contract can be tedious and lead to the generation of hundreds of Java classes
mapping all of the complex types defi ned in the schema.

SUMMARY OF KEY POINTS

• SOAP-based Web services can be developed top-down, bottom-up, or
meet-in-the-middle.

• For REST services, a resource implementation artifact is used to model a
Web resource that responds to HTTP operations. Apart from XML, support
for resource representations can encompass a wide range of other media
types. REST services can also use MIME features, such as multipart mes-
sages, to deal with binary content. JAX-RS implementations provide content
handlers which can be customized for dealing with
different representations.

• Standards-based service contracts can map the relevant XML schema con-
structs to and from Java. For both SOAP and REST services, the JAXB 2.0
standard offers support for the entire set of XML schema features. Industry
standards are widely used in service contracts and do not introduce particu-
lar challenges when using Java.

• For SOAP-based Web services, special considerations apply when leverag-
ing specifi c WSDL features, such as header fi elds, attachments with binary
data, or the use of wrapper elements.

 7.3 Service Loose Coupling

In a service-oriented environment, components can be coupled at a number of different
levels. Coupling can occur at the level of the service contract, the service implementa-
tion logic, or the underlying technology platform the service is running on if a service

7.3 Service Loose Coupling 177

consumer is coupled with a particular service. In general, SOA promotes the notion of
decoupled systems by which the parts of a service-oriented solution are as decoupled
as possible. Reducing the dependency of one part on another allows one area, such as
a service or an aggregation, to be changed without requiring changes to other areas.

The following design characteristics are helpful in the creation of decoupled systems:

 • separation of contract and implementation

 • functional service context with no dependency on outside logic

 • minimal requirements for the service consumer

When service logic is implemented in Java and executed in a JRE, a coupling is created
between the logic and the underlying technology platform, Java. Additional dependen-
cies arise when Java EE is used as the hosting platform. For an in-depth explanation
of the variations of positive and negative coupling, see Chapter 7 in SOA Principles of
Service Design.

Separation of Contract and Implementation

The separation of a service contract from its implementation is a key characteristic of
service-oriented design that was fi rst established as part of the defi nition of remote
procedure calls and then in object-oriented programming. The interface of a component
is exposed to a point that allows other logic to invoke this component, but no details
about the implementation are added. Changes to the implementation can then be made
without affecting the client. SOA took this concept further by establishing the notion
of a standards-based contract. For example, the service interface can be expressed in a
programming language-neutral way to allow for the integration of logic written in dif-
ferent languages and running on different platforms.

The choice of programming language can be exposed in the service contract. In the
context of a SOAP Web service from the Top-Down vs. Bottom-Up section, a common
approach is to generate the service contract from existing Java logic. In JAX-WS, the
wsgen tool can be used to generate a complete WSDL document, including the XML
schema defi nition from an existing JavaBean or Java interface. However, the existing
Java code may not be easily mapped into XML schema.

For example, assume that the public java.util.Hashtable<String, String>

getTable(int i); method is part of an interface to be turned into a service. Using the
wsgen tool to generate both the WSDL and XML schema defi nition from this interface
creates the type defi nitions presented in Example 7.33.

178 Chapter 7: Service-Orientation Principles with Java Web-Based Services

<xs:element name="getTableResponse" type="ns2:getTableResponse"
 xmlns:ns2="http://the.package/"/>
<xs:complexType name="getTableResponse">
 <xs:sequence>
 <xs:element name="return" type="ns3:hashtable" minOccurs="0"
 xmlns:ns3="http://the.package/"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="hashtable">
 <xs:complexContent>
 <xs:extension base="ns4:dictionary"
 xmlns:ns4= "http://the.package/">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="dictionary" abstract="true"/>

Example 7.33

The result is a valid XML schema defi nition, although a Java Hashtable is exposed in
the service interface which renders the schema not useful or usable outside of Java. The
same is true for many other classes and interfaces in Java, which, while useful as part
of the implementation, do not map well into XML schema and non-Java environments.
Many of the more technically-oriented classes, including the members of the java.io
package, fall into this category.

The use of internal, platform-specifi c information carried in a generic type is another
aspect of decoupling the contract and implementation. For example, the name of a fi le
usually stored as a string can be mapped into XML schema and added to a service con-
tract. However, exposing fi le names on a service contract is considered poor practice,
and revealing details of the service implementation to the service consumer should be
avoided. The same holds true for names of databases, database tables, machine names,
and addresses.

Using the reverse approach is another way of creating this coupling, particularly when
generating a service logic skeleton directly from a service contract. In JAX-WS, the
wsimport tool is used to create Java code skeletons representing a given WSDL defi ni-
tion. Despite being the recommended approach, be aware that the generated Java code
is now tightly coupled to its contract, which prevents the code from being easily reused
to serve other types of service contracts or updated versions of the current contract. In
most cases, the tight coupling is acceptable because the logic is created for a particular
contract and nothing else.

7.3 Service Loose Coupling 179

However, instances occur where service logic must be created for reuse despite changes
to the underlying contract changes or the need to concurrently serve multiple versions
of the same contract. The JAX-WS Provider API is equipped for such instances. In this
model, the service logic parses the incoming message at runtime for dynamic process-
ing with no direct dependency on the types and elements defi ned in the WSDL contract.
Use of the JAX-WS Provider API is detailed in Chapter 8.

For a REST service, coupling the code to the service contract is inconsequential because
generating implementation artifacts from a machine-readable contract, unless WADL is
being used, is uncommon. Implementing a Web resource for a platform, such as JAX-
RS, out of the box supports only a fi nite subset of Java classes that can be automati-
cally mapped to appropriate content-types. For custom types not mapped automatically
by the built-in content handlers, developers must provide implementations of javax.
ws.rs.core.MessageBodyReader/MessageBodyWriter interfaces to map such types
to a known set of resource representations or media types.

 Independent Functional Contexts

Besides the direct compile-time of coupling services, consider the coupling of a ser-
vice to its outside functional context. Service invocations happen as part of a business
transaction or process to establish a context that effectively binds the services, which
are invoked downstream, into an aggregated set. Having a set of services as part of the
same process establishes a type of coupling between the services, a coupling that should
always be top-down. Particularly when leveraging other services to fulfi ll functionality,
a service implementation can be coupled with or have dependency on those services.
However, the service should not have a dependency on any services at a higher level
of the process hierarchy, or be coupled with the invoking service or with peer services.

For example, assume that a service offers Credit Check functionality. The service is
implemented as a business process that invokes a number of other fi ner-grained ser-
vices, such as Credit Lookup, Credit Eligibility, Update Profi le, and Notifi cation. All
four downstream services are peers within the Credit Check business process. Service
peers should have no dependency on each other, or be aware of or coupled with their
upstream Credit Check service.

Services representing business processes, such as Credit Check and Maintain Customer
Information, are decomposed into a set of fi ne-grained services to create a downstream
dependency. A service should not introduce a dependency on another service that is
higher level. For example, the implementation of the Update Profi le entity service should
not introduce any dependency on the Maintain Customer Information task service.

180 Chapter 7: Service-Orientation Principles with Java Web-Based Services

In Java, the same principles of downstream dependency hold true. Unwanted depen-
dencies can be detected by examining the classes that are used by a piece of Java logic.
Organizing classes into packages directly identifying the service and/or affi liated busi-
ness process and ensuring that logically decoupled functions are not packaged together
is recommended. A package name should be selected with consideration for possible
reuse opportunities. For Web services, the same requirements for namespaces are used
in the service contract.

Service Consumer Coupling

For SOAP-based Web services, a service consumer will often be tightly coupled with the
service contract and not the implementation of the service being invoked. However, a
looser coupling lessens the impact when the service contract changes.

Using the JAX-WS Dispatch API, service consumer logic can dynamically assemble
a request message at runtime and manage any response messages. Additional effort
is required to build service consumer logic that can build request messages that the
intended service can process.

CASE STUDY EXAMPLE

After using the Account service in production for some time, a new operation is
added to enhance account services. NovoBank wants to allow all required informa-
tion about new accounts to be sent to the service as XML on top of the binary image
that the initial version supported. Different branch offi ces use different systems to
capture the data required to open a new account, such as traditional “fat client” or
browser-based solutions. Additionally, the details of the information stored with
new accounts change consistently.

The development team will design the new operation to process different types of
input XML formats, and deliver a generic piece of service consumer code that shows
how to invoke the new operation from within a JAX-WS supported client. Example
7.34 illustrates the updated WSDL defi nition for the enhanced Account service to
accept the input of XML formats.

7.3 Service Loose Coupling 181

<definitions targetNamespace="http://personalbanking.services.
 novobank.com/" ...>
 <types>
 <xsd:schema>
 <xsd:element name="openAccount" type="ns1:openAccount"
 xmlns:ns1="http://personalbanking.services.novobank.com/"/>
 <xsd:complexType name="openAccount">
 <xsd:sequence>
 <xsd:element name="arg0" type="xs:base64Binary"
 xmime:expectedContentTypes="image/jpeg" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="openAccountXML" type="ns1:openAccountXML"
 xmlns:ns1="http://personalbanking.services.novobank.com/"/>
 <xsd:complexType name="openAccountXML">
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="openAccountResponse"
 type="ns2:openAccountResponse"
 xmlns:ns2="http://personalbanking. services.novobank.com/"/>
 <xsd:complexType name="openAccountResponse">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:string" inOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <message name="openAccount">
 <part name="parameters" element="tns:openAccount"/>
 </message>
 <message name="openAccountResponse">
 <part name="parameters" element="tns:openAccountResponse"/>
 </message>
 <message name="openAccountXML">
 <part name="parameters" element="tns:openAccountXML"/>
 </message>
 <portType name="Account">
 <operation name="openAccount">
 <input message="tns:openAccount"/>
 <output message="tns:openAccountResponse"/>
 </operation>
 <operation name="openAccountXML">
 <input message="tns:openAccountXML"/>

182 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 </operation>
 </portType>
...
</definitions>

Example 7.34
The updated WSDL definition for the enhanced Account service accommodates the new operation,

openAccountXML.

Note how the element named openAccountXML, which acts as the wrapper element
for the openAccountXML operation, contains only one <xsd:any/> element. The con-
tract indicates that any kind of XML content can be sent to the service without pro-
viding any further details, which allows for decoupling of the service logic from
the contract.

Use of the <xsd:any/> element minimizes the requirements for service consumers
of this service. Any XML document can be passed to the service, allowing the devel-
opment of generic service consumer logic. As an example of completely decoupling
the service consumer from the service, the NovoBank development team delivers
the following piece of client code to the users of the Account service in Example 7.35.

package com.novobank.services.personalbanking.client;

import java.io.StringReader;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;

public class Account2Client {
 public static String testMessage =
 "<ns1:openAccountXML xmlns:ns1=\"http://personalbanking.
 services.novobank.com/\"><someDocument><personalData>Here goes
 the information</personalData></someDocument> </
 ns1:openAccountXML>";

 public static void main(String[] args) throws Exception {
 QName serviceName =
 new QName("http://personalbanking.services.novobank.com/",
 "AccountService");

7.3 Service Loose Coupling 183

 QName portName = new QName("http://personalbanking.services.
 novobank.com/","AccountPort");

 Service service = Service.create(
 new URL("http://localhost:8080/account2/account2?wsdl"),
 serviceName);
 Dispatch<Source> dispatch = service.createDispatch(
 portName, Source.class, Service.Mode.PAYLOAD);
 dispatch.invoke(new StreamSource(new StringReader(testMessage)));
 }
}

Example 7.35
Java client code decouples the service consumer from the service for the Account service.

First, an instance of the Service class providing the location of the appropriate WSDL
fi le and the name of the targeted service is created. A Dispatch object is then created
from the Service class, and the Service.Mode.PAYLOAD is defi ned to indicate that
only the content within the SOAP <body> element and not the entire message will
be passed. Finally, the service can be invoked dynamically via the Dispatch object.
The service consumer has no compile-time dependency on the service or its contract.

The payload XML document has one root element called openAccountXML. Given
that the service defi nition used the wrapped document/literal style described in
the Mapping Between Java and WSDL section, this openAccountXML element indicates
which operation of the service is being invoked. Similarly, the service code can be
developed in a fl exible way with regard to any kind of input message being sent, of
which a detailed case study can be found in Chapter 8. Even though any XML con-
tent can be sent to the service, the implementation logic will always have constraints
on what can be processed. The message must contain data meaningful in the context
of the invoked operation.

Another way of further decoupling a service consumer from the service is to insert
an intermediary between the two. The intermediary, generally deployed as part of an
ESB, can mediate the differences in message format and network protocol to further
decouple the service consumer and service. Chapter 12 explores this further as part of
its coverage of ESBs.

184 Chapter 7: Service-Orientation Principles with Java Web-Based Services

SUMMARY OF KEY POINTS

• For SOAP-based Web services, coupling between service contract and
implementation can also occur. Generating service contracts directly from
existing Java logic often exposes language-specifi c details and creates
an unwanted tight coupling between the logic and the contract. However,
service consumers can be developed in a generic way independent of a
particular service contract using the JAX-WS Dispatch API.

• With REST services, the service contract is tightly constrained by a known
set of media types and a handful of HTTP operations.

• Namespaces and Java package names can help structure code to control
and minimize the dependencies among service implementation pieces.

7.4 Service Abstraction

The appropriate level of abstraction at which services are described achieves additional
agility and alignment between business and IT areas of an enterprise. Abstracting
information means taking technical details out of a problem to be solved on a higher
level. Since the beginning of computer technology, information has been abstracted into
higher levels in a number of ways, for example:

 • Assembler constructs, which are instructions for a processor, are translated into a
series of 1 and 0.

 • Operating systems offer access to system resources and APIs that encapsulate
lower-level constructs.

 • Programming languages, such as Java, introduce a more abstract way of
describing logic, which is then compiled into a format that the operating system
can understand.

Service-orientation continues the evolution of higher-level abstraction use to make cre-
ating and changing solutions easier. For example, a business process defi ned with WS-
BPEL describes a sequence of service invocations and the data fl ows between them by
expressing this sequence in XML form without writing any actual code. A side effect
of this increased abstraction is the ability to utilize visual programming tools that sup-
port the creation of process defi nitions via drag-and-drop-style interfaces. The Service
Abstraction principle advocates that the technical details of the technology platform

7.4 Service Abstraction 185

underlying a service contract are hidden from the service consumer. It also promotes
hiding non-essential details about the service itself.

Abstracting Technology Details

The service contract represents an abstraction of the functionality implemented in the
service logic. Included in this notion is the abstraction of technical resources utilized to
fulfi ll a service’s functionality.

Filenames, database tables, machine names, and network addresses should be omitted
from the service contract and completely hidden from service consumers. Given that a
service contract should always be designed with a particular business purpose in mind,
this should never be a problem.

Concerns arise when services are generated straight out of existing code, because tech-
nology details which should have otherwise been abstracted away will often be exposed.
For example, whether or not a service is implemented in Java or running in a Java envi-
ronment such as Java EE should be completely irrelevant to the service consumer.

Hiding Service Details

Maximum fl exibility is achieved when the technology used to implement a service and
additional details about that service are hidden, which can be divided into information
about the input or output message format and contextual information.

Hiding the information about the input or output message format may seem counterin-
tuitive. If a service’s input and output messages are hidden, what is left to put into the
service contract? Message formats can be abstracted to a generic level without surren-
dering the message defi nition altogether.

For example, assume a Credit Check service receives customer information as input.
The customer information can be defi ned and represented by a Customer complex type
in the XML schema defi nition to a detailed level, adding constraint information to each
attribute and element of that schema. The length of the lastName character fi eld is lim-
ited to 35 characters in Example 7.36.

186 Chapter 7: Service-Orientation Principles with Java Web-Based Services

<complexType name="Customer">
 <sequence>
 <element name="firstName" type="string"/>
 <element name="lastName">
 <simpleType>
 <restriction base="string">
 <length value="35"/>
 </restriction>
 </simpleType>
 </element>
 <element name="customerNumber" type="string"/>
 </sequence>
</complexType>

Example 7.36
XML schema definition with added constraint inheritance can limit the lastName field to a set number of characters.

The XML schema defi nition in Example 7.36 maps to a Java class, Customer.java, as
seen in Example 7.37. (The generated Javadoc comments are omitted.)

public class Customer {
 @XmlElement(required = true)
 protected String firstName;
 @XmlElement(required = true)
 protected String lastName;
 @XmlElement(required = true)
 protected String customerNumber;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String value) {
 this.firstName = value;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String value) {
 this.lastName = value;
 }
 public String getCustomerNumber() {
 return customerNumber;
 }
 public void setCustomerNumber(String value) {

7.4 Service Abstraction 187

 this.customerNumber = value;
 }
}

Example 7.37
The generated Java type does not include the schema type restriction.

NOTE

The limit on the length of the lastName element was not carried over into
Java because Java has no concept of a fi xed-length string.

On the opposite end of the abstraction spectrum would be a message defi nition stat-
ing that the incoming message is an XML document with a root Customer element. No
information is given about individual attributes or elements contained in the document,
as seen in Example 7.38.

<complexType name="Customer">
 <sequence>
 <any/>
 </sequence>
</complexType>

Example 7.38
An XML schema definition using the <any/> element

The generic type defi nition leads to a generic Java class, as shown in Example 7.39.

public class Customer {
 @XmlAnyElement(lax = true)
 protected Object any;
 public Object getAny() {
 return any;
 }
 public void setAny(Object value) {
 this.any = value;
 }
}

Example 7.39
The <any/> element is mapped to java.lang.Object.

188 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Hiding service details and increasing what is abstracted about a service may always
appear to be a prudent step. However, the service consumer is sometimes not provided
with all of the necessary information on what exactly the service expects and what will
be returned in response. Details of an interaction on both sides are left to be resolved at
design-time or runtime (outside of the service contract).

In Example 7.38, the generic version states that a Customer object contains a java.lang.
Object, which must be defi ned at runtime to allow for processing. Generally, more Java
code must be written for errors that can occur at runtime. For XML payloads, this con-
sideration is equally valid for SOAP and REST services, as the mechanics perform the
same role for both in mapping XML to Java via a binding tool such as JAXB. An abstract
service contract can be appropriate in some instances, such as utility services.

Contextual data can also be hidden, as this type of data is commonly about an interac-
tion which does not contain any business-relevant payload information. When using
SOAP-based Web services, SOAP header fi elds store contextual data, such as unique
message identifi ers, timestamps, and service consumer identity. For greater abstraction,
detailed information about contextual header fi elds can be left out of the service con-
tract altogether. This contextual information can be added or removed depending on
the environment in which a service runs, is not relevant for its business purpose, and
can often be left out of the contract.

For REST services, in the absence of any kind of a payload envelope, contextual infor-
mation must be part of a resource representation. Such resource metadata can still be
packaged inside specially designated header elements. The technical details of a service
that are not part of the service interface, such as a WSDL or service-level information
about response times and availability, can be abstracted. The technical details can be
important to know, but often change and depend on a particular runtime environment
and deployment of a service. For REST services, such service-level agreement character-
istics can be described in a separate document.

Document Constraints

Non-technical information about a service cannot be articulated in a standard format.
A generic example of this is a service-level agreement, but may also include other con-
straints about the usage of a service, valid ranges of input data beyond what can be
expressed in WSDL and XML schema, and any additional applicable documentation.

A service can be implemented and deployed in different ways throughout an enter-
prise. As such, this documentation should not be directly linked with a service. Java, for

7.5 Service Composability 189

example, is well suited for deployment on multiple platforms and operating systems. A
Unix-based environment has different performance, scalability, and availability charac-
teristics than a Windows-based system. Additionally, a Java EE application server can
be leveraged to host the Java logic. A service instance can run on just one server instance
on a small machine. As reuse of the service increases, the service instance can be moved
to a clustered environment with greater computing power.

As per the Dual Protocols pattern, a Web service offered over HTTP can be later exposed
via JMS for additional reliability requirements by particular service consumers. Abstract
service contracts provide the freedom to make changes throughout the lifetime of the
service, without breaking or violating previous versions. REST service implementations
are synonymous with HTTP, making transport mechanism abstraction a non-issue. As
the information about a service grows in abstraction, the service implementation and
service consumer logic must become more fl exible to anticipate future changes.

SUMMARY OF KEY POINTS

• Details about a specifi c technology used to implement and/or host a service
should be abstracted out of a service contract, which is achieved by REST
services over HTTP by default.

• Services can be built in a more abstract fashion by using abstract and
generic message specifi cations and leaving contextual information out of
the service contract altogether.

• Non-technical information about a service often assumes a separate life-
cycle from the service contract and its implementation.

7.5 Service Composability

The composability of a service is an implicit byproduct of the extent to which the other
service-orientation design principles have been successfully applied. The ability to
compose services into new, higher-level services is an inherent, logical consequence
if the other design principles outlined in this chapter are followed. For example, a ser-
vice contract that is standardized allows interaction and composition between services
implemented in different languages using different runtime environments. Decou-
pling a service implementation from its contract allows the same logic to be reused in
other compositions.

190 Chapter 7: Service-Orientation Principles with Java Web-Based Services

With regards to the implications that service composability has for the service contract,
this section highlights some of the issues and requirements for the runtime environ-
ment in which the services run. See Chapter 11 for further exploration of service com-
position with Java.

 Runtime Environment Efficiency

A highly effi cient and robust runtime environment is required for service composi-
tions. The ability for services to participate in multiple compositions places severe chal-
lenges on runtime environments and must be taken into account when designing a
service inventory.

If a service is used by multiple compositions, applying different non-functional charac-
teristics can be necessary. One composition rarely invokes a service with no particular
requirement for fast response times, whereas another composition using the same ser-
vice can require support for high transaction loads with short response times. Similarly,
one composition can require a reliable connection between the composition controller
and its members, whereas another can be tolerant of lost messages. Applying different
QoS defi nitions to the same service, depending on the composition, must be possible
without requiring code changes in the service logic itself.

Java, as a programming language, has no built-in features that help or hinder the run-
time environment. In most cases, Java-based services are hosted in a Java EE-compliant
application server or an alleged Web server environment, which is Java SE-compliant.
In either case, the runtime environments provide advantages over other traditional
server platforms in terms of composability.

NOTE

Depending on how a given service or service consumer participates in a
service composition at runtime, it may assume one or more roles during
the service composition’s lifespan. For example, when a service is being
composed, it acts as a composition member. When a service composes
other services, it acts as a composition controller. To learn more about
these roles, visit www.serviceorientation.com or read Chapter 13 of SOA
Principles of Service Design.

http://www.serviceorientation.com

7.5 Service Composability 191

Java EE defi nes the management of solution logic according to the roles people perform,
such as component provider, deployer, and assembler. As a result, much of the informa-
tion on the execution of solution logic at runtime is not hardcoded into the logic itself
but is instead stored in declarative confi guration fi les, called deployment descriptors.
The same piece of Java code can be used differently with different deployment descrip-
tors and changed at runtime without requiring recompilation of the code. Despite being
undefi ned by the Java EE standard, most Java EE application servers support defi n-
ing individual server instances with specifi c runtime defi nitions. One instance usu-
ally runs in one process with its own confi guration for elements like thread pools or
memory heap sizes. In many cases, instances can be clustered to provide one logical
application server across multiple physical processes or machines.

Separating runtime information about a component from its actual logic is possible
because the Java EE application server runs as a container. This means that all incoming
and outgoing data is intercepted and processed by the application server based on the
current confi guration. For example, if a certain piece of Java logic can only run within
the scope of a transaction, the container can be confi gured to ensure a transaction is
present whenever this piece of logic is invoked.

The same approaches to the runtime environment apply to Web services on two levels:

 1. The runtime environment that processes an incoming message, such as a SOAP or
REST request message, can perform several tasks before forwarding the request
to the actual service. These tasks include the ability to decrypt data sent in an
encrypted form, establish handshaking between service consumer and service by
returning acknowledgement that the message has been received, interpret infor-
mation in the request message header indicating that the invocation of the service
must be part of a distributed transaction, and convert incoming XML data into
Java objects.

 2. For SOAP-based Web services, JAX-RPC and JAX-WS provide a mechanism and
an API that allow the insertion of custom logic to parse, interpret, or change
incoming and outgoing messages. The custom logic runs inside a handler. For
JAX-RS-based implementations of REST services, such interception logic can be
implemented by developers in special entity handlers known as entity provid-
ers. The JAX-RS 2.0 release provides added fi lters and interceptors otherwise not
included in previous versions.

Both approaches are similar regardless of the Web services used. One is controlled by the
user of the system, whereas the other is implicitly included with the runtime. Reading

192 Chapter 7: Service-Orientation Principles with Java Web-Based Services

and manipulating incoming and outgoing messages separate from the service logic is
crucial to supporting the Service Composability principle. Composing hosted services,
including both composition members and composition controllers, is supported by the
concept of containers and deployment descriptors and enhanced by SOAP-based Web
services, such as handlers.

Ultimately, implementing a highly effi cient runtime allows the developer to focus on
the business logic of the actual service implementation, leaving everything else to the
underlying Java platform. More advanced technologies, such as the SCA, expand on this
concept by separating core business logic implementation further away from aspects of
a service component, such as the protocol bindings used to interact with service con-
sumers and other services used to fulfi ll functionality.

Service Contract Flexibility

Service contracts can be designed to increase the ability of a service for multiple compo-
sitions. Generally, multiple compositions are only applicable to the composition mem-
bers for increasing the reusability of a service in different business contexts or business
tasks. A service contract can be rewritten to enable reuse of a service without changing
the core functionality of the service.

To write a fl exible service contract that is reusable, recall the following approaches:

 • Use generic data types or supertypes instead of concrete subtypes. If an enter-
prise deals with both commercial customers (CommercialCustomer) and personal
customers (PersonalCustomer), evaluate whether a common supertype can be
established for both (Customer) to be used in the service contract. JAXB supports
polymorphism to ensure that the appropriate Java object is created when a mes-
sage containing a subtype is received.

 • Decouple the service contract from its underlying runtime platform by hiding
details about QoS characteristics, which can change over time and will vary
depending on service consumer requirements and how a service is deployed.

 • Decouple the service implementation from its contract by utilizing generic APIs,
such as the JAX-WS Provider API for SOAP-based Web services. For REST ser-
vices, deal with generic Java types in resource methods, such as String, byte[],
and InputStream. Note that generated generic service consumer or service logic
results in additional code that must be developed and tested.

7.5 Service Composability 193

Standards-Based Runtime

Composition members and controllers benefi t from a runtime environment that sup-
ports a wide range of accepted standards. Composing services means the services inter-
act and interoperate. Interoperability of services is supported by a runtime environment
upheld by relevant standards, such as the WS-I. Java’s APIs for SOAP-based Web ser-
vices, JAX-RPC and JAX-WS, require support for the WS-I Basic Profi le, which allow
services to be designed with a high degree of interoperability. REST services achieve
full interoperability inherently through HTTP.

Advanced standards relevant in a composition of services include the WS-Security stan-
dards for which a WS-I profi le also exists, the WS-Transaction and related standards,
WS-Addressing, and WS-ReliableMessaging, which supports the reliable exchange of
messages between services. These advanced standards are combined in another WS-I
profi le known as the Reliable Secure profi le.

SUMMARY OF KEY POINTS

• Composability is supported in utilizing a runtime environment that allows
hosting both composition members and composition controllers efficiently
and fl exibly, such as Java EE-compliant application servers.

• Creating fl exible service contracts can facilitate the use of services as com-
position members.

• Platforms that support accepted and established standards can be utilized
to improve service interoperability and composability.

194 Chapter 7: Service-Orientation Principles with Java Web-Based Services

7.6 Service Autonomy

Service-orientation revolves around building fl exible systems. Flexibility is, to a large
degree, achieved through making services decoupled and autonomous to enable them
to be composed, aggregated, and changed without affecting other parts of the system.
For a service to be autonomous, the service must be as independent as possible from
other services with which it interacts, both functionally and from a runtime environ-
ment perspective. Java and Java EE provide a highly effi cient runtime environment
that supports service composition. For example, a Java EE application server supports
concurrent access to its hosted components, making each access to such a component
autonomous from the others.

Well-Defi ned Functional Boundary

Occasionally, the functional boundary is defi ned by a certain business domain that a
service lives within, as is the case if a service implements a particular business process
or task within that domain. Alternatively, the functional boundary of a service can be
described by the type of data the service operates on, such as entity services.

Translating this requirement into Java and XML schema utilizes namespaces and Java
packages as structuring elements. Checking the list of imported classes and packages
for a particular service implementation will help identify dependencies throughout the
system and provide an indication of whether the functional boundary of the service is
maintained in its implementation.

For example, an entity service called Customer delivers customer data retrieved from a
variety of data sources for reuse across many business processes. The service is defi ned
in the http://entity.services.acme.com/Customer namespace and uses com.
acme.services.entity as the Java package for its implementation. The Customer ser-
vice imports a package called com.acme.services.accounting, which immediately
identifi es that the Java service implementation contains a potentially undesired depen-
dency on a business domain-specifi c piece of code. This warrants further investigation
of the underlying logic and removal of the dependency.

The Customer service has a well-defi ned functional boundary in delivering rele-
vant customer data to its service consumer. However, a dependency on logic specifi c
to the Accounting service business domain naturally reduces the autonomy of the
Customer service.

7.6 Service Autonomy 195

Runtime Environment Control

The underlying runtime infl uences the degree of autonomy a service can achieve. For
each service to have control over its runtime environment, the environment must be
partitioned to allocate dedicated resources accordingly. The JVM offers all internal
code a degree of autonomy by isolating the executed code from the operating sys-
tem and providing controlled access to physical resources, such as fi les or communi-
cation ports. Java EE application servers leverage the concept of a container in which
components run.

For SOAP-based Web services, runtime control in Java can be achieved (while maintain-
ing a high degree of autonomy) by exposing plain JavaBeans as Web services or utiliz-
ing Stateless Session EJBs. The service implementation and all other relevant artifacts,
such as WSDL fi les, are packaged in a module, such as a JAR or WAR fi le, which can
then be installed on an application server independent of other code running on that
server.

The same is true for non-Web services or services implemented as regular EJBs. The
components related to the service have individual private deployment descriptors that
can be confi gured on the application server as independent entities.

Java EE allows for the packaging of multiple modules and multiple services in one Enter-
prise ARchive fi le. This EAR fi le is deployed and installed on the application server as
an independent enterprise application. To increase a service’s autonomy, use of only one
service packaged per EAR fi le is recommended. This allows each service to be treated as
a completely independent unit to confi gure, start, stop, or replace without affecting any
other services running on the same system.

To decrease the number of moving parts in the environment, however, multiple services
can be packaged into one enterprise application. Co-locating services is suitable when
the services interact frequently with each other in a performance-critical manner.

In JAX-RS, POJOs are more commonly used to model Web resources, although stateless
and single session beans can be designated as root resource classes. The JAX-RS run-
time packages the resource artifacts into a WAR or EAR fi le which can be deployed as
a standalone module in an application server. Some JAX-RS implementations support
embeddable containers, in which a JAX-RS runtime is bootstrapped from inside a driver
program for testing purposes.

196 Chapter 7: Service-Orientation Principles with Java Web-Based Services

High Concurrency

Developing services for reuse across multiple service consumers is a benefi t of
implementing service-oriented design. The considerations presented in the
Agnostic Functional Contexts and Concurrent Access to Service Logic sections help illustrate
the benefi ts of providing each service consumer exclusive access to a certain instance of
the service implementation, which is true regardless of whether the service implemen-
tation is located in a JavaBean or is a stateless session EJB.

For REST services, the default lifecycle of root resource classes is per-request. A new
instance of a root resource class is created every time the request URL path matches the
@Path annotation of the root resource. With this model, resource class fi elds can be uti-
lized without concern for multiple concurrent requests to the same resource. However,
a resource class can also be annotated with the javax.inject.Singleton annotation,
creating only one instance per Web application. Using the default lifecycle model for
resources is recommended, unless compelling reasons arise to do otherwise.

In general, each Java component that implements a service is accessible concurrently by
defi nition via the application server. However, installing the same service separately on
different machines is also acceptable. The ultimate autonomy of a service is achieved
if one instance of a service, running in its own process and controlling all of its under-
lying resources, serves only one specifi c service consumer. While ineffi cient from a
resource utilization and maintenance perspective, requirements can dictate a service as
part of a mission-critical business process which requires high performance and high
transaction loads that force a dedicated instance of the service to be deployed for that
specifi c purpose.

NOTE

Establishing environments that support high levels of concurrent access
introduces scalability considerations that some IT enterprises may not be
equipped to handle, relational directly to the amount of service composi-
tions a given service participates in and the amount of access within each
composition the service is subjected to.

Cloud computing platforms provide infrastructure with IT resources that
can dramatically improve the extent to which the Service Autonomy princi-
ple can be applied to a service implementation, by reducing or eliminating
the need for the service implementation to share or compete for resources
within the enterprise boundary. For more information about scalability and
elasticity as part of cloud computing environments, see the series title
Cloud Computing: Concepts, Technology & Architecture.

7.7 Service Statelessness 197

SUMMARY OF KEY POINTS

• A well-defi ned functional boundary of a service, refl ected in its contract,
ensures a high degree of autonomy. However, this boundary must also be
maintained in the service implementation by avoiding any dependencies on
other services outside of that functional boundary.

• A service can increase autonomy by having complete control over its run-
time. Java and Java EE support control over the runtime with the concept of
containers, which depict virtual runtime boundaries that can be controlled
individually and independently.

• Despite being accessed concurrently by multiple service consumers, ser-
vices running in a Java application server can run autonomously on behalf
of each service consumer. The JAX-WS and JAX-RS programming models
automatically ensure that a new thread is started for each new
service request.

• Highly critical services can have total autonomy by being deployed on a
server for exclusive access by one particular service consumer.

 7.7 Service Statelessness

Each invocation of a service operation is completely independent from any other invo-
cation, whether by the same service consumer or any other service consumer. The Ser-
vice Statelessness principle offers various benefi ts centered around improved scalability
by which additional stateless service instances can be easily provisioned on available
environments. With the advent of cloud computing, on-demand scaling out of services
is considered as a natural evolutionary step for stateless services.

Many real-life business scenarios can be expressed as business processes that include
automated steps, which can require manual intervention. Designing and implementing
such a process requires some state to be maintained for the duration of the process. Execut-
ing an instance of the process defi nition forms the notion of a session or transaction across
multiple service invocations. Therefore, a service implementing the execution of a busi-
ness process cannot be stateless and may need to even maintain context information over
extended periods.

198 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Orchestration Infrastructure

An orchestration infrastructure, such as a WS-BPEL execution environment, will sup-
port state maintenance either by storing state in the local stack of the thread executing
the process or in a permanent relational data store. A permanent relational data store
ensures that a process instance can be continued after a system crash or other interrup-
tion. This style of statefulness is built into WS-BPEL and its execution environment, so
there is little to be aware of when designing such a service. Designing a service that
aggregates other service invocations in its implementation without utilizing WS-BPEL
will require the developer to decide whether to store temporary data in a relational data
store for later recovery in case of failure.

Session State

Another aspect of achieving service statelessness occurs when a service must establish
some form of session with a service consumer, such as when the state is not kept in the
calling logic but in the called service itself. Compare this to the shopping cart scenario
in which a service consumer uses a service repeatedly to collect a set of data, which is
then committed all in one fi nal step. Java Servlets, which at the core also offer a stateless
programming model, leverage the HTTPSession information and the concept of cookies
to enable data to be stored on behalf of a certain client.

For REST services, using cookies as handles to store client state violates the stateless
constraint of a REST-style architecture. Any maintenance of server-side session state is
not recommended, and REST limits application state to be held on the client and not on
the server.

Using cookies breaks the statelessness model as the server is expected to maintain a
reference to a session and use the information in the incoming cookie for discovery.
Each invocation is expected to carry the complete contextual information without any
references to any previous interaction, promoting scalability where any available ser-
vice instance can process this request. For idempotent requests, the failed request can be
redirected to another functioning stateless service. Note that the convenience of server-
side session maintenance and the associated personalization benefi ts are sacrifi ced for
superior scalability and optimum resource usage.

REST services can read or write state information for various domain entities from or
to databases or other persistent stores, but storing client state violates the statelessness
constraint with implications for scalability and resilience. SOAP-based Web services

7.7 Service Statelessness 199

have no such constraints and the servlet model is leveraged by JAX-WS to handle
stateful interactions.

Storing State

Two methods are available for clients to store state as part of a repeated interaction with
a servlet. The fi rst allows the data to be sent back and forth with each request, and the
amount of data grows with each invocation. The second method enables the servlet to
maintain the state, and the servlet sends back a key to this data (the cookie). The client
sends the same key along for a subsequent request, which allows the servlet to retrieve
the appropriate state for this particular client. The interface used to store the data is
called javax.servlet.http.HTTPSession.

The behavior described in maintaining a key is a well-defi ned part of the standard serv-
let programming model, and APIs are available to enable its use. The javax.servlet.
http.HTTPSession interface offers methods for storing simple key-value pairs. JAX-WS
describes a mechanism to pass a reference of the HTTPSession instance into the service
implementation class.

A Web service implementation can be made stateful by leveraging HTTP sessions and
the JAX-WS support for the sessions. This requires that the service consumer receives
and reuses the cookie sent back with the response to the original HTTP POST request.

CASE STUDY EXAMPLE

Several of NovoBank’s business processes require that certain forms and brochures
be mailed to customers. The need for mailing each form is established in a sepa-
rate part of the process, but in each case, the same back-end system is called via a
Web service interface offering an addOrderForm operation. To reduce mailing costs,
the design team makes the service establish a session with each process instance
so that all orders can be bundled together. This requires the service to keep track
of all forms requested. All orders are confi rmed at once with the invocation of the
confirm operation.

Example 7.40 shows an excerpt of the WSDL defi nition for the Order Form service.

200 Chapter 7: Service-Orientation Principles with Java Web-Based Services

<definitions targetNamespace="http://utility.services.novobank.com/"
 name="OrderFormService"
 xmlns:tns= "http://utility.services.novobank.com/"
 xmlns:xsd= "http://www.w3.org/2001/XMLSchema"
 xmlns:soap= "http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns= "http://schemas.xmlsoap.org/wsdl/">
 ...
 <xs:element name="addOrderForm" type="ns1:addOrderForm"
 xmlns:ns1="http://utility.services.novobank.com/"/>
 <xs:complexType name="addOrderForm">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="addOrderFormResponse" type="ns2:
 addOrderFormResponse" xmlns:ns2="http://utility.services.
 novobank.com/"/>

 <xs:complexType name="addOrderFormResponse"/>
 <xs:element name="confirm" type="ns3:confirm" xmlns:ns3= "http://
 utility.services.novobank.com/"/>

 <xs:complexType name="confirm">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 ...
 <xs:element name="confirmResponse" type="ns4:confirmResponse"
 xmlns:ns4="http://utility.services.novobank.com/"/>
 <xs:complexType name="confirmResponse"/>
 <portType name="OrderForm">
 <operation name="addOrderForm">
 <input message="tns:addOrderForm"/>
 <output message="tns:addOrderFormResponse"/>
 </operation>
 <operation name="confirm">
 <input message="tns:confirm"/>
 <output message="tns:confirmResponse"/>
 </operation>
 </portType>
</definitions>

Example 7.40
The WSDL definition for the Order Form service

7.7 Service Statelessness 201

Nothing in the contract indicates that the addOrderForm() operation keeps state
from previous invocations by the same client in its HTTPSession, meaning this infor-
mation must be documented elsewhere.

Example 7.41 identifi es the implementation class for the Order Form service with the
addOrderForm() operation in Java.

package com.novobank.services.utility;

import java.util.Vector;
import java.util.Iterator;
import javax.annotation.Resource;
import javax.jws.WebService;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;

@WebService
public class OrderForm {

 @Resource
 private WebServiceContext webServiceContext;

 public void addOrderForm(String formNumber) {
 System.out.println("Form with number "+formNumber+" was
 ordered.");
 HttpSession session = retrieveSession();
 Vector<String> formList = (Vector<String>)session.
 getAttribute("formList");
 if (formList==null) {
 formList = new Vector<String>();
 }
 formList.add(formNumber);
 session.setAttribute("formList", formList);
 }

 private HttpSession retrieveSession() {
 MessageContext messageContext = webServiceContext.
 getMessageContext();
 HttpServletRequest servletRequest =
 (HttpServletRequest)messageContext.get(MessageContext.
 SERVLET_REQUEST);
 return servletRequest.getSession();

202 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 }
...
}

Example 7.41
The implementation class for the Order Form service

Each invocation of the addOrderForm() method retrieves the HTTPSession instance
by using the WebServiceContext attribute injected via the @Resource annota-
tion. This attribute provides access to the MessageContext for the request, which
in turn stores a pointer to the servlet request object. Finally, the servlet request
allows the session to be retrieved. These steps are all encapsulated in the private
retrieveSession() method.

The list of ordered form numbers is stored in a Vector, which is kept in the
HTTPSession under the name formList. Each time the addOrderForm() method is
called, the new form number is added to that Vector.

What is missing from Example 7.41 is the implementation for the confirm() opera-
tion. This is where the accumulated information from previous invocations is used,
as seen in Example 7.42.

public void confirm(String customerNumber) {
 HttpSession session = retrieveSession();
 List<String> formList = (Vector<String>)session.
getAttribute("formList");
 if (formList==null) {
 System.out.println("No orders found.");
 } else {
 System.out.println("Confirming "+formList.size()+" orders.");
 for (String s : formList) {
 System.out.println("Order for Form " + s + ".");
 }
 session.removeAttribute("formList");
 }
}

Example 7.42

Access to the HTTPSession is provided using the same private method called retrie-
veSession() which provides the complete list of ordered forms. Note how the list is
reset by setting the formList attribute in the Vector to null after processing.

7.7 Service Statelessness 203

The service consumer of this Web service must store the cookie returned from the
fi rst invocation to send along with any subsequent invocations, which JAX-WS is
equipped to manage. The NovoBank team decides to provide a sample client along
with their service for service consumer reuse, as shown in Example 7.43.

package com.novobank.services.utility.client;

import java.util.Map;
import javax.xml.ws.BindingProvider;

public class OrderFormClient {

 public static void main(String[] args) {
 OrderForm orderForm =
 new OrderFormService().getOrderFormPort();

 Map<String, Object> requestContext =
 ((BindingProvider)orderForm).getRequestContext();

 requestContext.put(BindingProvider.SESSION_MAINTAIN_PROPERTY,
 true);

 orderForm.addOrderForm("123");
 orderForm.addOrderForm("456");
 orderForm.confirm("any customer");
 }
}

Example 7.43
Sample client code for the Order Form service

Note that the local service proxy is cast to the javax.xml.ws.BindingProvider
interface so that the request context can be retrieved and the SESSION_MAINTAIN_
PROPERTY value can be set to true.

HTTP sessions and JAX-WS are only applicable for services with SOAP/HTTP bindings,
although similar behavior in a service not accessed over HTTP can be created using the
same principles. At invocation by a specifi c service consumer, the service can return a
unique identifi er to the service consumer, such as in the SOAP response header, and
expect that identifi er to be returned with every subsequent request. The service uses the
identifi er as a key into a table where the data is stored.

204 Chapter 7: Service-Orientation Principles with Java Web-Based Services

How the data is physically stored depends on the developer’s requirements. The data
stored on behalf of specifi c service consumers must be recoverable across a server
restart persistently in a relational database, which can be accessed using JDBC or a
similar mechanism.

Note that state as discussed in this section is usually transient and only exists for the
duration of the interaction with the relevant service consumer. Business-relevant data,
which needs to be persisted permanently, would not be stored using the mechanisms
described. Business data should be stored using data access APIs, such as JDBC, or per-
sistence frameworks, such as JPA or Hibernate.

SUMMARY OF KEY POINTS

• Many scenarios require data to be stored beyond a single invocation of a
service in the calling service, such as from either within a WS-BPEL pro-
cess or in the called service. Data is often stored for long durations.

• JAX-WS provides a mechanism to utilize the HTTPSession object to store
temporary state on behalf of a specifi c service consumer.

• Business-relevant data that must be stored permanently should be handled
through entity services that explicitly wrap the handling of such data.

7.8 Service Discoverability

The two primary aspects of the Service Discoverability principle are discovery at design-
time (which promotes service reuse in a newly developed solution), and discovery at
runtime (which involves resolving the appropriate endpoint address for a given service
or retrieving other metadata). Even though the information can be physically stored in
one place, the way in which the information is accessed in each scenario varies.

Design-Time Discoverability

At design-time, it is important for project teams to be able to effective identify the exis-
tence of services that contain logic relevant to the solution they plan to build. This way
they can either discover services that they can reuse or confi rm that new service logic
they plan to build does not already exist. For example, a service is designed to address

7.8 Service Discoverability 205

an Order Management business process for which customer information is required.
The service designer must investigate whether a Customer data type already exists, and
if so, determine whether it meets the requirements for the Order Management Process
service. If the data sent into the newly designed service is missing information, the
designer can also check whether an entity service encapsulating all data access to this
type of data exists. Additional customer information required can be built or retrieved
via a Customer entity service.

During the design of a new service, several types of artifacts must be evaluated for
reuse directly on the new service’s interface and within the service via some kind of
aggregation. This includes non-functional aspects, which may not be expressed in
machine-readable form. Meta information, such as performance and reliability of exist-
ing services, can infl uence whether a service is reusable in a new context.

Code can exist for existing data type defi nitions. JAXB, for example, defi nes a mapping
between XML schema and Java. Java code can be directly generated from a schema
defi nition and reused wherever that particular data type is used.

All of the relevant information must be available to the designer during design-time,
ideally via the development environment directly. This relevant information includes
the artifacts themselves, such as the WSDL, XML schema, and Java source code as well
as relationships and dependencies between them. These dependencies must be docu-
mented thoroughly, as part of the service profi le so that a complete metamodel of the
service exists once the design is complete.

Since the design of a service is manually performed by a service designer, this informa-
tion must be accessible and searchable by humans. How this feature is enabled depends
on the registry type used and the access mechanisms offered, without depending on
the programming language used to implement services or on the runtime platform that
the service will run on. The underlying mechanism should offer a way to control access
to the information and support versioning of artifacts.

Runtime Discoverability

Runtime service discovery refers to the ability of software programs to programmati-
cally search for services using APIs exposed by the service registry. Doing so allows
for the retrieval of the physical location or address of services on the network. Because
services may need to be moved from one machine to another or perhaps redundantly
deployed on multiple machines, it may be advisable for service addresses not to be
hardcoded into the service consumer logic.

206 Chapter 7: Service-Orientation Principles with Java Web-Based Services

For SOAP services using JAX-WS, the location of the target service is included in the
<port> element of the WSDL defi nition by default. In turn, the location of the WSDL
fi le is automatically added to the generated ...Service class and passed to the tool-
ing, or wsimport, that generates the appropriate service consumer artifacts. Pointing
to the local WSDL fi le in the filesystem will result in a service consumer that cannot
be moved to a different environment, because functionality depends on that particular
location for the WSDL fi le and the endpoint address contained by the WSDL fi le.

Using the URL and appending "?wsdl" to the service is a more fl exible approach. For
example, a service can be located at myhost.acme.com:8080/account/account, in
which case the WSDL defi nition can be retrieved via the URL http://myhost.acme.
com:8080/account/account?wsdl. During the installation and deployment of a ser-
vice, the endpoint information in this WSDL fi le is updated to refl ect the real address of
the hosting system.

The address points to a fi xed location for the WSDL fi le despite now residing on the
network, meaning the address of any target services should always be resolved sep-
arately from the generated service consumer code. JAX-WS provides a way to set a
target endpoint address on a proxy instance at runtime that utilizes the javax.xml.
ws.BindingProvider interface. Each proxy implements this interface and allows prop-
erties to be dynamically set on an exchange between a service consumer and service,
with the endpoint address being one of the pre-defi ned properties. The code in Example
7.44 illustrates how a service consumer sets a new endpoint address on a service proxy
before invocation.

String endpointAddress = ...; //retrieve address somehow
OrderForm orderForm =
 new OrderFormService().getOrderFormPort();
 java.util.Map<String, Object> requestContext = (javax.xml.
 ws.BindingProvider)orderForm).getRequestContext();
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpointAddress);
orderForm.addOrderForm("123");

Example 7.44

The WSDL location can alternatively be set for a service at runtime instead of the end-
point address, to maintain the address of the service together with the rest of the service
contract in its WSDL fi le and not in multiple locations, as shown in Example 7.45.

7.8 Service Discoverability 207

URL wsdlLocation = ...; //retrieve WSDL location
OrderFormService orderFormService =
 new OrderFormService(wsdlLocation, new QName("http://utility.
 services.novobank.com/", "OrderFormService"));
OrderForm orderForm = orderFormService.getOrderFormPort();
orderForm.addOrderForm("123");

Example 7.45

In addition to the lookup of a service endpoint address, other artifacts can be used by
service consumers at runtime to identify an appropriate service and build the applicable
request message. The JAX-WS Dispatch API allows a service request to be completely
built at runtime. Theoretically, a service consumer could look up a WSDL defi nition at
runtime, read its portType and XML schema defi nitions, and build the right messages
from scratch. However, building a service request completely at runtime is impractical
in a real-life scenario, as the service will likely perform poorly and require plenty of
tedious coding.

Non-functional characteristics of a service are other examples of information that
a service consumer can discover at runtime. For example, assume that two physical
instances of a service exist on both a slower machine and a faster machine. The service
consumer can retrieve this information and select the appropriate service to be used,
depending on the business context of the call. For instance, a silver customer is routed
to the slower machine, whereas a gold customer is routed to the faster machine. The
service is still implemented in both invocations, as the differentiation in routing is a
non-functional characteristic.

API endpoints are unnecessary in a REST-based system because no RPC-style invo-
cation is involved. Recall that URI-based addressability, like statelessness, is a formal
REST constraint. Resources that offer services are the fundamental entities and must be
discoverable through URIs before clients can invoke operations on them. The hyperme-
dia constraint, if followed accurately, requires only the URI of the root resource to be
provided to the service consumer.

Various operations on the root resource will publish URIs of related resources, which
can then be used by the service consumers to reduce the amount of foreknowledge
required. However, service consumers would still require knowledge of the semantics
associated with the URIs to be able to make meaningful use of them, which makes this
approach impractical in real-life application.

208 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Service Registries

Information can be retrieved by a service consumer at runtime with the service reg-
istry. As the following methods are inapplicable to REST services, the remainder of
this discussion will only apply to SOAP-based Web services. Storing information about
WSDL locations and endpoint addresses in a fi le accessible through a proprietary API
at runtime is a retrieval mechanism appropriate for small environments. However, the
format in which the information is stored, such as XML or a character-delimited format,
must be defi ned, and the location of this fi le must always be maintained throughout the
enterprise for easy accessibility.

Alternatively, storing the information in a relational database allows for remote access
and query using a standard language, such as SQL, although a proprietary relational
model for this information must still be invented. Other options include leveraging the
JNDI or LDAP to serve the same purpose.

In the early days of Web services, a platform-independent standard describing how to
uniformly store, fi nd, and retrieve business and technical information about services
was developed as the UDDI registry, which offers a query and publish interface. As
a Web service, the UDDI registry allows the API to be described by the WSDL so that
any Web service-capable service consumer can access a UDDI registry by generating a
proxy from the standard WSDL. For accessing registries at runtime, many IDEs such as
Eclipse’s Web Tools Platform have built-in support for existing UDDI registries.

NOTE

Discoverability processing can be delegated into the ESB, where tasks
such as service lookup can be handled centrally and uniformly. The ser-
vice lookup logic does not then clutter the service consumer, which can
instead focus on the business purpose.

7.8 Service Discoverability 209

SUMMARY OF KEY POINTS

• For Web services, JAX-WS provides runtime APIs to set the endpoint
address of a target service. UDDI defi nes a standardized way for storing
service meta information, which includes access via a Web service-
based API.

• REST services use embedding-related resource links in resource represen-
tations to leverage the hypermedia constraint and lead the client through a
discovery of networked resources.

blank25.pdf 25 5/4/10 9:31:04 AM

This page intentionally left blank

Index

A

abstraction. See Service Abstraction
design principle

ACC (Applet and Application Client
Container), 42

ACCEPT header, HTT P, 109-110
Agnostic Capability design patt ern, 427
Agnostic Context design patt ern, 428
agnostic functional contexts, 140
agnostic logic, defi ned, 31
Agnostic Sub-Controller design patt ern,

429
annotated SOA Manifesto, 28, 38,

520-532
annotations

defi ned, 54
in JAX-RS standard, 125-129
in JAX-WS standard, 113-115

APIs
Java EE (Java Platform, Enterprise

Edition), 49-59
JPA (Java Persistence API),

53-54
JTA (Java Transactions API),

50-51
Java SE (Java Platform, Standard

Edition), 46-49
JDBC (Java Database

Connectivity), 49
JNDI (Java Naming and

Directory Interface), 48
RMI (Remote Method

Invocation), 46-47
RMI over IIOP, 47-48

Applet and Application Client Container
(ACC), 42

540 Index

bindings, 153
Brokered Authentication design patt ern,

432

C

cacheability, 131
caching, 371-374
Canonical Expression design patt ern,

433
Canonical Protocol design patt ern, 434
Canonical Resources design patt ern, 435
Canonical Schema Bus compound

patt ern, 437
Canonical Schema design patt ern, 436
Canonical Versioning design patt ern,

438
Capability Composition design patt ern,

439
capability granularity, defi ned, 34
Capability Recomposition design

patt ern, 440
capacity, 369
case study examples

NovoBank
background, 13-16
conclusion, 406-407

SmartCredit Co.
background, 16-18
conclusion, 407-408

application programming interfaces. See
APIs

application servers
IBM WebSphere, 75-77

architecture
of entity services, 263-264
Java EE (Java Platform, Enterprise

Edition), 41-44
tiers, 45-46
Java SE (Java Platform, Standard

Edition), 41
messaging

with ESBs, 392-396
without ESBs, 389-391

of utility services, 212-220
asynchronous communications, 135-136
asynchronous invocation, 338-339
Asynchronous Queuing design patt ern,

384, 430
Atomic Service Transaction design

patt ern, 431
availability, 369

B

Big Data Science Certifi ed Professional
(BDSCP), 9

binary data
in REST services, 170-172
in Web services, 165-166

Index 541

Concurrent Contracts design patt ern,
444

CONNECT method, HTT P, 107
Connection API, 279
constraint granularity, defi ned, 34
Content Negotiation design patt ern, 445
contexts and dependency injection,

49-50
Contract Centralization design patt ern,

446
Contract Denormalization design

patt ern, 447
cookies, 198
coupling. See Service Loose Coupling

design principle
CORBA (Common Object Request

Broker Architecture), 47-48
Cross-Domain Utility Layer design

patt ern, 448

D

DAOs (data access objects), 230
data access objects (DAOs), 230
data aggregation, 266-267
Data Confi dentiality design patt ern, 449
Data Format Transformation design

patt ern, 392, 450
data granularity, defi ned, 34
data grids, 371-372

CCP (Cloud Certifi ed Professional), 9
change notifi cations, 268-269
Cloud Certifi ed Professional (CCP), 9
cloud computing, defi ned, 29-30
Cloud Computing: Concepts, Technology

& Architecture, 196
Common Object Request Broker

Architecture (CORBA), 47-48
Commons Logging, 231
Compatible Change design patt ern, 441
Compensating Service Transaction

design patt ern, 442
components

symbols for, 29
composability. See Service

Composability design principle
Composition Autonomy design patt ern,

443
composition controllers, 336
composition initiators, 337
composition sub-controllers, 337
compound patt erns

Canonical Schema Bus, 437
Enterprise Service Bus, 95-96, 461
Federated Endpoint Layer, 466
Offi cial Endpoint, 480
Orchestration, 481
Service Broker, 392, 495
Th ree-Layer Inventory, 512
Uniform Contract, 515

542 Index

Canonical Protocol, 434
Canonical Resources, 435
Canonical Schema, 436
Canonical Versioning, 438
Capability Composition, 439
Capability Recomposition, 440
Compatible Change, 441
Compensating Service Transaction,

442
Composition Autonomy, 443
Concurrent Contracts, 444
Content Negotiation, 445
Contract Centralization, 446
Contract Denormalization, 447
Cross-Domain Utility Layer, 448
Data Confi dentiality, 449
Data Format Transformation, 392,

450
Data Model Transformation, 392,

451
Data Origin Authentication, 452
Decomposed Capability, 453
Decoupled Contract, 454
defi ned, 36-37
Direct Authentication, 455
Distributed Capability, 456
Domain Inventory, 457
Dual Protocols, 458
Endpoint Redirection, 459

Data Model Transformation design
patt ern, 392, 451

Data Origin Authentication design
patt ern, 452

data transfer objects (DTOs), 280
Decomposed Capability design patt ern,

453
Decoupled Contract design patt ern, 454
DELETE method, HTT P, 107
dependency injection, 49-50
deployment

of composed services, 362-368
of Java EE applications, 44-45

deployment descriptor, 44-45
design

of entity services, 270-278
of micro-utility services, 253
of omni utility services, 241
of resource utility services, 249-251
of utility services, 221-225
of wrapper utility services, 258-259

design patt erns
Agnostic Capability, 427
Agnostic Context, 428
Agnostic Sub-Controller, 429
Asynchronous Queuing, 384, 430
Atomic Service Transaction, 431
Brokered Authentication, 432
Canonical Expression, 433

Index 543

Schema Centralization, 493
Service Agent, 494
Service Callback, 496
Service Data Replication, 497
Service Decomposition, 498
Service Encapsulation, 499
Service Façade, 500
Service Grid, 501
Service Instance Routing, 502
Service Layers, 503
Service Messaging, 504
Service Normalization, 505
Service Perimeter Guard, 506
Service Refactoring, 507
State Messaging, 508
State Repository, 374, 509
Stateful Services, 375, 510
Termination Notifi cation, 511
Trusted Subsystem, 513
UI Mediator, 514
Utility Abstraction, 516
Validation Abstraction, 517
Version Identifi cation, 518

design principles
Service Abstraction, 184-185, 336

profi le, 414
Service Autonomy, 194

profi le, 417
Service Composability, 189-190, 336

profi le, 422-423

Enterprise Inventory, 460
Entity Abstraction, 462
Entity Linking, 463
Event-Driven Messaging, 464
Exception Shielding, 465
File Gateway, 467
Functional Decomposition, 468
Idempotent Capability, 469
Intermediate Routing, 392, 470
Inventory Endpoint, 471
Legacy Wrapper, 472
Lightweight Endpoint, 473
Logic Centralization, 474
Message Screening, 475
Messaging Metadata, 476
Metadata Centralization, 477
Multi-Channel Endpoint, 478
Non-Agnostic Context, 479
Partial State Deferral, 482
Partial Validation, 483
Policy Centralization, 484
Process Abstraction, 485
Process Centralization, 486
Protocol Bridging, 392, 487
Proxy Capability, 488
Redundant Implementation, 489
Reliable Messaging, 490
Reusable Contract, 491
Rules Centralization, 492

544 Index

E

EAR (enterprise archive), 44, 239
ebXML (Electronic Business using

XML), 120-121
EJBs (Enterprise JavaBeans), 43, 51-52

entity, 281-282
session, 52-53

Electronic Business using XML
(ebXML), 120-121

encryption, 134
Endpoint Redirection design patt ern,

459
endpoints, composition member, 344
enterprise archive (EAR), 44, 239
Enterprise Inventory design patt ern, 460
Enterprise JavaBeans (EJBs), 43, 51-52

entity, 281
session, 52-53

Enterprise Service Bus (ESB), 95-96, 461
service message processing with,

392-396
service message processing without,

389-391
Entity Abstraction design patt ern, 462
Entity Linking design patt ern, 463
entity services

architecture, 263-264
as Web-based services, 282-283
defi ned, 31

Service Discoverability, 204
profi le, 420-421

Service Loose Coupling, 176-177
profi le, 413

Service Reusability
profi le, 415-416

Service Statelessness, 197
profi le, 418-419

Standardized Service Contract, 34,
151

profi le, 411-412
Direct Authentication design patt ern,

455
disconnected approach (data access),

268
discoverability. See Service

Discoverability design principle
Distributed Capability design patt ern,

456
Document Object Model (DOM), 63
document-style SOAP messaging, 87
DOM (Document Object Model), 63
domain entities

designing, 271-272
message entities versus, 265-266

Domain Inventory design patt ern, 457
DTD (XML), 62
DTOs (data transfer objects), 280
Dual Protocols design patt ern, 458

Index 545

File Gateway design patt ern, 467
functional boundaries, 194
functional context dependencies, 140-

141, 179-180
Functional Decomposition design

patt ern, 468

G

generic entity services, 273-275
generic service contracts, 144-145
generic service logic, 141-144
GET method, HTT P, 107
GlassFish Enterprise Server, 74-75
granularity, defi ned, 34-35

H

handlers, 118-119
HEAD method, HTT P, 107
Hibernate, 231, 302
HTT P

ACCEPT header, 109-110
characteristics, 67
CONNECT method, 107
DELETE method, 107
GET method, 107
HEAD method, 107
methods, 106-108
OPTIONS method, 107

design, 270-278
implementation, 278-282
REST, 291-299
SOAP-based Web, 283-285
testing, 302-303

EntityManager class, 54
error handling, 345
ESB (Enterprise Service Bus), 95-96, 461

service message processing with,
392-396

service message processing without,
389-391

Event-Driven Messaging design patt ern,
464

eventing, defi ned, 240
Exception Shielding design patt ern, 465
explicit headers, 154-157
Extensible Markup Language (XML),

59-61
schema, 61-62

Extensible Stylesheet Language
Transformations (XSLT), 63

F

failure handling, 375-376
Federated Endpoint Layer compound

patt ern, 466
fi gures, 7

546 Index

WS-* standards implementation,
122-124

Java API for RESTful Web Services. See
JAX-RS standard

Java API for XML Binding (JAXB), 64
Java API for XML Processing (JAXP),

63-64
Java API for XML Registries (JAXR),

120-121
Java API for XML Web Services. See

JAX-WS standard
Java API for XML-based RPC (JAX-

RPC) standard, 112, 152-153
Java Archive (JAR), 239
Java Authentication and Authorization

Service (JAAS), 58-59
Java Database Connectivity (JDBC)

API, 49
standard, 278-279

Java Development Kit (JDK), 41
Java EE Connector Architecture (JCA),

51, 231
in Spring framework, 231

Java EE (Java Platform, Enterprise
Edition)

API, 49-59
contexts and dependency

injection, 49-50

POST method, 107
PUT method, 107
response codes, 102-103
TRA CE method, 107

I

IBM WebSphere Application Server,
75-77

IBM WebSphere Application Server
Community Edition, 78

Idempotent Capability design patt ern,
469

implicit headers, 157-159
in-memory data grids, 371-372
Intermediate Routing design patt ern,

392, 470
Inventory Endpoint design patt ern, 471
IT resources, defi ned, 30

J

JAAS (Java Authentication and
Authorization Service), 58-59

JAF (JavaBeans Activation Framework),
165

JAR (Java archive), 239
Java

mapping with WSDL, 152-153
platforms, 40-41

Index 547

JNDI (Java Naming and
Directory Interface), 48

RMI (Remote Method
Invocation), 46-47

RMI over IIOP, 47-48
architecture, 41
defi ned, 40
utility services, 226

Java Transaction Processing, 51
Java Transactions API (JTA), 50-51
Java Virtual Machine (JVM), 41
JavaBeans Activation Framework (JAF),

165
JavaScript Object Notation (JSON), 108

conversion with POJOs, 161-162
JAXB (Java API for XML Binding), 64
JAXP (Java API for XML Processing),

63-64
JAXR (Java API for XML Registries),

120-121
JAX-RPC (Java API for XML-based

RPC) standard, 112, 152-153
JAX-RS (Java API for RESTful Web

Services) standard, 124-136
annotations, 125-129
goals, 125

JAX-WS (Java API for XML Web
Services) standard, 112-121, 153

handlers, 118-119

EJBs (Enterprise JavaBeans),
51-52

JCA (Java EE Connector
Architecture), 51

JMS (Java Message Service),
56-58

JPA (Java Persistence API),
53-54

JTA (Java Transactions API),
50-51

application, 44-45
application server

IBM WebSphere, 75-77
architecture, 41-44

tiers, 45-46
defi ned, 40-41

Java ME (Java Platform, Micro Edition),
defi ned, 40

Java Message Service (JMS), 56-58
characteristics, 67

Java Naming and Directory Interface
(JNDI), 48

Java Persistence API (JPA), 53-54
Java runtime environment (JRE), 41
Java SE (Java Platform, Standard

Edition)
API, 46-49

JDBC (Java Database
Connectivity), 49

548 Index

Log4J, 231
Logic Centralization design patt ern, 474
logical handlers, 118
loose coupling. See Service Loose

Coupling design principle

M

Management of Web Services (MOWS)
specifi cation, 95

Management Using Web Services
(MUWS) specifi cation, 95

MDBs (message-driven beans), 58
MEPs (message exchange patt erns),

337-338
message consumers, 385-386
message entities

designing, 271-272
domain entities versus, 265-266

message exchange patt erns (MEPs),
337-338

message producers, 385-386
Message Screening design patt ern, 475
message-driven beans (MDBs), 58
messages

in service contracts, 69-70
parsing and marshaling, 376-378
processing

with ESBs, 392-396
without ESBs, 389-391

SOAP, 86-87

JCA (Java EE Connector Architecture),
51, 231

JDBC (Java Database Connectivity), 49
API, 49
standard, 278-279

JDK (Java Development Kit), 41
JMS (Java Message Service), 56-58

characteristics, 67
JMX, 230
JNDI (Java Naming and Directory

Interface), 48
JPA (Java Persistence API), 53-54
JRE (Java runtime environment), 41
JSON (JavaScript Object Notation), 108

conversion with POJOs, 161-162
JTA (Java Transactions API), 50-51
JVM (Java Virtual Machine), 41

L

layered SOA model, 27
Legacy Wrapper design patt ern, 472
Lightweight Endpoint design patt ern,

473
link relation, 106
literal, defi ned, 153
literal SOAP messaging, 87
load testing, 370
locking, 280-281

optimistic, 281
pessimistic, 281

Index 549

non-functional requirements (NFR),
defi ned, 213

NovoBank. See case study examples,
NovoBank

O

object-relational mapping, 230
Offi cial Endpoint compound patt ern,

480
omni utility services, 240-247

defi ned, 220
open-source frameworks

REST entity service, 302
utility services and, 229-231

optimistic approach (data access), 268
optimistic locking, 280-281
OPTIONS method, HTT P, 107
Oracle WebLogic Server, 79-80
orchestration, 97-98

coding versus, 340-341
Orchestration compound patt ern, 481
orchestration infrastructure, 198

P

packaging
composed services, 362-368
entity services, 303

messaging
in resource utility services, 248
RPC (remote procedure calls)

versus, 381-386
traditional frameworks, 380-386

Messaging Metadata design patt ern, 476
Metadata Centralization design patt ern,

477
methods, HTT P, 106-108
micro-utility services, 253-256

defi ned, 220
middleware

ESB (Enterprise Service Bus), 95-96
orchestration, 97-98

MOWS (Management of Web Services)
specifi cation, 95

MTOM, 122, 166
Multi-Channel Endpoint design patt ern,

478
MUWS (Management Using Web

Services) specifi cation, 95

N

NFR (non-functional requirements),
defi ned, 213

Non-Agnostic Context design patt ern,
479

non-agnostic logic, defi ned, 31

550 Index

R

recovery from failure, 375-376
Redundant Implementation design

patt ern, 489
registries, 99-100
Reliable Messaging design patt ern, 490
Remote Method Invocation (RMI),

46-47
remote procedure calls (RPC), 87

messaging versus, 381-386
repositories, 99-100
resource representations, 108-109
resource utility services, 247-252

defi ned, 220
resource utilization, 369
response codes (HTT P), 102-103
response time, 368-369
REST, 101-110

caching, 372-374
data mapping with, 159-175
entity service, 291-299
error handling, 345
HTT P methods, 106-108
HTT P response codes, 102-103
resource location, 103-106

Reusable Contract design patt ern, 491
RMI (Remote Method Invocation),

46-47

task services, 334
utility services, 239

parsing messages, 376-378
Partial State Deferral design patt ern, 482
Partial Validation design patt ern, 483
performance

measuring, 368-369
testing, 370
of task services, 315-316

pessimistic locking, 281
Plain Old Java Objects (POJOs), 43

conversion with JSON, 161-162
platforms, 40-41
policies, defi ned, 94
Policy Centralization design patt ern,

484
POST method, HTT P, 107
Prentice Hall Service Technology Series

fr om Th omas Erl, 7-8
Process Abstraction design patt ern, 485
Process Centralization design patt ern,

486
Protocol Bridging design patt ern, 392,

487
protocol handlers, 118
Proxy Capability design patt ern, 488
publish/subscribe model, 56-57
PUT method, HTT P, 107

Index 551

security
in Java EE, 58-59
JAX-RS standard, 132-134

SEI (service endpoint interface), 113
services

defi ned, 29
Java components as, 64-73
local, invocation, 360
message processing

with ESBs, 392-396
without ESBs, 389-391

REST, 101-110
SOAP-based Web, 82-101

middleware, 95-101
Service Abstraction design principle, 25,

184-185, 336
profi le, 414

Service Agent design patt ern, 494
Service Autonomy design principle, 25,

194
profi le, 417

Service Broker compound patt ern, 392,
495

Service Callback design patt ern, 496
service candidates, defi ned, 33
service catalogs, 32-33
Service Component Architecture (SCA),

123-124

RMI over IIOP, 47-48
characteristics, 67

routing messages
with ESBs, 392
without ESBs, 390-391

RPC (remote procedure calls), 87
messaging versus, 381-386

Rules Centralization design patt ern, 492
runtime discoverability, 205-207
runtime environments

control, 195
effi ciency, 190-192
standards-based, 193

S

SAAJ (SOAP with Att achments API for
Java), 115-118

SAX (Simple API for XML), 63
SCA (Service Component Architecture),

123-124
scalability

of REST services, 130-132
of stateful services, 374-375

Schema Centralization design patt ern,
493

schemas (XML), 61-62
type reuse, 353-354

SDO (Service Data Objects)
specifi cation, 123-124

552 Index

Service Composability design principle,
25, 189-190, 336

profi le, 422-423
service composition

with ESBs, 401-402
initiators, 337
members versus controllers, 190, 336
and MEPs (message exchange

patt erns), 337-338
sub-controllers, 337

service consumer coupling, 180-183
service contracts, 68-71

defi ned, 33-34
fl exibility, 192
generic, 144-145
separation from implementation,

177-179
standardized, 71

Service Data Objects (SDO)
specifi cation, 123-124

Service Data Replication design patt ern,
497

Service Decomposition design patt ern,
498

Service Discoverability design principle,
25, 204

profi le, 420-421
Service Encapsulation design patt ern,

499

service endpoint interface (SEI), 113
service endpoint selection with ESBs,

397
Service Façade design patt ern, 500
service granularity, defi ned, 34
Service Grid design patt ern, 501
Service Instance Routing design patt ern,

502
service interface, 222
service inventory, defi ned, 32
service inventory blueprints, 32
Service Layers design patt ern, 503
service level agreements (SLAs), 339-340
Service Loose Coupling design principle,

25, 176-177
profi le, 413

Service Messaging design patt ern, 504
service models, defi ned, 30-31
Service Normalization design patt ern,

505
Service Perimeter Guard design patt ern,

506
service portfolio, defi ned, 32-33
service portfolio management, defi ned,

33
service processing with ESBs, 399-400
service profi les, defi ned, 35-36
Service Refactoring design patt ern, 507
service registries, 99-100, 208

Index 553

SOA Design Patt erns, 4, 38, 426
SOA Governance: Governing Shared

Services On-Premise and in the Cloud,
38

SOA Manifesto, 28, 520-532
SOA Principles of Service Design, 3, 38,

140, 410
SOA with REST: Principles, Patt erns &

Constraints for Building Enterprise
Solutions with REST, 4, 82, 101, 343,
426

SOACP (SOA Certifi ed Professional), 9
soak testing, 370
SOAP (Simple Object Access Protocol)

defi ned, 82
explicit headers, 154-157
implicit headers, 157-159
no headers, 159

SOAP with Att achments API for Java
(SAAJ), 115-118

SOAP with Att achments (SwA), 90-91
SOAP-based Web services, 82-101

binary data in, 165-166
entity services as, 283-285
error handling, 345
Java components versus, 359-360
packaging, 363
task services as, 320
utility services as, 232-236

service repositories, 99-100
Service Reusability design principle, 25

profi le, 415-416
Service Statelessness design principle,

25, 197
profi le, 418-419

service-orientation
defi ned, 24-26, 28
EJBs (Enterprise JavaBeans) and,

55-56
Service-Oriented Architecture: Concepts,

Technology, and Design, 4, 38
service-oriented architecture (SOA),

defi ned, 27-28
service-oriented computing, defi ned,

22-24, 28
session EJBs (Enterprise JavaBeans),

52-53
session state, 198-199

storing, 199-204
Simple API for XML (SAX), 63
Simple Object Access Protocol. See

SOAP
SLAs (service level agreements), 339-340
SmartCredit Co. See case study

examples, SmartCredit Co.
SOA (service-oriented architecture),

defi ned, 27-28
SOA Certifi ed Professional (SOACP), 9

554 Index

design, 308-309
implementation, 316-320
performance, 315-316
testing, 332-334

taxonomy, utility service, 220-221
technology coupling, 382
technology detail abstraction, 185
temporal coupling, 382-383
Termination Notifi cation design patt ern,

511
testing

composed services, 362-368
entity services, 302-303
task services, 332-334
utility services, 238

Th ree-Layer Inventory compound
patt ern, 512

throughput, 369
toolkits, 119-120
TRA CE method, HTT P, 107
transaction

management, 229
recovery mechanism, 375-376
resources, 249
support, 135

transactionality, 122
transformation

with ESBs, 392-396
without ESBs, 391

Trusted Subsystem design patt ern, 513

spatial coupling, 382
Spring framework, 229-231
Spring MVC, 231
Spring-WS framework, 124
Standardized Service Contract design

principle, 25, 34, 151
profi le, 411-412

standards-based runtime environment,
193

State Messaging design patt ern, 508
State Repository design patt ern, 374, 509
stateful services, scalability, 374-375
Stateful Services design patt ern, 375, 510
stateless entity services, 272
statelessness, 131
storing state, 199-204
stress testing, 370
supertypes, 143
SwA (SOAP with Att achments), 90-91
symbols

for components, 29
legend, 7

synchronous invocation, 338-339

T

task services
as REST services, 324
as SOAP-based Web services, 320
defi ned, 31

Index 555

REST, 236-238
taxonomy, 220-221
testing, 238
types of, 240-260

V

Validation Abstraction design patt ern,
517

validation constraint granularity, 34
Version Identifi cation design patt ern,

518

W

WAR (Web archive), 239
WAS (WebSphere Application Server),

75-77
WAS-CE (WebSphere Application

Server Community Edition), 78
Web archive (WAR), 239
Web container (Java EE architecture),

42-43
Web Profi le (Java EE), 43
Web Service Contract Design & Versioning

for SOA, 4, 82
Web services. See SOAP-based Web

services
Web Services Description Language

(WSDL), 83-88

U

UDDI (Universal Description,
Discovery, and Integration), 83

UI Mediator design patt ern, 514
Uniform Contract compound patt ern,

515
uniform contracts, 131
Uniform Resource Identifi ers (URIs), 61
Uniform Resource Locations (URLs),

103-106
Universal Description, Discovery, and

Integration (UDDI), 83
URIs (Uniform Resource Identifi ers) for

namespaces, 61
URLs (Uniform Resource Locations),

REST services, 103-106
UTF-8 encoding, 60
Utility Abstraction design patt ern, 516
utility services

and open-source frameworks,
229-231

architecture, 212-220
as a Web-based service
defi ned, 31
design, 221-225
in Java EE, 227-229
in Java SE, 226
JAX-WS, 234-236
packaging, 239

556 Index

WebSphere Application Server (WAS),
75-77

workload characterization, 370
wrapped document/literal contracts,

153-154
wrapper utility services, 256-260

defi ned, 221
WS-* standards

Java implementation, 122-124
SOAP-based Web services and,

88-95
WS-Addressing standard, 89-90, 122
WS-AtomicTransaction standard, 93,

122
WS-BPEL standard, 97-98, 341
WS-BusinessActivity standard, 93
WS-Coordination standard, 93, 122
WSDL (Web Services Description

Language), 83-88
mapping with Java, 152-153

WSDM (Web Services Distributed
Management) specifi cation, 95

WS-Policy standard, 94-95
WS-ReliableMessaging standard, 91-92,

122, 339
WS-Security standard, 93-94, 122, 134
WS-Transaction standard, 92-93

Web Services Distributed Management
(WSDM) specifi cation, 95

Web services standards. See WS-*
standards

Web sites
www.arcitura.com/notation, 7
www.bigdatascienceschool.com, 9
www.cloudpatt erns.org, 8
www.cloudschool.com, 9
www.serviceorientation.com, 3, 8,

38, 140, 190, 410
www.servicetechbooks.com, 4, 8, 9,

38
www.servicetechmag.com, 8
www.servicetechspecs.com, 3, 8,

100, 110
www.soaglossary.com, 3, 38
www.soa-manifesto.com, 3, 28, 38,

520
www.soa-manifesto.org, 28, 520
www.soapatt erns.org, 3, 8, 426
www.soaprinciples.com, 410
www.soaschool.com, 9
www.whatiscloud.com, 8
www.whatisrest.com, 8, 101

WebLogic Server, 79-80
WebSphere Application Server

Community Edition (WAS-CE), 78

http://www.arcitura.com/notation
http://www.bigdatascienceschool.com
http://www.cloudpatt erns.org
http://www.cloudschool.com
http://www.serviceorientation.com
http://www.servicetechbooks.com
http://www.servicetechmag.com
http://www.servicetechspecs.com
http://www.soaglossary.com
http://www.soa-manifesto.com
http://www.soa-manifesto.org
http://www.soapatt erns.org
http://www.soaprinciples.com
http://www.soaschool.com
http://www.whatiscloud.com
http://www.whatisrest.com

Index 557

X

XML (Extensible Markup Language),
59-61

schema, 61-62
type reuse, 353-354

sending in utility services, 232-234
sending with JAX-WS standard,

234-236
XSLT (Extensible Stylesheet Language

Transformations), 63

	Contents
	Foreword
	CHAPTER 1: Introduction
	1.1 About This Book
	Objectives of This Book
	Who This Book Is For
	What This Book Does Not Cover

	1.2 Prerequisite Reading
	How This Book Is Organized
	Part I: Fundamentals
	Part II: Services
	Part III: Service Composition and Infrastructure
	Part IV: Appendices

	1.3 How Principles and Patterns Are Used in This Book
	1.4 Symbols and Figures
	1.5 Additional Information
	Updates, Errata, and Resources
	Referenced Specifications
	The Service Technology Magazine
	Service-Orientation
	What Is REST?
	What Is Cloud?
	SOA and Cloud Computing Design Patterns
	SOA Certified (SOACP) Professional
	Cloud Certified Professional (CCP)
	Big Data Science Certified Professional (BDSCP)
	Notification Service

	CHAPTER 7: Service-Orientation Principles with Java Web-Based Services
	7.1 Service Reusability
	7.2 Standardized Service Contract
	7.3 Service Loose Coupling
	7.4 Service Abstraction
	7.5 Service Composability
	7.6 Service Autonomy
	7.7 Service Statelessness
	7.8 Service Discoverability

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

