

DevOps for VMware®
Administrators

VMware Press is the official publisher of VMware books and training materials, which
provide guidance on the critical topics facing today’s technology professionals and stu-
dents. Enterprises, as well as small- and medium-sized organizations, adopt virtualiza-
tion as a more agile way of scaling IT to meet business needs. VMware Press provides
proven, technically accurate information that will help them meet their goals for custom-
izing, building, and maintaining their virtual environment.

With books, certification and study guides, video training, and learning tools produced
by world-class architects and IT experts, VMware Press helps IT professionals master a
diverse range of topics on virtualization and cloud computing and is the official source of
reference materials for preparing for the VMware Certified Professional certifications.

VMware Press is also pleased to have localization partners that can publish its products
into more than 42 languages, including, but not limited to, Chinese (Simplified), Chinese
(Traditional), French, German, Greek, Hindi, Japanese, Korean, Polish, Russian, and
Spanish.

For more information about VMware Press, please visit vmwarepress.com.

VMware® Press is a publishing alliance between Pearson and VMware, and is the

official publisher of VMware books and training materials that provide guidance

for the critical topics facing today’s technology professionals and students.

With books, eBooks, certification study guides, video training, and learning tools

produced by world-class architects and IT experts, VMware Press helps

IT professionals master a diverse range of topics on virtualization and cloud

computing, and is the official source of reference materials for preparing for

the VMware certification exams.

vmwarepress.com

Make sure to connect with us!
vmwarepress.com

Complete list of products • User Group Info • Articles • Newsletters

This page intentionally left blank

DevOps for VMware®
Administrators

Trevor Roberts, Jr.
Josh Atwell
Egle Sigler

Yvo van Doorn

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

DevOps for VMware® Administrators
Copyright © 2015 VMware, Inc.

Published by Pearson Education, Inc.

Publishing as VMware Press
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.

ISBN-10: 0-13-384647-4

ISBN-13: 978-0-13-384647-8

Library of Congress Control Number: 2015900457

Printed in the United States of America

First Printing: April 2015

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. The publisher cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

VMware terms are trademarks or registered trademarks of VMware in the United
States, other countries, or both.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The authors, VMware Press, VMware, and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book or from the use of the
CD or programs accompanying it.

The opinions expressed in this book belong to the author and are not necessarily
those of VMware.

Special Sales
For information about buying this title in bulk quantities, or for special sales oppor-
tunities (which may include electronic versions; custom cover designs; and content
particular to your business, training goals, marketing focus, or branding interests),
please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

VMWARE PRESS
PROGRAM MANAGERS

Erik Ullanderson
Anand Sundaram

ASSOCIATE PUBLISHER
David Dusthimer

ACQUISITIONS EDITOR
Mary Beth Ray

VMWARE PRESS
PROGRAM MANAGER
David Nelson

DEVELOPMENT EDITOR
Jeff Riley

MANAGING EDITOR
Sandra Schroeder

PROJECT EDITOR
Mandie Frank

COPY EDITOR
Keith Cline

PROOFREADER
Chuck Hutchinson

INDEXER
Cheryl Lenser

EDITORIAL ASSISTANT
Vanessa Evans

DESIGNER
Chuti Prasertsith

COMPOSITOR
Mary Sudul

This book would not have been possible without signifi cant support. So, I dedicate
this book to the following infl uences in my life: To God, for giving me the capabil-
ity and the opportunities to work in a fi eld that I love. To my wife, for putting up
with the many hours of lab time spent in making this book. To my grandfather
James, who left his home country of Trinidad and Tobago to make a better life

for his children in America. To my parents, Trevor Sr. and Marva, for encourag-
ing me to succeed and do my best, even when I didn’t want to. To my brothers,

Michael and Alfonso, for supporting any initiative that I set my mind to. To two
special girls who inspire me to do what I do every day: Isla and Yazmine.

—Trevor Roberts, Jr.

This book is dedicated to my family, who continue to support me in every-
thing I pursue. I especially want to thank my wife, Stephanie, who continues
to be my greatest supporter and friend. I can always count on her to keep me

grounded, focused, and inspired when I get frustrated.
—Josh Atwell

To my husband and love, Roy, for always providing moral,
mental, and technical support.

—Egle Sigler

This is to you, Jackie. I wrote everything in Vim,
you converted everything to a Word document.

—Yvo Van Doorn

This page intentionally left blank

Contents

About the Authors xvii

About the Reviewers xviii

Acknowledgments xix

About the Contributing Author xx

Introduction xxii

About This Book xxiii

You the Reader xxiii

What This Book Covers xxiii

Part 1 Introduction to DevOps

1 Introduction to DevOps 1

An Overview of DevOps Principles 1
Implement Systems Thinking 3

Change the Approach to Team Interactions 3
Change the Approach to Infrastructure Deployment 5
Change the Approach to Software Development and Deployment 6
Collect and Respond to Useful Systems Feedback Often and Adjust Accordingly 7

Furthering Your DevOps Knowledge and Skills 7
Summary 8
References 8

2 DevOps Tools 9

Organizing for Success: Kanban 9
Server Deployment 13
Confi guration Management 14
Continuous Integration 14
Log Analysis 15
Summary 15
References 15

3 Setting Up a DevOps Confi guration Management Test Environment 17

Environment Provisioning with AutoLab 17
Environment Provisioning with Vagrant 18
Creating Images with Packer 23

Contentsx

Managing Source Code 24
Using Git 24

Summary 31
References 31

Part 2 Puppet

4 Introduction to Puppet 33

Puppet Architecture 33
Standalone Deployment 34
Master-Agent Deployment 34

Preparing Your Puppet Test Lab 37
Puppet Resources 38
Puppet Manifests 39

Conditional Expressions and Variables 43
Puppet Modules 46

Puppet Forge 48
Creating Your First Puppet Module 48
Puppet Module Initialization Manifest (init.pp) 50
Templates 51
Using a Puppet Module 54
Final Step: Version Control Commit 54

Summary 55
Reference 55

5 Systems Management Tasks with Puppet 57

Optimizing the Web Tier with Data Separation 58
Parameters Class (params.pp) 59
Hiera 63
Node Classifi cation 67

Application Tier 68
Database Tier 70
Implementing a Production Recommended Practice 70
Deploying the Application Environment 71
Summary 71
Reference 71

6 VMware vSphere Management with Puppet 73

Puppet’s Cloud Provisioner for VMware vSphere 73
Preparing VM Templates 73
Preparing Puppet Master 74

Contents xi

VMware’s Management Modules 77
Using the vmware/vcenter Module 77

Summary 83
References 83

Part 3 Chef

7 Introduction to Chef 85

What Is Chef? 85
Core Philosophies Behind Chef 86

Order of Recipe 86
Idempotence 86
API-Based Server 87
The Client Does All the Legwork 87
Test-Driven Infrastructure 87

Chef Terminology 87
Recipe 88
Cookbook 88
Attributes 88
Role 88
Run List 88
Resource 88
Environments 88

The Diff erence Between Hosted Chef and Chef Server 89
Hosted Chef 89
Chef Server 89

Introduction to ChefDK 90
What Is ChefDK? 90
Installing ChefDK 90

Using Knife 92
Creating Your First Hello World Chef Recipe 94
Summary 98

8 Systems Management Tasks with Chef 99

Signing Up for Hosted Chef 100
Setting Up Local Repo with the Starter Kit 102

Community Cookbooks 105
Setting Up System Management 105

Prep/Setup System Management Task 1: Managing Time 105
Prep/Setup System Management Task 2: Managing Root Password 108

Contentsxii

Confi guring Your Virtual Guests 109
Installing Chef Client 109

Systems Management Tasks 111
Running Chef Client 113

Managing the Root Password 115
Creating Two Environment Files 116
Uploading Environment Files to your Hosted Chef Organization 117
Assigning Each Server to an Environment 118
Modifying Each Server’s Run List to Run the Managedroot Cookbook 119
Applying Your Changes to Your Nodes 120
Validating the Enforced Policy 120

Summary 122
References 123

9 VMware vSphere Management with Chef 125

Knife Plugins 126
Getting Started with knife-vsphere 128
Confi guring the knife.rb File 128
Validating the Confi guration 130
Putting It All Together 130

Chef Provisioning 134
Chef Provisioning Architecture 134
Getting Started with Chef Provisioning 135
Spinning Up Some Nodes 136

Summary 138

Part 4 Ansible

10 Introduction to Ansible 139

Ansible Architecture 139
Preparing your Ansible Test Lab 141
Ansible Groups 142
Ansible Ad Hoc Command Execution 142

The Ping Module 143
The Command Module 144
The User Module 144
The Setup Module 144

Ansible Playbooks 144
Conditional Expressions and Variables 146

Contents xiii

Ansible Roles 151
Templates 154

Ansible Galaxy 156
Summary 157
References 157

11 Systems Management Tasks with Ansible 159

Web Server Deployment 159
The Application Tier 160
The Database Tier 162
Role Structure Optimization 164
VMware Resource Management 166
Summary 171
References 171

Part 5 PowerShell 4.0

12 Introduction to PowerShell Desired State Confi guration (DSC) 173

What Is PowerShell DSC? 174
PowerShell DSC Requirements 175
PowerShell DSC Components 175

Native Cmdlets 175
Managed Object Format File 176
Local Confi guration Manager 176

PowerShell DSC Confi gurations 178
PowerShell DSC Modes 180

Local Push Mode 181
Remote Push Mode 181
Pull Mode 182

PowerShell DSC Resources 184
Summary 186
References 187

13 Implementation Strategies with PowerShell DSC 189

Use Cases for PowerShell DSC in VMware Environments 189
Scripted Deployments of VMs with PowerCLI 190
Incorporating PowerShell DSC in VM Templates 192
Challenges Implementing PowerShell DSC Confi gurations to New VMs 193

PowerCLI Invoke-VMscript 193
PowerCLI Copy-VMGuestFile 195

xiv Contents

General Lessons Learned 196
Future Use Cases for PowerShell DSC in VMware Environments 197
Summary 198
References 198

Part 6 Application Deployment with Containers

14 Introduction to Application Containers with Docker 199

What Is an Application? 199
Hidden Complexity 200
Dependency and Confi guration Confl icts 200

Linux Containers 200
Control Groups 201
Namespaces 201
Container Management 203

Using Docker 203
Installing Docker 203
Docker Daemon 204
Docker Client 204
Docker Index 205
Running a Docker Container 205
Listing Running Containers 206
Connecting to Running Containers 206
Building and Distributing Docker Containers 208
Dockerfi le 209
Docker Hub 210
Docker Versus Virtual Machines 211
Docker Versus Confi guration Management 211

Summary 212
References 212

15 Running Docker Containers at Scale 213

Container Orchestration 213
Kubernetes 214

Kubernetes Workfl ow 214
Kubernetes Deployment 215

CoreOS and Kubernetes Cluster Management Utilities 216
CoreOS Cluster Deployment 217
etcd Server Confi guration 222
Network Overlays with Flannel 223

xvContents

Kubernetes Cluster Nodes 223
Kubernetes Service Deployment 225
Kubernetes Workload Deployment 226

Platform-as-a-Service with Docker 230
Summary 231
References 231

Part 7 DevOps Tool Chain

16 Server Provisioning Using Razor 233

How Razor Works 233
Using Razor 236

Razor Collections and Actions 238
Building Razor Collections 245

Using Razor APIs 257
Razor Components 258

Razor Server 258
Razor Microkernel 258
Razor Client 259

Setting Up Razor 259
PE Razor 259
Puppet Install 259
Install from Source 260
Manual Release Install 260
Other Services 260

Summary 263
References 263

17 Intro to the ELK: Elasticsearch, Logstash, Kibana 265

Elasticsearch Overview 265
Getting Started 266
Understanding the Index 267
Working with Data 267
Installing Plugins 271
Using Clients 274

Logstash Overview 275
Getting Started 276
Confi guring Input to Logstash 276
Applying Filters 278
Understanding Output 280

Contentsxvi

Kibana Overview 280
Sharing and Saving 285
Custom Data Views 286

Summary 286
References 287

18 Continuous Integration with Jenkins 289

Continuous Integration Concepts 289
Continuous Integration or Continuous Deployment? 290
Test Automation 290

Jenkins Architecture 292
Jenkins Deployment 293
Jenkins Workfl ow 296

Jenkins Server Confi guration 296
Jenkins Build Job 298
Git Hooks 302
Your First Build 304

Quality Assurance Teams? 306
Acceptance Testing 306
Development Team 306
Build/Test Infrastructure 307

Summary 307
References 307

Part 8 VMware DevOps Practices

19 VMware vRealize Automation in DevOps Environments 309

Emergence of DevOps 309
Stable Agility 310
People, Process, and Conway’s Law 311
vRealize Automation 312
vRealize Application Services 313
Puppet Integration 315
Code Stream 321
Summary 327
References 327

Index 485

About the Authors xvii

About the Authors

Trevor Roberts, Jr. is a Senior Technical Marketing Manager for VMware. Trevor
has the CCIE Data Center certification, and he is a VMware Certified Advanced Profes-
sional in the Data Center Design and Administration concentrations. In his spare time,
Trevor shares his insights on data center technologies at http://www.VMTrooper.
com, via the vBrownBag Professional OpenStack and Professional VMware podcasts,
and on Twitter (@VMTrooper). His contributions to the IT community have garnered
recognition by his designation as a VMware vExpert, Cisco Data Center Champion, and
EMC Elect.

Josh Atwell is a Cloud Architect for SolidFire, focusing on VMware and automation
solutions. Over the past 10+ years, he has worked very hard to allow little pieces of code
to do his work for him through various automation tools. Josh is a father of two boys with
wife Stephanie, and a daughter is on the way in early 2015. Based in the Raleigh, North
Carolina, area, he enjoys time with his family, golf, audiobooks, and trying new bourbons.
Josh has been highly active in the virtualization community, where he’s been a leader of
technology-based user groups such as CIPTUG, VMUG, and UCS Users Group. Josh
has worked with others on preparing for their professional development pursuits through
the vBrownBag podcast and the Virtual Design Master competition. Josh is also a regular
public speaker and contributing author to the Mastering vSphere series. Never known for
lacking an opinion, he blogs at vtesseract.com and talks shop on Twitter as @Josh_Atwell.

Egle Sigler (@eglute, anystacker.com) is currently a Principal Architect at Rackspace. She
started her career as a software developer, and still has a soft spot for all the people that
write, test, and deploy code, because she had a chance to do all of those tasks. Egle dreams
about a day when writing, testing, and deploying code will be a seamless and easy process,
bug and frustration free for all. Egle believes that knowledge should be shared, and tries to
do so by writing this book, giving talks and workshops at conferences, and blogging.

Yvo van Doorn has more than a decade of system administration experience. The first
part of his career, he manually built out and configured bare-metal servers. At Classmates,
Yvo became a champion of configuration management and virtualization. Before joining
Chef, he learned firsthand the power of VMware’s products when he moved a small Seattle
technology company’s complete production stack over to its virtualization platform. He’s
a strong believer in the culture change that comes with DevOps. When he isn’t busy
spreading the gospel of Chef, he’s probably enjoying a hoppy IPA, exploring the great
outdoors, or celebrating his Dutch heritage while eating a wheel of gouda and watching
Oranje lose the World Cup. Yvo lives with his wife and black lab in Seattle, Washington.

http://www.VMTrooper.com
http://www.VMTrooper.com

This page intentionally left blank

xixAbout the Reviewers

About the Reviewers

Scott Lowe, VCDX 39, has been in the IT industry for more than 20 years. He currently
works as an engineering architect for VMware focusing on the intersection of network
virtualization, open source, and cloud computing. He also spends time working with a
number of DevOps-related products and projects.

Randall “Nick” F. Silkey, Jr. is a Senior Systems Engineer at TheRackspace Cloud.
His passions revolve around both infrastructure automation and release engineering.
He enjoys organizing several professional technical organizations in the Austin, Texas
area. Nick has also spoken at local and national conferences about continuous integration
and operations engineering. Apart from work, Nick enjoys spending time with his wife
Wendy and raising their three children.

Matt Oswalt is an all-around technology nerd, currently focusing on bringing
automation tools and methodologies to networking. He started in IT as an application
developer for a large retail chain. After that, he spent four years as a consultant in the
area of network infrastructure. He is now using both of these skillsets together in order
to create more flexible, resilient, network infrastructure. He is heavily involved with
automation and DevOps communities to help drive the conversation around network
automation and SDN. He publishes his work in this space, as well as with traditional
infrastructure, on his personal blog at keepingitclassless.net, and on Twitter as @Mierdin.

This page intentionally left blank

xxiAbout the Contributing Author

About the Contributing Author

Chris Sexsmith is a contributing author for the DevOps for VMware Administrators book.
Chris has been a Staff Solutions Architect at VMware in the Global Center of Excellence
for the past four years, focused primarily on automation, DevOps, and cloud management
technologies. Chris lives in Vancouver, British Columbia, where he is working toward
his MBA while watching as much hockey as humanly possible. Chris and his team lead
the LiVefire program, focusing on specialist and partner solution enablement across the
software-defined data center (SDDC).

This page intentionally left blank

xxiiiAcknowledgments

Acknowledgments

Many people helped make this book possible, and I would like to thank them for their
direct and indirect influence in getting the job done:

Gene Kim, for taking time out of his busy schedule with his own book project (The
DevOps Handbook) and planning the DevOps Enterprise Summit to provide guidance on
content for this book as well as on various aspects of the book production process.

Nick Weaver, for getting me started on my own DevOps journey by introducing the
VMware community to Puppet through his work on Razor.

Joan Murray, for her strong support at VMware Press to get this book project off the
ground.

Kelsey Hightower, for providing expert knowledge on Linux containers and how to
orchestrate them at scale.

Aaron Sweemer, for providing contacts within VMware to share the company’s DevOps
vision with the readers of this book.

My co-authors, for their patience and continued support with my leadership of the book
project.

Scott Lowe, Nick Silkey, and Matt Oswalt for providing invaluable feedback on my
content in the book.

—Trevor Roberts, Jr.

I would like to acknowledge and thank a few individuals for their assistance in the writing
of my portion of this book. Don Jones, Steven Murawski, and Alan Renouf provided me
important guidance and feedback as I worked through various ways VMware admin-
istrators might benefit from PowerShell DSC. Without their insight and perspective I
would likely still be playing in the lab and scratching my head. I would also like to thank
Trevor Roberts, Jr. for inviting me to participate in this project. Finally, I’d like to thank
the VMware community at large for their considered support and interest in this book. I
hope you enjoy it as much as I do.

—Josh Atwell

xxiv Acknowledgments

The open source community, without you, we would not have these wonderful and
amazing tools.

—Egle Sigler

First and foremost, I want to thank Trevor Roberts, Jr. for giving me the opportunity to
participate in creating this book. To Mark Burgess, co-author of Promise Theory: Principles
and Applications. Mark wrote the science behind today’s configuration management that
many of us use every day. Finally, I am grateful for everyone at Chef and in the Chef
community that I was able to bounce ideas off of.

—Yvo van Doorn

xxvReader Services

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

We welcome your comments. You can email or write us directly to let us know what you
did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. We will carefully review your comments and
share them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: VMware Press
 ATTN: Reader Feedback
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services
Visit our website at www.informit.com/title/9780133846478 and register this book for
convenient access to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/title/9780133846478

This page intentionally left blank

xxviiIntroduction

Introduction

What is DevOps? Is it a product you can buy from a vendor that will cure all your IT
woes? Is it an industry buzzword that analysts and marketers spawned to captivate the
attention of CIOs everywhere? Although the IT community’s coverage of DevOps may
border on the edge of sensationalism, that is more a function of the benefits that DevOps
can provide rather than mere industry hype.

DevOps is a term given to a set of practices, ideals, and tools that are helping organiza-
tions of various sizes deliver value on their IT investments at quicker rate. What exactly
does this mean?

Think of the amount of time and the number of processes in your organization that are
required to take a software project from the concept phase through software development
and on to production deployment. The longer this process takes, the longer your IT
organization takes to demonstrate value to the overall company. Thanks to the ubiquitous
availability of technology, customers are expecting IT services to be delivered with the
ease of a mobile application store. They will not wait years for a feature to be imple-
mented, and a company that responds slowly to customer demands may find it hard to be
successful long term.

How can DevOps solve the customer delivery speed issue? Configuration management
technology, for example, can prevent server configuration drift and increase the
speed at which new servers can be brought online to handle rapid growth in customer
requests. Continuous integration can ensure that automated testing is performed on
your software’s source code as developers make their commits. These are just a couple
examples of technologies and techniques that we discuss in this book.

Web-scale IT organizations like Etsy, Netflix, and Amazon Web Services are seen as the
poster children for DevOps. However, the number of attendees at Gene Kim’s DevOps
Enterprise Summit attests to the value that DevOps can bring to traditional IT organiza-
tions as well.

So, brace yourself, DevOps is coming. The good news is that you can be empowered to
contribute to the success of DevOps initiatives in your IT organization. This book aims
to cover not just the high-level ideas of DevOps, but it also provides hands-on examples of
DevOps tools and techniques in action.

xxviii About This Book

About This Book

In our experience, DevOps concepts and tools can provide significant improvements in
IT operations. While large IT organizations like Amazon and Rackspace are reaping the
benefits of implementing DevOps in their environments, Enterprise IT organizations are
still getting acquainted with DevOps practices.

This book aims to give the reader hands-on examples of the DevOps tools that IT organi-
zations are using to achieve success.

You the Reader

This book is intended for system administrators with experience using VMware’s vSphere
hypervisor as well as Linux operating systems. We will provide step-by-step introductions
to the use of software solutions used by DevOps practitioners with additional resources
indicated in each chapter for follow-up study.

What This Book Covers

The topics this book covers begin with a high-level overview of what you, the virtual-
ization specialist, can do to become knowledgeable on DevOps practices. Then, the book
proceeds to discuss various tools that are used by DevOps practitioners.

Chapter 1 covers a discussion of DevOps concepts, including defining what this term
means and why practices associated with DevOps can help your IT organization be more
successful.

Chapter 2 introduces some of the popular tools for DevOps practitioners. Chapter 3
prepares us for setting up test environments to use with the sample code in this book.

Chapters 4–6 cover the Puppet configuration management solution, including a basic
introduction, a multitier application deployment, and coverage of Puppet’s integrations
with managing VMware vSphere servers and virtual machines.

xxixWhat This Book Covers

Chapters 7–9 cover the Chef configuration management solution, including a basic intro-
duction, common system management tasks, and coverage of Chef’s integrations with
managing VMware vSphere environments.

Chapters 10 and 11 introduce you to the Ansible configuration management and orches-
tration solution. These chapters cover the foundational knowledge of this technology and
various application deployments.

Chapter 12 covers the foundations of PowerShell Desired State Configuration (DSC),
including architecture and primary use cases for this new feature of Microsoft Windows
PowerShell. Sample code is provided to demonstrate the basic functionality of DSC as
well as explanations of the various components that make up the feature.

Chapter 13 explores ways that VMware administrators may look to implement PowerShell
DSC in their environment. This chapter targets specifically use cases where a VMware
administrator, who may not be the Windows system administrator as well, can provide
additional value and capabilities using DSC. Various methods are discussed in this chapter,
with recommendations and limitations of each method highlighted and discussed where
appropriate.

Chapter 14 discusses an application deployment paradigm that is relatively new to enter-
prise IT organizations: the use of Linux containers. The chapter discusses the basics of the
Docker container management system, with hands-on examples.

Chapter 15 takes the Linux container discussion further with coverage of Google Kuber-
netes, an open source tool for managing containers at scale in your data center.

Chapter 16 describes how to set up, configure, and use Razor, a full lifecycle automated
provisioning tool that combines install and server management with configuration tools.
Chapter 16 walks you through all the key concepts and components of Razor. It starts
out by describing how Razor works and how to best get started using it. Once you know
what Razor is and how to use it for automated provisioning combined with DevOps tools,
you will learn what the different functional components of Razor are. Finally, the chapter
covers how best to install and configure Razor.

Chapter 17 gives an introduction to the Elasticsearch, Logstash, and Kibana, also known
as ELK, stack. Each of these tools can be used standalone, but the use of all of them
together makes a perfect combination for managing logs. This chapter covers each tool
individually and how best to combine them and to harness their power for increased
productivity while managing the logs.

Chapter 18 features Jenkins for continuous integration. It discusses how to automate
delivery of code once it is committed to the source code repository.

xxx What This Book Covers

Chapter 19 discusses VMware’s own DevOps initiatives, including integrations with
VMware vRealize Automation with DevOps tools and the new VMware vRealize Code
Stream solution.

This page intentionally left blank

Chapter 3

Setting Up a DevOps
Configuration Management Test
Environment

Before we dive headfirst into implementing DevOps tools, let’s examine how we can set
up our test environments to adequately prepare ourselves. We’ll also take a look at how we
can start treating our infrastructure instructions just like a developer’s source code.

Topics covered in this chapter include the following:

 ■ Environment provisioning with AutoLab

 ■ Environment provisioning with Vagrant

 ■ Creating images with Packer

 ■ Managing source code

 ■ Git source code control

Environment Provisioning with AutoLab
AutoLab is a vSphere test lab provisioning system developed by Alastair Cooke and Nick
Marshall , with contributions from others in the VMware community. AutoLab has grown
so popular that at least one cloud provider (Bare Metal Cloud) allows you to provision
AutoLab installations on its servers. As of this writing, AutoLab supports the latest release
of vSphere, which will enable you to run a virtual lab that includes VSAN support. If
you’re unfamiliar with the tool, head over to http://www.labguides.com/ to check out
the AutoLab link on the home page. After filling out the registration form, you will have
access to the template virtual machines (VMs) to get your own AutoLab setup started.
The team has a helpful selection of how-to videos on the AutoLab YouTube channel for
anyone needing extra assistance.

http://www.labguides.com/

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment18

Environment Provisioning with Vagrant
Vagrant is an environment provisioning system created by Mitchell Hashimoto and
supported by his company, HashiCorp. Vagrant can help you quickly bring up VMs
according to a pattern defined in a template file known as a Vagrantfile. Vagrant can run
on Windows, Linux, and OS X (Mac) operating systems and supports popular desktop
hypervisors such as VMware Workstation Professional, VMware Fusion Professional,
and VirtualBox. Cloud providers such as Rackspace and Amazon Web Services can be
used as well for your test environment. The Vagrant examples in this book are based on
the VMware Fusion plugin, but the examples we provide can, with a few modifications,
be used for other hypervisors and for cloud platforms. If you will be following along with
the examples in this chapter, make sure to create a new directory for each Vagrantfile that
you create.

NOTE

The VMware Fusion and Workstation providers require the purchase of a license for the
plugin. See http://www.vagrantup.com/vmware for more details.

After installing Vagrant and the VMware Fusion or Workstation plugin, you need to find
a Vagrant box to use with the system. A Vagrant box can be thought of as a VM template:
a preinstalled operating system instance that can be modified according to the settings
that you specify in your Vagrantfile. Vagrant boxes are minimal installations of your
desired operating system with some boxes not being more than 300 MB. The idea is to
present a bare-bones operating system that is completely configured by your automation
tool of choice.

Some box creators opt to include the binaries for popular Vagrant-supported provisioners
like Puppet, Chef, and so on, but other box creators do not, and users need to use the shell
provisioner to deploy their favorite configuration management solution before it can be
used. The box creation process is beyond the scope of this book. However, if you would
like to develop your own boxes, there are tools like veewee and Packer (discussed later in
this chapter) available that you can try out.

In previous versions of Vagrant, you had to specify the URL of the box file that you want
to use when you initialized your vagrant environment:

vagrant init http://files.vagrantup.com/precise64_vmware.box

If the box file is located on your computer, you can specify the full path to the file instead
of a URL.

http://www.vagrantup.com/vmware

Environment Provisioning with Vagrant 19

Starting with Vagrant version 1.5, HashiCorp introduced the Atlas system (formerly
known as Vagrant Cloud), an online repository that Vagrant will search for boxes if you
use the account and box name of an image stored on its site:

vagrant init hashicorp/precise64

It is good to know both types of syntax because it will be necessary to use the old method
for any boxes not hosted on Atlas. The online site is a great place to search for boxes for
various operating systems instead of building your own.

The vagrant init command will automatically create a simple Vagrantfile that will
reference the box that you specify. Listing 3-1 shows the default Vagrantfile that is
generated with the command listed above.

Listing 3-1 Default Vagrantfile

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're
doing!

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "hashicorp/precise64"

end

You’ll notice that to save space I remove the comments that automatically get generated
when you initialize your Vagrantfile. However, if you look in the comments, you’ll see
some helpful tips for using configuration management technology to make automated
changes to your VM when it boots. As of today, the available options for provisioning your
VM include basic shell scripts and configuration management tools such as Puppet, Chef,
and Ansible. This is an immense value because your development and test environment
can be stood up with the exact same settings that are used in your production deployments.
This should cut down on the “well, it worked on my laptop” discussions that may go back
and forth during a deployment mishap. Docker support was also added so that the provi-
sioner could install the Docker daemon automatically and download the containers that
you specify for use.

With your Vagrantfile in place, you can now boot your first test environment by using the
following command:

vagrant up --provider=vmware_fusion

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment20

NOTE

If you’re using VMware Workstation on the Windows or Linux platform, you would use a
different provider: vmware_workstation.

You can now log in to the VM using the following command:

vagrant ssh

Take a look at a folder in your VM called /vagrant. You’ll see that it contains your
Vagrantfile! It’s a shared folder that is automatically created for the VM so that you can
easily transfer files to and from your desktop without having to use SCP, FTP, and so on.

If you examine the operating system resources, you’ll notice that you have one vCPU and
512 MB of RAM. This may not be sufficient for the application that you want to run. So,
we will take a look at how to modify the resources allocated to your Vagrant VM.

First, let’s destroy this VM so that we can move on with the other configuration options.
You can do this exiting the VM and then using the following command:

vagrant destroy

Vagrant will ask you to confirm that you really want to destroy this VM. Alternatively, you
can use the -f option to skip that confirmation.

Listing 3-2 shows that Vagrant can modify the VM’s VMX file to make the changes that
we need. We use the config.vm.provider block of code to achieve this. By the way, the
memsize attribute’s units are megabytes. Notice that we are creating an object named
v enclosed in vertical lines to change settings just for this VM. This object name has
local scope only to this config.vm.provider statement, and it can be used again when
defining other VMs, as you’ll see in later examples. After executing vagrant up, the VM
will be created with the desired attributes. At the time of this writing, the size and number
of virtual disks cannot be controlled, but your Vagrant VMs will start with 40 GB of
thin-provisioned storage.

Listing 3-2 Changing Default Vagrantfile

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're
doing!

VAGRANTFILE_API_VERSION = "2"

Environment Provisioning with Vagrant 21

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.box = "hashicorp/precise64"

 config.vm.provider :vmware_fusion do |v|

 v.vmx["memsize"] = 1024

 v.vmx["numvcpus"] = 2

 end

end

It is great that we can modify the VM’s resources. What about a more complex setup,
like multiple VMs? Vagrant supports such a topology as well. Of course, make sure that
you have sufficient CPU cores and RAM to support the topology that you want to use!
Multi-VM setups would be useful for testing realistic deployments with a separate database
server and front-end server, for example. Listing 3-3 shows an example of a multi-VM
Vagrantfile setup.

Listing 3-3 Multimachine Vagrantfile

-*- mode: ruby -*-

vi: set ft=ruby :

Vagrantfile API/syntax version. Don't touch unless you know what you're
doing!

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.define :first do |vm1|

 vm1.vm.box = "hashicorp/precise64"

 vm1.vm.hostname = "devops"

 vm1.vm.provider :vmware_fusion do |v|

 v.vmx["memsize"] = 1024

 v.vmx["numvcpus"] = 2

 end

 end

 config.vm.define :second do |vm2|

 vm2.vm.box = "hashicorp/precise64"

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment22

 vm2.vm.hostname = "vmware"

 vm2.vm.provider :vmware_fusion do |v|

 v.vmx["memsize"] = 1024

 v.vmx["numvcpus"] = 2

 end

 end

end

The deployment utilizes multiple config.vm.define blocks of code: one for each VM
that we are creating. :first and :second are labels that Vagrant will use to identify the
two VMs when you run commands like vagrant status. These labels will also be used
to connect to the VMs via Secure Shell (SSH)—for example, vagrant ssh first. If
you’re familiar with Ruby, you’ll notice that these labels are Ruby symbols. The names in
the enclosed pipe symbols (for example, |vm1|) denote the object whose information that
vagrant is using to build and define your VM. The object name can be the same as the
symbol (for example, first.vm.box…), but it doesn’t have to be.

Using this syntax can be a bit tedious when you want to deploy more than two VMs.
Thankfully, because Vagrant is written in Ruby, you can use the language’s features such
as lists, loops, and variables to optimize your Vagrantfile code. Listing 3-4 shows some
optimization tips that I learned from Cody Bunch and Kevin Jackson in their OpenStack
Cloud Computing book

Listing 3-4 Optimized Multimachine Vagrantfile

-*- mode: ruby -*-

vi: set ft=ruby :

servers = ['first','second']

Vagrant.configure("2") do |config|

 config.vm.box = "hashicorp/precise64"

 servers.each do |hostname|

 config.vm.define "#{hostname}" do |box|

 box.vm.hostname = "#{hostname}.devops.vmware.com"

 box.vm.provider :vmware_fusion do |v|

 v.vmx["memsize"] = 1024

 v.vmx["numvcpus"] = 2

 end

 end

 end

end

Creating Images with Packer 23

At the top of the file, I create a Ruby list called servers whose elements are the names
of the VMs that I want to create. Then I use the Ruby list iterator called each to loop
the execution of the VM definition for each element in the servers list. If we ever want to
increase the number of VMs that are deployed, we just add more entries to the list. Not
every VM needs to have the same set of resources, and we can use if statements within the
box.vm.provider code block to be selective:

 if hostname == "first"

 v.vmx["memsize"] = 3128

 v.vmx["numvcpus"] = 4

 elsif hostname == "second"

 v.vmx["memsize"] = 1024

 end

There are many more features in Vagrant that we will not be covering in this book, but with
just these simple commands, you can build the test environment setups that we will be using
in this book. If you’d like to learn more about Vagrant, be sure to check out the Vagrant
website (http://www.vagrantup.com) and Mitchell’s book, Vagrant: Up and Running.

Creating Images with Packer
Packer is another HashiCorp product that helps you to develop your own boxes for
multiple platforms. Let’s say you wanted to develop a VM image for Workstation/Fusion
and ESXi from the same base box. Packer makes that possible.

Packer uses a JavaScript Object Notation (JSON) file format for you to specify how your
Vagrant box will be configured (disk size, memory, and so on), and it will perform the
initial OS deployment on your behalf once you specify the relevant automation parameters
(for example, Ubuntu preseed files).

Packer is not just useful for creating Vagrant boxes; its main purpose is to produce image
files that are compatible with popular cloud provider formats (OpenStack, AWS, and so
forth). However, Packer includes a builder capability to automatically output Vagrant
boxes that are compatible with VMware Fusion/Workstation and VirtualBox. Just like
with Vagrant, popular configuration management technologies like Puppet and Chef can
be used to customize the image that is produced.

Although we will not be discussing Packer in depth, we wanted you to be aware of it if you
would like to experiment on your own with building custom Vagrant boxes. You can find
more information about Packer at http://www.packer.io. If you would like to see examples
of Packer definition files that you can use to develop your own VMs, the Chef team
maintains a repository called bento on their Github account. https://github.com/chef/bento

http://www.vagrantup.com
http://www.packer.io
https://github.com/chef/bento

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment24

Managing Source Code
Source code management (SCM) is an essential element in a DevOps environment. Think
about it: If you will be turning your infrastructure into code, it is important that there is a
way to review any changes and go back to different versions of a file in case new changes
introduce problems (for instance, periodic instabilities in the best case, outages in the
worst case). Some might think the “easy” way would be to make multiple copies of a file
each with a unique name (Vagrantfile1, Vagrantfile2, Vagrantfile01012015, and so on),
but then you have to deal with the hassle of renaming the file when you want to use it and
trying to remember what was different about all the files.

The various teams in the development organization are most likely using some SCM
system already to manage their work (for example, software developers storing their source
code, QA teams managing their test scripts). As you begin using SCM technologies, it
would be worthwhile discussing best practices with these other groups.

There are many SCM solutions, including SVN, Mercurial, and so on. Git happens to be
one of the more popular SCM systems in the DevOps community. So, for this book, we
use Git.

Using Git
Git is a distributed version control system, which means that you make a local copy of
the central repository instead of just checking out individual files. Local commits can be
synchronized back to the central server so that there is consistency in the environment,
and users can always pull the latest version of the source from the central repository. This
architecture differs from traditional source code management systems, in which only the
central server ever has a complete copy of the repository.

As you work through the examples in this book, we recommend using one of the freely
available online Git repositories, such as Bitbucket, GitHub, and Gitorious , as your
central location for storing your code. Each site has its own unique features. For example,
BitBucket allows unlimited free private repositories. GitHub is the online repository
system that this book’s authors used for their code. However, feel free to use whichever
system meets your needs, as the methods by which you obtain code (clone/pull) and store
code (push) are universal across any Git system.

NOTE

For projects in your production environment, consult with your legal department before
considering using a public repository site. Although many offer private repository capabil-
ities, your company leadership may prefer to use an internal central Git server.

Managing Source Code 25

Creating Your First Git Repository

First, install Git using your favorite package manager (for example, homebrew or macports
on Mac OS X, apt-get on Ubuntu/Debian, yum on Red Hat/CentOS/Fedora). For
Windows users, the popular online repositories like GitHub and BitBucket offer software
clients that make it easy to interact with their online repository system. Alternatively, the
http://git-scm.com site maintains a standalone install of the Git binary for Windows.

If you are using Linux or Mac OS X, you can open a terminal window to work with the
following examples. Windows users must use the special shell that gets installed with
whichever Git client that you use. The example syntax will be Linux/Mac-based, but the
commands should be equivalent for the Windows platform.

Before we start writing any code, we need to set a couple global variables so that Git
knows who we are. It’s not as critical for local copies of the repository, but when we start
pushing our code to a remote server, it will be very critical. The two global variables are
your email address and username:

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

As a matter of fact, if you try using Git and making your first commit without setting these
variables, Git will prompt you to set them before you can continue.

If you followed along with the earlier Vagrant examples, you already have a directory of
content that we can work with. Otherwise, create a new directory and create a text
file in it. From here on out, make sure that you are in that directory on your command-
line prompt.

First, let’s initialize this directory to have a Git repository:

git init

If you do a listing of your directory with the option to show hidden files (ls -a on Linux/
Mac or dir /A:H on Windows), you’ll see that there is a hidden directory called .git. This
directory contains your repository’s files and settings specific to this repository. These
local settings are combined with the global settings that we set earlier, and we can confirm
this by using the following command:

git config –l

If you want to see the state of the files in your directory (has the file been added to the
repository? Are there any changes since the last command? and so on), you can type git
status and see output similar to what is shown in Listing 3-5.

http://git-scm.com

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment26

Listing 3-5 Git Repository Status

git-test $ git status

On branch master

Initial commit

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 .vagrant/

 Vagrantfile

nothing added to commit but untracked files present (use "git add" to track)

The last line is most important; it tells us that our files need to be tracked for the repos-
itory to manage it. This is important to take note of as putting files into the directory does
not automatically get it tracked by the SCM tool. This feature prevents us from tracking
junk files in the repository and wasting space.

Let’s tell Git to track our Vagrantfile:

git add Vagrantfile

However, the .vagrant/ directory is not essential to be tracked because it only contains
temporary files that Vagrant uses to set up your VM. We can explicitly tell Git to ignore
this directory by creating a .gitignore file . Use your favorite text editor and create your
.gitignore file with a single entry:

.vagrant/

Alternatively, you could use a simple echo command to accomplish the same thing.
(Windows users will need to use the special Git Shell binary that is included with their Git
install for this to work properly.)

echo '.vagrant/' > .gitignore

If you run the git status command again, you’ll see that Git informs us about the
.gitignore file as well. What gives? Remember that Git needs to be told what to do with
any files or directories that the repository can see including the .gitignore file. Well, there
are two ways to deal with your .gitignore file:

 ■ Add the .gitignore file itself to the list of files and directories to ignore.

 ■ Tell Git to track the .gitignore file as well.

Managing Source Code 27

I will use the second option so that anyone else who may use my repository will be able to
ignore the appropriate files as well:

git add .gitignore

Now, if we check the status of the repository again, we should see output similar to what is
shown in Listing 3-6.

Listing 3-6 Updated Repository Status

git-test $ git status

On branch master

Initial commit

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore

 new file: Vagrantfile

All the files in our directory are either ready to be committed or added to the .gitignore
list of nonessential files and directories. So, all that’s left to do is to commit the repository
changes:

git commit

A file editor will automatically be opened so that you can enter details about the files that
you are committing. (By default, vi is used.) See Listing 3-7.

Listing 3-7 Your Commit Message

git-test $ git commit

 1 This is my first commit.

 2 # Please enter the commit message for your changes. Lines starting

 3 # with '#' will be ignored, and an empty message aborts the commit.

 4 # On branch master

 5 #

 6 # Initial commit

 7 #

 8 # Changes to be committed:

 9 # new file: .gitignore

 10 # new file: Vagrantfile

 11 #

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment28

You must enter a message; otherwise, the commit will be canceled. If you are not familiar
with vi, press I, type some text, press the Escape key, and then type :wq and press Enter. If
you don’t want to deal with the text editor, you can use the short form of the git commit
command with the -m option to enter your commit message on the same line:

git commit -m "This is my first commit."

If the commit is successful, you should see the following output:

[master (root-commit) d962cd6] This is my first commit.

 2 files changed, 119 insertions(+)

 create mode 100644 .gitignore

 create mode 100644 Vagrantfile

Working with a Central Git Server (a.k.a. A Remote)

If you have opened an account on either GitHub, BitBucket, or whatever public Git repos-
itory site that you prefer, you will need to provide your computer’s SSH public key to the
site so that it can verify who you are. Each site may have a different way of doing this. So,
consult the documentation for the appropriate steps. For Windows users, this is typically
handled for you automatically by installing the client software for the site. Mac and Linux
users must generate an SSH public key by using the ssh-keygen command.

Once your SSH public key is properly configured on your remote, it’s time to create the
repository on the remote site that you will be storing your files into: a process known as
pushing . When you create your remote repository on the website, you should skip the
automatic generation of the README file. After the repository is created, the site will
provide you with a link that you can use to tell your local repository what is the location of
your remote server, often labeled as origin.

In my setup, I gave the same name to my repository as I did to my local repository. This is
optional, and the names can differ. I can use the git remote command with the link that
GitHub gave me to update my local repository settings:

git remote add origin git@github.com:DevOpsForVMwareAdministrators/git

If I use the git config -l command , I will see new data about the location of my remote
server:

remote.origin.url=git@github.com:DevOpsForVMwareAdministrators/git-test.git

remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

I can now push the files from my local repository to my remote repository:

git push origin master

Managing Source Code 29

I should see output similar to what is shown in Listing 3-8.

Listing 3-8 Git Remote Push Results

git-test $ git push origin master

Warning: Permanently added the RSA host key for IP address '196.30.252.129'
to the list of known hosts.

Counting objects: 4, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (4/4), 2.13 KiB | 0 bytes/s, done.

Total 4 (delta 0), reused 0 (delta 0)

To git@github.com:DevOpsForVMwareAdministrators/git-test.git

 * [new branch] master -> master

Figure 3-1 shows what the repository looks like on GitHub after I push the first commit to
the remote server.

Figure 3-1 Remote Git repository

CHAPTER 3 Setting Up a DevOps Confi guration Management Test Environment30

If there is a remote repository that you want to use, like the samples we’re providing for
this book, you can either use CLI-based methods or GUI-based methods to clone the
remote repository to your local machine. Your remote repository system should have
options similar to what is pictured on the lower-right corner of Figure 3-1.

The GUI-based methods will differ according to the site you are using. However, on
GitHub, you can either use the Clone in Desktop button if you are using its Mac or
Windows client, or you can use the Download Zip button, which will be a simple zip file
that contains all the source code of the repository. If you are using the Windows or Mac
platform, the Clone in Desktop option is recommended because it will create your Git
remote link to the remote repository automatically.

The CLI-based method involves taking the SSH or HTTP clone URL and using the git
clone command , similar to the following:

git clone https://github.com/DevOpsForVMwareAdministrators/git-test.git

After executing this command, Git will create a directory with the name of the repository
(in this case, git-test) and copy the contents of the repository into that directory. You
can begin using and updating the code, and the Git remote link will be created for you
automatically just like with the Clone in Desktop button mentioned earlier. If you have
permission to make changes to the remote repository, you can perform a Git push to
forward any local changes to the remote repository. Requesting to make changes to others’
repositories is not within the scope of this book; but if you are interested in the topic, you
can research repository forks and pull requests. The implementation of these features may
differ between the various public Git repository sites. So, check the appropriate documen-
tation for the site that you are using.

If you are having issues working with the remote repository setup, an alternate workflow
consists of the following:

 1. Before you begin your work, create an empty repository on your remote Git site of
choice (for instance, GitHub).

 2. Clone the empty repository to your local machine using the GUI or CLI methods
discussed earlier.

 3. Begin working in the cloned directory and perform your commits there. You can
then use the same git push command introduced earlier to forward your source
code commits to the remote repository.

https://github.com/DevOpsForVMwareAdministrators/git-test.git

Managing Source Code 31

Summary
We discussed the foundational tools that we will use throughout the book to build our
test environments, namely Vagrant and Git. Vagrant is useful for building your test
environments quickly, and Git will help you keep track of changes that you make to your
environment definitions in case you need to undo a change. In the next chapter, we begin
discussing the Puppet configuration management technology with hands-on examples.

References
 [1] http://docs.vagrantup.com/v2/

 [2] https://help.github.com/

http://docs.vagrantup.com/v2/
https://help.github.com/

This page intentionally left blank

This page intentionally left blank

Index

Symbols

--link environment variables in Docker
(listing 14-2), 207

| (pipeline), in PowerShell, 185
&& symbol, combining commands

(Docker), 210

A

acceptance testing, 306
actions (Razor), 238
ActiveState Stackato, 231
activity log for nodes, viewing (listing

16-7), 243
ad hoc command execution (Ansible),

142-143
agility, 310-311
Anderson, David J., 11
another_tag.json fi le (listing 16-24), 255
another_tag.json fi le, alternate version

(listing 16-25), 256

Ansible, 14, 139
architecture, 139-141. See also LAMP

deployment (Ansible)
groups, 142
modules. See modules (Ansible)
playbooks, 144-151
roles. See roles (Ansible)

ansible-doc command, 142
Ansible Galaxy, 156-157
ansible-galaxy init web utility, 153
ansible-galaxy install command, 157
ansible-playbook command, 146, 167
Ansible Tower, 140
ansible-vault encrypt command, 164
Apache Mesos, 231
apache.yml (listing 10-2), 145
apache.yml fi le, updated (listing 10-7), 153
APIs

Chef servers, 87
Razor, 257-258

Application Services, 313-315
Puppet integration, 315-321

application tier330

application tier
Ansible, 160-162
Puppet, 68-69

applications
defi ned, 199
dependencies, 200
isolation, 200. See also Linux

containers, 200
multitier deployment, 226-230

architecture. See also workfl ow
Ansible, 139-141. See also LAMP

deployment (Ansible)
Chef provisioning, 134-135
Jenkins, 292-293
PowerShell DSC, 175-178
Puppet, 33-37. See also LAMP

deployment (Puppet)
assigning servers to environments (Chef),

118-119
Atlas, 19
attributes

Chef, 88
Puppet resources, 38

Auto Deploy, 13
AutoLab, 17
automation, 2

vRealize Application Services, 313-321
vRealize Automation, 312-313
vRealize Code Stream, 321-327

B

base image roles (Ansible), 164-166
before metaparameter, 39-41
bento repository, 23
Berkshelf, 105
Bitbucket, 24
boot_install.erb fi le for ESXi 5.5 (listing

16-4), 240

bootstrapping
nodes (Chef), 109-111
virtual machines with Knife, 130-134

brokers, adding to collections (Razor),
246-251

build artifacts (Jenkins), 304-306
build job defi nition (Jenkins), 298-302
Bunch, Cody, 22

C

CAMS (culture, automation, measurement,
and sharing), 2

case conditional statement, 44-45
CD (continuous delivery), defi ned, 322
CD (continuous deployment)

CI (continuous integration) systems
versus, 290

defi ned, 322
central Git server access, 28-30
chaining arrows, 41
checksum fi les, creating in PowerShell

DSC, 183
Chef, 13-14, 85-86

Ansible versus, 140
attributes, 88
ChefDK, installing, 90-91
clients. See clients (Chef)
cookbooks. See cookbooks (Chef)
drivers, 135
environments. See environments (Chef)
Knife, 92-94
Knife plug-ins, 126-134
nodes. See nodes (Chef)
philosophies behind, 86-87
recipes. See recipes (Chef)
resources, 88, 134
roles, 88

331conditional expressions

installing, 109-111
running, 113-115

clients (Docker), 204
clients (Razor), 259
cloning virtual machines with Knife,

130-134
cloud computing, stages of, 309
Cloud Foundry, 230
cloud provisioner (Puppet), 73

Puppet master preparation, 74-76
VM template preparation, 73

cloud provisioning in Puppet, 37
CloudForms, 13
cluster deployment (CoreOS), 217-222
cluster management utilities

(Kubernetes), 216
cluster nodes (Kubernetes), 223-225
cmdlets (PowerShell DSC), native, 175
Cobbler, 13
Code Stream, 321-327
collections (Razor), 238

building, 245-257
nodes, 241-245
tasks, 238-240

command module (Ansible), 144
commands

Ansible, ad hoc execution, 142-143
Razor, 236-238

comments
Ansible, 148
Dockerfi le, 209

commit message (listing 3-7), 27
committing version control changes, 54
community cookbooks (Chef), 105
complexity of applications, 200
conditional expressions

Ansible, 146-151
Puppet manifests, 43-46

run list, 88
servers. See servers (Chef)
terminology, 87-89

Chef brokers, 246
confi guration fi le (listing 16-15), 249
sample fi le (listing 16-14), 248

chef-client --why-run command, 115
chef-client -z vsphere-metal.rb machine.rb

command, 138
chef command, 92
ChefDK, 90

installing, 90-91
chef gem install chef-provisioning chef-

provisioning-vsphere command, 135
chef gem install knife-vsphere

command, 128
chef gem install knife-windows

command, 93
chef gem install plugin command, 126
chef gem list knife-windows command, 92
Chef provisioning, 125, 134

architecture, 134-135
installing, 135
node confi guration, 136-138

chef-provisioning-vsphere driver, 135
Chef Server, 89
CI (continuous integration), 5-6, 289-290.

See also Jenkins
CD (continuous deployment) systems

versus, 290
defi ned, 321
QA engineers and, 307
test automation, 290-292

classes (Puppet), 46-48
defi ned types versus, 78

clients, searching index (Elasticsearch)
with, 274-275

clients (Chef)
endpoint processing, 87

332 confi guration fi les

etcd, 214
pods, 214
workfl ow, 214-215

containers (Linux), 200-201
control groups, 201
management, 203
namespaces, 201-202

content attribute, 54
continuous delivery (CD), defi ned, 322
continuous deployment (CD)

continuous integration (CI) systems
versus, 290

defi ned, 322
continuous integration (CI), 5-6, 289-290.

See also Jenkins
continuous deployment (CD) systems

versus, 290
defi ned, 321
QA engineers and, 307
test automation, 290-292
tools, 14

control groups (Linux), 201
controllers (Ansible), 139
Conway’s Law, 311-312
cookbooks (Chef), 86-88

community cookbooks, 105
root password management, 108, 115-116
time management, 105-107, 111-113

Cooke, Alastair, 17
Copy-VMGuestFile cmdlet, 195-196
CoreOS

as container-optimized, 214
cluster deployment, 217-222

cron scheduler, 300
Crowbar, 13
culture, 2
curl command, 266-267
custom data views (Kibana), 286

confi guration fi les
etcd server (listing 15-1), 217
hiera.yaml (listing 5-6), 65
Kubernetes server (listing 15-2), 218

confi guration management tools, 14
containers (Docker) versus, 211
Puppet. See Puppet

confi guration resources (PowerShell DSC).
See resources (PowerShell DSC)

confi guration.yaml (listing 16-15), 249
confi gurations (PowerShell DSC), 178-180
confi guring

etcd server, 222
input data (Logstash), 276-278
Kibana, 281-285
knife.rb fi le, 128-130
nodes with Chef provisioning, 136-138
servers (Jenkins), 296-298
Vagrantfi les, 20

confl icts of application dependencies, 200
connecting to running containers (Docker),

206-208
Console (Puppet Master component), 36
container-optimized operating systems, 213
containers (Docker)

building and distributing, 208
confi guration management tools

versus, 211
connecting to running, 206-208
deployment, 205-206
Dockerfi le, 209-210
Docker Hub, 210-211
multitier application deployment,

226-230
orchestration, 213-214
viewing running, 206
virtual machines versus, 211

containers (Kubernetes)
deployment. See deployment

(Kubernetes)

333DNS services for Razor

community cookbooks (Chef), 105
confl icts, 200

deployment
Ansible. See LAMP deployment (Ansible)
containers (Docker), 205-206
Jenkins, 293-296
multitier applications, 226-230
profi les, 314
Puppet, 34-37. See also LAMP

deployment (Puppet)
scripted with PowerCLI, 190-192
server. See Razor

deployment (Kubernetes)
cluster management utilities, 216
CoreOS cluster, 217-222
etcd server confi guration, 222
Kubernetes cluster, 223-225
Kubernetes service deployment, 225-226
Kubernetes workload deployment,

226-230
network overlays with fl annel, 223
software requirements, 215

Desired State Confi guration (DSC). See
PowerShell DSC

development team, QA engineers on, 306
DevOps

Conway’s Law, 311-312
defi ned, 309
emergence of, 309-310
knowledge development, 7
principles, 1-3

DHCP (Dynamic Host Confi guration
Protocol), 217

for Razor, 260
distribution of containers (Docker), 208
distributions of Puppet, 33
dnsmasq.conf fi le (listing 16-29), 261
DNS services for Razor, 260

custom metadata, adding to nodes
(Razor), 243

D

daemons (Docker), 204
dashboards. See Kibana
data

adding to index (Elasticsearch), 268
custom viewing (Kibana), 286
input confi guration (Logstash), 276-278
output (Logstash), 280
retrieving from index

(Elasticsearch), 268
searching in index (Elasticsearch),

269-271
transforming with fi lters (Logstash),

279-280
data separation (Puppet), 58-59

Hiera, 63-67
node classifi cation, 67
params class, 59-63

database tier
Ansible, 162-164
Puppet, 70

Debian.yml variable fi le (listing 10-6), 150
default Vagrantfi le (listing 3-1), 19
default Vagrantfi le, changing (listing

3-2), 20
defaults folder (Ansible roles), 152
defi ned types (Puppet), 78
DeHaan, Michael, 13, 139
Deis, 231
deleting

existing node (listing 16-8), 244
virtual machines (listing 11-12), 170

dependencies
application complexity, 200

334 Docker

encryption in Ansible, 164
endif statement, 156
endpoint processing (Chef), 87
Enterprise Chef, 89
environment provisioning

AutoLab, 17
Vagrant, 18-23

environments (Chef), 88, 115
assigning servers to, 118-119
creating fi les, 116-117
uploading fi les, 117-118

environments (Puppet), test lab preparation,
37-38

ETCDCTL_PEERS environment
variable, 222

etcd distributed key-value store, 214
etcd server confi guration, 217, 222
extending Knife, 125

F

Fabric, 14
facter binary (Puppet), 43
facter command, 43
facts (Puppet), 43
fi les folder

Ansible roles, 152
Puppet, 49

fi lters (Logstash), 278-280
fl annel, network overlays, 223
FLEETCTL_ENDPOINT environment

variable, 222
fl eetctl list-units command, 225-226
Flynn, 231
.fog fi le sample (listing 6-1), 74
force parameter, 171
Foreman, 13
fragile boxes, 6

Docker, 203
client, 204
containers. See containers (Docker)
daemon, 204
index, 205
installing, 203-204
PaaS (platform-as-a-service), 230

docker build command, 210
Dockerfi le, 209-210
docker -h command, 204
Docker Hub, 208-211
docker ps command, 206
docker push command, 211
docker run command, 205-207
docker version command, 204
documents (Elasticsearch), 267
downloading MySQL module, 70
drivers (Chef), 135
DSC (Desired State Confi guration). See

PowerShell DSC
Dynamic Host Confi guration Protocol

(DHCP), 217
for Razor, 260

E

editing run list (Chef), 111-113, 119-120
Elasticsearch, 15, 265

documents, 267
index. See index (Elasticsearch)
for output (Logstash), 280
plugins, installing, 271-274
rivers, 273-274
starting, 266

elasticsearch-head plugin, 271-273
ELK stack, 265. See also Elasticsearch;

Kibana; Logstash
Enable-PSRemoting cmdlet, 182

335include_vars: keyword

group_by function, 148
groups (Ansible), 142

H

handlers folder (Ansible roles), 152
handlers: keyword, 146
Hashimoto, Mitchell, 18, 23
hello-world recipe (Chef), creating, 94-98
Hiera, 63-67
hiera command, 64
hiera_include command, 67
hiera.yaml (listing 5-6), 65
Hightower, Kelsey, 226
hook feature (Git servers), 300-304
Hosted Chef, 89

assigning servers to environments,
118-119

root password management, 108, 115-116
signing up, 100-102
time management, 105-107, 111-113
uploading environment fi les, 117-118
workstation setup, 102-105

hostname namespace (Linux), 202
hosts: keyword, 145
HTML content creation, adding tasks

(listing 10-10), 156
HTTP access for Razor, 260

I

idempotence (Chef), 86
if conditional statement, 44-45
ignore_errors parameter, 163
image creation (Packer), 23
include apache command, 54
include_vars: keyword, 154

FROM command, 209
future use cases (PowerShell DSC), 197-198

G

Geppetto, 44
Gerrit, 14
Get-Command -Module

PSDesiredStateConfi guration
command, 175

Get-Credential cmdlet, 194
Get-DscResource cmdlet, 182

-Syntax parameter, 185
Get-DSCResource cmdlet, 184
Get-Help New-VM Full command, 192
Get-LocalConfi gurationManager

cmdlet, 177
Ghost, 13
Git, 14, 24

central server access, 28-30
installing, 25
repository creation, 25-28
repository status (listing 3-5), 26
servers, hook feature, 300-304
tracking fi les, 26

git clone command, 30
git confi g -l command, 28
git push origin master command, 28
git remote command, 28
git status command, 25
GitHub, 24
.gitignore fi le, creating, 26
Gitorious, 24
gold images, 5
Graphite, 15
Grok, 278
Grok Debugger, 278
Grok fi lters (listing 17-14), 279

336 index (Elasticsearch)

J

Jackson, Kevin, 22
Jacob, Adam, 85
Java processes, checking running state

(listing 16-30), 262
JavaScript Object Notation (JSON)

format, 227
Jenkins, 14

architecture, 292-293
deployment, 293-296
plug-ins, 295
workfl ow. See workfl ow (Jenkins)

Jinja2 templates, 154-156
JRuby, Razor clients, 259
JSON (JavaScript Object Notation)

format, 227

K

Kanban system, 9-13
Kibana, 15, 265

confi guring, 281-285
custom data views, 286
sharing and saving, 285-286
starting, 280

Kim, Gene, 1
Knife, 92-94

bootstrapping nodes (Chef), 109-111
extending, 125
plug-ins, 126-134
running Chef client, 113-115
searching with, 114

knife bootstrap command, 110
knife cookbook list managedroot

command, 108
knife cookbook list ntp command, 107
knife cookbook site download ntp

command, 106

index (Elasticsearch), 267
adding data, 268
retrieving data, 268
searching data, 269-271
searching with clients, 274-275

indexes (Docker), 205
Docker Hub, 210-211

index.html.j2 web content template (listing
10-9), 155

infrastructure deployment, 5-6
inherits keyword, 61
init.pp fi le (Puppet initialization manifest),

49-51
input confi guration (Logstash), 276-278
installing

ChefDK, 90-91
Chef provisioning, 135
clients (Chef), 109-111
Docker, 203-204
Git, 25
knife-vsphere plug-in, 128
plugins (Elasticsearch), 271-274
Razor, 259-261

Integrated Scripting Environment
(ISE), 178

interpolation, 43
inventory fi le (Ansible), 142
Invoke-VMscript cmdlet, 193-195
IP addresses

DHCP, 217
etcd and Kubernetes servers, 221
network overlays with fl annel, 223
for pods (Kubernetes), 215

ipmi.json fi le (listing 16-10), 245
IPMI support (Razor), 244-245
ISE (Integrated Scripting

Environment), 178
isolation between applications, 200. See also

Linux containers

337listings

kube-scheduler.service (listing 15-3), 224

L

LAMP (Linux-Apache-MySQL-PHP)
deployment (Ansible), 159

application tier, 160-162
database tier, 162-164
role structure optimization, 164-166
web server deployment, 159-160

LAMP (Linux-Apache-MySQL-PHP)
deployment (Puppet), 57

application tier, 68-69
database tier, 70
data separation, 58-67
NTP servers, 70-71

lamp.yml (listing 11-10), 165
LCM (Local Confi guration Manager),

176-178
confi guration example (listing 12-3), 180

lib folder (Puppet), 49
--link environment variables in Docker

(listing 14-2), 207
Linux containers, 200-201

control groups, 201
management, 203
namespaces, 201-202

listings
adding data to index, 268
adding NTP deployment tasks to /etc/

ansible/roles/web/tasks/main.
yml, 160

adding tasks to create HTML
content, 156

alternative Puppet manifest for Apache
web server, 41

another_tag.json fi le, 255
another_tag.json fi le alternate version, 256
Ansible ad hoc command execution, 143

knife cookbook upload managedroot
command, 108

knife cookbook upload ntp command, 106
knife environment from fi le command, 117
knife environment show command, 117
knife-esxi plug-in, 126
knife node list command, 111
knife.rb fi le, confi guring, 128-130
knife ssh command, 113, 120-121
knife user list command, 104
knife vsphere datastore list command, 130
knife-vsphere plug-in, 126

cloning and bootstrapping virtual
machines, 130-134

confi guring knife.rb fi le, 128-130
features, 127
installing, 128
validating confi guration, 130

knife vsphere vm clone command, 131-133
knife-windows plug-in, 92
knowledge development, 7
kubecfg list minions command, 226
kubecfg list pods command, 230
kubecfg list services command, 230
kubecfg utility, 226
kube-kubelet.service (listing 15-4), 224
Kubelet, 215
kube-register service, 226
Kubernetes

deployment. See deployment
(Kubernetes)

etcd, 214
pods, 214-215
workfl ow, 214-215

KUBERNETES_MASTER environment
variable, 226

Kubernetes Proxy, 215
Kubernetes server confi guration fi le (listing

15-2), 218

338 listings

default Vagrantfi le, 19
deleting existing node, 244
details for individual node, 241
Docker container deployment, 205
Docker --link environment variables, 207
Dockerfi le for Nginx container, 209
etcd server confi guration fi le, 217
example of user prompt, 192
fi lter for adding fi elds, 279
formatted search results, 269
formatted search results, searched for

jenkins, 270
Git remote push results, 29
Git repository status, 26
Grok fi lters, 279
hiera.yaml, 65
implementing DSC via Invoke-

VMscript, 196
index.html.j2 web content template, 155
init.pp fi le for Apache web server

module, 50
ipmi.json fi le for setting IPMI

credentials, 245
Jenkins deployment instructions, 294
kube-kubelet.service, 224
Kubernetes server confi guration fi le, 218
kube-scheduler.service, 224
lamp.yml, 165
LCM confi guration example, 180
list Elasticsearch indices, 267
listing Elasticsearch indices, 268
listing existing policies, 253
list of current nodes registered with

Razor, 241
macs_tag.json fi le, 254
making initial change to LCM

confi guration, 178
multimachine Vagrantfi le, 21
multiple outputs, 280

Ansible group_by function for module
execution based on facts, 148

Ansible inventory fi le, 142
Ansible vars_fi les for module execution

based on facts, 149
Ansible when: conditional statement for

module execution based on
facts, 147

Apache deployment tasks stored in
web role1s tasks and handlers
subdirectories, 153

Apache module init.pp with Hiera, 64
API call to view tag details for

ubuntu_small, 258
base role for essential system

packages, 165
base role variable fi les, 165
basic required components (PowerShell

DSC confi gurations), 179
boot_install.erb fi le for ESXi 5.5, 240
built-in Razor tasks, 239
changing default Vagrantfi le, 20
check whether Java process is

running, 262
commit message, 27
confi guration fi le for Chef broker

confi guration.yaml, 249
console log output, 278
creating a VM, 190
creating MOF fi le, 194
creating new index, 267
creating policy, 252
creating Puppet class from existing

manifest, 46
creating Razor broker, 248
creating Razor Chef broker

sample_chef_broker.json fi le, 248
creating tag, 255
db role default value fi le, 164
db role variable fi les, 163

339Logstash

site.pp entries for Puppet agent servers, 62
syslog.conf fi le, 277
tag details for ubuntu_small using Razor

client, 257
tags portion of updated ubuntu_one

policy, 256
testing Elasticsearch status, 266
unformatted log fi le entry, 279
updated Apache module, 60
updated apache.yml, 153
updated repository status, 27
vcenter::host Puppet defi ned type, 79
vCenterText.pp Puppet manifest, 77
vCenterText.pp Puppet manifest with

ESXi shell and SSH enabled, 82
viewing all created brokers, 250
viewing individual details for Puppet

broker, 250
viewing node2s activity log, 243
viewing policy details, 253
VMware virtual machine creation, 166
VMware virtual machine deletion, 170
VMware virtual machine

modifi cation, 170
vmware_esxi.yaml fi le for vmware_esxi

task, 240
web and application pod defi nition JSON

fi le (web-pod.json), 228
web and application service defi nition

JSON fi le (web-service.json), 229
web server playbook: apache.yml, 145

Local Confi guration Manager (LCM),
176-178

confi guration example (listing 12-3), 180
local push mode (PowerShell DSC), 181
log analysis tools, 15
log management. See Elasticsearch; Kibana;

Logstash
Logstash, 15, 265, 275-276

fi lters, 278-280

MySQL deployment tasks in /etc/ansible/
roles/db/tasks/main.yml, 162

MySQL pod defi nition JSON fi le
(mysql-pod.json), 227

MySQL service defi nition JSON fi le
(mysql-service.json, 228

operating system-specifi c YAML
fi les, 66

optimized multimachine Vagrantfi le, 22
original Apache module, 58
parameter class, 59
parameterized role call from database

playbook fi le, 164
PHP deployment tasks in /etc/ansible/

roles/php/tasks/main.yml, 161
PHP role variable fi les, 161
PHP values added to operating system

family Hiera fi les, 68
policy.json, 251
Puppet listing your VMs, 75
Puppet manifest for Apache web

server, 39
Puppet manifest using conditional

statements to support multiple
platforms, 45

Puppet manifest written with chaining
arrows, 41

Razor client help and available
commands, 236

RedHat.yml and Debian.yml variable
fi les, 150

reinstalling existing node, 244
sample dnsmasq.conf fi le, 261
sample .fog fi le, 74
sample init.pp fi le for PHP module, 69
sample JSON query to search for

jenkins, 271
sample puppetbroker.json fi le for

creating Puppet broker, 247
search.rb fi le, 274
setting IPMI credentials on node, 245

340 Logstash

MOAR (manifest order analysis of
resources), 42

modes (PowerShell DSC), 180
local push mode, 181
pull mode, 182-184
remote push mode, 181-182

modifying virtual machines (listing
11-13), 170

modulepath Puppet setting, 48
modules (Ansible)

ad hoc command execution, 142-143
command, 144
ping, 143
setup, 144
user, 144
vsphere_guest, 166-171

modules (Puppet)
application tier, 68-69
creating, 48-50
database tier, 70
data separation, 58-67
defi ned, 33, 46-48
deploying, 71
init.pp fi le, 50-51
Puppet Forge repository, 48
rtyler/jenkins, 293
templates, 51-54
usage example, 54
version control commit, 54
VMware management, 77-83

MOF (Managed Object Format) fi les, 176
creating (listing 13-3), 194

mount namespace (Linux), 202
multimachine Vagrantfi le

listing 3-3, 21
optimizing (listing 3-4), 22

multitier application deployment, 226-230.
See also LAMP deployment (Ansible);
LAMP deployment (Puppet)

input confi guration, 276-278
output, 280
starting, 276

Lucene, 266

M

machine resource (Chef), 134
macs_tag.json fi le (listing 16-22), 254
MAINTAINER command, 209
managed nodes (Ansible), 139
Managed Object Format (MOF) fi les, 176

creating (listing 13-3), 194
manifest order analysis of resources

(MOAR), 42
manifests (Puppet)

conditional expressions and variables,
43-46

defi ned, 33, 39-43
vCenterText.pp (listing 6-3), 77
vCenterText.pp with ESCi shell and SSH

enabled (listing 6-5), 82
manual release, installing Razor, 260
Marshall, Nick, 17
Marvel plugin, 273
master (Puppet), preparing, 74-76
master-agent deployment (Puppet), 34-37
Maven, 295
MCollective (Puppet Master component),

14, 37
measurement, 2
meta folder (Ansible roles), 152
metadata, adding custom to nodes

(Razor), 243
metadata.json fi le, 50
metaparameters, 39
microkernel (Razor), 258
minions (Kubernetes), 226

341platform-as-a-service (PaaS) with Docker

NTP (Network Time Protocol), 70-71
with Chef, 105-107, 111-113
server deployment (Ansible), 160

O

Ohno, Taiichi, 10
Omnibus package (Chef), 90
OpenStack Cloud Computing (Bunch and

Jackson), 22
operating system identifi ers, 168
operating systems, container-optimized, 213
Opscode. See Chef
optimizing

multimachine Vagrantfi les (listing
3-4), 22

role structure (Ansible), 164-166
orchestration of containers, 213-214
order of recipes (Chef), 86
organizational management, 9-13
output (Logstash), 280

P

PaaS (platform-as-a-service) with
Docker, 230

Packer, 23
params class, 59-63
password management (Chef), 108, 115-116
paths for Puppet modules, 51
people versus processes, 311-312
philosophies behind Chef, 86-87
The Phoenix Project (Kim), 1
Pienaar, R. I., 67
ping module (Ansible), 143
pipeline (|), in PowerShell, 185
platform-as-a-service (PaaS) with

Docker, 230

mvn package command, 302, 305
MySQL module, downloading, 70
mysql-pod.json (listing 15-5), 227
mysql-service.json (listing 15-6), 228

N

name: keyword, 145
namespaces (Linux), 201-202

mount, 202
network, 202
UTS, 202

namevar attribute (Puppet), 39
naming conventions, Puppet types, 40
native cmdlets (PowerShell DSC), 175
network namespace (Linux), 202
network overlays with fl annel, 223
Network Time Protocol (NTP), 70-71

with Chef, 105-107, 111-113
server deployment (Ansible), 160

New-DscChecksum cmdlet, 183
New-VM cmdlet, 190
node classifi cation (Puppet), 67
nodes (Chef)

applying changes, 120
assigning to environments, 118-119
bootstrapping, 109-111
confi guring with Chef provisioning,

136-138
editing run list, 111-113, 119-120
running Chef client, 113-115
validating policies, 120-122

nodes (Razor collection), 241-245
nodes, scaling, 314
Noop brokers, 246
noop command, 63
notify: keyword, 146
notify metaparameter, 39-41

342 playbooks (Ansible)

Private Chef, 89
private keys, starter kit (Chef), 102
processes versus people, 311-312
properties of resources (PowerShell

DSC), 185
providers (Puppet resources), 38
provisioner (Chef provisioning), 134
provisioning servers. See Razor
pull mode (PowerShell DSC), 182-184
pull servers (PowerShell DSC), 192-193
Puppet, 13-14

Ansible versus, 140
architecture, 33-37. See also LAMP

deployment (Puppet)
broker, 247, 250
classes, 46-48, 78
cloud provisioner, 73-76
defi ned types, 78
distributions, 33
installing Razor, 259
integration with Application Services,

315-321
manifests. See manifests (Puppet)
master, preparing, 74-76
modules. See modules (Puppet)
resources, 33, 38-39
test lab preparation, 37-38

puppet agent command, 63, 71
puppet apply command, 40
puppet cert list command, 63
puppet cert sign --all command, 38, 63
Puppet Enterprise

brokers, 247
installing Razor, 259

Puppet Forge repository, 48
puppet module generate command, 48
puppet module install command, 70, 293
puppet node install command, 76

playbooks (Ansible), 144-146
conditional expressions and variables,

146-151
plays (Ansible), 144-145
plug-ins (Elasticsearch), installing, 271-274
plug-ins (Jenkins), 295
plug-ins (Knife), 126

knife-esxi, 126
knife-vsphere, 126-134
knife-windows, 92

pod defi nition fi le
MySQL (listing 15-5), 227
web and application (listing 15-7), 228

pods (Kubernetes), 214-215
policies (Chef), validating, 120-122
policies (Razor)

adding tags, 254-257
adding to collections, 251-254

policy.json (listing 16-18), 251
PostgreSQL, 260
PowerCLI

Copy-VMGuestFile cmdlet, 195-196
Invoke-VMscript cmdlet, 193-195
scripted deployments with, 190-192

PowerShell DSC (Desired State
Confi guration), 14, 173-175

architecture, 175-178
confi gurations, 178-180
LCM (Local Confi guration Manager,

176-178
modes, 180-184
MOF fi les, 176
native cmdlets, 175
requirements, 175
resources, 184-186
use cases, 189-198

prefi xes in Ruby, 52
principles of DevOps, 1-3

343roles (Ansible)

razor create-tag command, 255
razor delete-node command, 244
razor –h command, 236
razor nodes command, 241
razor policies command, 253
razor reinstall-name command, 244
recipes (Chef), 86-88

creating hello-world recipe, 94-98
idempotence, 86
order of, 86
test-driven infrastructure, 87

Red Hat images, saving templates as, 131
Red Hat Satellite, 13
RedHat.yml variable fi le (listing 10-6), 150
redis-cli command, 206
reinstalling existing node (listing 16-9), 244
releases, installing Razor, 260
remote Git server access, 28-30
remote push mode (PowerShell DSC),

181-182
repositories

adding to collections (Razor), 246
central server access, 28-30
creating, 25-28
legal issues, 24
Puppet Forge, 48
updated status (listing 3-6), 27

require metaparameter, 39-40
requirements, PowerShell DSC, 175
resources (Chef), 88

machine, 134
resources (PowerShell DSC), 184-186
resources (Puppet), defi ned, 33, 38-39
rivers (Elasticsearch), 273-274
roles (Ansible), 151-154

Ansible Galaxy, 156-157
application tier, 160-162
base image, 164-166

puppet node_vmware create command, 75
puppet node_vmware list command, 74
puppet node_vmware start command, 76
puppet node_vmware stop command, 76
puppet node_vmware terminate

command, 76
puppetbroker.json fi le (listing 16-12), 247
PuppetDB (Puppet Master component), 36
push modes (PowerShell DSC)

local push mode, 181
remote push mode, 181-182

pushing, 28
Git remote push results (listing 3-8), 29

Python, Ansible requirements, 139-140

Q-R

QA (quality assurance) teams, 306-307

Razor, 13, 233
actions, 238
APIs, 257-258
client, 259
collections, 238-257
command syntax, 236-238
installing, 259-261
microkernel, 258
server, 258
testing, 259-261
troubleshooting, 261-263
versions, 236
workfl ow, 233-235

razor add-policy-tag command, 256
razor brokers command, 250
razor <collection> command, 238
razor create-broker command, 247
razor create-policy command, 252
razor create-repo command, 246

344 roles (Ansible)

security
encryption in Ansible, 164
Linux containers, 202

Select-Object cmdlet, 185
server confi guration (Jenkins), 296-298
server deployment tools, 13
server provisioning. See Razor
servers (Chef)

API-based, 87
assigning to environments, 118-119
Chef Server, 89
Hosted Chef, 89, 100-105
root password management, 108, 115-116
time management, 105-107, 111-113
validating policies, 120-122

servers (Razor), 258
service: keyword, 146
service defi nition fi le

MySQL (listing 15-6), 228
web and application (listing 15-8), 229

service deployment (Kubernetes), 225-226
service requirements, installing Razor,

260-261
services

vRealize Application Services, 313-321
vRealize Automation, 312-313
vRealize Code Stream, 321-327

Set-DscLocalConfi gurationManager
cmdlet, 177

setup module (Ansible), 144
sharing, 2

dashboards (Kibana), 285-286
signing up for Hosted Chef, 100-102
site.pp fi le, 62
skills development, 7
snowfl ake servers, 5-6
software development/deployment, 6
source attribute, 54

database tier, 162-164
NTP server deployment, 160
path updates, 159
templates, 154-156

roles (Chef), 88
root password management (Chef), 108,

115-116
rtyler/jenkins module (Puppet), 293
Ruby

with Chef, 90
prefi xes, 52
Razor clients, 259

RUN command, 209
run list (Chef), 88

editing, 111-113, 119-120
running clients (Chef), 113-115

S

sample_chef_broker.json fi le (listing
16-14), 248

saving
dashboards (Kibana), 285-286
templates as Red Hat images, 131

scaling nodes, 314
SCM (source code management)

committing changes, 54
Git, 24-30

scope, explicitly defi ning variable, 60
scripted deployments with PowerCLI,

190-192
search.rb fi le (listing 17-9), 274
searching

data in index (Elasticsearch), 269-271
index (Elasticsearch) with clients,

274-275
with Knife, 114

Secure Shell (SSH), Ansible, 140

345tools

team interactions, 3-5
technical debt, 11
template keyword, 54
templates

Jinja2, 154-156
Puppet, 51-54
saving as Red Hat images, 131

templates (VM)
listing, 75
PowerShell DSC incorporation in,

192-193
preparing, 73

templates folder
Ansible roles, 152
Puppet, 49

terminology (Chef), 87-89
test automation, 290-292

acceptance testing, 306
test environments

AutoLab, 17
Vagrant, 18-23

test lab preparation (Puppet), 37-38
test-driven infrastructure (Chef), 87
testing

Elasticsearch status (listing 17-1), 266
Razor, 259-261

tests folder (Puppet), 49
time management (Chef), 105-107, 111-113

on virtual guests, 109
titles (Puppet resources), 38
tools

confi guration management, 14, 211
continuous integration, 14
image creation, Packer, 23
log analysis, 15
server deployment, 13
source code management, Git, 24-30
test environments, 17-23

source code management (SCM)
committing changes, 54
Git, 24-30

source code, installing Razor, 260
spec folder (Puppet), 49
Splunk, 15
SSH (Secure Shell), Ansible, 140
stable agility, 310-311
standalone deployment (Puppet), 34
starter kit (Chef), private keys, 102
starting

Elasticsearch, 266
Kibana, 280
Logstash, 276

subscribe metaparameter, 39-40
sudo ntpdate 0.pool.ntp.org command, 109
swim lanes, 13
syslog.conf fi le (listing 17-10), 277
Sysprep for Windows, 13
system, defi ned, 3
system facts, viewing, 144
systems feedback, 7
systems thinking

defi ned, 3
infrastructure deployment, 5-6
software development/deployment, 6
systems feedback, 7
team interactions, 3-5

T

tags, adding to collections (Razor), 254-257
tasks

adding for HTML content creation
(listing 10-10), 156

Razor collection, 238-240
tasks folder (Ansible roles), 152
tasks: keyword, 145

346 tools

V

Vagrant, 18-23
installing Razor, 260
Razor setup, 234

vagrant destroy command, 20
vagrant init command, 19
vagrant ssh command, 20
Vagrant: Up and Running (Mitchell), 23
Vagrantfi les

changing default (listing 3-2), 20
default (listing 3-1), 19
multimachine (listing 3-3), 21
optimized multimachine (listing 3-4), 22

validating
knife-vsphere plug-in confi guration, 130
policies (Chef), 120-122

validation_key value (Razor brokers), 250
variable scope, explicitly defi ning, 60
variables

in Ansible, 146-151
Puppet manifests, 43-46

vars_fi les keyword, 150
vars folder (Ansible roles), 152
vcenter::host defi ned type, 78-81
vCenterText.pp Puppet manifest

with ESXi shell and SSH enabled (listing
6-5), 82

listing 6-3, 77
version control. See source code

management (SCM)
versions of Razor, 236
viewing

all created brokers (listing 16-16), 250
individual details for Puppet broker

(listing 16-17), 250
node2s activity log (listing 16-7), 243
policy details (listing 16-21), 253

work-in-progress management (Kanban
system), 9-13

topology. See architecture
TorqueBox, 258
tracking Git fi les, 26
transforming data with fi lters (Logstash),

279-280
troubleshooting Razor, 261-263

client, 259
nodes, 243

trouble ticket systems, 9
types (Puppet resources), 38

U

ubuntu_one policy, tags portion (listing
16-26), 256

ubuntu_small tag details, viewing
with API call (listing 16-28), 258
with Razor client (listing 16-27), 257

unit testing, 290-292
update-alternatives --list java

command, 297
uploading environment fi les (Chef), 117-118
use cases (PowerShell DSC), 189

challenges in implementation, 193
Copy-VMGuestFile cmdlet, 195-196
future use cases, 197-198
incorporating in VM templates, 192-193
Invoke-VMscript cmdlet, 193-195
lessons learned, 196-197
scripted deployments with PowerCLI,

190-192
user module (Ansible), 144
UTS namespace (Linux), 202

347workstation setup (Hosted Chef)

W-Z

Weaver, Nick, 13
web server deployment (Ansible). See also

playbooks (Ansible); roles (Ansible)
NTP server updates, 160
role path updates, 159

web server playbook: apache.yml (listing
10-2), 145

web tier (Puppet), data separation, 58-59
Hiera, 63-67
node classifi cation, 67
params class, 59-63

web-pod.json (listing 15-7), 228
web-service.json (listing 15-8), 229
when: conditional statement, 147
Willis, John, 2
with_items loop, 161-163
work-in-progress management, 9-13
workfl ow. See also architecture

Kubernetes, 214-215
Razor, 233-235

workfl ow (Jenkins), 296
build artifacts, 304-306
build job defi nition, 298-302
Git hooks, 302-304
server confi guration, 296-298

workload deployment (Kubernetes), 226-230
workstation setup (Hosted Chef), 102-105

running containers (Docker), 206
system facts, 144
ubuntu_small tag details, 257-258

virtual guests
bootstrapping nodes (Chef), 109-111
editing run list (Chef), 111-113
running Chef client, 113-115
time management, 109

vm_hardware parameter, 168
VM templates

listing, 75
preparing, 73

VMs (virtual machines)
cloning and bootstrapping with Knife,

130-134
containers (Docker) versus, 211
scripted deployments with PowerCLI,

190-192
VMware management modules

Ansible, 166-171
Puppet, 77-83

VMware vCenter Log Insight, 15
VMware vSphere operating system

identifi ers, 168
vmware_esxi.yaml fi le for vmware_esxi task

(listing 16-3), 240
vmware_guest_facts parameter, 169
vmware/vcenter module (Puppet), 77-83
vRealize Application Services, 313-315

Puppet integration, 315-321
vRealize Automation, 312-313
vRealize Code Stream, 321-327
vsphere_guest module (Ansible), 166-171
vsphere-metal.rb fi le, 137

	Contents
	About the Authors
	About the Reviewers
	Acknowledgments
	About the Contributing Author
	Introduction
	About This Book
	You the Reader
	What This Book Covers
	3 Setting Up a DevOps Configuration Management Test Environment
	Environment Provisioning with AutoLab
	Environment Provisioning with Vagrant
	Creating Images with Packer
	Managing Source Code
	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

