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 Foreword  

 In the era of Big Data, customers increasingly recognize the 
value that advanced analytics offers to differentiate their business. As 
a result, predictive models turn into critical business assets that can 
deliver huge benefits, but also require a more rigorous process for 
the operational deployment in order to generate such business value.  

 In this context, it is shocking to see that only a small percentage 
of predictive models are actually deployed and that deployment often 
takes several months. Organizations face a wide range of business 
requirements, a host of operational IT solutions and data warehouse 
platforms, plus a rapidly growing set of data mining tools. For an orga-
nization to truly take advantage of the opportunities that advanced 
analytics has to offer, it needs to break old habits, often constrained 
by single-vendor solutions or manual processes, and move toward a 
modern analytics infrastructure. It is no surprise that in a recent set of  
reports, Gartner emphasized the benefits that vendor-neutral indus-
try standards and open software platforms offer to end user organi-
zations in many industries to rapidly deploy and execute predictive 
models across a wide range of hardware and software installations.  

 The authors, Michele Chambers and Thomas Dinsmore, outline 
this new world of open analytics where, instead of a single vendor 
proprietary analytic solution, we see the rise of the open analytics 
platform based on a diverse set of commercial and open source tools, 
tied together through open standards. To become a master of analyt-
ics, your organization must define a unique architecture and roadmap 
that recognizes the complexity of your applications, use cases, and 
user personas; this architecture will include many vendors and proj-
ects, because no single vendor will be able to meet all of your needs.  

 This book provides the essential background, knowledge, and 
tools you will need to define your own analytics architecture and road-
map. I encourage you to read it end to end, as it will provide valuable 
guidance across a diverse set of topics, from business considerations, 
human factors, and organizational structure to insight into analytic 
applications and predictive analytics methodology.  

— Michael Zeller  
 CEO Zementis    
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   9 
 Predictive Analytics Techniques  

     Overview  

 In this chapter, we review techniques that analysts use for predic-
tive analytics. There are hundreds of different algorithms currently 
used to train predictive models; we do not claim to review these 
methods exhaustively but present a general description of “families” 
of techniques, together with an explanation of the strengths and weak-
nesses for each family (see  Exhibit   9.1   ).   

 Many statistical techniques are useful for both prediction and 
explanation. Some techniques, however, such as Mixed Linear Mod-
els, are primarily useful for explanation, where the analyst seeks to 
assess the effect of one or more measures on another measure. The 
scope of this chapter does not include these techniques.  

 We begin the chapter with a brief discussion of two key “streams” 
of innovation in predictive analytics: statistics and machine learning. 
The distinction between these two streams is no longer as clear as it 
once was, because practitioners and advocates of each stream borrow 
from the other.  

 We also review the impact of Big Data. Some analysts argue that 
the Big Data phenomenon should have no impact on predictive ana-
lytics; these analysts argue that the core methods of predictive analyt-
ics do not change with the scale of the data. We disagree and therefore 
demonstrate specific ways in which Big Data can and will affect the 
techniques that analysts use.  
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Analytic Applications

User Personas

Analytic Tooling

Analytic Programming
Languages Business User Tools

Analytic Platforms

Methodology Techniques

Use Cases

 Exhibit 9.1   Modern Analytics Framework        

 In  Chapter   7   , “Analytic Use Cases,” we reviewed a number of use 
cases that require unsupervised learning techniques, such as segmen-
tation, social network analysis, and text analytics. The unsupervised 
learning techniques required to support these use cases can also play 
a role in the predictive analytics workflow, so we include a brief dis-
cussion of these techniques.  

 The discussion of neural networks includes a brief overview of 
deep learning. Deep learning is a relatively recent innovation that has 
sparked new interest in applications for neural networks.  

 We close this chapter with a brief discussion of “meta-algorithms,” 
techniques to automate searches for an optimal model.   
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  Statistics and Machine Learning  

 There are two classes of techniques for predictive analytics with 
very different legacies: statistical methods and machine learning.  

 Statistical methods, such as linear regression, estimate the param-
eters of mathematical models with known properties; the analyst 
seeks to test the hypothesis that the behavior of interest conforms to a 
specific class of mathematical model. The advantage of these models 
is that they are highly generalizable. If you can demonstrate that his-
torical data conforms to a known distribution, you can use this infor-
mation to predict behavior for new cases.  

 For example, if you know the position, velocity, and acceleration 
of an artillery shell, you can predict where it will land because you 
can use a mathematical model to compute the point of impact. By 
analogy, if you can show that response to a marketing campaign fol-
lows a known statistical distribution, you can predict response with a 
degree of confidence based on information about the customer’s past 
purchases, demographics, characteristics of the offer, and so forth.  

 The principal disadvantage of statistical methods is that real-
world phenomena frequently do not conform to known statistical 
distributions.  

 Machine learning techniques differ fundamentally from statisti-
cal techniques because they do not start from a particular hypothesis 
about behavior; instead, they seek to learn and describe the relation-
ship between historical facts and target behavior as closely as possible. 
Because machine learning techniques are not constrained by specific 
statistical distributions, they are often able to build models that are 
more accurate.  

 However, machine learning techniques can overlearn, which 
means they learn relationships in the training data that cannot gen-
eralize to the population. Consequently, most widely used machine 
learning techniques have built-in mechanisms to control overlearn-
ing, such as cross-validation or pruning on an independent sample.  

 The distinction between statistics and machine learning is getting 
smaller, as the two fields converge; for example, stepwise regression 
is a hybrid method based on both traditions.   
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  The Impact of Big Data  

 By “Big Data,” we mean data sets that are “big” on any one of 
three dimensions: volume, variety, and velocity. One of the prem-
ises of this book is that Big Data technology has  already  changed the 
analytics landscape and that a new approach is needed—what we call 
“Modern Analytics.”  

 How big is “Big?” For data management, data is Big Data if it is 
too large to fit efficiently in a relational database. For analytics, we use 
a different definition; data qualifies as Big Data if it meets any one of 
three conditions:  

    1.   The analytic data set is too large to fit into memory on a single 
machine.   

   2.   The analytic data set is too large to move to a dedicated analysis 
platform.   

   3.   Source data for analysis resides in a Big Data repository, such 
as Hadoop, an MPP database, NoSQL database, or NewSQL 
database.    

 Data volume can mean two different things with different impli-
cations for the analyst. When the analyst works with structured data 
in matrices or tables, “volume” can mean more rows, more columns, 
or both. Analysts routinely work with data sets containing millions or 
billions of rows by sampling records at random  1   and then using the 
sample to train and validate predictive models. Sampling works rea-
sonably well when the goal is to build a single predictive model for the 
entire population and the incidence of modeled behavior is relatively 
high and uniform in the population. With modern  analytics technol-
ogy, however, sampling is an option and not a requirement forced on 
the analyst by limited computing resources.   

 Adding more columns to the analytic data set affects the analyst 
in a very different way. The most effective way to improve the perfor-
mance of predictive models is to add new variables with information 
value; however, you cannot always know in advance what variables 

  1   Sampling is built into SAS’ SEMMA methodology. 



 CHAPTER  9 • PREDICTIVE ANALYTICS TECHNIQUES 151

will add value to a model. This means that as you add variables to the 
analytics data set, you need tooling that will enable the analyst to scan 
across many variables quickly to find those that add value to a predic-
tive model.  

 Having many columns or variables also means that there are many 
possible ways to specify a predictive model. To illustrate this point, 
consider the simple example of an analytics data set with one response 
measure and five predictors—a tiny data set by any measures. There 
are 29 unique combinations of the five predictors as main effects and 
many other possible model specifications if you consider interaction 
effects and various transformations of the predictors. The number 
of possible model specifications explodes as the number of variables 
increases; this places a premium on methods and techniques that 
enable the analyst to search  efficiently for the best model.  

 “Variety” means working with data that is not structured in matrix 
or table form. In itself, this is not new; analysts have worked with data 
in many different formats for years, and text mining is a mature field. 
The most important change introduced by the Big Data trend is the 
large-scale adoption of unstructured formats for analytic data stores 
and the growing recognition that unstructured data—web logs, medi-
cal provider notes, social media comments, and so on—offers signif-
icant value for predictive modeling. This means that analysts must 
consider unstructured data sources when planning projects and build 
the necessary tooling into enterprise  analytics architecture.  

 “Velocity,” the third V of Big Data, affects predictive analytics in 
two ways: as source and as target. Analysts working with streaming 
data, such as telemetry from a racing car or live feeds from moni-
toring equipment in a hospital intensive care unit, must use special 
techniques to sample and window the data stream; these techniques 
convert the continuous stream into a discrete time series for analysis.  

 When the analyst seeks to apply predictive analytics to streaming 
data, as in real-time scoring, most organizations will use a dedicated 
decision engine designed to deliver high performance when scoring 
individual transactions.   
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  Supervised and Unsupervised Learning  

 In  Chapter   7   , we reviewed a number of analytic use cases, includ-
ing text and document analytics, clustering, association, and anomaly 
detection. These use cases differ from the predictive modeling use 
case because there is no predefined response measure; the analyst 
seeks to identify patterns but does not seek to predict or explain a 
specific relationship. These use cases require unsupervised learning 
techniques.  

 Unsupervised learning refers to techniques that find patterns in 
unlabeled data, or data that lacks a defined response measure. Exam-
ples of unlabeled data include a bit-mapped photograph, a series of 
comments from social media, and a battery of psychographic data 
gathered from a number of subjects. In each case, it may be possible 
to classify the objects through an external process: For example, you 
can ask a panel of oncologists to review a set of breast images and 
classify them as possibly malignant (or not), but the classification is 
not a part of the raw source data. Unsupervised learning techniques  
help the analyst identify data-driven patterns that may warrant fur-
ther investigation.  

 Supervised learning, on the other hand, includes techniques 
that require a defined response measure. Not surprisingly, analysts 
primarily use supervised learning techniques for predictive analyt-
ics. However, in the course of a predictive analytics project, analysts 
may use unsupervised learning techniques to understand the data 
and to expedite the model building process. Unsupervised learning 
techniques frequently used within the predictive modeling process 
include anomaly detection, graph and network analysis, Bayesian 
Networks, text mining, clustering, and dimension reduction.  

  Anomaly Detection  

 An analyst working on a supermarket chain’s loyalty card spend-
ing data noticed an interesting pattern: Some customers appeared 
to spend exceptionally large amounts. These “supercustomers”—
of whom there were no more than several dozen—accounted for 
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a disproportionate percentage of total spending. The analyst was 
intrigued: Who were these supercustomers? Did it make sense to 
develop a special program to retain their business (in the same way 
that casinos target “whales”)?  

 On deeper investigation—a process that took considerable 
digging—the analyst discovered that these “supercustomers” were 
actually store cashiers who swiped their own loyalty cards for custom-
ers who did not have a card.  

 In  Chapter   8   , “Predictive Analytics Methodology,” we noted that 
analysts investigate and treat outliers as they develop the analysis data 
set. They do this for two reasons: First, because outliers can make it 
very difficult to fit a predictive model to the data at all; and second, 
because outliers may indicate a problem with the data, as the super-
market analyst learned.  

 As a rule, the analyst should remove outliers from the analysis 
data set only when they are artifacts of the data collection process (as 
is the case in the supermarket example). Investigating outliers can 
take a considerable amount of time; thus, the analyst needs formal 
methods to identify anomalies in the data as quickly as possible.  

 In many cases, simple univariate methods will suffice. For univari-
ate anomaly detection, the analyst runs simple statistics on all numeric 
variables. The process flags records with values that exceed defined 
minima or maxima for each variable, and flags records whose values 
exceed a defined number of standard deviations from the mean. For 
categorical variables, the analyst compares the variable values with 
a list of acceptable values, flagging records with values not included 
in the list. For example, in a data set that represents customers who 
reside in the United States, a “State” variable should include only 51 
acceptable values; records  with any other value in this field require 
analyst review.  

 Univariate methods for anomaly detection may miss some unusual 
patterns. To take a simple example, consider the case of a person who 
measures 74 inches tall and weighs 105 pounds. Neither the height 
nor the weight of this person is exceptional, but the combination of 
the two is highly unusual and rare. Analysts use multivariate anomaly 
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detection techniques to identify these unusual cases. Multiple tech-
niques are available to the analyst, including clustering techniques 
(see later in this chapter), single-class support vector machines, and 
distance-based techniques (such as K-nearest neighbors). These tech-
niques are useful when anomaly detection is the primary goal  of the 
analysis (as is the case for security and fraud applications); however, 
they are rarely used in the predictive analytics process.   

  Graph and Network Analysis  

 In  Chapter   7   , we discussed the graph analysis use case, a form of 
discovery with proven value in social media analysis, fraud detection, 
criminology, and national security. Mathematical graphs do not play 
a direct role in predictive analytics but can play a supporting role in 
two ways.  

 First, graphs are very useful in exploratory analysis, where the 
analyst simply seeks to understand behavior. Bayesian belief net-
works, discussed next, are a special case of graph analysis, where the 
nodes of the graph represent variables. However, an analyst can gain 
valuable insights from other applications of graph analysis, such as 
social network analysis. In a social graph, the nodes represent per-
sons, and edges represent relationships among persons; using a social 
graph, a criminologist discovered that most murders in Chicago took 
place within a very small social network.  2   This insight can lead the 
analyst to examine the characteristics that distinguish the high-risk 
social network and a model that predicts homicide risk.   

 Graph analysis can also contribute features to a predictive model 
based on a broader set of data. For example, the social distance 
between a prospective customer and an existing customer—derived 
from a social graph—could be a strong feature in a model that pre-
dicts response to a marketing offer. As another example, the number 
of social links between an employee and other employees might be a 
valuable predictor in an employee retention model.   

  2   Whet Moser, “The Small Social Networks at the Heart of Chicago Violence,” 
December  9, 2013,  http://www.chicagomag.com/city-life/December-2013/
The-Small-Social-Networks-at-the-Heart-of-Chicago-Violence/ . 

http://www.chicagomag.com/city-life/December-2013/The-Small-Social-Networks-at-the-Heart-of-Chicago-Violence/
http://www.chicagomag.com/city-life/December-2013/The-Small-Social-Networks-at-the-Heart-of-Chicago-Violence/
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  Bayesian Networks  

 Bayesian inference is a formal system of reasoning that reflects 
something you do in everyday life: use new information to update 
your beliefs about the probability of an event. For an example of this 
kind of reasoning, consider a sales associate at a car dealer who must 
decide how much time to spend with “walk-in” customers. The sales 
associate knows from experience that only a very small percentage of 
these customers will buy a car, but he also knows that if the customer 
currently owns the brand of car sold at the dealership, the odds of a 
purchase increase significantly.  Using a form of Bayesian inference, 
the sales associate asks each “walk-in” customer what he or she cur-
rently drives and then uses this information to qualify the customer 
accordingly.  

 Suppose that you have a great deal of data about an entity, and 
you want to understand what data is most useful for predicting a par-
ticular event. For example, you may be interested in modeling loan 
defaults in a mortgage portfolio and have copious data about the bor-
rower, mortgaged property, and local economic conditions. Bayesian 
methods help you identify the information value of each data item so 
that you can focus attention on the most important predictors.  

 A Bayesian belief network represents a system of relationships 
among variables through a mathematical graph (described in the pre-
ceding section). A belief network represents variables as nodes in the 
graph and conditional dependencies as edges, as shown in  Exhibit   9.2   .   

 Belief networks are highly interpretable; modeling and visualiz-
ing a belief network helps the analyst understand relationships among 
a large set of variables and form hypotheses about the best ways to 
model those relationships. The belief network models the system as a 
whole and does not categorize variables as “predictor” and “response” 
measures. Hence, it is a valuable tool to explore the data while work-
ing with a business stakeholder to define the predictive modeling 
problem. (We discuss Bayesian methods for predictive modeling later 
in this chapter.)  
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 Most commercial and open source analytics platforms can con-
struct Bayesian belief networks. Specialist software vendor Bayesia 
offers a special-purpose software package (BayesiaLab) that is espe-
cially well suited to visualization, and offers deeper functionality than 
is available in general-purpose analytic software.   

  Text Mining  

 As we noted in  Chapter   7   , text and document analytics can be a 
distinct use case for analytics, where the goal of the analysis is simply 
to draw insight from the text itself. An example of this kind of “pure” 
text analysis is the popular “word cloud”—a diagram that visually rep-
resents the relative frequency of words in a text (such as a presidential 
speech).  

 The explosion of digital content available through electronic chan-
nels creates demand for document analytics, a specialized application 
of text analytics. Document analysis produces measures of similar-
ity and dissimilarity, for example, what organizations use to identify 
duplicate content, detect plagiarism, or filter unwanted content.  
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 Exhibit 9.2   Bayesian Belief Network        
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 In predictive analytics, text mining plays a supplemental role: Ana-
lysts seek to enhance models by incorporating information derived 
from text into a predictive model that may capture other information 
about the subject. For example, a hospital seeking to predict read-
mission among discharged patients relied on a battery of quantita-
tive measures such as diagnostic codes, days since first admission, 
and other characteristics of the treatment; it was able to improve the 
model by adding predictors derived from practitioners’ notes with text 
mining. Similarly, an insurance carrier was able to improve its ability 
to predict customer attrition by capturing data from call  center notes.  

 The most common form of text mining depends on word counting, 
but the task is more complicated than simply counting the incidence 
of each unique word. The analyst must first clean and standardize the 
text by correcting spelling errors; removing common words such as 
 the, and, or,  and so forth; stemming, or reducing inflected and derived 
words to their root; and employing other methods that remove noise 
from the text.  

 Word counting begins when the text is clean. Two distinctly 
different methods are in common usage. The simplest method just 
counts the incidence of each unique word in each document; for 
example, in the hospital case, the word-counting algorithm counts the 
incidence of unique words in each patient’s record. The output of this 
process is a sparse matrix with one column for each distinct word, one 
row for each document, and values in the cells representing the word 
count. This matrix is impossibly large to use in a predictive model in 
its raw form, so the analyst applies dimension-reduction techniques  
to reduce the word count matrix to a limited number of uncorrelated 
dimensions. (See the section on dimension reduction later in this 
chapter.)  

 A second method counts associations rather than words. For 
example, the algorithm counts how often two words appear together 
within a sliding window of  n  words, within a sentence or within a 
paragraph. The output of this process is a “words by words” matrix, 
to which the analyst applies dimension-reduction techniques. This 
method can produce insights with relatively small quantities of text, 
but it requires a scoring process to assign feature values to each record 
in the raw data.   
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  Clustering  

 As we discussed in  Chapter   7   , segmentation is one of the most 
effective and widely used strategic tools available to businesses today. 
Strategic segmentation is a business practice that depends on an ana-
lytic use case (market segmentation or customer segmentation); the 
use case, in turn, depends on a set of unsupervised learning tech-
niques called  clustering .  

 Clustering techniques divide a set of cases into distinct groups 
that are homogeneous with respect to a set of variables we call the 
 active variables . In customer segmentation, each case represents a 
customer; in market segmentation, each case represents a consumer 
who may be a current customer, a former customer, or a prospec-
tive customer. Of course, you can use clustering techniques in other 
domains aside from customer and market segmentation.  

 Although strategic segmentation is a distinct analytic use case, 
segmentation can also play a tactical role in predictive analytics. As 
a rule, analysts can improve the overall effectiveness of a predictive 
model by splitting the population into subgroups, or segments, and 
modeling separately for each segment. In some cases, the subgroups 
are logically apparent and easily identified without formal analysis. 
Suppose, for example, that a credit card issuer wants to build a model 
that will predict delinquency in the next 12 months. The model likely 
includes predictors based on the cardholder’s transacting and pay-
ment behavior over some finite period (such  as the prior 12 months). 
Cardholders acquired less than 12 months ago will have incomplete 
data for these predictors; consequently, it may make sense to seg-
ment the cardholder base into two groups: those acquired at least 12 
months ago and those acquired less than 12 months ago. The analyst 
then builds separate predictive models for each group of card holders. 
(In actual practice, credit card issuers subdivide their portfolios into 
many such segments for risk modeling based on a range of character-
istics, including cardholder tenure, type of card product, country of 
issue, and so forth.)  

 The practice described in the preceding paragraph is  a priori seg-
mentation,  where the analyst knows the desired segmentation scheme 
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in advance. When the analyst does not know the optimal segmenta-
tion scheme in advance, clustering techniques help the analyst seg-
ment the analysis data set into homogeneous groups. A bookstore, 
for example, might have data about customer spending across a wide 
range of categories. Running a cluster analysis reveals (hypothetically) 
five distinct groups of customers:  

    •   High-spending customers who buy in many categories   

   •   High-spending customers who buy fiction only   

   •   Medium-spending customers who buy mostly children’s books   

   •   Medium-spending customers who buy books on military his-
tory, sports, and auto repair   

   •   Light-spending customers    

 This clustering has business value in its own right, but it also 
enables the analyst to build distinct predictive models for each 
segment.  

 You can use many techniques for clustering; the most widely used 
is k-means clustering, a technique that minimizes the variation from 
the cluster mean for all active variables. The standard k-means algo-
rithm is iterative and relies on random seed values; the analyst must 
specify the value of  k,  or the number of clusters. There are many vari-
ations on k-means, including alternative computational methods, and 
a range of enhancements in software implementations; these include 
capabilities to visualize and interpret the clusters, and “wrappers” that 
help the analyst determine the optimal number of clusters.  

 K-means clustering is available in most commercial data min-
ing packages (together with other clustering methods). Open source 
options include the k-means package in R (among many others) and 
scikit-learn in Python. To be useful as a segmentation tool, clustering 
must run on the entire population; hence, leading database vendors 
such as IBM, PureData (Netezza), and Oracle have built-in capability 
for k-means, and leading in-database libraries support the capabil-
ity as well. In Hadoop, open source implementations are included 
in Apache Mahout, Apache Spark, and independent platforms such 
as H2O.   
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  Dimension Reduction  

 Analysts tend to use the words  dimension, feature,  and  predictor 
variable  interchangeably. Although each term has a precise meaning 
in academic literature, in this section we treat them as synonymous 
and address the practical problems posed by data sets with a very 
large number of predictors.  

 An in-depth treatment of dimensionality and its impact on the 
techniques reviewed in this chapter is out of scope for this book. Suf-
fice it to say that high dimensionality complicates predictive modeling 
in two ways: through added computational complexity and runtime, 
and through the potential to produce a biased or unstable model. In 
this context, there is no simple rule that defines “large.” On the one 
extreme, problems in image recognition or genetics may have millions 
of potential predictors, but with some methods, analysts encounter 
issues with as few as a thousand or several hundred predictors.  

 Analysts use two types of techniques to reduce the number of 
dimensions in a data set: feature extraction and feature selection. As 
the name suggests, feature extraction methods synthesize informa-
tion from many raw variables into a limited number of dimensions, 
extracting signal from noise. Feature selection methods help the ana-
lyst choose from a number of predictors, selecting the best predictors 
for use in the finished model and ignoring the rest.  

 The most popular technique for feature extraction is principal 
component analysis, or PCA. First introduced in 1901, PCA is widely 
used in the social sciences and marketing research; for example, 
consumer psychologists use the method to draw insights from large 
batteries of attitudinal data captured in surveys. PCA uses linear alge-
bra to extract uncorrelated dimensions from the raw data. Although 
the method is well established and relatively easy to implement, it 
assumes the data are jointly normally distributed, a condition that is 
often violated in commercial analytics. Variations on PCA include 
Kernel PCA and Multilinear PCA; there is also a  wide range of other 
advanced methods for feature extraction. Most commercial analytics 
packages implement PCA; alternatives to PCA are available in open 
source software.  

 Many predictive modeling techniques have built-in feature selec-
tion capabilities: The technique automatically evaluates and selects 
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from available predictors. These techniques include tree-based meth-
ods (such as CART or C5.0); boosted methods (such as ADABoost); 
bootstrap aggregation, or bagging; regularized methods, such as 
LARS or LASSO; and stepwise methods. When the modeling tech-
nique has built-in feature selection, the analyst can omit the feature 
selection step from the modeling process; this is a key reason to use 
these methods.  

 When the analyst does not want to use a technique with built-in 
feature selection, several options are available. The analyst can run a 
forward stepwise procedure (see “Stepwise Regression” later in this 
chapter) with a low threshold for variable inclusion; this will produce 
a list of candidate predictors, which the analyst can fine-tune in a 
second step. Another popular method for feature selection is to run 
regularized random forests (RRF) analysis, which produces a set of 
nonredundant variables.  

 Previously in this chapter, we discussed the value of Bayesian 
belief networks for exploratory analysis. After building a belief net-
work, the analyst can use it for feature selection. Recall that each 
node in a belief network represents a variable in the analytic data 
set. For any given target node (the response measure), the  Markov 
blanket  consists of all the parent and child nodes that make this node 
independent of all other nodes in the network.  

 Whereas feature extraction is more elegant than feature selection 
and has a long history of academic use, feature selection is the more 
practical tool. On one hand, feature extraction techniques such as 
PCA add an additional step to the scoring process, which must score 
and convert raw data to the principal dimensions before computing a 
score. On the other hand, predictive models based on feature selec-
tion techniques work with data as it exists in production (assuming the 
analyst worked with data in its raw form).    

  Linear Models and Linear Regression  

 Linear models and linear regression techniques are the most fun-
damental methods available to the analyst for predictive modeling; we 
review these methods next.  
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  Basics: Linear Models  

 A mathematical model is an expression that describes the rela-
tionship between two or more measures. Businesses use models in 
many ways—pricing is a familiar example. If the price of one widget 
is five dollars, the price of many widgets is  y  = 5* x , where  y  is the total 
price quoted and  x  is the number of widgets bought. If you express 
pricing as a mathematical model, you can build the model formula 
into point-of-sale devices, online quote systems, and a host of other 
useful applications. (Of course, because organizations set prices for 
their products, you don’t need a statistician to discover the pricing  
model; you can simply call the Pricing department. We’re just using 
pricing as an everyday example.)  

 A  linear  model is a mathematical model in which the relationship 
between an independent variable and the dependent variable is con-
stant for all values of the independent variable. In other words, if  y  = 
2 x  when  x  = 2, this formula will also be true if  x  = 4,  x  = 4,000,000, or 
any arbitrary value.  

 A linear model can also include a constant. Suppose that the pric-
ing includes a shipping and handling fee of 50 dollars; now, the pric-
ing model is  y  = 50 + 5* x . It is easy to visualize a linear model with a 
single variable and a constant (see  Exhibit   9.3   ).   

 A linear model can include more than one predictor as long as 
the predictors are additive. For example, if the price of a gadget is 
two dollars, the total price of an order is  y  = 50 + 5* x 1 + 2* x 2, where 
 x 1 is the number of widgets and  x 2 is the number of gadgets. You 
can extend this model to include any number of items as long as the 
total quote is simply the sum of the quote for individual items plus a 
constant.  

 Generalizing from the pricing example, a linear model is one that 
you can express as  y  =  b  +  a 1 x 1 +  a 2 x 2 + ... +  anxn,  where  y  is the 
response measure and  x 1... xn  are the predictors. Statisticians call the 
remaining values in the equation  parameters ; they include the value 
of  b , a constant, and the values  a 1 through  an,  called  coefficients . The 
coefficients represent the relationship between the predictors and the 
response measure; when there is a single predictor, this is the slope of 
a line representing the function.  
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 If you want to use a linear model for prediction, you need to know 
the values of its parameters. In the pricing example, this is trivial, 
because the business  decides  the parameters for the pricing model. 
If you want to use a linear model to predict something complex and 
unknown—such as the future payment behavior of credit card cus-
tomers—you need to  estimate  the value of model parameters. You 
could simply guess at the values of the parameters, but if you want 
to have some confidence in your predictions, you will use a statistical 
technique called linear regression to estimate the parameters from  
historical data.  

 To summarize, linear models are one kind of mathematical model 
with properties that make them easy to interpret and deploy. Linear 
regression is one of the techniques statisticians use to estimate the 
parameters of a linear model. The linear model is the result of analy-
sis; linear regression is a tool used to accomplish this end.   
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 Exhibit 9.3   Linear Model with One Variable and a Constant        
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  Basics: Linear Regression  

 When you do not know the parameters of a hypothetical linear 
model in advance, linear regression is the method you use to estimate 
those parameters. Linear regression scans the data and computes 
parameters for the linear model that “best” fits the data. The method 
chooses an optimal model through the least squares criterion, which 
minimizes the squared errors between predicted and actual values.  

 Suppose that you are interested in predicting the total crop yield 
from small farms, and you believe that the number of acres in produc-
tion is the single most important predictor of total yield. (The farms 
are all in the same general area and use similar practices.) When you 
plot total yield against acres in production for a sample of 100 farms, 
you get the graph like the one shown in  Exhibit   9.4   . The dashed line 
is the linear regression line.  
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 Exhibit 9.4   Linear Regression         

 Linear regression is a powerful and widely used method that is 
pervasive in statistical packages and relatively easy to implement. 
However, the method has a number of properties that limit its appli-
cation, require the analyst to prepare the data in certain ways or, in 
the worst case, lead to spurious results.  

 Among the limiting factors, the most important is an assumption 
that the response measure is a continuous numeric variable. Although 
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it is possible to fit a regression model to a categorical response mea-
sure, the results are likely to be inferior to what the analyst could 
achieve using methods designed for categorical response measures, 
which we discuss in a later section.  

 Two characteristics of regression require the analyst to take addi-
tional steps to prepare the data. Like most statistical methods, regres-
sion requires that all fields specified in the model have a value, and will 
remove records with missing values from the analysis. Regression also 
requires continuous numeric predictors. Analysts can work around 
the missing data problem through exhaustive quality control when 
gathering data, or by imputing values for missing fields. Analysts can 
also handle categorical variables in linear regression through a method 
called  dummy coding . Statistical software packages vary widely in the 
degree to which they automate these tasks for the  analyst.  

 Analysts are most concerned with those characteristics of linear 
regression that produce an inferior or spurious model. For example, 
linear regression presumes that a linear model is the appropriate the-
oretical model to represent the behavior you seek to analyze. The 
point is important because the regression algorithm does not know 
the true theoretical model and will attempt to estimate model param-
eters from data regardless of the true state of affairs.  Exhibit   9.5    shows 
an example of a spurious relationship.  
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 The analyst detects a weak model by inspecting model diagnos-
tics. However, it is theoretically possible for a regression model to 
identify a statistically significant relationship between two variables 
when no causal relationship exists between them in the real world.  

 For each model specification, linear regression packages report 
a key statistic called the coefficient of determination, or R-squared. 
This statistic measures how well the model fits the data; conceptually, 
it measures variation in the response measure explained by the model 
as a percentage of the total variation in the response measure. Ana-
lysts use this measure together with its associated F-test to determine 
the quality of the model. If the R-squared is low, the analyst will look 
for ways to improve the model, either by adding more predictors or 
by using a different method.  

 Analysts also examine the significance tests for each model coef-
ficient. If a coefficient fails a significance test, the implication is that 
its true value is zero, and the associated predictor does not meaning-
fully contribute to the model. Good modeling practice calls for drop-
ping this predictor from the model specification and re-estimating the 
model.  

 If two or more predictors are highly correlated, estimated values 
of the coefficients can be highly unstable. This condition, known as 
multicollinearity, does not impair the overall ability of the model to 
predict, but it renders the model less useful for explanatory analysis.   

  Advantages and Disadvantages  

 The principal advantage of linear regression is its simplicity, inter-
pretability, scientific acceptance, and widespread availability. Linear 
regression is the first method to use for many problems. Analysts can 
use linear regression together with techniques such as variable recod-
ing, transformation, or segmentation.  

 Its principal disadvantage is that many real-world phenomena 
simply do not correspond to the assumptions of a linear model; in 
these cases, it is difficult or impossible to produce useful results with 
linear regression.  

 Linear regression is widely available in statistical software pack-
ages and business intelligence tools.    
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  Generalized Linear Models  

 Standard linear models assume that the response measure is nor-
mally distributed and that there is a constant change in the response 
measure for each change in predictor variables. In many real-world 
situations, however, this assumption is inappropriate, and a linear 
model may be unreliable.  

 For example, suppose that you want to model how weekly in-store 
sales of an item respond to targeted coupons. A linear model might 
tell you that sales per store increase by a thousand units for each one-
dollar decrease in the net price. However, when you inspect the pre-
diction errors for this model, you find that the model significantly 
overestimates the incremental sales for stores that typically sell only a 
thousand units a week, and significantly underestimates incremental 
sales for stores that typically sell ten thousand units a week or more.  

 Based on analysis of the errors from the linear model, the ana-
lyst reformulates the model to predict the percentage change in store 
sales based on changes in the net price. In other words, the analyst 
changes the model from a linear response model to an exponential 
or log-linear response model. Generalized linear models provide the 
necessary flexibility to make this change.  

 Whereas standard linear models require a normally distributed 
response measure, generalized linear models work effectively with 
many different distributions. Moreover, while linear models assume a 
linear relationship between the predictors and the response measure, 
generalized linear models simply assume this relationship is linear 
when transformed by a link function.  

 With generalized linear models, the analyst specifies three things: 
a probability distribution that describes the response measure, a link 
function that describes the relationship between the predictors and 
the mean of the response measure, and a set of linear predictors. 
Probability distributions can include any member of the exponential 
family, including the Bernoulli, Beta, Chi-squared, Dirichlet, Expo-
nential, Gamma, Normal, Poisson, and Wishart distributions.  

 Generalized linear models are more demanding for the ana-
lyst due to the number and complexity of controllable parameters. 
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Software implementations of GLM often include diagnostic tools to 
help the analyst diagnose the appropriate distribution for the response 
measure and recommend a link function.   

  Generalized Additive Models  

 The generalized additive model (GAM) is a type of  nonparamet-
ric  regression. Techniques such as linear regression are  parametric , 
which means they incorporate certain assumptions about the data. 
When an analyst uses a parametric technique with data that does not 
conform to its assumptions, the result of the analysis may be a weak 
or biased model. Nonparametric regression relaxes assumptions of 
linearity, enabling the analyst to detect patterns that parametric tech-
niques may miss.  

 There are a number of different nonparametric techniques, but 
many of them perform poorly with many potential predictors; they 
tend to be greedy for large sample sizes and may lack stability. Certain 
methods, such as kernel methods and smoothing splines, are also very 
difficult to interpret.  

 The additive model, first proposed in the early 1980s, is a more 
general form of the linear regression model, which you express as  y  
=  b  +  a 1 x 1 +  a 2 x 2 + ... +  anxn.  In an additive model, you replace the 
simple terms of the linear equation with more complex functions. In a 
generalized additive model, the regression equation takes the form of 
a link function so that the response measure can take the form of any 
of the family of exponential distributions.  

 The principal advantage of GAM is its ability to model highly 
complex nonlinear relationships when the number of potential pre-
dictors is large. The main disadvantage of GAM is its computational 
complexity; like other nonparametric methods, GAM has a high pro-
pensity for overfitting.  

 SAS, Statistica, and Stata all support GAM. There are 17 differ-
ent packages in open source R that support GAM, but none currently 
available in Python.   
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  Logistic Regression  

 Linear regression is powerful and widely used. In real-world appli-
cations, however, analysts often seek to model categorical behavior:  

    •   Prospects either respond or do not respond to a marketing 
communication.   

   •   Borrowers repay a loan or do not repay a loan.   

   •   Shoppers choose Brand X over Brand Y and Brand Z.    

 It is frequently possible to model this behavior with linear regres-
sion by coding the response measure as 1 (if the prospect responds) 
and 0 (if the prospect does not respond), but another technique called 
 logistic regression  produces better and more useful results. Statisti-
cians developed logistic regression specifically to model the rela-
tionship between a categorical dependent variable and one or more 
response measures. As with linear regression, the predictors are ordi-
narily continuous, but experienced analysts work around this require-
ment through dummy coding.  

 Analysts use logistic regression to address three types of classi-
fication problems. The first is binomial classification, in which the 
response measure has only two levels: a prospect either responds or 
does not respond. A second type of classification problem is multino-
mial  ordinal  classification, in which the response measure can have 
more than two values, but there is an implied rank ordering: surveyed 
customers report that they are “very satisfied,” “somewhat satisfied,” 
“somewhat dissatisfied,” or “very dissatisfied.” The third type of clas-
sification problem is multinomial  cardinal  classification, in which 
the response measure can have more than two values and there is no 
implied  rank ordering: surveyed customers can choose among “Chev-
rolet,” “Ford,” “Honda,” and “Toyota.”  

 Logistic regression produces estimates of the model intercept and 
coefficients, together with quality statistics for the individual param-
eters and the model as a whole. When applied to new data, the logistic 
regression produces a probability ranging from zero to one reflecting 



170 ADVANCED ANALYTICS METHODOLOGIES

the relative likelihood that the case belongs to the target class, given 
the known values of predictor variables. For use in decision making, 
the analyst uses this predicted probability together with a cutoff rule 
to classify each new case.  

 The most widely used method to estimate logistic regression 
models is the maximum likelihood algorithm. Maximum likelihood 
is an iterative algorithm; it assigns initial values to the model coef-
ficients, tests the initial solution against training data, improves the 
model, and iterates, improving and testing until it can find no more 
improvements. Software implementations of logistic regression gen-
erally offer the analyst the ability to specify details of the model qual-
ity measure, significance thresholds for model improvements, and 
total number of iterations.  

 In some cases, the maximum likelihood algorithm reaches the 
maximum number of iterations before it can find a meaningful solu-
tion. This can happen when predictors are highly correlated, with 
sparse matrices, or when the number of predictors is very large rela-
tive to the number of cases. Analysts address the problem of corre-
lated predictors with dimension-reduction techniques, which they 
apply to the data before running logistic regression. There are tech-
niques for use with sparse matrices and high dimension data; we dis-
cuss each separately.  

 Almost all commercial statistical packages offer an implementa-
tion of logistic regression. The method is also widely available in open 
source versions, with more than 50 versions available in open source 
R alone.   

  Enhanced Regression  

 As the volume of data grows, analysts struggle to work with data 
sets containing large numbers of potential predictors. Expanding 
the number of candidate predictors poses technical issues for ana-
lytic algorithms, increases the demands for computing resources, and 
poses potential methodological problems for the analyst. Analysts 
consider a number of mathematical transforms for predictors as well 
as interaction effects among predictors; consequently, the number of 
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measures actually used in the predictive model expands exponentially 
as the number of raw candidate measures increases.  

 There are two widely used methods to address this problem: step-
wise methods and regularization. We discuss these methods next.  

  Stepwise Regression  

 Stepwise regression is a hybrid method that combines statistical 
modeling with machine learning techniques. Recall that in the previ-
ous discussion on linear regression, we noted that the analyst specifies 
a model, estimates the model, inspects the significance tests for the 
coefficients, and respecifies the model to remove nonsignificant pre-
dictors. This process of constructing a model works reasonably well 
with a limited number of possible predictors but takes a considerable 
amount of time when there is a large number of predictors.  

 Stepwise regression methods streamline the model-building task 
by automating the process. Three approaches to automation are used 
widely:  

    •    Forward selection —   The algorithm begins with an (optional) 
intercept-only model and progressively adds candidate predic-
tors until it reaches a stopping point.   

   •    Backward selection —   The algorithm begins with a model that 
includes all candidate predictors and progressively eliminates 
them from the model until it reaches a stopping point.   

   •    Bidirectional stepwise —   The algorithm proceeds similar to 
forward selection, but at each step, it can either add or drop 
candidate predictors until it reaches a stopping point.    

 Stepwise algorithms evaluate candidate predictors by compar-
ing two versions of the model: one that includes the predictor and 
another that does not include the predictor. The algorithm performs 
a statistical test to select one of the two candidate models; in most 
software implementations, the user can select the test criterion. The 
three most widely used measures are the F-test, Aikaike’s information 
criterion (AIC), and the Bayesian information criterion (BIC).  
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 Although stepwise regression is efficient and effective for pre-
dictive modeling, the method is less useful for analysis of variance, 
in which there is a premium on analytic rigor and statistical validity. 
Stepwise regression is also subject to overfitting, in which the model 
produced does not generalize well from the training data to produc-
tion data (for more on overfitting, see the next section). For these 
reasons, many analysts use stepwise regression primarily as an explor-
atory tool to narrow the set of possible predictors.  

 Stepwise regression methods work with any underlying form of 
regression; the most popular are stepwise linear and stepwise logistic 
regression.   

  Regularization  

 Overfitting or overlearning is a condition in which the accuracy of 
a model is much higher on its training data set than on an indepen-
dent data set. In short, the model does not generalize well because 
the algorithm that produced it learned random features of the train-
ing data. This is a serious problem for analysts because the ultimate 
test of a model is how it performs in production, not how well it per-
forms in the lab.  

 As a rule, overfitting is a larger problem for machine learning than 
statistics because statistical models have a foundation in known statis-
tical distributions. However, as the complexity of a model increases 
and additional predictors are added, even statistical models can suffer 
from overfitting.  

 There are several techniques to prevent overfitting, including 
validation of the model on an independent sample, n-fold cross-
validation, and regularization. We cover the first two under machine 
learning; in this section, we discuss regularization.  

 Regularization methods limit complexity by penalizing models 
based on the number of predictors. To enter into the model, each 
new candidate predictor must overcome a progressively higher com-
plexity penalty. There are several specific methods for regulariza-
tion; the most widely used are ridge regression (also called Tikhonov 
regularization or constrained linear inversion) and LASSO regression 
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(or least absolute shrinkage and selection operator). The Elastic Net 
method combines ridge and LASSO regularization.  

 Higher-end statistical software generally includes ridge and lasso 
regularization, and so does open source R. For Elastic Net, Math-
Works offers a commercial implementation, and in open source R, 
the popular glmnet package supports the capability.    

  Survival Analysis  

 For some business applications, the response measure you want 
to predict is the elapsed time to an event. This can be literally a life-
time, if you model human mortality for life insurance; or, it can be 
time to failure for a device, time to attrition for a customer account, 
or any other similar situation in which you want to predict survival.  

 Time-to-event measures pose unique problems for the analyst. 
Suppose that you want to predict the survival time for patients receiv-
ing an experimental cancer treatment. After three years, some of the 
patients in the study have died, and you can compute the survival 
time for each of these patients. However, many of the patients are 
still living at the end of three years; you do not yet know their ultimate 
survival time. Statisticians call this problem  censoring , a problem that 
surfaces when you try to model a time-to-event response measure 
using data captured over a limited time period.  

 The two kinds of censoring are right censoring and left censor-
ing. If you only know that the pertinent event is  after  some date, as 
is the case for patients in the preceding example who survive to the 
end of the study, the data is right-censored. On the other hand, if 
you only know that the beginning of the pertinent time-to-event took 
place  before  a certain date, the data is left-censored. For example, if 
you know that every patient in the study received the experimental 
treatment before the study started but do not know the exact date of 
treatment, the data is left-censored.  Data can be both right-censored 
 and  left-censored.  

  Survival analysis  is a family of techniques developed to work with 
censored time-to-event response measures. Note that if censoring is 
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not present, you may be able to model time-to-event using standard 
modeling techniques. For some studies, however, you would have 
to wait a very long time before every sampled observation has a ter-
minal event; in the case of the experimental cancer treatment, some 
patients might live another 20 years. Hence, survival analysis tech-
niques enable the analyst to take full advantage of available data with-
out waiting until every treated patient dies, every sampled part fails, 
or every tracked account closes.  

 In addition to the censoring problem described previously, 
time-to-event response measures generally follow an exponential, or 
Weibull, distribution rather than a normal distribution; consequently, 
linear regression tends to perform poorly. Three alternative tech-
niques are used widely for this problem:  

    •   Cox’s proportional hazards model   

   •   Exponential regression   

   •   Log-normal regression    

 Cox’s proportional hazards (CPH) model is a nonparametric 
method, which means that it makes no assumptions about the distri-
bution of the response measure. CPH models the underlying hazard 
rate (for example, risk of death) as a function of a baseline hazard 
rate and the incremental effects of predictor variables. Exponential 
regression assumes that the time-to-event response measure follows 
an exponential distribution. In log-normal regression, the analyst 
replaces the raw survival response measure with its natural logarithm 
and then uses standard regression tools to model the transformed 
measure. Log-normal regression is the simplest technique to imple-
ment but may not perform as  well as CPH or exponential regression.  

 Popular statistical packages (such as SAS, SPSS, and Statistica) 
support all three methods. There are many packages for survival anal-
ysis in open source R.   

  Decision Tree Learning  

 Decision trees are a very popular tool for predictive analytics 
because they are relatively easy to use, perform well with non-linear 
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relationships and produce highly interpretable output. We discuss 
different methods for decision tree learning below.  

  Overview  

 Decision tree learning is a class of methods whose output is a 
list of rules that progressively segment a population into smaller seg-
ments that are homogeneous in respect to a single characteristic, or 
target variable. End users can visualize the rules as a tree diagram, 
which is very easy to interpret, and the rules are simple to deploy in a 
decision engine. These characteristics—transparency of the solution 
and rapid deployment—make decision trees a popular method.  

 Readers should not confuse decision tree  learning  with the deci-
sion tree method used in decision analysis, although the result in 
each case is a tree-like diagram. The decision tree method in deci-
sion analysis is a tool that managers can use to evaluate complex 
decisions; it works with subjective probabilities and uses game theory 
to determine optimal choices. Algorithms that build decision trees, on 
the other hand, work entirely from data and build the tree based on 
observed relationships rather than the user’s prior expectations.  

 You can train decision trees with data in many ways; the sections 
that follow describe the most widely used methods. The Ensemble 
Learning section covers advanced methods (such as bagging, boost-
ing, and random forests).   

  CHAID  

 CHAID (Chi-Square Automatic Interaction Detection) is one of 
the oldest tree-building techniques; in its most widely used form, the 
method dates to a publication by Gordon V. Kass in 1980  3   and draws 
on other methods developed in the 1950s and 1960s.   

 CHAID works only with categorical predictors and targets. The 
algorithm computes a chi-square test between the target variable and 
each available predictor and then uses the best predictor to partition 

  3   Kass, Gordon V., “An Exploratory Technique for Investigating Large Quantities 
of Categorical Data,” Applied Statistics, Vol. 29, No. 2 (1980). 
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the sample. It then proceeds, in turn, with each segment and repeats 
the process until no significant splits remain. The standard CHAID 
algorithm does not prune or cross-validate the tree.  

 Software implementations of CHAID vary; typically, the user can 
specify a minimum significance of the chi-square test, a minimum cell 
size, and a maximum depth for the tree.  

 The principal advantages of CHAID are its use of the chi-square 
test (which is familiar to most statisticians) and its ability to perform 
multiway splits. The main weakness of CHAID is its limitation to cat-
egorical data.   

  CART  

 CART, or Classification and Regression Trees, is the name of a 
patented application marketed by Salford Systems based on an epon-
ymous 1984 publication by Leo Breiman.  4   CART is a nonparametric 
algorithm that learns and validates decision tree models.   

 Like CHAID, the algorithm proceeds recursively, successively 
splitting the data set into smaller segments. However, there are key 
differences between the CHAID and CART algorithms:  

    •   CHAID uses the chi-square measure to identify split candi-
dates, whereas CART uses the Gini rule.   

   •   CHAID supports multiway splits for predictors with more 
than two levels; CART supports binary splits only and identi-
fies the best binary split for complex categorical or continuous 
predictors.   

   •   CART prunes the tree by testing it against an independent 
(validation) data set or through n-fold cross-validation; CHAID 
does not prune the tree.    

 CART works with either categorical targets (classification trees) 
or continuous targets (regression trees) as well as either categorical 
or continuous predictors. This is a key advantage of CART versus 
CHAID, together with its ability to develop more accurate decision 

  4   L Breiman, J Friedman, CJ Stone, RA Olshen, CRC press (1984). 
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tree models. The principal disadvantage of CART is its proprietary 
algorithm.   

  ID3/C4.5/C5.0  

 ID3, C4.5, and C5.0 are tree-learning algorithms developed by 
Ross Quinlan, an Australian computer science researcher.  

 ID3 (Iterative Dichotomiser) is similar to CHAID and CART, 
but uses the entropy or information gain measures to define splitting 
rules. ID3 works with categorical targets and predictors only.  

 C4.5 is a successor to ID3, with several improvements. C4.5 
works with both categorical and continuous variables, handles missing 
data, and enables the user to specify the cost of errors. The algorithm 
also includes a pruning function. C5.0, the most current commercial 
version, includes a number of technical improvements to speed tree 
construction and supports additional features (such as weighting, win-
nowing, and boosting).  

 ID3 and C4.5 are available as open source software. ID3 is avail-
able in C, C#, LISP, Perl, Prolog, Python, and Ruby, and C4.5 is 
available in Java. RuleQuest Research distributes a commercial ver-
sion of C5.0 together with a single-threaded version available as open 
source software.   

  Hybrid Decision Trees  

 Methods such as CART and C5.0 are patented and trademarked. 
However, the general principles of decision tree learning (splitting 
rules, stopping rules, and pruning methods) are in the public domain. 
Hence, a number of software vendors support generic decision tree 
learning platforms that offer the user a choice of splitting rules, prun-
ing methods, and visualization capabilities.    

  Bayesian Methods  

 Previously in this chapter, we discussed the value of Bayes-
ian belief networks for exploratory analysis. There are also several 
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techniques for prediction based on Bayesian inference; the most pop-
ular of these is the Naïve Bayes Classifier.  

 The Naïve Bayes Classifier is a Bayesian belief network whose 
structure is entirely dedicated to the characterization of a target node 
or response measure. Bayesian theorists call this method “naïve” 
because it depends on the assumption that all predictor variables are 
independent of one another; although this is rarely true in practical 
applications, Naïve Bayes performs very well versus other classifiers. 
The technique works with an arbitrary number of predictors; it is also 
computationally simple and easy to implement, which makes it a good 
choice to use with Big Data.  

 One disadvantage of Naïve Bayes is its limitation for use with cat-
egorical predictors. Some software packages address this problem by 
automatically converting continuous variables to categorical variables.  

 Enhanced versions of Naïve Bayes include Augmented Naïve 
Bayes and Tree Augmented Naïve Bayes, as well as Gaussian and Ber-
noulli Naïve Bayes. Augmented Naïve Bayes relaxes the assumption 
of independence among the predictor nodes; it tends to produce more 
accurate predictions than the generic Naïve Bayes does but requires 
a time-consuming unsupervised search. The Tree Augmented Naïve 
Bayes tends to be less accurate than Augmented Naïve Bayes, but it is 
computationally simpler and runs much faster.  

 We discussed the concept of Markov blankets earlier in this 
chapter in the section covering Bayesian belief networks. Although 
belief networks are exploratory tools, you can develop predictive 
models from them by designating a target node corresponding to the 
response measure and then determining the Markov blanket for that 
node. As with the Naïve Bayes Classifier, an augmented variation on 
this technique is available; it expands the search base in the under-
lying belief network. This tends to produce better predictions but 
takes more time to run.   

  Neural Networks and Deep Learning  

 Deep learning has recently received considerable attention in 
business media; analysts successfully used the technique in a number 
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of highly visible data mining competitions. Deep Learning is an exten-
sion of Neural Networks; in this section, we discuss both techniques.  

  Neural Networks  

 Artificial neural networks are computational models inspired by 
the study of brains and the nervous system; they consist of a network 
of nodes (“neurons”) connected by directed graphs (“synapses”). 
Neuroscientists developed neural networks as a way to study learn-
ing; their methods are broadly applicable to problems in predictive 
analytics.  

 In a neural network, each neuron accepts mathematical input, 
processes the inputs with a  transfer function , and produces mathe-
matical output with an  activation function . Neurons operate indepen-
dently on their local data and on input from other neurons.  

 Neural networks may use a range of mathematical functions as 
activation functions. While a neural network may use linear functions, 
analysts rarely do so in practice; a neural network with linear acti-
vation functions and no hidden layer is a linear model. Analysts are 
much more likely to use nonlinear activation functions, such as the 
logistic function; if a linear function is sufficient to model the target, 
there is no reason to use a neural network.  

 The nodes of a neural network form layers, as shown in  Exhibit 
  9.6   . The  input layer  accepts mathematical input from outside the net-
work, while the  output layer  accepts mathematical input from other 
neurons and transfers the results outside the network. A neural net-
work may also have one or more  hidden layers  that process intermedi-
ate computations between the input layer and output layer.   

 When you use neural networks for predictive analytics, the first 
step is to specify the network topology. The predictor variables serve 
as the input layer, and the output layer is the response measure. The 
optional hidden layers enable the model to learn arbitrarily complex 
functions. Analysts use some heuristics to determine the number of 
hidden layers and their size, but some trial and error is required to 
determine the best network topology.  
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 There are many different neural network architectures, distin-
guished by topology, flow of information, mathematical functions, and 
training methods. Widely used architectures include the following:  

    •   Multilayer perceptron   

   •   Radial basis function network   

   •   Kohonen self-organizing network   

   •   Recurrent networks (including Boltzmann machines)    

 Multilayer perceptrons, which are widely used in predictive ana-
lytics, are  feedforward  networks; this means that a neuron in one 
layer can accept input from any neuron in a previous layer but cannot 
accept input from neurons in the same layer or subsequent layers. 
In a multilayer perceptron, the parameters of the model include the 
weights assigned to each connection and to the activation functions in 
each neuron. After the analyst has specified a neural network’s topol-
ogy, the next step is to determine the values for these parameters that 
minimize prediction errors, a process called training the model.  

 Many methods are available to train a neural network; for multi-
layer perceptrons, the most widely used class of methods is  backprop-
agation,  which uses a data set in which values of the target (output 
layer) are known to infer parameter values that minimize errors. The 
method proceeds iteratively; first computing the target value with 
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Hidden Layer
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 Exhibit 9.6   Neural Network Topology        
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training data and then using information about prediction errors to 
adjust weights in the network.  

 Several different backpropagation algorithms exist;  gradient 
descent  and  stochastic gradient descent  are the most widely used. 
Gradient descent uses arbitrary starting values for the model param-
eters and computes an error surface; it then seeks out a point on the 
error surface that minimizes prediction errors. Gradient descent eval-
uates all cases in the training data set each time it iterates; stochastic 
gradient descent works with a random sample of cases from the train-
ing data set. Consequently, stochastic gradient descent converges 
more quickly than gradient descent but may produce a less accurate 
model. The gradient descent algorithms can also train other types of 
models,  including support vector machines and logistic regression.  

 Alternative algorithms for training a backpropagation neural net-
work include the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm and its limited memory variant (L-BFGS) and the conjugate 
gradient algorithm. These algorithms can perform significantly better 
at minimizing prediction errors but tend to require more computing 
resources.  

 Radial basis function (RBF) networks have one or more hidden 
layers representing distance measures modeled with a Gaussian func-
tion. Analysts train RBF networks with a maximum likelihood algo-
rithm. Compared to multilayer perceptrons, RBF networks are less 
likely to confuse a local minimum in the error surface for the desired 
global minimum; however, they are also more prone to overfitting.  

 Kohonen self-organizing networks (self-organizing maps) are a 
technique for unsupervised learning with limited application in pre-
dictive analytics. Refer to the appendix for a discussion of unsuper-
vised learning with neural networks.  

 In a recurrent neural network (RNN), information flows in either 
direction among the layers; this contrasts with feedforward networks, 
where information flows in one direction only: from the input layer 
to the hidden layers to the output layer. The most important type of 
RNN is the restricted Boltzmann machine, an architecture used in 
deep learning (discussed in the following section).  

 The key strength of neural networks is their ability to model very 
complex nonlinear functions. Neural networks are also well suited to 
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highly dimensional problems, where the number of potential predic-
tors is very large.  

 The key weakness of neural networks is their tendency toward 
overlearning. A network learns to minimize prediction error on the 
training data, which is not the same thing as minimizing prediction 
error in a business application. As with other modeling techniques, 
analysts must test models produced with neural networks on an inde-
pendent sample.  

 Analysts using the neural network technique must make a num-
ber of choices about the network topology, transfer functions, activa-
tion functions, and the training algorithm. Because there is very little 
theory to guide the choices, the analyst must rely on trial and error to 
find the best model. Consequently, neural networks tend to consume 
more analyst time to produce a useful model.  

 Leading commercial software packages for machine learning, 
including IBM SPSS Modeler, RapidMiner, SAS Enterprise Miner, 
and Statistica, support neural networks, as do in-database libraries 
such as dbLytix and Oracle Data Mining. Multiple packages in open 
source R support neural networks; in Python, the PyBrain package 
offers extensive capabilities.   

  Deep Learning  

 Deep learning is a class of model training techniques based on 
feature learning, or the capability to learn a concise set of “features” 
from complex unlabeled data. In practice, a deep neural network is a 
neural network with multiple hidden layers trained sequentially with 
unsupervised learning techniques.  

 Interest in deep learning stems from a number of notable recent 
successes in machine learning competitions:  

    •   International Conference on Document Analysis and Recogni-
tion (2009)   

   •   IJCNN Traffic Sign Recognition Competition (2011, 2012)   

   •   ISBI Segmentation of Neuronal Structures in Electron Micros-
copy (2012)   

   •   Merck Molecular Activity Challenge (2012)    
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 The theory of deep learning dates to the 1980s; however, practical 
application lagged due to the computational complexity and resources 
needed. The increased availability and reduced cost of GPU devices 
and other platforms for high-performance computing has provided 
analysts with the computing power to experiment with deep learning 
techniques.  

 Deep neural networks are prone to overfitting due to the intro-
duction of additional abstraction layers; analysts manage this tendency 
with regularization techniques. Models must be tested and validated 
to ensure they generalize to fresh cases.  

 Commercial software for deep learning is limited at present. Nei-
ther SAS nor SPSS currently support the capability out of the box: 
PROC Neural in SAS Enterprise Miner 13.1 permits users to build 
neural networks with an unlimited number of hidden layers but lacks 
the ability to build Boltzmann machines, a necessary tool for deep 
learning. There are, however, a number of open source deep learn-
ing libraries available in C, Java, and Python as well as a MATLAB 
Toolbox.    

  Support Vector Machines  

 Support vector machines (SVMs) evolved in the 1990s from pat-
tern recognition research at Bell Labs. They work for either classifi-
cation or regression, and are very useful when working with highly 
dimensional data—that is, when the number of potential predictors 
is very large.  

 The SVM algorithm depends on kernels, or transformations that 
map input data into a high-dimensional space. Kernel functions can 
be linear or nonlinear. After mapping the input data, the SVM algo-
rithm constructs one or more hyperplanes that separate the data into 
homogeneous subgroups.  

 Given its robustness with highly dimensional data, SVM is well 
suited to applications in handwriting recognition, text categorization, 
or image tagging. In medical science, researchers successfully applied 
SVM to the detection of tumors in breast images and the classification 
of complex proteins.  
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 Commercial software packages that support SVM include Alpine 
Data Labs’ Alpine, IBM SPSS Modeler, Oracle Data Mining, SAS 
Enterprise Miner, and Statistica Data Miner. Open source options 
include Apache Spark MLLib, JKernalMachines, LIBSVM, and Vow-
pal Wabbit. For R users, there are a number of packages, including 
kernlab, SVMMaj, gcdnet, obliqueRF, MVpower, svcR, and rasclass; 
for Python users, some SVM capabilities are included in scikit-learn 
and PyML.   

  Ensemble Learning  

 Ensemble Learning is a term we use to describe a number of 
techniques that generate many predictive models to produce a hybrid 
model with better predictive power than the individual models. 
There are a number of specific techniques in this category, which we 
describe below.  

  Overview  

 Ensemble learning techniques use multiple models to produce 
an aggregate model whose predictive power is better than individual 
models used alone. These techniques are computationally intensive 
and tend to require large amounts of data. The growth in available 
computing power makes ensemble learning, first introduced in the 
1980s, accessible for mainstream users.   

  Boosting  

 Boosting is a class of iterative techniques that seeks to minimize 
overall errors by introducing additional models based on the errors 
from previous iterations. Among the many different boosting meth-
ods, the most popular are ADABoost, Gradient Boosting, and Sto-
chastic Gradient Boosting.   

  ADABoost  

 Introduced by Freund and Schapire in 1995, ADABoost (Adaptive 
Boosting) is one of the most popular methods for ensemble learning. 
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The ADABoost meta-algorithm operates iteratively, leveraging infor-
mation about incorrectly classified cases to develop a strong aggregate 
model. With each pass, ADABoost tests possible classification rules 
and reweights them according to their ability to add to the overall 
predictive power of the model.  

 MathWorks offers a commercial implementation of ADABoost 
(part of the Statistics Toolbox). Many open source versions also 
are available, including implementations in C++, C#, Java, Python, 
and R.   

  Gradient Boosting  

 Jerome H. Friedman introduced gradient boosting and a variant, 
stochastic gradient boosting, in 1999. Like other boosting techniques, 
gradient boosting works with any base algorithm; however, it works 
best with relatively simple base models and is most widely used with 
decision tree learning. Gradient boosting works in a manner similar 
to ADABoost but uses a different measure to determine the cost of 
errors.  

 Stochastic gradient boosting combines gradient boosting with ran-
dom subsampling (similar to bagging). In addition to improving model 
accuracy, this enhancement enables the analyst to predict model per-
formance outside the training sample. Stochastic gradient boosting is 
similar to random forests because both methods train a large number 
of decision tree models. The difference between the two is that the 
stochastic gradient boosting algorithm uses information about classi-
fication errors to guide the creation of incremental trees, whereas the 
random forests algorithm produces trees at random.  

 Salford Systems offers a commercial version of stochastic gradient 
boosting branded as TreeNet; StatSoft Data Miner supports a similar 
capability. Open source versions include implementations in C++ and 
Weka, as well as multiple packages in R.   

  Bootstrap Aggregation (Bagging)  

 Bagging is meta-algorithm proposed by Breiman in 1996. The 
bagging algorithm selects multiple subsamples from an original 
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training data set, builds a model for each subsample, and then builds 
a solution through averaging (for regression) or through a voting pro-
cedure (for classification).  

 The principal advantage of bagging is its ability to build more sta-
ble models; its main disadvantage is its computational complexity and 
requirement for larger data sets. The growth of high-performance 
computing mitigates these disadvantages.   

  Random Forests  

 Random forests is an ensemble learning method for classification- 
and regression-based articles published by Ho,  5   Amit and Geman,  6   
further developed by Breiman and Cutler,  7   and trademarked by 
Breiman and Cutler as “Random Forests.” The random forests algo-
rithm combines bagging (random selection of subsets from the train-
ing data) with a random selection of features, or predictors. The 
algorithm trains a large number of decision  trees from randomly 
selected subsamples of the training data set and then outputs the class 
that is the mode of the class’s output by individual trees.     

 The principal advantage of random forests compared to other 
ensemble techniques is that its models generalize well outside the 
training sample. Moreover, random forests produces variable impor-
tance measures that are useful for feature selection.  

 Salford Systems currently offers software based on the Breiman 
and Cutler article branded as “Random Forests” (under license from 
Breiman and Cutler). Open source versions are available in Apache 
Mahout, C#, Python, and R.    

  5   Ho, Tin Kam (1995), “Random Decision Forest,” Proceedings of the 3rd Inter-
national Conference on Document Analysis and Recognition, Montreal, QC, 
 http://cm.bell-labs.com/cm/cs/who/tkh/papers/odt.pdf . 

  6   Yali Amit and Donald Geman, “Shape Quantization and Recognition with Ran-
domized Trees,” August 1996,  http://www.cis.jhu.edu/publications/papers_in_
database/GEMAN/shape.pdf . 

  7   Leo Breiman, “Random Forests,” October 2001,  http://link.springer.com/article
/10.1023%2FA%3A1010933404324 . 

http://cm.bell-labs.com/cm/cs/who/tkh/papers/odt.pdf
http://www.cis.jhu.edu/publications/papers_in_database/GEMAN/shape.pdf
http://www.cis.jhu.edu/publications/papers_in_database/GEMAN/shape.pdf
http://link.springer.com/article/10.1023%2FA%3A1010933404324
http://link.springer.com/article/10.1023%2FA%3A1010933404324
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  Automated Learning  

 Can you automate predictive modeling? The answer depends on 
the context. Consider the two variations on the following question, 
with more precise wording:  

    •   Can you eliminate the need for expertise in predictive 
modeling—so that an “ordinary business user” can do it?   

   •   Can you make expert analysts more productive by automating 
certain repetitive tasks?    

 The first form of the question—the search for “business user” 
analytics—is a common vision among software marketing profession-
als and industry analysts; it assumes that expert analysts are the key 
bottleneck limiting enterprise adoption of predictive analytics. That 
premise is largely false, as is clear to anyone with a cursory under-
standing of the overall process for predictive analytics in most orga-
nizations. The answer is no; it is not possible to eliminate human 
expertise from predictive modeling, for the same reason that robotic 
surgery does not eliminate the need for cardiologists.  

 However, if you focus on the second form of the question and 
concentrate on how to make expert analysts more productive, the 
situation is much more promising. Many data preparation tasks are 
easy to automate; they include such tasks as detecting and eliminating 
zero-variance columns, treating missing values, and handling outliers. 
The most promising area for automation, however, is in model testing 
and assessment.  

 Optimizing a predictive model requires experimentation and tun-
ing. For any given problem, there are many available modeling tech-
niques, and for each technique, there are many ways to specify and 
parameterize a model. For the most part, trial and error is the only 
way to identify the best model for a given problem and data set. (The 
No Free Lunch Theorem  8   formalizes this concept.)   

  8   “No Free Lunch Theorems,” Retrieved June 25, 2014, from  http://www.no-free-
lunch.org/ . 

http://www.no-freelunch.org/
http://www.no-freelunch.org/
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 Because the best predictive model depends on the problem and 
the data, the analyst must search a very large set of feasible options 
to find the best model. In applied predictive analytics, however, the 
analyst’s time is strictly limited; a customer in the marketing services 
industry reports an SLA of 30 minutes or less for the analytics team to 
build a predictive model. Strict time constraints do not permit much 
time for experimentation.  

 Analysts tend to deal with this problem by settling for subop-
timal models, arguing that models need only be “good enough,” or 
defending the use of one technique above all others. As clients grow 
more sophisticated, however, these tactics become ineffective. In 
high-stakes hard-money analytics—such as trading algorithms, cata-
strophic risk analysis, and fraud detection—small improvements in 
model accuracy have a bottom-line impact, and clients demand the 
best possible predictions.  

 Automated modeling techniques are not new. Before Unica 
launched its successful suite of marketing automation software, the 
company’s primary business was analytic software, with a particular 
focus on neural networks. In 1995, Unica introduced Pattern Recog-
nition Workbench (PRW), a software package that used automated 
trial and error to optimize a predictive model. Three years later, Unica 
partnered with Group 1 Software (now owned by Pitney Bowes) to 
market Model 1, a tool that automated model selection over four dif-
ferent types of predictive models. Rebranded several times, the origi-
nal PRW product remains as IBM PredictiveInsight, a set of wizards 
sold as  part of IBM’s Enterprise Marketing Management suite.  

 Two other commercial attempts at automated predictive model-
ing date from the late 1990s. The first, MarketSwitch, was less than 
successful. MarketSwitch developed and sold a solution for marketing 
offer optimization, which included an embedded “automated” predic-
tive modeling capability (“developed by Russian rocket scientists”); 
in sales presentations, MarketSwitch promised customers its soft-
ware would allow them to “fire their SAS programmers.” Experian 
acquired MarketSwitch in 2004, repositioned the product as a deci-
sion engine, and replaced the “automated modeling” capability with 
outsourced analytic services.  
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 KXEN, a company founded in France in 1998, built its analytics 
engine around an automated model selection technique called struc-
tural risk minimization. The original product had a rudimentary user 
interface, depending instead on API calls from partner applications; 
more recently, KXEN repositioned itself as an easy-to-use solution 
for marketing analytics, which it attempted to sell directly to C-level 
executives. This effort was modestly successful, leading to the sale of 
the company in 2013 to SAP for an estimated $40 million.  

 In the past several years, the leading analytic software vendors 
(SAS and IBM SPSS) have added automated modeling features to 
their high-end products. In 2010, SAS introduced SAS Rapid Mod-
eler, an add-in to SAS Enterprise Miner. Rapid Modeler is a set of 
macros implementing heuristics that handle tasks such as outlier 
identification, missing value treatment, variable selection, and model 
selection. The user specifies a data set and response measure; Rapid 
Modeler determines whether the response is continuous or categori-
cal, and uses this information together with other diagnostics to test a 
range of modeling techniques. The user can control the scope  of tech-
niques to test by selecting basic, intermediate, or advanced methods.  

 IBM SPSS Modeler includes a set of automated data preparation 
features as well as Auto Classifier, Auto Cluster, and Auto Numeric 
nodes. The automated data preparation features perform such tasks 
as missing value imputation, outlier handling, date and time prepara-
tion, basic value screening, binning, and variable recasting. The three 
modeling nodes enable the user to specify techniques to be included 
in the test plan, specify model selection rules, and set limits on model 
training.  

 All of the software discussed so far is commercially licensed. 
Two open source projects are worth noting: the caret package in 
open source R and the MLBase project. The caret package includes 
a suite of productivity tools designed to accelerate model specifica-
tion and tuning for a wide range of techniques. The package includes 
preprocessing tools to support tasks such as dummy coding, detect-
ing zero variance predictors, and identifying correlated predictors, as 
well as tools to support model training and tuning. The training func-
tion in caret currently supports 149 different modeling techniques; 
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it supports parameter optimization within a selected technique but  
does not optimize across techniques. To implement a test plan with 
multiple modeling techniques, the user must write an R script to run 
the required training tasks and capture the results.  

 MLBase, a joint project of the UC Berkeley AMPLab and the 
Brown University Data Management Research Group, is an ambi-
tious effort to develop a scalable machine learning platform on 
Apache Spark. The ML Optimizer seeks to simplify machine learning 
problems for end users by automating the model selection task so 
that the user need only specify a response variable and set of predic-
tors. The Optimizer project is still in active development, with Alpha 
release expected in 2014.  

 What have you learned from various attempts to implement auto-
mated predictive modeling? Commercial startups like KXEN and 
MarketSwitch only marginally succeeded because they tried to over-
sell the concept as a means to replace the analyst altogether. Most 
organizations understand that human judgment plays a key role in 
analytics, and they are not willing to entrust hard money analytics 
entirely to a black box.  

 What will the next generation of automated modeling platforms 
look like? Seven key features are critical for an automated modeling 
platform:  

    •   Automated model-dependent data transformations   

   •   Optimization across and within techniques   

   •   Intelligent heuristics to limit the scope of the search   

   •   Iterative bootstrapping to expedite search   

   •   Massively parallel design   

   •   Platform agnostic design   

   •   Custom algorithms    

 Some methods require specific data transformations; neural nets, 
for example, typically work with standardized predictors, whereas 
Naïve Bayes and CHAID require all predictors to be categorical. 
The analyst should not have to perform these operations manually; 
instead, the modeling algorithm should build the transformations into 
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the test plan script and run them automatically; this ensures the maxi-
mum number of possible techniques for any data set.  

 To find the best predictive model, you need to be able to search 
across techniques and tune parameters within techniques. Poten-
tially, this can mean a massive number of model train-and-test cycles 
to run; you can use heuristics to limit the scope of techniques evalu-
ated based on characteristics of the response measure and the pre-
dictors. (For example, a categorical response rules out a number of 
techniques, and a continuous response measure rules out a differ-
ent set of techniques.) Instead of a brute force search for the best 
technique and parameterization, a “bootstrapping” approach can use 
information from early iterations to specify  subsequent tests.  

 Even with heuristics and bootstrapping, a comprehensive experi-
mental design may require thousands of model train-and-test cycles; 
this is a natural application for massively parallel computing. More-
over, the highly variable workload inherent in the development phase 
of predictive analytics is a natural application for cloud (a point that 
deserves yet another blog post of its own). The next generation of 
automated predictive modeling will be in the cloud from its inception.  

 Ideally, the model automation wrapper should be agnostic to 
specific implementations of machine learning techniques; the user 
should be able to optimize across software brands and versions. Real-
istically, commercial vendors such as SAS and IBM will never permit 
their software to run under an optimizer that they do not own; hence, 
as a practical matter, you should assume that the next generation pre-
dictive modeling platform will work with open source machine learn-
ing libraries, such as R or Python.  

 You cannot eliminate the need for human expertise from predic-
tive modeling, but you  can  build tools that enable analysts to build 
better models.    

     Summary  

 In this chapter, we surveyed key techniques for predictive ana-
lytics. Some techniques, such as linear regression, are mature, well 
understood, widely used, and broadly available in stable software 
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tools. Other methods, such as deep learning, are quite new. Scien-
tists still seek to understand the limits of such techniques; software 
implementations are rare, and they are not yet widely used in analyti-
cal applications. A third category of techniques, including automated 
learning, is in active development as we write this book.  

 As we noted at the beginning of this chapter, hundreds of pre-
dictive modeling techniques are in use, and scientists add new tech-
niques every day. As with any technology, practitioners make small 
changes to address specific problems—produce more accurate mod-
els with specific types of data, run faster, work efficiently with more 
predictors, and so forth.  

 The business stakeholder need not understand every detail of the 
techniques used by analysts to build predictive models; instead, the 
stakeholder should focus on two key principles. First, in most cases, 
it is impossible to know in advance what technique will produce the 
most accurate predictions for a particular problem; the only way to 
discover this is to experiment with a broad spectrum of techniques. 
(The stakeholder should view with suspicion claims that any one 
method is always the best method.)  

 Second, the ultimate test of any predictive model is how well 
it predicts when placed in production. The theoretical merits and 
demerits of various techniques are interesting to academics; in actual 
applications, however, predictive power and performance are the sole 
measure of a model.     
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