
http://www.facebook.com/share.php?u=http://www.ibmpressbooks.com/title/9780133763034
http://twitter.com/?status=RT: download a free sample chapter http://www.ibmpressbooks.com/title/9780133763034
https://plusone.google.com/share?url=http://www.ibmpressbooks.com/title/9780133763034
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ibmpressbooks.com/title/9780133763034
http://www.stumbleupon.com/submit?url=http://www.ibmpressbooks.com/title/9780133763034/Free-Sample-Chapter


A Practical Guide to 
Distributed Scrum
By Elizabeth Woodward, Steffan Surdek, and 

Matthew Ganis

ISBN-13: 978-0-13-704113-8

This is the fi rst comprehensive, practical guide 

for Scrum practitioners working in large-scale 

distributed environments. Written by three of 

IBM’s leading Scrum practitioners—in close 

collaboration with the IBM QSE Scrum Community 

of more than 1,000 members worldwide—this 

book offers specifi c, actionable guidance for 

everyone who wants to succeed with Scrum in 

the enterprise.

Readers will follow a journey through the lifecycle 

of a distributed Scrum project, from envisioning 

products and setting up teams to preparing for 

Sprint planning and running retrospectives. Using 

real-world examples, the book demonstrates how 

to apply key Scrum practices, such as look-ahead 

planning in geographically distributed environ-

ments. Readers will also gain valuable new 

insights into the agile management of complex 

problem and technical domains.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at 

ibmpressbooks.com/newsletters

Disciplined Agile Delivery
A Practitioner’s Guide to Agile 

Software Delivery in the Enterprise

By Scott W. Ambler and Mark Lines

ISBN-13: 978-0-13-281013-5

It is widely recognized that moving from 

traditional to agile approaches to build 

software solutions is a critical source of 

competitive advantage. Mainstream agile 

approaches that are indeed suitable for small 

projects require signifi cant tailoring for larger, 

complex enterprise projects. In Disciplined 
Agile Delivery, Scott W. Ambler and Mark Lines 

introduce IBM®’s breakthrough Disciplined 

Agile Delivery (DAD) process framework, 

which describes how to do this tailoring. DAD 

applies a more disciplined approach to agile 

development by acknowledging and dealing 

with the realities and complexities of a portfolio 

of interdependent program initiatives.

Ambler and Lines show how to extend Scrum 

with supplementary agile and lean strategies 

from Agile Modeling (AM), Extreme Program-

ming (XP), Kanban, Unifi ed Process (UP), and 

other proven methods to provide a hybrid 

approach that is adaptable to your 

organization’s unique needs. 

http://www.ibmpressbooks.com/newsletters


Related Books of Interest

Visit ibmpressbooks.com 

for all product information

Being Agile
Eleven Breakthrough Techniques to 

Keep You from “Waterfalling Backward”

By Leslie Ekas, Scott Will

ISBN-13: 978-0-13-337562-6

When agile teams don’t get immediate results, 

it’s tempting for them to fall back into old 

habits that make success even less likely. In 

Being Agile, Leslie Ekas and Scott Will present 

eleven powerful techniques for rapidly gain-

ing substantial value from agile, making agile 

methods stick, and launching a “virtuous circle” 

of continuous improvement.

Ekas and Will help you clear away silos, improve 

stakeholder interaction, eliminate waste and 

waterfall-style ineffi ciencies, and lead the agile 

transition far more successfully. Each of their 

eleven principles can stand on its own: When you 

combine them, they become even more valuable.

Patterns of Information 
Management
By Mandy Chessell and Harald Smith

ISBN-13: 978-0-13-315550-1

Use Best Practice Patterns to Understand 

and Architect Manageable, Effi cient 

Information Supply Chains That Help You 

Leverage All Your Data and Knowledge

In the era of “Big Data,” information pervades 

every aspect of the organization. Therefore, 

architecting and managing it is a multi-

disciplinary task. Now, two pioneering IBM® 

architects present proven architecture patterns 

that fully refl ect this reality. Using their pattern 

language, you can accurately characterize the 

information issues associated with your own 

systems, and design solutions that succeed 

over both the short- and long-term.

http://www.ibmpressbooks.com


Related Books of Interest

Sign up for the monthly IBM Press newsletter at 

ibmpressbooks.com/newsletters

An Introduction to IMS

Your Complete Guide to IBM 

Information Management Systems, 

2nd Edition

Barbara Klein, et al.

ISBN-13: 978-0-13-288687-1

Outside-in Software 

Development

A Practical Approach to Building 

Successful Stakeholder-based 

Products

Carl Kessler, John Sweitzer

ISBN-13: 978-0-13-157551-6

Enterprise Master Data 

Management

An SOA Approach to 

Managing Core Information

Dreibelbis, Hechler, Milman, 

Oberhofer, van Run, Wolfson  

ISBN-13: 978-0-13-236625-0

Common Information Models 
for an Open, Analytical, and 
Agile World
By Mandy Chessell, Gandhi Sivakumar, 

Dan Wolfson, Kerard Hogg, Ray Harishankar

ISBN-13: 978-0-13-336615-0

Maximize the Value of Your Information 

Throughout Even the Most Complex 

IT Project

Five senior IBM architects show you how to use 

information-centric views to give data a central 

role in project design and delivery. Using 

Common Information Models (CIM), you learn 

how to standardize the way you represent 

information, making it easier to design, deploy, 

and evolve even the most complex systems.

Using a complete case study, the authors explain 

what CIMs are, how to build them, and how to 

maintain them. You learn how to clarify the 

structure, meaning, and intent of any information 

you may exchange, and then use your CIM to 

improve integration, collaboration, and agility.

In today’s mobile, cloud, and analytics environ-

ments, your information is more valuable than 

ever. To build systems that make the most of it, 

start right here.

Implementing the IBM® 

Rational Unifi ed Process® 

and Solutions

A Guide to Improving Your Software 

Development Capability and Maturity

Joshua Barnes

ISBN-13: 978-0-321-36945-1

Software Test Engineering 

with IBM Rational 

Functional Tester

The Defi nitive Resource

Davis, Chirillo, Gouveia, Saracevic, 

Bocarsley, Quesada, Thomas, van Lint

ISBN-13: 978-0-13-700066-1

http://www.ibmpressbooks.com/newsletters


This page intentionally left blank 



   Practical 
Software 
Architecture  



This page intentionally left blank 



   Practical 
Software 
Architecture

Moving from System Context 
to Deployment  

    IBM Press
Pearson plc 
  New York  •  Boston  •  Indianapolis  •  San Francisco 
 Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid 
 Cape Town  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City 

 ibmpressbooks.com     

   Tilak Mitra 



  The author and publisher have taken care in the preparation of this book, but make no expressed or implied 

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for 

incidental or consequential damages in connection with or arising out of the use of the information or 

programs contained herein.   

  © Copyright 2016 by International Business Machines Corporation. All rights reserved.  

 Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is 

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.   

  IBM Press Program Managers: Steven M. Stansel, Ellice Uffer  

 Cover design: IBM Corporation   

 Editor-in-Chief: Dave Dusthimer 

 Marketing Manager: Stephane Nakib 

 Executive Editor: Mary Beth Ray 

 Publicist: Heather Fox 

 Editorial Assistant: Vanessa Evans 

 Managing Editor: Kristy Hart 

 Designer: Alan Clements 

 Senior Project Editor: Betsy Gratner 

 Copy Editor: Chuck Hutchinson 

 Indexer: Tim Wright 

 Compositor: Nonie Ratcliff 

 Proofreader: Debbie Williams 

 Manufacturing Buyer: Dan Uhrig 

  Published by Pearson plc  

 Publishing as IBM Press  



 For information about buying this title in bulk quantities, or for special sales opportunities (which may 

include electronic versions; custom cover designs; and content particular to your business, training goals, 

marketing focus, or branding interests), please contact our corporate sales department at  corpsales@

pearsoned.com  or (800) 382-3419.  

 For government sales inquiries, please contact  governmentsales@pearsoned.com .  

 For questions about sales outside the U.S., please contact  international@pearsoned.com .  

 The following terms are trademarks or registered trademarks of International Business Machines 

Corporation in the United States, other countries, or both: IBM, the IBM Press logo, developerWorks, 

Global Business Services, Maximo, IBM Watson, Aspera, Bluemix, z/OS, POWER5, DB2, Tivoli, 

WebSphere, and IBM PureData. SoftLayer is a registered trademark of SoftLayer, Inc., an IBM Company. 

A current list of IBM trademarks is available on the Web at “copyright and trademark information” at  www.

ibm.com/legal/copytrade.shtml .  

 Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its 

affiliates. Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. 

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or 

both. Other company, product, or service names may be trademarks or service marks of others.  

 Library of Congress Control Number: 2015947371  

 All rights reserved. Printed in the United States of America. This publication is protected by copyright, and 

permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 

system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or 

likewise. To obtain permission to use material from this work, please submit a written request to Pearson 

Education, Inc., Permissions Department, 200 Old Tappan Road, Old Tappan, New Jersey 07675, or you 

may fax your request to (201) 236-3290.   

  ISBN-13: 978-0-13-376303-4  

 ISBN-10: 0-13-376303-X   

  Text printed in the United States on recycled paper at  R.R. Donnelley in Crawfordsville, Indiana . First 

printing: December 2015     

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


x

 Dedication  

  I dedicate this book to my late father, Sri. Dibakar Mitra 
(1940–2015). My father left us earlier this year (2015) 
and has left a traumatic lacuna in my life, which I find 
increasingly hard to deal with and to accept its veracity. 
Baba (father) was my ultimate motivation in life—
to believe in myself and go that extra mile to achieve 
anything to make him immensely proud of his only 
son—and proud he was! He used to carry my (not even 
his own) business card in his wallet and show it with 
immense amour-propre in his professional and personal 
circles.   

  Baba left us just 45 days shy of my becoming a Distin-
guished Engineer at IBM ® , an honor which he so desperately wanted to see happen; it remains 
as my single greatest regret that I could not pick up the phone and give him the news. His last 
words to me on his death bed were “Do not worry; your DE will happen this year.” He was put 
on the ventilator shortly thereafter. He had fought so hard to not leave us but had to fall victim 
to some utter medical negligence and incompetency of one of the so-called best hospitals  in 
Kolkata, India (my native place); the emotional rage inside me will never cease to burn.   

  Baba, I hope you are at peace wherever you are, and I pray that I can only serve you in some 
form in my remaining lifetime. Accept my love, forever.   

  



xi

       Foreword     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv    

       Preface     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi    

Chapter 1 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The Business Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Software Architecture: The What and Why  . . . . . . . . . . 7
Some Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The What . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The Why  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Architecture Views and Viewpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3 Capturing Just Enough  . . . . . . . . . . . . . . . . . . . . . . . . . 19
Architecture Aspects in Focus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 The System Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
The Business Context Versus System Context Conundrum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Capturing the System Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Case Study: System Context for Elixir  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 Contents  



xii Contents

Chapter 5 The Architecture Overview . . . . . . . . . . . . . . . . . . . . . . 39
What It Is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

The Enterprise View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

The Layered View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

The IT System View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Case Study: Architecture Overview of Elixir  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Chapter 6 Architecture Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

How to Get Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Creating an Architecture Decision  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Case Study: Architecture Decisions for Elixir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 7 The Functional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Few Words on Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Developing the Functional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Case Study: Functional Model for Elixir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 8 The Operational Model  . . . . . . . . . . . . . . . . . . . . . . . . 109
Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

On Traceability and Service Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Developing the Operational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Case Study: Operational Model for Elixir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 9 Integration: Approaches and Patterns . . . . . . . . . . . . 151
Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Approaches to Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Integration Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Case Study: Integration View of Elixir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



Contents xiii

Chapter 10 Infrastructure Matters . . . . . . . . . . . . . . . . . . . . . . . . . 171
Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Some Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Case Study: Infrastructure Considerations for Elixir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

So Where Do We Stand? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Chapter 11 Analytics: An Architecture Introduction . . . . . . . . . . 199
Why We Need It  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Dimensions of Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Analytics Architecture: Foundation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Architecture Building Blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Chapter 12 Sage Musings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Agility Gotta Be an Amalgamate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Traditional Requirements-Gathering Techniques Are Passé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

The MVP Paradigm Is Worth Considering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Do Not Be a Prisoner of Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Predictive Analytics Is Not the Only Entry Point into Analytics. . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Leadership Can Be an Acquired Trait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Technology-Driven Architecture Is a Bad Idea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Open Source Is Cool but to a Point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Write Them Up However Trivial They May Seem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Baseline Your Architecture on Core Strengths of Technology Products  . . . . . . . . . . . . . . . . . . . . 240

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Appendix A 25 Topic Goodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
What Is the Difference Between Architecture and Design?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

What Is the Difference Between Architectural Patterns, Design Patterns, 

and a Framework?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

How Can We Compare a Top-Down Functional Decomposition Technique and 

an Object-Oriented Analysis and Design (OOAD) Technique?  . . . . . . . . . . . . . . . . . . . . . . . . 244

What Is the Difference Between Conceptual, Specified, and Physical Models?. . . . . . . . . . . . . . . 245

How Do Architecture Principles Provide Both Flexibility and Resilience to 

Systems Architecture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Why Could the Development of the Physical Operational Model (POM) 

Be Broken into Iterations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246



xiv Contents

What Is a Service-Oriented Architecture?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

What Is an Event-Driven Architecture?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

What Is a Process Architecture?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

What Is a Technology Architecture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

What Is an Adapter?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

What Is a Service Registry?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

What Is a Network Switch Block?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

What Are Operational Data Warehouses?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

What Is the Difference Between Complex Event Processing (CEP) and 

Stream Computing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

What Is the Difference Between Schema at Read and Schema at Write Techniques?  . . . . . . . . . . 251

What Is a Triple Store?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

What Is a Massively Parallel Processing (MPP) System? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

IBM Watson Is Built on DeepQA Architecture. What Is DeepQA? . . . . . . . . . . . . . . . . . . . . . . . . 252

What Is the Difference Between Supervised and Unsupervised Learning Techniques? . . . . . . . . . 253

What Is the Difference Between Taxonomy and Ontology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

What Is Spark and How Does It Work?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

What Are Some of the Advantages and Challenges of the Cloud Computing 

Platform and Paradigm?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

What Are the Different Cloud Deployment Models?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

What Is Docker Technology?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Appendix B Elixir Functional Model (Continued) . . . . . . . . . . . . . 261
Logical Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Specified Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Physical Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

        Index        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



xv

 Ah. Software architecture. A phrase that brings delight to some, grumblings to others, and apathy 

to far too many, particularly those who are far too busy slamming out code to bother with design.  

 And yet, as we know, all software-intensive systems have an architecture. Some are inten-

tional, others are accidental, and far too many are hidden in the constellation of thousands upon 

thousands of small design decisions that accumulate from all that code-slamming.  

 Tilak takes us on a wonderful, approachable, and oh-so-very pragmatic journey through the 

ways and means of architecting complex systems that matter. With a narrative driven by a set of 

case studies—born from his experience as a practical architect in the real world—Tilak explains 

what architecture is, what it is not, and how it can be made a part of developing, delivering, and 

deploying software-intensive systems. I’ve read many books and papers about this subject—if 

you know me, you’ll know that I have a few Strong Opinions on the matter—but do know that I 

find Tilak’s approach based on a  solid foundation and his presentation quite understandable and 

very actionable.  

 Architecting is not just a technical process, it’s also a human one, and Tilak groks that very 

important point. To that end, I celebrate how he interjects the hard lessons he’s learned in his 

career as a practical architect.  

 Architecture is important; a process of architecting that doesn’t get in the way but that does 

focus one on building the right system at the right time with the right resources is essential...and 

very practical.  

  Grady Booch  

IBM Fellow and Chief Scientist for Software Engineering    

 Foreword  



xvi

 Software architecture, as a discipline, has been around for half a century. The concept was intro-

duced in the 1960s, drawing inspiration from the architecture of buildings, which involved devel-

oping blueprints that formulated designs and specifications of building architecture before any 

construction ever began. A blueprint of a building provides an engineering design of the  func-
tional  aspects of the building—the floor space layout with schematics and measurements of each 

building artifact (for example, doors, windows, rooms, bathrooms, and staircases). The blueprint 

also provides detailed designs of the aspects needed to keep the building  operational —the phys-

ics of the building foundation required to support  the load of the building structure; the design of 

electrical cabling, water, and gas pipelines; and sewer systems needed for a fully operative and 

usable building.  

 True inspiration was drawn from the discipline of civil engineering (of building architec-

tures) into information technology (IT); software architectures were broadly classified into  func-
tional architecture  and  operational architecture . The practice of software architecture started 

gaining momentum in the 1970s, and by the 1990s, it had become mainstream in the world of 

IT. At this time, architecture patterns were formulated. Patterns continue to evolve when recur-

rent themes of usage are observed; recurrences imply consistent and repeated application. Pat-

tern development in software architecture presupposed that software architecture, as a discipline, 

was practiced enough to become mainstream and accepted as a formal discipline of  study and 

practice.  

 With the complexity of IT Systems on the rise, IT projects have seen consistent and wide-

spread use of software architectures. With more use comes diversity, or the emergence of various 

schools of thought that indoctrinate different views toward software architecture and popularize 

them through their adoption in the development of real-world software systems. With the grow-

ing number of variations and views toward software architectures, IT practitioners are typically 

 Preface  



Preface xvii

confused about which school of thought to adopt. As a case in point, have you found yourself 

asking some of the following questions?  

   •   Because I have read so many books on architecture and have devoured so many journals 

and publications, how do I put the different schools of thought together?   

  •   Which aspects of which schools of thought do I like more than others?   

  •   Can the aspects complement each other?   

  •   Where should I start when tasked with becoming an architect in a time-constrained, 

budget-constrained, complex software systems implementation?   

  •   Can I succeed as a software architect?    

 I too have been in such a confused state. One of the toughest challenges for software archi-

tects is to find the best way to define and design a system’s or application’s software architec-

ture. Capturing the essential tenets of any software architecture is as much a science as it is an 

art form. While the science lies in the proper analysis, understanding, and use of an appropriate 

description language to define the software architecture of the system, the art form assumes sig-

nificance in defining a clear, crisp, nonredundant depiction used for effective communication 

with the different stakeholders of the system’s solution  architecture. Software architects find it 

immensely challenging to determine how to capture the essential architecture artifacts in a way 

that clearly articulates the solution. While overengineering and excessive documentation add sig-

nificant delays and associated risks to project delivery, a suboptimal treatment can result in the 

developer’s lack of comprehension regarding the solution architecture. Understanding the archi-

tecture is critical to adhere to the guidelines and constraints of technology and its use to design 

and develop the building blocks of the system. This gap can only widen with progression in the 

software development life cycle.  

 In 2008, I started writing a series of articles in the IBM developerWorks ®  journal; the 

focus was on documenting software architecture. I published four parts in the series and then 

for some personal reason could not continue. For the next few years, above and beyond the stan-

dard queries and accolades on the series topics, I started to receive a class of queries that got me 

increasingly thinking. Here are some snippets from these queries:  

   •   “Dear Sir, I am using your article series as a part of my master’s thesis. May I know 

when your next set of articles is coming out?”   

  •   “Mr. Mitra, We have embarked on an IT project in which we [have] adopted your archi-

tecture framework. Our project is stalled because the next article is not out. Please help.”    

 One fine morning it dawned on me that there must be a serious need for an end-to-end 

architecture treatment, one that is simple, crisp, comprehensible, prescriptive and, above all, 

practical enough to be executable. IT professionals and students of software engineering would 

significantly benefit from such a practical treatise on architecting software systems. It took me a 

while to finally put ink on paper;  Practical Software Architecture: Moving from System Context 



xviii Preface

to Deployment  represents all the collective wisdom, experience, learning, and knowledge in 

the field of software architecture that I have gathered in more than 18 years of my professional 

career. I  have tried to write this book catering to a wide spectrum of readers, including  

   •   Software architects, who will benefit from prescriptive guidance on a  practical  and 

repeatable recipe for developing software architectures.   

  •   Project managers, who will gain an understanding and appreciation of the essential ele-

ments required to develop a well-defined system architecture and account for  just enough  

architecture activities in the project plan.   

  •   Graduate students, who will find this book relevant in understanding how the theoreti-

cal premises of software architecture can actually be translated and realized in practice. 

This book is intended to be their long-time reference guide irrespective of technology 

advancements.   

  •   Professors, who will use the book to help students transition from the theoretical aspects 

of software architecture to its real-world rendition, assisting students to become practical 

software architects.   

  •   C-level and senior-level executives, who will benefit indirectly by gaining an awareness 

and appreciation for what it takes to develop well-formed system architectures for any IT 

initiative. This indirect knowledge may allow them to better appreciate IT architecture as 

a fundamental discipline in their company.    

 I intend this to be a practical how-to book with recipes to iteratively build any software 

architecture through the various phases of its evolution. It shows how architectural artifacts may 

be captured so that they are not only crisp, concise, precise, and well understood but also are  just 
enough  in their practical application. Throughout the book, I have also used the terms “software,” 

“systems,” and “solution” quite liberally and interchangeably to qualify the term architecture. 

The liberal and interchangeable usage of the three terms is a conscious decision to work the mind 

into such acceptance; they are used quite loosely in  the industry.  

 On a philosophical note, the East and the West have been historically divided in their 

acceptance of two forms of consciousness: the  rational  and the  intuitive.  Whereas the Western 

world believes in and primarily practices rational, scientific, and deductive reasoning techniques, 

the Eastern world places a premium on  intuitive  knowledge as the higher form in which aware-

ness (which is knowledge) is gained by watching (and looking inside one’s self; through self-

introspection) rather than gained only through experimental deductions. Being born and raised in 

a culturally rich Bengali (in Kolkata, India) family, I firmly believe in the Eastern philosophies 

of religion and knowledge, one  in which conscious awareness is ultimately obtained through the 

practice of conscious free will; the ultimate knowledge is gained through intuitive and induc-

tive reasoning. However, having been in the Western world for close to two decades, I do value 

the scientific and rational knowledge form. I have come to believe that for us as mere mortals 

to survive in this world of fierce competition, it is imperative that we master the rational and 



Preface xix

scientifically derived knowledge, especially in the field of science, engineering, and IT. Once 

such a professional stability is attained, it is worthwhile, if not absolutely rewarding, to  delve into 

the world of intuitive consciousness, of inductive reasoning—one through which we can attend 

 moksha  in life’s existentialism.  

 In this book, I have tried to share a prescriptive technique to help master  practical  ways of 

developing  software architecture , through deductive and rational knowledge reasoning. My hope 

is that, if you can master the rational knowledge, you can turn your inner focus into the more 

mystical world of intuitive knowledge induction techniques. Solving the toughest architecture 

challenges is the Holy Grail; to be able to intuitively derive aspects of software architecture is the 

higher-level  moksha  we should all aim to achieve!  

 By the time you have finished reading this book and consuming its essence, I envision 

a newly emerged practical software architect in you. At least you will be a master of rational 

knowledge in this fascinating discipline of software architecture, paving the way into the world 

of mystical intuition, some of which I have only just started to experience!    

P.S. If you are curious about the epigraphs at the start of each chapter, they were conjured 

up in the mind of yours truly!



xx

 I would first like to thank my wife, Taneea, and my mom, Manjusree, for giving me the time and 

inspiration to write this book. My uncle Abhijit has been the most persistent force behind me to 

make me believe that I could complete the book. And to my one and only son, Aaditya, for hav-

ing consistently expressed his wonder regarding how his dad can write yet another book.  

 On the professional side, I convey my sincere gratitude to Ray Harishankar for supporting 

me in this gratifying authoring journey, right from its very inception; he is my executive cham-

pion. I would also like to thank my colleague Ravi Bansal for helping me review and refine the 

chapter on infrastructure; I relied on his subject matter expertise. My colleague from Germany, 

Bertus Eggen, devised a very nifty mathematical technique to help design the capacity model for 

network connectivity between servers, and I would like to thank Bert for giving me the permis-

sion to leverage his idea in my book.   My sincere thanks go out to Robert Laird who has, so will-

ingly, reviewed my book and given me such invaluable feedback. Many thanks to Craig Trim for 

sharing some of the inner details and techniques in natural language processing.

 I would like to sincerely thank Grady Booch. I cannot be more humbled and honored to 

have Grady write the foreword for my book.    

And to the Almighty, for giving us our son, Aaditya, born in 2010, who brings me unbri-

dled joy; he is the one I look forward to in the years to come. He is already enamored with my 

“high-flying” professional lifestyle and wants to become like me; it will be my honest attempt in 

guiding him to set his bar of accomplishments much higher.

 Acknowledgments  



xxi

  Tilak Mitra  is a Chief Technology Officer at IBM, Global Business Services ® . Tilak is an IBM 

Distinguished Engineer, with more than 18 years of industry experience in the field and disci-

pline of IT, with a primary focus on complex systems design, enterprise architectures, applied 

analytics and optimization, and their collective application primarily in the field of industrial 

manufacturing, automation, and engineering, among various other adjacent industries. He is an 

influential technologist, strategist, well-regarded thought leader, and a highly sought-after indi-

vidual to define and drive multidisciplinary innovations across IBM.  

 As the CTO, Tilak not only drives IBM’s technology strategy for the Strategic Solutions 

portfolio but also spearheads transformative changes in IBM’s top clients, developing innovative 

and new business models to foster their IT transformational programs.  

 Tilak is the co-author of two books— Executing SOA  and  SOA Governance —and has more 

than 25 journal publications. He is a passionate sportsperson, captains a champion cricket team in 

South Florida, and is also a former table tennis (ping pong) champion.  

 He currently lives in sunny South Florida with his wife and son. He can be reached at 

 tilak_m@yahoo.com .      

 About the Author  



This page intentionally left blank 



This page intentionally left blank 



7

  C H A P T E R  2 

 Software Architecture: 
The  What  and  Why   

     Unless I am convinced, I cannot put my heart and soul into it.   

 If you’re reading this chapter, I am going to assume that you are serious about following the cult 

of  “The Practical Software Architect” and you would like to not only proudly wear the badge 

but also practice the discipline in your real-world software and systems development gigs and be 

wildly successful at it.  

 Software architects come in various flavors, and often they are interesting characters. Some 

architects work at a very high level engaging in drawing pictures on the back of a napkin or draw-

ing a set of boxes and lines on a whiteboard, where no two boxes ever look the same. Others tend 

to get into fine-grained details too soon and often fail to see the forest for the trees; that is, see the 

bigger overarching architectural landscape. Still others are confused about what is the right mix. 

There is a need to level the playing field so that there is not only  a common and comprehensible 

understanding of the discipline of software architecture, but also of what is expected of the role of 

the software architect, in order to be successful every time.  

 This chapter provides some background on the discipline of software architecture and 

some of the time-tested value drivers that justify its adoption. I end the chapter by laying some 

groundwork for the essential elements of the discipline that you and I, as flag bearers of the prac-

tical software architect cult, must formalize, practice, and preach.  

 How about a  T he  PSA (pronounced “thepsa”) T-shirt?   

     Some Background  
 Software architecture, as a  discipline, has been around for more than four decades, with its earli-

est works dating back to the 1970s. However, it is only under the pressures of increasing com-

plexity hovering around the development of complex, mission-critical, and real-time systems 

that it has emerged as one of the fundamental constructs of mainstream systems engineering and 

software development.  



8 Chapter 2  Software Architecture: The  What  and  Why  

 Like any other enduring discipline, software architecture  also had its initial challenges. 

However, this is not to say that it is free of all the challenges yet! Early efforts in representing 

the architectural constructs of a system were laden with confusing, inconsistent, imprecise, dis-

organized mechanisms that were used to diagrammatically and textually represent the structural 

and behavioral aspects of the system. What was needed was a consistent and well-understood 

pseudo- or metalanguage that could be used to unify all modes of representation and documen-

tation of software architecture constructs and artifacts. The engineering and computer science 

communities, fostered by academic research,  have made tremendous strides in developing best 

practices and guidelines around formalization of architecture constructs to foster effective com-

munication of outcomes with the necessary stakeholders.   

  The What  
 Various research groups and individual contributors to the field of software engineering have 

interpreted software architecture, and each of them has a different viewpoint of how best to rep-

resent the architecture of a software system. Not one of these interpretations or viewpoints is 

wrong; rather, each has its own merits. The definition given by Bass, Clements, and Kazman 

(2012) captures the essential concept of what a software architecture should   entail:  

  The software architecture of a program or computing system is the structure or struc-

tures of the system, which comprise software components, the externally visible 

properties of those components, and the relationships between them.   

 Now what does this definition imply?  

 The definition focuses on the fact that software architecture is comprised of coarse-grained 

constructs (a.k.a. software components) that can be considered building blocks of the architec-

ture. Let’s call them architecture building  blocks (ABB). Each such software component, or 

ABB (I use the terms interchangeably from here on), has certain externally visible properties 

that it announces to the rest of the ABBs. The internal details of how each software component 

is designed and implemented should not be of any concern to the rest of the system. Software 

components exist as black boxes—that is, internal details are not exposed—exposing only cer-

tain  properties that they exhibit and that the rest of the software components can leverage to col-

lectively realize the capabilities that the system is expected to deliver. Software architecture not 

only identifies the ABBs at the optimum level of granularity but also characterizes them accord-

ing to the properties they exhibit and the set of capabilities they support. Capturing the essential 

tenets of the software architecture, which is defined by the ABBs and their properties and capa-

bilities, is critical; therefore, it is essential to formalize the ways it is captured such that it makes 

it simple, clear, and easy to comprehend and  communicate.  

  Architecture as it relates to software engineering is about decomposing or partitioning a 

single system into a set of parts that can be constructed modularly, iteratively, incrementally, 

and independently. These individual parts have, as mentioned previously, explicit relationships 



The What 9

between them that, when weaved or collated together, form the system—that is, the application’s 

software architecture.  

 Some confusion   exists ’ around the difference between architecture and design. As Bass, 

Clements, and Kazman (2012) pointed out, all architectures are designs, but not all designs are 

architectures. Some design patterns that foster flexibility, extensibility, and establishment of 

boundary conditions for the system to meet are often considered architectural in nature, and that 

is okay. More concretely, whereas architecture considers an ABB as a black box, design deals 

with the configuration, customization, and the internal workings of a software component—that 

is, the ABB. The architecture confines a software component to its external properties. Design is 

usually much more relaxed, since  it has many more options regarding how to adhere to the exter-

nal properties of the component; it considers various alternatives of how the internal details of the 

component may be implemented.  

 It is interesting to observe that software architecture can be used recursively, as illustrated 

in  Figure   2.1   .  

   

«component»

1..* 1..*

1..*

1

1

1

C11::Table

«component»
C3::School

«component»
C2::College

«component»
C12::Chair

«component»
C1::Classroom

«component»
C13::Blackboard

Figure 2.1   Illustrative example of recursive component dependencies.         

 Referring to  Figure   2.1   , consider a software component (C 
1
  representing a Classroom) that 

is a part of a system’s software architecture. The software architect shares this software com-

ponent (among others), along with its properties, functional and nonfunctional capabilities, and 

its relationships to other software components, to the system designer—the collection of ABBs 

along with their interrelationships and externally visible properties represents an   architecture 
blueprint . The designer, after analyzing the software component (C 

1
 ), decides that it may be 



10 Chapter 2  Software Architecture: The  What  and  Why  

broken down into some finer-grained components (C 
11

  representing a Table object, C 
12

  repre-

senting a Chair object, and C 
13

  representing  a Blackboard object), each of which provides some 

reusable functionality that would be used to implement the properties mandated for C 
1
 . The 

designer details C 
11

 , C 
12

 , C 
13

 , and their interfaces. The designer may consider C 
11

 , C 
12

 , and C 
13

  

as architectural constructs, with explicitly defined interfaces and relationships, for the software 

component C 
1
 . Then C 

11
 , C 

12
 , and C 

13
  may need to be further elaborated and designed to address 

their internal implementations. Hence, architecture principles can be used recursively as follows: 

divide a large complex system into small constituent parts and then focus on each part for further 

elaboration.  

 Architecture, as mentioned previously, confines the system to using the ABBs that collec-

tively meet the behavioral and quality goals. It is imperative that the architecture of any system 

under consideration needs to be well understood by its stakeholders: those who use it for down-

stream design and implementation and those who fund the architecture to be defined, maintained, 

and enhanced. And although this chapter looks more closely at this issue later on, it is important 

to highlight the importance of communication: architecture is a vehicle of communicating the IT 

System with the stakeholder community.     

  The Why  
 Unless I am convinced about the need, the importance, and the value of something, it is very dif-

ficult for me to motivate myself to put in my 100 percent. If you are like me and would like to 

believe in the value of software architecture, read on!  

 This section illustrates some of the reasons that convinced me of the importance of this 

discipline and led me to passionately and completely dedicate myself to practicing it.  

  A Communication Vehicle  
 Software architecture is the blueprint on which an IT System is designed, built, deployed, main-

tained, and managed. Many stakeholders expect and hence rely on a good understanding of the 

system architecture. However, one size does not fit all: a single view of the architecture would 

not suffice to satisfy the needs and expectations of the stakeholder community; multiple architec-

ture viewpoints are needed.  

 Different views   of the architecture are required to communicate its essence adequately to 

the stakeholders. For example, it is important to communicate with business sponsors in their own 

language (for example, a clear articulation of how the architecture addresses business needs). It 

should also communicate and assure the business stakeholders that it does not look like some-

thing that has been tried before and that has failed. The architecture representation should also 

illustrate how some of the high-level business use cases are realized by combining the capabili-

ties of one or more ABBs. The representation (a.k.a., a viewpoint, which this chapter elaborates  

on later) and the illustrations should also focus on driving the value of the architecture blueprint 



The Why 11

as the foundation on which the entire system will be designed and built. The value drivers, in 

business terms, will ultimately need to ensure that there is adequate funding to maintain the vital-

ity of the architecture until, at least, the system is deployed, operational, and in a steady state.  

 For the technical team, there should be multiple and different architecture representations 

 depending on the technology domain. Following are a few examples:  

   •   An application architect needs to understand the application architecture of the system 

that focuses on the functional components, their interfaces, and their dependencies—the 

 functional architecture     viewpoint.   

  •   An infrastructure architect may be interested in (but not limited to) understanding the 

topology of the servers, the network connectivity between the servers, and the placement 

of functional components on servers—the  operational architecture  viewpoint.      

  •   A business process owner would certainly be interested in understanding the various 

business processes that are enabled or automated by orchestrating the features and func-

tions supported by the system. A  business process is typically realized by orchestrating 

the capabilities of one or more business components. A static business component view, 

along with a dynamic business process view, would illustrate what business process 

owners may be interested in—the  business architecture  viewpoint.       

 Effective communication of the architecture drives healthy debates about the correct solu-

tion and approach; various alternatives and trade-offs may be analyzed and decisions made in 

concert. This not only ensures that the stakeholders are heard but also increases the quality of the 

architecture itself.  

 Communicating the architecture in ways that ensure various stakeholders’ understanding 

of its value and what is in it for them, while also having their active participation in its evolution, 

is key to ensuring that the vitality of the architecture is appropriately maintained.   

  Influences Planning  
 Recall the fact that any   software architecture can be defined, at a high level, by a set of ABBs 

along with their interrelationships and dependencies. Recall also that an ABB can be decon-

structed into a set of components that also exhibit interrelationships and dependencies. In a typi-

cal software development process, the functionalities of the system are usually prioritized based 

on quite a few parameters: urgency of feature availability and rollout, need to tackle the tough 

problems first (in software architecture parlance, these problems often are called  architecturally 
significant use cases ),   quarterly capital expenditure budget, and so on. Whatever the reason  may 

be, some element of feature prioritization is quite common.  

 Dependencies between   the ABBs provide prescriptive guidance on how software compo-

nents may be planned for implementation (see  Figure   2.2   ).  



12 Chapter 2  Software Architecture: The  What  and  Why

«component»
C3::School

«component»
C2::College

«component»
C1::Classroom

Figure 2.2   Illustrative example of  intercomponent dependencies.         

 Consider a scenario (as in  Figure   2.2   ) in which components C 
2
  and C 

3
  depend on the avail-

ability of C 
1
 ’s functionality, while C 

2
  and C 

3
  themselves are independent of each other. The 

architect can leverage this knowledge to influence the project planning process. For example, the 

architect may perform the design of C 
1
 , C 

2
  and C 

3
  in parallel if sufficient resources (designers) 

are available; however, he may implement C 
1
  first and subsequently parallelize the implementa-

tion of C 
2
  and C 

3
  (assuming sufficient resources are available). Proper knowledge of the archi-

tecture and its constituents is critical to proper project planning; the architect is often the project 

manager’s best friend, especially during the  project planning process.  

 Seeing the value the architect brings to the planning process, the planning team has often 

been found to be greedy for more involvement of the architect. The complexity of the architec-

ture components influences how time and resources (their skill sets and expertise levels) are 

apportioned and allocated.  

 If the stakeholders do not have a thorough understanding of the architecture, subsequent 

phases—design, implementation, test planning, and deployment—will have significant chal-

lenges in any nontrivial system development.     

  Addresses Nonfunctional Capabilities  
 Addressing the    nonfunctional capabilities of a software system is a key responsibility of its archi-

tecture. It is often said, and rightfully so, that lack of commensurate focus on architecting any 

system to support its nonfunctional requirements (NFR) often brings about the system’s failure 

and breakdown.  

 Extensibility, scalability, maintainability, performance, and security are some of the key 

constituents of a system’s nonfunctional requirements. NFRs are unique in that they may not 

always be component entities in their own right; rather, they require special attention of one or 

more functional components of the architecture. As such, the architecture may influence and 

augment the properties of such functional components. Consider a use case that is expected to 

have a response time of no more than one second. The system’s architecture determines that three 

ABBs—C 
1
 , C 

2
 , and C 

3
 —collectively implement the use case. In such a scenario, the nature and  

complexity of the supported features of the components dictate how much time each component 



The Why 13

may get to implement its portion of the responsibility: C 
1
  may get 300 milliseconds, C 

2
  may 

get 500 milliseconds, and C 
3
  may get 200 milliseconds. You may start finding some clues from 

here how ABBs get decorated with additional properties that they need to exhibit, support, and 

adhere to.  

 A well-designed and thought-out architecture assigns appropriate focus to address the key 

nonfunctional requirements of the system, not as an afterthought but during the architecture defi-

nition phase of a software development life cycle.  

 The risks of failure, from a technical standpoint, are significantly mitigated if the nonfunc-

tional requirements are appropriately addressed and accounted for in the system architecture.      

  Contracts for Design and Implementation  
 One crucial aspect of software architecture is the establishment of best practices,     guidelines, 

standards, and architecture patterns that are documented and communicated by the architect to 

the design and implementation teams.  

 Above and beyond communicating the ABBs, along with their interfaces and dependen-

cies, the combination of best practices, guidelines, standards, and architecture patterns provides 

a set of constraints and boundary conditions within which the system design and implementation 

are expected to be defined and developed. Such constraints restrict the design and implemen-

tation team from being unnecessarily creative and channel their focus on adhering to the con-

straints rather than violating them.  

 As a part of the communication process, the architect ensures that the design and imple-

mentation teams recognize that any violation of the constraints breaks the architecture principles 

and contract of the system. In some special cases, violations may be treated and accepted as 

exceptions if a compelling rationale exists.       

  Supports Impact Analysis  
 Consider a situation,   which presumably should not be too foreign to you, in which there is scope 

creep in the form of new requirements. The project manager needs to understand and assess the 

impact to the existing project timeline that may result from the new requirements.  

 In this situation, an experienced project manager almost inevitably reverts first and fore-

most to her lead architect and solicits help in exercising the required impact analysis.  

 Recall that any software architecture defines the ABBs and their relationships, depen-

dencies, and interactions. The architect would perform some analysis of the new use case and 

determine the set of software components that would require modifications to collectively realize 

the new use case or cases. Changes to intercomponent dependencies (based on additional infor-

mation or data exchange) are also identified. The impact to the project timeline thus becomes 

directly related to the number of components that require change, the extent of their changes, 

and also additional data or data sources required for implementation. The analyses can be further 

extended to influence  or determine the cost of the changes and any risks that may be associated 



14 Chapter 2  Software Architecture: The  What  and  Why  

with them. Component characteristics are a key metric to attribute the cost of its design, imple-

mentation, and subsequent maintenance and enhancements.  

 I cited five reasons to substantiate the importance of software architecture. However, I am 

certain that you can come up with more reasons to drive home the importance of architecture. I 

decided to stop here because I felt that the reasons cited here are good enough to assure me of its 

importance. And, staying true to the theme of this book, when I know that it is  just enough , it is 

time to move on to the next important aspect. My objective, in this book, is to share my experi-

ences on what is  just enough , in various disciplines of software  architecture, so that you have a 

baseline and frame of reference from which you can calibrate it to your needs.    

  Architecture Views and Viewpoints  
 Books, articles, research, and related publications on the different views of software architecture 

have been published. There are different schools of thought that prefer one architecture view-

point over the other and, hence, practice and promote its adoption. In the spirit of this book’s 

theme, I do not devote a separate chapter to an exhaustive treatment of the different views of 

software architecture; rather, I present one that I have found to be practical and natural to follow 

and hence to use.    

  VIEWS AND VIEWPOINT  S
 Philippe Kruchten (1995, November)   was the pioneer who postulated the use of views and 

viewpoints to address the various concerns of any software architecture. Kruchten was a 

part of the IEEE 1471 standards body, which standardized the definitions of  view  and intro-

duced the concept of a  viewpoint , which, as published in his paper (see “References”), are 

as follows:  

    •     Viewpoint—      “A specification of the conventions for constructing and using a view. A 

pattern or template from which to develop individual views by establishing the pur-

poses and audience for a view and the techniques for its creation and analysis.”   

   •     View—      “A representation of a whole system from the perspective of a related set of 

concerns.”     

 IBM (n.d.) defined a set of viewpoints called the IBM IT System Viewpoint Library. I have 

found it to be quite complete, with appropriate coverage of the various facets of a system’s archi-

tecture. The library consists of four basic viewpoints and six cross-cutting viewpoints.  Figure   2.3    

provides a pictorial representation.  



Architecture Views and Viewpoints 15

Application

Technical

Systems Management

Availability

Performance

Security

A
pplicationA

pp
lic

at
io

n

Application

Technical

TechnicalTe
ch

ni
ca

l

Systems Management

S
ystem

s M
anagem

entS
ys

te
m

s 
M

an
ag

em
en

t

Availability

A
vailabilityA

va
ila

bi
lit

y

Performance

Security

S
ecurityS

ec
ur

ity

P
er

fo
rm

an
ce

P
erform

ance

Requirements Functional

Validation Operational

Figure 2.3   Viewpoints in the IBM IT System Viewpoint Library (see “References”).         

 The four basic viewpoints of the IBM IT System Viewpoint Library are the following:  

   •    Requirements—      Models elements that capture all the requirements placed on the sys-

tem, including business, technical, functional, and nonfunctional requirements. Use 

cases and use case models are the most common means of capturing the requirements 

viewpoint.   

 •    Solution—     Models elements that define the solution satisfying the requirements and 

constraints; further organized into two categories:  

  •    Functional—      Focuses  on the model elements that are structural in nature and with 

which the system is built by not only implementing the elements but also wiring 

the relationships between the elements (both static and dynamic). The functional 



16 Chapter 2  Software Architecture: The  What  and  Why  

architecture (the focus of  Chapter   7   , “The Functional Model”), broadly speaking, is 

the construct through which the details of this viewpoint are captured.   

   •    Operational—   Focuses on  how the target system is built from the structural elements 

and how the functional view is deployed onto the IT environment (which consists of 

the network, hardware, compute power, servers, and so on). The operational model 

(the focus of  Chapter   8   , “The Operational Model”) is the most common architecture 

construct through which the details of this viewpoint are captured.     

  •    Validation—      Models  elements that focus on assessing the ability of the system to deliver 

the intended functionality with the expected quality of service. Functional and nonfunc-

tional test cases are often used as the validation criteria to attest to the system’s expected 

capabilities.    

 As shown in  Figure   2.3   , the four basic viewpoints are interrelated. The functional and oper-

ational viewpoints collectively realize (that is, implement and support) the requirements view-

point; both the functional and operational viewpoints are validated for acceptance through the 

validation viewpoint. Note that the “solution” construct does not appear explicitly in Figure 2.3; 

for the sake of clarity, I have only shown the functional and operation constructs that collectively 

define the solution construct.  

 The library also contains six    cross-cutting viewpoints, depicted in  Figure   2.3    as concentric 

squares around the four basic viewpoints. The idea is to illustrate the point that the cross-cutting 

viewpoints influence one or more of the basic viewpoints.  

 The six cross-cutting viewpoints are as follows:  

   •    Application—     Focuses  on meeting the system’s stated business requirements. The appli-

cation architect plays the primary role in addressing this viewpoint.   

  •    Technical—     Focuses on the  hardware, software, middleware (see  Chapter   5   , “The Archi-

tecture Overview,” for a definition), and packaged applications that collectively realize 

the application functionality and enable the application to run. The infrastructure and 

integration architects play the primary roles in addressing this viewpoint.   

  •    Systems Management—     Focuses on  post-deployment management, maintenance, and 

operations of the system. The application maintenance and management teams play the 

primary roles in addressing this viewpoint.   

  •    Availability—      Focuses on addressing  how the system will be made and kept available 

(for example, 99.5 percent uptime) per the agreed-upon service-level agreements. The 

infrastructure architect plays the primary role in addressing this viewpoint, with support 

from the application and the middleware architects.   

  •    Performance—   Focuses on addressing the  performance of the system (for example, 

400 milliseconds average latency between user request and the system response) per 



Summary 17

the agreed-upon service-level agreements. The application architect plays the primary 

role in addressing this viewpoint, with support from the middleware and infrastructure 

architects.   

  •    Security—      Focuses on addressing the security  requirements of the system (for example, 

single sign-on, security of data transfer protocol, intrusion avoidance, among others). 

Some of the security requirements—for example, single sign-on—are addressed primar-

ily by the application architect role, whereas other requirements such as data protocols 

(HTTPS, secure sockets) and intrusion avoidance are addressed primarily by the infra-

structure architects.       

 There are many more details behind each of the basic and cross-cutting viewpoints. Each 

viewpoint has a set of elements that collectively characterize and define their responsibilities. 

Understanding them can provide key insights into how each viewpoint may be realized. Although 

there are many details behind each of the basic and cross-cutting viewpoints, the idea here is to 

acknowledge their existence and realize the fact that any system’s overall architecture has to 

typically address most, if not all, of the viewpoints. Awareness is key!  

 After having personally studied a handful of viewpoint frameworks, I feel that most, if not 

all, of them have a degree of commonality in their fundamental form. The reason is that each of 

the frameworks sets about to accomplish the same task of establishing a set of complementary 

perspectives from which the software architecture may be viewed, with the goal of covering the 

various facets of the architecture.  

 The choice of adopting a viewpoint framework, at least from the ones that are also quite 

established, hardened, and enduring, depends on your level of belief that it addresses your needs 

and your degree of comfort in its usability and adoption.    

     Summary  
 As humans, we need to be convinced of the value of the work we are undertaking in order to 

put our mind and soul into it, to believe in its efficacy so that we can conjure up a passionate 

endeavor to make it successful.  

 In this chapter I shared my rationale for and belief in the value of a well-defined software 

architecture in relation to developing a successful software system. I defined a software architec-

ture (that is, the  What ) while also emphasizing its value (that is, the  Why ).  

 The chapter also introduced the notion of architecture views and viewpoints and provided 

an overview of one viewpoint library that I tend to follow quite often.  

 The next chapter highlights the various facets of software architecture that are described in 

the rest of the book. The fun begins!   



18 Chapter 2  Software Architecture: The  What  and  Why  

  References  
 Bass, L., Clements, P., & Kazman, R. (2012).  Software architecture in practice , 3rd ed. (Upper Saddle 

River, NJ: Addison-Wesley Professional). 

 IBM. (n.d.) Introduction to IBM IT system viewpoint. Retrieved from  http://www.ibm.com/developerworks/

rational/library/08/0108_cooks-cripps-spaas/ . 

 Kruchten, P. (1995, November). Architectural blueprints—The “4+1” view model of software architecture. 

 IEEE Software, 12 (6), 42–50. Retrieved from  http://www.cs.ubc.ca/~gregor/teaching/papers/

4+1view-architecture.pdf .     

http://www.ibm.com/developerworks/rational/library/08/0108_cooks-cripps-spaas/
http://www.cs.ubc.ca/~gregor/teaching/papers4+1view-architecture.pdf
http://www.ibm.com/developerworks/rational/library/08/0108_cooks-cripps-spaas/
http://www.cs.ubc.ca/~gregor/teaching/papers4+1view-architecture.pdf


This page intentionally left blank 



269

Index

A
ABBs (architecture building 

blocks), 8, 20, 77

dependencies between, 11

of ARA

Analytics Solutions 

ABBs, 222

Cognitive Computing 

ABBs, 228

Consumers ABBs, 223

Data Acquisition and 

Access ABBs, 218-219

Data and Information 

Security ABBs, 224

Data Integration and 

Consolidation ABBs, 

221

Data Repository ABBs, 

219

Data Type ABBs, 217

Descriptive Analytics 

ABBs, 225

Metadata ABBs, 223-224

Models ABBs, 219

Operational Analytics 

ABBs, 227

Predictive Analytics 

ABBs, 225-226

Prescriptive Analytics 

ABBs, 226

access layer, 173

accuracy, 112

adapters, 158, 248

addressing nonfunctional 

capabilities, 12-13

aggregation, 164

agility, 231-233

infrastructure framework, 233

MVP paradigm, 234-235

analytics, 199

cognitive computing, 204

descriptive analytics, 202

governance, 212

need for, 200-201

operational analytics, 

201-202

predictive analytics, 202, 

235-236

prescriptive analytics, 

203-204

semi-structured layer, 217

structured data, 217

unstructured data, 218

analytics architecture reference 

model

foundation, 205-206

systems of engagement, 206

systems of insight, 206

Analytics as a Service, 178

Analytics Solutions ABBs, 222

Analytics Solutions layer 

(ARA), 210

“Analytics: The Speed 

Advantage,” 200

API-level integration, 158-160

APIs, 158



270 Index

application architecture, 41

application HA, 188

application servers, capacity 

planning, 191

application viewpoint, 16

approaches to systems 

integration, 152

ARA

ABBs

Analytics Solutions 

ABBs, 222

Cognitive Computing 

ABBs, 228

Consumers ABBs, 223

Data Acquisition and 

Access ABBs, 218-219

Data and Information 

Security ABBs, 224

Data Integration and 

Consolidation 

ABBs, 221

Data Repository 

ABBs, 219

Data Type ABBs, 217

Descriptive Analytics 

ABBs, 225

Metadata ABBs, 223-224

Models ABBs, 219

Operational Analytics 

ABBs, 227

Predictive Analytics 

ABBs, 225-226

Prescriptive Analytics 

ABBs, 226

horizontal layers, 208

Analytics Solutions 

layer, 210

Consumers layer, 210

Data Integration and 

Consolidation layer, 209

Data Repository 

layer, 209

Data Types layer, 208

Models layer, 209

Layered view, 207

pillars, 207

Cognitive Computing, 216

Descriptive Analytics, 213

Operational Analytics, 

215

Predictive Analytics, 214

Prescriptive Analytics, 

214

vertical layers, 210

Data Governance layer, 

211-212

Metadata layer, 212

architecturally significant use 

cases, 11

architecture, 20, 39

baselining on core strengths 

of technology products, 

240-241

blueprints, 9

conceptual architecture of the 

IT System, 40

Enterprise view, 40-43

Core Business Processes 

component artifacts, 44

Data and Information 

component artifacts, 45

Technology Enablers 

component artifacts, 46

upgrading, 47

Users and Delivery 

Channels component 

artifacts, 44

IT System view, 52

banking example, 53

nodes, 54-55

nonfunctional 

characteristics, 55

Layered view, 40, 47-52

need for, 41

principles, 245

process architecture, 247-248

SOA reference architecture, 

49

technology-driven, 237-238, 

248

versus design, 9

views, 39

architecture decisions, 20, 65

attributes, 68-69

case study, 72-74

compliance factors, 66-67

creating, 67, 69-72

DLTs, 67

documenting, 66

example of, 70-72

for Elixir, 74-75

importance of, 65-66

artifacts

for IT subsystems, 82

traceability, 79

As-a-Service models, 176

Analytics as a Service, 178

IaaS, 177

PaaS, 178

SaaS, 178

Solution as a Service, 178

assigning components to layers, 

94-96



Index 271

associating data entities with 

subsystems, 90-92

attributes

of architecture decisions, 

68-69

of NFRs, 112-113

attributes of leaders, 237

availability, 112

HA, 180

application HA, 188

database HA, 188

disk subsystem HA, 184

hardware HA, 181-182

operating system HA, 182

SPoF, 180

availability viewpoint, 16

B
back office zone, 142

banking example of IT System 

view, 53

Batch integration pattern, 162

best practices for software 

architecture, 13

Best West Manufacturers case 

study, 1-4

BI (business intelligence), 202

business architecture viewpoint, 

11, 41

Business Context, comparing 

with System Context, 23

business operating models, 42

business processes, 11

Business Process layer (Layered 

view), 50

business process modeling, 29

business rules, 87

business use cases

identifying, 85

versus system use case, 4

C
capacity planning, 189, 192

application servers, 191

database servers, 191-192

web servers, 190

capturing

architecture decisions, 67-70

interface details, 89

System Context, 25

case study, 30-31, 36

information flows, 28-29

case studies

architecture decisions, 72-74

Best West Manufacturers, 1-4

Elixir

architecture overview, 57, 

60-62

functional model, 99-103, 

106, 261, 264-267

infrastructure, 192-194

Integration view, 166-170

OM, 141, 144-147

System Context, 30-31, 36

CBM (Component Business 

Modeling), 79-81

accountability levels, 80

business competencies, 79

CEP (complex event processing), 

250

channels, 27

cloud computing, 256-257

As-a-Service models

IaaS, 177

PaaS, 178

SaaS, 178

deployment models, 257-258

hosting, 176

CMS, 178-180

hybrid cloud deployment 

models, 177

private cloud deployment 

models, 177

public cloud deployment 

models, 176

virtualization, 139

CMS (Cloud Management 

Services), 178-180

cognitive computing, 

204, 216, 228

collaboration diagrams, 85

COM (conceptual operational 

model), 114

developing, 114

defining zones and 

locations, 115-116

identifying components, 

116-117

placing the components, 

118

DUs, linking, 122

for Elixir case study, 141, 146

rationalizing, 123-125

retail example, 114, 122

validating, 123-125

communicating best practices, 13

comparing

architecture and design, 9

Business Context and System 

Context, 23



272 Index

compatibility, 112

completeness DLT, 67

complexity of integration, 152

compliance factors for 

architecture decisions, 66-67

component architecture, 20

component meta-model, 94

component responsibility 

matrix, 86

components

assignment to layers, 94-96

of COM

defining, 116-117

placing, 118

identifying, 83-84

interaction at specified design 

level, 92-94

interface details, 

capturing, 89

composite business services, 159

Composition Service topology, 

160

conceptual architecture of the IT 

System, 40

conceptual-level design, 81

conceptual models, 245

conceptual nodes, 121

connections, implementing in 

POM, 131-137

Consumers ABBs, 223

Consumers layer (ARA), 210

containers, Docker technology, 

258-259

Core Business Processes 

component artifacts, 44

core layer, 173

creating architecture decisions, 

67-72

cross-cutting viewpoints, 16-17

CRUD, 92

custom enterprise models, 220

D
data, velocity, 201

Data Acquisition and Access 

ABBs, 218-219

Data Acquisition and Access 

layer (ARA), 208

Data and Information component 

artifacts, 45

Data and Information Security 

ABBs, 224

database HA, 188

database servers, capacity 

planning, 191-192

data centers, 176

data entities, associating with 

subsystems, 90-92

Data Governance layer (ARA)

analytics governance, 212

integration governance, 211

Data Information and Security 

layer (ARA), 212

data/information architecture, 41

Data Integration and 

Consolidation ABBs, 221

Data Integration and 

Consolidation layer 

(ARA), 209

data-level integration, 154-155

Data Repository ABBs, 219

Data Repository layer 

(ARA), 209

data type ABBs, 217

data types layer (ARA), 208

data virtualization, 221

DDUs (data deployable units), 

118-119

decisions, architecture 

decisions, 20

DeepQA, 204, 252-253

defining

components of COM, 

116-117

location of system 

components, 115-116

software architecture, 8

System Context, 23

delivery channels, 27

dependencies between ABBs, 11

deployment models, cloud 

computing, 257-258

Descriptive Analytics, 202, 213

Descriptive Analytics ABBs, 225

descriptive modeling, 225

design

best practices, 13

versus architecture, 9

developing

architecture decisions, 67-72

functional model, 81

associating data entities 

with subsystems, 90-92

component assignment to 

layers, 94-96

component interaction, 

92-94

component responsibility 

matrix, 86

interface specification, 

88-90

logical-level design, 82-85



Index 273

physical-level design, 

96-99

specified-level design, 85

OM

COM, 114-118, 123-125

POM, 131-141

SOM, 125-128, 131

technical services, 125

development of OM, 113

diagrams

architecture overview, 39

Business Context, 24

Enterprise view, 42-43

Core Business Processes 

component artifacts, 44

Data and Information 

component artifacts, 45

Elixir case study, 57-60

Technology Enablers 

component artifacts, 46

upgrading, 47

Users and Delivery 

Channels component 

artifacts, 44

IT System view, 52

banking example, 53

Elixir case study, 61-62

nodes, 54-55

nonfunctional 

characteristics, 55

Layered view, 47-52

Elixir case study, 60-61

vertical layers, 49

System Context

channels, 27

external systems, 27-28

for Elixir, 30

users, 26

dimensional analysis, 225

Direct Connection topology, 160

disadvantages of multitasking, 

235

disk subsytem HA, 184

distribution layer, 173

DLPARs (dynamic LPARs), 182

DLTs (Decision Litmus 

Tests), 67

DMZ, 141

Docker technology, 258-259

documenting architecture 

decisions, 66

DR (disaster recovery), 189

DUs (deployable units), 118

DDUs, placing, 119

EDUs, placing, 120

linking, 122

PDUs, placing, 119-120

Dynamic Binding, 160

dynamic view of System 

Context, information flows, 

28-29

E
EAI (Enterprise Application 

Integration), 160

EDA (event-driven architecture), 

246-247

EDUs (execution deployable 

units), 118-120

EDWs, 249-250

Eggen, Bert, 135

elaboration, 109

Elixir case study

architecture decisions, 72-75

architecture overview

Enterprise view, 57-60

IT System view, 61-62

Layered view, 60-61

functional model case studies, 

99-103, 106, 261-267

infrastructure, 192-194

Integration View case study, 

166-170

operational model, 141, 144

COM, 141, 146

POM, 147

SOM, 146

System Context, developing, 

30-31, 36

ensuring QoS, 138-139

enterprise data warehouse, 221

enterprise-level views, 20

enterprise mobile 

applications, 223

enterprise search, 223

Enterprise view, 40-43

Core Business Processes 

component artifacts, 44

Data and Information 

component artifacts, 45

Elixir case study, 57-60

Technology Enablers 

component artifacts, 46

upgrading, 47

Users and Delivery Channels 

component artifacts, 44

entities, semantic model, 155

establishing traceability

between architecture and 

design activities, 78

between requirements and 

architecture, 79

ETL (Extract, Transform, 

Load), 218

example of architecture 

decisions, 70-72

external systems, 27-28



274 Index

F
fault tolerance. See also capacity 

planning

application HA, 188

database HA, 188

disk subsystem HA, 184, 187

hardware HA, 181-182

operating system HA, 182

RAID, 184, 187

SPoF, 181

federated data integration 

technique, 154

filters, 165

flexibility DLT, 67

functional architecture 

viewpoint, 11, 15

functional model, 20

developing, 81

Elixir functional model case 

study, 261-267

logical-level design, 

developing, 82-85

need for, 77

physical-level design, 

developing, 96-99

purpose of

establishing traceability 

between architecture and 

design activities, 78

establishing traceability 

between requirements 

and architecture, 79

linking with operational 

model, 78

managing system 

complexity, 78

semantic levels, 81

specified-level design, 

developing, 85-96

G-H
gathering requirements, 233-234

Governance layer (Layered 

view), 52

HA (High Availability), 180

application HA, 188

database HA, 188

disk subsystem HA, 184

hardware HA, 181-182

operating system HA, 182

RAID, 184, 187

SPoF, 180

HADR (High Availability & 

Disaster Recovery), 188

horizontal layers, ARA, 208

Analytics Solutions 

layer, 210

Consumers layer, 210

Data Acquisition and Access 

layer, 208

Data Integration and 

Consolidation layer, 209

Data Repository layer, 209

Data Types layer, 208

Models layer, 209

horizontal scalability, 138

hosting, 176

CMS, 178-180

hybrid cloud deployment 

models, 177

private cloud deployment 

models, 177

public cloud deployment 

models, 176

hybrid cloud deployment 

models, 177

I
IaaS (Infrastructure as a 

Service), 177

IBM IT System Viewpoint 

Library, cross-cutting 

viewpoints, 16-17

identifying

business use cases, 85

components, 83-84

data entities, 90

specification nodes, 126

subsystems, 82-83

technical components, 

126-128, 131

IDUs (installation deployable 

units), 118

“-ilities,” 111

impact analysis, 13

implementing nodes and 

connections in POM, 131-137

independence DLT, 67

industry standard models, 219

influences planning, 11-12

Information Architecture layer 

(Layered view), 51

information flows, 28-29

infrastructure, 21

cloud computing

As-a-Service models, 

177-178

CMS, 178

deployment models, 176

components, selecting, 

131-134

Elixir Systems case study, 

192-194



Index 275

HA, 180

application HA, 188

database HA, 188

disk subsystem HA, 184

hardware HA, 181-182

operating sytem HA, 182

SPoF, 180

hosting, CMS, 178-180

network infrastructure model, 

173-175

topologies, 174

yin and yang analogy, 172 

infrastructure framework for 

agile development, 233

insight, 222

integration, 151

API-level integration, 

158-160

approaches to, 152

complexity of, 152

data-level integration, 154

federated technique, 154

replication technique, 155

Elixir Integration View case 

study, 166-170

layers, 152

message-level integration, 

156-158

service-level integration, 160

user interface integration, 

153-154

integration governance, 211

Integration layer (Layered 

view), 51

integration patterns, 21, 161

Batch, 162

message routers, 165-166

message transformers, 166

pipes and filters, 165

Synchronous Batch 

Request-Response, 163

integrity DLT, 67

intercomponent 

dependencies, 12

interface details, capturing, 89

interface specification, 88-90

IT subsystems, 78

artifacts, 82

identifying, 82-83

IT System view, 20, 40, 52

banking example, 53

Elixir case study, 61-62

nodes, 54-55

nonfunctional characteristics, 

55

J-K-L
KPIs, 227

Kruchten, Philippe, 14

Layered view 20, 40, 47, 52

ARA, 207

horizontal layers, 208-210

pillars, 207

vertical layers, 210-212

Elixir case study, 60-61

vertical layers, 49

layers

assigning components to, 

94-96

integration, 152

leadership, 237

legacy adapters, 158

linking

DUs, 122

functional model with 

operational model, 78

location of system components, 

defining, 115-116

logical data model, 90

logical-level design, 

developing, 82

business use cases, 

identifying, 85

component identification, 

83-84

subsystem identification, 

82-83

LPAR (logical partitioning), 181

LXC (Linux Containers), 258

M
MAA (Maximum Availability 

Architecture), 188

maintainability, 112

managing system complexity, 78

matrix algebra, 134

message-level integration, 

156-158

message routers, 165-166

message transformers, 166

metadata ABBs, 223-224

micro design, 98

mirroring, 184

Models ABBs, 219

Models layer (ARA), 209

modifiability, 112

MOM (message-oriented 

middleware), 156

MPLS/VPN (Multiprotocol 

Label Switching VPN), 175



276 Index

MPP (massively parallel 

processing) systems, 252

multitasking, disadvantages 

of, 235

MVP (minimal valuable 

product), 234-235

N
network infrastructure model, 

173-175

access layer, 173

core layer, 173

distribution layer, 173

networks. See also infrastructure

cloud computing

As-a-Service models, 

177-178

hosting, 176

hybrid cloud deployment 

models, 177

private cloud deployment 

models, 177

public cloud deployment 

models, 176-180

HA, 180

application HA, 188

database HA, 188

disk subsystem HA, 184

hardware HA, 181-182

operating sytem HA, 182

SPoF, 180

segmentation, 175

topologies, 133, 174

network switch blocks, 249

next best action, 222

NFRs (nonfunctional 

requirements), 12-13, 86

attributes, 112-113

HA, 180

nodes

implementing in POM, 

131-137

IT System view, 54-55

nonfunctional characteristics, IT 

System view, 55

O
OM (operational model), 109

COM, 114

developing, 114-118, 

123-125

Elixir case study, 141-146

retail example, 114, 122

development, 113

elaboration, 109

“-ilities,” 111

linking with functional 

model, 78

need for, 110

NFR attributes, 112

POM, 114

developing, 131-141

Elixir case study, 147

QoS, ensuring, 138-139

SOM, 114

developing, 125-128, 131

Elixir case study, 146

technical viability 

assessment, 128-129

traceability, 111

ontology, 220, 253-254

OOAD (object-oriented analysis 

and design), 244-245

open source technologies, 

238-239

operating system HA, 182

Operational Analytics, 201-202, 

215, 227

operational architecture, 11, 16

operational dashboard, 223

Operational layer (Layered 

view), 50

P
PaaS (Platform as a Service), 178

parallel development, 82

parity bits, 187

party checksum, 187

PDUs (presentation deployable 

units), 118-120

performance, 112, 138-139

performance viewpoint, 16

physical-level design, 

developing, 96-99

physical models, 245

pillars of ARA, 207

Cognitive Computing, 216

Descriptive Analytics, 213

Operational Analytics, 215

Predictive Analytics, 214

Prescriptive Analytics, 214

pipes, 165

placing

components of COM, 118

DDUs, 119

EDUs, 120

PDUs, 119-120



Index 277

POM (physical operational 

model), 114, 246

developing, 131-137

for Elixir case study, 147

nodes and connections, 

implementing, 131-137

QoS, ensuring, 138-139

rationalizing, 139-141

validating, 139-141

portability, 112

“The Practical Software 

Architect,” 7

precision, 112

Predictive Analytics, 202, 214, 

225-226, 235-236

predictive asset 

optimization, 222

predictive customer insight, 222

Prescriptive Analytics, 203-204, 

214, 226

private cloud deployment 

models, 177

problem solving, 239

process architecture, 247-248

process breakdown, 29

public cloud deployment 

models, 177

Publish-Subscribe, 164

purpose of functional model

establishing traceability 

between architecture and 

design activities, 78

establishing traceability 

between requirements and 

architecture, 79

linking with operational 

model, 78

managing system 

complexity, 78

Q

QoS (quality of service), 

138-139, 176

QoS layer (Layered view), 51

quality attributes, 111

R
RAID 0, 184

RAID 1, 184, 187

RAID 5, 184

RAID 6, 185

RAID 10, 186

rationalizing

COM, 123-125

POM, 139-141

SOM, 128, 131

real-time analytics, 201-202

real-time model scoring, 227

recommender systems, 222

recursive use of software 

architecture, 9-10

reliability, 67, 112

replication data integration 

technique, 155

reporting dashboard, 223

reporting workbench, 225

representing information 

flows, 28

requirements gathering, 29, 

233-234

requirements viewpoint, 15

retail example of COM, 114, 122

road analogy for network 

topologies, 133

roles of users, 27

S
SaaS (Software as a 

Service), 178

scalability, 113, 138

horizontal scalability, 138

vertical scalability, 138

scale out, 138

scale up, 138

schema at read techniques, 251

schema at write techniques, 251

secured zone, 141

security, 112

security viewpoint, 17

segmentation, 175

selecting infrastructure 

components, 131-134

semantic integration, 221

semantic levels of functional 

model, 81

semantic model, 155, 220

semi-structured layer, 217

send and forget processing 

model, 158

Service Components layer 

(Layered view), 50

service-level integration, 160

service registries, 249

Services layer (Layered 

view), 50

SLAs, 173

SOA (service-oriented 

architecture), 49, 246

software architecture, 7-8

ABBs, 8

addressing nonfunctional 

capabilities, 12-13

best practices, 13



278 Index

defining, 8

impact analysis, 13

influences planning, 11-12

recursive use of, 9-10

representations, 11

viewpoints, 10

business architecture 

viewpoint, 11

functional architecture 

viewpoint, 11

operational architecture 

viewpoint, 11

Solution as a Service, 178

solution viewpoint, 15

solving problems, 239-240

SOM (specification operational 

model), 114

developing, 125

identifying specification 

nodes, 126

identifying technical 

components, 126-128

for Elixir case study, 146

rationalizing, 128-131

technical viability 

assessment, 128-129

validating, 128-131

Spark, 254-255

specification nodes, 

identifying, 126

specified-level design, 

developing, 85

associating data entities with 

subsystems, 90-92

component assignment to 

layers, 94-96

component interaction, 92-94

component responsibility 

matrix, 86

interface specification, 88-90

specified models, 245

SPoF (single points of 

failure), 180

store and forward processing 

model, 158

stream computing, 250

striping, 184, 187

structured data, 217

subsystems, 78

artifacts, 82

associating with data 

entries, 90

identifying, 82-83

supervised learning techniques, 

253

Synchronous Batch Request-

Response, 163

Synchronous Request-Response, 

162

system complexity, 

managing, 78

system context, 20, 24

capturing, 25

case study, 30-31, 36

defining, 23

diagrams, 26

channels, 27

external systems, 27-28

dynamic view, information 

flows, 28-29

systems integration, 151

API-level integration, 

158-160

approaches to, 152

complexity of, 152

data-level integration, 154

federated technique, 154

replication technique, 155

Elixir Integration View case 

study, 166-170

integration patterns, 161

aggregation, 164

Batch, 162

message routers, 165-166

message transformers, 166

pipes and filters, 165

Publish-Subscribe, 164

Store and Forward, 164

Synchronous Batch 

Request-Response, 163

Synchronous 

Request-Response, 162

layers, 152

message-level integration, 

156-158

service-level integration, 160

user interface integration, 

153-154

systems management, 16, 113

systems of engagement, 206

systems of insight, 206

system use cases, 4, 85

T
tabular format for capturing 

architecture decisions, 69-70

taxonomies, 220, 253-254

technical architecture, 41

technical components, 

identifying, 126-128, 131

technical services, 

developing, 125

technical viability assessment of 

SOM, 128-129

technical viewpoint, 16

technology adapters, 29



Index 279

technology agnostic views, 39

technology-driven architecture, 

237-238, 248

Technology Enablers component 

artifacts, 46

ThePSA, 7

three-tier hierarchical network 

model, 173-175

TOGAF (The Open Group 

Architecture Framework), 41

Tonnage Per Hour, 213

top-down functional 

decomposition, 244

topologies, 174

traceability, 79

CBM, 79-81

accountability levels, 80

business competencies, 79

establishing 

between architecture and 

design activities, 78

between requirements and 

architecture, 79

OM, 111

traits of leaders, 237

triple stores, 251

TSA (Tivoli System 

Automation), 188

U
UML (Unified Modeling 

Language), 83, 90

unstructured data, 218

unsupervised learning 

techniques, 253

untrusted zone, 141

upgrading Enterprise view, 47

usability, 112

use cases

architecturally significant use 

cases, 11

BWM case study, 2-4

business use cases, 4, 85

identifying, 85

system use cases, 85

user interface integration, 

153-154

users

roles, 27

System Context diagram, 26

Users and Delivery Channels 

component artifacts, 44

V
validating

COM, 123-125

POM, 139-141

SOM, 128, 131

validation viewpoint, 16

validity DLT, 67

value creation, 200

velocity, 201

vertical layers

ARA, 210

Data Governance layer, 

211-212

Data Information and 

Security layer, 212

in Layered view, 49

vertical scalability, 138, 191

viewpoints

cross-cutting viewpoints, 

16-17

of software architecture, 

10, 14

business architecture 

viewpoint, 11

functional architecture 

viewpoint, 11

operational architecture 

viewpoint, 11

views, 39

Enterprise view, 40-43

Core Business Processes 

component artifacts, 44

Data and Information 

component artifacts, 45

Elixir case study, 57, 60

Technology Enablers 

component artifacts, 46

upgrading, 47

Users and Delivery 

Channels component 

artifacts, 44

IT System view, 40, 52

banking example, 53

Elixir case study, 61-62

nodes, 54-55

nonfunctional 

characteristics, 55

Layered view, 40, 47-52

Elixir case study, 60-61

vertical layers, 49

technology agnostic, 39

virtualization, cloud-based, 139

VLANs, 176

VPNs (virtual private networks), 

175

W
Watson, 252-253

Web APIs, 160

web servers, capacity planning, 

190

Web Services, 160



280 Index

work products, 26

writing down your problems, 239

X-Y-Z
XOR logic, 187

yin and yang analogy of 

infrastructure, 172

zones, 115-116

back office zone, 142

DMZ, 141

secured zone, 141

untrusted zone, 1412


	Contents
	Foreword
	Preface
	Chapter 2 Software Architecture: The What and Why
	Some Background
	The What
	The Why
	Architecture Views and Viewpoints
	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K-L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug true
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




