
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133846973
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133846973
https://plusone.google.com/share?url=http://www.informit.com/title/9780133846973
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133846973
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133846973/Free-Sample-Chapter

Effective Ruby

The Effective Software Development Series provides expert advice on all aspects of
modern software development. Titles in the series are well written, technically sound,

and of lasting value. Each describes the critical things experts always do — or always
avoid — to produce outstanding software.

Scott Meyers, author of the best-selling books Effective C++ (now in its third edition),
More Effective C++, and Effective STL (all available in both print and electronic versions),
conceived of the series and acts as its consulting editor. Authors in the series work with
Meyers to create essential reading in a format that is familiar and accessible for software
developers of every stripe.

Visit informit.com/esds for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Effective Software
Development Series

Scott Meyers, Consulting Editor

Effective Ruby
48 Specific Ways to Write Better Ruby

Peter J. Jones

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Editor-in-Chief
Mark L. Taub

Senior Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Copy Editor
Christina Edwards

Indexer
Jack Lewis

Proofreader
Andrea Fox

Technical Reviewers
Bruce Williams
Bobby Wilson

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
LaurelTech

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Jones, Peter J., author.

Effective Ruby : 48 specific ways to write better Ruby / Peter J. Jones.
Pages  cm

Includes index.
ISBN 978-0-13-384697-3 (pbk. : alk. paper)
1. Ruby (Computer program language) 2. Object-oriented programming
(Computer science) I. Title.
QA76.73.R83J66 2015
005.13'3—dc23

  2014026572

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-13-384697-3
ISBN-10: 0-13-384697-0
Text printed in the United States on recycled paper at RR Donnelley, Crawfordsville,
Indiana.
First printing, September 2014

For Shanna, the reason my life has balance and purpose.

This page intentionally left blank

Contents

Foreword	 xi

Preface	 xiii

Acknowledgments	 xvii

About the Author	 xix

Chapter 1: Accustoming Yourself to Ruby	 1
Item	 1:	 Understand What Ruby Considers to Be True	 1

Item	 2:	 Treat All Objects as If They Could Be nil	 3

Item	 3:	 Avoid Ruby’s Cryptic Perlisms	 6

Item	 4:	 Be Aware That Constants Are Mutable	 9

Item	 5:	 Pay Attention to Run-Time Warnings	 12

Chapter 2: Classes, Objects, and Modules	 17
Item	 6:	� Know How Ruby Builds Inheritance Hierarchies	 17

Item	 7:	 Be Aware of the Different Behaviors of super	 24

Item	 8:	 Invoke super When Initializing Subclasses	 28

Item	 9:	 Be Alert for Ruby’s Most Vexing Parse	 31

Item	10:	 Prefer Struct to Hash for Structured Data	 35

Item	11:	� Create Namespaces by Nesting Code in Modules	 38

Item	12:	� Understand the Different Flavors of Equality	 43

Item	13:	� Implement Comparison via “<=>” and the
Comparable Module� 49

Item	14:	� Share Private State through Protected Methods	 53

Item	15:	� Prefer Class Instance Variables to Class Variables	 55

viii	 Contents

Chapter 3: Collections	 59
Item	16:	� Duplicate Collections Passed as Arguments

before Mutating Them� 59

Item	 17:	� Use the Array Method to Convert nil and
Scalar Objects into Arrays� 63

Item	18:	� Consider Set for Efficient Element Inclusion
Checking� 66

Item	19:	� Know How to Fold Collections with reduce	 70

Item	20:	 Consider Using a Default Hash Value	 74

Item	21:	� Prefer Delegation to Inheriting from Collection
Classes� 79

Chapter 4: Exceptions	 85
Item	22:	� Prefer Custom Exceptions to Raising Strings	 85

Item	23:	 Rescue the Most Specific Exception Possible	 90

Item	24:	 Manage Resources with Blocks and ensure	 94

Item	25:	 Exit ensure Clauses by Flowing Off the End	 97

Item	26:	� Bound retry Attempts, Vary Their Frequency,
and Keep an Audit Trail� 100

Item	27:	� Prefer throw to raise for Jumping Out of Scope	 104

Chapter 5: Metaprogramming	 107
Item	28:	� Familiarize Yourself with Module and Class Hooks	 107

Item	29:	 Invoke super from within Class Hooks	 114

Item	30:	 Prefer define_method to method_missing	 115

Item	31:	� Know the Difference between the Variants of eval� 122

Item	32:	 Consider Alternatives to Monkey Patching� 127

Item	33:	� Invoke Modified Methods with Alias Chaining	 133

Item	34:	� Consider Supporting Differences in Proc Arity	 136

Item	35:	� Think Carefully Before Using Module Prepending 	 141

Chapter 6: Testing	 145
Item	36:	� Familiarize Yourself with MiniTest Unit Testing	 145

Item	37:	� Familiarize Yourself with MiniTest Spec Testing	 149

Item	38:	 Simulate Determinism with Mock Objects	 152

Item	39:	 Strive for Effectively Tested Code	 156

	 Contents	 ix

Chapter 7: Tools and Libraries	 163
Item	40:	� Know How to Work with Ruby Documentation	 163

Item	41:	� Be Aware of IRB’s Advanced Features	 166

Item	42:	 Manage Gem Dependencies with Bundler	 170

Item	43:	 Specify an Upper Bound for Gem Dependencies	 175

Chapter 8:  �Memory Management and
Performance	 179

Item	44:	� Familiarize Yourself with Ruby’s Garbage Collector	 179

Item	45:	� Create Resource Safety Nets with Finalizers	 185

Item	46:	 Be Aware of Ruby Profiling Tools	 189

Item	47:	 Avoid Object Literals in Loops	 195

Item	48:	� Consider Memoizing Expensive Computations	 197

Epilogue	 201

Index	 203

This page intentionally left blank

	

Foreword

When I was asked to do a technical review and write the foreword for
a book on Ruby, I was skeptical. Several Ruby books already exist
that run the gamut from beginner to advanced Ruby VM internals. I
thought, “What could another Ruby book offer?” But I agreed to look
over the text, and to my surprise a great and novel book about Ruby
was laid out before my eyes. This book is quite unlike any other Ruby
book, and in a couple hundred pages, I imagine anyone who reads
this—novice or expert—will emerge a better Ruby programmer.

Ruby as a language has matured a lot in the past decade, when I
got started with it. Early on, there was the hype phase, when Ruby
was touted as the end-all and be-all of languages. Then emerged the
proliferation of libraries, when it felt like libraries were being aban-
doned and re-created daily, and none could be trusted to remain up
to date. Then other “new hotness” languages started emerging, and
Ruby went through a phase of being seen as the language of yester-
year. But now, finally, Ruby is seen as a practical, effective language
for solving many problems, although it understandably won’t solve all
of them. (You’re not going to be writing the next big operating system
in Ruby.)

Instead of being a book that covers basic syntax or advanced prac-
tices, this book masterfully walks the line of introducing real-world
best practices for writing Ruby applications that won’t crash, will
be maintainable, and will be fast. It is a book that every Ruby pro-
grammer should read. Beginners should learn best practices to
better understand the language, and experienced developers should
double-check their own practices and maybe learn a couple of new
ones as well.

The book is written in my favorite way: lots of examples, and the
examples don’t just explain “What?” and “How?”, but also “Why?”
Although these are best practices curated from the Ruby community

xii	 Foreword

over years of maturation, it is important to always remain skeptical,
ask questions, and perhaps find new best practices that improve on
the old.

With that, I wish you a fun journey through this book, and fully
expect you to grow as a Ruby programmer in just a couple hundred
pages.

—Mitchell Hashimoto, founder and CEO of HashiCorp, creator of Vagrant

Preface

Learning a new programming language usually happens in two
phases. During the first phase you spend time learning the syntax
and structure of the language. This phase is often short when you
have previous experience learning new programming languages.
In the case of Ruby, the syntax is very familiar to those who have
experience with other object-oriented languages. The structure of the
language—how you build programs out of the syntax—should also be
very familiar to experienced programmers.

The second phase, on the other hand, can take a bit more work. This
is when you dig deeper into the language and learn its idioms. Most
languages have a unique way of solving common problems, and Ruby
is no different. For example, Ruby uses blocks along with the iterator
pattern instead of explicit looping. Learning how to solve problems
“the Ruby way” while avoiding any sharp edges is what this phase is
all about.

And that’s what this book is all about, too. But it’s not an introduc-
tory book. I assume you’ve already completed the first phase of learn-
ing Ruby—that is, learning its syntax and structure. My goal with
this book is to take you deeper into Ruby. I want to show you how
to get the most out of the language and how to write effective code
that is more reliable and easier to maintain. Along the way we’ll also
explore how parts of the Ruby interpreter work internally, knowledge
that will allow you to write more efficient programs.

Ruby Implementations and Versions

As you know, Ruby has a very active community of contributors.
They work on all sorts of projects, including different implementa-
tions of the Ruby interpreter. Besides the official Ruby implementa-
tion (colloquially known as MRI), there are several others to choose
from. Need to deploy your Ruby application to production servers that

xiv	 Preface

are already configured for running Java applications? No problem,
that’s what JRuby is for. How about the opposite end of the spectrum,
Ruby applications targeting smartphones and tablets? There’s a Ruby
implementation for that, too.

Having several Ruby implementations to choose from is a good sign
that Ruby is alive and well. Obviously, each of them has a unique,
internal implementation. But from the perspective of a programmer
writing Ruby code, the various interpreters behave closely enough to
MRI that you won’t have to worry much.

The vast majority of this book applies equally to all of the various Ruby
implementations. The only exceptions are the items that describe
Ruby internal details such as how the garbage collector works. In
those cases, I will narrow my focus to the official Ruby implemen-
tation, MRI. You’ll know when we’re talking about MRI specifically
when I mention specific Ruby versions in the text.

Speaking of specific versions, all of the code in this book has been
tested with Ruby 1.9.3 and later. At the time of writing, Ruby 2.1 was
the most recent version, with 2.2 just around the corner. When I don’t
mention a specific version of Ruby in the text, the example code will
work on all supported versions.

A Note about Style

Ruby programmers have, for the most part, converged on a single
way of formatting their Ruby code. There are even a handful of Ruby-
Gems that can inspect your code and scold you when it isn’t format-
ted according to a set of predetermined styling rules. I bring this up
because the style I’ve chosen for the example code in this book devi-
ates slightly from what might be considered normal.

When I call a method and supply arguments to it, I use parenthe-
ses around the arguments, without any space between the opening
parenthesis and the name of the method. Out in the wild, it’s com-
mon to see method calls without parentheses, probably because Ruby
doesn’t require them. But as we’ll see in Chapter 1, omitting paren-
theses in some situations can cause ambiguities in your code, which
in turn forces Ruby to guess what you mean. Because of these ambi-
guities, I think it’s a bad habit to omit parentheses and one the com-
munity needs to wean itself from.

The other reason I use parentheses is to clearly show when an iden-
tifier is a method call versus a keyword. You might be surprised to
learn that things you thought were keywords are actually method
calls (e.g., require). Using parentheses helps illustrate this.

	 Preface	 xv

While we’re on the topic of style, I should mention that throughout
this book, when I mention methods, I use RI notation. If you’re not
familiar with RI notation it’s easy to learn and can be very helpful.
Its primary purpose is to differentiate between class and instance
methods. When referring to class methods I’ll write the name of the
class and the method separated by two colons (“::”). For example,
File::open is the open class method from the File class. Likewise,
instance methods are written with a number sign (“#”) between the
class name and the name of the instance method (e.g., Array#each).
The same is true of module methods (e.g., GC::stat) and module
instance methods (e.g., Enumerable#grep). Item 40 goes into more
detail about RI notation and how to use it to look up method docu-
mentation. But this little primer is enough to get you started.

Where to Get the Source Code

Throughout the book we’ll examine many listings of example source
code. To make it easier to digest, code will often be broken up into
small chunks that we’ll work though one at a time. There are even
times when unimportant details are omitted. Sometimes it’s nice
to see all the code at once, to get the bigger picture, so to speak.
All of the code shown can be found at the website for the book at
http://effectiveruby.com.

http://effectiveruby.com

This page intentionally left blank

Acknowledgments

Writing something that people are willing to spend their time read-
ing, and something worthy of spending their money on, isn’t a solo
endeavor. As a matter of fact, beyond the close group of people who
were directly involved in this book, many others unknowingly contrib-
uted in one way or another. For example, my friend Michael Garriss
had no idea what the consequences of his actions would be when he
sweet-talked me into learning Ruby. He certainly didn’t expect for me
to drag him from company to company, introducing Ruby at each step
of the way. Nevertheless, that’s what happened.

It might be a bit unorthodox (and vague) but I want to thank everyone
who’s ever contributed their time and creativity to the open-source
community. Every single tool I used while writing this book, even
those I created specifically for it, are open-source projects. There’s no
way I could have written this book without being able to review the
source code to the Ruby interpreter and the handful of gems that
are discussed. I spent many hours curled up with code, dissecting,
experimenting, and sometimes crying. The fact that I was able to do
that is wonderful all by itself.

Of course, without the generosity of those who volunteered to work
with me, this book wouldn’t be worthy of your attention. Several people
gave up their free time to review early drafts of the chapters and
provided me with immensely useful feedback. Isaac Foraker, Timothy
Clayton, and my wife, Shanna Jones, spent many hours reading text
and experimenting with code. Thank you so much for your time.

Probably not realizing what they were getting themselves into, Bruce
Williams and Bobby Wilson agreed to be technical reviewers. They
both helped me improve the examples in the book and the explana-
tions that go along with them. They also encouraged me when the
anxiety of having someone else poking around my work was a bit
overwhelming.

xviii	 Acknowledgments

Everyone at Pearson made things as easy for me as they could. Trina
MacDonald, Olivia Basegio, and Songlin Qiu were extremely patient
with me and shaped this book into what it is now. I’ve grown so much
during this project and a large part of that is due to them.

Scott Meyers is a hero of mine and being able to work with him is like
having a dream come true. In the late 1990s I came across Scott’s
book, Effective C++, and it changed the way I approached program-
ming. It also inspired me to teach others the things I have learned.
Sending my work to Scott for review was terrifying, but Scott was
nothing less than encouraging and extremely helpful. Thank you,
Scott.

My wife, Shanna Jones, was a huge source of encouragement and
understanding. Knowing that it would take me away from her, she
pushed me to write this book anyway. Shanna, you’ve taught me more
than you understand. Thank you for always supporting me.

About the Author

Peter J. Jones has been working professionally with Ruby since 2005.
He began programming before he learned how to use a keyboard
properly after stumbling upon a Commodore 64, a few code listings,
and some cassette tapes. Peter is a freelance software engineer and
a senior instructor for programming related workshops taught by
Devalot.com.

This page intentionally left blank

Accustoming
Yourself to

Ruby

With each programming language you learn, it’s important to dig in
and discover its idiosyncrasies. Ruby is no different. While it borrows
heavily from the languages that preceded it, Ruby certainly has its
own way of doing things. And sometimes those ways will surprise you.

We begin our journey through Ruby’s many features by examining
its unique take on common programming ideas. That is, those that
impact every part of your program. With these items mastered, you’ll
be prepared to tackle the chapters that follow.

Item 1: Understand What Ruby Considers to Be True

Every programming language seems to have its own way of dealing
with Boolean values. Some languages only have a single representa-
tion of true or false. Others have a confusing blend of types that are
sometimes true and sometimes false. Failure to understand which
values are true and which are false can lead to bugs in conditional
expressions. For example, how many languages do you know where
the number zero is false? What about those where zero is true?

Ruby has its own way of doing things, Boolean values included.
Thankfully, the rule for figuring out if a value is true or false is pretty
simple. It’s different than other languages, which is the whole reason
this item exists, so make sure you understand what follows. In Ruby,
every value is true except false and nil.

It’s worth taking a moment and thinking about what this means.
While it’s a simple rule, it has some strange consequences when com-
pared with other mainstream languages. In a lot of programming lan-
guages the number zero is false, with all other numbers being true.
Using the rule just given for Ruby, zero is true. That’s probably one
of the biggest gotchas for programmers coming to Ruby from other
languages.

1

2	 Chapter 1  Accustoming Yourself to Ruby

Another trick that Ruby plays on you if you’re coming from another
language is the assumption that true and false are keywords. They’re
not. In fact, they’re best described as global variables that don’t follow
the naming and assignment rules. What I mean by this is that they
don’t begin with a “$” character, like most global variables, and they
can’t be used as the left-hand side of an assignment. But in all other
regards they’re global variables. See for yourself:

irb> true.class
---> TrueClass

irb> false.class
---> FalseClass

As you can see, true and false act like global objects, and like any
object, you can call methods on them. (Ruby also defines TRUE and
FALSE constants that reference these true and false objects.) They also
come from two different classes: TrueClass and FalseClass. Neither of
these classes allows you to create new objects from them; true and
false are all we get. Knowing the rule Ruby uses for conditional
expressions, you can see that the true object only exists for conve-
nience. Since false and nil are the only false values, the true object
is superfluous for representing a true value. Any non-false, non-nil
object can do that for you.

Having two values to represent false and all others to represent true
can sometimes get in your way. One common example is when you
need to differentiate between false and nil. This comes up all the
time in objects that represent configuration information. In those
objects, a false value means that something should be disabled, while
a nil value means an option wasn’t explicitly specified and the default
value should be used instead. The easiest way to tell them apart is by
using the nil? method, which is described further in Item 2. Another
way is by using the “==” operator with false used as the left operand:

if false == x
 ...
end

With some languages there’s a stylistic rule that says you should
always use immutable constants as the left-hand side of an equal-
ity operator. That’s not why I’m recommending false as the left oper-
and to the “==” operator. In this case, it’s important for a functional
reason. Placing false on the left-hand side means that Ruby parses
the expression as a call to the FalseClass#== method (which comes
from the Object class). We can rest safely knowing this method only
returns true if the right operand is also the false object. On the other

	 Item 2: Treat All Objects as If They Could Be nil	 3

hand, using false as the right operand may not work as expected
since other classes can override the Object#== method and loosen the
comparison:

irb> class Bad
 def == (other)
 true
 end
 end

irb> false == Bad.new
---> false
irb> Bad.new == false
---> true

Of course, something like this would be pretty silly. But in my expe-
rience, that means it’s more likely to happen. (By the way, we’ll cover
the “==” operator more in Item 12.)

Things to Remember

✦	Every value is true except false and nil.

✦	Unlike in a lot of languages, the number zero is true in Ruby.

✦	If you need to differentiate between false and nil, either use the
nil? method or use the “==” operator with false as the left operand.

Item 2: Treat All Objects as If They Could Be nil

Every object in a running Ruby program comes from a class that, in
one way or another, inherits from the BasicObject class. Imagining how
all these objects relate to one another should conjure up the familiar
tree diagram with BasicObject at the root. What this means in prac-
tice is that an object of one class can be substituted for an object of
another (thanks to polymorphism). That’s why we can pass an object
that behaves like an array—but is not actually an array—to a method
that expects an Array object. Ruby programmers like to call this “duck
typing.” Instead of requiring that an object be an instance of a specific
class, duck typing shifts the focus to what the object can do; in other
words, interface over type. In Ruby terms, duck typing means you
should prefer using the respond_to? method over the is_a? method.

But in reality, it’s rare to see a method inspect its arguments using
respond_to? to make sure it supports the correct interface. Instead,
we tend to just invoke methods on an object and if the object doesn’t
respond to a particular method, we leave it up to Ruby to raise a

4	 Chapter 1  Accustoming Yourself to Ruby

NoMethodError exception at run time. On the surface, it seems like
this could be a real problem for Ruby programmers. Well, just between
you and me, it is. It’s one of the core reasons testing is so very import-
ant. There’s nothing stopping you from accidentally passing a Time
object to a method expecting a Date object. These are the kinds of
mistakes we have to tease out with good tests. And thanks to testing,
these types of problems can be avoided. But one of these polymorphic
substitutions plagues even well-tested applications:

undefined method 'fubar' for nil:NilClass (NoMethodError)

This is what happens when you call a method on an object and it turns
out to be that pesky nil object…the one and only object from the NilClass
class. Errors like this tend to slip through testing only to show up in
production when a user does something out of the ordinary. Another
situation where this can occur is when a method returns nil and then
that return value gets passed directly into another method as an argu-
ment. There’s a surprisingly large number of ways nil can unexpect-
edly get introduced into your running program. The best defense is to
assume that any object might actually be the nil object. This includes
arguments passed to methods and return values from them.

One of the easiest ways to avoid invoking methods on the nil object
is by using the nil? method. It returns true if the receiver is nil and
false otherwise. Of course, nil objects are always false in a Boolean
context, so the if and unless expressions work as expected. All of the
following lines are equivalent to one another:

person.save if person
person.save if !person.nil?
person.save unless person.nil?

It’s often easier to explicitly convert a variable into the expected type
rather than worry about nil all the time. This is especially true when
a method should produce a result even if some of its inputs are nil.
The Object class defines several conversion methods that can come
in handy in this case. For example, the to_s method converts the
receiver into a string:

irb> 13.to_s
---> "13"

irb> nil.to_s
---> ""

As you can see, NilClass#to_s returns an empty string. What
makes to_s really nice is that String#to_s simply returns self
without performing any conversion or copying. If a variable is
already a string then using to_s will have minimal overhead. But

	 Item 2: Treat All Objects as If They Could Be nil	 5

if nil somehow winds up where a string is expected, to_s can
save the day. As an example, suppose a method expects one of its
arguments to be a string. Using to_s, you can hedge against that
argument being nil:

def fix_title (title)
 title.to_s.capitalize
end

The fun doesn’t stop there. As you’d expect, there’s a matching con-
version method for almost all of the built-in classes. Here are some of
the more useful ones as they apply to nil:

irb> nil.to_a
---> []

irb> nil.to_i
---> 0

irb> nil.to_f
---> 0.0

When multiple values are being considered at the same time,
you can make use of a neat trick from the Array class. The
Array#compact method returns a copy of the receiver with all nil
elements removed. It’s common to use it for constructing a string
out of a set of variables that might be nil. For example, if a per-
son’s name is made up of first, middle, and last components—any
of which might be nil—you can construct a complete full name
with the following code:

name = [first, middle, last].compact.join(" ")

The nil object has a tendency to sneak into your running programs
when you least expect it. Whether it’s from user input, an uncon-
strained database, or methods that return nil to signal failure,
always assume that every variable could be nil.

Things to Remember

✦	Due to the way Ruby’s type system works, any object can be nil.

✦	The nil? method returns true if its receiver is nil and false
otherwise.

✦	When appropriate, use conversion methods such as to_s and to_i
to coerce nil objects into the expected type.

✦	The Array#compact method returns a copy of the receiver with all
nil elements removed.

6	 Chapter 1  Accustoming Yourself to Ruby

Item 3: Avoid Ruby’s Cryptic Perlisms

If you’ve ever used the Perl programming language then you undoubt-
edly recognize its influence on Ruby. The majority of Ruby’s perlisms
have been adopted in such a way that they blend perfectly with the
rest of the ecosystem. But others either stick out like an unnecessary
semicolon or are so obscure that they leave you scratching your head
trying to figure out how a particular piece of code works.

Over the years, as Ruby matured, alternatives to some of the more
cryptic perlisms were added. As more time went on, some of these
holdovers from Perl were deprecated or even completely removed from
Ruby. Yet, a few still remain, and you’re likely to come across them
in the wild. This item can be used as a guide to deciphering those
perlisms while acting as a warning to avoid introducing them into
your own code.

The corner of Ruby where you’re most likely to encounter features bor-
rowed from Perl is a set of cryptic global variables. In fact, Ruby has
some pretty liberal naming rules when it comes to global variables.
Unlike with local variables, instance variables, or even constants,
you’re allowed to use all sorts of characters as variable names. Recall-
ing that global variables begin with a “$” character, consider this:

def extract_error (message)
 if message =~ /^ERROR:\s+(.+)$/
 $1
 else
 "no error"
 end
end

There are two perlisms packed into this code example. The first is the
use of the “=~” operator from the String class. It returns the position
within the string where the right operand (usually a regular expres-
sion) matches, or nil if no match can be found. When the regular
expression matches, several global variables will be set so you can
extract information from the string. In this example, I’m extracting
the contents of the first capture group using the $1 global variable.
And this is where things get a bit weird. That variable might look and
smell like a global variable, but it surely doesn’t act like one.

The variables created by the “=~” operator are called special global vari-
ables. That’s because they’re scoped locally to the current thread and
method. Essentially, they’re local values with global names. Outside of
the extract_error method from the previous example, the $1 “global”
variable is nil, even after using the “=~” operator. In the example,

	 Item 3: Avoid Ruby’s Cryptic Perlisms	 7

returning the value of the $1 variable is just like returning the value of
a local variable. The whole situation can be confusing. The good news
is that it’s completely unnecessary. Consider this alternative:

def extract_error (message)
 if m = message.match(/^ERROR:\s+(.+)$/)
 m[1]
 else
 "no error"
 end
end

Using String#match is much more idiomatic and doesn’t use any of the
special global variables set by the “=~” operator. That’s because the
match method returns a MatchData object (when the regular expression
matches) and it contains all of the same information that was pre-
viously available in those special global variables. In this version of
the extract_error method, you can see that using the index operator
with a value of 1 gives you the same string that $1 would have given
you in the previous example. The bonus feature is that the MatchData
object is a plain old local variable and you get to choose the name of
it. (It’s fairly common to make an assignment inside the conditional
part of an if expression like this. That said, it’s all too easy to use “=”
when you really meant “==”. Watch out for these kinds of mistakes.)

Besides those set by the “=~” operator, there are other global variables
borrowed from Perl. The one you’re most likely to see is $:, which is an
array of strings representing the directories where Ruby will search
for libraries that are loaded with the require method. Instead of using
the $: global variable, you should use its more descriptive alias:
$LOAD_PATH. As a matter of fact, there are more descriptive versions for
all of the other cryptic global variables such as $; and $/. But there’s
a catch. Unlike with $LOAD_PATH, you have to load a library to access
the other global variables’ aliases:

require('English')

Once the English library is loaded, you can replace all those strange
global variables by their longer, more descriptive aliases. For a full
list of these aliases, take a look at the documentation for the English
module.

There’s one last perlism you should be aware of. Not surprisingly, it
also has something to do with a global variable. Consider this:

while readline
 print if ~ /^ERROR:/
end

8	 Chapter 1  Accustoming Yourself to Ruby

If you think this code is a bit obfuscated, then congratulations,
you’re in good company. You might be wondering what the print
method is actually printing and what that regular expression is
matching against. It just so happens that all of the methods in this
example are working with a global variable—the $_ variable to be
more precise.

So, what’s going on here? It all starts with the readline method. More
specifically, it’s the Kernel#readline method. (In Item 6, we’ll dig more
into how Ruby determines that, in this context, readline comes from
the Kernel module.) This version of readline is a little different from
its counterpart in the IO class. You can probably gather that it reads
a line from standard input and returns it. The subtle part is that it
also stores that line of input in the $_ variable. (Kernel#gets does the
same thing but doesn’t raise an exception when the end-of-file marker
is reached.) In a similar fashion, if Kernel#print is called without any
arguments, it will print the contents of the $_ variable to standard
output.

You can probably guess what that unary “~” operator and the reg-
ular expression are doing. The Regexp#~ operator tries to match
the contents of the $_ variable against the regular expression to
its right. If there’s a match, it returns the position of the match;
otherwise, it returns nil. While all these methods might look like
they are somehow magically working together, you now know that
it’s all thanks to the $_ global variable. But why does Ruby even
support this?

The only legitimate use for these methods (and the $_ variable) is for
writing short, simple scripts on the command line, so-called “one lin-
ers.” This allows Ruby to compete with tools such as Perl, awk, and
sed. When you’re writing real code you should avoid methods that
implicitly read from, or write to, the $_ global variable. These include
other similar Kernel methods I haven’t listed here such as chomp, sub,
and gsub. The difference with those is that they can no longer be used
in recent versions of Ruby without using either the “-n” or the “-p”
command-line option to the Ruby interpreter. That is, it’s like these
methods don’t even exist without one of those command-line options.
That’s a good thing.

Now you can see how some of the more cryptic perlisms can affect
the readability, and thus maintainability, of your code. Especially
those obscure global variables and the ones that are global in name
only. It is best to use the more Ruby-like methods (String#match vs.
String#=~) and the longer, more descriptive names for global variables
($LOAD_PATH vs. $:).

	 Item 4: Be Aware That Constants Are Mutable	 9

Things to Remember

✦	Prefer String#match to String#=~. The former returns all the match
information in a MatchData object instead of several special global
variables.

✦	Use the longer, more descriptive global variable aliases as opposed
to their short cryptic names (e.g., $LOAD_PATH instead of $:). Most
of the longer names are only available after loading the English
library.

✦	Avoid methods that implicitly read from, or write to, the $_ global
variable (e.g., Kernel#print, Regexp#~, etc.).

Item 4: Be Aware That Constants Are Mutable

If you’re coming to Ruby from another programming language, there’s
a good chance that constants don’t behave the way you expect them
to. But before we dig into that let’s review what Ruby considers to be
a constant.

When you first learned Ruby you were probably taught that con-
stants are identifiers that are made up of uppercase alphanumeric
characters and underscores. Some examples include STDIN, ARGV, and
RUBY_VERSION. But that’s not the entire story. In reality, a constant is
any identifier that begins with an uppercase letter. This means that
identifiers like String and Array are also constants. That’s right…the
names of classes and modules are actually constants in Ruby. With
that in mind, let’s take a closer look at how constants differ from other
variable-like things in Ruby.

As their name suggests, constants are meant to remain unchanged
during the lifetime of a program. You might assume, therefore, that
Ruby would prevent you from altering the value stored in a constant.
Well, that assumption would be wrong. Consider this:

module Defaults
 NETWORKS = ["192.168.1", "192.168.2"]
end

def purge_unreachable (networks=Defaults::NETWORKS)
 networks.delete_if do |net|
 !ping(net + ".1")
 end
end

If you invoke the purge_unreachable method without an argument, it
will accidentally mutate a constant. It will do this without so much

10	 Chapter 1  Accustoming Yourself to Ruby

as a warning from Ruby. Essentially, constants are more like global
variables than unchanging values. If you think about it, since class
and module names are constants, and you can change a class at
anytime (e.g., add methods), then the objects referenced by con-
stants need to be mutable in Ruby. That’s fine for classes and mod-
ules, but not so great for the values we actually want to be constant
and immutable. Thankfully, there’s a solution to this problem—the
freeze method:

module Defaults
 NETWORKS = ["192.168.1", "192.168.2"].freeze
end

With this change in place, the purge_unreachable method will raise a
RuntimeError exception if it tries to alter the array referenced by the
NETWORKS constant. As a general rule of thumb, always freeze con-
stants to prevent them from being mutated. Unfortunately, freezing
the NETWORKS array isn’t quite enough. Consider this:

def host_addresses (host, networks=Defaults::NETWORKS)
 networks.map {|net| net << ".#{host}"}
end

The host_addresses method will modify the elements of the NETWORKS
array if it isn’t given a second argument. While the NETWORKS array
itself is frozen, its elements are still mutable. You might not be able
to add or remove elements from the array, but you can surely make
changes to the existing elements. So, if a constant references a col-
lection object such as an array or hash, freeze the collection and its
elements:

module Defaults
 NETWORKS = [
 "192.168.1",
 "192.168.2",
].map!(&:freeze).freeze
end

(If you happen to be using Ruby 2.1 or later you can make use of
a trick from Item 47 and freeze the string literals directly. This can
save you a bit of memory while keeping the elements from acciden-
tally being mutated.)

Freezing a constant will change an obscure, hard-to-track-down bug
into an exception. That’s an obvious win. Unfortunately, it’s still not
enough. Even if you freeze the object a constant refers to, you can still

	 Item 4: Be Aware That Constants Are Mutable	 11

cause problems by assigning a new value to an existing constant. See
for yourself:

irb> TIMEOUT = 5
---> 5

irb> TIMEOUT += 5
(irb):2: warning: already initialized constant TIMEOUT
(irb):1: warning: previous definition of TIMEOUT was here
---> 10

As you can see, assigning a new value to an existing constant is per-
fectly legal in Ruby. You can also see that Ruby produces a warning
telling us that we’re redefining a constant. But that’s it, just a warn-
ing. Thankfully, if we take things into our own hands, we can make
Ruby raise an exception if we accidentally redefine a constant. The
solution is a bit clumsy, and may be too heavy-handed for some situ-
ations, but it’s simple. To prevent Ruby from assigning new values to
existing constants, freeze the class or module they’re defined in. You
may even want to structure your code so that all constants are defined
in their own module, isolating the effects of the freeze method:

module Defaults
 TIMEOUT = 5
end

Defaults.freeze

There are three levels of freezing you should consider when defining
constants. The first two are easy: freeze the object that the constant
references and the module the constant is defined in. Those two steps
prevent the constant from being mutated or assigned to. The third is a
bit more complicated. We saw that if a constant references an array of
strings, we need to freeze the array and the elements. In other words,
you need to deeply freeze the object the constant refers to. Each con-
stant will be different, just make sure it’s completely frozen.

Things to Remember

✦	Always freeze constants to prevent them from being mutated.

✦	If a constant references a collection object such as an array or hash,
freeze the collection and its elements.

✦	To prevent assignment of new values to existing constants, freeze
the module they’re defined in.

12	 Chapter 1  Accustoming Yourself to Ruby

Item 5:  Pay Attention to Run-Time Warnings

Ruby programmers enjoy a shortened feedback loop while writing, exe-
cuting, and testing code. Being interpreted, the compilation phase isn’t
present in Ruby. Or is it? If you think about it, Ruby must do some of the
same things a compiler does, such as parsing our source code. When you
give your Ruby code to the interpreter, it has to perform some compiler-
like tasks before it starts to execute the code. It’s useful to think about
Ruby working with our code in two phases: compile time and run time.

Parsing and making sense of our code happens at compile time. Exe-
cuting that code happens at run time. This distinction is especially
important when you consider the various types of warnings that Ruby
can produce. Warnings emitted during the compilation phase usually
have something to do with syntax problems that Ruby was able to
work around. Run-time warnings, on the other hand, can indicate
sloppy programming that might be the source of potential bugs. Pay-
ing attention to these warnings can help you fix mistakes before they
become real problems. Before we talk about how to enable the various
warnings in Ruby, let’s explore a few of the common warning mes-
sages and what causes them.

Warnings emitted during the compilation phase are especially import-
ant to pay attention to. The majority of them are generated when Ruby
encounters ambiguous syntax and proceeds by choosing one of many
possible interpretations. You obviously don’t want Ruby guessing what
you really meant. Imagine what would happen if a future version of
Ruby changed its interpretation of ambiguous code and your pro-
gram started behaving differently! By paying attention to these types
of warnings you can make the necessary changes to your code and
completely avoid the ambiguity in the first place. Here’s an example of
where the code isn’t completely clear and Ruby produces a warning:

irb> "808".split /0/
warning: ambiguous first argument; put parentheses or even spaces

When Ruby’s parser reaches the first forward slash, it has to decide if
it’s the beginning of a regular expression literal, or if it’s the division
operator. In this case, it makes the reasonable assumption that the
slash starts a regular expression and should be the first argument to
the split method. But it’s not hard to see how it could also be inter-
preted as the division operator with the output of the split command
being its left operand. The warning itself is generic, and only half of it
is helpful. But the fix is simple enough—use parentheses:

irb> "808".split(/0/)
---> ["8", "8"]

	 Item 5: Pay Attention to Run-Time Warnings	 13

If you send your code through Ruby with warnings enabled you’re likely
to see other warnings related to operators and parentheses. The reason
is nearly always the same. Ruby isn’t 100% sure what you mean and
picks the most reasonable interpretation. But again, do you really want
Ruby guessing what you mean or would you rather be completely clear
from the start? Here are two more examples of ambiguous method calls
that are fixed by adding parentheses around the arguments:

irb> dirs = ['usr', 'local', 'bin']

irb> File.join *dirs
warning: '*' interpreted as argument prefix

irb> File.join(*dirs)
---> "usr/local/bin"

irb> dirs.map &:length
warning: '&' interpreted as argument prefix

irb> dirs.map(&:length)
---> [3, 5, 3]

Other useful warnings during the compilation phase have to do with
variables. For example, Ruby will warn you if you assign a value to a
variable, but then never end up using it. This might mean you’re wast-
ing a bit of memory but could also mean you’ve forgotten to include a
value in your calculation. You’ll also receive a warning if you create
two variables with the same name in the same scope, so-called vari-
able shadowing. This can happen if you accidentally specify a block
argument with the same name as a variable that’s already in scope.
Both types of variable warnings can be seen in this example:

irb> def add (x, y)
 z = 1
 x + y
 end

warning: assigned but unused variable - z

irb> def repeat (n, &block)
 n.times {|n| block.call(n)}
 end

warning: shadowing outer local variable - n

As you can see, these compile-time warnings don’t necessarily mean
that you’ve done anything wrong, but they certainly could mean that.

14	 Chapter 1  Accustoming Yourself to Ruby

So the best course of action is to review the warnings and make
changes to your source code accordingly. The same can also be said
of warnings generated while your code is executing, or what I call
run-time warnings. These are warnings that can only be detected
after your code has done something suspicious such as accessing
an uninitialized instance variable or redefining an existing method.
Both of which could have been done on purpose or by accident. Like
the other warnings we’ve seen, these are easy to remedy.

I think you get the point, so I won’t enumerate a bunch of descrip-
tive, easy-to-fix run-time warnings for you. Instead, I’d rather show
you how to enable warnings in the first place. Here again, it becomes
important to distinguish between compile time and run time. If you
want Ruby to produce warnings about your code as it’s being parsed,
you need to make sure the interpreter’s warning flag is enabled. That
might be as easy as passing the “-w” command-line option to Ruby:

ruby -w script.rb

For some types of applications, it’s not that simple. Perhaps your Ruby
program is being started automatically by a web server or a back-
ground job processing server. More commonly, you’re using some-
thing like Rake to run your tests and you want warnings enabled.
When you can’t enable warnings by giving the interpreter the “-w”
command-line option, you can do it indirectly by setting the RUBYOPT
environment variable. How you set this variable will depend on the
operating system and how your application is being started. What’s
most important is that the RUBYOPT environment variable be set to “-w”
within the environment where your application is going to run before
Ruby starts.

(I should also mention that if you’re using Rake to run your tests you
have another option available for enabling warnings. Item 36 includes
an example Rakefile that does just that.)

Now, there’s one last way to enable warnings. It’s poorly documented
and as a result often causes a lot of confusion. Within your program
you can inspect and manipulate the $VERBOSE global variable (and
its alias, $-w). If you want all possible warning messages you should
set this variable to true. Setting it to false lowers the verbosity (pro-
ducing fewer warnings) and setting it to nil disables warnings alto-
gether. You might be thinking to yourself, “Hey, if I can set $VERBOSE to
true, then I don’t need to mess around with this ‘-w’ business.” This is
where the distinction between compile time and run time really helps.

If you don’t use the “-w” command-line option with the Ruby inter-
preter, but instead rely upon the $VERBOSE variable, you won’t be able

	 Item 5: Pay Attention to Run-Time Warnings	 15

to see compile-time warnings. That’s because setting the $VERBOSE
global variable doesn’t happen until your program is running.
By that time, the parsing phase is over and you’ve missed all the
compile-time warnings. So, there are two guidelines to follow. First,
enable compile-time warnings by using the “-w” command-line option
to the Ruby interpreter or by setting the RUBYOPT environment vari-
able to “-w”. Second, control run-time warnings using the $VERBOSE
global variable.

My advice is to always enable compile-time and run-time warnings
during application development and while tests are running. If you
absolutely must disable run-time warnings, do so by temporarily set-
ting the $VERBOSE global variable to nil.

Unfortunately, enabling warning messages comes with a warning
of its own. I’m disappointed to report that it’s not common practice
to enable warnings. So, if you’re using any RubyGems and enable
warnings, you’re likely to get a lot of warnings originating from
within them. This may strongly tempt you to subsequently disable
warnings. Thankfully, when Ruby prints warnings to the terminal it
includes the file name and line number corresponding to the warn-
ing. It shouldn’t be too hard for you to write a script to filter out
unwanted warnings. Even better, become a good open-source citizen
and contribute fixes for any gems that are being a little sloppy and
producing warnings.

Things to Remember

✦	Use the “-w” command-line option to the Ruby interpreter to enable
compile-time and run-time warnings. You can also set the RUBYOPT
environment variable to “-w”.

✦	If you must disable run-time warnings, do so by temporarily setting
the $VERBOSE global variable to nil.

This page intentionally left blank

This page intentionally left blank

Symbols
“::” class path separator, 40–42
“_” (underscore) variable feature, 168
“||=” operator, 74–75, 197–198
“=” (equal sign) operator, 31–34
“=~” operator, 6–7
“==” operator, 3, 43–48, 53
“===” operator, 46–48
$: global variable, 6
$_ global variable, 6–9
$LOAD_PATH global variable, 7–9
$VERBOSE global variable, 14–15
%w operator, 52, 195
“&” operator, 72
() (parentheses), 25–28
“@” (at) instance variables

@current_user, 197–198
@hash. See @hash
@object, 120
@permissions, 63
@readings, 36
@status, 198–199
introduction to, 55–58

“@@” class variable, 56–58
@hash

delegation and, 81–84
HashProxy and, 116–118
hook methods and, 108–110

“~” (unary complement) operator, 140
“<<” operator, 76–77
“<=>” operator, 49–53

A
Accessor method, 54
Accumulators, 70–74
Active Support, 128
ActiveModel::Validations, 115
add_dependency method, 174–178

Aliasing
alias chaining in, 134–136
alias_method for, 143
eql? in, 53

allocate_resource method, 187
ancestors method, 24, 142–143
Anonymous objects, 167
Arguments, collections passed as, 59–63
Array, 70
Array class

in global namespace, 39
RI for, 164

Array methods
Array#compact, 5
Array#reject, 61
Array#reverse, 79–80
for collection classes, 63–66

assert method, 147–148
Assertions, 147–152
Assignments, 32–33
at (“@”) instance variables. See “@” (at)

instance variables
Audit trails, 100–103
AuditDecorator class, 118–120
Automation of tests, 161

B
BasicObject#initialize, 29
begin

for exceptions, 90, 94–95
retry and, 102–103

Binding, 39–40, 122–123
Blacklisting, 91
Blocks, 71–74, 94–97
Bound retry attempts, 100–103
Bounds on version requirements, 175–178
break, 100
Bundler, 170–175

Index

204	 Index

C
Caching variables, 199–200
Callbacks, 107. See also Hook methods
can? method, 67–68
case expressions, 43–48
catch, 105–106
Child#initialize, 29
Class hooks

invoking super in, 114–115
in metaprogramming, 107–113

Class methods, defined, 18
Class objects, defined, 18
Class variables

class instance variables vs., 55–58
definition of, 18
in superclasses, 57–58

Classes. See also specific classes
case equality operators in, 48
class_eval for, 124–127
class_exec for, 125–127
collections. See Collection classes
comparisons in, 49–53
definition of, 17–18
equality in, 43–48
hooks and. See Class hooks
in inheritance hierarchies, 17–24
initializing subclasses in, 28–31
instance variables in, 55–58
methods in, 18
namespaces and, 38–42
objects in, 18
parsing in, 31–34
protected methods and, 53–55
setter methods in, 31–34
struct vs. hash in, 35–38
super. See Superclasses
super and, 24–31
variables in. See Class variables

clone method, 62–63
close method, 188
Cluster::Array class, 42
Collection classes

Array method for, 63–66
default hash values for, 74–79
delegation in, 79–84
duplication of, 59–63
element inclusion checking in, 66–70
folding with reduce, 70–74
freeze method for, 9–11
inheritance in, 79–84
introduction to, 59–63
mutation of, 59–63
nil and, 63–66

passed as arguments, 59–63
scalar objects and, 63–66
Set, 66–70

Color class, 44–45
Comma-separated value (CSV) files. See

CSV (comma-separated value)
files

Comparable module, 52–53
Comparisons, 49–53
Compile-time warnings, 12–15
Constants

finding, 40–42
freezing vs. mutation of, 9–11
Struct::new and, 35–38

Containers, 59. See also Collection
classes

Control flows, 86, 104–106
Copying objects, 62–63
count, 182
counter= method, 33–34
CSV (comma-separated value) files

constants and, 35–36
CSV#shift for, 190–191
Set and, 69–70

Cucumber RubyGem, 152
current_user, 198–200
Custom exceptions, 85–90
Customer class, 19–24, 132

D
-d doc, ri command-line option, 166
Darkfish, 166
Decorator patterns, 118–121
Deep copies, 62–63
def_delegators, 81–82, 108–110
Default hash values, 74–79
default_proc, 83
define_method, 115–122
define_singleton_method, 120–121
Delays, 101–103
Delegation, 80–84
describe method, 151
Determinism, 152
Digest::SHA256 class, 139–140
DownloaderBase, 114–115
Duck typing, 3, 63, 117
Dumping objects, 63
Duplication of collections, 59–63

E
effectiveruby.com, xv, 201
Element inclusion checking, 66–70
Encapsulation, 53–55

	 Index	 205

Encrypt class, 41
ensure

exiting, 97–100
managing resources with, 94–97
releasing resources in, 185–186,

188
for specific exceptions, 92–93

Enumerable module
introduction to, 59
reduce in, 71–74

eql? method
hash method and, 53
for objects, 44–48
Version class and, 49–53

equal? method, 43–48
equal sign (“=”) operator, 31–34
Equality

“=” operator in, 31–34
of case, 46–47
eql? for. See eql? method
equal? method for, 43–48
overview of, 43–48

Errors
descriptions of, 86
“error” suffix and, 86–90
exceptions vs. See Exceptions

Eval variants, 122–127
Exceptions

audit trails and, 100–103
blocks for, 94–97
custom, 85–90
ensure for, 94–100
introduction to, 85
jumping out of scope of, 104–106
path testing and, 158–160
raising. See Raising exceptions
raising strings vs., 85–90
rescuing most specific, 90–93
resource management and, 94–97
retry attempts and, 100–103
throw vs. raise for, 104–106

Executed vs. correct code, 160–161.
See also Testing code

Expectations, 151–154
Explicit receivers, 33–34, 54–55
extended hook, 108–113

F
-f ri, rdoc command-line option, 166
false, 1–3
File class

file_size method and, 139
managing resources in, 94–96

Marshal method and, 63
run-time warnings in, 13

FileList class, 149
Finalizers, 185–188
Fixnum

Comparable module and, 52–53
default hash values and, 76
passing as value, 60–63
Proc#arity method and, 139

Flat profiles, 190
Folding collections, 70–74
for keywords, 196
Forwardable module

hook methods and, 108–110
inheritance and, 81
monkey patching and, 130
proxies and, 116

Freezing
constants, 9–11
freeze method for, 79–84,

108–113
methods for, 108–113
string literals, 196–197

frequency method, 75
full method, 34
Fuzz testing, 158–159
FuzzBert, 158–159

G
Garbage collectors

GC module for, 193
GC::stat method for, 182–183
memory and, 179–185
performance and, 192

gem utilities, 163, 170–172
Gem dependencies

management of, 170–175
setting upper bounds for, 175–178

Gems
dependencies in, 170–178
Gemfile for, 171–176
Gemfile.lock files for, 172–176
gemspec method for, 174
Kernel#gem method for, 170
requirements for, 175
in Ruby. See RubyGems
utilities for, 163, 170–172

Generational garbage collectors,
180–181

Global constants, 40
Global namespaces, 39
Global variables, 6–9, 14–15
group method, 173

206	 Index

H
Happy path testing, 158–160
has_key? 78
“has-a” relationships, 79–80
Hash class

“==” operator and, 53
Array and, 65–66, 68–70
in collections, 59, 74–79
delegation and, 81–84
equality of objects and, 44–48
hash methods and. See hash methods
HashProxy class and, 116–121
inheritance in, 80
RaisingHash class vs., 108–110
Set and, 68–70, 80
struct vs., 35–38

hash methods
Hash#fetch, 78
Hash::[], 65
objects as keys and, 45–46
overriding, 53

Heaps, 181–185
Hook methods, 107–113
host_addresses method, 10–11
HTML files, 166
HTTP requests, 152–155
http://effectiveruby.com, xv, 201

I
ID3 data, 171–174
Immediate sweeping phases, 181
Inclusion

include? method for, 63
include method for, 21, 142
included hooks for, 108–113
included_modules method for, 24

index.html files, 166
Inheritance

in collections, 79–84
delegation vs., 79–84
hierarchies of, 17–24
inherited class hook in, 114–115
inherited hook/method in, 110–111
Parent::inherited method in, 111
PreventInheritance module in, 111
super and, 24–28

initialize methods
BasicObject#initialize, 29
Child#initialize, 29
in collections, 67–69
for exceptions, 89–90
finalizers and, 187
hash tables and, 36–37

initialize_copy, 31, 62–63, 82–84
Parent#initialize, 29
RDoc and, 165
for subclasses, 28–31
super and, 28–31

inject method, 59
Instance methods

adding to Object class, 167–168
definition of, 18
instance_eval, 123–127
instance_exec, 125–127
InstanceMethodWatcher, 112

Instance variables
accessor methods for, 54
class, 55–58
definition of, 18

Instances of classes, defined, 18
Interactive Ruby Shell (IRB). See IRB

(Interactive Ruby Shell)
Invoking modified methods,

133–136
IRB (Interactive Ruby Shell)

advanced features in, 166–169
ancestors in, 142
AuditDecorator in, 120
comparison operators in, 51
default hash values in, 75, 78
equality of objects and, 43–48
eval variants in, 123
garbage collection in, 182
HashProxy in, 117–118
inheritance in, 19–21
initialize method in, 29
IRB::ExtendCommandBundle for,

167–169
libraries in, 169
log_method in, 135
overview of, 163–166
Proc objects in, 136–140
sessions in, 168–169

is_a? method, 48
“is-a” relationships, 79–80

J
JSON format, 171
Jumping out of scope, 104–106

K
Kernel methods

Kernel#gem, 170
Kernel#print, 6
Kernel#readline, 8

Kernel module, 64, 122

http://effectiveruby.com

	 Index	 207

Keys
has_key? 78
KEY constant, 41
key values, 199
KeyError, 82–84
overview of, 74–79

klass, 109

L
lambda method, 137–138, 188
Lazy sweeping phases, 181
Lexical scopes, 40–41, 131–133
Libraries

in Bundler, 171–175
introduction to, 163
in IRB, 169
MiniTest and, 146
profile, 189–195
Ruby documentation in, 163–166

location object, 157
Lock::acquire, 96
log_method, 134–136
LogMethod module, 134–135
lookup method, 199
loop method, 104–106
Loops, 195–197

M
Macintosh System 7, 133
Major marking phases, 180–183
major_gc_count, 182
malloc_increase/malloc_limit, 182
Mark and sweep process, 180–181
Markdown format, 165
Marshal method, 62–63
Marshal::dump method, 190
MatchData object, 7
mean method, 36–38
Memoizing computations, 197–200
Memory

finalizers and, 185–188
garbage collectors and, 179–185
introduction to, 179
memoizing expensive computations

in, 197–200
memory_profiler gem for, 193–195
object literals in loops and, 195–197
profiling tools for, 189–195
resource safety nets and, 185–188

Metaprogramming
alias chaining in, 133–136
class hooks in, generally, 107–113
class hooks, super in, 114–115

define_method in, 115–122
eval variants in, 122–127
hook methods in, 107–113
introduction to, 107
method_missing in, 115–122
modified methods in, 133–136
module hooks in, 107–113
monkey patching alternatives in,

127–133
Proc#arity in, 136–141

method_missing method
in metaprogramming, 115–122
overview of, 20–24
super and, 27–28

Methods. See also specific methods
arguments in, 59–63
finding, 17–24
method_ hooks, 111–112
missing. See method_missing method
modified, 133–136
naming rules in, 31
singleton, 17–24

MiniTest
MiniTest::Mock#verify for, 155–156
spec testing with, 149–152
unit testing with, 145–149

Minor marking phases, 180–181
minor_gc_count, 182
Mirroring namespace/directory

structures, 40–42
Mocha, 156
Mock objects, 152–156
mod, 109
Modified methods, 133–136
Modules. See also specific modules

case equality operators and, 48
class instance variables vs. class

variables in, 55–58
classes vs., 18–19
Comparable, 49–53
definition of, 17–19
equality in, 43–48
freezing, 9–11
hooks in, 107–113
including silently, 17–24
in inheritance hierarchies, 17–24
module_eval for, 124–127
module_exec for, 125–127
namespace creation with, 38–42
nesting code in, 38–42
parsing in, 31–34
prepend, 141–143
protected methods and, 53–55

208	 Index

setter methods in, 31–34
struct vs. hash in, 35–38
super and, generally, 24–28
super when initializing subclasses in,

28–31
Monitor#alive? 153–155
Monitor#get method, 153–154
Monkey patching, 127–133, 134
MP3 files, 171–174
MrProper, 160
Mutation

of collections, 59–63
of constants, 9–11

N
NameError exceptions, 40–41
Namespaces, 38–42
National Oceanic and Atmospheric

Administration (NOAA), 35
Nested arrays, 65–66
Nesting definitions in modules,

38–42
NETWORKS array, 10–11
next, 100
nil

<=> operator returning, 49–53
caching variables set to, 199–200
in collections, 63–66
disabling run-time warnings and,

12–15
false vs., 1–3
invalid keys returning, 75–79
treating objects as if they are, 3–5

nil? method, 2–5
NOAA (National Oceanic and

Atmospheric Administration), 35
Numbers, truth of, 1

O
Object literals, 195–197
Object-oriented programming (OOP), 17
Objects. See also specific objects

class instance variables vs. class
variables in, 55–58

comparisons in, 49–53
defined, 18
definition of, 17–18
equality in, 43–48
equality of, 43–48
in inheritance hierarchies, 17–24
namespaces, creating, 38–42

old, 180–183
ordering, 49–53
parsing in, 31–34
protected methods and, 53–55
setter methods in, 31–34
struct vs. hash in, 35–38
super and, generally, 24–28
super when initializing subclasses

and, 28–31
young, 180–183

ObjectSpace API, 193–194
ObjectSpace::define_finalizer

method, 187
Old objects, 180–183
oldmalloc_increase/oldmalloc_limit, 182
only_space? method, 129–133
OnlySpace module, 129–130
OOP (object-oriented programming), 17
Operators

%w, 52, 195
“&,” 72
“||=,” 74–75, 197–198
“~,” 140
“<<,” 76–77
“<=>,” 49–53
“=” (equal sign), 31–34
“=~,” 6–7
“==,” 3, 43–48, 53
“===,” 46–48
case equality, 46–47
equal sign (“=”), 31–34
ordering, 52–53
pessimistic version, 177
Regexp#~, 8–9
spaceship, 50

Ordering operators, 52–53
Overriding methods, 24–28

P
Pages in heaps, 181
Parent#initialize, 29
Parentheses (), 25–28
Parsing, 31–34
Performance problems, 189–192
Perl, 6
Perlisms, 6–9
Person class, 131–132
Pessimistic version operators, 177
prepended hooks, 110–113
Prepending modules, 141–143
Private states, 53–55
Proc objects, 136–141, 186–188
Proc#arity method, 139–140

Modules (continued)

	 Index	 209

Profiling tools, 189–195
property-based testing, 159–160
Protected methods, 53–55
Proxies, 116
Pry, 169
purge_unreachable method, 9–10

R
-r, Ruby command-line option, 166
Raising exceptions. See also Exceptions

custom exceptions in, 85–90
delegation and, 84
raising strings vs., 85–90
RaisingHash for, 82–84, 108–110, 130
throw vs. raise for, 104–106

Rake, 14, 149
Range class, 59
RDoc (Ruby Documentation), 163–166
read-eval-print loop (REPL) utilities,

166–167, 169
Reading class, 69–70
Receivers

definition of, 19, 23
setter methods and, 31–34

reduce method, 59, 70–74
References, 60–63
Refinements, 131–133
Refutations, 149
Regexp class, 47–48
Regexp#~ operator, 8–9
reject, 61
replace! method, 83
require, 151
Rescue

in custom exceptions, 86
ensure vs. rescue for, 97–100
in most specific exceptions, 90–93

reset_var, 127
Resource safety nets, 185–188
Resource#close method, 188
respond_to_missing? 117–122
response.verify, 154–155
retry, 86, 100–103
return, 97–100, 104–106
reverse, 79–80
RI (Ruby Information), 163–166
Role class, 67–69
RSpec, 152
Ruby

1.9.3 version of, 155
2.0 version of, 131–132, 142
2.1 version of, 131–132, 182–184,

195–197

collections in. See Collection classes
comparisons in, 49–53
conclusions about, 201
Documentation in, 163–166
equality in, 43–48
exceptions in. See Exceptions
false vs. nil in, 1–3
gems in. See RubyGems
Information in, 163–166
inheritance hierarchies in, 17–24
introduction to, 1
libraries in. See Libraries
memory management in. See Memory
metaprogramming in. See

Metaprogramming
mutable constants in, 9–11
namespaces in, 38–42
nil objects in, 3–5
parsing in, 31–34
perlisms in, 6–9
on Rails. See Ruby on Rails
ruby -rprofile script.rb, 189
RUBY_GC_HEAP_ settings for, 184
RUBY_GC_MALLOC_ settings for, 184
RUBY_GC_OLDMALLOC_ settings for,

184–185
RUBYOPT environment for, 14–15
run-time warnings in, 12–15
setter methods in, 31–34
sharing private state via protected

methods in, 53–55
struct vs. hash in, 35–38
super in, generally, 24–28
super when initializing subclasses in,

28–31
testing in. See Testing code
tools in. See Tools
true values in, 1–3

Ruby Documentation (RDoc), 163–166
Ruby Information (RI), 163–166
Ruby on Rails

class hooks in, 114–115
monkey patching alternatives in,

127–128
sessions in, 168–169
testing and, 149

RubyGems
Bundler, 170–175
Cucumber, 152
FuzzBert, 158–159
memory_profiler, 193–195
MiniTest. See MiniTest
monkey patching alternatives in, 128

210	 Index

MrProper, 160
number of, 170
Pry, 169
ruby-prof gem, 190–195
SimpleCov, 160–161
stackprof, 190–191

Run-time warnings, 12–15, 86–90

S
Scalar objects, 63–66
Scope, 104–106
Seed message, 156–157
select method, 73
self, 33–34, 107–113
Sessions, 168
Set class

in collections, 68–70
inheritance and, 80
“set” files and, 70

Setter methods, 31–34
setup method, 148, 151
Shallow copies, 62–63
shipped? method, 198–200
SimpleCov, 160–161
Simulating determinism, 152
Singleton classes, 19–24
Singleton methods

hook methods as, 107–113
inheritance in, 19, 22–24
instance_eval/instance_exec as,

124–127
singleton_method_ hooks in, 112–113

Singleton patterns, 56–58
Slots, 181–183
Smalltalk, 17
Spaceship operators, 50
Spec tests, 149–152
Special global variables, 6
split method, 12–15
stackprof gem, 190–191
StandardError, 87–90, 93
Statistics, 189–195
StopIteration, 104–106
Stream, 138–140
Strings

String class for, 128–133
string literals, 43–44
StringExtra class for, 130–133
String#match vs. String#=~, 6, 8–9

Strong Proc objects, 137–138
Structured data

introduction to, 35

Struct class for, 36–38
Struct::new for, 37–38

sum method, 72–74
super

behaviors of, 24–28
delegation and, 84
prepending and, 143
when initializing subclasses, 28–31

Superclasses
class variables in, 57–58
introduction to, 18–24
prepending and, 141–143

SuperForwardable module, 108–110
Sweeping phases, 180–181

T
taint method, 79–84, 108–113
TDD (test-driven development), 157
teardown method, 148, 151
“test_” prefix, 147–148
test-driven development (TDD), 157
Testing code

effectiveness of, 156–161
introduction to, 145
MiniTest spec testing in, 149–152
MiniTest unit testing in, 145–149
mock objects in, 152–156
simulating determinism in, 152

throw statements, 100, 104–106
to_i method, 4–5
to_s method, 4–5, 159–160
Tools

Bundler, 170–175
for gem dependencies, managing,

170–175
for gem dependencies, setting upper

bounds, 175–178
introduction to, 163
in IRB, 166–169
for Ruby documentation, 163–166

total_allocated_object/total_freed_
object, 182

true, 1–3, 43–48
Tuner objects, 60–62

U
Unary complement operator (“~”), 140
undefine_finalizer, 188
Underscore (“_”) variable feature, 168
Unit testing, 145–149
unlog_method, 135–136
untaint method, 79–84, 108
update method, 139

RubyGems (continued)

	 Index	 211

Upper bounds on version requirements,
175–178

URLs, 114
User::find method, 197

V
Values

false, 1–3
nil. See nil
true, 1–3, 43–48

Variable shadowing, 13
Version class

eql? method and, 49–53
MiniTest for, generally, 146–149
MiniTest spec testing for, 150
property-based testing of, 159–160

Version number specifications, 175–178
Versions of Ruby. See Ruby

W
-w, Ruby command-line option,

14–15
Weak Proc objects, 137–139
White-box testing, 153
Whitelisting, 91
who_am_i? method, 141–142
Widget class, 156–157
Widget#overlapping? method,

54–55

Y
yield statements, 95–96
Young objects, 180–183

Z
ZenTest, 161
Zero, 1

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Accustoming Yourself to Ruby
	Item 1: Understand What Ruby Considers to Be True
	Item 2: Treat All Objects as If They Could Be nil
	Item 3: Avoid Ruby’s Cryptic Perlisms
	Item 4: Be Aware That Constants Are Mutable
	Item 5: Pay Attention to Run-Time Warnings

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

