
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133488777
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133488777
https://plusone.google.com/share?url=http://www.informit.com/title/9780133488777
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133488777
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133488777/Free-Sample-Chapter


BEST PRACTICES FOR THE
FORMAL SOFTWARE
TESTING PROCESS



Also Available from Dorset House Publishing

The Deadline: A Novel About Project Management
by Tom DeMarco
ISBN: 0-932633-39-0 Copyright ©1997 320 pages, softcover

Dr. Peeling's Principles of Management:
Practical Advice for the Front-Line Manager
by Nie Peeling
ISBN: 0-932633-54-4 Copyright ©2003 288 pages, softcover

Five Core Metrics: The Intelligence Behind Successful Software Management
by Lawrence H. Putnam and Ware Myers
ISBN: 0-932633-55-2 Copyright ©2003 328 pages, softcover

Measuring and Managing Performance in Organizations
by Robert D. Austin foreword by Tom DeMarco and Timothy Lister
ISBN: 0-932633-36-6 Copyright ©1996 240 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright ©1999 264 pages, softcover

Project Retrospectives: A Handbook for Team Reviews
by Norman L. Kerth foreword by Gerald M. Weinberg
ISBN: 0-932633-44-7 Copyright ©2001 288 pages, softcover

Surviving the Top Ten Challenges of Software Testing:
A People-Oriented Approach
by William E. Perry and Randall W. Rice
ISBN: 0-932633-38-2 Copyright ©1997 216 pages, softcover

Waltzing with Bears: Managing Risk on Software Projects
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-60-9 Copyright ©2003 208 pages, softcover

For More Information

• Contact us for prices, shipping options, availability, and more.

• Sign up for DHQ: The Dorset House Quarterly in print or PDF.

• Send e-mail to subscribe to e-DHQ, our e-mail newsletter.

• Visit Dorsethouse.com for excerpts, reviews, downloads, and more.

DORSET HOUSE PUBLISHING
An Independent Publisher of Books on

Systems and Software Development and Management. Since 1984.
353 West 12th Street New York, NY 10014 USA

1-800-DH-BOOKS 1-800-342-6657
212-620-4053 fax: 212-727-1044

info@dorsethouse.com www.dorsethouse.com

http://www.dorsethouse.com


BEST PRACTICES FOR THE
FORMAL SOFTWARE
TESTING PROCESS

A MENU
OF

TESTING
TASKS

Rodger D. Drabick

s\
DH

Dorset House Publishing
353 West 12th Street
New York, NY 10014



Library of Congress Cataloging-in-Publication Data

Drabick, Rodger.
Best practices for the formal software testing process : a menu of testing

tasks / Rodger Drabick.
p. cm.

Includes bibliographical references and index.
ISBN 0-932633-58-7 (softcover)
1. Computer software-Testing. I. Title.

QA76.76.T48D73 2003
005.1'4-dc22

2003062472

All product and service names appearing herein are trademarks or registered
trademarks or service marks or registered service marks of their respective own-
ers and should be treated as such.

Cover Design: Nuno Andrade
Cover Graphic: Detail from Figure 1-5
Cover Author Photograph: Courtesy of Lockheed Martin

Copyright © 2004 by Rodger D. Drabick. Published by Dorset House Publishing
Co., Inc., 353 West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without prior written permission of the
publisher.

Distributed in the English language in Singapore, the Philippines, and South-
east Asia by Alkem Company (S) Pte. Ltd., Singapore; in the English language
in India, Bangladesh, Sri Lanka, Nepal, and Mauritius by Prism Books Pvt.,
Ltd., Bangalore, India; and in the English language in Japan by Toppan Co.,
Ltd., Tokyo, Japan.

Printed in the United States of America

Library of Congress Catalog Number: 2003062472

ISBN: 0-932633-58-7 12 11 10 9 8 7 6 5 4 3 2 1

Digital release by Pearson Education, Inc., June, 2013



Dedication

To my wife, Karen, without whose love and support this book and the
other things I do would not be possible; and to my daughters, Alyson
and Liz—I love you all.



This page intentionally left blank 



Acknowledgments

Many people—including coworkers, managers, SQA and testing associ-
ates, family, and friends—have earned a special Thank You for helping
me bring my ideas from a concept to a published book.

I'd like first to express my thanks—in memoriam—to Peter Natale,
formerly of Eastman Kodak Company, who provided me with my first
opportunity in software testing. Without Pete's support and mentor-
ship, this book would not have been possible. Thanks also to Frank
Mondziel, who provided guidance in our first efforts in software QA and
testing at Kodak, and to Ed Cattron, a long-time friend, coworker, and
manager at Kodak, who supported my initial efforts to develop and for-
malize this process model on a large and complex Internal Revenue
Service program in the early 1990's.

I also owe a great debt of gratitude to Bill Perry of the Quality
Assurance Institute and Dr. Edward Miller of Software Research, Inc.,
both of whom gave me the opportunity to present portions of this
model at their testing conferences. I made my first presentation on the
topic as a keynote address at a Software Quality Week, hosted by Ed
and his company. Independent consultant Denis Meredith gave me
the opportunity to present the model end-to-end at one of the Testing
Computer Software Conferences he coordinated. Denis remains my
"go to guy" for questions about requirements and risk management.

vii



viii ACKNOWLEDGMENTS

Thank you very much, gentlemen! It's been a pleasure knowing you,
and learning from you.

To so many at Software Quality Engineering who have been helpful
to me along the way, I give special thanks: Bill Hetzel, former president
of SQE, and Dave Gelperin and Rick Craig, associates at SQE—all of
you have provided invaluable technical and moral support throughout
my testing career.

Lisa Crispin, coauthor of Testing Extreme Programming, introduced
me to special techniques for approaching testing of that agile method.
For that knowledge and for reviewing a number of draft chapters, Lisa,
I am deeply grateful.

It's difficult to adequately express the gratitude I owe to several edi-
tors. First, my friend of many years, Debbie Lafferty, formerly Acquisi-
tions Editor at Addison-Wesley, started me working on this book. Deb-
bie introduced me on-line to Wendy Eakin at Dorset House Publishing,
and that introduction has resulted in the final product you hold in
your hands. To Wendy and the rest of the Dorset House staff, includ-
ing Nuno Andrade, Vincent Au, and David McClintock, many thanks
for helping me turn a concept into a real book that I hope will provide
valuable information to the testing community! Thanks also to Dorset
House author and software systems consultant Tim Lister, for his rec-
ommendation that this book be published.

And finally, a lifetime of gratitude and thanks to Karen, my wife
and friend of many years. Without your help and encouragement, this
book would never have been started, much less completed.



Contents

Foreword xiii

Preface xv

Chapter 1 Introduction 3

1.1: OVERVIEW 3
1.2: THE SOFTWARE DEVELOPMENT LIFE CYCLE 4
1.3: THE FORMAL TESTING LIFE CYCLE 6
1.4: ORGANIZATIONAL CONSIDERATIONS 11
1.5: THE NEED FOR THE PROCESS MODEL 16
1.6: How то USE THE FORMAL TESTING PROCESS MODEL 17
1.7: INPUT-PROCESS-OUTPUT MODELS 21
1.8: LEVEL 0 IPO MODEL FOR FORMAL TESTING 24
1.9: LEVEL 1 IPO MODEL FOR FORMAL TESTING 25
1.10: LIMITATIONS INHERENT IN THIS BOOK'S SCOPE 26
1.11: WHAT'S NEXT? 27

Chapter 2 The Formal Testing Process Model: Level 1 IPO

Diagrams 28

2.1: OVERVIEW 28
2.2: EXTRACT TEST INFORMATION FROM PROGRAM PLANS—LEVEL 1 IPO

DIAGRAM 28

ix



x CONTENTS

2.3: CREATE TEST PLAN 34
2.4: CREATE TEST DESIGN, TEST CASES, TEST SOFTWARE, AND TEST

PROCEDURES 39
2.5: PERFORM FORMAL TEST 43
2.6: UPDATE TEST DOCUMENTATION 47
2.7: WHAT'S NEXT? 50

Chapter 3 Extract Test Information from Program Plans: Levels 2
and 3 IPO Diagrams 51

3.1: OVERVIEW 51
3.2: EXTRACT TEST INFORMATION FROM PROGRAM PLANS—LEVEL 2 IPO

DIAGRAM 52
3.3: REVIEW PROGRAM MANAGEMENT PLAN—LEVEL 3 IPO DIAGRAM 56
3.4: REVIEW QUALITY ASSURANCE PLAN—LEVEL 3 IPO DIAGRAM 60
3.5: REVIEW SOFTWARE DEVELOPMENT PLAN—LEVEL 3 IPO DIAGRAM

64
3.6: REVIEW CONFIGURATION MANAGEMENT PLAN—LEVEL 3 IPO

DIAGRAM 69
3.7: WHAT'S NEXT? 72

Chapter 4 Create Test Plan: Levels 2 and 3 IPO Diagrams 73
4.1: OVERVIEW 73
4.2: CREATE TEST PLAN—LEVEL 2 IPO DIAGRAM 74
4.3: ANALYZE REQUIREMENTS—LEVEL 3 IPO DIAGRAM 78
4.4: WRITE TEST PLAN—LEVEL 3 IPO DIAGRAM 83
4.5: REVIEW TEST PLAN—LEVEL 3 IPO DIAGRAM 89
4.6: WHAT'S NEXT? 93

Chapter 5 Create Test Design, Test Cases, Test Software, and Test
Procedures: Levels 2 and 3 IPO Diagrams 94

5.1: OVERVIEW 94
5.2: CREATE TEST DESIGN, TEST CASES, TEST SOFTWARE, AND TEST PRO-

CEDURES—LEVEL 2 IPO DIAGRAM 95
5.3: REVIEW TEST PLAN—LEVEL 3 IPO DIAGRAM 102
5.4: CREATE TEST DESIGN—LEVEL 3 IPO DIAGRAM 105
5.5: REVIEW TEST DESIGN—LEVEL 3 IPO DIAGRAM 109
5.6: CREATE TEST CASES—LEVEL 3 IPO DIAGRAM 113
5.7: ACQUIRE TEST SOFTWARE-BUILD—LEVEL 3 IPO DIAGRAM 119



CONTENTS xi

5.8: ACQUIRE TEST SOFTWARE-BUY—LEVEL 3 IPO DIAGRAM 123
5.9: CREATE TEST PROCEDURES—LEVEL 3 IPO DIAGRAM 126
5.10: WHAT'S NEXT? 131

Chapter 6 Perform Formal Test: Levels 2 and 3 IPO Diagrams 132
6.1: OVERVIEW 132
6.2: PERFORM FORMAL TEST—LEVEL 2 IPO DIAGRAM 133
6.3: HOLD PRETEST MEETING—LEVEL 3 IPO DIAGRAM 137
6.4: EXECUTE TEST—LEVEL 3 IPO DIAGRAM 141
6.5: DETERMINE DISPOSITION OF INCIDENTS—LEVEL 3 IPO

DIAGRAM 146
6.6: HOLD POSTTEST MEETING—LEVEL 3 IPO DIAGRAM 151
6.7: WRITE TEST REPORT—LEVEL 3 IPO DIAGRAM 155
6.8: WHAT'S NEXT? 159

Chapter 7 Update Test Documentation: Levels 2 and 3 IPO Dia-
grams 160

7.1: OVERVIEW 160
7.2: UPDATE TEST DOCUMENTATION—LEVEL 2 IPO DIAGRAM 161
7.3: ANALYZE TEST DOCUMENTATION PROBLEMS—LEVEL 3 IPO

DIAGRAM 164
7.4: UPDATE TEST DOCUMENTS—LEVEL 3 IPO DIAGRAM 167
7.5: REVIEW AND APPROVE SOFTWARE TEST DOCUMENTS—LEVEL 3 IPO

DIAGRAM 170
7.6: WHAT'S NEXT? 173

Chapter 8 Tailoring the Model 174
8.1: OVERVIEW 174
8.2: USING THE TESTING PROCESS MODEL FOR LARGE, SAFETY-CRITICAL,

OR PROFIT-CRITICAL PROGRAMS 175
8.3: USING THE TESTING PROCESS MODEL FOR MEDIUM-SIZE

PROGRAMS 178
8.4: USING THE TESTING PROCESS MODEL ON SMALL PROJECTS 179
8.5: USING THE PROCESS MODEL WITH EXTREME PROGRAMMING 181
8.6: STARTING FROM SCRATCH 183

Chapter 9 Summing Up 188
9.1: REPRISE: How то USE THE TESTING PROCESS MODEL 188
9.2: SUMMARY THOUGHTS 193
9.3: CONCLUSION 196



xü CONTENTS

Appendices 197

Appendix A: The Software Engineering Institute, the Capability
Maturity Model-Software, and the Capability Maturity Model
Integration 199

A. 1: THE CAPABILITY MATURITY MODEL FROM THE SOFTWARE ENGINEERING
INSTITUTE AT CARNEGIE MELLON UNIVERSITY 199

A. 2: CAPABILITY MATURITY MODEL INTEGRATION 202

Appendix B: Preferred Practices 204
B.I: PROGRAM MANAGEMENT PLAN AND TEMPLATE 204
B.2: SOFTWARE DEVELOPMENT PLAN AND TEMPLATE 213
B.3: SOFTWARE QUALITY ASSURANCE PLAN AND TEMPLATE 221
B.4: CONFIGURATION MANAGEMENT PLAN AND TEMPLATE 229

Appendix C: Questionnaire for Evaluating Local Testing
Processes 249

C.I: EXTRACT TEST INFORMATION FROM PROGRAM PLANS 249
C.2: CREATE TEST PLAN 252
C.3: CREATE TEST DESIGN, TEST CASES, TEST SOFTWARE, AND TEST PRO-

CEDURES 254
C.4: PERFORM FORMAL TEST 257
C.5: UPDATE TEST DOCUMENTATION 259

Appendix D: A Primer for Test Execution 260

Glossary 267

Bibliography 275

Index 281



Foreword

Rodger and I first met in 1985 at the Testing Computer Software Con-
ference, which I coordinated. This was Rodger's first software testing
conference, and like many folks new to software testing, he was deter-
mined to learn as much as he could about the fascinating field of soft-
ware testing in the limited time available. At the time, Rodger had
been working as a team lead for system testing on a large software pro-
gram for a government customer.

Over the years, I watched Rodger's career develop, and witnessed
as his focus changed from learning and using testing techniques, to
testing management, and finally to concentration on the software test-
ing process. In the mid-1990's, Rodger presented aspects of his
process model at the Quality Assurance Institute's International Con-
ference on Software Testing, the same process model that this book
describes in detail.

Best Practices for the Formal Software Testing Process: A Menu of
Testing Tasks is the product of the knowledge that Rodger has gained
through personal experience as well as from seminars and conferences
put on by the QAI and other well-respected testing organizations.

Primarily intended to help new test engineers and test engineering
managers understand the steps involved in testing software systems
and hardware-software systems, this book will be useful to any testing
organization interested in documenting and improving its testing

xiii



xiv FOREWORD

process. It begins by showing you how to develop a test plan based on
the software and system requirements, which identifies exactly what
will be tested, and goes on to detail the tasks and processes involved in
executing the test and documenting the results of the testing.

While this book focuses primarily on testing associated with large
development programs—using either a spiral life cycle or the Unified
Software Development Process, with its iterative phases—the informa-
tion Rodger offers can be put to the most effective use through tailor-
ing the process to fit your specific environment.

Readers familiar with the testing documentation and testing life
cycle contained in IEEE-Standard-829, the Standard for Software Test
Documentation, will readily see the links to the process model detailed
in this book. Nevertheless, those working with other life cycles will
find guidance in tailoring this testing process to fit those life cycles.

Best Practices for the Formal Software Testing Process serves as a
fine example of What to Do to Test. As Rodger writes, this is the book
he wished he'd had when he started his software testing career. This
book should be in the hands of every member of every software testing
organization. If you buy this book, plan to use it; don't just set it on
your bookshelf.

September 2003 William E. Perry
Orlando, Florida



Preface

What is "the formal software testing process"?
One of the definitions the Institute of Electrical and Electronics

Engineers (IEEE) Software Standards collection provides for process is
"a course of action to be taken to perform a given task" or "a written
description of a course of actions, for example, a documented test pro-
cedure." Various editions of Webster's Dictionary offer a series of defi-
nitions for process, including "a particular method of doing something,
generally involving a number of steps or operations."

A simpler definition of a process is "the way we do things."
Thus, we could say that the "testing process" is "a course of action

to be taken to perform formal testing," or "the way we do testing here."
But, how does "the way we do testing here" stack up against indus-

try standards for best testing practices, and why did I go to all the
effort to define a Formal Testing Process Model? Let me share a short
personal retrospective.

I have spent twenty-eight years of a mostly exciting technical
career testing and managing testing programs. These programs
started out as hardware programs, and evolved into hardware and
software systems programs in the mid-1970's. I was lucky in some
respects to work for a large company in the Department of Defense
(DoD) area; thus, we were always in an environment that forced us to
be rigorous and methodical, both in test execution and in test docu-

xv



xvi PREFACE

mentation. Note that being methodical didn't always lead to delivering
successful systems.

When I first began working in programs that were primarily soft-
ware, I was looking for sources of material on "best practices" relative to
the software testing process. Being in the DoD environment, our cus-
tomers supplied Contract Deliverable Requirements Lists (CDRLs) that
identified the documents we had to write. Thus, we had a framework
for our programs. Later, I discovered a number of military standards
(for example, DoD-Standards 2167A and 2168), and the IEEE Software
Engineering Standards, which I continue to use to this day. Following
the series of documentation contained in IEEE-Standard-829, the Stan-
dard for Software Test Documentation, suggested a standard process to
utilize for software and systems test documentation.

In 1992, while working in the Commercial and Government Sys-
tems Division of the Eastman Kodak Company, my job was to develop
a testing estimate for a program we were bidding for the Internal Rev-
enue Service. Having built estimates previously for large, complex,
testing programs, I knew that I needed a logical, structured list of
tasks to form the basis of my estimate. I could then convert this task
list into a work breakdown structure (WBS), and estimate the time to
perform each task.

About this same time, I was reading Watts Humphrey's fascinating
book Managing the Software Process (Humphrey, 1989). Watts showed
how to use Input-Process-Output (IPO) diagrams to document a
process; I applied that technique to the testing process. That was the
first formal documentation of the top levels of the model you will see
described in this book. I published an article describing how aspects
of this model could be used in estimating, in 1993 in the June issue of
Ed Yourdon's American Programmer newsletter (Yourdon, 1993).!
That's one use of such a model. Over the years, I continued to refine
the model until it became the fairly detailed model presented in this
book.

Incidentally, our prime contractor accepted my estimate, and both
it and the Internal Revenue Service accepted the overall estimate.

The first light bulb that lit as I began to learn about software test-
ing is that testing has a life cycle that is closely linked to the software
development life cycle. What seems like a logical truth in 2003 was a
real revelation to many in the mid-1970's. I still think that the "V-dia-
gram" is a thing of beauty. The V-diagram is a means of illustrating
the relationship between the concurrent software development and
testing life cycles (see Figure 1-2 for one example of the V-diagram).
Unfortunately, there are still a large number of people and corpora-

1 Rodger D. Drabick, "A Process Model Tool for Estimating Software Costs," American Pro-
grammer, Vol. 6, No. 6 (1993), pp. 20-27.



PREFACE xvii

tions developing software who haven't recognized this basic truth. We
write a test plan while requirements are being developed. We then do
test design and write test cases as the software design is being devel-
oped, and write test procedures during the coding phase.2 Execution
of formal testing occurs following unit testing and integration testing.

The second light bulb that lit pertained to the critical importance of
test planning, and the consequent need for "testable requirements."
Many good books have been written on these subjects (Cause and
Weinberg, 1989; Wiegers, 1999), so I will not belabor the point here.

The third light bulb that was turned on was realizing that to prop-
erly estimate testing programs, we need a structured, internally con-
sistent list of tasks that test engineers will perform on a specific pro-
gram. Once such a list of tasks is in hand, we can then estimate each
task individually to get a bottoms-up estimate for a testing program.
And if we perform the same set of tasks (or a very similar set) on each
program, we can begin to establish accurate metrics for how much our
testing costs, and how long it can be expected to take.

In brief, what I am providing in this book is a soup-to-nuts list of
tasks and processes for a program of formal software or system testing.
If you are just starting to implement a testing process, you will not want
to try to implement all parts of this model in one fell swoop; it would be
too overwhelming and too costly. In later chapters, I suggest ways to
implement this process in a prioritized, piecewise fashion.

Objectives

There is no "one true way" to test software, so the goal of this book is
to provide you with information that you can use to develop a formal
testing process that fits the needs of you, your customers, and your
organization.

Glenford Myers woke up the testing community in 1979 with his
book The Art of Software Testing; he stated that the purpose of testing
is to find errors, rather than to prove that a system works. Regardless
of what your opinion of his thesis is, we test to see if we can find any
problems with developed systems. A best-practices test process is per-
formed throughout the duration of the development process. The test
process puts appropriate emphasis on requirements testability, docu-
mentation prior to test execution, review of the documentation, sys-
tematic interface with the development community, and test execution
according to the approved documentation. A series of tasks to accom-
plish this testing process is presented in this book.

^See the Glossary at the end of this book for a definition of "test case" as there is much
confusion in the industry regarding this term.



xviii PREFACE

In addition to defining the sequence of tasks in the testing process,
I address interfaces between the formal testing group and the other
organizations involved in the software development life cycle, including
development engineers, managers, software quality engineers, and
software configuration management personnel. All of these people
have significant roles that must be performed in a quality manner to
make the software development process and the software testing
process work. One of the primary purposes of test documentation is
communication with the other groups on the program, so we as test
engineers must be sure to make these intergroup interfaces work. All
of us should be aware that there's a Level 3 key process area (KPA) in
the Software Engineering Institute's Capability Maturity Model
(SEI-CMM) for Intergroup Coordination. Early in the development life
cycle, test engineers and managers review program-level plans, includ-
ing the Program Management Plan (PMP), the Configuration Manage-
ment Plan (CMP), the Software Quality Assurance Plan (SQAP), and the
Software Development Plan (SDP), or whatever you call these docu-
ments in your environment. During the requirements phase of the
software development life cycle, test engineers review the require-
ments. Later in the life cycle, the groups that authored these plans
and the requirements get to return the favor by reviewing the test plan.
Test engineers review software design (and sometimes code) for input
to their test designs, test cases, and test procedures. Once again,
development engineers, QA staff members, and CM personnel should
review the test designs, test cases, and test procedures. As has been
shown in other reference materials (Wiegers, 2002), peer reviews mini-
mize defects and cost-of-quality by finding defects as early as possible
in the life cycle.

Intended Audience

I have written this book for four specific audiences, who have much in
common:

• new test engineers, who want to learn more about the
framework of tasks performed as part of a good testing
process

• newly assigned test managers and team leaders, who
are not experienced testers (but may have come from a
development, quality assurance, or systems engineering
background) and who need to learn more about testing
quickly



PREFACE xix

• more experienced test engineers, who are looking for
ways to improve their testing process

• process improvement leaders, such as members of soft-
ware engineering process groups and quality assurance
staff

All of these folks realize that testing is necessary to verify the quality of
the delivered product(s). They should also be aware that a coordinated
program of peer reviews and testing can support a good software devel-
opment process, but if the developers fall short of building a quality
product, it's not possible to "test quality in."

Organizations that are pursuing Level 3 of the Capability Maturity
Model for Software (for additional detail on the Capability Maturity
Model from the Software Engineering Institute at Carnegie Mellon Uni-
versity, see Appendix A and Website www.sei.cmu.edu) will also find
this book valuable, since testing is a significant component of the
Software Product Engineering key process area for CMM Level 3. The
newer Capability Maturity Model Integration (CMMI), with components
of Systems Engineering, Software Engineering, Integrated Product and
Process Development, and Supplier Sourcing, has process areas for
Verification and for Validation, both of which involve aspects of testing.
This book will assist them in documenting their testing process, which
will support them in the Level 3 key process area Organization Process
Definition.

There's actually a fifth audience as well, those software develop-
ment team leads, supervisors, and managers who are interested in
learning more about what test engineers and the testing group are
doing, and why.

Prerequisites

What should you know to read this book? You should be aware that
testing is not a "phase," where software developers "throw the software
over the wall" to test engineers when the developers have finished
coding. To be cost effective, testing needs a life cycle that runs concur-
rently with the software development life cycle. The testing life cycle
begins during the requirements elucidation phase of the software
development life cycle, and concludes when the product is deemed
ready to install or ship following a successful system test (or whatever
you call the final test in your culture).

Ideally, you should be aware of the importance of test documentati-
on, especially a formal test plan, in your life cycle. You should be

http://www.sei.cmu.edu


xx PREFACE

aware that there are good standards for this documentation in the
software industry; I strongly recommend the IEEE Software Engineer-
ing Standards collection in general, and IEEE-Standard-829, the Stan-
dard for Software Test Documentation, in particular.

Finally, you should have the desire to improve your knowledge of
the testing process, and a commitment to make improvements.

How to Read This Book

This book is laid out in the following order:

1. Chapter 1 provides a general overview of the software
development life cycle, and an overview of the concur-
rent testing life cycle. It also shows the need for a test-
ing process model, and illustrates the Level 0 and Level
1 IPO diagrams for this model.

2. Chapters 2 through 7 show decomposition of the Level
1 IPO diagram into a series of Level 2 and Level 3 dia-
grams, to show the tasks involved in the review of pro-
gram plans, the creation of a test plan, the creation of
test design (and other test documentation), the perfor-
mance of formal test, and finally, the updating of test
documentation. This set of tasks can be used as the
basis for an estimate of a formal testing program on a
particular development program.

3. Chapter 8 provides some thoughts on how to use and
customize this process model, which is a soup-to-nuts
model. You may not be in a position to use such a
model initially, but on a large program, putting this
process in place should be your goal. Customizing the
model should be your goal on a medium- or small-size
project. Thus, this model provides a template for a test-
ing process improvement program. To end the text
itself, Chapter 9 provides a brief summary of the model
in its entirety.

4. To conclude the book, I've added four practical Appen-
dices, a Glossary, a Bibliography, and, of course, an
Index. Although most of these final sections are stan-
dard fare, the Appendices bear describing. Appendix A
provides a brief description of the Capability Maturity
Model for Software (CMM-SW) from the Software Engi-
neering Institute at Carnegie Mellon University, as well



PREFACE xxi

as a brief description of the SEI's more recent Capability
Maturity Model Integration (CMMI). Appendix В pro-
vides templates for five preferred practices that are sig-
nificant to a software development program, including a
Program Management Plan (PMP), a Software Develop-
ment Plan (SDP), a Software Quality Assurance Plan
(SQAP), a Configuration Management Plan (CMP), and a
Test Plan (TP). Appendix С provides a questionnaire
you can use to evaluate the state of your testing
process. Let this guide your use of the Formal Testing
Process Model as a mechanism to help you improve
your testing process. Appendix D contains guidelines
for test execution.

To gain a detailed understanding of the tasks, inputs, and outputs
involved in formal testing, you can simply read the book from front to
back. For readers desiring to explore specific aspects of the testing
process (for example, test execution), I would recommend skimming
Chapter 1 (Introduction), reviewing Chapter 2 (The Formal Testing
Process Model: Level 1 IPO Diagrams) to identify which process you
want to explore in more detail, and then proceeding directly to that
chapter (for one example, test execution, see Chapter 6, "Perform For-
mal Test," and Appendix D). Though there are sections for each sub-
process of the major processes (for example, subprocess Execute Test,
major process Perform Formal Test), I would suggest there are enough
interfaces between the various subprocesses that the entire section
should at least be skimmed.

I don't spend much time discussing the topic of testing tools and
test automation, because these are really software development pro-
grams, not test processes. However, there are two subprocesses
defined for Acquire Test Software in Chapter 5, which should be
reviewed. One subprocess deals with building your own test software
tools; the second subprocess addresses the activities involved in buy-
ing the tools you need.

I hope that this book will start you thinking about the following
questions:

• Does our current testing process have all the tasks we
need to identify defects in the products under test? If
not, which tasks should we add first to improve our
testing process?

• Have we identified the next step in our continuous
process improvement plan?



xxü PREFACE

• Do we have the necessary reviews in our testing process
(for example, Test Plan inspection)?

• Are we writing all the test documentation we need to
provide high-quality repeatable tests?

• Is testing and test coverage adequate for our program
(for example, enough time, enough test points)?

If you can answer yes to all these questions, then you probably don't
need to read this book in its entirety. But are you sure that your test
process is as good as it can be?

There is one additional caveat to keep in mind as you read this
book: You will not find the term "bugs" used. I once heard a testing
guru state at a conference that he didn't like the term "bugs," since the
term implies that bugs have a life of their own. Those of you with a
memory for computer trivia will remember that the term originated
when workers on an early Navy computer found that a large moth had
become trapped between the contacts of a relay, causing the computer
to malfunction.3 Well, folks, in software, defects don't jump in by
themselves. Human beings, as software engineers, put defects in code.
Now, the defects may not all be our fault, since we may just be doing
what we were told to do when the customer gave us some incorrect
requirements, but nonetheless, people put defects in; defects don't just
appear spontaneously. So, in this book, you'll see the terms "defects,"
"incidents," and "problems," but you won't see the term "bugs."

Scope of Coverage

This book will present a description of a process and a set of tasks that
can be used to implement or improve a formal testing program. For-
mal testing means test activities performed by a group of trained pro-
fessional test engineers whose chain of command is independent of
development management. Examples of formal testing are system
testing and acceptance testing. By contrast, informal testing consists
of test activities performed by the development group. Examples of
informal testing are unit testing and component testing. Integration
testing may also be informal testing, if members of the software devel-
opment group perform that testing.

In addition, this book will identify the testing tasks, the inputs and
outputs associated with each task, presenting them by means of clas-
sical Input-Process-Output diagrams. Tasks that span the testing life

ЗАБ a Lieutenant in the United States Navy, the late Retired Rear Admiral Grace Hopper
and her team discovered a moth trapped between the contacts of a relay, preventing the
relay from passing current. As a result of this episode, Hopper is credited with coining
the terms "bug" and "debug," to describe computer errors and how to fix them.
Source: People and Discoveries, www.pds.org/wgbh/aso/databank/entries/btmurr.html.

http://www.pds.org/wgbh/aso/databank/entries/btmurr.html


PREFACE xxiii

cycle, from test planning through test execution and beyond, will also
be addressed.

Features

This book addresses testing activities and tasks that span the entire
testing life cycle—from review of program plans, to developing the for-
mal test plan, through developing the remainder of the test documen-
tation (test design, test cases, test procedures) as well as acquiring any
needed automated testing tools, through test execution, to final updat-
ing of the test documentation after test execution is complete.

The test activities and tasks will be represented using the tech-
nique of classical Input-Process-Output (IPO) diagrams, as suggested
by Watts Humphrey (Humphrey, 1989). The test activities, tasks, and
processes are in accordance with those documented in IEEE-Standard-
829, the Standard for Software Test Documentation, and are tech-
niques suggested by a number of testing specialists, including person-
nel at the Quality Assurance Institute (Orlando, Florida) and Software
Quality Engineering (Jacksonville, Florida). These are techniques I
have used for many years on a variety of hardware and software pro-
grams, of large and small size. Hopefully, use of this method and
adoption of some or all of the processes will help you as much as they
have helped me.

Readers should keep one additional point in mind: The full-blown
model described in this book details a full-featured formal testing
process that is applicable to large programs and that would fully sup-
port programs deliverable to state and federal governments, or on pro-
grams delivering safety-critical systems or having significant impact on
corporate profits. For work on smaller systems, or in organizations
where a formal testing process is just getting organized, this process
model must be significantly tailored and reduced in scope. Guidance
in tailoring this process model and using it on projects and programs
of various sizes is provided in Chapter 8. As with any process
improvement opportunity, don't try to do everything at once. Prioritize
your process improvements and proceed slowly and methodically.
Plan your work on small projects so as to have lots of little victories. In
today's sound-bite management environment, it is very important to
show lots of accomplishments. It is essential to make sure you can
publicize your and your group's accomplishments if you are going to
survive in this new world of short-term planning and thinking.



xxiv PREFACE

Benefits to the Reader

Why should you, the reader, care about a book that provides a detailed
definition of a software testing process? A short answer is, because
you need to learn more about how to do testing; this means knowing
what the testing process should be. Another answer is, you believe the
testing process you are now using could be improved and you need
some guidance.

This book, and the model detailed in it, is designed to fill both
needs.

If you are a new test engineer or test engineering manager who has
not spent ten-to-twenty years in the testing arena, such a model can
serve as a confirmation of the "good things you are doing" and a useful
guide to "things you should be doing." In Critical Testing Processes,
testing expert Rex Black goes into a beautifully detailed set of steps for
developing a testing estimate (Black, 2003). Use of a process model
such as the one I define in this book can identify a list of tasks that
form the foundation for such an estimate.

At the risk of repeating myself, I'd again like to note: My goal is to
address testing activities and tasks that span the entire testing life
cycle, from reviewing program plans, to developing the formal test
plan, through developing the remainder of the test documentation (test
design, test cases, test procedures) as well as acquiring any needed
automated testing tools, through test execution, to final updating of
the test documentation after test execution is complete. To do all this,
you can use the technique of IPO diagrams shown in the following
chapters to model your current testing process. This approach will
provide you with a model of a software system that is an analog to the
current logical model defined in the many seminars and books on the
structured methods put out during the 1970's and 1980's by staff and
consultants at Yourdon, Inc., and published by Yourdon Press.4 You
could then take your current logical model and compare it with the
model defined in this book, and decide whether any elements are miss-
ing from your process. Finally, you could start a process improvement
activity to implement some of those missing elements, so that your
process will be improved. An improved testing process should result in
your identifying more defects prior to delivering your products, either
by finding those defects prior to coding (through reviews associated
with developing test documentation), or by finding defects during test
execution because your improved procedures result in better testing.

4 Although I could cite many seminars and books, the seminal works on structured
methods seem to me to be ones published by Yourdon Press (Yourdon and Constantine,
1975; DeMarco, 1978; Page-Jones, 1980; McMenamin and Palmer, 1984).



PREFACE xxv

Before you jump into the book, let me offer another advisory note:
Read the Glossary. Currently, there is ambiguity in the testing indus-
try regarding some of the terms we use on a daily basis, such as "test
plan," "test cases," and "test procedures." This book adheres to the
terminology from IEEE-Standard-610.12, the Standard Glossary of
Software Engineering Terminology. Many companies use the term
"test plan" to encompass all test documentation. In such an instance,
the IEEE-type test plan is the first chapter, and test cases and test
procedures are contained in appendices. That isn't what is meant by
"test plan" in this book. Similarly for the term "test cases"—in some
companies, test cases are considered to be the step-by-step instruc-
tions for executing tests. This book uses the term "test procedures" to
cover those step-by-step instructions; in IEEE terminology, "test cases"
contain the input data and expected results when input data are input
to the system under test. So, keep this book's Glossary handy to avoid
confusion.

Now that you have finished this Preface, turn to Chapter 1, "Intro-
duction," and begin to read the book itself. Hopefully, you'll enjoy
reading it as much as I have enjoyed developing the model and writing
the book.

August 2003 R.D.D.
Columbia, Maryland



This page intentionally left blank 



BEST PRACTICES FOR THE
FORMAL SOFTWARE
TESTING PROCESS



This page intentionally left blank 



Chapter 3
Extract Test Information

from Program Plans:
Levels 2 and 3 IPO Diagrams

3.1: Overview

In Chapter 2, we reviewed the five Level 1 IPO diagrams for the formal
testing process, as listed below:

1. Extract Test Information From Program Plans, process
1.1

2. Create Test Plan, process 1.2
3. Create Test Design, Test Cases, Test Software, And Test

Procedures, process 1.3
4. Perform Formal Test, process 1.4
5. Update Test Documentation, process 1.5

In this chapter, I expand the detail of the Level 1 IPO diagram pre-
sented in Chapter 2 for process 1.1, Extract Test Information From
Program Plans. The goal of this process is to extract any requirements
for testing from the higher-level plans, so that the scope of the test
effort can be identified.

There can be a significant variation in the specific program plans
associated with different organizations and the various projects worked
on by those organizations. Requirements for program plans may vary
by customer, with some programs requiring formal Program Manage-

51



52 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

ment Plans, Configuration Management Plans, Quality Assurance
Plans, and others. Other programs may require various formal and
informal forms of documentation plans, build plans, marketing plans,
and sales plans. Sample plans are listed below, and are typical of
plans required on a large program in a highly regulated environment.
You can customize your process model to show the specific plans your
program requires.

In the Level 2 IPO diagram (see Figure 3-2), four subprocesses are
included within one possible instance of Extract Test Information From
Program Plans, process 1.1:

1. Review Program Management Plan
2. Review Quality Assurance Plan
3. Review Software Development Plan
4. Review Configuration Management Plan

Following analysis of these four subprocesses, we'll look at the Level 3
IPO diagrams for each of the four.

Preferred practices, including a template and table of contents
(TOC) for each of these documents, are shown in Appendix B.

In this chapter, we change the format somewhat from the IPO dia-
grams that were presented in Chapter 2, in which an individual IPO
diagram was used to illustrate each process.

In this and subsequent chapters, "combined" IPO diagrams provide
supporting detail to the Level 1 IPO diagrams that appeared in Chapter
2. These combined IPO diagrams are similar in format to Figure 1-7,
which showed a group of IPO diagrams, connected in series, that pro-
vided additional detail to the Level 0 IPO diagram of Figure 1-6.

3.2: Extract Test Information from Program Plans-
Level 2 IPO Diagram

The IPO diagram for process 1.1, Extract Test Information From Pro-
gram Plans, is shown in Figure 3-1. The accompanying Level 2 IPO
diagram is shown in Figure 3-2. As named in the preceding section,
there are four distinct subprocesses associated with these IPO dia-
grams, which in this listing have been shortened to first-initial abbrevi-
ations.

1. Review PMP
2. Review QAP
3. Review SDP
4. Review CMP



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 53

Figure 3-1: The goal of process 1.1, Extract Test Informa-
tion From Program Plans, is to reveal what
sorts of requirements are mandated by higher-
level plans.

Figure 3-2: Process 1.1 is expanded here to become a
Level 2 IPO diagram.



54 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

3.2.1: Inputs

The four program plans—Program Management Plan (PMP), Quality
Assurance Plan (QAP), Software Development Plan (SDP), and Confi-
guration Management Plan (CMP)—as well as the standards and tem-
plates that provide the formats for these documents, are the principal
inputs to this IPO diagram.

If your program uses a different set of program plans, just insert
the names of your program plans in the appropriate process blocks,
and implement the tasks shown in the Level 3 IPO diagrams for those
plans.

3.2.2: Feedback

Results of the review of the four program plans are fed back into this
process. When updates to the plans are made and the plans are sub-
mitted for a subsequent review, these review results are factored into
that review.

3.2.3; Feedback to Earlier Process Steps

Issues identified in each of the four plans are fed back to their respec-
tive authors.

3.2.4; Process Flow, Level 2 IPO Diagram

This testing process is generally concerned with reviewing other pro-
gram- or project-level documents, to see what requirements they con-
tain that will impact or influence the formal testing staff and the sys-
tem test plan. Usually, most of these documents are developed during
the planning portion of the life cycle (see Figure 1-1) that precedes the
requirements phase. As far as the testing process is concerned, the
order in which the documents cited are reviewed is immaterial. How-
ever, since the Program Management Plan (see IEEE-Standard-1058
for suggested content and format) is the document to which all other
program plans must be linked and synchronized, the PMP should be
reviewed first. *

Note that the review of program plans to extract test information
from those program plans links to CMMI process area Integrated Proj-
ect Management, and to the practice Manage Dependencies within the
specific goal Coordinate with Relevant Stakeholders.

Ipor additional information, see CMMI process area Project Planning, discussed in
Ahem et al., 2001, or the CMMI section of the SEI's Website, www.sei.cmu.edu.

http://www.sei.cmu.edu


3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 55

Quality assurance personnel or software quality assurance staff
members are responsible for performing functions and tasks that con-
tribute to the quality of the processes and products on the project.^
(See IEEE-Standard-730 for suggested content and format, and Dra-
bick, 2000, for more details regarding software quality assurance func-
tions.) These functions and tasks are normally documented in a for-
mal Quality Assurance Plan. Since QA has many interfaces with test
engineering (ТЕ), the QA functions can impact the test plan.

The Software Development Plan is normally only written on large
programs or projects, and identifies the tasks that software engineers
are assigned to perform. Since there are many interfaces between the
software engineering and test engineering divisions in a company, this
plan, if developed, is of critical importance to development of the sys-
tem test plan. This plan should identify the informal and semiformal
testing tasks that software engineering performs (for example, unit
testing, component structural testing, and integration testing).

Configuration management is normally responsible for maintaining
the versions of documentation and software, and is often responsible
for software builds. These functions and tasks are normally docu-
mented in a formal Configuration Management Plan (see IEEE-Stan-
dard-828 for suggested content and format). Since configuration man-
agement maintains the integrity of the code that test engineering is
testing, the interfaces between CM and the test team are very impor-
tant, and the CM functions can impact the test plan.

Most organizations will have available a set of standards and tem-
plates to use in development of documentation and computer software.
IEEE and a variety of military standards provide such templates. A
CDRL can also include data item descriptors that specify the organiza-
tion of deliverable documents. As in other instances, use of such stan-
dards and templates can prevent an organization from having to rein-
vent the wheel when creating documentation. While test engineering
staff members review the program plans, they and QA personnel
should be sure that the plans are in conformance with the applicable
standards and templates used on the program.

3.2.5: Outputs

The reviewed program plans, with included comments, are one major
output of this subprocess. The other major output of this subprocess
is the testing requirements extracted from each of the program plans.

2 Remember that I use the abbreviations "QA" and "SQA," as well as the terms they stand
for, synonymously in this book, although there can be significant differences between
the two on a program or project that involves both hardware and software products.



56 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

One example of a testing requirement is the schedule for formal testing
contained in the PMP. Another example is the description of the
defect- or incident-handling procedure normally documented in the
QAP.

The comments in the reviewed program plans will identify any
issues that test engineering staff members have with those documents.
The issues may be simple inconsistencies between the various docu-
ments (for example, the program plan specifies one set of test levels,
and the QAP specifies a different set), or they may indicate philosophi-
cal problems between the various groups. Again, early resolution of
these problems will simplify matters later in the program.

3.2.6; Feedback from Later Process Steps

It is quite possible that not all the inconsistencies or problems with the
various program plans will be identified in the review. As other prob-
lems are identified during later phases in the program life cycle (most
commonly during the detailed design phase), it may be necessary to
update one or more of the program plans to resolve those problems.
As changes are made to the program plans to incorporate those fixes,
some additional review of the plans by test engineering staff (and also
by quality assurance personnel) will be required.

3.3: Review Program Management Plan—Level 3 IPO
Diagram

The Level 3 IPO diagram for subprocess 1.1.1, Review Program Man-
agement Plan, is shown in Figure 3-3. Significant inputs for this sub-
process are straightforward:

1. Program Management Plan
2. standards and templates

The outputs from this process include four significant products:

1. Program Management Plan following review by the per-
sonnel in the test engineering (ТЕ) area

2. review comments (from ТЕ)
3. PMP issues (including format and testing issues)
4. testing requirements (including testing life cycle

requirements)



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 57

Figure 3-3: The Level 3 IPO diagram shows greater detail
with expanded PMP inputs and outputs.

Five distinct subprocesses are identified in this Level 3 IPO diagram:

1. Review Table Of Contents Of PMP
2. Review Organization Section Of PMP
3. Review Life Cycle Section Of PMP
4. Review Testing Section Of PMP
5. Review Schedule Section Of PMP

3.3.1'.Inputs

The primary input for this subprocess is the Program Management
Plan, which is ready for review.

3.3.2: Internal Feedback

Since review of any document is an iterative process, review comments
may flow to the authors on multiple occasions, depending on how
many times the Program Management Plan is revised before approval



58 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

takes place. Thus, updated versions of the PMP (under configuration
management version control), based on comments from the review,
may reenter this process asynchronously, triggering a repeat review.

333: Feedback to Earlier Process Steps

When issues are found in the PMP, those issues should be docu-
mented and presented to the program manager, so that they can be
resolved in a timely manner. Timely resolution of these issues will
assist test engineers as they put together a written, high-quality test
plan, as well as the other program-level plans (for example, the Confi-
guration Management Plan, the Quality Assurance Plan, and the
Software Development Plan).

3.3-4; Process Flow, Level 3 IPO Diagram

The most important sections of a Program Management Plan that
should be thoroughly read by test engineering staff members are the
table of contents, the organization section, the life cycle section, the
testing section, and the schedule section. Though there are other sec-
tions of the document that will be of interest, the cited sections deserve
to be scrutinized.

Test engineers and quality assurance experts should review the
table of contents and compare it with the standards and templates
that apply to a Program Management Plan. Why is the table of con-
tents so important? One reason is that comparing it with the PMP
standards and templates will immediately alert personnel if any impor-
tant sections have been omitted. For example, if you record documen-
tation problems in your defect-tracking system (something I highly rec-
ommend) and the table of contents shows no comparable steps, you
know you will have a tracking problem. Such omissions should be
documented as a potential defect, and entered into the defect-tracking
system to alert program management to the potential problem area,
and then a report of the omissions should be sent to the report's
author as soon as possible, so that the issues can be resolved.

Next, test engineering staff should review the organization section
of the PMP. If IEEE-Standard-1058 is followed for the PMP, the orga-
nization section should identify each organization on the program,
their tasks, and the interfaces between the organizations. Although
this list may not be fully complete, test engineering staff should review
the interfaces with each of the other groups on the program since



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 59

these interfaces will influence the testing tasks, configuration control,
responsibilities, and staffing sections of the test plan.

The section of the PMP that defines the development life cycle also
should be carefully reviewed because the program life cycle will impact
the testing life cycle. As an example, if the program schedule is based
on an iterative life cycle and the testing staff has assumed it is based
on a one-shot waterfall life cycle, the test plan will not synchronize
with the PMP, leading to innumerable problems as the program pro-
gresses.

Test engineering staff members probably wrote the testing section
of the PMP, and therefore will not need to read it again. If they did not,
they need to be sure that they really are planning to do the tasks that
this section of the PMP has allocated to them. If a manager who is not
familiar with testing techniques, processes, and life cycles wrote this
section, there will be synchronization problems as the program pro-
ceeds.

Test engineering staff members should review the schedule section
of the PMP to ensure that there are no surprises in the schedule.
Often, this section of a PMP references a Microsoft Project™ schedule;
if that is the case, that schedule should be reviewed. The ТЕ staff
should ensure that all the proper work breakdown structure tasks
appropriate to the program are identified on the schedule, and are in
the proper order. Although it is not likely that anyone would expect
formal testing to begin prior to the start of unit testing or integration
testing, you never can take this for granted. The testing staff also
must ensure that the proper reviews, inspections, and walkthroughs
identified in the schedule, including review of test documentation by
other staff members, have been completed.

A PMP written according to the format of IEEE-Standard-1058 will
have additional sections that will be of some interest to test engineer-
ing, including the Risk Management and Change Reporting sections.
However, the five subprocesses discussed here are the most important
ones to be considered by personnel in test engineering, and should
draw the most attention.

3.3.5; Outputs

Outputs from these subprocesses include six products:

1. PMP issues
2. format and testing issues (in context of the PMP)
3. testing life cycle requirements (for use in the test plan)



60 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

4. testing requirements (from both the testing and sched-
ule sections)

5. Program Management Plan (reviewed by test engineering
staff members)

6. test engineering's review of the PMP

3.3-6; Feedback from Later Process Steps

The subject of feedback has been discussed in Section 3.2. Note, how-
ever, that it is quite possible that not all the inconsistencies or prob-
lems with the Program Management Plan will be identified in the
review. As other problems are identified during later phases in the
program life cycle (for example, detailed design), it may be necessary to
update the PMP to resolve those problems and hold another review.

3.4: Review Quality Assurance Plan—Level 3 IPO Dia-
gram

The Level 3 IPO diagram for subprocess 1.1.2, Review Quality Assur-
ance Plan, is shown in Figure 3-4. Significant inputs are again
straightforward:

1. Quality Assurance Plan
2. standards and templates

Outputs from this process follow:

1. Quality Assurance Plan (reviewed by test engineering)
2. review comments (from test engineering)
3. QAP issues (including format and testing issues)
4. testing requirements

Five distinct subprocesses are identified in this Level 3 IPO diagram:

1. Review Table Of Contents Of QAP
2. Review Standards Section Of QAP (including practices

and conventions)
3. Review "Reviews" Section Of QAP
4. Review CM Section Of QAP
5. Review Incident-Reporting Section Of QAP



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 61

Figure 3-4:

3.4.1: Inputs

A Level 3 IPO diagram for the Review Quality
Assurance Plan subprocess shows added
detail.

The primary input for this subprocess is the Quality Assurance Plan,
which is ready for review.

Test engineering needs to be aware of the standards used on a pro-
gram, including standards for documentation—and especially for test-
ing documentation. This information on standards used in an organi-
zation should be documented in the QAP. The testing staff should
review this section of the QAP, to be sure that quality assurance
staff members are using the same standards for testing documentation
as are being used by test engineering personnel, and also to be aware
of what standards, templates, practices, and conventions will be used
for requirements, design, coding, and testing documentation.

Test engineering staff members should participate in reviews of
developer documentation (requirements, design, code, unit test plans,
and so on), to be aware of what reviews and audits QA is planning.
This section of the QAP will identify the reviews and audits that
department staff members will conduct in the testing areas. Individu-



62 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

als on the testing staff need to be aware of these reviews so that they
can prepare for them and participate in them.

QA requirements regarding configuration management activities
are also important to test engineering, since CM will most probably
prepare builds for test. Test engineering staff should thoroughly
review this section of the QAP to make sure that QA activities in this
area are synchronized with test engineering activities.

Finally, test engineering personnel need to be familiar with the
policies, process, and tools used for documenting and tracking inci-
dents and defects recorded on the program, since test engineering staff
members will have to conform to these policies and processes when
documenting and tracking incidents found during formal test. If no
Quality Assurance Plan is written (possibly because the project is too
small to need a formal plan), then information regarding incident-
tracking must be documented in the test plan.

3.4.2; Internal Feedback

Since review of any document is an iterative process, review comments
may flow to the authors on multiple occasions, depending on how
many times the QAP is revised before approval takes place. Thus,
updated versions (under configuration management version control, of
course) of the Quality Assurance Plan, based on comments from the
review, may reenter this process asynchronously, setting off a repeat
review.

3.4.3; Feedback to Earlier Process Steps

When issues are found in the Quality Assurance Plan, those issues
should be documented and presented to the QA manager, so that the
issues can be resolved. Timely resolution of these issues will help
assure a high-quality test plan, as well as the quality of the other pro-
gram-level plans.

3.4.4; Process Flow, Level 3 IPO Diagram

Principal sections of the Quality Assurance Plan that should be
reviewed carefully by test engineering personnel are the table of con-
tents; the standards, practices, and conventions section; the reviews
and audits section; the configuration management section; and the
incident-reporting section. Other sections of this document may be of



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 63

interest to ТЕ staff, of course, but the cited sections should be
reviewed most thoroughly.

Test engineering staff members first should quickly review the con-
tents listings in order to compare contents with the standards and
templates that apply to a QAP. This will immediately alert ТЕ staff
members whether any sections deemed significant by them have been
omitted. If you record documentation problems in your defect-tracking
system, as I recommend, such omissions should be entered into the
defect-tracking system to alert management to the potential problem
area. If this is not an option, at the least, send a report detailing omis-
sions to management as soon as possible, so that the issues can be
resolved.

The next section test engineering staff members review is the
standards, practices, and conventions section of the QAP. This section
of the plan should identify material to be used by all functions on the
program. As well as specifying standards for documentation produced
by test engineering, this section will also identify policies and proce-
dures for other program activities, which can give test engineers valu-
able insight into tasks other groups are performing that may impact
the way test engineers perform their job.

Reviews and audits are defined in another section of the QAP.
Because members of the testing staff should attend some of these
reviews (for instance, requirements inspection), and because some of
the reviews (for example, inspection of the test plan) will be targeted at
deliverables produced by test engineering, it is important for ТЕ per-
sonnel to pay close attention. The reviews and audits specified in the
QAP can provide requirements for tasks in the test plan and in the
testing schedule.

The configuration management section of the QAP will provide
information about CM activities that can affect test engineering. These
activities will be documented in more detail in the Configuration Man-
agement Plan, which will also be reviewed by test engineering, but the
QAP contains detail test engineers need to know.

Test engineering staff also should review the incident-reporting sec-
tion of the QAP to understand the policies, processes, and tools
involved in tracking defects and incidents on the program. Test engi-
neering staff will use this system during formal test execution, so it is
essential that testing staff be adept in its use, and that staff members
are knowledgeable about the policies and processes involved.

A Quality Assurance Plan written according to the format proposed
by IEEE-Standard-730 will have additional sections that will be of
interest to test engineers (see especially the Tools, Techniques, and



64 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

Methodologies section and the Records Retention section). However,
the five sections discussed here are the most valuable for test engine-
ering.

3.4.5; Outputs

Five outputs are produced:

1. QAP issues
2. format and testing issues
3. testing requirements (for use in the test plan)
4. the reviewed (and updated) QAP
5. QAP review comments from test engineering

3.4.6: Feedback from Later Process Steps

Not all the inconsistencies in or problems with the Quality Assurance
Plan will be identified in the review. As other problems are identified
during later phases in the program life cycle, it may be necessary to
update the QAP to resolve those problems.

3.5: Review Software Development Plan—Level 3
IPO Diagram

On a large program, the software engineering staff may consist of so
many members and have so much work to do that it will need its own
written, formal Software Development Plan to support the Program
Management Plan. If a Software Development Plan is written, test
engineers should review this plan. A Software Development Plan nor-
mally will have the following sections:

1. introduction
2. software life cycle
3. software quality factors
4. software components
5. development schedule
6. software engineering specification
7. software quality assurance and testing
8. software configuration management



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 65

The Level 3 IPO diagram for subprocess 1.1.3, Review Software Devel-
opment Plan, is shown in Figure 3-5, and has two inputs:

1. Software Development Plan
2. standards and templates

Four outputs result from this process:

1. Software Development Plan after review by test engine-
ering

2. review comments from test engineering
3. Software Development Plan issues (including format and

testing issues)
4. testing requirements

Figure 3-5: The Level 3 IPO diagram contains six SDP sub-
processes to be completed by test engineering
staff members.

Six distinct subprocesses are identified in this Level 3 IPO diagram:

1. Review Table Of Contents Of SDP
2. Review Life Cycle Section Of SDP



66 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

3. Review Quality Factors Section Of SDP
4. Review Software Components Section Of SDP
5. Review Schedules Section Of SDP
6. Review Software Engineering Section Of SDP

3.5.1: Inputs

The primary input for this subprocess is the current version of the
Software Development Plan, which is ready for review.

Test engineering staff members need to be aware of the standards
used to develop the Software Development Plan, so that they can com-
pare the plan to the appropriate standards or templates.

3.5.2; Internal Feedback

Since review of any document is an iterative process, review comments
may flow to the authors on multiple occasions, depending on how
many times the Software Development Plan is revised before final
approval takes place. Thus, updated versions of the Software Develop-
ment Plan (under configuration management version control, of
course), based on comments from the review, may reenter this process
asynchronously, setting off a repeat review.

3.5.3; Feedback to Earlier Process Steps

When issues are found in the Software Development Plan, those issues
should be documented and presented to the software development
manager, so that they can be resolved in a timely manner. Resolution
of these issues will assist test engineers to prepare a high-quality test
plan, as well as the other program-level plans (for example, the Confi-
guration Management Plan, the Program Management Plan, or the
Quality Assurance Plan).

3.5.4; Process Flow, Level 3 IPO Diagram

The sections of a Software Development Plan that should be reviewed
by test engineers are the table of contents, the life cycle section, the
quality factors section, the software components section, the schedule
section, and the software engineering section.

Test engineers should review the table of contents and compare it
with the standards and templates that apply to a Software Develop-
ment Plan. Such comparison will alert test engineering personnel to



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 67

any omitted sections. Omissions should be documented as a potential
defect, and entered into a defect-tracking system, if available, to alert
management to the potential problem area. Otherwise, a report of the
omissions should be sent to department managers as soon as possible,
so that the issues can be resolved.

Next, test engineering staff members review the life cycle section of
the Software Development Plan, comparing it against the life cycle sec-
tion of the Program Management Plan. The two life cycles should be
identical. As with the PMP, the program life cycle defined in the
Software Development Plan will impact the testing life cycle. For
example, if the software development schedule is based on a spiral life
cycle and the testing staff has assumed that a one-shot waterfall life
cycle is being used, the test plan will not synchronize with the software
development life cycle (which in turn may be out of sync with the rapid
application development life cycle identified in the PMP), leading to no
end of problems as the program progresses.

The Software Development Plan should identify quality factors that
are considered significant during development. Some examples of
quality factors include maintainability and reliability. Knowing which
quality factors are deemed important on the program will provide
insight to test engineers, which may help them to develop a testing
strategy to verify that those quality factors are present in the deliver-
able software products.

The software components section of the Software Development Plan
defines components of the software deliverables that are being devel-
oped. This section should be reviewed by the test engineering staff,
since the software components are highly likely to become test items in
the test plan, test design, and test procedures. This sort of domain
knowledge is extremely important to test engineering staff members as
they lay out their test strategy. Later, during test execution, this infor-
mation may assist the test engineering staff in documenting incidents
when software problems are detected.

Test engineering staff members should review the schedule section
of the Software Development Plan to ensure that there are no surprises
in the schedule. Test engineering and quality assurance personnel
also should compare the schedule section in the document with that
contained in the PMP, and determine whether the two schedules syn-
chronize. Often, this section of a Software Development Plan refer-
ences a Microsoft Project™ schedule; if that is the case, that schedule
should be reviewed. The testing staff should ensure that all the proper
work breakdown structure tasks appropriate to software engineering
are identified on the schedule, and are in the proper order—for exam-



68 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

pie, formal testing should not start prior to the start of unit testing or
integration testing. Testing staff also must confirm that the proper
reviews, inspections, and walkthroughs, as identified in the schedule
but including development review of test documentation, have been
identified.

Since the software engineering section of the Software Development
Plan will contain information regarding the software engineering envi-
ronment as well as software development techniques and methodolo-
gies, test engineers should review this section. Test engineering per-
sonnel should be able to obtain some information regarding compo-
nents of the test environment from this section. In addition, the devel-
opment techniques and methodologies may provide information on
development tools that can be used to assist in formal testing.

3.5.5; Outputs

Outputs from these subprocesses are listed below:

1. Software Development Plan issues
2. format and testing issues
3. testing requirements
4. reviewed Software Development Plan (after review by

test engineering)
5. test engineering's comments on the Software Develop-

ment Plan

3.5.6: Feedback from Later Process Steps

Test engineering personnel may not be able to identify all inconsisten-
cies, omissions, and problems with the Software Development Plan
during this review, prior to writing the test plan. As other problems
are identified during the later phases in the program life cycle (for
example, during detailed design) and in comparable phases in the test-
ing life cycle (for example, during test design), it may be necessary to
make updates to the Software Development Plan to resolve problems
as they are discovered.



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 69

3.6: Review Configuration Management Plan—Level
3 IPO Diagram

The Level 3 IPO diagram for subprocess 1.1.4, Review Configuration
Management Plan, is shown in Figure 3-6. There are two inputs for
this subprocess:

1. Configuration Management Plan
2. standards and templates

There are four outputs from this process:

1. Configuration Management Plan reviewed by test
engineering

2. review comments from test engineering
3. CMP issues, including format and testing issues
4. testing requirements

Figure 3-6: The Level 3 IPO diagram contains six CMP sub-
processes for test engineers to review.



70 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

Six distinct subprocesses are identified in this Level 3 IPO diagram:

1. Review Table Of Contents Of CMP
2. Review Management Section Of CMP
3. Review CM Activities Section Of CMP
4. Review Tools Section Of CMP
5. Review Records Section Of CMP
6. Review Storage and Delivery Section Of CMP

3.6.1: Inputs

The primary input for this subprocess is the Configuration Manage-
ment Plan, which is ready for review. The testing staff needs to be
aware of the standards used to develop the Configuration Management
Plan, so that the plan can be compared against the appropriate
standards or templates. IEEE-Standard-828, supported by IEEE-
Standard 1042, can be used.

3.6.2; Internal Feedback

Since review of any document is an iterative process, review comments
may flow back to the authors on multiple occasions, depending on how
many times the CMP is revised before approval takes place. Thus,
updated versions (under configuration management version control) of
the CMP may reenter this process asynchronously, setting off a repeat
review by test engineering (as well as by other interested groups or per-
sonnel).

3.6.3: Feedback to Earlier Process Steps

When issues are found in the CMP, those issues should be docu-
mented and presented to the configuration manager, so that those
issues can be resolved promptly. Development of a high-quality test
plan, as well as the other program-level plans (the Software Develop-
ment Plan or the Program Management Plan, for example), will be
assisted by timely resolution of such issues.

3.6.4: Process Flow, Level 3 IPO Diagram

The most significant sections of a Configuration Management Plan that
should be reviewed by test engineering are the table of contents; the
management section; the configuration management activities section;



3: EXTRACT TEST INFORMATION FROM PROGRAM PLANS: LEVELS 2 AND 3 71

the tools, techniques, and methodologies section; the records collection
and retention section; and the storage and delivery section of the pro-
gram media section. Though there are other sections of this document
that may be of interest, the sections listed here should be reviewed
most thoroughly.

Test engineering should review the table of contents and compare it
with the standards (for example, IEEE-Standard-828) and templates
that apply to a CMP. The test engineering staff should immediately
alert its managers to any discrepancy or omission. Such omissions
should be documented as a potential defect, and entered into the
defect-tracking system to alert management to the potential problem
area. Otherwise, a report of the omissions should be sent to the con-
figuration manager as soon as possible so that the issues can be
resolved.

Next, test engineering personnel should review the management
section of the CMP, which should document CM staff responsibilities
as well as the top-level policies that the CM group will administer on
this specific program. Since these responsibilities and policies will
impact test engineering, its staff needs to be aware of and comfortable
with the responsibilities and policies.

The CM activities section of the CMP should document configura-
tion identification methods, configuration status accounting, configu-
ration verification, CM audits and reviews, and the structure of the CM
libraries. Again, test engineering staff members need to be aware of
and comfortable with the activities and techniques used by CM, since
there will be frequent interfaces between CM and the testing staff.

The tools, techniques, and methodologies section of the CMP
should be reviewed by test engineering because each tool or technique
or methodology can impact the interfaces between the CM group and
test engineering. Use of the tools and methodologies by CM may well
affect how long it will take test engineering personnel to get an updated
build from CM. Also, if CM is planning to inject new builds on a daily
basis and test engineering is planning to receive a new build only
weekly, the interface will not be synchronized and will affect the pro-
gram schedule.

Test engineering staff should review the records section of the CMP
so that the engineers will know where and how to find information
regarding previous builds and change requests.

Test engineering staff members also should review the storage and
delivery section of the Configuration Management Plan so that they will
know where and how to obtain copies of updated builds, updated pro-



72 BEST PRACTICES FOR THE FORMAL SOFTWARE TESTING PROCESS

gram documentation, and previous and current issues of the test
documentation.

3.6.5: Outputs

Outputs from these subprocesses include the following:

1. Configuration Management Plan issues
2. format and testing issues
3. testing requirements (for use in the test plan)
4. the CMP review results (from test engineering)
5. comments on the CMP (from test engineering)

3.7: What's Next?

The following chapter presents details in the Level 2 and Level 3 IPO
diagrams for process 1.2, Create Test Plan.



Index

Ahern, Dennis, 54n., 83, 199, 202, 203, 261,
275

American National Standards Institute (ANSI),
205, 206, 214, 222, 230, 231, 239

American Society for Quality, 186, 223
Analysis, 4, 41, 121, 150, 209, 241

object-oriented, 121, 125
requirements, 4, 6, 9, 11, 15, 19, 46, 74,

76, 78ff., 103, 120, 124, 182, 191,
218, 270

risk, 41, 104, 187, 205
structured, 24, 121, 125

Argila, Carl, 35, 279

Beck, Kent, 5, 181, 275
Beizer, Boris, 116, 275
Black, Rex, xxiv, 275
Black-box testing, 6, 35, 44, 45, 87, 99, 128,

270, 271
Boehm, Barry, 4, 275
Booch, Grady, 278
Bugs, xxii, 270, 271

Cantor, James, 181, 276
Capability Maturity Model (CMM), xviii, xix, xx,

xxi, 3, 11, 13, 19, 31, 76, 111, 175,
199-202, 235, 260-61, 267, 268
levels of, 20, 200

Capability Maturity Model Integration (CMMI),
xix, xxi, 54, 77, 80, 87, 91, 98, 111, 135,
136, 175, 177, 199, 202-3, 261, 267

Capability Maturity Model-Software (CMM-SW),
xx, 13, 20, 31, 87, 92, 98, 111, 176, 177,
199, 261, 267

Carnegie Mellon University, xix, xx, 199-202, 269

Central processing unit (CPU), 36, 145, 180,
242, 267

Change Control Board (CCB), 13, 233, 267
Change request, 27, 71, 104, 231
Clouse, Aaron, 275
Coding, xvii, xix, xxiv, 4, 7, 11, 15, 17, 42, 45,

61, 89, 122, 186, 200, 218
Commercial off-the-shelf (COTS), 105, 116, 117,

129, 140, 267
Communication, xviii, 14, 17, 34, 154, 176, 179,

181, 182, 183, 185, 207, 245, 260
Computer-aided software engineering (CASE),

125, 214, 267, 270
Computer software component (CSC), 235, 267
Computer software configuration items (CSCIs),

213, 221, 229, 230, 235, 238, 267
tools, 125, 214

Configuration control, 133, 211, 226, 234, 244,
247, 254

Configuration management, 12, 14, 27, 31, 36,
37, 43ff., 55, 58, 60, 61, 62, 64, 66, 70, 71,
74, 76, 83, 84, 85, 88, 89, 105, 109, 113,
129, 140, 143, 156, 171, 172, 173, 177,
201, 203, 219, 220, 225, 229ff., 254, 255,
258ff., 267
group, 129, 136, 172, 175, 234, 235, 254,

258, 259
implementation of, 233, 237
system, 75, 107, 109, 113, 115, 118, 119,

120, 123, 124, 126, 127, 128, 130,
134, 135, 146, 147, 148, 150, 155,
156, 158, 161, 164, 170, 171, 172,
173, 191, 192

Configuration Management Plan (CMP), xviii, xxi,
29, 30, 52, 53, 54, 55, 58, 63, 66, 69-72,

281



282 INDEX

180, 182, 185, 190, 211, 219, 222,
229-37, 249, 267
outline, 237
sections of, 70-71

Constantine, Larry L., xxiun., 280
Contract Deliverable Requirements List (CDRL),

xvi, 32, 55, 210, 217, 267
Cost, xuii, xviii, xix, 6, 16, 17, 21, 22, 76, 100,

104, 108, 125, 178, 185, 199, 207, 210,
212

Craig, Rick, 144, 186, 187, 261, 276
Crispin, Lisa, 183, 261, 276
Customer, xvii, xxii, 5, 6, 7, 11, 12, 17, 19, 21,

23, 45, 46, 48, 51, 79, 80, 85, 87, 88, 89,
104, 105, 108, 109, 130, 153, 154, 158,
180ff., 186, 200, 205, 206, 210, 213, 214,
217, 221, 222, 226, 229, 231, 239, 241,
244, 245, 270

Customer Information Control System (CICS),
200, 267

Data, 43, 100, 116, 134, 135, 137, 138, 140,
142, 143, 146, 150ff., 157, 157, 162, 193,
225, 226, 235, 245, 247, 263, 264, 271

Databases, 117, 118, 120, 124, 129, 148, 149,
150, 216, 242, 264

Data flow diagrams, 24, 35, 268, 270
Data item descriptors (DIDs), 32, 267
Defects, xxi, xxii, 18, 19, 21, 22n., 25, 31, 36,

46, 47, 49, 56, 58, 62, 67, 71, 76, 86, 97,
98, 99, 122, 126, 137, 148, 176, 177, 195,
196, 203, 257, 264, 270, 271. See also
Failure; Incidents.
handling, 36, 56
tracking, 46, 47, 58, 62, 67, 71

DeMarco, Tom, xxiun., 24, 35, 86, 177, 195,
276

Department of Defense (DoD), xv, xvi, 15, 31,
130, 199, 200, 268

Derr, Liz, 181, 276
Design, xvii, xviii, xx, 4, 6, 7, 9, 10, 11, 13, 15,

17, 21, 22, 23, 26, 28, 34, 39ff., 56, 61,
67, 68, 73, 79, 80, 82, 85, 86ff., 93, 94,
95ff., 104, 105ff., 114ff., 119ff., 127, 128,
132ff., 137, 138, 140, 142, 144, 145, 147,
151, 154, 160ff., 176ff., 182, 185, 188,
189, 192, 193, 200, 206, 208, 209, 213,
214, 217, 218, 223, 231, 234, 240, 242,
243, 247, 254, 255, 259, 270, 273
object-oriented, 121
specification, 27, 45, 99, 107, 115, 117,

140, 148, 150, 168
Developers, xix, 15, 18, 33, 101, 109, 121, 122,

149, 180, 181, 183, 194, 226, 245, 261,
262, 264, 270

Development, xviii, 6, 7, 18, 19, 22n., 30, 40,
43, 67, 68, 88, 98, 108, 117, 118, 176,
177, 179, 182, 196, 205, 209, 224, 271,
272
engineers, 19, 36
managers, 19, 196
schedule, 209, 216, 220

Development life cycle, 7, 38, 59, 100, 145, 270
Documentation, xviii, xix, xx, xxiv, 7, 10, 15, 17,

18, 21, 25ff., 31, 36, 38, 39, 40, 43, 44,
46, 47-50, 51, 59, 61, 63, 68, 72, 73, 77,

84, 86, 87, 88, 91, 94, 96, 97, 98, 104,
106, 109, 114, 119, 120, 127, 128, 130,
131, 132, 135ff., 141ff., 150ff., 158, 159,
160ff., 175, 176ff., 183, 186, 188, 189,
190, 192, 193, 196, 211, 223, 224, 228,
229, 230, 231, 233, 234, 235, 236, 239,
242, 243, 254, 257, 259, 271, 273

Dustin, Elfriede, 117, 261, 264, 265, 276
Dymond, Ken, 200, 202, 277

Eastman Kodak, xvi, 148, 201
E-mail, 91, 92, 111, 112, 145, 153, 172, 173
End user, 5, 6, 205, 213, 221, 229
Engineering, 7, 15, 17, 27, 31, 32, 37, 38, 40ff.,

49, 53, 55, 56, 59ff., 77, 80, 85, 87ff., 96,
99, 100, 101, 103, 107, 109, 112, 115ff.,
121, 122, 125, 128, 129, 130, 135ff., 143,
146, 150, 153, 154, 156, 158, 163, 166,
167, 169, 170, 172, 173, 176, 179, 182,
195, 196, 201, 208, 232, 250ff., 262, 263,
269, 270, 271, 273
development, xviii, 37
hardware, 15
software, 15, 23, 29, 40, 45, 48, 55
software quality, xviii
test, 15, 16, 18, 19, 24, 25, 33, 34

Estimating, xvi, xvii, xx, xxiv, 3, 15, 19, 117,
174, 185, 186, 191, 194, 209, 210

Extreme Programming (XP), 5, 11, 45, 121,
181-83, 184, 269
four values for, 181

Failure, 15, 45, 117, 134, 148. See also
Defects.

Federal Drug Administration (FDA), 6, 98, 100,
130, 268

Federally funded research and development
center (FFRDC), 199, 268

Feedback, 66, 68, 70, 76, 80, 86, 89, 91, 93,
97-98, 102, 103, 105, 107, 109, 111, 113,
115, 118, 121, 122, 124-25, 126, 128,
131, 135, 137, 139, 141, 143, 144, 146,
148ff., 155, 157, 159, 162, 164ff., 169,
170, 172, 173

Formal Testing Process Model, xxi, 4, 2Iff . ,
28ff., 173, 174, 181, 202
how to use, 17ff.

Freedman, Daniel P., 32, 77, 92, 100, 112, 177,
277

Functional configuration audit (FCA), 31, 268,
271

Cause, Donald C., xvii, 16, 277
Gelperin, David, 35, 174, 277
Graphical user interface (GUI), 24, 41, 99, 107,

116, 128, 149, 150, 177, 180, 262, 263,
264, 268, 270

Halstead, Maurice H., 107, 277
Halstead Complexity, 107
Hardware, xiii, xv, xxiii, llff., 31n., 34, 45, 47,

55n., 83, 87, 116, 117, 136, 139, 143,
155, 156, 158, 178, 200, 206, 208, 211,
215, 218, 223, 231, 240, 241, 245, 268,
272

Hetzel, Bill, 6, 144, 174, 277



INDEX 283

House, Tip, 183, 261, 276
Humphrey, Watts S., xvi, xxiii, 19, 21, 199, 202,

277

lannino, Anthony, 279
IBM, 21, 199, 200, 267
IEEE. See Institute of Electrical and Electron-

ics Engineers (IEEE).
Implementation, 4, 129, 175, 183, 206, 209,

210, 215, 216, 223, 231, 238, 240, 272
Incidents, 146ff., 161, 165, 166, 168, 181ff.,

186, 188, 191, 192, 205, 211, 226, 234,
243, 257, 263, 271. See also Defects;
Failure,
analysis, 150
handling system, 15, 34, 36, 75, 83, 85,

103, 234, 262
report, 155, 193, 211, 226, 234, 263
review, 150
severity levels, 149-50, 158
tracking, 136, 143, 146, 148, 149, 150,

155, 157, 163, 182, 226, 234, 257,
260

Input-Process-Output (IPO), xui, xxii, xxiii, xxiv,
21-23, 24-26, 27, 28ff., 51ff., 73ff., 97,
132ff., 176, 179, 184, 188ff., 193, 268
Level 0, 24-25, 188, 189
Level 1, 25-26, 27, 28ff., 51, 73, 94, 132,

160, 189, 190, 191
Level 2, 27, 50, 51ff., 73ff., 94ff., 132ff.,

160ff., 190, 191, 193
Level 3, 27, 51ff., 73ff., 94ff., 132ff., 160ff.,

190, 191
Inspections, xxii, 7, 13, 14, 21, 31, 32, 37, 38,

42, 59, 63, 68, 77, 85, 92, 100, 101, 112,
122, 130, 172, 177, 186, 210, 217, 218,
219. See also Review; Walkthroughs.

Institute of Electrical and Electronics Engineers
(IEEE), xiv, xv, xvi, xxiii, xxv, 7, 16, 18, 19,
30, 31, 34, 35, 36, 39ff., 54, 55, 58, 59,
63, 70, 71, 74ff., 85, 87, 98ff., 106, 107,
108, 114, 115, 126, 127, 128, 133, 137,
169, 170, 174, 176, 179, 185, 187, 188,
205, 206, 214, 222, 223, 230, 231, 239,
252, 254, 268ff., 277, 278. See also Stan-
dards.

Intelligent character recognition (ICR), 117, 268
International Software Testing Institute (ISTI),

184, 268

Jacobson, Ivar, 4, 180, 269, 278
Jaskiel, Stefan, 186, 187, 261, 276
Jones, T. Capers, 21, 86, 177, 278

Kan, Stephen, 21, 278
Kerth, Norman L., 191, 195, 278
Key process areas (KPAs), 13, 20, 87, 92, 98,

111, 200, 201, 203, 268
KSLOC, 11, 174, 268

Lines of source code, 11, 129, 174. See also
Thousand lines of source code (KSLOC).

Lister, Timothy, 86, 177, 195, 276

Management, xui, xviii, 7, 16, 17, 34, 37, 38,
63, 67, 70, 71, 92, 98, 112, 133, 136, 137,
141, 149, 154, 178, 183, 205, 210, 213,

217, 221, 224, 229, 232, 237, 240, 257,
271

Managers, xui, xviii, 10, 19, 21, 30, 50, 77, 87,
88-89, 91, 92, 103, 111, 112, 137, 140,
145, 146, 152, 154, 156, 158, 183, 193,
194-95, 202, 226, 231, 271

Marick, Brian, 261, 278
McCabe, Thomas J., 99, 107, 114, 278
McCabe Cyclomatic Complexity, 99, 107, 114

measure, 114
McCabe'sACT, 41
McDiarmid, Douglas, 276
McMenamin, Stephen M., xxiim., 279
Meeting, 91, 92, 101, llOff., 152, 153, 154,

182, 184, 185, 191, 257, 258
agenda, 153
data pack, 136ff., 152, 153
minutes, 101, 112, 134, 137, 140, 141,

154, 192
pass/fail decision, 155, 157
posttest, 133, 135, 137, 151-55, 157, 179,

181, 183, 184, 186, 192, 257, 258
pretest, 133, 135, 136, 137-41, 151, 152,

179, 181, 183, 186, 192, 257
report, 110, 138, 141, 151ff., 191
review, 111, 140, 153, 182

Meredith, Denis, 86
Metrics, xuii, 87, 145, 158, 211, 213, 226, 228

quality, 226
Microsoft, 30, 32, 41, 45, 59, 67, 101, 103, 104,

115, 117, 178, 180, 191, 262
Musa, John, 15, 279
Myers, Glenford J., xvii, 279
Myers, Ware, 19, 46, 279

Narayanan, R. Sankara, 136, 144, 264, 279
Network, 36, 105, 116, 144, 270

Okumoto, Kazuhira, 279
Optical character recognition (OCR), 268
Organization process definition, xix, 20

Page-Jones, Meilir, xxiim., 279
Palmer, John F., xxiun., 279
Perry, William E., xv-xvi, 35
Personal computer (PC), 36, 114, 117, 261, 268
Personnel, 33-35, 141, 145, 153, 195, 225,

226, 232, 234
Physical configuration audit (PCA), 268, 271
Process, xv, xvi, 33, 38, 42-43

definitions, xv
documenting a, xui

Process 1.1, Extract Test Information From Pro-
gram Plans, 28, 32, 51-72, 73, 94, 132,
160, 179, 182, 185, 189, 190, 249-251

Process 1.2, Create Test Plan, 28, 30, 34, 40,
51, 72, 73-93, 94, 95, 96, 99, 103, 111,
132, 160, 180, 182, 185, 189, 190,
252-253

Process 1.3, Create Test Design, Test Cases,
Test Software, And Test Procedures, 28,
39, 40, 43, 47, 51, 73, 93, 94-131, 132,
160, 182, 185, 189, 190, 254-256

Process 1.4, Perform Formal Test, 28, 43, 47,
49, 51, 73, 94, 101, 131, 132-159, 160,
183, 189, 190, 192, 257-258



284 INDEX

Process 1.5, Update Test Documentation, 28,
47, 51, 73, 94, 132, 137, 159, 160-173,
183, 186, 189, 191, 259

Process flow, 54, 58, 62, 66, 70, 76, 80, 87, 91,
98, 103, 107, 111, 115, 121, 125, 129-30,
135, 144-46, 149ff., 157-58, 163-64, 166,
169-70, 172-73

Process improvement, xix, xx, xxi, xxiii, xxiv, 14,
18, 77, 80, 191, 193, 195, 200, 202, 269

Process model, xx, 11, 16-17, 26, 27, 29, 149,
173, 182, 184, 185, 188-93, 194
Extreme Programming and, 181-83
organizational considerations of, 11-15
scope of, xxiii
tailoring, xxiii, 5, 174ff., 191, 194

Program life cycle, 59, 68, 78, 89
Program management, 80, 137, 139, 153, 173,

177, 195
Program Management Plan (PMP), xviii, xxi, 29,

30, 51-52, 53ff., 64, 66, 67, 70, 77, 80,
182, 185, 190, 204ff., 221, 249, 250, 268
outline, 212
schedule, 59, 77

Program manager, 11, 13, 14, 58, 81, 140, 141,
154, 164, 183, 193ff.

Programming, 7, 10, 34, 119, 193, 225
Program plans, 28ff., 36, 37, 5Iff., 85, 87, 94,

160, 179, 185, 189, 190, 191, 249
extracting information from, 5Iff., 185
review of, 29, 32, 33
test plan and, 36

Project management, 54, 205, 207, 212, 214,
216, 223, 231, 239, 268

Putnam, Lawrence H., 19, 279

Quality, 64, 67, 196, 216, 224, 226
Quality assurance (QA), xviii, xix, 13, 14, 15,

29ff., 55, 58, 64, 85, 92, 98, 112, 124,
170, 176, 177, 182, 193, 195, 201, 203,
208, 211, 268, 272. See also Software
quality assurance (SQA).
analysts, 76, 98
department, 112
experts, 58
group, 112, 175, 193
personnel, 141, 195
plan, 31, 33
requirements, 29, 62
staff, 14, 31, 37, 61, 170, 177, 182

Quality Assurance Institute (QAI), xiii, xxiii, 16,
35, 184, 186, 268

Quality Assurance Plan (QAP), 29, 30, 36, 52,
53, 54, 55, 56, 58, 60-64, 66, 182, 185,
190, 249, 268. See also Software Quality
Assurance Plan (SQAP).
outline, 228

Quality function deployment (QFD), 268
Quality Systems International (QSI), 79, 101,

268

Radatz, J.W., 21, 22n.
Rashka, Jeff, 276
Request for proposal (RFP), 183-84, 268
Requirements, xiv, xvii, xviii, xxii, 4, 6, 7, llff.,

22ff., 29, 30, 33ff., 39, 40, 42, 44, 46, 48,
49, 51, 53, 54, 56, 59, 60, 61, 63ff., 68,

69, 72ff., 78ff., 80, 83, 91, 92, 96, 97,
99ff., 115ff., 120ff., 134, 135, 142, 144ff.,
154, 161ff., 176ff., 200, 203, 205, 206,
208, 209, 211, 214, 218, 223ff., 229, 231,
233, 234, 238ff., 247, 249, 252, 260, 261,
270, 271, 272
ambiguous, 81, 83, 103, 105
analysis, 4, 6, 9, 11, 15, 19, 46, 74, 76,

78-83, 103, 120, 124, 182, 191, 218,
270

development of, 16, 80, 120
documentation, 35, 38, 42, 165
management, 83, 201
phase, 54, 116, 121, 125
problems, 37-38, 46, 80, 148
review, 7, 9, 15, 16, 17, 76, 80, 81, 82, 85,

125, 145, 155, 179ff., 185, 194, 195,
196, 260, 261

specification, 7, 27, 33, 37, 45, 82, 103,
104, 117, 135, 140, 148, 150, 166,
168, 238

validation, 80, 87, 98, 226
verification, 7, 226
volatility, 103, 104

Review, 18, 31, 34, 37, 38, 41, 46, 48, 49, 53,
55ff., 76ff., 85, 88, 89, 91ff., 102ff.,
109-13, 115, 118, 119, 122, 125, 128,
130, 133, 136ff., 144, 145, 151ff., 161,
163, 164, 166ff., 176ff., 185, 186, 190,
191ff., 203, 209, 210, 217, 219, 225, 227,
228, 233, 234, 237, 250ff., 259, 260, 261
documentation, 184, 188
meeting, 91, 92, 100, 138, 139, 172, 176,

178, 182, 185, 227, 253
peer, xix, 92, 111, 145, 177, 191, 195,

201, 202, 203, 217
Risk, 23, 24, 26, 34, 35, 37, 41, 74, 75, 76, 84,

85, 86, 89, 104, 106, 108, 122, 126, 177,
179, 180, 185, 188, 189, 191, 195, 210,
239, 242, 245, 248, 273
analysis, 41, 104, 187, 205
assessment, 217, 242
determining, 37
documentation, 108
management, 31, 37, 59, 86, 177, 179,

195, 210, 217
mitigation, 41, 86, 108, 177

Rumbaugh, James, 278

Schedule, 12, 29, 30, 34, 41, 43ff., 56, 58, 59,
60, 64ff., 71, 75, 77, 80, 84, 85, 88, 89,
91, 103, 104, 108, 111, 125, 130, 134,
135, 138ff., 140, 145, 146, 149, 151, 154,
163, 176, 180, 186, 191, 194, 195, 199,
200, 205ff., 214ff., 222, 223, 231, 233,
234, 240, 244, 245, 248, 273

Software capability evaluation (SCE), 201, 269
Software components, 64, 114, 216, 220, 222,

229, 230, 233, 245, 272
Software Configuration Management Plan

(SCMP), 237, 241, 249, 250, 269. See also
Configuration Management Plan (CMP),
outline, 237

Software development, xvii, xviii, xix, xxii, 3, 16,
17, 31, 34, 37, 42, 45, 46, 67, 74, 76, 80,
85, 88, 89, 91, 98, 99, 103, 107, 109, 111,



INDEX 285

115, 121, 125, 128, 133, 135, 136, 140,
143, 144, 145, 150, 153, 154, 158, 172,
177, 178, 205, 206, 209, 217, 218, 233,
260

Software development life cycle (SDLC), xvi,
xviii, xix, xx, 3, 4-6, 9, 10, 35, 45, 64, 67,
99, 107, 115, 121, 205, 125, 126, 181,
189, 205, 209, 214, 216, 226, 230, 234,
269
phases of, 9, 125, 126, 231, 234

Software Development Plan (SDP), xviii, xxi, 29,
30, 52ff., 58, 64-68, 70, 77, 182, 185,
190, 213-20, 230, 242, 249, 250, 269
outline, 220
sections of, 64, 66-67

Software engineering, xix, 11, 13, 30, 31, 55,
64, 67, 175, 218, 219, 220, 272

Software Engineering Institute (SEI), xuiii, xix,
xx, 3, 19, 20, 31, 54n., 83, 92, 175,
199-203, 235, 269

Software Engineering Process Group (SEPG),
14, 176, 269

Software Process Improvement and Capability
dEtermination (SPICE), 202, 269

Software quality assurance, 14, 30, 55, 133,
136, 144, 153, 154, 156, 158, 172, 218,
220, 222, 225, 227, 234. See also Quality
assurance.

Software Quality Assurance Plan (SQAP), xuiii,
xxi, 218, 221-28, 241, 242, 249, 250, 269
outline, 228

Software Quality Engineering (SQE), xxiii, 6, 16,
35, 174, 184, 186-87, 269, 271

Software requirements specification (SRS), 7,
19, 26, 27, 35, 76, 77, 79, 82, 85, 103,
104, 107, 168, 269

Software testing process, xiii, xvi, xviii
evaluating, 249-59

Source code, 25, 39ff., 45, 48, 97, 122, 134,
135, 230, 234

Spiral model, xiv, 4, 67
Standards, xvi, xx, xxiii, xxv, 18, 26, 30, 31,

34ff., 48, 49, 53ff., 69, 70, 71, 74ff., 83,
85, 87, 96ff., 105ff., 113, 114, 115, 118ff.,
133, 137, 155, 156, 157, 161, 162, 167ff.,
174, 176, 179, 184, 185, 189, 191, 192,
194, 222, 225, 228, 230, 233, 239, 240,
241, 252, 254, 268ff.
Standard-610.12, xxv, 7, 34, 39, 40, 99,

205, 206, 214, 222, 230, 239, 271ff.,
277

Standard-829, xiv, xvi, xx, xxiii, 18, 34, 36,
40, 41, 42, 74, 75, 77, 85, 87, 98,
100, 101, 106, 107, 108, 114, 115,
126, 127, 128, 133, 137, 158, 169,
170, 176, 179, 185, 239, 252, 254,
273, 278

Statement of work (SOW), 13, 206, 233, 240,
269

Structured analysis, 24, 121
Structured query language (SQL), 129, 146, 269
Subject-matter expert (SME), 12, 92, 100, 112,

117, 172, 177, 179, 185, 261, 262, 263,
264, 269

System requirements specification (SRS), 74, 87

Systems administration, 46, 85, 88, 125, 129,
139, 140, 143, 150, 179, 181, 261, 262,
263

Systems engineering, xviii, xix, 3, 12, 13, 103,
207

System Test Plan (STP), 238ff., 269
outline, 247

System under development, 122, 126
System under test, xxv, 87, 99, 149, 153

Test, xu, 4, 22, 41, 61, 64, 103, 209, 223, 231,
233, 234, 239, 240
acceptance, 218
alpha, 270
automation, xxi, 177, 182, 183, 185
beta, 6, 270
black-box, 6, 35, 44, 45, 87, 99, 128, 270,

271
buddy, 270
cases, xvii, xviii, xxv, 7, 10, 15, 18, 24ff.,

34, 39-43, 44, 47ff., 73, 82, 87, 93,
94, 95ff., 105ff., 113ff., 120ff., 132,
135, 137, 139ff., 151, 153, 154, 157,
158, 160ff., 176, 179, 180ff., 189,
190, 192, 193, 242, 243, 247, 255,
259, 263, 273

component, 30, 87, 129, 139, 190, 271
data, 43, 100, 116, 134, 135, 137, 138,

140, 142, 143, 146, 150ff., 157, 162,
193, 247, 271

databases, 100, 105, 129, 144
design, xvii, xviii, xx, 7, 10, 15, 21, 28, 34,

39ff., 44ff., 67, 68, 73, 82, 86ff., 93,
94, 95ff., 104, 105ff., 114, 115,
119ff., 132, 133, 135, 137, 138, 140,
145, 151, 160ff., 176, 178, 179, 180,
182, 185, 189, 190, 192, 193, 242,
243, 247, 254, 255, 259, 273

documentation, xviii, xix, xx, xxiv, 7, 10,
15, 17, 18, 21, 25ff., 31, 36, 38, 39,
40, 43, 44, 46, 47-50, 51, 59, 61, 63,
68, 72, 73, 77, 84, 86, 87, 88, 91, 94,
96, 97, 98, 104, 106, 109, 114, 119,
120, 127, 128, 130, 131, 132, 135ff.,
141ff., 150ff., 158, 159, 160ff.,
176ff., 183, 186, 188, 189, 192, 193,
196, 233, 239, 242, 243, 254, 257,
259, 271, 273

engineering, 15, 17, 27, 31, 32, 37, 38,
40ff., 49, 53, 55, 56, 59ff., 77, 80,
85, 87ff., 96, 99, 100, 101, 103, 107,
109, 112, 115ff., 121, 122, 125, 128,
129, 130, 135ff., 143, 146, 150, 153,
154, 156, 158, 163, 166, 167, 169,
170, 172, 173, 176, 179, 182, 195,
196, 201, 232, 250ff., 262, 263, 269,
270, 273

environment, 45, 46, 68, 75, 83ff., 103,
104, 113ff., 119, 120, 123ff., 133,
136ff., 150, 153, 163, 178, 180, 183,
185, 186, 191, 192, 257, 259

execution, xvii, xxi, xxiii, xxiv, 36, 37, 45ff.,
63, 67, 78, 81, 87, 88, 89, 96, 98,
101, 102, 109, 116, 118, 119,
122-23, 126, 128, 130, 131, 133ff.,



286 INDEX

141ff., 148, 151, 153, 154, 157, 161,
163, 168, 172, 176, 178, 181, 183,
186, 195, 257, 259, 260ff., 273, 274

experts, 35, 45
formal, 43-47, 51, 59, 68, 73, 94, 98,

132ff., 160, 164, 186, 188, 189, 190,
193, 257

functional, 263-64, 265, 266
gray-box, 99, 128, 270, 271, 274
harness, 15, 19, 34, 36, 37, 45, 76, 85,

88, 104, 125, 139, 140, 143, 178,
179

incidents, 136, 188, 243
information, 28, 51ff., 94, 160, 179, 189,

190, 249
input data, 40, 43, 47, 243
integration, xvii, 6, 7, 13, 29, 30, 43, 45,

59, 68, 87, 118, 129, 130, 139, 150,
218, 270, 271

items, 114, 115, 116, 127, 128, 129, 133,
136, 138ff., 150, 156, 157, 191, 243,
273

manager, xiii, xviii, 10, 19, 30, 50, 77, 87,
88-89, 91, 92, 103, 111, 112, 137,
140, 145, 152, 154, 156, 158, 183,
193, 194-95, 202

output, 150, 151, 155, 156
pass/fail criteria, 97, 108, 134, 135, 154,

180, 185, 191, 192, 244, 247, 257
performance, 104, 109, 265, 266
plan, xvii, xx, xxi, xxii, xxiii, xxv, 7, 10, 15,

16, 19, 21, 23, 24, 28, 30, 31, 34ff.,
42, 44ff., 54, 55, 58, 64, 66, 67, 68,
70, 72, 73ff., 94, 97, 99, 100, 101,
102ff., 115, 127, 128, 132ff., 160ff.,
176, 178, 180, 181, 182, 185ff., 191,
192ff., 219, 240, 241, 243, 252ff.,
259, 260, 263, 269, 271, 273

process, xvii, xviii, 3, 73, 77, 95, 135, 138,
144, 147, 176, 194, 195, 196, 240

program, xvii, 24, 74, 75, 76, 79, 87, 101,
128, 154, 186, 191, 194, 249, 254,
273

regression, 31, 44, 46, 47, 48, 87, 108,
130, 135, 136, 149, 157, 166, 169,
172, 177, 178, 261, 272

report, 155-59, 192
requirements, 6, 29, 30, 35, 51, 56, 60,

61, 64, 65, 68, 69, 72, 84, 91, 92,
118, 119, 120, 180, 190, 240, 241,
242, 247, 252, 270, 271

restart/recovery, 118
resumption criterion, 87
schedule, 43ff., 103, 134, 135, 138ff., 154,

195, 273
scripts, 126, 183
sequence, 118, 261, 262, 265
smoke, 115, 117, 118, 261, 262
status, 154, 156, 243
strategy, 67, 82, 108, 273
stress, 265
structural, 6, 271, 274
suspension criterion, 87, 244, 247
tasks, 84, 87, 103, 180, 242, 247, 273
team, 32, 55, 89, 114, 116, 126, 133, 137,

138, 145, 158, 163, 172, 177, 183ff.,
194, 195, 196

technicians, 42, 136, 273
tools, 43, 134, 135, 141, 142, 144, 183,

189, 191,243
tracking, 63
unit, 6, 13, 27, 29, 30, 43, 45, 59, 68, 86,

87, 88, 118, 122, 129, 133, 136, 138,
139, 150, 179, 193, 218, 270, 271

user acceptance, 6, 30, 273
white-box, 6, 87, 193, 270, 271, 274

Testing life cycle (TLC), xix, xx, xxiii, xxiv, 6-11,
16, 38, 41, 59, 67, 108, 166, 169, 189,
269
components of, 7-8
modeling, 22, 23, 26, 40, 44, 48, 53, 57,

61, 65, 69, 74, 75, 79, 84, 90
Thousand lines of source code (KSLOC), 11,

174, 268
Tools, xxi, xxiii, xxiv, 23, 26, 35, 37, 39, 40, 41,

43, 46, 70, 71, 74, 75, 84, 96, 97, 101,
115, 116, 119, 123, 124, 134, 135, 141ff.,
148, 177, 178, 180, 183, 189, 191, 205,
211, 213, 214, 218, 221, 226, 229, 233ff.,
241, 243
automated, 25, 41, 46, 79, 101, 115, 119,

123, 125, 129, 141, 143, 144, 177,
178, 180, 188, 270

Traceability matrix, 78, 79, 82, 226
Turner, Richard, 275

Unified Software Development Process (USDP),
xiv, 4, 269

U.S. Air Force Rome Air Development Center
(RADC), 21, 268

Use cases, 36, 180, 182, 186, 263, 264
User, 7, 27, 108, 119, 120, 121, 122, 124, 125,

126, 142, 153, 205, 207, 238, 241, 263,
265
acceptance testing, 27
documentation, 120, 122, 124, 126
instructions, 119, 124
manuals, 15, 45, 143, 150, 261

V-diagram, xvi, 7, 8
Vendor, 43, 124, 125, 226, 235

Walkthroughs, 13, 14, 38, 42, 59, 77, 92, 100,
101, 112, 122, 172, 177, 186, 209, 210,
217, 219, 254, 255, 256

Waterfall model, 8, 59, 67
Weinberg, Gerald M., xvii, 16, 32, 77, 92, 100,

112, 177, 277
White-box testing, 6, 87, 193, 270, 271, 274
Wiegers, Karl E., xvii, xviii, 16, 32, 77, 92, 100,

112, 177, 279
Work breakdown structure (WBS), xvi, 19, 269

Yourdon, Edward, xvi, xxivn., 35, 187, 279, 280
Yourdon, Inc., xxiv, 24, 270
YOURDON Systems Method (YSM), 24, 26, 270


	Contents
	Foreword
	Preface
	Chapter 3 Extract Test Information from Program Plans: Levels 2 and 3 IPO Diagrams
	3.1: OVERVIEW
	3.2: EXTRACT TEST INFORMATION FROM PROGRAM PLANS—LEVEL 2 IPO DIAGRAM
	3.3: REVIEW PROGRAM MANAGEMENT PLAN—LEVEL 3 IPO DIAGRAM
	3.4: REVIEW QUALITY ASSURANCE PLAN—LEVEL 3 IPO DIAGRAM
	3.5: REVIEW SOFTWARE DEVELOPMENT PLAN—LEVEL 3 IPO DIAGRAM
	3.6: REVIEW CONFIGURATION MANAGEMENT PLAN—LEVEL 3 IPO DIAGRAM
	3.7: WHAT'S NEXT?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y




