
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133491999
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133491999
https://plusone.google.com/share?url=http://www.informit.com/title/9780133491999
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133491999
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133491999/Free-Sample-Chapter


AGILE SOFTWARE
DEVELOPMENT
IN THE LARGE



Also Available from Dorset House Publishing

Adaptive Software Development: A Collaborative Approach to Managing Complex Systems
by James A. Highsmith III foreword by Ken Orr
ISBN: 0-932633-40-4 Copyright ©2000 392 pages, softcover

The Deadline: A Novel About Project Management
by Tom De M arco
ISBN: 0-932633-39-0 Copyright ©1997 320 pages, softcover

Endgame: Mastering the Final Stage of Software Development
by Robert Galen
ISBN: 0-932633-62-5 Copyright ©2004 288 pages, softcover

Five Core Metrics: The Intelligence Behind Successful Software Management
by Lawrence H. Putnam and Ware Myers
ISBN: 0-932633-55-2 Copyright ©2003 328 pages, softcover

Hiring Technical People: The Artful Science of Getting the Right Person for the Job
by Johanna Rothman foreword by Gerald M. Weinberg
ISBN: 0-932633-59-5 Copyright ©2004 416 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright ©1999 264 pages, softcover

Project Retrospectives: A Handbook for Team Reviews
by Norman L. Kerth foreword by Gerald M. Weinberg
ISBN: 0-932633-44-7 Copyright ©2001 288 pages, softcover

Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency
by Tom DeMarco
ISBN: 0-932633-61-7 Copyright ©2001 240 pages, hardcover

Waltzing with Bears: Managing Risk on Software Projects
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-60-9 Copyright ©2003 208 pages, softcover

For More Information

• Contact us for prices, shipping options, availability, and more.

• Sign up for DHQ: The Dorset House Quarterly in print or PDF.

• Send e-mail to subscribe to e-DHQ, our e-mail newsletter.

• Visit Dorsethouse.com for excerpts, reviews, downloads, and more.

DORSET HOUSE PUBLISHING
An Independent Publisher of Books on

Si/stems and Software Development and Management. Since 1984.
353 West 12th Street New York, NY 10014 USA

1-800-DH-BOOKS 1-800-342-6657
212-620-4053 fax: 212-727-1044

info@dorsethouse.com www.dorsethouse.com

http://www.dorsethouse.com


AGILE SOFTWARE
DEVELOPMENT
IN THE LARGE

Diving Into
the Deep

Jutta Eckstein

DORSET HOUSE PUBLISHING
353 WEST 12TH STREET

NEW YORK, NEW YORK 10014



Library of Congress Cataloging-in-Publication Data

Eckstein, Jutta.
Agile software development in the large : diving into the deep / Jutta Eckstein.

p. cm.
Includes bibliographical references and index.
ISBN 0-932633-57-9

1. Computer software-Development. I. Title.
QA76.76.D47E28 2004
005.3-dc22

2004010164

Trademark credits: All trade and product names are either trademarks, registered
trademarks, or service marks of their respective companies, and are the property of
their respective holders and should be treated as such.

Front Cover Photograph: Stefan Krahe
Cover Design & Interior Illustrations: Katja Gloggengiesser, wwAv.gloggengiesser.com

Copyright © 2004 by Jutta Eckstein. Published by Dorset House Publishing, 353
West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without prior written permission of the
publisher.

Distributed in the English language in Singapore, the Philippines, and Southeast
Asia by Alkem Company (S) Pte. Ltd., Singapore; in the English language in India,
Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt., Ltd., Bangalore,
India; and in the English language in Japan by Toppan Co., Ltd.,Tokyo, Japan.

Printed in the United States of America

Library of Congress Catalog Number: 2004010164

ISBN: 0-932633-57-9 12 11 10 9 8 7 6 5 4 3 2 1

Digital release by Pearson Education, Inc., June, 2013



ACKNOWLEDGMENTS

A mountain is not in the need of a mountain,
But the human is in the need of a human.

—Basque proverb

A book like this is always the result of many years of development.
That's why it is so difficult to thank all the people who supported
its creation. I would like to apologize in advance to all those peo-
ple I may have accidentally forgotten.

First, though, I would like to thank Frank Westphal, who sug-
gested that I accompany him to a remote island to concentrate on
writing (Frank was writing his book on test-driven development).
My sister, Eva Eckstein—a librarian—gave us the idea of hiding on
the island of Hiddensee in the Baltic Sea, where many German
writers—including several winners of the Nobel Prize in Literature
(Thomas Mann, Gerhard Hauptmann, Günter Grass, among oth-
ers)—created their marvelous works. Thus, we sat on Hiddensee
and waited for the same thing to happen to us that happened to
one of Günter Grass's protagonists.1

As soon as he arrived at Hiddensee, he got the irresistible
urge to ... write.

^Günter Grass, Ein weites Feld (Göttingen, Germany: Steidl Verlag, 1995), p. 333.

v



ACKNOWLEDGMENTS

And, in fact, it worked! However, once most of the text was writ-
ten, I needed the help of many other people to finally make a book
out of it.

First, I would like to thank my family. Preceding all others is
my partner, Nicolai M. Josuttis, who gave his moral support as
well as his thoughts in uncountable discussions that helped shape
the book into what you have in your hands right now. Next, my
cousin Katja Gloggengiesser, whose illustrations give the book that
personal touch. Finally, someone I consider a member of my fam-
ily, my long-time flatmate Monika Bobzien, for the endless discus-
sions on our balcony. Again and again, she flagged me down to
broaden my horizons.

Furthermore, I would like to thank the following:
The authors of the expert boxes, who enriched the book with

their personal experiences: Alistair Cockburn, David Hussman,
Diana Larsen, Dierk König, Joshua Kerievsky, Nicolai M. Josuttis,
and Stefan Roock. All the reviewers, who helped to shape the book
with their comments, some brief and some extensive: Daniel
Schweizer, Dave Thomas from Pragmatic Programmers, Dierk
König, Eberhard Wolff, Frank Maurer (who wasn't afraid to use the
very first draft of the book as course material at the University of
Toronto), James Noble, Jon Kern, Ken Schwaber, Martin Müller-
Rohde, Mike Cohn, Robert Wenner, Stefan Roock, and Vanita
Shroff.

Jens Coldewey, whose wonderful birthday present helped me
to find the appropriate introductory quotes and proverbs for the
individual chapters.

Stefan Krahe, one of my dive instructors, who took the magnif-
icent picture of the Indian mackerels for the front cover.

And not least, a special thank you to the team at Dorset House:
I would like to point out Vincent Au, who made the book readable,
and David McClintock, for his belief in the project right from the
beginning.

Finally, I would like to thank all of those who accompanied me
on my journey through different projects, conferences, training, and
workshops, and who shared with me the experience of learning.

VI



CONTENTS

Preface xiii

1 Introduction 3

Questioning Scaling Agile Processes 4
Examining Largeness 5
Raising Large Issues 7
Specifying the Projects in Focus 8
Detecting the Agile Method for Scaling 9
Identifying the Reader 10
Revealing the Structure of the Book 11

2 Agility and Largeness 12

Fundamentals of Agile Processes 13
The Agile Manifesto 15
Agile Methods with Respect to Largeness 18

Magnifying the Agile Principles 19
Processes Masquerading As Agile 21

Almost Extreme Programming, by Alistair Cockburn 22
People Shape the Process 24

Culture of Change 24
Adaptation 28
Communication 30

Mistrust in Applicability 31
Documentation 32
Design 35
Testing 36

vii



CONTENTS

Refactoring 39
Summary 41

3 Agility and Large Teams 42

People 43
Responsibility 45
Respect and Acceptance 48
Trust 50

Team Building 51
Building Teams and Subteams 52
Requirements Channels, by Stefan Roock 55
Team Roles 57
Team Jelling 58

Interaction and Communication Structures 61
Open-Plan Office 63
Open-Plan Offices, by Nicolai M. Josuttis 63
Flexible Workplace 65
Encouraging Communication 66
Communication Team 67

Trouble-Shooting 69
Virtual Teams 72

Distributed Teams 73
Distributed Teams, by David Hussman 73
Open Source 77
Open Source, by Dierk König 78

Summary 83

4 Agility and the Process 84

Defining the Objectives 85
Providing Feedback 86
Short Development Cycles, Iterations, and Time-Boxing 87
Planning 92

Result-Oriented Planning 93
Planning Tools 96

Integration 97
Integration Strategy 99
Integration Team 99
Tools for Configuration Management and Version Control 101

Retrospectives 102
Attendance 103
Techniques 104
Learning to Become Great, by Joshua Kerievsky and Diana Larsen 109

Getting Started with an Agile Process 111
Learn from History 112
Start Small 114

viii



CONTENTS

Finalizing the Architecture 115
Grow Slowly 117

Culture of Change 118
Learning and Change Processes 118
Introducing Change 120
Force Courage 122

Summary 123

5 Agility and Technology 125

Architect and Architecture 126
Architectural Lead 127
Simple Architecture 129
Architecture As a Service 131

Avoid Bottlenecks 132
Architecture and Largeness, by Nicolai M.Josuttis 134

Ownership 139
Choosing Technology 142
Techniques and Good Practices 144

Testing 145
Refactoring 148
Standards 150

Summary 151

6 Agility and the Company 153

Communication and Organization Structure 154
Project Planning and Controlling 156

Planning 156
Controlling 157
Fixed-Price Projects 158

Enterprise-Wide Processes 160
Process and Methodology Department 160
Formation of a Process 164
Certification and Adaptation of a Process 164

Enterprise-Wide Tools and Technology 166
Quality Assurance and Quality Control 169
Departments on the Edge 171

Human Resources 171
Legal Department 172
Marketing 172
Production 173

The Customer 174
The Role of the Customer 175
Integrating the Customer 176

Company Culture Shapes Individuals 177
Skills 178

ix



CONTENTS

Providing Training 179
Establishing a Learning Environment 182

Resources 185
Insourcing 185
Outsourcing 187
Full-Time and Part-Time Project Members 190

Summary 191

7 Putting It All Together: A Project Report 193

The Previous History 193
The Customer 194
The Team 195
Organizational Departments 196

Process and Methodology 196
Tools and Technology 198
Quality Control and Assurance 199
Project Planning and Controlling 200

Starting Off 201
Growing the Team 204

Learning from Previous Problems 205
Training 208
Establishing Short Iterations 210
Learning to Reflect 211
Enabling Communication 212
Managing Outsourced Teams 214

Unresolved Issues 215
Summary 216

Afterword 219

References 223

Index 229

X



PREFACE

A book is always a prevented dialogue.
—Hans Urs von Balthasar

Looking back on all my years in software development, I discover
something extraordinary: Besides the technological progress, revo-
lutions, and unfulfilled promises, the occupational image has
changed. In the past, I was a software developer, solving local
technical problems. Now, my job is to make sure that the outcome
of a whole software project makes sense. The reason for this change
is that too many projects are failing, and this failure isn't caused by
technology, but by social, structural, and organizational deficits.

It is all made worse by tool providers who promise heaven and
earth, by clients who create the illusion of unrealistic schedules,
and by market pressure that loads significant risks on every large
project.

However, when I compare the projects I'm working on, only
trivialities come to mind. But those trivialities actually hold the
key to project success: Instead of making inappropriate decisions, I
place value in common sense and create an environment that
enables constructive communication.

However, the times are changing. It is just not possible any-
more to finance failed large projects. Those who want to stay in
business have to deliver fast and timely solutions. Agile processes
help developers concentrate on the essentials. Unfortunately, there

XI



PREFACE

are only a few real-life examples of how agile processes can sup-
port large projects.

This book is intended to close that gap, drawing on the essence
of my experience in large agile projects. The book mirrors my dis-
covery that the social aspects of development always outweigh the
technical ones. This is why I sometimes call myself a communica-
tion manager (although my technical background has proven nec-
essary for being taken seriously not only by management but also
by developers).

I hope you have fun reading the book. I invite you to visit the
book at my Website, http://www.jeckstein.com/agilebook, and to
contact me at agilebook@jeckstein.com.

April 2004 J.E.
Munich, Germany

xn

http://www.jeckstein.com/agilebook


AGILE SOFTWARE
DEVELOPMENT
IN THE LARGE



This page intentionally left blank 



l

AGILITY AND
T . A R G E TEAMS

Trust is the sister of responsibility.
—Asian proverb

The reasons for implementing a system with a large team are var-
ied. The most common one is that the scope of the project is too
large for a small team to handle. However, some large projects
would be better off if implemented by a small team. Even if the
scope is large, a small team may be faster or more effective, mainly
because communication is not as likely to prove a problem as it is
in a large team.

Sometimes, the use of a large team is politically motivated. The
size of a team may signify the importance of the project and of the
project management itself. Author and consultant Tom DeMarco
discussed this problem during OOPSLA 2001.l He indicated that
surprisingly often, the manager of a failed but large project will be
valued higher than the manager of a successful but small project.

Furthermore, the project may be shaped and sized to suit a
team that is already established. For instance, I witnessed a situa-
tion in an organization where a lot of people just sat around, wait-
ing for the project to start. Nobody questioned if this mass of peo-
ple was really required for the project. Instead, everybody tried to
shape the project in a way that kept all these people busy. Granted,

IOOPSLA is an ACM SIGPLAN conference: Object-Oriented Programming,
Systems, Languages, and Applications.

42



3 • AGILITY AND LARGE TEAMS

for some companies (in some countries), it might be easier to shape
the project according to the team's size than to get rid of the
employees—mainly because of legal issues—but this is not usually
the case.

It is always worth questioning the reasons for working with a
large team, but this is neither the topic of the book in general nor of
this chapter in particular. Instead, the assumption is that the proj-
ect will be run by a large team and you want to use an agile
process. When changing to agile development with a large team,
you have to deal with several issues involving people, teams, inter-
actions, and communication structures.

This chapter focuses on those aspects of agile processes that
work differently in large teams than in smaller teams. First, we
look at the people aspect. We discuss how taking up responsibility
can work in a large team and what kind of consequences respect,
acceptance, and trust have for successful collaboration. Next, we
consider how a large team can be divided into subteams and what
kind of team roles have to be occupied. In the section on interac-
tion and communication structures, we focus on encouraging com-
munication in large teams. Then, in the section on trouble-shoot-
ing, I present typical team problems and their possible solutions.
Finally, we look at the difficulties that can occur when developing
with dispersed teams.

People

Size matters. The size of a team provides a special risk—a team
that is too large can hinder a project. One reason is that the quality
of the decision-making typically suffers. For example, the larger
the team, the more often you will find that decisions are unclear or
postponed. The main reason for this is that within large teams,
you will often find a tendency among people to shun responsibil-
ity. Because there are so many people on the team, there is a collec-
tive mentality that "someone else will decide/'

Unclear or postponed decisions confuse the team and make it
difficult for team members to decide which direction to take. This
leads either to project paralysis, because nobody has the courage to
move on without being told, or to a lot of individual decisions as
one thinks best. Often, those individual decisions contradict each

43



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

other, which in turn leads to a form of project stagnation, based on
contradictory development. Both symptoms are very frustrating
for the whole team. I once consulted on a restart of a failed project.
I interviewed team members about what trap they believed would
most likely ensnare the restart. Interestingly enough, most people
named a lack of clear decisions as the highest risk.

Therefore, although it might seem unusual, it is preferable to
make a clear but eventually wrong decision and to correct it later.
Making a wrong decision enables you to learn; postponing a deci-
sion does not. If you postpone a decision, you do not know until it
has been made whether it is the right or the wrong one. However,
if you make the wrong decision, you will learn from the conse-
quences and will have the possibility of correcting your mistake,
based on your new experience.

Making decisions is one side of the coin; the other is making
sure that they are not only communicated to everybody involved
but are also carried out. A decision that is made but not carried out
is essentially the same as a postponed decision.

Although this all sounds very obvious, it is common to find the
same problems popping up over and over again, which is a sure
sign that those decisions either have never been clearly made or
have not been realized.

As I mentioned earlier, the main reason for the poor quality of
decisions on projects with large teams is probably based on an
aversion to taking responsibility. You will find that the more peo-
ple there are, the harder it is to tell who took responsibility for
which task. Often, this results in an undefined task zone, which is
defined by

• Multiplicated task responsibility: A lot of people are
responsible for the same task. The problem is that they do
not know about one another. Therefore, if you are lucky,
this task will be carried out repeatedly. If you are unfortu-
nate, they will do the task in ways that contradict each
other.

• Null task responsibility: Nobody takes responsibility for
the task. Everybody assumes that it is someone else's job.
This can result in everybody blaming everybody else for
not taking the responsibility.

44



3 • AGILITY AND LARGE TEAMS

To make things worse, you can be assured that with each addi-
tional team member, the risk will rise and more of such problems
will arise.

Responsibility

Due to the departmental organization, people in large companies
are not usually used to having complete responsibility for any par-
ticular task. This is because there is almost always somebody
higher up the hierarchy who has ultimate responsibility. This is
especially true for developers. They often see themselves as only
doing what somebody else tells them. When somebody "acciden-
tally" gives them the responsibility for a specific task, they feel
uncertain. They are not used to having responsibility, and they do
not know what it implies.

On the other hand, agile processes require everybody to be
responsible for his or her task, and for the effects that task might
have on the whole project. In addition to individual tasks, there is
also the shared responsibility for the ultimate performance of the
whole system, the project, and even the process of development.
Thus, each team member is responsible in some way for every task,
even those assigned to other team members.

For example, Extreme Programming has a practice called collec-
tive ownership, which refers to a shared responsibility for all kinds
of things: the code, the integration, the process, and so on. Best
known among these shared responsibilities is probably collective
code ownership, which enables and obliges everybody on the team
to improve every piece of code, no matter whether he or she is the
original author of the code or not.

With collective ownership, every team member bears the same
responsibility for all aspects of the project. However, allowing
everybody to steer the project at the same time is a challenge and,
some fear, a big burden. For instance, every developer would want
to have a hand in shaping his or her development environment. At
the same time, this increased responsibility is likely to increase the
developers' fear of making the wrong decisions.

When people first sign up for a task but aren't used to the
responsibility it entails, you have to lead them gently into this new
territory. For example, ask the developers which task they want to

45



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

be responsible for, and then assist them in estimating the task. Not
only should you make yourself available to answer any questions
they may have, it is very important that you also ask them regu-
larly if they are doing okay, or if they need any help, because they
might be afraid to bring up such issues themselves.

For example, I remember one project I was working on, where
people had problems taking responsibility. I visited all the team
members regularly and asked them how they were getting along
with their tasks. It did not take long before some of them started
complaining that they were not able to get their work done, for
various reasons. The most common reply was that they were wait-
ing for something from another team: either the other team had not
yet provided some interfaces, or the interface it had provided
turned out to be different than expected.

The obvious problem was that these people did not have the
right mindset for problem-solving. Instead, they complained that
their peers were responsible for the problems. The real, hidden
problem was that they were not taking enough responsibility. If
they had, they would not have complained, but rather would have
started solving their problems. In other words, they might have
started talking to this other team, found out why the interfaces
were not ready, and addressed the situation.

The typical reaction of people not used to responsibility is to
get annoyed at the situation without taking any action to change it.
Of course, it could be worse. If, for instance, they could neither
complain nor take up the responsibility, you would never learn
about their problems.

Therefore, you have to be proactive in asking developers about
the status of their assigned task. Only then will you have an idea
of any problems they may have. I'm not talking about status
reports—I'm talking about walking up to the people and talking
face-to-face about their current situation. You should encourage
them to look at the big picture and regard their assigned task as
part of the whole. Explain that even tasks that may only be partly
related to their assigned task (if at all) are important for the com-
pletion of the project.

If people are spoon-fed responsibility, they will not learn to
make an effort to take it up themselves. Or, as an article in Fast
Company put it,

46



3 • AGILITY AND LARGE TEAMS

Telling people what to do doesn't guarantee that they will
learn enough to think for themselves in the future. Instead,
it may mean that they'll depend on you or their superiors
even more and that they will stop taking chances, stop
innovating, stop learning.2

Telling people what to do is not enough. They have to commit
themselves to their task. The focal point of this philosophy is that
the value of team productivity is much more important than the
individual effort. Therefore, every now and then, you have to
point out that only the team's success is the individual's success.
An individual's success without the success of the team is of no
value. Among other things, this means that a well-functioning
team does not rely on its official manager—it takes up the responsi-
bility itself, whenever the situation requires it. For this approach to
become a reality, the organization has to change from management
by command and control to management by responsibility, trust,
and teamwork.

Trust is the foundation on which such a management strategy
is built. When someone takes on a responsibility, you trust that he
or she is capable of handling that responsibility However, at the
start of an organization's first agile project, this culture of trust and
responsibility will not be in place yet. Most team members will not
be able to take up responsibility, because they are not used to it.
However, I suggest that you demonstrate to them how you take up
responsibility, and that you encourage them to take responsibility
even if they do not feel ready. This shows your team members that
you trust them, even though at this early stage in agile develop-
ment they might not be able to justify your trust. When you refrain
from giving them any responsibility, you prevent them from ever
getting the chance to learn how to take up responsibility. That sim-
ply reinforces their own mistrust in their capabilities. Just as Ulrich
Sollmann and Roderich Heinze say, you should give people the
chance to learn how to deal with responsibility:

2Chuck Salter, "Attention Class!!! 16 Ways to Be a Smarter Teacher/' Fast Com-
pany, Issue 53 (December 2001), p. 114.

47



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

The more often you are in an uncertain situation, the better
you can handle this kind of situation, or rather the longer it
will take till you will again feel uncertain.3

If you want to train your team members to take up responsibility,
you have to be aware that this is an investment in their future.
This "training" is two-sided: You may also have to train leaders to
delegate responsibility and to trust their team members. As with
every other learning process, it will be some time before you see
results, but it is worth the effort.

Respect and Acceptance

A development team is not usually organized like a team, in the
strictest sense of the word—assembled by peers with equal
rights—it's hierarchical. The typical hierarchy in a development
team, found mainly in traditionally led projects, follows Taylor's
theory about centralizing a team's knowledge.4 Individual team
members take up specific roles and corresponding tasks. Analysts,
designers, developers, and testers often work independently in a
linear process.

As a consequence of this separation of tasks and roles, a hierar-
chy is created. Although perhaps not officially sanctioned, the
hierarchy is formed by the different roles in the team, some of
which have greater prestige, importance, or acceptance level than
others. Often, the acceptance level is defined by the linear devel-
opment. This means that analysts have the highest acceptance
level, while coders, testers, and, even worse, maintainers are at the
very end of the acceptance-level chain, doing all the dirty work.
This sequence of acceptance levels is just one example, but an oft-
encountered one.

The major problem is that nobody wants to be at the low end of
this acceptance-level chain. Therefore (as in the example above),

^Ulrich Sollmann and Roderich Heinze, Visionsmanagement: Erfolg als voraus-
gedachtes Ergebnis (Vision Management: Success as the Predefined Result) (Zürich:
Orell FüsslU994), p. 32.

^Taylorism is characterized by the division of labor, repetitive operations,
extreme labor discipline, and the supervision of work.

48



AGILITY AND LARGE TEAMS

everybody tries to climb up the ladder from maintainer to designer
or, even better, analyst. From another perspective, you will find
the largest percentage of novices in maintenance or implementa-
tion. Consequently, there are often too few experienced coders on
a team.

In contrast, most agile processes require teams to have shared
knowledge and shared skills. This means knowledge cannot serve
to form a hierarchy. Therefore, the first step in forming an agile
team is to get rid of the Tayloristic split. Assemble teams that cover
all the knowledge, where each member of the team is aware of the
big picture and takes responsibility to contribute to the whole
team's success. The individual role of each member is not so obvi-
ous, then, in terms of individual knowledge, but is recast in terms
of contribution to the team's success. So, acceptance is then based
on performance and not on roles.

One of the main differences between small and large agile
teams is that in the former, every individual is typically requested
to be a generalist. On the other hand, as I discuss later in this chap-
ter, in a large agile team, a whole subteam and not necessarily every
individual team member should cover this general knowledge.

This implies that agile teams require more generalists than spe-
cialists. At the least, everybody should be able and willing to
understand the big picture and not become solely interested in dig-
ging into some specific details while ignoring the interests of the
whole project.

So, as programmer and software expert Don Wells said, you
will find that in an agile project,

Everyone is of equal value to the project.5

But this is only true if every team member bears responsibility for
the whole project. Of course, each team member will have individ-
ual capabilities and abilities, but now he or she will contribute
equally to the team and to the project.

5Don Wells, "Transitioning to XP or Fanciful Opinions of Don Wells/' (Interna-
tional Conference on eXtreme Programming and Agile Processes in Software-
Engineering 2001, Sardinia, Italy, 2001).

49

3



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

Trust

It is natural for people to be skeptical of a change like switching to
an agile process. The team members themselves, along with a lot
of people only partially involved in the project, might not have
trust in the success of this new process. The possibility that the
team can change the process over time is often even more frighten-
ing than following a defined but indigestible recipe.

The best argument against this mistrust is working software.
Therefore, try to complete the first, low-functional version of the
software as early as possible. Another strategy for building trust is
transparency. Make everything transparent for everybody
involved in the project.

Different practices help to make things more transparent:

• Shared ownership: Ask everybody on the team to take
responsibility for all kinds of things (for instance, the code
or the process). This shows your trust in them.

• Shared knowledge: This practice is often based on shared
ownership. The knowledge about the information—for
example, the system—is transferred from one team mem-
ber to another. This makes the system more transparent
and understandable for everybody, and helps in turn to
build confidence in the system.

• Shared skills: The team has people with a variety of back-
grounds and skills. This knowledge is accessible not only
for the individuals, but for the whole team. Using non-
agile processes, the individual guards expert knowledge
from the whole team. Making knowledge transparent
makes the team more trustworthy. Furthermore, it allows
every team member to add new skills to their repertoire.

It is important that this transparency is always open and honest.
Do not hide any negative information. Knowing about the bad
things makes it easier to deal with them. Moreover, everybody
should be invited to comment on the information and to help
improve the situation. Thus, transparency includes representatives
from control, audit, and, most importantly, the customer.

50



AGILITY AND LARGE TEAMS

Occasionally, when coaching a project, I find that project mem-
bers assume that transparency stops right before the customer. For
example, I sometimes have to lead long discussions in order to
open the project's wiki Web for the customer, because the customer
will then have full access to the project.6 Often, when asked for
more transparency, project managers tell me they're afraid the cus-
tomer will find out about the problems inside the project. This is
exactly the point! The customer should always be aware of the
problems, because the customer is paying for the project. These
arguments are typical when discussing the impact of having the
customer on-site. As soon as the customer becomes something of
an unofficial project member, the fear disappears from both sides:
from the team's side, because team members realize that the cus-
tomer is a real person, and from the customer's side, because he or
she understands the difficulties the project members are facing.

This reminds me of how I was before I started scuba diving: I
liked swimming in the open sea, but I was always a bit afraid of the
creatures underneath me, and I was pretty sure that sooner or later
one of them would bite me. As soon as I started scuba diving, I did
not even fear sharks or other predators. Being close to these crea-
tures gave me the feeling of actually being a part of the living sea.

Team Building

A large team is hardly manageable as a whole. Thus, in order to
establish a flexible team, the team is usually divided into subteams
of no more than ten members.

The typical structure used by large teams (and in large compa-
nies) is still based on Taylor's theory of building teams according
to their knowledge, as I mentioned earlier. Therefore, you will
often find an analysis team, a design team, a test team, and so on.
The developers are typically further subgrouped into smaller sub-
teams, each responsible for a specific function like presentation,
database, network services, and the like. This Tayloristic split is
also known as horizontal team division. Taylorism works quite well
for jobs that are repeatable. It doesn't work as well if a lot of cre-

^Originally developed by Ward Cunningham, a wiki Web is a Web-based col-
laboration platform that allows interactive communication and vivid docu-
mentation by editable HTML pages. See Bo Leuf and Ward Cunningham, The
Wiki Way: Collaboration and Sharing on the Internet (Reading, Mass.: Addison-
Wesley, 2001).

51

3



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

ative and holistic thinking is required. You can furthermore con-
sider defining vertical teams, which are focused around business
functionality. These teams are also known as domain or feature
teams, as Peter Coad terms them in the Feature Driven Develop-
ment process. On the other hand, if you are dividing the team ver-
tically, you might find that not every team has all the necessary
skills, or even worse, that every team might start to address the
same problems.

Therefore, do not make this an either-or decision, but an as-well-
as one. For example, if you start with a small team and build
slowly, you will come to the conclusion that on future projects,
your starting team should be staffed with people who have good
domain knowledge and a major technical background. This start-
ing team most often defines the first architecture and verifies that
the system can actually be built. Furthermore, it can serve as a
model for the formation of the other teams. The horizontal and
more technically focused teams should then support these new
(vertical) subteams.

Building Teams and Subteams

As mentioned earlier, dividing the whole team into several sub-
teams should not be a decision between vertical or horizontal divi-
sions. Instead, it should be an as-well-as decision, to provide a bet-
ter mix of knowledge in the teams.

Either virtual or real technical service teams could be installed
to further support those vertical, domain teams.7 For example, on
one of my projects, we defined domain teams focusing on a specific
domain area in banking, with one team focusing on accounting and
another one on customer management. Each team had the knowl-
edge needed to implement the features belonging to its domain,
including the graphical user interface, the connection to the host,
the business logic, and all the other required technology. If, for
instance, the accounting team required some functionality from the
customer management team in order to implement a feature, the

7In some ways, a virtual team is not recognizable as a team. The team mem-
bers may not be co-located, communicating only by electronic media, or the
team members may in fact belong to different teams and just get together
every now and then for work on a specific task.

52



AGILITY AND LARGE TEAMS

accounting team would just bilaterally discuss the requirements
with the customer management team. The customer management
team then in turn would provide the required service within the
development cycle.

Subteams ...

We established in this case real (not virtual) technical service teams
that were responsible for supporting the domain teams by provid-
ing some base functionality. For example, we assembled an archi-
tecture team responsible for the business logic, and a presentation
team for all graphical user interface aspects. Those technical ser-
vice teams were requested to visit all the domain teams regularly.
On request, members of a technical service team supported domain
teams as regular team members for a specific amount of time.

Technical service teams should always regard themselves as
pure service providers for the domain teams. For instance, the
technical service team responsible for building and supporting the
architecture should always shape the architecture according to the
requests of the domain teams, not vice versa, since the domain
teams have to use whatever the architecture team creates, as is
often the case.

3

53



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

Depending on the actual size of your team, you will establish
either virtual technical service teams or real technical service
teams. The members of the virtual teams are usually regular mem-
bers of domain teams. In contrast, members of real teams usually
lack a close connection to the domain teams. For this reason, you
have to ensure that real teams do not develop the best architecture,
but the most adequate. You have to avoid features that are imple-
mented just because somebody believes they are needed. Technical
teams have to think of themselves as service teams, delivering ser-
vices to their customers, the domain teams. The big advantage of
this strategy is that the architecture only contains what is required.
This makes the architecture much easier to maintain and, as a side
effect, cheaper. Additionally, it eliminates the oft-occurring social
discrepancies between the technical and domain teams. One often
gets the impression that those teams are working on different proj-
ects (not least from the way they talk about one another). Unfortu-
nately, this impression is seldom wrong, and those teams have dif-
ferent objectives. Where technical teams' objective is to make use
of a specific technology and develop perfect frameworks not
requested by the domain teams, the domain teams' goal is to im-
plement the domain, not caring if they can profit and learn from
one another (or from the frameworks the technical teams provide).

But how do the technical service teams know which service is
required and, more importantly, which requested service has the
highest priority? The team has to come up with a strategy. Not
every requirement from each and every domain team will be imple-
mented, because certain requirements might contradict each other.
Or, worse, implementing these requirements will cost so many
resources that other teams will not be able to get their (more impor-
tant) requirements done.

Therefore, like real customers, the domain teams have to speak
with one voice. Retrospectives can serve as a forum for deciding
on new or changed requirements since all teams are present (or at
least represented) and the focus of the retrospective is the project's
status and progress, anyway8 If one team states that it cannot pro-
ceed because it needs some special technical service, all teams can
decide jointly if this is a requirement they support; if approved, the
8 A retrospective is a reflective group meeting that is held at the end of a devel-
opment cycle (see Chapter 4).

54



3 • AGILITY AND LARGE TEAMS

service will be a joint requirement for the technical service team.
Otherwise, the requesting domain team has to implement the ser-
vice on its own. These requirements are then scheduled in the
same way the domain teams schedule their requirements. Thus,
the technical service team schedules requirements with the highest
priority first and does not schedule more than it can accomplish
within the next development cycle. It might have to negotiate
workload with the domain teams. At the beginning of the project,
especially, the domain teams define many requirements for the
technical service team, but at other times, there may be few
requests, if, for example, the architecture can just be used as is.
During "high season/' you should ensure that the technical service
team does not accept more work than it can accomplish. During
'Tow season/' you should ask the members of the technical service
team to join the domain teams instead of implementing unneces-
sary additional features.

Requirements Channels, by Stefan Roock

In this project, we had to implement a system supporting
multiple channels for different user groups, with various
front-end technologies (desktop, Web, laptop). Our start-
ing project team consisted of five people from the develop-
ment company and two consultants. With seven people, it
was a size typical for an agile project. We had all the
Extreme Programming practices in place when the project
had to scale up and accept additional manpower—mainly
developers. The goal was to have about twenty-five peo-
ple in the project.

When scaling up, we had to address the issue of proj-
ect structure. It became clear that it would not be possible
to integrate all these people in one large team in the project.
Therefore, we decided to split the project up into teams.
But, we asked ourselves, what are the criteria for the divi-
sion of teams? Do we use the architecture as the structur-
ing mechanism and assign each subsystem to a team? Or
do we assign each requirements channel to a team? In the
first case, each requirements channel had to talk with every
team. In the second case, each team had to modify classes

55



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

9The planning game is an Extreme Programming technique. The customers
select and prioritize the tasks for the developers for the next development
cycle and the developers estimate the effort for those tasks.

56

all over the system. Since the planning games seemed to
be too complex in the former, we chose the latter.9

One team per requirements channel...

We then got three teams for the three requirements chan-
nels, and a technology support team. The teams were

One team per subsystem ...



3 • AGILITY AND LARGE TEAMS

rather small (four people), which supported taking over
responsibility.

One thing we learned was that reorganizing teams
takes more time than we thought. When we changed the
organizational structure, the developers needed several
weeks to get used to the new structure and get up to their
development speed again.

Because teams were not assigned to subsystems,
every developer was able to modify every part of the sys-
tem. This was no problem because the developers were
able to master the code base (about twelve-hundred
classes).

As time went by, additional developers joined the
project and the code base grew. We ended up with about
thirty developers with different programming skills. Now
some developers weren't able to modify every part of the
system without it breaking. Our first step was to tag core
classes and the very complicated parts of the system as
"expert code/' which had to be modified by a so-called
system expert.

That solved the problem, but it didn't seem to be a very
smart solution since there was no way to guarantee that only
system experts modify the crucial part of the system.

Currently, we are searching for better mechanisms
for assigning code to teams. The main idea is to take the
layering of subsystems into account. Some subsystems are
specifically for a requirements channel and should be
assigned to the relevant team. Other subsystems are rele-
vant to several user groups and can't be assigned to one of
the existing teams. These subsystems are assigned to a vir-
tual "base subsystem" team, which is created on demand
from the system experts sitting in the existing teams.

Team Roles

The idea is that a team must have members that possess all the
required knowledge. In that sense, each team is a generalist in its
domain. For instance, a domain team will be assembled by domain

57



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

experts, graphical user interface developers, and database develop-
ers. But although the team consists of these different experts, those
experts will not work solely in their field of speciality. Instead, the
team members must take different roles. For example, it is rather
typical for the database developer to learn from the graphical user
interface specialist how to build the presentation, and to then con-
tribute to the user interface development. Thus, the goal of having
generalists rather than specialists on a team is attainable by spread-
ing the available knowledge.

The goal of this approach is not egalitarianism of all team
members. Distinct skills and experiences are still necessary for spe-
cific tasks. However, the goal is to avoid the general tendency
toward thought monopolies and to spread knowledge and skills.

Additionally, each agile team also possesses the required
administrative knowledge necessary to perform, for example, inte-
gration and configuration management. The person who takes this
role concentrates mainly on issues based on internal team integra-
tion and configuration, but will also be this function's contact per-
son for people external to the team. However, individual team
members may have multiple roles: For instance, the person re-
sponsible for integration and configuration may be the domain
expert, too.

It is very helpful to establish a team lead for every team. This
person acts as a contact person for the whole team. Often, the team
lead coordinates who will attend a specific meeting, such as a ret-
rospective.

Team Jelling

Ideally, the whole project team pulls together, all team members
communicate honestly and openly, and everybody has the same
big picture in mind. As Tom DeMarco puts it, the team jells.1® The
pulling together must especially be supported so it becomes nat-
ural. In addition to the more formal aspects of project develop-
ment, other, more enjoyable and motivational, tactics must be
employed to keep your project on track:

l^A team jells when it has a good chemistry, comparable to the chemistry
good jelly has. For more on this subject, see Tom DeMarco, The Deadline: A
Novel About Project Management (New York: Dorset House Publishing, 1997).

58



3 • AGILITY AND LARGE TEAMS

• Food: If you provide food, or just snacks—healthy or oth-
erwise—the area where you place the food will soon
become an extremely popular part of the office. And when
groups of people are there, taking advantage of the free
food, they will start talking. You might also want to make
use of team lunches, although you should ensure that
lunch time is also a break time that allows the team mem-
bers to relax and recover from their work. On the other
hand, breaking bread together always helps people get
closer to one another.

• Party: Organize a party once in a while—after the delivery
of a major release, for example. This does not have to be
something big. It would be enough to serve some sand-
wiches and beverages for a couple of hours or so. This will
help people who wouldn't otherwise have the chance to sit
and talk to each other. Try to convince the company of the
importance of such project parties, so it will approve them.

• Recreation: Organize some sort of recreational outing. It
can be a sporting event, such as a volleyball match, or some
other social event, such as bowling, go-cart racing, or some-
thing along those lines. Doing something as a group will
help team members get to know each other, especially
when people are asked to team up with someone they do
not work with regularly. This will hopefully reinforce
respect and acceptance among all. Ensure that everybody
can participate in the event, taking into account team mem-
bers' disabilities, for example.

• Project identity: Encourage the team members to cultivate
a sense of project identity. Authors Mary Lynn Manns and
Linda Rising stress the importance of having a group iden-
tity in Fear Less: Patterns for Introducing New Ideas into Orga-
nizations. They recommend a separate pattern, called Group
Identity.11 Special T-shirts, project-specific food and bever-
ages, or even project-specific phrases and slogans help to
develop a project culture. On one project, we even came up
with a project cocktail. However, the project should not

•'••'•Mary Lynn Manns and Linda Rising, Fear Less: Patterns for Introducing New
Ideas into Organizations (Boston: Addison-Wesley, 2004).

59



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

alienate itself from the outside; the group identity should
help newcomers to identify themselves with the project.

• Regeneration: Ensure that project members have time to
regenerate. Even when people are under pressure to
deliver, make sure that they take their vacations and are not
working overtime. A project is comparable to a marathon,
not to a sprint.

Regeneration . . .

• Communication of results: You cannot overestimate how
motivational it is for teams to have reports on the growth of
the system or the customer's feedback. Therefore, make
sure everybody knows about the project's progress.

All the strategies suggested (just a sample of the possibilities) rein-
force communication and will ensure that your team members will
get to know each other better and, more importantly, learn to

60



3 • AGILITY AND LARGE TEAMS

respect one another. Try to ensure that members from different
subteams interact with each other. For example, if you organize a
sporting activity, you can request that each side contain no more
than two people from the same subteam. It is astonishing how
much this contributes to a sense of communal identity among team
members, and this usually results in projects that run more
smoothly.

Some strategies are not readily implemented in certain compa-
nies. For instance, organizing a party that needs temporal and
financial support could be a problem. This is a sure sign that the
importance of communication is still underestimated. You will
need to convince the organization otherwise. It is worth the effort.

Interaction and Communication Structures

Communication is the most important factor in the success or fail-
ure of the whole project. Communication is difficult, even when
only a few people are involved, but it gets exponentially more chal-
lenging as the number of people involved increases. When setting
up a communication structure for a large team, you have to con-
sider the following constraints:

• Direct communication: This the safest form of communi-
cation, and you know immediately if the receiver of your
message understood what you said. However, the more
people involved in a communication effort, the harder it is
to get a message across. One reason for this is that there
will not be enough time for everybody to actively partici-
pate in the conversation. Another reason is that participa-
tion may be dominated by a few extroverts, whereas all the
introverts will accept the message out of discomfort with
discussing anything in big groups.

• Different sensory modalities: Every person obtains infor-
mation differently. Some people, known as visuals, learn
most effectively by watching; auditories, by listening; and
kinesthetics, through action.

• Overdose on communication media: There must be a law
stating that as soon as a communication path works, it will
be abused until it doesn't work anymore. For example, if

61



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

messages are exchanged via e-mail, you will read your e-
mails and respond to them. However, once your inbox
begins to overflow with new e-mails when you get to work
each morning, either you will be very selective about which
messages you read and respond to or you will ignore them
all. This, of course, is bound to eventually result in your
getting in trouble for not reading an e-mail that the sender
assumed you read.

Changing communication channels . . .

Therefore, you should also be agile and flexible with communica-
tion. Use various modes of communication that address different
persons differently, respecting their unique sensory modalities.
Change the communication channels from time to time. That said,

62



3 • AGILITY AND LARGE TEAMS

though, a manageable, average-sized agile project will always
require direct communication.

Open-Plan Office

Ideally, the whole team sits in one room together with the cus-
tomer. As Craig Larman writes in Applying UML and Patterns,

Having a team on another floor of the same building has as
much impact as if it were in a completely separate geo-
graphical location.12

However, in a large project with a team of a hundred or more mem-
bers, space constraints make it difficult to have everyone in one
office. Open-plan offices are valuable in both creating space and
enhancing communication. They can be created by removing cubi-
cles or by positioning the cubicles around teams rather than individ-
uals. Open-plan offices can sometimes accommodate forty to fifty
people. So, if you can have two or three such offices next to each
other, project members will be sitting in quarters that are as close as
possible.

Open-Plan Offices, by Nicolai M. Josuttis

At the start of my professional life, open-plan offices had a
bad reputation. They represented the idea of treating
human beings like machines, which can be located close
together in a big hall to save money on walls. And in fact,
in a work environment that assigns each employee a stu-
pid and almost communication-free task, there is a lot to be
said against putting large groups of people together in a
huge room, like in a laying battery or factory floor—
especially if phone calls annoy one's neighbors, and one
has to fight tediously for each square meter of space.

After my first large agile project, however, I began to
look at open-plan offices from a different perspective. The
situation changes tremendously when the job focuses on

l^Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design (Englewood Cliffs, N.J.: Prentice Hall, 1998), p. 448.

63



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

teamwork that enables several people to create something
together. All of a sudden, moving to another room is
painful. All of a sudden, it is important to know what your
colleagues are working on. All of a sudden, it is important
to work together, collaboratively and physically. The value
of this kind of communication can't be overestimated.

However, this does not mean that it is best for an
agile project to pack all project members together in a
dreary open-plan office. It is important to be able to have a
meeting without disturbing others. Adequately sound-
proofed meeting rooms are a necessity. Also, individual
workplaces are important for people who need a quiet
place to think, design, or make a phone call. Glass works
well for this purpose: Vitreous meeting rooms, individual
vitreous workplaces, or vitreous walls between teams
allow the necessary transparency without raising the noise
to a degree that disables serious work.

In a sense, an agile workplace is an intelligent mix of
everything, which is again typical for agility in general.

Always ensure that the individual subteams can sit together, even
inside an open-plan office. Although this might seem like common
sense, it is not as common a situation as it should be. Again, what-
ever your constraints, the distance between team members has a
major influence on the success or failure of your project. Be aware
that this distance does not necessarily have to be physical. For
instance, if certain team members listen to music through head-
phones while they work, the headphones establish a distance
between them and their peers. The least you can do is to make it
possible for all members of the team to be on the same floor or, at
the very least, in the same building. But everything that improves
the seating situation pays off during development time.

Some people argue that the noise levels are too high in open-
plan offices. This is not usually an issue. Mainly because every-
body is concentrating too intensely on his or her work to be dis-
turbed by the conversations of others. However, you may have
some individuals in the team with particularly loud voices. In that

64



3 • AGILITY AND LARGE TEAMS

case, you should ask them to lower their voice. If this is not possi-
ble, you should consider locating said individuals to a place where
they will not disturb their peers. But this is a highly unlikely situa-
tion. As I said earlier, in my experience, the noise level on projects
is almost always acceptable, and the advantages of the close prox-
imity of team members far outweigh those of having a quiet envi-
ronment.

Flexible Workplace

Nowadays, some companies do not support assigned office space.
Instead, they use a system known as flexible workplace (also known
as floating desks or desk-sharing), where people just sit wherever
they find some space. Team members either use cell phones or
have calls transferred to wherever they are sitting on a particular
day. Typically, filing cabinets are mobile, so team members can
have all their papers with them at all times. The underlying idea of
the flexible workplace is that it requires less space than a more tra-
ditional, assigned-space system. The logic being that, on any given
day, certain employees will not be in the office: People call in sick,
take vacations, make on-site visits to customers, and so on. Utiliz-
ing flexible workplaces, then, is a very efficient way to use office
space and to save money on workplaces.

However, the catch is that you will never know, for sure, where
to find a specific person, and this is a communication problem.
Another problem is that at certain times (during the less popular
vacation months, for example), some people may spend their day
wandering around looking for an empty space to sit.

Remarkably, this problem sometimes becomes known outside
of flexible workplaces. One time, in a taxi I was taking from the
airport to a customer's office, the driver asked if she should speed
up to make sure I would have a place to sit at the office. (It turned
out not to be necessary, since we had plenty of time to spare; it was
just eight o'clock in the morning.)

Another risk that teams utilizing flexible workplaces face is
that people may get to work late and not be able to sit with the
other members of their team. At that point, flexible workplaces are
not very beneficial.

If you cannot avoid a flexible workplace arrangement, try to
establish an acceptable working environment, for example by

65



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

defining (flexible) team zones within the constraints of your office's
seating arrangement. Be aware that in your attempts to do so, you
might get in trouble with the "office police/7 In such a case, you
have to fight this out, because as mentioned earlier, the importance
of efficient communication cannot be valued high enough.

Flexible workplaces create an infrastructure that allows people
and teams to solve communication problems by relocating easily.
However, if your company has the philosophy that every associate
should have the same desk over many years, you might discover
unbelievable resistance when transitioning to flexible workplaces
to better support the project.

Encouraging Communication

The real difficulty of working with a large team is looking for ways
to ensure efficient communication. I have found that the following
steps are valuable in setting up a communication structure:

• All project members should sit as close together as possible
without crowding each other.

• The retrospectives performed after each iteration and
release cycle serve as a forum for direct communication.
Typically, the topics of optimizing the space and improving
direct communication for the daily work will be discussed
regularly until they are resolved.

• Regularly scheduled meetings for all project members are
essential. Such meetings are primarily a mode of informa-
tion transfer. In my experience, too many people attend
these meetings for there to be any effective feedback or
extensive discussions, but they work well for one-directional
information transfer. Therefore, every project member
should have the possibility to contribute—in the form of a
lecture about a specific topic, for example. It is a good idea
to announce the contents of the contributions in advance.

• Provide a wiki on the intranet, not only as a means for doc-
umentation, but as a means for communication.13

l3The term "wiki" is Hawaiian for "quick," which in this context represents the
ability to make quick changes. For more information on wikis, see Leuf and Cun-
ningham, op. cit.

66



3 • AGILITY AND LARGE TEAMS

The philosophy of a wiki is to allow all kinds of discus-
sion on the Web. Everybody has the right to make changes
to the Websites. This is possible through editable HTML
pages. The wiki Web only knows collective ownership, so
everybody has the same responsibility for the contents.
This helps to establish a community of trust. Furthermore,
no deep knowledge of HTML is required to contribute to
the wiki Web. You can even contribute by writing plain
text. If the wiki Web is also used to document the project,
you can be sure that this will always be a good source of
project documentation.

• Establish different e-mail distribution lists that allow you to
address everyone involved in the project, as well as specific
groups of people.

Communication Team

Be warned, however, that even making use of these different chan-
nels will not eliminate your communication problems. Another
very effective way of improving your team's communication is to
establish a separate (virtual) communication team. Depending on
the size of your team, the communication team could consist of just
one person. The communication team is responsible for visiting all
the teams regularly, obtaining feedback, and discovering deficien-
cies and (potential) problems, possibly solving them immediately.
It is important for the team to proactively approach the project
members. You will recognize problems sooner this way than by
waiting until they escalate or are reported officially. Typical topics
and tasks of the communication team are

• Unified project culture: The goal is to establish a common
culture regarding guidelines, tests, patterns, and the like.

• Refactoring: Uncovering sources for refactoring not only
improves the quality of the code but also provides learning
opportunities for everybody.

• Common understanding: The communication team needs
to ensure that all information, decisions, and announce-
ments are understood by all the teams.

• Problem discovery and treatment: Problems should be
detected and, at best, solved immediately and in a simple

67



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

manner. The communication team has the advantage of
having an overview of all the teams. This way, the commu-
nication team can establish contact or point to solutions
other teams might have found. If several teams have the
same problems, general strategies are required for solving
these problems (extending/adapting the framework, or
providing patterns for the solution). Furthermore, the com-
munication team suggests ways that the process could help
overcome or eliminate the encountered problems.

The members of the communication team should never act as
supervisors or controllers, but instead more like a team of ombuds-
men. These ombudsmen should be sensitive to the hopes and fears
of the individual team members and should collect suggestions for
process improvements. For example, ensuring that the team mem-
bers understand the decisions enables them to either accept the
decisions or to suggest a solution that supports them better.

It is very important that the members of the communication
team have a good overview, are well-trusted people with good
communication skills, and are widely accepted and respected by
the rest of the project team. These people should be able to take
matters into their own hands, able to manage the project as a
whole, but also have good connections to the individual persons.
In smaller teams, the communication team will consist of just one
person, with tasks that cross boundaries—running reviews, retro-
spectives, coaching the process, and so on. In larger teams (with
more than fifty people), this will always be a full-time job for one
or even more persons.

You will rarely find a project organization that is aware of the
necessity of this role. This makes it difficult to establish this posi-
tion. I often call these people communication managers or, simply,
catalysts. Ideally, as Tom DeMarco and Timothy Lister write, these
are people whose mere presence is enough to ensure that a project
runs smoothly14

14Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams,
2nd ed. (New York: Dorset House Publishing, 1999).

68



3 • AGILITY AND LARGE TEAMS

Trouble-Shooting

Sometimes, you need to act quickly—for example, if one of the
teams is completely under stress, one team stops talking to another
team, or two teams start continuously blaming one another and are
not able to work together anymore. In such situations, you face
two difficult tasks: One is to look at the problem and see exactly
what kind it is, and the other is to solve the problem.

Smells . . .

The first task is more difficult, because it depends a lot on the
team's culture. Here are some typical problem signs:

• Cynicism and sarcasm: Humor is a sign that everything is
right on track and that people are having fun doing their
jobs. But if the humor turns into sarcasm, this is a clear
sign that the team does not jell and does not believe in
what it is doing.

• Blame: This sign is much more obvious and therefore eas-
ier to tackle. The teams or people blaming each other usu-
ally have problems respecting and understanding each
other. Sometimes, though, blame can be a sign of difficulty
in communicating.

69



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

• Lack of feedback: This is often a sign that the people have
given up. They do not believe in reaching the goal and
they do not believe that anybody has an interest in their
opinion or in their effort.

Whatever the reason is, you can neither accept nor ignore the situa-
tion. All these circumstances will slow down the project's progress
significantly. Therefore,

• If a team is under stress and complains that it cannot get its
work done because there are too many meetings or its time
is spent supporting other teams, protect the team for a cou-
ple of hours each day by arranging quiet times. It might be
necessary to arrange an office-wide quiet time, either tem-
porarily or permanently. For more on quiet times, see Alis-
tair Cockburn's Agile Software Development, in which the
author suggests defining the period between 10 A.M. and 12
P.M. as quiet time, during which no phone calls or meetings
are allowed.15

If instituting quiet time is not sufficient to bring the
team back on track, a more rigorous approach is required:
Instead of quiet hours, make sure the team will get one or
two quiet weeks, with one or two hours of each day as
"regular office hours/' so that team members can still
process incoming requests.

The most extreme solution is to send the team to a
closed meeting for a couple of days. In addition to being
extreme, this solution is the most effective and probably the
most expensive. Closed meetings are often used in other
circumstances: for example, if the team does not jell or has
to consider different kinds of solutions. They are most
often used as an environment for the project kick-off (for
making teams jell) and for the project postmortems.16

Quiet times have a trade-off: They can also lead to a
complete lack of communication and should therefore be
carefully balanced.

15Alistair Cockburn, Agile Software Development (Reading, Mass.: Addison-
Wesley, 2002).
16For more on postmortems, see Norman L. Kerth, Project Retrospectives: A
Handbook for Team Reviews (New York: Dorset House Publishing, 2001).

70



3 • AGILITY AND LARGE TEAMS

• If two teams stop talking or working together efficiently,
locate them next to each other. This way, each team will
recognize why the other acts as it does, and they will start
to respect one another.

Another strategy is to set up a voluntary exchange pro-
gram among teams, so that each member switches place
with a member of another team.17

Both strategies help to improve the understanding
between the teams.

• If a meeting culture evolves where people have to spend
more time in meetings than they do working, and if people
start complaining about unnecessary meetings, challenge
the reason for holding each of the established meetings,
especially all regular meetings. Furthermore, you should
determine which participants are not required to attend in
order for the meeting to be a success.

Generally, you should introduce the "law of the two
feet/7 as described by the Open Space Technology: Any-
body who feels that the meeting is a waste of time is al-
lowed to leave. This might require some sensitivity from
the organizer of the meeting: If a participant does not con-
tribute, he or she should be politely invited, outside the
meeting, to contribute to the project's success.

Introducing quiet times is another approach to over-
coming the meeting culture.

• Finally, you can at the beginning of each meeting ask one of
the participants to excuse himself or herself from the meet-
ing to do something more important (this was first sug-
gested by Tom DeMarco, in The Deadline).18 Take care that
a different person is excused each time, and is not the most
junior person.

• If a team is not very well integrated—for example, if it is
often not well-informed or is often blamed by other teams
for incidents that stemmed from a lack of information—
then locate food in the team's area. Normally, it is only a
matter of hours before other teams find themselves in the

1'Thanks to Mike Cohn for sharing this approach.
l^DeMarco, op. cit.

71



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

food area and the communication or information flow is
reestablished naturally.

Virtual Teams

According to researchers in the area of work life, virtual teams will
become the norm in the future. Fewer and fewer real teams will
physically come together to work on a project, and more and more
teams will be assembled over the Internet. This has a lot of advan-
tages:

• Each individual project member is responsible for his or
her own work space and environment. Although some-
times the client will provide the equipment, most often the
individual project member will have to use his or her own
hardware. This saves the client a lot of money.

• You have much better access to different skills. You are not
limited to people from your region or your company.

• You are not responsible for the team in the long run. You
only have to pay it for as long as it works for you. You are
under no obligation to find its members their next job.

• If the team is distributed all over the world, another advan-
tage is that at any hour, at least one team member is most
likely working on the project. There is hardly any project
off-time.

The main problem with virtual teams is that they lack the most effi-
cient mode of communication—direct communication. As Erran
Carmel and Ritu Agarwal write,

Distance negatively affects communication, which in turn
reduces coordination effectiveness.19

In virtual teams, the problem isn't just communication with the
customer; it's also communication inside the team. It's very diffi-
cult for a virtual team to get a common understanding and to pull
together.

l^Erran Carmel and Ritu Agarwal, "Tactical Approaches for Alleviating Dis-
tance in Global Software Development/' IEEE Software, Vol. 18, No. 2
(March/April, 2001), p. 23.

72



3 • AGILITY AND LARGE TEAMS

Distributed Teams

Large teams are always distributed in one way or another, just
because they are too large to contain in one room. However, dis-
tributed development is somewhat more extreme, in that the proj-
ect members are distributed over several sites and, as the term sug-
gests, the project itself is developed in a dispersed manner. Some-
times, you might find a single team spread over several sites; other
times, several teams are each located at a different site. Outsourc-
ing is one example of a distributed team, as I discuss in Chapter 6.

One problem in this setting is ensuring that everybody on the
team pulls together. On projects like this, you will often find that
people blame one another, mainly because they do not know each
other and therefore do not trust each other. Also, technical topics
like version and configuration management are even more compli-
cated in distributed teams. Of course, there are tools that can help
manage these more complex areas of development, but they do not
make up for the inconvenience and problems caused by distributed
development.

If you must have distributed teams, the Internet is likely to be
your main form of communication (e-mail, wiki Web, chat rooms),
and video conferencing is also a good way to communicate. How-
ever, be sure that people working out of different locations are able
to meet with each other, at least occasionally. Communicating
through the Internet will only work efficiently if people know and
trust each other—and there is no better way of building trust than
through personal contact.

Distributed Teams, by David Hussman

Most agile practices ask project members to keep commu-
nication channels open and filled with honest dialogue,
without regard to the message content. Nowhere is this
more important than on an agile project with distributed
teams. Along with the usual technical challenges of dis-
tributed development, agile development brings even
more challenges, mostly aimed at those outside the devel-
opment teams.

73



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

Project managers, coaches, and customers need to
be vigilant when it comes to listening to and addressing
the developer's concerns; tracking successes and fail-
ures; the way in which story content is gathered, orga-
nized, and presented; and the consistency of the process
and the development environments.20 With distributed
teams, the need to embrace change and make the neces-
sary corrections to the direction of the project sooner
than later is even greater. Just as the last car of a long
train starts moving long after the first, so too does
change take longer to move through the distributed
teams.

The following list of best and worst practices
might help those outside the development group find
and address needed changes before the project strays
too far from the correct path. Many of the listed items
apply to any scaled, agile project, but their importance is
heightened when the development teams are distrib-
uted:

Best Practices

• Customer agility: Ensure that customer
teams can make any necessary changes by
keeping the ratio of customers to developers
as low as possible (one customer to three or
fewer developers; the larger the project, the
smaller the ratio). The ability of the cus-
tomer team to react and change direction can
be difficult when stories cross team bound-
aries and teams struggle to bring portions of
a software solution to fruition. For example,
if five people are writing a book together,
with each person working on a different
chapter, the lucidity and cohesiveness of the

^Extreme Programming uses the term "stories" for requirements, which are
defined by the customer for a release cycle. User stories are comparable to
use-cases in UML.

74



3 • AGILITY AND LARGE TEAMS

book is proportional to the amount of time
the authors spend discussing the book with
each other.

• Group speak: The more often that project
managers, coaches, and trackers discuss
planning and development issues, the better.
Although this discussion can take place over
e-mail, at a wiki site, and through non-ver-
bal channels, ensure that at some point there
are conference calls or video conferences. If
possible, have a different team lead the dis-
cussion on every call (this helps all involved
to embrace the project). Also, as teams grow
and change, each group starts to form its
own view of the project picture. Sharing
your team's lingo with other teams can aid
in maintaining a common view and provide
cross-team insight.

• Common acceptance: If possible, ensure
that each team is building and testing
against a common set of hardware and soft-
ware (if this is not possible, discuss the envi-
ronmental differences regularly). The closer
the environments, the better the level of
acceptance testing. Try utilizing a common
acceptance testing strategy, and whenever
possible share the data sets used for testing.
Try to start automated acceptance testing
early, and run the tests as often as possible.

• Developer rotation: Often times, teams in
the same building feel as disconnected from
each other as teams separated by states or
countries. If possible, move players from
team to team. If the players cannot co-
lócate, explore the notion of rotating the
work done by the teams instead of the team
members themselves. This may seem like
an unrealistic suggestion, but it may be a

75



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

way to help maintain a healthy project
whose members have a holistic perspective.

Worst Practices

• Technical stratification: It is often a natural
fit for distributed teams to work on subjects
that they are familiar with (this is often why
distributed teams are brought into a project).
If at all possible, avoid splitting develop-
ment tasks across technical boundaries. Try
instead to plan and develop toward func-
tional goals and subdivide the work from
that perspective (this will avoid the classic
producer-consumer relationship between
teams, where one team has finished all its
work and is left with nothing to do).

• Failure to communicate mock implementa-
tions: As teams may not have everything
that they need in order to complete a partic-
ular feature, they may choose to mock or
stub-out temporary solutions.21 This is fine
(and, if everyone is using the same code base
and acceptance tests, it can be quite clear),
but make sure that the interfaces to the
mocks or stubs are agreed upon by all.

• Loss of iteration synchronization: In most
cases, it is best to keep all teams on similar
iteration boundaries. It may be that the
teams (and more importantly, those in
charge of the planning) find a steady state
with varied iteration boundaries. In either
case, ensure that the iteration synchroniza-
tion is as constant as possible. Again, as
with scaled, agile projects, if a team has an
iteration schedule slip, even of just a couple

21Mock and stub objects allow you to test partial solutions by simulating the
missing code.

76



3 • AGILITY AND LARGE TEAMS

of days, planning issues may arise that are best
dealt with by moving the incomplete features
to the next iteration. The difference may seem
small, but the consistency will benefit the proj-
ect plan.

Conclusion

Distributed teams using agile practices face many of the
same problems that subteams face when agile projects
scale to large numbers. The need for vigilant and constant
communication is exacerbated. Small issues can quickly
grow large or span several iterations if not known to all
team members. One team's frustration can affect other
teams without it even knowing it. Strive to keep process,
schedules, and environments constant, and when they
change (as we know they will), notify all involved as soon
as possible. The more that can be shared between teams
(source code, data, and so on), the easier this task will be.
Ensure that planners listen to the developers, and help
them listen to one another.

Open Source

Open source projects are well-functioning examples of virtual
teams. Possible reasons for their success are

• All the team members are very idealistic. There is no need
to motivate them or try to ensure that they identify them-
selves with the project. This all comes naturally.

• Everybody feels responsible for the whole project and takes
this responsibility very seriously.

• There is a broad community that provides immediate feed-
back. This feedback is what drives the whole project. There
is no difference in the value of feedback whether it comes
from peers or from users.

• Everybody who contributes to the project takes pride in his
or her work.

77



AGILE SOFTWARE DEVELOPMENT IN THE LARGE

The main underlying principle of open source projects, and the rea-
son for their success, is the gift economy (the culture of giving away
capacity and information). This means that everybody working on
an open source project is doing so voluntarily. A lot can be learned
from this approach, especially for use on commercial projects.

Mary Poppendieck once reported that a new project manager
asked her for advice on becoming a successful team leader. She
asked him if he had ever led a team of volunteers (of any sort). He
replied that he had been a successful choir leader. Poppendieck
continues,

I suggested that if he used the same techniques with his
project team that he did with his choir, he would be a suc-
cessful project manager. He said it was the best advice he
ever received, and he blossomed as a project manager.22

Open Source, by Dierk König

The open source movement derives its name from the
practice of sharing the source code of a valuable product
among an arbitrary number of developers. This so-called
collective code ownership means that the code belongs to
all these developers. They are entitled to change it and are
responsible for the final result.

In the context of this book, open source projects may
be of interest because they share properties of both large
and agile projects. They make use of agile practices while
suffering from the same problems that large projects have
in regard to team distribution.

I'm not so bold as to claim that open source produces
better results in general. Sure, lots of open source products
are widely known for having excellent quality with zero
costs to the user. But I'm the first to admit that there are
also numerous sloppy projects out there that will never
produce anything useful. However, maybe we can take
something from the successful ones!

22Mary Poppendieck, personal e-mail correspondence on the gift economy.

78



AGILITY AND LARGE TEAMS

Distribution

It is evident that the physical co-location of all of the
contributors to an open source project is impossible.
However, we have observed that members of the core
editing team of an open source project sometimes get
together to tackle a special issue, often sacrificing per-
sonal time and money. The collaboration then looks like
an Extreme Programming pair programming session.23

Even the users of open source software hold
events so they can get together and share their experi-
ence. The Eclipse Code Camp is one example.24

If the open source people put so much effort into
overcoming the obstacle of distribution, can we—in paid
time—go upstairs to pair up with the database guy?

Idiosyncrasies

An open source contributor is not forced into anything.
If you do not like anything about the project (the setup,
the code style, the technology, the people, and so on),
you can leave at any time or even fork (make a new proj-
ect based on the old one).

This, and the fact that a lot of people write contri-
butions in their spare time, leads to a project staff that
likes the applied work style, or at the very least accepts
it. The number of complaints is noticeably small.

One could claim that open source projects are not
limited in time, scope, or resources, and therefore do not
need the measures of control that are applied to in-
house projects. This is not really true. Running an open
source project in your spare time, knowing you have

^Extreme Programming requires developers to write productive code in
pairs. Thus, a continuous review takes place throughout the development by
two developers working together.
^Developers of the Eclipse development environment meet occasionally in
so-called code camps to exchange experiences and develop the product fur-
ther (see http://www.eclipse.org/).

79

3

http://www.eclipse.org/


AGILE SOFTWARE DEVELOPMENT IN THE LARGE

only a few hours a week to work on it, makes you think
hard about what to implement next.

Open source is opportunity-driven. Whoever
needs a feature the most will implement it and submit
the contribution. Nothing is produced for the shelf.
Contributors undertake their tasks without anyone
telling them to.

Developers know that their code will be read, lit-
erally, hundreds of times. This is motivation enough for
them to achieve high code quality, and it is a good
opportunity to show off their professional expertise.

Now, without any imposed order, programmers
do what they think is appropriate; surprisingly, this
does not result in total chaos, but rather in automated
testing techniques, stable and frequent builds, ubiqui-
tous version control, flexible architectures, and self-doc-
umenting code. Most astonishing is that these program-
mers manage to achieve something that most organiza-
tions do not: mutual respect among team members.

Architecture

Open source projects typically do not start with an up-
front architecture (Eclipse may be an exception), but
they always have one in the end. The opportunity-dri-
ven nature and the resource constraints of open source
force contributors to practice reuse. This is especially
apparent in the Jakarta project family.25 Every project is
built on other projects, which were built on projects that
came before them, and so on.

The new challenge is to manage project dependen-
cies, a well-known problem that most big organizations
struggle with. Open source offers an easy yet powerful
alternative: Let the user decide.

Another idiosyncrasy of open source architectures
is the focus on extension points and pluggability. JUnit,

25por Jakarta, see http://jakarta.apache.org/.

80

http://jakarta.apache.org/


3 • AGILITY AND LARGE TEAMS

ANT, and Eclipse are perfect examples of this
approach.26

Just think of the effect that applying the principles
of open source software would have on your corporate
IT projects.

Project Structure

In open source projects, you typically see a core team of
editors with write access to the repository. The require-
ments for becoming an editor differ on every project.
Some do not have any restrictions, while others only
grant write access to contributors that consistently sub-
mit quality work. Some projects have a fixed group of
editors.

The core team decides whether contributions from
the outside get incorporated or rejected.

Communication channels are highly self-orga-
nized. The flow of information typically takes place on
mailing lists.

Project Setup

For open source projects, having a self-contained build
is absolutely crucial. It is no wonder that open source
projects were the pioneers of build automation. The
same holds true for the use of versioning systems,
nightly builds, and automated self-testing.

As the source code is highly visible, a new degree
of rigor is applied to the end result. The source code is
subject to excruciating review and refinement. Its com-
pliance to every standard in use will be checked for all
platforms the community uses. The contributor has
total control over how to achieve this result. Assessing
results rigorously but giving developers freedom to use
their own work style is a strong agile move that large
projects can follow as well.

26For JUnit, see http://www.junit.org/; for ANT, see http://www.ant.org/.

81

http://www.junit.org/
http://www.ant.org/


AGILE SOFTWARE DEVELOPMENT IN THE LARGE

Documentation

Typically, in open source software there is not a lot of exter-
nal documentation. The code must speak for itself.
Although it may seem unusual, this strategy works well on
open source projects, where the code, especially the test
code, must reveal its intention.

Successful projects are often accompanied by articles
and even books. The usage documentation that comes
with the distribution typically contains only very basic
help for the beginner.

It appears that any necessary external documentation
gets written on request. For example, in Canoo WebTest,
we had a fairly complicated security use-case.27 A user
volunteered to write the documentation for this, provided
that someone helped him figure out what to do.

The result seems to be a good balance between the
two extremes of lacking all the necessary information and
having excessive documentation in which the important
information is hidden among pages and pages of unneces-
sary text.

Planning

Frankly, there is no long-term planning whatsoever. There
are exceptions, but for most open source projects, there is
only a little short-term planning. The reason for this is to
save the developers unnecessary work by not prescribing
long-term directions of any greater detail than a common
vision. Directions are derived solely from user feedback.

The most challenging part of adopting open source
strategies in corporate IT projects may be trusting in the
evolution and refinement of a complex adaptive system
that is beyond managerial control.

27For WebTest, see http://www.webtest.canoo.com/.

82

http://www.webtest.canoo.com/


3 • AGILITY AND LARGE TEAMS

Summary

You should never underestimate the value of face-to-face commu-
nication, especially with large and distributed teams. You should
do everything you can to provide as many opportunities as possi-
ble for direct communication. Direct communication, together
with transparency, helps to build trust, both inside the team and
between the team and the outside world. If team members trust
one another, they will not fear taking up responsibility.

A tool like the wiki Web will help you build trust by empower-
ing everybody through shared ownership. In doing so, such tools
change the flow of communication from control-driven to collabo-
rative-driven.

When building subteams, you should ensure that the skills
within each subteam are mixed. Furthermore, the technical service
teams should serve the domain teams. If so desired, they can also
be established as virtual teams.

Last but not least, allow the team to have fun. This not only
helps teams jell, but more importantly, it also makes the work envi-
ronment a pleasant one, which will make everybody want to work
and succeed with the team. Consider the values of the gift econ-
omy the way the open source does; this will also help make work
much more enjoyable.

83



INDEX

Acceptance tests, 37, 39n., 75, 76, 87,
89, 94, 95, 100, 110, 146, 147, 158,
169, 170, 172, 181, 188, 189, 210,
216

Adaptive Software Development, 15,
226

Agarwal, Ritu, 72, 223
Agile Alliance, 15, 17
Agile Manifesto, 13, 15-18, 19-20, 21,

22,23,32,41,117,226
Agile methodologies, 9, 10, 12, 32, 36,

38, 220
Agile planning, 93
Agile principles, 10, 12, 19-21, 134

large teams and, 19
Agile processes, xi-xii, 4, 5, 9ff., 21, 22,

23, 28, 34, 35, 41, 43, 45, 49, 84, 86,
87, 88, 92, 94, 95, 102, 103, 111, 112,
118, 119, 122, 124, 126, 161, 162,
164, 166, 169, 171, 176, 188, 190,
196, 210, 214
adapting, 14-15, 19, 22, 23, 24,

28-30, 103, 124, 160, 163, 164,
165, 193, 214

applicability of, 12, 31
establishing, 14, 84, 85, 111, 194
fundamentals of, 12, 13-15
identifying, 23-24
introducing, 28, 29, 112, 118, 119,

139

large projects and, xii, 4, 5, 9, 10,
12, 18-19, 81, 93, 193, 220

scaling, 4, 5, 8, 9-10, 19, 102, 205,
207, 210

skepticism about, 12, 50, 200
switching to, 12, 24, 34, 90, 112,

162, 171, 196, 215
Agile projects, xii, 11, 35, 47, 49, 55, 63,

64, 73, 78, 93, 127, 129, 139, 154ff.,
163, 169, 191, 192
scaled, 74, 76, 77

Agile software development, 4, 5, 14,
31, 34, 40, 47, 73, 88, 104, 111, 142,
116, 119, 154, 172, 173-74, 188ff.
switching to, 41, 43, 120, 162

Agile teams, 17, 49, 58, 88, 97, 139,
140, 157, 162, 190

Agile value system, 8, 9, 10, 11, 17, 41,
220

Agility, 9, 10, 11, 64, 124, 220
Almost Extreme Programming, 22-23,

226
Ambler, Scott, 35, 36n., 224
ANT, 81, 226
Architectural lead, 11, 126, 127-29,

151, 203
Architectural requirements, 115, 131,

211
Architecture, 11, 21, 52, 53, 54, 55, 80-81,

87, 94, 114ff., 125, 126, 129, 131, 132,

229



INDEX

134, 138, 150ff., 179, 181, 187, 190,
201, 204, 206ff., 214, 219
change in, 24, 116, 129, 132, 135,

136, 152, 179, 180, 187, 188, 206,
207, 214

largeness and, 134-38
simple, 126, 129-31, 201-2

Architecture team, 53, 131, 132
Artifacts , 16, 20, 23, 31, 36, 41, 87,

139ff., 156

Backward compatibility, 41
Banmen, John, 118n., 226
Beck, Kent, 159, 224
Beckhard, Richard, 118, 224
Blame, 34, 44, 69, 71, 73, 140, 148, 159,

176, 206
Bobzien, Monika, vi, 164
Bottlenecks, 97, 98, 126, 132ff., 136, 138ff.
Brooks, Frederick P., Jr., 33, 127, 128,

211, 217, 224
Budget, 4, 7, 104, 157, 173
Bugs, 29, 38, 40, 170
Business value, 13, 41, 92, 93, 94-95, 96,

114, 156, 157, 160, 173, 188
of refactoring, 148

Canoo WebTest, 82
Capability Maturity Model, 166
Carmel, Erran, 72, 223
Change, 13, 14, 17, 24, 28, 29, 41, 46, 50,

66, 74, 75, 77, 86, 88, 91, 98, 100,
103, 118ff., 126, 132ff., 139, 145, 149,
154, 155, 163, 165, 168, 169, 173,
174, 181, 183, 186, 188, 191, 197,
201, 209, 210, 215, 217, 220
accepting, 17, 24, 29, 122, 150
agents, 10, 116, 120, 121, 219
embracing, 28, 74, 119, 120, 121,

122, 188
introducing, 24, 29, 91, 120-22, 185,

215
resistance to, 28, 112, 120, 121, 215,

216
team size and, 8, 13

Chrysler Comprehensive Compensa-
tion, 22, 226

Coaches, 10, 74, 75, 117, 118, 166, 196,
220

Cockburn, Alistair, 9n., 22, 30, 31, 34,
70, 128, 168, 224

Code, 7, 31, 34ff., 50, 57, 67, 76ff., 99,
100, 101, 110, 134, 136, 139, 144,
145, 150, 177, 178, 180, 181, 182,
189, 203, 209, 210
changes in, 78, 102, 150, 189
comments and, 22, 23

Cohn, Mike, 71n., 114n., 157, 191n., 223
Collaboration, 16, 17, 43, 51n., 64, 79
Communication, xi, xii, 5, 7, 8, 10, 24,

29, 30-31, 34, 35, 41ff., 51n., 58,
60ff., 64, 66, 72, 73, 77, 83, 86, 154,
155, 170, 191, 202, 207, 212-14, 219
direct, 20, 30, 31, 46, 61, 63, 66, 72,

83, 117, 180, 181, 189, 192, 202
encouraging, 43, 66-67
flows, 72, 83, 134, 155, 156, 185, 212
improving, 171, 190, 202
team size and, 7-8

Configuration management, 58, 73,
101, 102

Contracts, 16, 17, 24, 158, 159, 172,
186ff., 196, 214, 215
fixed, 159, 172

Conway, Melvin E., 125, 223
Conway's Law, 125, 134, 227
Cooper, Alan, 175, 225
Cost, 6, 28, 30, 39, 88, 94, 116, 136, 158,

187ff., 204
Coupling, 132, 133, 135, 137, 138
Cross-section departments, 153, 154,

155, 161, 163, 164, 191, 196
CruiseControl, 102, 227
Crystal Methodologies, 15, 19, 227
Culture, 12, 25, 26, 41, 69, 85, 103, 120,

177-78, 180, 184, 187, 189, 195
of failure, 90, 182,183-84

Cunningham, Ward, 51n., 66n., 225
Customers, xi, 3, 5, 6, 13, 16, 17, 20, 24,

30, 32, 33, 37, 38, 41, 51, 54, 56n., 63,
65, 72, 74, 86ff., 92ff., 102, 116, 131,
132, 134, 136, 143, 146ff., 153ff., 163,
167, 169ff., 174-77, 186, 187, 189,
193ff., 198, 207, 208, 217
collaboration with, 16, 17, 51
on-site, 51, 174, 176, 177, 195
representative, 24, 176, 195

cvs, 102, 227

de Geus, Arie, 178, 179n., 225
Deadlines, 85, 86, 92, 94, 158, 159, 169,

187, 211

230



INDEX

Decisions, 17, 43, 44, 52, 67, 68, 93, 118,
122, 123, 128, 167, 168, 194, 201,
202, 204, 207, 208, 212, 214

DeGrace, Peter, 225
DeMarco, Tom, 26, 42, 58, 68, 71, 165,

170, 190, 225
Demmer, Christine, 165, 223
Design, 7, 14, 20, 21, 27, 29, 35-36, 38,

64, 95, 114, 125, 127, 136, 138, 145,
148, 149, 182, 188, 207

Developers, xi, xii, 6, 7, 10, 16, 19, 20,
29, 32ff., 38, 41, 45, 46, 48, 51, 55, 57,
58, 72, 74, 77ff., 85, 89, 95, 98, lOOff.,
122, 131, 134, 137, 138, 145ff., 150,
151, 163, 167, 169, 170, 171, 176ff.,
181ff., 192, 194ff., 198ff., 208, 211,
212

Development, xi, xii, 31, 34, 36, 38ff., 44,
45, 57, 58, 64, 73ff., 79n., 86ff., 93ff.,
107, 112, 114ff., 123ff., 130, 136,
146ff., 151, 156ff., 176ff., 181, 182,
187ff., 193ff., 199, 203, 207, 209, 214
incremental, 40, 86, 88, 200
iterative, 13, 86, 88, 101, 157, 172
linear, 20, 48, 86, 88, 155, 169, 172,

173-74, 200, 216
process, 14, 21, 52, 114, 119, 164,

205, 220
team, 5, 48, 73, 74, 87, 100, 128, 142,

171, 176, 177, 198, 199, 209, 212
Development cycles, 13, 14, 20, 22, 53,

54n., 55, 56n., 85, 87ff., 92, 94, 95,
107, 108, 121, 148, 169, 176, 183,
188, 191, 201, 214, 216
distributed, 9, 73
planning, 191, 200, 201, 216
short, 87-88, 94, 95, 97, 157, 173,

200, 210
Dispersed teams, 43
Documentation, 16, 20, 22, 23, 32-35,

39, 67, 82, 87, 151, 165, 166, 182
DRY-Principle, 181

EasyMock, 147n., 227
Eclipse, 79n., 80, 81, 102, 227
Employees, 20, 26, 43, 63, 65, 154, 168,

179, 185, 186, 190, 196
Errors, 29, 98, 99, 122, 132, 142
Estimation, 46, 56, 89, 90, 107, 108, 149,

156, 157, 189

Extreme Programming, 8, 9, 10, 15, 18,
22, 23, 28, 38, 45, 55, 56n., 79, 84, 99,
109, 110, 131, 145, 176, 180, 227

Failure, xi, 26, 30, 36, 61, 64, 74, 87, 89,
94, 177, 182, 183, 184, 194, 201, 205,
206, 217
learning from, 26, 90, 182ff., 205

Feature Driven Development, 15, 18,
52, 227

Feedback, 13, 17, 18, 60, 66, 67, 77, 82,
85, 86-92, 94, 106, 119, 123, 144,
145, 146, 162, 171, 172, 174, 188,
189, 195, 215, 219
continuous, 87, 120, 219
early, 13, 87, 89, 92, 188

Fit, 147n., 227
Flexible workplace, 65-66, 212, 213
Ford, Doris, 157, 223
Foreign element, 118
Fowler, Martin, 28, 39, 157, 224, 225
Frameworks, 21, 54, 68, 131, 147, 166
Freeware, 167, 198
Functionality, 14, 36, 37, 40, 52, 53, 87,

89, 92ff., 114ff., 129ff., 138, 145ff.,
160, 173, 185, 188, 194, 200, 210, 216

Gerber, Jane, 118n., 226
Gift economy, 78, 83
Glazer, Hillel, 166, 169, 223
Gold Card method, 184, 227
Gomori, Maria, 118n., 226

Heinze, Roderich, 47, 48n., 226
Hierarchy, 21, 45, 48, 49, 85, 86, 153,

155, 156, 178, 185, 194, 196
Highsmith, James A., III, 14ff., 32, 119,

122, 173, 225
Human resources, 154, 171-72
Hunt, Andrew, 181n., 225

Implementation, 14, 38, 42, 49, 55, 91,
102, 145, 147, 203
referential, 114, 115, 179, 201, 202

Insourcing, 185-86, 187, 189, 215
Integration, 19, 37, 45, 55, 58, 87,

97-102, 123, 124, 145, 146, 155, 163,
207, 210
point, 98, 100, 132
team, 99-101, 146

IntegrationGuard, 102, 227

231



INDEX

Interviews, 44, 85, 105, 113-14, 197,
205, 207, 210

Iteration, 66, 77, 85, 87, 88-92, 95, 96,
99, 103, 106, 109, 120, 147ff., 156,
157, 183, 185, 188, 200, 210, 211
planning, 95, 96, 110, 148, 188
synchronization, 76-77

Jakarta, 80, 227
Jeffries, Ron, 16, 166, 223
Josuttis, Nicolai M., vi, 63-64, 126,

134-38
JUnit, 80, 81n., 102, 227

Kerievsky, Joshua, 89, 109
Kerth, Norman L., 70n., 103n., 206, 225
Knowledge transfer, 32, 33, 34, 35, 50,

66, 117, 180, 214
König, Dierk, 28, 78, 121n., 123n., 170

Large companies, 7, 8, 11, 19, 20, 21, 26,
45, 51, 80, 131, 153, 154, 156, 158,
160, 166, 174, 177, 178, 187, 190,
194, 196, 210, 220

Largeness, 5-7, 18-16, 134-38
Larman, Craig, 63, 225
Larsen, Diana, 109, 110
Learning, 29, 40, 47, 48, 67, 94, 118-20,

121, 122, 150, 159, 178, 180, 182ff.,
208-9, 220
environment, 178, 182-85, 192
organization, 119, 178

Legal department, 154, 172, 189
Leuf, Bo, 51n., 66n., 225
Lightweight methods, 41
Lister, Timothy, 26, 68, 225

MacCready, Paul B., 129, 130n.
Mackerels, 24-26, 27
Maier, Mark, 145, 152, 226
Maintenance, 32, 48, 49, 87, 145
Management, xii, 6, 16, 20, 30, 92, 104, 106,

109n., 117, 119, 122, 123, 185, 186, 201
Manns, Mary Lynn, 59, 226
Marketing, 20, 93, 154, 162, 163,

172-73, 175, 192, 208
Maslow, Abraham, 160
McBreen, Pete, 34, 142, 178, 226
McConnell, Steve, 100, 224
Meetings, 66, 70, 71, 111, 207, 211, 186,

212,213

Metaplan technique, 105, 106-7
Mistakes, 26, 44, 90, 122, 142, 210
Mistrust, 21, 31, 41, 47, 50, 112
MockObjects, 147n., 228
Models, 34, 36, 52, 206

programming, 150, 151, 203
Modules, 135, 136, 138, 145
Motivation, 58, 60, 80, 85, 87, 95, 98,

142, 143, 182, 202, 205
lack of, 194, 202

Non-agile processes, 12, 21-24, 50

Open-plan offices, 8, 63-65, 212
Open source, 11, 77-82, 83, 141, 150
Open Space Technology, 71, 105, 107, 228
Organizational structure, 20, 57, 153,

154, 191
departmental, 20, 45, 153, 155, 169,

171, 191, 196
project-oriented, 191, 196

Outsourcing, 9, 73, 104, 154, 158, 172,
185, 187-90, 196, 214-15

Overtime, 20, 26, 60, 203

Patterns, 67, 68, 107, 150
Paulk, Mark C, 166, 224
Planning, 13, 75, 76, 77, 82, 92-97, 111,

123, 146, 149, 156-57, 173, 196, 210
component-based, 92, 93, 94, 156,

200, 216
result-oriented, 93-96, 146, 156,

200, 207
tools, 96, 97, 216
workshops, 210, 215

Plans, 4, 17, 77, 92ff., 96, 97, 111, 122,
123, 156, 188, 200

Politics, 42, 104, 168, 185, 186
Postmortems, 70, 206
Pritchard, Wendy, 118, 224
Problems, xi, 5, 10, 11, 16, 27, 28, 33, 35,

40, 43ff., 48, 51, 52, 61, 73, 77, 78, 80,
85, 90, 101, 107, 108, 114, 116, 117,
122, 123, 130, 133, 136, 144, 147,
159, 160ff., 167, 168, 170, 174, 176,
181, 186, 187, 195, 197ff., 200ff., 208,
213, 214, 216, 219, 220
learning from, 205-7
notifying customer of, 51, 170
solving, 43, 57, 108, 144, 155, 163,

194, 202, 210, 211, 213, 214, 216

232



INDEX

Processes, 10, 11, 13, 16, 28, 31, 45, 50,
77, 107, 119, 154, 162, 164, 166, 168,
201, 206, 207, 220
adapting, 15, 22, 23, 24, 103, 124,

160, 163, 164-66, 214
business, 136, 137, 138
changing, 23, 102, 104, 161, 163,

172, 215
defining, 102, 103, 160, 162, 165
enterprise-wide, 114, 154, 160-66,

197, 198
heavyweight, 4, 41
lightweight, 15

Process improvement, 68, 103, 165, 192
Programmers, 27, 48, 49, 80, 110
Project chartering, 109, 110, 111
Projects, xi, 4, 6, 8, 19, 21, 26, 27, 31, 33,

41r 44, 45, 48ffv 54, 55, 59ff., 65, 73,
77, 78, 80ff., 85, 87, 90, 92, 97, lOOff.,
110, 113, 114, 118, 147, 152ff., 157,
160ff., 176, 177, 179, 185, 190, 191,
195, 202, 208
controlling, 41, 79, 153, 154, 156,

157-58, 196
culture, 59, 67, 180, 189
failed, xi, 5, 30, 42, 44, 61, 64, 112,

122, 136, 177, 201, 205, 217
fixed-price, 154, 156-60, 172, 188
large, xi, xii, 4ff., lOff., 17, 18, 20, 42,

63, 78, 81, 93, 96, 120, 128,
135ff., 142, 152ff., 178, 185, 193,
220, 221

mission-critical, 5, 126, 194
retrospectives, 109, 110, 111
status, 15, 54, 100, 103, 105, 112, 160
success, xi, 5, 42, 61, 64, 82, 109,

134, 155, 157, 177, 178, 208, 215
support for, 21, 153, 165

Quality, 14, 78, 87, 100, 127, 143, 158,
159, 160, 165, 168ff., 173, 176, 200,
201,210
assurance, 154, 161, 169, 170, 171,

196, 199-200, 210, 212
control, 20, 146, 154, 169, 170, 196,

199-200

Rechtin, Eberhardt, 145, 152, 226
Recompiling, 132, 133, 135
Refactoring, 29, 38, 39-41, 67, 101, 109,

129, 144, 145, 148ff., 188-89

Referential implementation, 114, 115,
179, 201, 202, 204

Reflections, 14, 21, 90, 105, 115, 119,
165, 204

Release, 14, 59, 85ff., 92, 94, 95, 98, 100,
102, 103, 111, 115, 147, 158, 170, 173,
174, 188, 189, 195, 203, 208

Release cycle, 66, 74n., 85, 87, 88, 89, 92,
95, 96, 120, 183, 194, 210, 211, 216
time-boxed, 210, 211

Requirements, 3, 4, 5, 15, 16, 21, 22, 24,
28, 37, 38, 41, 53ff., 86, 87, 93, 104,
136, 138, 155, 156, 172, 175ff., 187,
189, 195
changing, 4, 13, 19, 24, 54, 93, 119,

120, 129, 145, 159, 176, 187ff.
Restart, 44, 112ff., 194, 196, 201, 202
Retrospectives, 15, 28, 54, 58, 66, 68, 90,

102-11, 115, 124, 163, 165, 172, 190,
191, 198, 211-12, 215, 219

Reviewers, 182, 183, 203
Reviews, 68, 101, 182ff., 203

team, 148, 151, 179, 182-83, 214
Rising, Linda, 59, 226
Risk, 3, 5, 6-7, 13, 24, 26, 27, 39, 40ff.,

65, 85, 95, 98, 99, 101, 113, 114, 139,
156, 160, 162, 171, 175, 180, 187,
206, 207, 212

Roock, Stefan, vi, 55-57

Salter, Chuck, 47n., 224
Satir, Virginia, 118, 226
Schedule, xi, 7, 77, 88, 169, 174
Scope, 5-6, 7, 14, 42, 79, 158, 159, 160,

170, 188, 210
Scrum, 15, 18, 84, 228
Senge, Peter, 109, 226
Service orientation, 131-32
Showstoppers, 134, 159, 194
Smells of code, 40
Software, 3, 16, 34, 39, 40, 50, 74, 75, 80,

86, 92, 94, 102, 103, 126, 130, 132,
151, 152, 157, 171, 174, 175, 203
delivery, 19, 34, 88, 92, 158, 159, 206

Sollmann, Ulrich, 47, 48n., 226
Staff, 67, 79, 119, 167, 169, 178ff., 183,

185, 186, 200, 206
Standards, 144, 150-51, 152, 165
Stopper, Dieter, 24n., 224
Subsystems, 19, 37, 55, 56, 57, 132, 136,

138

233



INDEX

Subteams, 9, 43, 49, 51-55, 61, 64, 77,
84, 96, 100, 101, 114, 117, 128, 156,
157, 177, 212, 220

Success, 41, 47, 49, 50, 74, 202, 204, 208,
219

Systems, 7, 13, 14, 17, 19, 21, 23, 32, 33,
35, 37, 39, 40, 41, 45, 50, 55ff., 82,
86ff., 92ff., 98, 99, 102, 110, 114, 116,
124, 126, 127, 129, 130, 133, 136,
139ff., 145, 146, 149, 171, 173ff., 181,
183, 185, 190, 195, 201, 203, 209, 210
change in, 36, 40, 92, 139, 144, 149,

209
growth of, 60, 148, 194
large, 127, 134, 138
running, 99, 124, 200

Taylorism, 48n., 51
Team members, 8, 11, 14, 16, 20, 29, 45,

47, 48, 50, 51, 57ff., 64, 65, 77, 80, 85,
100, 119, 121, 128, 140, 141, 148,
162, 167, 171, 181, 183, 195, 201ff.,
212,216
co-locating, 64, 75, 202

Teams, 4, 15, 29, 30, 43, 45, 47, 50, 55,
63, 67, 83, 97, 109, 111, 134, 137, 144,
148, 149, 180, 181, 208, 210, 211ff.,
217, 219
distributed, 8, 11, 72, 73-77, 83
external, 149, 150, 190, 214, 215, 217
growing, 117-18, 132, 193, 204-5
jelling, 58, 69, 70, 83, 103, 117
large, 5ff., 17ff., 42ff., 49, 51, 66, 73,

84, 85, 88, 97ff., 122, 123, 126ff.,
138ff., 150

roles, 43, 48, 57-58
self-organizing, 21, 117
size of, 6, 13, 54, 113, 114, 126, 152
skills in, 21, 23, 52, 57, 115, 187
small, 4, 9, 18, 42, 43, 49, 52, 84, 127,

139, 141, 205
starting, 114, 115, 117, 131, 201, 202,

204, 205, 208, 212
virtual, 11, 53, 54, 72, 77, 83
visitors, 213, 214, 216

Technology, xi, 11, 30, 52, 54, 79, 94, 97,
114, 126, 131, 142, 144, 151, 166,
168, 179, 196, 201
cutting-edge, 126, 142, 152
morale and, 142
risks of, 142-43, 144

Testing, 14, 20, 21, 36-39, 75, 144,
145-47, 152, 169, 198

Tests, 26, 36, 37, 38, 39, 67, 98, 145, 146,
169, 181, 189, 219

Thomas, David, 178, 181, 225
Time-box, 13, 85, 87, 89, 90, 91, 185,

201, 211
Time frames, 5, 6, 7, 13, 90
Tools, 13, 16, 26, 30, 31, 36, 39, 73, 97,

102, 141, 149, 167, 168, 198
illegal use of, 167, 198
support for, 148, 166, 198, 199

Training, 6, 166, 179-82, 191, 208-10
material, 182, 209, 210

Transparency, 50, 51, 83, 202, 207
Traps, 113, 114, 142
Trouble-shooting, 43, 69-72

Unified Modeling Language, 35, 36,
134

Unit tests, 23, 29, 38, 39, 40, 100, 110,
145ff., 170, 188, 199, 200, 203

Use-case, 82, 201
Users, 16, 17, 22, 23, 55, 77ff., 94, 175,

177, 195

van der Helm, Peer, 24nv 224
Version control, 101, 139, 141, 149
Version management tool, 149, 150

Waterfall model, 10-11, 86
WebTest, 147n., 228
Wiki Web, 51, 66, 67, 73, 75, 83, 89, 94,

96, 103, 105, 150, 168, 180, 183, 201,
202, 209, 214

Work environment, 63, 65, 72, 77, 83
Working software, 16, 17, 19, 20, 31ff.,

50, 87, 93, 159, 187, 201

XPlanner, 97, 228
XpPlanlt, 97, 228
XP Software, 228

YAGNI, 131
Yourdon, Edward, 161, 226

Zaninotto, Enrico, 155

234


	Contents
	Preface
	3 Agility and Large Teams
	People
	Responsibility
	Respect and Acceptance
	Trust

	Team Building
	Building Teams and Subteams
	Requirements Channels
	Team Roles
	Team Jelling

	Interaction and Communication Structures
	Open-Plan Office
	Open-Plan Offices
	Flexible Workplace
	Encouraging Communication
	Communication Team

	Trouble-Shooting
	Virtual Teams
	Distributed Teams
	Distributed Teams
	Open Source
	Open Source

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




