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Preface

I've earned most of my management scars during project
endgames. Early in my career, the endgame appeared to be simply
a chaotic, ad hoc, reactive period during the final phases of project
delivery. It was a time to test your courage, mettle, and resolve. It
was a gut check. Do you have what it takes? Can you do whatever
is necessary to release a product?

The endgame, it seemed, was a time when defects ran rampant
and were unpredictable, amorphous things. You didn't plan to fix
them—you simply reacted to them. Depending on your functional
point of view, the endgame had different meanings. If you were in
testing, then it was the culmination of all your plans. You were
energized, at least at first, and ready to find as many defects as
possible. Of course, you had less time than was originally planned,
and everyone was pushing to reduce the testing effort. Still, it
could be a very exciting time, and it was certainly your time.

If you were in software development, it was a frightening time.
Woe to every developer whose cube entrance was darkened by a
tester. That usually meant only one thing—the testers had found
yet another defect and you were about to get more work than you
had time for or had planned for. Moreover, if it was a high priority
defect, you could expect every leader on the team to stop by to
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PREFACE

check if he or she could "help" you with the resolution. And fea-
ture creep didn't happen just at Halloween—it occurred steadily
and consistently throughout the endgame.

If you were in marketing, you quite frankly had no time for the
endgame. You had customer and sales commitments hanging out
there, so the product needed to ship—now! And it needed to work
. . . and it needed to meet all requirements . . . and . . . Actually,
check that—you didn't really care about the endgame. Your
thoughts were already focused on the next project.

Problems got fixed due to clear, and sometimes not so clear, cri-
teria. Oh yes, the fatal crash led to an easy repair decision. As did
the database performance issue or the GUI screen errors. So, some
decisions seemed to make perfect sense . . . but others did not!

• Sometimes, the loudest argument resulted in a repair, other
times not.

• Sometimes, we seemed to be able to figure out when we
were done, other times not.

• Sometimes, we could fix all priority or severity one defects,
other times not.

• Sometimes, we repaired or corrected the right levels of
functionality, other times not.

There were two constants within the endgame. First was the
inconsistency. Second was the incessant pressure to be done—fin-
ished, released, and on to the next thing—and the tremendous
effort the team would need to expend to get there.

The project manager always seemed to be gazing at the project
plan and defect trends like a fortune-teller gazing into a crystal
ball, wishing for the project's end. It was as if the project endgame
was simply happening in an enclosed room and the crystal ball of
trends was the only hope for predicting what might happen.
Everyone dutifully kept their fingers crossed, looking for a positive
downturn in defect trending (which could imply success, but only
some of the time).

Project goals were never really clear. For example, in one proj-
ect, my team aspired to deliver a defect-free product to our cus-
tomer. Or, at least, that was the role our test team envisioned for
itself. We found, after many testing iterations, that we could not
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get the product into a state that we could accept. So we kept iterat-
ing and iterating.

One day, we were in a release content meeting, and the point
came up that our customers were experiencing many of the prob-
lems we'd already fixed in our current version. You see, our cus-
tomers had not received an update in a year and a half. This point
of clarity, which shifted our view of the release drivers from perfec-
tion to providing value to our existing customers, was a critical
step in this particular endgame. After this epiphany, we shipped a
new version of the product within six weeks, and our customers
were delighted with the increased value and stability.

As I gained in my understanding of the endgame, my skill in
negotiating it also increased. I began to react less, plan better, and
succeed more often. I also began to think about the core lessons I
was learning, which naturally led to the genesis of this book. My
overriding goal is to share tools and techniques with you that
should improve your endgame engagements.

MY MOTIVATION FOR THE BOOK

Simply put, the reactive nature of the endgame is due to a lack of
attention on the part of everyone involved. While conducting
research for this book, I was surprised to find very little work on
triage and endgame management practices. Typically, in a text on
the software life cycle, methodologies, or project management, only
a few pages would address the subject.

Endgame processes, methodologies, and project management
techniques are typically left for the reader to extrapolate as an exer-
cise. The problem is—how do you do that? It's not very clear
what's different about the dynamics of the endgame versus other
aspects of the software development life cycle, nor what works and
what doesn't. There is simply not enough practical guidance avail-
able that is focused on the dynamics of the endgame. That's what's
hard and unique about it—almost everything!

The idea behind this book is to give you some practical advice,
templates, checklists, tools, and examples to help you improve
your abilities. Not everything will work in every situation. How-
ever, it is my experience that there are common practices that will
have a tremendous impact on your project endgames. I also want
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to get you thinking about endgame activity as early as possible in
your project planning. That's another key to success.

Finally, I want you to have fun—yes, fun—in the endgame.
One of my biggest frustrations regarding endgame activity is that
we typically lose the thrill and sense of accomplishment associated
with completing a project. Normally, we end up so physically and
mentally exhausted that we can't enjoy the success. Or, worse than
that, our project fails completely.

INTENDED AUDIENCE

My formal training is as a software engineer, so I initially come at
things from that perspective. Over time, I began to lead software
development teams as a group leader and manager. Within the
past ten years, Fve started to lead endgame efforts as a senior man-
ager, test manager, and project manager. Each of these additional
roles allowed me to look at things from a different perspective. It
also meant that I led quite a few endgames.

The primary audience for this book is composed of technical
managers within a software project endgame. Whether you are a
software development manager, test manager, or project manager, I
believe you'll benefit greatly from the techniques and approaches I
present within the book.

However, I think the audience is much broader than that,
including virtually anyone who is involved as part of a software
project endgame:

• product managers, marketing, sales reps, and customers
• project managers
• test managers, testers, and QA resources
• software development managers and software developers
• individual engineers engaged in hardware and/or software

development and/or testing
• technical writing teams
• manufacturing, customer support, and other team mem-

bers

Regardless of your life cycle or methodology, sooner or later, every-
one arrives in the endgame—that is, if the project survives that far.
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Always keep in mind that endgames are won and lost as a
team, so whatever your function, role, or responsibility, you can
and should support the achievement of the best possible results.
Bring some of these ideas to your endgames and try them out.
Everyone plays a part in endgame success!

How TO APPROACH THIS BOOK

Naturally enough, I think there is a sensible and important flow to
the text, and I recommend that you read it in the order presented,
for maximum benefit. My intention has been to make the text light
enough to be read quickly, so that a sequential reading wouldn't be
too onerous a task.

However, if you prefer to focus on subtopics, then I recom-
mend you scan the individual parts for points of interest in each of
the focused areas:

Parti: Endgame Basics
Part 2: Endgame Defects
Part 3: Endgame Workflow
Part 4: Endgame Management

Each chapter relates topic areas to one of the four primary focus
points of the text. If you take a piecemeal approach to reading the
text, I would recommend you first read the Introduction and Chap-
ter 15, the retrospective chapter, to set some global context before
moving to individual sections and chapters.

If you take away just a few key concepts or themes from the
text, they should include the following:

• Many project-level activities apply equally well in the
endgame and should be applied there as well. A good
example of this is using collaborative estimation techniques
on defect repair work.

• A project-level compass, the Working View, will help your
team focus on a clearly articulated vision and will improve
your decision-making. It is equally important to update
this view as aspects of the project change in the endgame.

• A data-heavy view of defect entry and management will
not only help you on your current project but will provide
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valuable historical data for future projects. You will meet
resistance here, but work through it and insist on solid data
entry and maintenance.

• It's all about your team! Set it up with a framework for the
endgame and then "Get out of the way!"

WHAT WE'RE NOT TRYING TO EXPLORE

I think it's just as important to discuss what's not covered in the
text.

First of all, I'm not exhaustive in discussing my scheduling or
estimating techniques. Frankly, I'm not sure they can be applied to
larger scale project planning. The estimating techniques certainly
have the potential to be applied broadly, while the scheduling tech-
niques probably have lesser applicability.

Second, I don't discuss testing or the test process. These areas
are much too broad, and many authors have explored test process
dynamics. Our key interfaces to testing are at the following points:

• prerelease strategy and planning
• release framework planning
• defect data entry and status
• build and release hand-off
• triage and team meeting

Next, I offer only a very lightweight view of personality and team
types in software management, to give you a feel for the topic and
its implications. There is much more on this to pursue elsewhere.

Finally, my sole view of the endgame is from within it, from the
initial release of a software project for testing, through to its release
to the customer. I intentionally stay away from endgame process
analysis, root causal analysis, retrospectives facilitation, and other
detailed means of improving the processes within the endgame.
That is, until the final chapter. It's there that I try to tease out some
correlations between the endgame and broader software project
management and methodology lessons I've learned.

November 2004 R.G.
Gary, North Carolina
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Developing Release Criteria
and Working Views

All too often, product development teams struggle with effective
priority decision-making. Usually, things get more difficult as the
project progresses and business pressures to release the product
build. Typically, projects define release criteria to guide the deci-
sion-making process. They define success for the project in the
form of key objectives and requirements that the product must
meet prior to being released. In many cases, the criteria focus on
functionality, performance, and quality targets for the product.

I've developed a decision method or tool to help you visualize
key project drivers or priorities and balance them alongside one
another—I call it a "Working View," as I mentioned earlier in the
book. In doing so, teams gain insight into the product's scope,
development time, cost, and quality. How successfully you bal-
ance these dimensions determines how successfully you complete
and deploy a product.

In this chapter, I examine the more traditional release criteria,
exploring what they are and how to define them properly within
the context of your endgame projects. Then we contrast release cri-
teria against my notion of a Working View. Whereas release crite-
ria are usually objective and requirement-focused, the Working
View expands on them in several important ways:
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• it acknowledges that project release criteria changes are
inevitable, particularly in the endgame, and it effectively
handles this dynamic

• it considers every project dimension (scope, cost,
time/schedule, quality, and team) and contrasts decision
impacts across them

• it provides more in the way of a succinct vision for the proj-
ect: where it is going and what it's trying to accomplish

• it engages the team in the inevitable trade-off decisions and
initiates changes across the team

While I'm a strong proponent of the Working View, at the end of
the day, I'm not sure that I feel strongly about which approach or
technique to use to manage release criteria. What is important is
that you have release criteria of some sort, and that you define and
agree on them as a team and adjust them as the project dynamics
change.

RELEASE CRITERIA OR DEFINING SUCCESS

In [Rothman, 2002], Johanna Rothman writes about defining proj-
ect release criteria. She discusses a five-step process for their defin-
ition. I will walk you through the steps and provide some brief
examples. My preferred method for defining and managing
release criteria is the Working View, which I will discuss in detail in
later sections. However, the Rothman approach serves as a nice
contrast and emphasizes quite similar activities.

Step 1: Define Success

What problem is the project trying to solve? What are the project's
goals? What is the business case? What are the key customer
requirements? Craft a clear picture of what success looks like for
the project effort. It should be tangible; you should almost be able
to reach out and taste it.

Step 2: Learn What's Important for This Project

Find out what the critical drivers are for this project. What is truly
important? I worked designing and building medical systems for a
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number of years, and it was always very clear that quality and
safety were my highest priorities. This level of importance per-
vaded everything that we did as a team and how we approached
our products.

Step 3: Draft Release Criteria

Take the time to draft a set of release criteria for review and discus-
sion, and drive the team to clarity and agreement. Here is a sam-
ple:

• The code must support both Windows 2000 and Windows
XP.

• All defects of priority PO, PI, and P6 will be repaired or
addressed.

• For all documented bugs, the online help, release notes,
and formal documentation will contain relevant updates.

• All QA tests will be run at 100 percent of expected coverage.
• No new defects PO to P3 will be found within the last thre

weeks of testing.
• Release target: General Availability release on April 1, 2003.

Step 4: Make the Release Criteria SMART

Within HR circles, there is a notion of SMART objectives for defin-
ing personnel objectives. The acronym represents five key attrib-
utes for crafting good objectives and is just as applicable when
defining release criteria. When you are validating your release cri-
teria, it's a good idea to make them SMART, too:

• Specific
• Measurable
• Attainable
• Relevant (or Realistic
• Trackable

Here is a quick example:

The performance shall meet customer expectations
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Having such a performance-related release criterion as your release
criterion is far too ambiguous and not very useful. It leaves too
many questions unanswered: Which customer? What exactly are
its expectations? What specific areas of performance? A much bet-
ter, or SMARTer, release criteria would be

GUI screen update responses will never exceed 5 seconds.

Step 5: Achieve Consensus on the Release Criteria

Once youVe defined your release criteria, you need to gain stake-
holder and team agreement that the criteria indeed capture the
focus for the release. It's also a good idea to propose some project
scenarios, check if the release criteria still hold, and provide guid-
ance for them. For example, what will you do if you do not meet
the above performance criteria? Will you stop the release and
repair it? What if only one screen out of a hundred is affected—
will you take the same action? What if the repair requires a total
rewrite of the system architecture and approximately six months of
effort—will you take the same action?

As you can see, there are quite a few "it depends" conditions in
handling release criteria. Any preparation work you can do to
establish what I call "decision boundaries" will help you later—
when you're making these decisions on-the-fly, in the endgame.

How to Use Release Criteria

Again in [Rothman, 2002], Rothman talks about release criteria
being binary in nature—it is either met or not met. Release criteria
changes are limited to learning more about what it means to be
"done" and realizing that you can't meet all the release criteria.

While release criteria are binary in nature, it is my experience
that they may be quite volatile, as well. Perhaps I've worked in
more dynamic or change-friendly projects, but I believe that release
criteria have to be very dynamic in most projects. Expect to change
them often in the endgame—almost every day, you'll gather
change information that can potentially impact your release criteria
and decision-making.

Finally, Rothman makes a wonderful point regarding the ulti-
mate use of release criteria, describing them as a continuous metric
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for determining whether the project is on track or not. It's better
not to wait until you reach a release decision point to determine
whether you have met your release criteria. You should constantly
monitor your progress against the release criteria youVe set. The
minute you think there is a problem, raise the flag and evaluate
where the project stands.

BETTER DECISIONS: ASPECTS OF A PROJECT WORKING VIEW

The Problem

The problem we're trying to solve is that of effective decision-mak-
ing. This becomes particularly crucial in the triage or endgame
processes. Too often, the following problems arise:

• general team decision-making is difficult and usually ad
hoc in nature

• it can take too long
• it may not include the right group or team in the decision
• decisions can be influenced by the wrong factors—for

example, the strongest, loudest, or most extreme personali-
ties and voices

• political factors
• often, decisions go undocumented and don't stick for very

long
• usually, decisions are biased toward one functional group,

with very little balance or compromise at the individual
decision level

All of this is exacerbated in the endgame because of the number of deci-
sions that need to be made and the intense pressure on the project.

Definitions

The Working View is intended to capture the priority essence of
your project. It is part release criteria, part project vision, and part
key requirements. For general purposes, consider it a virtual
replacement for release criteria. By defining it clearly and deeply,
you provide definitive direction to team members on what's truly
important within their functional and individual efforts. Even
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more importantly, it is dynamic—as your project dynamics change
and discoveries are made, you continually adjust the view to cap-
ture new information.

At the highest level, it is composed of the following dimensions:

• scope
• cost
• time schedule
• quality
• team

The first three make up the standard project management triangle,
with quality being related to all of the primary three dimensions. I
added the team dimension because I believe it's equally important.

You evaluate a particular project decision trade-off based on
each of these dimensions at the highest level. This forces you to
consider the interactions between project drivers and to balance the
decisions more effectively

It is quite useful to capture your Working View graphically, as
you drill down and define dimensional attributes. Kiviat, spider,
or radar charts are useful for this purpose. Use them with 10
degrees of ranking per axis, with 10 referring to the most important
dimensional factors and 0 to the least important. Use 4 to 6 axes
per chart, preferably 6.

Example Project Working View

Figure 3 A: Example Project Working View.
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In Figure 3.1, you can clearly determine that Time to Market and
maintaining Cost are the driving forces for the effort, and that
Scope is compromised in order to achieve that goal.

Dimension Expansion

First, let's expand each of the dimensions to explore some primary
attributes.

Scope

overall release contents
features, requirements, and key constraints
performance characteristics
key team members or teams (Team)
required technologies, third-party integration (Cost)

Cost

• human resources (Team)
• tool resources
• third-party resources (Team, Cost, and Quality)
• recruiting/attrition costs (Team)
• TTM acceleration (Time)

Time /Schedule

• potential lost opportunities
• slippage: What do we do if we're slipping? Drop which

core functions?
• early: What do we do if we're ahead? Add which core

functions?
• testing: Effects on testing? Increasing or reducing time?

Changing release criteria?
• resources: Does adding resources help? Where is the best

place to add them?

Quality

• impact on customers (Cost, Team)
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impact on company or product image (Cost)
cost of rework: technical support, repair, and distribution (Cost)
trade-offs associated with functionality, requirements trace-
ability, performance, and ad hoc testing
impact on team morale (Team)

Team

• effects on overtime, vacations
• awards, compensation, and recognition (Cost)
• handling possible attrition (Cost)
• consulting and contracting assistance (Cost)

Fixed Versus Variable Dimensions

In every project, there are both variable and fixed dimensions—sim-m
ply due to the constraints of the project. In my experience, time
and cost are the most commonly fixed dimensions. When defining
a Working View, it's important to define the fixed dimensions and
then drill down and add further detail to the variable dimensions.
The fundamental idea is to map variable dimensions into concrete,
detailed, and meaningful attributes that can guide the team's prior-
ity decisions.

STEPS TO ESTABLISHING A WORKING VIEW

Step 1: Identify Your Project Stakeholders

This list should include all cross-functional project participants. It
should also include leaders from your core departments (for exam-
ple, software development, quality, and marketing, on a typical
software project). Finally, include senior leadership and project
sponsors, as appropriate. The key is to get all of the pertinent
stakeholders and decision-makers together to ensure you achieve a
quick agreement.

Step 2: Set the Stage

If this is your initial effort to define the Working View, then this
step is the establishment of the Working View. If you are in a redefi-

49



SOFTWARE ENDGAMES

nition phase, then in this step, you should highlight what is chang-
ing and more importantly why it is changing. In both cases, this is
the step where you set the tone for the effort. If the project is strug-
gling to get started, then say so. If you are way off schedule, then
say so. The clearer the team is on the current state of the project,
the easier it will be for them to define a Working View.

Step 3: Project Vision, Essence, and Release Criteria

Establish the primary reasons for the project's existence. These are
the high-level drivers that will dictate the priorities of your effort.
Keep in mind that this isn't the time for priority negotiation—that
is best left for later, after a more detailed analysis. Take more of a
"capture and move on" strategy at this point, discussing and con-
sidering the following:

1. Are there any critical historical and business agreements or
commitments? (Be sure to include internal commitments
here. For example, I worked on a project where QA staff
members were promised a clean-up effort on the next
release if they loosened the quality requirements on the
current release.)

2. What is the essence of the business, the product, and the
customer? (These are areas where there can be no compro-
mise, for example, print quality or ease of setup and instal-
lation in laser printers.)

3. Identify release targets—schedule, alpha and beta commit-
ments, customer expectations—and time to market: key
market windows, trade shows, and annual events. (The
more concrete information you gather as to why time is crit-
ical, the easier it will be for your team to understand that
it's not arbitrary!)

4. What are the specific stakeholder drivers? (If there are any,
ensure that they are very specific and accurately mapped to
a specific dimension.)

5. Are there other dimensional drivers, such as cost, quality,
scope, or team? (You should at least have some team dri-
vers—for example, "We will not resort to eighty-hour
workweeks for the next six months in order to meet our
Scope requirements/')
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6. What are the key (or golden or brass ring) features of the
product? What features can customers not do without?
(Word processors have literally hundreds of features; how-
ever, there are probably only a critical 10 percent of these
that cannot be compromised.)

Once youVe answered these questions, try and get a sense of prior-
ity from the stakeholders. Encourage them to think in terms of
ranking and interrelationships. The quality of your issue segmen-
tation, ranking, and prioritization will directly relate to the quality
of your Working View.

Step 4: Explore Product and Project Dimensions

This is basically a brainstorming session during which the stake-
holder team is assembled to identify the problems, map them to
the affected dimensions, and brainstorm appropriate changes for
moving the effort toward feasibility (see Chapter 12 for some
advice on specific techniques). There are several heuristics that
will help your exploration:

1. Using some sort of graphical representation for attribute
comparison and ranking is extremely helpful. As I men-
tioned earlier, I find Kiviat or spider charts particularly use-
ful. Use one of these spider charts per dimension and map
it with four to six attributes. Use multiple charts for more
attributes. Just make sure you reconcile priority across the
charts.

2. It is also helpful to create a "worded view" as documenta-
tion. It should fully support the graphical representation
and accurately characterize the intended prioritization.

3. If ranking attributes, agree on simple scaling rules. For
example, score the attributes on a scale of 1 to 10, with 10
being the highest priority; try to score the attributes so that
there is one that is clearly the highest priority; strive for
two degrees of separation between attributes.

4. Don't be afraid to clarify attributes at increasing levels of
detail. They need to be detailed enough to be useful in
ranking, comparison, decision-making, and guiding your
team. If you find the team struggling with a particular
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dimension attribute or point, it usually implies that you
need to reduce it to finer granularity and detail.

5. The exercise is very similar to requirements writing in that
your attributes need to be complete, correct, feasible, neces-
sary, prioritized, unambiguous, and verifiable. Karl
Wiegers's book Software Requirements [Wiegers, 1999] is an
excellent place to explore effective techniques to insure cor-
rect attribute definition.

6. Reaching an agreement is sometimes difficult. However,
such an agreement is the core of the process that the team
needs in order to accomplish its goals. There are many
decision models available for different teams, cultures, and
situations. I prefer a team-consensus-based approach for
most Working View definition sessions. Taking into
account your environment, decide on an effective decision-
making approach and stick with it.

7. Document your Working View both in written and graphic
form (using charts and figures, for example). Then distrib-
ute it among your cross-functional team. I always prefer
posting the current Working View materials in the project
war room. Not only does this identify the Working View as
an important project artifact, it helps initiate the necessary
changes within the team.

8. Finally, insure that action assignment and tracking are
being performed. Then link them to your change manage-
ment and change control mechanisms.

EXAMPLES OF WORKING VIEW APPLICATION SCENARIOS

Now we are going to go through a real-life case study of a project,
which will show you how to apply Working Views. First, the proj-
ect background information:

• The company is a European-based provider of network
analysis and test equipment.

• It takes pride in utilizing the best engineering possible in the
production of its products, which customers view as
among the best available.

• A set of the company's component products has been out
in the field for three-to-five years.
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• The products have evolved separately, each having
received between two and four major, and many minor,
releases.

• The market is moving toward suite-based products, and
the company hasn't made a major release to any of the
components in more than a year.

The company has embarked on an initiative to create a network
analysis suite from its disparate products, and there is tremendous
pressure to get it to customers soon. The project is currently within
the endgame and is struggling to achieve a successful release.

The scenario examines a problem with release criteria. There
are conflicting goals within the team. To be specific, the time and
quality dimensions are at odds within the project endgame. There
is tremendous pressure to release the software, in conjunction with
similar pressure to release with minimal to zero defects. These
conflicting goals generated opposing forces within the team and
little progress is being made. In the first part of the scenario, the
team conducts a Working View development exercise to flesh out
the conflict and to come to an agreement with the project's spon-
sors on the right balance across the conflicting dimensions.

In the second part of the scenario, the team conducts another
Working View development exercise, this time to fine-tune the
impact on the quality dimension of the higher-level view and to
add granularity to the view along this dimension—so the team bet-
ter understands the testing focus.

This workflow is indicative of the normal processes associated
with Working View development and highlights a difference
between the Working View and release criteria. Usually, the Work-
ing View is not developed in a single, succinct event. You normally
redefine the Working View at the highest or project level and then
negotiate the dimensional impacts with increasingly detailed and
refined Working View exercises on each of the affected or changed
dimensions. You iterate into more detail on each dimension until
the team is clear on the change and the necessary adjustments and
supports these changes.
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PROJECT APPLICATION: EXAMPLE #1

The Problem

The problem analysis point came during endgame testing for the
initial product release. Testing staff discovered many interoper-
ability issues not covered in the requirements, while significant ad
hoc testing was exacerbating this trend.

The test teams were pushing for close to zero defects at release,
which was partly due to the culture and partly due to previous
commitments—the testing team was aiming to improve on the
product's quality in the next release.

Marketing and executive leadership were creating tremendous
release pressure. Also, to make things worse, there was a signifi-
cant lack of experienced development resources. CCB meetings
were becoming very contentious—we couldn't fix everything, we
couldn't seem to make balanced decisions, and we were spinning
out of control.

As it turned out, our executive leadership's priorities were als
out of synch. Our marketing and engineering VPs were pushing
for immediate release while the quality VP was emphasizing zero
defects to his team. The project team was caught in the middle of
these opposing forces.

The Solution

The company needed better clarity on balance across time and
quality project dimensions—it needed to rank-order the key dri-
vers!

Participants

Include the product manager, project manager, VPs from engineer-
ing, marketing, testing, and QA.

Dimensions of the Problem

• Acquiring experienced resources is a challenge.
• Time to market (TTM) is our ultimate priority. Our cus-

tomers and the business need the release.
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• Some overtime will be required (give extra effort).
• Existing functionality must operate as previously

designed—even in the interoperable cases—and we must
verify all field-based severity 1 and 2 repairs.

Ranking

TTM = 10 (fixed), Cost = 10 (fixed), Scope = 7, Quality - 7, Team =
5. Figure 3.2 displays these rankings in a spider diagram.

High-Level Project Working View

Figure 3.2: High-Level Project Working View.

Worded Working View

We must deliver this release on April 1, 2002, using our existing
resources. Overtime may be necessary to meet this release date.
We must deliver critical content and can't regress in functionality.
However, when pushed, we will compromise quality first (testing
time and focus), and then features.

Agreement

We agreed that this was our high-level priority compass for the
remainder of the effort. We can easily generate release criteria from
this Working View:
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• release on April 1, 2002
• no deployed functionality regression
• forty field-reported defects of severity-levels 1 and 2 need

to be repaired

As I said in the problem definition, our primary problem was
inconsistency in quality and schedule priorities, particularly at the
executive level. This exercise helped to align both dimensions and
gain balance across the two perspectives—that of the VP of quality
and the VPs of marketing and software development.

We then had to take this high-level view and develop more
detail along the quality dimension to insure that we were operating
properly within the testing team.

PROJECT APPLICATION: EXAMPLE #2

The Problem

While the above exercise was helpful in achieving consensus on
priority drivers within our leadership structure, we still had some
work to do within the team. We needed to socialize the above
Working View into our testing team—and to sort our test focus for
the remainder of the endgame. How were we to support the state-
ment that "We can't regress deployed functionality—even in the
interoperable cases—and we must include all field-based priority 1
and 2 repairs'7?

The Solution

We need to drill down into the key quality dimensions for the proj-
ect and rank-order them.

Participants

Include the product manager, project manager, and team leads
from development and testing functions.

Dimensions of the Problem

• Insure we have full regression tests for deployed function-
ality—continue to run tests and report results.

56



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

57

• Extend existing regression tests to insure interoperability is
covered.

• There are new additions to the regression suite.
• Repair verifications may lag behind.
• We can't perform any ad hoc testing.

Ranking

Previous Version Regressions = 10, Interoperability Regressions =
10, Priority 1 and 2 Repair Verification = 8, General Verifications =
6, and Ad Hoc Testing = 2. Again, we display the quality dimen-
sion expansion in Figure 3.3.

Working View—Quality Dimension

Figure 3.3: Quality, Explored.

Worded Working View

Our highest priority in testing is to insure that we deliver working
repairs for reported field defects at severity levels 1 and 2 without
regressing already-deployed functionality. We must also extend
regression testing to account for interoperability among the point
products. We may lose sight of some low-priority and low-risk
verifications when trying to catch them in regression. We will have
no time for ad hoc testing.
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Agreement

We agreed that this was our high-level-priority Working View for
the remainder of the effort. The following needs were captured as
part of the exercise:

1. We need to define the component interoperability require-
ments (marketing).

2. We need to understand the current level of coverage for
regression testing (test and development).

The two steps in the example—the high-level alignment with the
executives and the lower-level definition of testing focus—helped
us immensely in our CCB meeting and processes. Together, they
meant that we all essentially viewed the release criteria and project
priorities in the same way.

Example Results

We had been spinning for about three months in this state, unable
to agree on priority and focus for release drivers and conducting a
never-ending endgame. All of the executives were in a state of
panic and looking for problems and solutions in black-and-white
terms, hoping to find a scapegoat. What was interesting is that
they were responsible for the vast amount of project churn and
didn't even realize it.

There was a powerful side effect of getting the executives to
agree on a balanced view of priority. It wasn't easy, but it was nec-
essary. It was also surprising at the time. You would expect a
handful of senior leaders in a company to be able to synchronize
their decisions relatively easily. However, the reality proved to be
quite the opposite. Therefore, the Working View exercise serves
not only to align the team, but also to synchronize the view hori-
zontally across the various functional organizations.

Once we aligned ourselves and our Working View, the CCB
meetings and our decision-making began to go much more
smoothly. We turned the project around and delivered to beta
testers in six weeks. As part of our post mortem analysis, we rec-
ognized this realignment of the release criteria as one of the defin-
ing moments in getting back on track.
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PROJECT APPLICATION: EXAMPLE #3 9 ANOTHER APPROACH

Another technique for documenting a Working View dimension is
to list high-priority and low-priority focus points. The idea is to
produce enough contrast for the team to understand where its pri-
orities and focus should lie. Again, you need to establish enough
detail to create clarity in decision-making.

Using the Working View from the introductory example, Fig-
ure 3.4 contrasts the following attributes for quality.

High-Priority Attributes

Existing functionality cannot be
affected by new changes (functional
regression testing).

Existing performance may not be
degraded by new changes
(performance regression testing—we
also lacked a performance benchmark).

New functionality must work.

Component interoperability without
performance regression.

Installation framework must create
correct initial environment.

Low-Priority Attributes

Interfaces beyond 10/100/1000
Ethernet and ATM are lower priority.

Existing performance may not be
degraded by new changes—even when
running multiple components, don't get
hung up on improvement.

New functionality must work, except
new reports that do not map to older
reports.

Component interoperability across all
permutations—we can identify (n) key
configurations for initial release.

Installation framework needn't
accommodate all previous installation
environments.

Ad hoc testing, early is better;
later—not at all.

Figure 3.4: High- vs. Low-Priority Contrast Working View.

RESETTING YOUR WORKING VIEW

Setting your Working View is not a static exercise for defining proj-
ect release criteria. It will probably change frequently throughout
the project, particularly in the endgame. To give you a flavor for
reset events, here are a few sample drivers for a Working View
reset:

• departure of team resources (attrition, vacations, illness)
• schedule slips due to internal dynamics (underestimation)

or external dynamics (management-driven schedules)
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• feasibility discoveries as part of prototyping (architecture,
design, and performance)

• defect find/fix ratios as part of endgame testing
• regression testing progress
• additional features added to the product, with or without

any schedule "relief"
• choosing to reduce functionality in order to meet time

requirements

You initiate the same process to reset the Working View, simply
highlighting differences or changes that have occurred and coming
to a new agreement. As a general rule, you should not add or
extend without deleting or contracting attributes within your
Working View.

It's also a good idea to map all changes to the root cause or
problem, just so that it's clear what drove you to the reset and why.
Finally, you should calculate the impact the change makes to insure
you're getting desired results. For example, does the reduction in
quality or scope targets actually meet the required release time
frame?

It's important to note that whenever a reset occurs, there
should be a mechanism to notify the team of the reset. Acceptable
mechanisms for this include

• informal socialization
• team e-mails
• team meetings
• posting the new view in your project meeting or war room

WRAP-UP: ADDITIONS TO YOUR ENDGAME TOOLBOX

This approach and model can help in other areas as well—leading
the team, providing project mission and vision, and generally doc-
umenting the important bits that should be driving your efforts.

The approach can also be adapted to support other activities in
the project life cycle, such as

• defining system architecture—where dimensions represent
architectural attributes

• contrasting different design approaches
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• deciding what level of inspections need to occur—where,
when, and to what degree

• forming early testing strategies: where to focus, risk areas
• risk analysis
• almost anything that requires clarity of detailed require-

ments in order to make an informed, collaborative decision

It is extremely important to distribute the Working View among
your team members. The views truly become graphical rallying
points to insure that the team maintains focus. They also empha-
size that you've taken a step beyond simply stating requirements
and demands, to truly considering cross-dimensional implications
and balancing your priorities accordingly and effectively

Here are the key points:

• Have a more formal way of capturing problem dimensions
and balancing priority.

• Define and rank decision criteria (attributes, dimensions) as
a team.

• Make the decisions visual.
• Document the decisions and have a change process.
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