
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133492026
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133492026
https://plusone.google.com/share?url=http://www.informit.com/title/9780133492026
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133492026
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133492026/Free-Sample-Chapter


S O F T W A R E

E N D G A M E S



DORSET HOUSE PUBLISHING
An Independent Publisher of Books on

Systems and Software Development and Management. Since 1984.
353 West 12th Street New York, NY 10014 USA

1-800-DH-BOOKS 1-800-342-6657
212-620-4053 fax: 212-727-1044

info@dorsethouse.com www.dorsethouse.com

For More Information

Contact us for prices, shipping options, availability, and more.

Sign up for DHQ: The Dorset House Quarterly in print or PDF.

Send e-mail to subscribe to e-DHQ, our e-mail newsletter.

Visit Dorsethouse.com for excerpts, reviews, downloads, and more.

DH

Agile Software Development in the Large:
Diving Into the Deep
by Jutta Eckstein
ISBN: 0-932633-57-9 Copyright ©2004 248 pages, softcover

Best Practices for the Formal Software Testing Process:
A Menu of Testing Tasks
by Rodger D. Drabick foreword by William E. Perry
ISBN: 0-932633-58-7 Copyright ©2004 312 pages, softcover

The Deadline: A Novel About Project Management
by Tom DeMarco
ISBN: 0-932633-39-0 Copyright ©1997 320 pages, softcover

Five Core Metrics: The Intelligence Behind Successful Software Management
by Lawrence H. Putnam and Ware Myers
ISBN: 0-932633-55-2 Copyright ©2003 328 pages, softcover

Hiring the Best Knowledge Workers, Techies & Nerds:
The Secrets & Science of Hiring Technical People
by Johanna Rothman foreword by Gerald M. Weinberg
ISBN: 0-932633-59-5 Copyright ©2005 352 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright ©1999 264 pages, softcover

Project Retrospectives: A Handbook for Team Reviews
by Norman L. Kerth foreword by Gerald M. Weinberg
ISBN: 0-932633-44-7 Copyright ©2001 288 pages, softcover

Waltzing with Bears: Managing Risk on Software Projects
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-60-9 Copyright ©2003 208 pages, softcover

Also Available from Dorset House Publishing

http://www.dorsethouse.com


ELIMINATING DEFECTS,
CONTROLLING CHANGE,

AND THE COUNTDOWN TO
ON-TIME DELIVERY

ROBERT GALEN

DORSET HOUSE PUBLISHING
353 WEST 12TH STREET

NEW YORK, NEW YORK 10014

DH

E N D G A M E S

S O F T W a R E



Library of Congress Cataloging-in-Publication Data

Galen, Robert.
Software endgames : eliminating defects, controlling change, and the countdown to

on-time delivery / Robert Galen.
p. cm.

Includes bibliographical references and index.
ISBN 0-932633-62-5

1. Computer software—Testing. 2. Computer Software—Development. I. Title.
QA76.76.T48G35 2004
005.1'4-dc22

2004020896

Trademark credits: All trade and product names are either trademarks, registered
trademarks, or service marks of their respective companies, and are the property of
their respective holders and should be treated as such. Jell-O is a registered trade-
mark of Kraft General Foods, Inc. Microsoft, PowerPoint, and Windows are regis-
tered trademarks of Microsoft Corporation. Post-it is a registered trademark of 3M.
Nerf is a registered trademark of Hasbro, Inc.

Cover Design: Nuno Andrade
Runner Image: Jared Lister

Copyright © 2005 by Robert Galen. Published by Dorset House Publishing, 353
West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without prior written permission of the
publisher.

Distributed in the English language in Singapore, the Philippines, and Southeast
Asia by Alkem Company (S) Pte. Ltd., Singapore; in the English language in India,
Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt., Ltd., Bangalore,
India; and in the English language in Japan by Toppan Co., Ltd.,Tokyo, Japan.

Printed in the United States of America

Library of Congress Catalog Number: 2004020896

ISBN: 0-932633-62-5 12 11 10 9 8 7 6 5 4 3 2 1

Digital release by Pearson Education, Inc., June, 2013



To all of my "Bugs".. .



This page intentionally left blank 



Acknowledgments

Many of the lessons I bring forward in the text were hard-won,
through the many endgames I've been a part of, at numerous com-
panies and with many teams. I want to thank everyone who has
been a part of my endgames. The lessons were sometimes difficult,
not always resulting in success. However, for me, one constant
throughout has been the privilege of working with so many dedi-
cated, talented, and insightful individuals. In particular, lessons
I've derived from teams at Bell & Howell MMT, EMC, Micrognosis,
and WWG/Acterna have been central to many of this book's
themes. Thank you all for your effort, patience, trust, and above
all, perseverance through some very challenging software project
endgames.

Fve come to realize that a book is a difficult project in itself. It's
not solely the author's effort. It requires support and help from a
wide variety of individuals. It's also an incredible amount of work.
I want to warmly thank those individuals who reviewed chapters
in the book and provided feedback and council. They include
Terry Bradley, Erik Hemdal, and Carla Merrill. Of particular note
are Trish Gertner and Robert Sabourin. They provided incredibly
valuable insight and feedback on the entire book. I thank you both
for your time, thoroughness, and effort.

vn



ACKNOWLEDGMENTS

Another realization was just how important the publisher and
editorial staff are in the creative process. I've been truly blessed
with a talented and dedicated group of editors at Dorset House.
My appreciation to David McClintock, Vincent Au, and Nuno
Andrade for their tireless effort and collaboration in helping to
refine raw thoughts into a book and taking the time to "get it
right/' Thank you.

Finally, I must thank my family for their enthusiastic support.
Kids, thanks for your kind words, interest, and faith. Diane, the
book started out as quite a rocky path, simply a gleam in my eye
and a dream. Your staunch belief and continuous support made all
the difference in getting me through the hard times and to get it on
paper. Sometimes, it's not the little or the big things that matter,
but the constant things that are most important. I couldn't have
had a better partner throughout the effort—thank you for your
faith and continuous support.

Vlll



Contents

Preface xix
My Motivation for the Book xxi
Intended Audience xxii
How to Approach This Book xxiii
What We're Not Trying to Explore xxiv

Chapter One: Introduction 3
You Know You're in the Endgame When ... 4

You Know You've Exited the Endgame When ... 5
Focus of the Book: It's Mostly About Defects 5
Triage Workflow 6

Dynamics of Software Development 7

Endgame Workflow 8

Repair Triage and Change Control Workflows 8
Phase 1: Initial Defect Analysis (Low-Level Triage) 8

Phase 2: High-Level Triage and Change Control Decision-Making 9

Phase 3: Communication 10

Phase 4: Package Analysis 11

Phase 5: Repair Scheduling 11

Phase 6: Construction (Repairs) 12

Phase 1: Release and Verification 12

Flow of the Book 12

IX



CONTENTS

Part One: Endgame Basics 17

Chapter Two:
Triage and Change Control Process and Meeting Framework 19

Different Names and Formats 20
Formal CCB Format 21

What's Bad About a Formalized CCB? 21
What's Useful About a CCB? 22

A Lightweight CCB (LW-CCB) Explored 22
Guidelines for Defect Triage Outside of the CCB Meeting 23
Determining Meeting Frequency 24

A Quick Look at the Meeting Flow 25
Meeting Participant Roles 26

Setting Expectations 27
Don't Get Stuck 27

Setting Up Meeting Dynamics 28
Meeting Assistance 28
Establishing Norms 28
Feelings: Good and Bad CCB Meetings 30
A Bad Example 31

Triage Meeting—Agenda Format 32
Step 1: Functional Roundtable 33
Step 2: Old Work Review 33
Step 3: New Work Planning 33
Step 4: Examine Trending 34
Step 5: Adjustments to Release Criteria 34
Step 6: Meeting Follow- Up 35
Step 7: Meeting Metrics 35

Decision-Making 36
Convergent Versus Divergent Thinking 36
Participatory Decision-Making: Core Values 3 7

Decision-Making Models 38

Guiding Team Decisions 40
Wrap-Up: Additions to Your Endgame Toolbox 40

Chapter Three:
Developing Release Criteria and Working Views 42

Release Criteria or Defining Success 43

Step 1: Define Success 43
Step 2: Learn What's Important for This Project 43

Step 3: Draft Release Criteria 44
Step 4: Make the Release Criteria SMART 44
Step 5: Achieve Consensus on the Release Criteria 45

How to Use Release Criteria 45

X



CONTENTS

Better Decisions: Aspects of a Project Working View 46
The Problem 46
Definitions 46
Dimension Expansion 48
Fixed Versus Variable Dimensions 49

Steps to Establishing a Working View 49
Step 1: Identify'Your Project Stakeholders 49
Step 2: Set the Stage 49
Step 3: Project Vision, Essence, and Release Criteria 50
Step 4: Explore Product and Project Dimensions 51

Examples ofWorkingView Application Scenarios 52
Project Application: Example #1 54

The Problem 54
The Solution 54
Participants 54
Dimensions of the Problem 54
Ranking 55
Worded Working View 55
Agreement 55

Project Application: Example #2 56
The Problem 56
The Solution 56
Participants 56
Dimensions of the Problem 56
Ranking 57
Worded Working View 57
Agreement 58
Example Results 58

Project Application: Example #3, Another Approach 59
Resetting Your Working View 59
Wrap-Up: Additions to Your Endgame Toolbox 60

Chapter Four: Endgame Release Framework 62
Overview of the Framework 64

Gathering Input from the Team 65

Input from Software Development 65

Input from Testing 66
Input from Other Team Members 68

Mapping the Data Into the Framework 69
A Word on Strategy 70

Robert Sabourin's Rule of Thumb for Test Estimation 71

Default Strategy 71
Release Framework Example 72

xi



CONTENTS

Release Framework: Historical Notes 72
Release Framework: Plan Details 73
Release Framework: Endgame Flow 73

Measuring Progress for the Release Framework 75
Ownership of the Release Framework 75
Updating Your Release Framework 76
The Impact of Granularity on Methodologies 76
Wrap-Up: Additions to Your Endgame Toolbox 77

Chapter Five: Reducing the Rate of Change 78
Change Reduction Milestones for the Endgame Framework 79
The Notion of a Code Freeze 80

Microsoft—Code Complete 81
Beyond Code Freeze and Code Complete—Defect Repair Change Cycles 83
Change Reduction Anti-Patterns 85

Anti-Pattern: Delaying Code Freeze 85
Anti-Pattern: Ad Hoc Testing Delays 87
Anti-Pattern: Inherent Instability (Architecture, Infrastructure, or Performance) 88
Anti-Pattern: Never-Ending Rework 89
Anti-Pattern: Feature Creep or Requirements Changes 91
Anti-Pattern: Fluctuations in Release Criteria 92
Anti-Pattern: Inability to Complete Repairs and/or Run Tests 93
Anti-Pattern: Customer Introduction Too Early orToo Late (Alpha, Beta, or Demo) 95
Anti- Pa ttern Wrap -Up 96

How the CCB Assists in Change Reduction 96
Wrap-Up: Additions to Your Endgame Toolbox 97

Chapter Six: Configuration Management in the Endgame 98
Configuration Management Readiness Checklist 99
Level of CM Control Granularity 100
Early On—Run a Practice Build Test 101
Beware of Changing Tools in the Endgame 101
The Role of Team Leaders in Configuration Management 102

Development Lead 102

Test Lead 103
Periodic (Nightly) Builds and Smoke Testing 104

Build Frequency 104

Smoke Testing 105

Release Turnover Meetings 107
Wrap-Up: Additions to Your Endgame Toolbox 108

Part Two: Endgame Defects 109

Chapter Seven:
Defect Basics: Terms,Tools, Methods, and Management 111

xii



CONTENTS

Fundamental Defect Types 112
Duct Tape: Customer Perceptions 113
Internal Versus External Enhancements 114

Basic Defect Data Fields 114
Quick Field Annotations: External Data 115
Quick Field Annotations: Internal Data 117
Resolution Summary—Expanded 118
Where Found 119

Functional Area 121
Severity and Priority 122

Defect Evolution 129
E-Mail Notification 131

Introduction to Work Queues 131
Phase 1 132
Phase 2 132
Phase 3 132

Information Weight 133
Using Defects to Track Development (and Other) Work 134
Frequent Defect Monitoring—What Needs Attention 135

Defect Arrival and Closure Rates 135
Defect Assignment Times 135
Overall Defect Repair Times 136
Alternate Defect Transitions 136

The Idea of Bug Advocacy 136
Wrap-Up: Additions to Your Endgame Toolbox 137

Chapter Eight: Useful and Relevant Metrics 138
Find (New) Versus Fixed (Closed, Deferred) 139

Points to Observe 139
Trends to Watch Out For 140

Factoring in Priority 141
Points to Observe 141
Trends to Watch Out For 142

Factoring In Keywords 144
Points to Observe 144

Trends to Watch Out For 146
Defect Transition Progress 146

Points to Observe 147
Trends to Watch Out For 148

Functional Areas and Defect Distribution 149
Points to Observe 149
Trends to Watch Out For 150
Pareto Analysis 151

xiii



CONTENTS

Further Examination of Trending—Correlations to External Stimuli 151
Endgame Release Framework Visibility 152
How Testing Approach Affects Trending 152

How Methodology or Development Approach Affects Trending 153
Development Team Trends 155

Not-to-Be-Fixed Defect Trends 155
Metrics Analysis Questions 156

Staffing Questions 157
Defect Questions 157
Testing Questions 158
Code Questions 158

Maintaining Historical Data 158
Wrap-Up: Additions to Your Endgame Toolbox 159

Chapter Nine: The Many Ways to Fix Defects 160
Just Rep air It 161

Decision Factors 161
Make a Partial Repair to Reduce Impact and Severity 161

Decision Factors 161
Example Problem 162

Log It As a Known Defect and Move On 162
Decision Factors 163

Simply Change the Severity or Priority 163
Decision Factors 164

Ignore It and Hope It Goes Away ... 164
Consider It Anomalous Behavior and Wait for the Next Occurrence 165

Decision Factors 165
Defer the Repair to a Later Release 165

Decision Factors 166
Caution—Don't Defer Too Many 166
Deferral-Handling Heuristics 167

Negotiate with Marketing or the Customer to Change the Requirement 167
Decision Factors 167

Add More System Resources to Reduce the Impact 168
More Space 168

Decision Factors 169
More Configuration Resources 169

Decision Factors 170
Warning—Possible Side Effects 170
More Performance 171

Decision Factors 171
Find a Workaround (Procedural, Operational, Documentation, or Automated) 171

Decision Factors 172
Example Problem 172

xiv



CONTENTS

Caution—Use Workarounds Sparingly 173

Remove the Functionality/Code 173
Decision Factors 173

Example Problem 174

Change or Remove Interacting Software Products 174
Decision Factors 175

Wrap-Up: Additions to Your Endgame Toolbox 175

Part Three: Endgame Workflow 177

Chapter Ten: Work Queues and Packaging 179
Work Queues 180
Deriving Work Queues from Your Defect-Tracking System 182
Queue Loading Rules 184

Changing Queue Loading 185

How Should Testing Interact with the Work Queues? 185
Deal with Defect Repairs in Packages 186

Package Themes 187

Package Strategy 190

Thinking About Package Costs 190
Think About Your Regression Trends 191
Package Plan Status and General Replanning 191
Wrap-Up: Additions to Your Endgame Toolbox 193

Chapter Eleven: Defect Repair Selection: Other Considerations 194
Reproducing the Defect 195

Bug Isolation 195

Overall Level of Difficulty 196

Locality and Relationship to Other Defects 198
How Will the Repair Impact the Test Team? 199

Effects on Test Automation 200

Exploring Possible Workarounds 201
Handling Gold Features 201
Consider ing Your Available Resources 203
Likelihood That the Defect Will Surface in Normal Operation of the Product 206
Wrap-Up: Additions to Your Endgame Toolbox 207

Chapter Twelve:
Endgame Estimation: A Few Useful Collaborative Techniques 208

Defect Estimation Life Cycle 209
PSP PROBE Method-Proxy-Based Estimation 211

Endgame Applications 213

Wideband Delphi Method 214
Endgame-Modified Wideband Delphi 215

Endgame Applications 216

xv



CONTENTS

Other Estimation Techniques 217
Endgame Applications 218

A Quick Example 218
Collaborative Estimation—What to Collect 220

Estimate Data 220
Peripheral Estimate Data 221
Related Data 221

Wrap-Up: Additions to Your Endgame Toolbox 222

Part Four: Endgame Management 223

Chapter Thirteen: Management Dynamics 225
The Importance of Team Leads: Clear Roles and Responsibilities 226

Mining for Team Leaders 227

Team Sizes 228
The Sign-Up 228

The Tone of the Endgame 229
Energy Gaps or a Lack of Focus 231

Communication Gaps 232
The Team Has Lost Its Sense of Feasibility 232
Contention and Conflict 232

Be Aware of the Natural Tension Points Across Functional Groups 233
Identify Your Best Debuggers 234
Reserve Resources or Develop Generalists for Later Repairs 235
Team Types: Strengths for the Endgame 237

Myers-Briggs Type Indicator 238
How Do You Determine and Use Types? 238

Wrap-Up: Additions to Your Endgame Toolbox 239

Chapter Fourteen: Leadership Practices 241
The Burden of Leadership 242

The Power of Leadership 243

Use of Overtime 244
Establish a War Room 245
Find Room for Play 247
Daily Status Meetings 248

Daily Meeting—A Quick Example 249
A Similar Meeting Framework Resides in Scrum 250

Other Benefits of Daily Meetings 250

Gathering General Status 251
Handling Distributed Endgame Teams 252

Colocate Resources Whenever and Wherever Possible 254
Knowing When to Say When—Release 255

Failing to Fill Your Top 10 256

QA and Testing Say It's Ready 256

xvi



CONTENTS

WhenYou've Met Your Release Criteria 257
Knowing When to Say When—You're in Trouble 257

Recognition 257
Actions—What to Do and What Not to Do 258
IfYou Are Going to Reset, Do It Only Once 258
Collaborative Planning 259
Stick with Your Project Dynamics 259
Notify the Business—and Execute! 259

The Testing Team—Your Secret Weapon 259
Wrap-Up: Additions to Your Endgame Toolbox 262

Chapter Fifteen: Endgame Retrospectives and Conclusions 263
Keeping an Endgame Log or Diary 264
ShouldYou Conduct a Retrospective? 265
Key Points of a Retrospective 265

Time Investment, Timing, and Preparation 266
The Notion of Safety 266
A Sample Meeting Flow 267

Guidelines for an Endgame Retrospective 268
Using Your Endgame Data in the Retrospective 268

Release Criteria and Working Views 269
Endgame Release Framework 269
Defect Analysis and Trending 2 70
Driving the Retrospective from the Data 271

Endgames Provide Wonderful Insights into the Character ofYourTeam 272
Celebrating Success 273

Planning 2 73
Making It Personal 274
Generate Stories 274
Make It a Big Deal 275

Agile Endgames 276
Daily Meetings 277
Heavyweight Defect Entry 277
Release Criteria and Endgame Release Framework 278
Work Planning 278

Concluding Thoughts 279

Afterword: An Invitation to Endgame Collaboration 281

Appendix A: Pre-Endgame Preparation Checklist 283

Appendix B: Collaborative Estimation, Data Focus Checklist 286

Appendix C: Sticky Note Guidelines 288
Note-Generator Guidelines 288

xvii



CONTENTS

Note-Facilitator Guidelines 289
Initial Ordering Guidelines 289
Sequence Ordering Guidelines 290

Note Formats 290

Appendix D:
Guidelines for Constructing Endgame Release Frameworks 291

Historical Notes 291
Plan Details 292
Endgame Flow 293

References 295

Index 299

xviii



Preface

I've earned most of my management scars during project
endgames. Early in my career, the endgame appeared to be simply
a chaotic, ad hoc, reactive period during the final phases of project
delivery. It was a time to test your courage, mettle, and resolve. It
was a gut check. Do you have what it takes? Can you do whatever
is necessary to release a product?

The endgame, it seemed, was a time when defects ran rampant
and were unpredictable, amorphous things. You didn't plan to fix
them—you simply reacted to them. Depending on your functional
point of view, the endgame had different meanings. If you were in
testing, then it was the culmination of all your plans. You were
energized, at least at first, and ready to find as many defects as
possible. Of course, you had less time than was originally planned,
and everyone was pushing to reduce the testing effort. Still, it
could be a very exciting time, and it was certainly your time.

If you were in software development, it was a frightening time.
Woe to every developer whose cube entrance was darkened by a
tester. That usually meant only one thing—the testers had found
yet another defect and you were about to get more work than you
had time for or had planned for. Moreover, if it was a high priority
defect, you could expect every leader on the team to stop by to

xix



PREFACE

check if he or she could "help" you with the resolution. And fea-
ture creep didn't happen just at Halloween—it occurred steadily
and consistently throughout the endgame.

If you were in marketing, you quite frankly had no time for the
endgame. You had customer and sales commitments hanging out
there, so the product needed to ship—now! And it needed to work
. . . and it needed to meet all requirements . . . and . . . Actually,
check that—you didn't really care about the endgame. Your
thoughts were already focused on the next project.

Problems got fixed due to clear, and sometimes not so clear, cri-
teria. Oh yes, the fatal crash led to an easy repair decision. As did
the database performance issue or the GUI screen errors. So, some
decisions seemed to make perfect sense . . . but others did not!

• Sometimes, the loudest argument resulted in a repair, other
times not.

• Sometimes, we seemed to be able to figure out when we
were done, other times not.

• Sometimes, we could fix all priority or severity one defects,
other times not.

• Sometimes, we repaired or corrected the right levels of
functionality, other times not.

There were two constants within the endgame. First was the
inconsistency. Second was the incessant pressure to be done—fin-
ished, released, and on to the next thing—and the tremendous
effort the team would need to expend to get there.

The project manager always seemed to be gazing at the project
plan and defect trends like a fortune-teller gazing into a crystal
ball, wishing for the project's end. It was as if the project endgame
was simply happening in an enclosed room and the crystal ball of
trends was the only hope for predicting what might happen.
Everyone dutifully kept their fingers crossed, looking for a positive
downturn in defect trending (which could imply success, but only
some of the time).

Project goals were never really clear. For example, in one proj-
ect, my team aspired to deliver a defect-free product to our cus-
tomer. Or, at least, that was the role our test team envisioned for
itself. We found, after many testing iterations, that we could not

xx



PREFACE

get the product into a state that we could accept. So we kept iterat-
ing and iterating.

One day, we were in a release content meeting, and the point
came up that our customers were experiencing many of the prob-
lems we'd already fixed in our current version. You see, our cus-
tomers had not received an update in a year and a half. This point
of clarity, which shifted our view of the release drivers from perfec-
tion to providing value to our existing customers, was a critical
step in this particular endgame. After this epiphany, we shipped a
new version of the product within six weeks, and our customers
were delighted with the increased value and stability.

As I gained in my understanding of the endgame, my skill in
negotiating it also increased. I began to react less, plan better, and
succeed more often. I also began to think about the core lessons I
was learning, which naturally led to the genesis of this book. My
overriding goal is to share tools and techniques with you that
should improve your endgame engagements.

MY MOTIVATION FOR THE BOOK

Simply put, the reactive nature of the endgame is due to a lack of
attention on the part of everyone involved. While conducting
research for this book, I was surprised to find very little work on
triage and endgame management practices. Typically, in a text on
the software life cycle, methodologies, or project management, only
a few pages would address the subject.

Endgame processes, methodologies, and project management
techniques are typically left for the reader to extrapolate as an exer-
cise. The problem is—how do you do that? It's not very clear
what's different about the dynamics of the endgame versus other
aspects of the software development life cycle, nor what works and
what doesn't. There is simply not enough practical guidance avail-
able that is focused on the dynamics of the endgame. That's what's
hard and unique about it—almost everything!

The idea behind this book is to give you some practical advice,
templates, checklists, tools, and examples to help you improve
your abilities. Not everything will work in every situation. How-
ever, it is my experience that there are common practices that will
have a tremendous impact on your project endgames. I also want

xxi



PREFACE

to get you thinking about endgame activity as early as possible in
your project planning. That's another key to success.

Finally, I want you to have fun—yes, fun—in the endgame.
One of my biggest frustrations regarding endgame activity is that
we typically lose the thrill and sense of accomplishment associated
with completing a project. Normally, we end up so physically and
mentally exhausted that we can't enjoy the success. Or, worse than
that, our project fails completely.

INTENDED AUDIENCE

My formal training is as a software engineer, so I initially come at
things from that perspective. Over time, I began to lead software
development teams as a group leader and manager. Within the
past ten years, Fve started to lead endgame efforts as a senior man-
ager, test manager, and project manager. Each of these additional
roles allowed me to look at things from a different perspective. It
also meant that I led quite a few endgames.

The primary audience for this book is composed of technical
managers within a software project endgame. Whether you are a
software development manager, test manager, or project manager, I
believe you'll benefit greatly from the techniques and approaches I
present within the book.

However, I think the audience is much broader than that,
including virtually anyone who is involved as part of a software
project endgame:

• product managers, marketing, sales reps, and customers
• project managers
• test managers, testers, and QA resources
• software development managers and software developers
• individual engineers engaged in hardware and/or software

development and/or testing
• technical writing teams
• manufacturing, customer support, and other team mem-

bers

Regardless of your life cycle or methodology, sooner or later, every-
one arrives in the endgame—that is, if the project survives that far.

xxii



PREFACE

Always keep in mind that endgames are won and lost as a
team, so whatever your function, role, or responsibility, you can
and should support the achievement of the best possible results.
Bring some of these ideas to your endgames and try them out.
Everyone plays a part in endgame success!

How TO APPROACH THIS BOOK

Naturally enough, I think there is a sensible and important flow to
the text, and I recommend that you read it in the order presented,
for maximum benefit. My intention has been to make the text light
enough to be read quickly, so that a sequential reading wouldn't be
too onerous a task.

However, if you prefer to focus on subtopics, then I recom-
mend you scan the individual parts for points of interest in each of
the focused areas:

Parti: Endgame Basics
Part 2: Endgame Defects
Part 3: Endgame Workflow
Part 4: Endgame Management

Each chapter relates topic areas to one of the four primary focus
points of the text. If you take a piecemeal approach to reading the
text, I would recommend you first read the Introduction and Chap-
ter 15, the retrospective chapter, to set some global context before
moving to individual sections and chapters.

If you take away just a few key concepts or themes from the
text, they should include the following:

• Many project-level activities apply equally well in the
endgame and should be applied there as well. A good
example of this is using collaborative estimation techniques
on defect repair work.

• A project-level compass, the Working View, will help your
team focus on a clearly articulated vision and will improve
your decision-making. It is equally important to update
this view as aspects of the project change in the endgame.

• A data-heavy view of defect entry and management will
not only help you on your current project but will provide

xxiii



PREFACE

valuable historical data for future projects. You will meet
resistance here, but work through it and insist on solid data
entry and maintenance.

• It's all about your team! Set it up with a framework for the
endgame and then "Get out of the way!"

WHAT WE'RE NOT TRYING TO EXPLORE

I think it's just as important to discuss what's not covered in the
text.

First of all, I'm not exhaustive in discussing my scheduling or
estimating techniques. Frankly, I'm not sure they can be applied to
larger scale project planning. The estimating techniques certainly
have the potential to be applied broadly, while the scheduling tech-
niques probably have lesser applicability.

Second, I don't discuss testing or the test process. These areas
are much too broad, and many authors have explored test process
dynamics. Our key interfaces to testing are at the following points:

• prerelease strategy and planning
• release framework planning
• defect data entry and status
• build and release hand-off
• triage and team meeting

Next, I offer only a very lightweight view of personality and team
types in software management, to give you a feel for the topic and
its implications. There is much more on this to pursue elsewhere.

Finally, my sole view of the endgame is from within it, from the
initial release of a software project for testing, through to its release
to the customer. I intentionally stay away from endgame process
analysis, root causal analysis, retrospectives facilitation, and other
detailed means of improving the processes within the endgame.
That is, until the final chapter. It's there that I try to tease out some
correlations between the endgame and broader software project
management and methodology lessons I've learned.

November 2004 R.G.
Gary, North Carolina

xxiv



E N D G 
A M E S

S O F T W A R E



This page intentionally left blank 



Developing Release Criteria
and Working Views

All too often, product development teams struggle with effective
priority decision-making. Usually, things get more difficult as the
project progresses and business pressures to release the product
build. Typically, projects define release criteria to guide the deci-
sion-making process. They define success for the project in the
form of key objectives and requirements that the product must
meet prior to being released. In many cases, the criteria focus on
functionality, performance, and quality targets for the product.

I've developed a decision method or tool to help you visualize
key project drivers or priorities and balance them alongside one
another—I call it a "Working View," as I mentioned earlier in the
book. In doing so, teams gain insight into the product's scope,
development time, cost, and quality. How successfully you bal-
ance these dimensions determines how successfully you complete
and deploy a product.

In this chapter, I examine the more traditional release criteria,
exploring what they are and how to define them properly within
the context of your endgame projects. Then we contrast release cri-
teria against my notion of a Working View. Whereas release crite-
ria are usually objective and requirement-focused, the Working
View expands on them in several important ways:

42

C H A P T E R

T H R E E



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

• it acknowledges that project release criteria changes are
inevitable, particularly in the endgame, and it effectively
handles this dynamic

• it considers every project dimension (scope, cost,
time/schedule, quality, and team) and contrasts decision
impacts across them

• it provides more in the way of a succinct vision for the proj-
ect: where it is going and what it's trying to accomplish

• it engages the team in the inevitable trade-off decisions and
initiates changes across the team

While I'm a strong proponent of the Working View, at the end of
the day, I'm not sure that I feel strongly about which approach or
technique to use to manage release criteria. What is important is
that you have release criteria of some sort, and that you define and
agree on them as a team and adjust them as the project dynamics
change.

RELEASE CRITERIA OR DEFINING SUCCESS

In [Rothman, 2002], Johanna Rothman writes about defining proj-
ect release criteria. She discusses a five-step process for their defin-
ition. I will walk you through the steps and provide some brief
examples. My preferred method for defining and managing
release criteria is the Working View, which I will discuss in detail in
later sections. However, the Rothman approach serves as a nice
contrast and emphasizes quite similar activities.

Step 1: Define Success

What problem is the project trying to solve? What are the project's
goals? What is the business case? What are the key customer
requirements? Craft a clear picture of what success looks like for
the project effort. It should be tangible; you should almost be able
to reach out and taste it.

Step 2: Learn What's Important for This Project

Find out what the critical drivers are for this project. What is truly
important? I worked designing and building medical systems for a

43



SOFTWARE ENDGAMES

number of years, and it was always very clear that quality and
safety were my highest priorities. This level of importance per-
vaded everything that we did as a team and how we approached
our products.

Step 3: Draft Release Criteria

Take the time to draft a set of release criteria for review and discus-
sion, and drive the team to clarity and agreement. Here is a sam-
ple:

• The code must support both Windows 2000 and Windows
XP.

• All defects of priority PO, PI, and P6 will be repaired or
addressed.

• For all documented bugs, the online help, release notes,
and formal documentation will contain relevant updates.

• All QA tests will be run at 100 percent of expected coverage.
• No new defects PO to P3 will be found within the last thre

weeks of testing.
• Release target: General Availability release on April 1, 2003.

Step 4: Make the Release Criteria SMART

Within HR circles, there is a notion of SMART objectives for defin-
ing personnel objectives. The acronym represents five key attrib-
utes for crafting good objectives and is just as applicable when
defining release criteria. When you are validating your release cri-
teria, it's a good idea to make them SMART, too:

• Specific
• Measurable
• Attainable
• Relevant (or Realistic
• Trackable

Here is a quick example:

The performance shall meet customer expectations

44



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

Having such a performance-related release criterion as your release
criterion is far too ambiguous and not very useful. It leaves too
many questions unanswered: Which customer? What exactly are
its expectations? What specific areas of performance? A much bet-
ter, or SMARTer, release criteria would be

GUI screen update responses will never exceed 5 seconds.

Step 5: Achieve Consensus on the Release Criteria

Once youVe defined your release criteria, you need to gain stake-
holder and team agreement that the criteria indeed capture the
focus for the release. It's also a good idea to propose some project
scenarios, check if the release criteria still hold, and provide guid-
ance for them. For example, what will you do if you do not meet
the above performance criteria? Will you stop the release and
repair it? What if only one screen out of a hundred is affected—
will you take the same action? What if the repair requires a total
rewrite of the system architecture and approximately six months of
effort—will you take the same action?

As you can see, there are quite a few "it depends" conditions in
handling release criteria. Any preparation work you can do to
establish what I call "decision boundaries" will help you later—
when you're making these decisions on-the-fly, in the endgame.

How to Use Release Criteria

Again in [Rothman, 2002], Rothman talks about release criteria
being binary in nature—it is either met or not met. Release criteria
changes are limited to learning more about what it means to be
"done" and realizing that you can't meet all the release criteria.

While release criteria are binary in nature, it is my experience
that they may be quite volatile, as well. Perhaps I've worked in
more dynamic or change-friendly projects, but I believe that release
criteria have to be very dynamic in most projects. Expect to change
them often in the endgame—almost every day, you'll gather
change information that can potentially impact your release criteria
and decision-making.

Finally, Rothman makes a wonderful point regarding the ulti-
mate use of release criteria, describing them as a continuous metric

45



SOFTWARE ENDGAMES

for determining whether the project is on track or not. It's better
not to wait until you reach a release decision point to determine
whether you have met your release criteria. You should constantly
monitor your progress against the release criteria youVe set. The
minute you think there is a problem, raise the flag and evaluate
where the project stands.

BETTER DECISIONS: ASPECTS OF A PROJECT WORKING VIEW

The Problem

The problem we're trying to solve is that of effective decision-mak-
ing. This becomes particularly crucial in the triage or endgame
processes. Too often, the following problems arise:

• general team decision-making is difficult and usually ad
hoc in nature

• it can take too long
• it may not include the right group or team in the decision
• decisions can be influenced by the wrong factors—for

example, the strongest, loudest, or most extreme personali-
ties and voices

• political factors
• often, decisions go undocumented and don't stick for very

long
• usually, decisions are biased toward one functional group,

with very little balance or compromise at the individual
decision level

All of this is exacerbated in the endgame because of the number of deci-
sions that need to be made and the intense pressure on the project.

Definitions

The Working View is intended to capture the priority essence of
your project. It is part release criteria, part project vision, and part
key requirements. For general purposes, consider it a virtual
replacement for release criteria. By defining it clearly and deeply,
you provide definitive direction to team members on what's truly
important within their functional and individual efforts. Even

46



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

more importantly, it is dynamic—as your project dynamics change
and discoveries are made, you continually adjust the view to cap-
ture new information.

At the highest level, it is composed of the following dimensions:

• scope
• cost
• time schedule
• quality
• team

The first three make up the standard project management triangle,
with quality being related to all of the primary three dimensions. I
added the team dimension because I believe it's equally important.

You evaluate a particular project decision trade-off based on
each of these dimensions at the highest level. This forces you to
consider the interactions between project drivers and to balance the
decisions more effectively

It is quite useful to capture your Working View graphically, as
you drill down and define dimensional attributes. Kiviat, spider,
or radar charts are useful for this purpose. Use them with 10
degrees of ranking per axis, with 10 referring to the most important
dimensional factors and 0 to the least important. Use 4 to 6 axes
per chart, preferably 6.

Example Project Working View

Figure 3 A: Example Project Working View.

47



SOFTWARE ENDGAMES

In Figure 3.1, you can clearly determine that Time to Market and
maintaining Cost are the driving forces for the effort, and that
Scope is compromised in order to achieve that goal.

Dimension Expansion

First, let's expand each of the dimensions to explore some primary
attributes.

Scope

overall release contents
features, requirements, and key constraints
performance characteristics
key team members or teams (Team)
required technologies, third-party integration (Cost)

Cost

• human resources (Team)
• tool resources
• third-party resources (Team, Cost, and Quality)
• recruiting/attrition costs (Team)
• TTM acceleration (Time)

Time /Schedule

• potential lost opportunities
• slippage: What do we do if we're slipping? Drop which

core functions?
• early: What do we do if we're ahead? Add which core

functions?
• testing: Effects on testing? Increasing or reducing time?

Changing release criteria?
• resources: Does adding resources help? Where is the best

place to add them?

Quality

• impact on customers (Cost, Team)

48



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

impact on company or product image (Cost)
cost of rework: technical support, repair, and distribution (Cost)
trade-offs associated with functionality, requirements trace-
ability, performance, and ad hoc testing
impact on team morale (Team)

Team

• effects on overtime, vacations
• awards, compensation, and recognition (Cost)
• handling possible attrition (Cost)
• consulting and contracting assistance (Cost)

Fixed Versus Variable Dimensions

In every project, there are both variable and fixed dimensions—sim-m
ply due to the constraints of the project. In my experience, time
and cost are the most commonly fixed dimensions. When defining
a Working View, it's important to define the fixed dimensions and
then drill down and add further detail to the variable dimensions.
The fundamental idea is to map variable dimensions into concrete,
detailed, and meaningful attributes that can guide the team's prior-
ity decisions.

STEPS TO ESTABLISHING A WORKING VIEW

Step 1: Identify Your Project Stakeholders

This list should include all cross-functional project participants. It
should also include leaders from your core departments (for exam-
ple, software development, quality, and marketing, on a typical
software project). Finally, include senior leadership and project
sponsors, as appropriate. The key is to get all of the pertinent
stakeholders and decision-makers together to ensure you achieve a
quick agreement.

Step 2: Set the Stage

If this is your initial effort to define the Working View, then this
step is the establishment of the Working View. If you are in a redefi-

49



SOFTWARE ENDGAMES

nition phase, then in this step, you should highlight what is chang-
ing and more importantly why it is changing. In both cases, this is
the step where you set the tone for the effort. If the project is strug-
gling to get started, then say so. If you are way off schedule, then
say so. The clearer the team is on the current state of the project,
the easier it will be for them to define a Working View.

Step 3: Project Vision, Essence, and Release Criteria

Establish the primary reasons for the project's existence. These are
the high-level drivers that will dictate the priorities of your effort.
Keep in mind that this isn't the time for priority negotiation—that
is best left for later, after a more detailed analysis. Take more of a
"capture and move on" strategy at this point, discussing and con-
sidering the following:

1. Are there any critical historical and business agreements or
commitments? (Be sure to include internal commitments
here. For example, I worked on a project where QA staff
members were promised a clean-up effort on the next
release if they loosened the quality requirements on the
current release.)

2. What is the essence of the business, the product, and the
customer? (These are areas where there can be no compro-
mise, for example, print quality or ease of setup and instal-
lation in laser printers.)

3. Identify release targets—schedule, alpha and beta commit-
ments, customer expectations—and time to market: key
market windows, trade shows, and annual events. (The
more concrete information you gather as to why time is crit-
ical, the easier it will be for your team to understand that
it's not arbitrary!)

4. What are the specific stakeholder drivers? (If there are any,
ensure that they are very specific and accurately mapped to
a specific dimension.)

5. Are there other dimensional drivers, such as cost, quality,
scope, or team? (You should at least have some team dri-
vers—for example, "We will not resort to eighty-hour
workweeks for the next six months in order to meet our
Scope requirements/')

50



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

6. What are the key (or golden or brass ring) features of the
product? What features can customers not do without?
(Word processors have literally hundreds of features; how-
ever, there are probably only a critical 10 percent of these
that cannot be compromised.)

Once youVe answered these questions, try and get a sense of prior-
ity from the stakeholders. Encourage them to think in terms of
ranking and interrelationships. The quality of your issue segmen-
tation, ranking, and prioritization will directly relate to the quality
of your Working View.

Step 4: Explore Product and Project Dimensions

This is basically a brainstorming session during which the stake-
holder team is assembled to identify the problems, map them to
the affected dimensions, and brainstorm appropriate changes for
moving the effort toward feasibility (see Chapter 12 for some
advice on specific techniques). There are several heuristics that
will help your exploration:

1. Using some sort of graphical representation for attribute
comparison and ranking is extremely helpful. As I men-
tioned earlier, I find Kiviat or spider charts particularly use-
ful. Use one of these spider charts per dimension and map
it with four to six attributes. Use multiple charts for more
attributes. Just make sure you reconcile priority across the
charts.

2. It is also helpful to create a "worded view" as documenta-
tion. It should fully support the graphical representation
and accurately characterize the intended prioritization.

3. If ranking attributes, agree on simple scaling rules. For
example, score the attributes on a scale of 1 to 10, with 10
being the highest priority; try to score the attributes so that
there is one that is clearly the highest priority; strive for
two degrees of separation between attributes.

4. Don't be afraid to clarify attributes at increasing levels of
detail. They need to be detailed enough to be useful in
ranking, comparison, decision-making, and guiding your
team. If you find the team struggling with a particular

51



SOFTWARE ENDGAMES

dimension attribute or point, it usually implies that you
need to reduce it to finer granularity and detail.

5. The exercise is very similar to requirements writing in that
your attributes need to be complete, correct, feasible, neces-
sary, prioritized, unambiguous, and verifiable. Karl
Wiegers's book Software Requirements [Wiegers, 1999] is an
excellent place to explore effective techniques to insure cor-
rect attribute definition.

6. Reaching an agreement is sometimes difficult. However,
such an agreement is the core of the process that the team
needs in order to accomplish its goals. There are many
decision models available for different teams, cultures, and
situations. I prefer a team-consensus-based approach for
most Working View definition sessions. Taking into
account your environment, decide on an effective decision-
making approach and stick with it.

7. Document your Working View both in written and graphic
form (using charts and figures, for example). Then distrib-
ute it among your cross-functional team. I always prefer
posting the current Working View materials in the project
war room. Not only does this identify the Working View as
an important project artifact, it helps initiate the necessary
changes within the team.

8. Finally, insure that action assignment and tracking are
being performed. Then link them to your change manage-
ment and change control mechanisms.

EXAMPLES OF WORKING VIEW APPLICATION SCENARIOS

Now we are going to go through a real-life case study of a project,
which will show you how to apply Working Views. First, the proj-
ect background information:

• The company is a European-based provider of network
analysis and test equipment.

• It takes pride in utilizing the best engineering possible in the
production of its products, which customers view as
among the best available.

• A set of the company's component products has been out
in the field for three-to-five years.

52



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

• The products have evolved separately, each having
received between two and four major, and many minor,
releases.

• The market is moving toward suite-based products, and
the company hasn't made a major release to any of the
components in more than a year.

The company has embarked on an initiative to create a network
analysis suite from its disparate products, and there is tremendous
pressure to get it to customers soon. The project is currently within
the endgame and is struggling to achieve a successful release.

The scenario examines a problem with release criteria. There
are conflicting goals within the team. To be specific, the time and
quality dimensions are at odds within the project endgame. There
is tremendous pressure to release the software, in conjunction with
similar pressure to release with minimal to zero defects. These
conflicting goals generated opposing forces within the team and
little progress is being made. In the first part of the scenario, the
team conducts a Working View development exercise to flesh out
the conflict and to come to an agreement with the project's spon-
sors on the right balance across the conflicting dimensions.

In the second part of the scenario, the team conducts another
Working View development exercise, this time to fine-tune the
impact on the quality dimension of the higher-level view and to
add granularity to the view along this dimension—so the team bet-
ter understands the testing focus.

This workflow is indicative of the normal processes associated
with Working View development and highlights a difference
between the Working View and release criteria. Usually, the Work-
ing View is not developed in a single, succinct event. You normally
redefine the Working View at the highest or project level and then
negotiate the dimensional impacts with increasingly detailed and
refined Working View exercises on each of the affected or changed
dimensions. You iterate into more detail on each dimension until
the team is clear on the change and the necessary adjustments and
supports these changes.

53



SOFTWARE ENDGAMES

PROJECT APPLICATION: EXAMPLE #1

The Problem

The problem analysis point came during endgame testing for the
initial product release. Testing staff discovered many interoper-
ability issues not covered in the requirements, while significant ad
hoc testing was exacerbating this trend.

The test teams were pushing for close to zero defects at release,
which was partly due to the culture and partly due to previous
commitments—the testing team was aiming to improve on the
product's quality in the next release.

Marketing and executive leadership were creating tremendous
release pressure. Also, to make things worse, there was a signifi-
cant lack of experienced development resources. CCB meetings
were becoming very contentious—we couldn't fix everything, we
couldn't seem to make balanced decisions, and we were spinning
out of control.

As it turned out, our executive leadership's priorities were als
out of synch. Our marketing and engineering VPs were pushing
for immediate release while the quality VP was emphasizing zero
defects to his team. The project team was caught in the middle of
these opposing forces.

The Solution

The company needed better clarity on balance across time and
quality project dimensions—it needed to rank-order the key dri-
vers!

Participants

Include the product manager, project manager, VPs from engineer-
ing, marketing, testing, and QA.

Dimensions of the Problem

• Acquiring experienced resources is a challenge.
• Time to market (TTM) is our ultimate priority. Our cus-

tomers and the business need the release.

54



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

• Some overtime will be required (give extra effort).
• Existing functionality must operate as previously

designed—even in the interoperable cases—and we must
verify all field-based severity 1 and 2 repairs.

Ranking

TTM = 10 (fixed), Cost = 10 (fixed), Scope = 7, Quality - 7, Team =
5. Figure 3.2 displays these rankings in a spider diagram.

High-Level Project Working View

Figure 3.2: High-Level Project Working View.

Worded Working View

We must deliver this release on April 1, 2002, using our existing
resources. Overtime may be necessary to meet this release date.
We must deliver critical content and can't regress in functionality.
However, when pushed, we will compromise quality first (testing
time and focus), and then features.

Agreement

We agreed that this was our high-level priority compass for the
remainder of the effort. We can easily generate release criteria from
this Working View:

55



SOFTWARE ENDGAMES

• release on April 1, 2002
• no deployed functionality regression
• forty field-reported defects of severity-levels 1 and 2 need

to be repaired

As I said in the problem definition, our primary problem was
inconsistency in quality and schedule priorities, particularly at the
executive level. This exercise helped to align both dimensions and
gain balance across the two perspectives—that of the VP of quality
and the VPs of marketing and software development.

We then had to take this high-level view and develop more
detail along the quality dimension to insure that we were operating
properly within the testing team.

PROJECT APPLICATION: EXAMPLE #2

The Problem

While the above exercise was helpful in achieving consensus on
priority drivers within our leadership structure, we still had some
work to do within the team. We needed to socialize the above
Working View into our testing team—and to sort our test focus for
the remainder of the endgame. How were we to support the state-
ment that "We can't regress deployed functionality—even in the
interoperable cases—and we must include all field-based priority 1
and 2 repairs'7?

The Solution

We need to drill down into the key quality dimensions for the proj-
ect and rank-order them.

Participants

Include the product manager, project manager, and team leads
from development and testing functions.

Dimensions of the Problem

• Insure we have full regression tests for deployed function-
ality—continue to run tests and report results.

56



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

57

• Extend existing regression tests to insure interoperability is
covered.

• There are new additions to the regression suite.
• Repair verifications may lag behind.
• We can't perform any ad hoc testing.

Ranking

Previous Version Regressions = 10, Interoperability Regressions =
10, Priority 1 and 2 Repair Verification = 8, General Verifications =
6, and Ad Hoc Testing = 2. Again, we display the quality dimen-
sion expansion in Figure 3.3.

Working View—Quality Dimension

Figure 3.3: Quality, Explored.

Worded Working View

Our highest priority in testing is to insure that we deliver working
repairs for reported field defects at severity levels 1 and 2 without
regressing already-deployed functionality. We must also extend
regression testing to account for interoperability among the point
products. We may lose sight of some low-priority and low-risk
verifications when trying to catch them in regression. We will have
no time for ad hoc testing.



SOFTWARE ENDGAMES

Agreement

We agreed that this was our high-level-priority Working View for
the remainder of the effort. The following needs were captured as
part of the exercise:

1. We need to define the component interoperability require-
ments (marketing).

2. We need to understand the current level of coverage for
regression testing (test and development).

The two steps in the example—the high-level alignment with the
executives and the lower-level definition of testing focus—helped
us immensely in our CCB meeting and processes. Together, they
meant that we all essentially viewed the release criteria and project
priorities in the same way.

Example Results

We had been spinning for about three months in this state, unable
to agree on priority and focus for release drivers and conducting a
never-ending endgame. All of the executives were in a state of
panic and looking for problems and solutions in black-and-white
terms, hoping to find a scapegoat. What was interesting is that
they were responsible for the vast amount of project churn and
didn't even realize it.

There was a powerful side effect of getting the executives to
agree on a balanced view of priority. It wasn't easy, but it was nec-
essary. It was also surprising at the time. You would expect a
handful of senior leaders in a company to be able to synchronize
their decisions relatively easily. However, the reality proved to be
quite the opposite. Therefore, the Working View exercise serves
not only to align the team, but also to synchronize the view hori-
zontally across the various functional organizations.

Once we aligned ourselves and our Working View, the CCB
meetings and our decision-making began to go much more
smoothly. We turned the project around and delivered to beta
testers in six weeks. As part of our post mortem analysis, we rec-
ognized this realignment of the release criteria as one of the defin-
ing moments in getting back on track.

58



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

PROJECT APPLICATION: EXAMPLE #3 9 ANOTHER APPROACH

Another technique for documenting a Working View dimension is
to list high-priority and low-priority focus points. The idea is to
produce enough contrast for the team to understand where its pri-
orities and focus should lie. Again, you need to establish enough
detail to create clarity in decision-making.

Using the Working View from the introductory example, Fig-
ure 3.4 contrasts the following attributes for quality.

High-Priority Attributes

Existing functionality cannot be
affected by new changes (functional
regression testing).

Existing performance may not be
degraded by new changes
(performance regression testing—we
also lacked a performance benchmark).

New functionality must work.

Component interoperability without
performance regression.

Installation framework must create
correct initial environment.

Low-Priority Attributes

Interfaces beyond 10/100/1000
Ethernet and ATM are lower priority.

Existing performance may not be
degraded by new changes—even when
running multiple components, don't get
hung up on improvement.

New functionality must work, except
new reports that do not map to older
reports.

Component interoperability across all
permutations—we can identify (n) key
configurations for initial release.

Installation framework needn't
accommodate all previous installation
environments.

Ad hoc testing, early is better;
later—not at all.

Figure 3.4: High- vs. Low-Priority Contrast Working View.

RESETTING YOUR WORKING VIEW

Setting your Working View is not a static exercise for defining proj-
ect release criteria. It will probably change frequently throughout
the project, particularly in the endgame. To give you a flavor for
reset events, here are a few sample drivers for a Working View
reset:

• departure of team resources (attrition, vacations, illness)
• schedule slips due to internal dynamics (underestimation)

or external dynamics (management-driven schedules)

59



SOFTWARE ENDGAMES

• feasibility discoveries as part of prototyping (architecture,
design, and performance)

• defect find/fix ratios as part of endgame testing
• regression testing progress
• additional features added to the product, with or without

any schedule "relief"
• choosing to reduce functionality in order to meet time

requirements

You initiate the same process to reset the Working View, simply
highlighting differences or changes that have occurred and coming
to a new agreement. As a general rule, you should not add or
extend without deleting or contracting attributes within your
Working View.

It's also a good idea to map all changes to the root cause or
problem, just so that it's clear what drove you to the reset and why.
Finally, you should calculate the impact the change makes to insure
you're getting desired results. For example, does the reduction in
quality or scope targets actually meet the required release time
frame?

It's important to note that whenever a reset occurs, there
should be a mechanism to notify the team of the reset. Acceptable
mechanisms for this include

• informal socialization
• team e-mails
• team meetings
• posting the new view in your project meeting or war room

WRAP-UP: ADDITIONS TO YOUR ENDGAME TOOLBOX

This approach and model can help in other areas as well—leading
the team, providing project mission and vision, and generally doc-
umenting the important bits that should be driving your efforts.

The approach can also be adapted to support other activities in
the project life cycle, such as

• defining system architecture—where dimensions represent
architectural attributes

• contrasting different design approaches

60



THREE • DEVELOPING RELEASE CRITERIA AND WORKING VIEWS

• deciding what level of inspections need to occur—where,
when, and to what degree

• forming early testing strategies: where to focus, risk areas
• risk analysis
• almost anything that requires clarity of detailed require-

ments in order to make an informed, collaborative decision

It is extremely important to distribute the Working View among
your team members. The views truly become graphical rallying
points to insure that the team maintains focus. They also empha-
size that you've taken a step beyond simply stating requirements
and demands, to truly considering cross-dimensional implications
and balancing your priorities accordingly and effectively

Here are the key points:

• Have a more formal way of capturing problem dimensions
and balancing priority.

• Define and rank decision criteria (attributes, dimensions) as
a team.

• Make the decisions visual.
• Document the decisions and have a change process.

61



Index

Acceptance testing, 8, 101
Agile methodologies, 8, 78, 96, 276
Allison, Anna, 156, 295
Alpha testing, 62, 68, 96, 120, 294
Anti-pattern, 85-96, 100

Bach, James, 137, 296
Bays, Michael Ev 100, 295
Beck, Kent, 202, 204, 228, 236, 244,

277, 295
Beedle, Mike, 250, 297
Beta testing, 58, 62, 68, 73, 77, 96,

120, 127, 129, 144, 151, 218, 294
Black, Rex, 295
Blockers, 158, 200
Brown, William J., 85, 100, 295
Builds, 12, 26, 66, 67, 76, 98, 101,

104-7, 230, 261

Cards on the Wall, 217-18, 219, 220
Change control, 6-7, 8, 9-10, 13, 16,

19, 22, 24, 26, 52, 90, 91, 100,
101, 269

Change Control Board (CCB),
9-10, 11, 13, 19ff., 30, 37, 38, 39,
40, 54, 58, 72, 96-97, 101, 124,

194, 196, 210, 226, 249, 254, 261,
264, 278, 292
agenda, 32-36, 41
facilitator, 28, 29, 31, 292
lightweight, 22-23
participant roles, 26-28, 32
process, 99, 254, 261, 292

Change reduction, 12, 13, 64,
70-71, 78-80, 81, 83, 85, 86,
96-97, 191, 293
anti-patterns, 79, 85, 97

Code complete, 71, 81, 82-83, 84
Code freeze, 34, 71, 72, 79, 80-83,

187, 271, 291, 293
Configuration management, 13,

85, 86, 90, 98-101, 102-3, 104,
107, 108, 254

Consensus, 38ff., 45, 52, 56, 124,
194, 219, 258

Construction, 12, 65, 68, 205, 236,
260

Costs, 43, 47ff., 165, 169, 179, 190
Customers, xxi, 3, 8, 26, 39, 43, 44,

48, 50, 51, 52, 64, 65, 78, 93,
95ff., 113-14, 120, 124, 156, 161,
163, 164, 167, 169, 172, 194, 201,

299



INDEX

202, 207, 222, 234, 260
Cusumano, Michael A., 81, 83, 126,

127, 295

Daily status meetings, 15, 242, 246,
248-51, 259, 262, 268, 276, 277

Debuggers, 234-35
Debugging, 82, 204, 236, 238, 240
Decision-making, 12, 14, 15, 19ff.,

26, 27, 33, 35, 36-40, 42, 45, 46,
51, 58ff., 90, 93, 101, 137, 159,
175, 202, 203, 208, 254

Defect entry, xxiii, 23, 27, 112, 157
Defect estimation life cycle, 209-11
Defect estimation workflow, 211,

212
Defect rates, 24, 34, 78, 199, 260,

271
Defect report, 8, 9, 115, 129
Defects, xix, xx, xxiii, 4ff., 14, 19, 23,

26, 27, 30, 32ff., 41, 44, 53, 54,
71, 72, 73, 75, 80, 82ff., 87ff., Ill,
115ff., 120, 123, 124, 128, 132,
136, 137, 140, 146ff., 160ff.,
170ff., 179ff., 185, 188, 191, 196,
202, 206-7, 210, 211, 214, 219,
229, 232, 235, 251, 255, 261, 272
analysis, 9, 35, 120, 195, 196-97,

200, 214, 218, 270-71
assigning, 129, 130, 135-36, 180,

193, 203, 205, 207, 210
closed, 132, 139-41, 148, 154-55
clustering of, 121, 151, 152, 168,

199, 271
data, 114-29, 137, 139, 152, 156,

157, 181, 246
database, 11, 131, 134, 159, 214,

232
deferred, 114, 118, 139-41, 155,

156, 164, 271
distribution of, 138, 149-51
duplicates, 118, 119, 156
ignoring, 160, 164-65
impact of, 115, 127, 175, 194,

205, 207, 219
owner, 115, 129, 130, 132, 211
prioritization, 10, 15, 26, 33, 132,

141-43, 194, 198, 201, 210
reproducing, 116, 194, 195-96

scope, 214, 216, 219, 235
severity, 33, 115, 157
types, 112-14, 149, 163, 210

Defect-tracking system (DTS), 13,
14, 23, 32, 41, 75, 90, 99, 101,
111-12, 116, 118, 119, 129,
131-39, 182-83, 185, 191, 193,
216, 251, 252, 256, 264, 270, 277,
283

Defect trends, xx, 14, 67, 138, 139,
252, 257, 268, 291

Delivery, xix, 3, 65, 75, 97, 152, 174,
243, 253

DeMarco, Tom, 244, 296
Developers, xix, xxii, 4, 14, 26, 134,

143, 162, 204, 217, 218, 219, 234,
239

Development, xxii, xix, 3, 4, 12, 49,
56, 58, 62ff., 68, 72, 73, 75, 78,
80, 85ff., 90, 91, 93, 94, 97,
103ff., 107, 111, 119, 128, 144,
145, 153, 157, 159, 167, 186, 190,
202, 203, 216, 226ff., 233, 250,
253, 260, 270, 271, 280, 289
categories, 120
tracking, 134-35

Documentation, 44, 51, 52, 60, 69,
82, 106, 119, 120, 144, 150, 171,
190, 221, 253ff., 279, 289, 292

Endgame
agile, 276-79
analysis, 121
definition of, 3
flow, 69, 234, 291, 293-94
framework, 79-80
goals, 78, 188
log, 264-65, 273
management, xxiii, 15, 19, 126,

179, 203, 254, 280
plan, 13, 181, 208, 209, 226, 283
progress, 23, 173
release schedule, 64
status, 251-52
timeline, 71
tone, 225, 229-33, 239-40, 248
trouble, 257-59
workflow, xxiii, 8, 14, 70, 74,

159

300



INDEX

Endgame Release Framework,
xxiv, llff., 33, 35, 62, 64-70,
72-74, 75-76, 77, 79, 84, 89, 95,
102ff., 108, 138, 148, 152, 158,
180, 186, 187, 188, 191, 193, 200,
202, 209, 216ff., 222, 253, 254,
261, 268, 269-70, 276ff., 291, 293
ownership, 75-76
plan, 76, 210, 245, 291, 292-93

Endgame team, 236, 246, 249, 260,
261, 262, 264, 267, 268, 273, 278
character of, 272-73
distributed, 252-55

Engineers, 94, 124, 127, 132, 147,
157, 159, 179, 180, 181, 184, 185,
190, 196, 211, 227, 235, 243, 245
categories of, 237

Enhancements, 114, 126, 134, 144,
145, 155, 162, 167

Entry criteria, 73ff., 103, 200, 253,
293, 294

Estimates, xxiv, 67, 89, 191, 211,
212, 215, 220, 221

Estimation, 15, 133, 208-9, 209-11,
214-17, 217-20, 222, 280
collaborative, 208, 209, 220,

286-87
planning, 214, 216, 235
sticky note, 209, 217, 222

Exit criteria, 73, 74, 253, 293, 294
Expectations, 26, 27, 32, 44, 50, 68,

69, 91, 150, 191, 229, 230, 233,
239, 253, 272

Extreme Programming, 8, 63, 78,
91, 97, 202, 204, 205, 228, 236,
244, 250, 277, 278

Falk, Jack, 118, 125, 296
Feature creep, xx, 72, 78, 86, 91
Features, 4, 78, 86, 134, 206

adding, 60, 91, 158
Functionality, xx, 49, 55, 56, 62ff.,

70, 73, 74, 80ff., 86, 90, 100, 106,
118, 149, 151, 158, 173ff., 181,
185, 201, 202ff., 218, 235, 261,
269, 278-79, 292, 293
partial, 66
reducing, 60, 94
removing, 161, 173-74

stabilizing, 270
verifying, 65

Functional testing, 75, 120, 279

General Availability, 44, 68, 69, 128,
144, 145, 273

Granularity, 64, 76-77, 90, 98,
100-101, 105, 144, 146, 149, 264,
290

Hohmann, Luke, 238, 296
Howard, Alan, 237, 238, 296
Humphrey, Watts S., 20, 21, 211,

214, 296

Integration, 66, 73, 145, 153, 199,
216, 217, 235
testing, 67, 73, 102, 103, 158

Kaner, Cem, 118, 125, 137, 296
Kaner, Sam, 36, 38n., 296
Kerth, Norman L., 265, 266, 267,

296
Keywords, 116, 127-29, 138, 144-46,

151
Kickoff meeting, 214, 216
Kiviat charts, 47, 51

Lister, Timothy, 244, 296
Logisticians, 26, 27

Management, 15, 151, 225, 238, 242,
252

Marketing, xx, 26, 49, 54, 58, 63, 65,
68, 69, 78, 86, 87, 91, 93, 161,
167, 194, 202, 207, 226, 233, 234,
252, 253, 255, 260, 289

McCarthy, Jim, 7, 297
McCormick, Hays W., 85, 100, 295
Methodologies, xxi, xxii, 3, 8, 19,

62, 63, 76-77, 79, 86, 92, 96, 138,
153-55, 244, 280

Metrics, 13, 14, 33, 35, 45, 138, 151,
156, 159, 257, 292

Metrics Analysis Questions, 139,
156-58, 159

Milestones, 62ff., 77, 81ff., 86, 89,
127, 128, 138, 142, 144, 146,
152ff., 186, 187, 192, 215, 229,
232, 257, 264, 269

301



INDEX

Morale, 49, 192, 193, 247, 258
Myers-Briggs Type Indicator, 238

Necaise, Cindy, 261, 297
Nguyen, Hung Quoc, 118, 125, 296

Overtime, 55, 78, 231, 241, 242,
244-45, 262, 272

Packaging, 14, 22, 27, 64, 69, 167,
179, 180, 186-90, 276, 278
costs, 190-91
themes, 187-90

Pareto Analysis, 151, 152, 261, 271
Personality types, 29, 46, 226,

237-39, 240
Personal Software Process, 209,

211-14, 222
Petersen, Erik, 151, 297
Pettichord, Bret, 137, 296
Phillips, Dwayne, 100, 213, 217, 297
Planning, 64, 104, 181, 188, 201,

202, 257, 258, 259, 280
Prioritization, 24, 26, 51, 58, 202,

203, 204, 206, 207
Priority, 93, 122ff., 138, 144, 150, 151,

161, 162, 163, 166, 182, 194, 210
changing, 123, 124, 160, 161,

163-64, 201
levels, 124-26

Product, 50, 52, 65, 67, 70, 79, 80, 94,
95, 97, 114ff., 143, 151, 153, 156,
163, 170, 174, 193, 195, 197, 201,
206-7, 208, 215, 243, 256, 263
external, 174-75
freeze, 80
grading, 261
instability, 165-66
key features, 51
life cycle, 10
maturation, 70, 75, 155
stability, 3, 4, 87, 95, 97, 104, 105,

114, 140, 142, 152, 158, 292
stabilization rate, 270
type, 95

Project dimensions, 47-49, 51-52, 54
conflicting, 53
drivers, 42, 43, 50
dynamics, 47, 68, 76, 136-37,

259, 270
fixed, 49
life cycle, 3, 60
planning, xxiv, 231, 254
ranking, 51, 54, 55, 56

Project management, xxi, 47, 85,
100, 114, 124, 155, 159, 181, 182,
218, 228, 249, 250, 277, 280

Project manager, xx, xxii, 4, 5, 10,
14, 23, 26, 31, 54, 56, 68, 75, 80,
97, 102, 103, 124, 129, 135, 181,
198, 217ff., 226, 230, 233, 247,
252ff., 260, 261

Proxy-Based Estimation, 209,
211-14, 222

Quality, 43, 47, 48, 50, 53, 54, 55, 56,
57, 59, 60, 67, 70, 71, 73, 74, 105,
107, 114, 124, 163, 173, 181, 186,
234, 258, 260, 261, 270

Quality assurance (QA), 54, 75,
194, 256
testing and, 105

Regression, 34, 66, 78, 88, 90, 97,
120, 148, 155, 166, 188, 191, 198,
205, 213, 293
testing, 56, 57, 60, 62, 67, 73, 74,

77, 120, 153, 190, 279
Release, 5, 42, 45, 54, 69, 74, 81, 92,

100, 105, 115, 148, 149, 153, 160,
162ff., 167, 172, 174, 181, 186,
197, 262, 269, 278, 292ff.
closure, 79
deferring, 95
knowing when to, 255-57
plans, 11, 24, 211
point, 63, 103, 108, 141, 256, 259
schedules, 62, 70
targets, 50, 77, 80, 90, 101, 166
to testing, 12, 62, 64, 66, 74, 77,

81, 86, 245
Release criteria, 10, 11, 13, 24, 26,

36, 42ff., 48, 50, 53, 55, 58, 59,
67, 70, 79, 85, 86, 92, 97, 136,
164, 190, 244, 245, 253ff., 261,
263, 268, 269, 276, 278
adjustments to, 34-35, 43, 76,

227

302



INDEX

cycle, 139, 141, 153, 154, 270,
293

Release hand-off, xxiv, 102, 103,
108, 190

Repair, xxiii, 10, 32, 39, 55, 70, 73,
79, 84, 89, 90, 93, 97, 102, 103,
104, 114, 117, 126, 127, 128, 131,
134, 137, 142, 147, 154, 158, 161,
165, 171, 172, 173, 175, 180, 186,
188, 194, 199-201, 204, 205, 206,
217, 235, 238, 255, 258, 279, 293
alternatives, 160, 175
change cycles, 83-85
deferring, 160, 165-67
designing, 31-32
effort, 24, 124, 210
estimates, 12, 14, 117, 197, 198,

222
partial, 160ff., 164, 189, 271
planning, 19, 186, 198, 216
scheduling, 6, 11-12, 22, 132,

195, 199, 200, 203, 207
verification, 12, 26, 77, 80, 129,

130, 148, 149, 153, 200, 271
Requirements, 61, 63, 68, 87, 91, 92,

95, 97, 111, 133, 161, 164, 167,
170ff., 188, 233, 235, 236, 257,
269, 293
change, 22, 91, 92, 167-68, 272
elicitation, 95
specification, 75
traceability, 49

Retrospectives, xxiv, 15, 58, 250,
264, 265-68, 268-72, 292
Prime Directive, 266

Rework, 3, 66, 67, 72, 73, 78, 80, 86,
89, 179, 180, 191, 197

Risk, 61, 64ff., 73, 87, 90, 102, 107,
149, 162, 166, 168, 179, 180, 191,
221, 241, 247
management, 87, 132, 151, 230
reducing, 134

Rothman, Johanna, 43, 45, 297

Sabourin, Robert, 20, 71, 122, 124,
126, 163, 297

Schedule, 26, 34, 43, 47, 48, 50, 56,
63, 67, 75, 85, 91, 94, 96, 108,
111, 128, 143, 144, 146, 150, 155,

158, 166, 186, 192, 229, 245, 261
changes, 76, 92, 102, 103
slips, 59, 86, 192, 199, 257, 272

Scheduling, xxiv, 15, 32, 62, 72, 111,
195, 201, 202, 204, 211, 213

Schoor, Bruce, 83, 84, 297
Schwaber, Ken, 250, 297
Scrum, 250, 251, 277
Selby, Richard W., 81, 83, 126, 295
Settling time, 135, 188, 211, 269,

270
Severity, 122-23, 123-24, 126-27,

161, 162, 163, 166, 183, 194, 210
changing, 123, 124, 160, 161,

163-64
Showstopper, 126, 184, 187, 188,

200, 218, 245
Silver, Denise, 217, 298
SMART objectives, 44-45
Smoke testing, 12, 26, 66, 73, 74, 75,

98, 101, 104-7, 158
Software, 80, 111, 114, 123, 142, 143,

161ff., 171, 201, 206, 234, 255, 259
Sticky note brainstorming, 288-90
Subject-matter experts, 24, 215

Team, 43, 45, 47, 49, 50, 65, 74, 76,
77, 80, 87, 99, 101, 120, 137, 139,
140, 144, 157, 159, 168, 180, 185,
191, 195, 202, 208, 217, 221, 229,
234, 242, 249, 258
colocating, 242
dynamics, 12, 225, 239, 263
history, 63, 64
roles, 131
size, 189, 228

Team leaders, 22, 93, 98, 102-3,
131, 132, 208, 222, 225, 226-29,
242, 248, 249, 258, 271
finding, 227-28

Team members, 26, 27, 37, 38, 65,
68, 89, 92, 129, 181, 184, 198, 199,
201, 205, 215, 220, 222, 226ff.,
232, 236, 239, 245, 248, 251, 256,
260, 272, 274, 278
colocating, 254-55
sign-up, 228-31, 278

Teamwork, 15, 209, 218, 233, 245,
251, 254, 255

303



INDEX

Technical leads, 91, 180, 182
Tension points, 225, 233-34, 239-40
Testers, xix, 3, 4, 14, 26, 66, 67, 87,

117, 129, 132, 134, 137, 148, 157,
158, 186, 200, 211, 216, 217, 219,
260, 262

Testing, xix, xx, xxiv, 3, 4, 8, 14, 44,
53ff., 62, 66, 68, 70ff., 81, 83, 84,
87, 93, 103, 111, 120, 121, 136,
140, 144, 148, 149, 151, 152, 154,
158, 159, 162, 166, 169, 172,
185-86, 190, 193, 196, 197, 199,
201, 203, 222, 226ff., 249, 253,
255, 269, 271, 293
ad hoc, 54, 57, 87, 88
cycle, 67, 70, 71, 72, 105, 143,

154, 269, 291, 292, 293
cycle time, 153, 270
efficiency, 180
external, 86
guidance, 117
iterative, 63
plan, 64, 86, 91, 94, 152, 171
schedule, 94, 197
strategies, 61, 64, 66, 71, 73, 87, 148

Testing team, 56, 65, 66, 68, 70, 72,
78-79, 82, 86, 88, 90ff., 104, 106,
107, 111, 114, 120, 124, 137, 139,
143, MS, 149, 153, 155, 156, 164,
174, 185, 186, 199-201, 218, 255,
256, 260-62, 263, 278, 283, 292

Test leads, 102, 103, 211
Test manager, xxii, 75, 135, 198
Test plan, 63, 88, 103
Thomas, Scott W., 85, 100, 295
Time, 53, 166, 208, 220

to market, 48, 50, 54
to test, 210, 211
to verify, 210, 211

Time to repair, 117, 132, 161, 183,
210, 211
actual, 117, 133, 270

Top 10 list, 89, 184, 230, 246, 252,
256

Trending, 13, 34, 75, 119, 139, 143,
146, 151-56, 157, 159, 244, 269,
270-71, 292

Triage, xxiv, 5, 7, 8-12, 13ff., 20ffv
27, 29, 32, 34, 46, 72, 73, 92, 119,

127, 129, 132, 136, 137, 144, 146,
147, 180, 194, 196, 210, 245, 261,
263

Unit testing, 21, 73, 74, 89, 90, 93,
102, 103, 105, 117, 119, 134, 143,
145, 158, 162, 197, 236

Verification, 57, 73, 74 107, 153, 279
Versions, 115, 189, 193, 201, 215
Voting, 38-39

War room, 11, 15, 26, 35, 52, 60, 72,
76, 230, 242, 243, 246-47, 252,
255, 262, 278, 279
virtual, 254

Weigers, Karl, 52, 214, 298
Wideband Delphi, 209, 214-17,

218, 220
Wood, Jane, 217, 298
Workarounds, 26, 89, 126ff., 134,

144, 161, 163, 168, 171-73, 175,
194, 201, 216, 219, 271

Workflow, 8, 10, 11, 53, 64, 72, 76,
81, 104, 129, 148, 180, 181, 186,
188, 207, 268, 270, 293

Working View, xxiii, 13, 42-43,
46-52, 52-58, 61, 86, 89, 91ff.,
164, 190, 194, 203, 232, 253, 268,
269
adjusting, 93, 227
application, 52-53

Work queues, 12, 14, 94, 117,
131-33, 136, 162, 179ff., 189,
193, 245, 276
loading, 184-85, 278

304


	Contents
	Preface
	My Motivation for the Book
	Intended Audience
	How to Approach This Book
	What We're Not Trying to Explore

	Chapter Three: Developing Release Criteria and Working Views
	Release Criteria or Defining Success
	Better Decisions: Aspects of a Project Working View
	Steps to Establishing a Working View
	Examples ofWorkingView Application Scenarios
	Project Application: Example #1
	Project Application: Example #2
	Project Application: Example #3, Another Approach
	Resetting Your Working View
	Wrap-Up: Additions to Your Endgame Toolbox

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




