
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133488760
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133488760
https://plusone.google.com/share?url=http://www.informit.com/title/9780133488760
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133488760
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133488760/Free-Sample-Chapter

CREATING A
SOFTWARE

ENGINEERING
CULTURE

Also Availabkfrom DORSET HOUSE

Complete Systems Analysis: The Workbook, the Textbook, the Answers
by James & Suzanne Robertson foreword by Tom DeMarco
ISBN: 0-932633-50-1 Copyright ©1998,1994 624 pages, softcover

Exploring Requirements: Quality Before Design
by Donald C. Gause and Gerald M. Weinberg
ISBN: 0-932633-13-7 Copyright ©1989 320 pages, hardcover

Managing Expectations: Working with People Who Want More, Better,
Faster, Sooner, NOW!
by Naomi Karten foreword by Gerald M. Weinberg
ISBN: 0-932633-27-7 Copyright ©1994 240 pages, softcover

Peopleware: Productive Projects and Teams, 2nd ed.
by Tom DeMarco and Timothy Lister
ISBN: 0-932633-43-9 Copyright ©1999 264 pages, softcover

The Psychology of Computer Programming: Silver Anniversary Edition
by Gerald M. Weinberg
ISBN: 0-932633-42-0 Copyright ©1998,1971 360 pages, softcover

Quality Software Management Series by Gerald M. Weinberg
Vol. 1: Systems Thinking
ISBN: 0-932633-22-6 Copyright ©1992 336 pages, hardcover

Vol. 2: First-Order Measurement
ISBN: 0-932633-24-2 Copyright ©1993 360 pages, hardcover

Vol. 3: Congruent Action
ISBN: 0-932633-28-5 Copyright ©1994 328 pages, hardcover

Vol. 4: Anticipating Change
ISBN: 0-932633-32-3 Copyright ©1997 504 pages, hardcover

The Secrets of Consulting:
A Guide to Giving and Getting Advice Successfully
by Gerald M. Weinberg
ISBN: 0-932633-01-3 Copyright ©1988 248 pages, softcover

Surviving the Top Ten Challenges of Software Testing:
A People-Oriented Approach
by William E. Perry and Randall W. Rice
ISBN: 0-932633-38-2 Copyright ©1997 216 pages, softcover

Find Out More about These and Other DH Books:
Contact us to request a Book & Video Catalog and a free issue of The
Dorset House Quarterly, or to confirm price and shipping information.

DORSET HOUSE PUBLISHING Co., INC.
353 West 12th Street New York, NY 10014 USA
1-800-DH-BOOKS (1-800-342-6657) 212-620-4053 fax:212-727-1044
dhpubco@aol.com http://www.dorsethouse.com

http://www.dorsethouse.com

CREATING A

SOFTWARE

ENGINEERING
CULTURE

Karl E. Wiegers

Dorset House Publishing
353 West 12th Street

New York, New York 10014

Library of Congress Cataloging-in-Publication Data

Wiegers, Karl Eugene, 1953-
Creating a software engineering culture / Karl E. Wiegers.

p. cm.
Includes bibliographical references and index.
ISBN 0-932633-33-1 (hardcover)
1. Software engineering. I. Title.

QA76.758.W52 1996
005.1 '068--dc20 96-27627

CIP

Trademark credits: Adobe, Acrobat, and PostScript are registered trademarks of Adobe Systems, Inc.

Macintosh is a registered trademark of Apple Computer, Inc. Teamwork is a trademark of Cadre

Technologies, Inc. CMM and Capability Maturity Model are service marks of Carnegie Mellon University.
CompuServe is a registered trademark of CompuServe, Inc. IBM is a registered trademark of International
Business Machines Corporation. Lotus Notes is a registered trademark of Lotus Development Corporation.
M&M is a registered trademark of M&M/Mars Corporation, Inc. Microsoft and MS-DOS are registered

trademarks of Microsoft Corporation. Oracle is a registered trademark of Oracle Corporation. UNIX is a reg-

istered trademark of UNIX Systems Laboratories. Sybase, Velero, and QNX are registered trademarks of their
respective companies, and are the property of their respective holders and should be treated as such. Other
trade or product names cited herein are either trademarks or registered trademarks of their respective com-

panies, and are the property of their respective holders and should be treated as such.

Cover Design: Jeff Faville, Faville Design
Cover Photograph: Jim Newmiller

Copyright © 1996 by Karl E. Wiegers. Published by Dorset House Publishing, 353
West 12th Street, New York, NY 10014.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without prior written permission of the
publisher.

Printed in the United States of America

Library of Congress Catalog Number: 96-27627

ISBN: 0-932633-33-1 12 11 10 9 8 7 6 5 4

Digital release by Pearson Education, Inc., June, 2013

To
Pretzels the Clown

This page intentionally left blank

Acknowledgments

he dedicated critiquing efforts of Marcelle Bicker, Tim Brown, Lynda
Fleming, Anne Fruci, Kathy Getz, Lesle Hill, Trudy Howies, Kevin
Jameson, Tom Lindsay, Lori Schirmer, Doris Sturzenberger, Mike Terrillion,

and Nancy Wilier led to countless suggestions for improvement. These reviewers
caught many errors; any that remain are entirely my responsibility. I also appreci-
ate the helpful comments provided by Linda Butler, Henrietta Foster, Beth
Layman, Mark Mitchell, Carol Nichols, Tom Sweeting, and Peter Szmyt.

None of the achievements made by our Kodak software groups would have
been possible without the active involvement of all team members. I am indebted
to the original members of the Photographic Applications Software Team, who
worked with me as we learned how to build better software from January 1990
through April 1993. We learned a lot from each other, built some useful applica-
tions, and had fun in the process. Many thanks to Ray Hitt, Tom Lindsay, Mike
Malee, and Mike Terrillion. Mike Terrillion also allowed me to describe his work
correlating the number of requirements in a software requirements specification
with the work effort needed to deliver the application.

Thanks go as well to John Scherer and Jim Terwilliger, managers who didn't
know a lot about software, but were willing to learn. They provided solid manage-
ment support and encouragement during the early years of our process improve-
ment efforts. They also understood the importance of providing recognition for the
team's efforts to improve our work and to share our approaches with other soft-
ware groups at Kodak. Judy Walter and Jeffrey Yu in the Kodak Research Library
kept me in touch with the software literature by responding quickly to a steady
stream of requests for books and articles.

I am grateful to the staff at Dorset House, particularly Wendy Eakin, David
McClintock, Ben Morrison, and freelance editor Teri Monge, for their careful
review and editing, insightful recommendations, and support throughout this
project.

VII

T

viii ACKNOWLEDGMENTS

Special thanks go to Professor Stanley G. Smith of the University of Illinois at
Urbana-Champaign, who taught me a lot more in graduate school than how to do
physical organic chemistry.

On the home front, I wish to thank my cat, Gremlin, for keeping my lap warm
whenever I try to read, and the musical genius of "Weird Al" Yankovic, for helping
to put life into proper perspective. My deepest appreciation goes to my wife,
Christine Zambito, for her limitless support, encouragement, listening ability, and
sense of humor. Living with a clown is just slightly less peculiar than living with a
computer person.

Permissions
Acknowledgments

The author and publisher gratefully acknowledge the following for their permis-
sion to reprint material quoted on the cited pages.

p. 16: Material from Yeager, An Autobiography by Chuck Yeager and Leo Janos, p. 235,
reprinted by permission of Bantam Doubleday Dell Publishing Group. Copyright © 1985.
All rights reserved.

pp. 23, 45: Material from Peopleware: Productive Projects and Teams by Tom DeMarco
and Timothy Lister, pp. 135 and 12, reprinted by permission of Dorset House Publishing.
Copyright © 1987. All rights reserved.

p. 35: Material from Managing Software Maniacs by Ken Whitaker, p. 45. Copyright ©
1994, published by John Wiley & Sons. All rights reserved.

p. 51: Material reprinted from Communications of the ACM, stated purpose—reprinted
monthly. Material reprinted from IEEE Computer, stated purpose—reprinted monthly

pp. 61, 214: Material reprinted from Software Reliability by Glenford J. Myers, pp. 39,
189-95. Copyright © 1976, published by John Wiley & Sons. All rights reserved.

pp. 61, 165, 313: Material reprinted from Quality Is Free by Philip Crosby, pp. 15, 58,
131. Copyright © 1979 McGraw-Hill. Reproduced with permission of The McGraw-Hill
Companies.

pp. 63,147,158,168, 170, 215: Material and data adapted from Assessment and Control
of Software Risks by Capers Jones, pp. 29, 34, 286,435,436. Copyright © 1994. Reprinted by
permission of Prentice-Hall, Inc., Upper Saddle River, N.J. All rights reserved.

p. 85: Figure 6.3 reprinted from IEEE Std 830-1993 IEEE Recommended Practice for
Software Requirements Specifications, Copyright © 1994 by the Institute of Electrical and
Electronics Engineers, Inc. The IEEE disclaims any responsibility or liability resulting from
the placement and use in this publication. Information is reprinted with the permission of
the IEEE.

pp. 105, 127: Material reprinted from W.S. Humphrey, Managing the Software Process
(pages vii & 287), © 1989 Addison-Wesley Publishing Company, Inc. Reprinted by permis-
sion of Addison-Wesley Longman Publishing Company, Inc.

IX

X PERMISSIONS ACKNOWLEDGMENTS

pp. 129, 145, 169: Material and data adapted from CMU/SEI-93-TR-24 and -25 and
from the SEI's The Capability Maturity Model: Guidelines for Improving the Software Process,
Copyright © 1995, Addison-Wesley, by permission of the Software Engineering Institute,
Pittsburgh, Perm.

p. 171: Data adapted from Applied Software Measurement by Capers Jones, p. 76.
Copyright © 1991. Material used with permission of the author and The McGraw-Hill
Companies.

p. 181: Material reprinted from The Art of Software Testing by Glenford J. Myers, pp.
12-13. Copyright © 1979, published by John Wiley & Sons. All rights reserved.

p. 191: Material reprinted and data adapted from Software Engineering Economics by
Barry W. Boehm, p. 40. Copyright © 1981. Reprinted by permission of Prentice-Hall, Inc.,
Upper Saddle River, N.J.

p. 195: Material reprinted from Software Inspection Process by Robert G. Ebenau and
Susan H. Strauss, p. 39. Copyright ©1994. Material is reproduced with permission of The
McGraw-Hill Companies.

p. 200: Data adapted from Kirk Bankes and Fred Sauer, "Ford Systems Inspection
Experience/' Proceedings of the 1995 International Information Technology Quality Conference
(Orlando, Fla.: Quality Assurance Institute, 1995). Used courtesy of Kirk Bankes.

pp. 211,215,266: Material reprinted and data adapted from Software Testing Techniques,
2nd ed. by Boris Beizer, pp. 3 and 75. Copyright © 1990. Reprinted by permission of ITP
Computer Press.

p. 244: Material reprinted from James D. Wilson, "Methodology Mania: Which One
Fits Best?" Journal of the Quality Assurance Institute, Vol. 7, No. 2 (April 1993), p. 22.
Reprinted with permission of the Quality Assurance Institute.

p. 263: Figure 15.3 reprinted from James Walsh, "Determining Software Quality,"
Computer Language, Vol. 10, No. 4 (April 1993), p. 65. Reprinted with permission of Miller
Freeman Inc.

p. 265: Figure 15.4 adapted from Robert B. Grady, "Practical Results from Measuring
Software Quality," Communications of the ACM, Vol. 36, No. 11 (November 1993), p. 65.
Figure adaptation courtesy of ACM. Copyright © 1993 Association for Computing
Machinery, Inc. Reprinted with permission.

p. 316: Ratio provided by private communication from Capers Jones, Chairman,
Software Productivity Research, Inc. Used by permission.

p. 326: Figure 20.1 reprinted courtesy of Corporate Ergonomics, Eastman Kodak
Company.

Contents

Figures and Tables xvii

Preface xix

Part 1: A Software Engineering Culture 1

Chapter 1: Software Culture Concepts 3

Culture Defined 3
Growing Your Own Culture 6
A Healthy Software Culture 8

Individual Behaviors 8
Team Behaviors 8
Management Behaviors 9
Organizational Characteristics 9

A Less Healthy Software Culture 10
Individual Behaviors 10
Management Behaviors 11
Organizational Characteristics 11

Organizational Options 12
The Management Challenge 15
Summary 18
Culture Builders and Killers 18
References and Further Reading 19

Chapter 2: Standing On Principle 23

Integrity and Intelligence: With Customers 24
Integrity and Intelligence: With Managers 27
The Five Dimensions of a Software Project 28
Summary 33

XI

xii CONTENTS

Culture Builders and Killers 34
References and Further Reading 34

Chapter 3: Recognizing Achievements Great and Small 35

The Importance of Being Visible 38
The Importance of Management Attitude 39
Rewards for a Job Well Done 40
Summary 41
Culture Builders and Killers 42
References and Further Reading 43

Chapter 4: So Much to Learn, So Little Time 45

What to Learn 47
Where to Learn 49

Professional Seminar Sources 49
Technical Conferences 50
Publications 51
Videotape Instruction 53
On-Line Information Sources 53
Professional Societies and Certification 53

Summary 55
Culture Builders and Killers 55
References and Further Reading 56

Part II: In Search of Excellent Requirements 59

Chapter 5: Optimizing Customer Involvement 61

Software Requirements: The Foundation of Quality 62
The Need for Customer Involvement 64
The Project Champion Model 66
Project Champion Expectations 69
When the Project Champion Model Fails 73
Summary 75
Culture Builders and Killers 75
References and Further Reading 76

Chapter 6: Tools for Sharing the Vision 78

Use Cases 79
Software Requirements Specifications 83
Dialog Maps 91
Prototypes 93
Requirements Traceability Matrices 96

CONTENTS xiii

From Requirements to Code 97
Summary 98
Culture Builders and Killers 99
References and Further Reading 100

Part III: Improving Your Processes 103

Chapter 7: Process Improvement Fundamentals 105

Principles of Process Improvement 106
Getting Started with Process Improvement 112
Summary 114
Culture Builders and Killers 115
References and Further Reading 116

Chapters: Process Improvement Case Study 117

Making Change Happen 122
Sustaining Momentum 123
Summary 125
Culture Builders and Killers 126
References and Further Reading 126

Chapter 9: Software Process Maturity 127

The Capability Maturity Model 128
Level 1: Initial 130
Level 2: Repeatable 131
Level 3: Defined 131
Level 4: Managed 132
Lévelo: Optimizing 133

Dissenting Opinions 135
Process Assessments 137
Process Maturity and Culture 139
Summary 140
Culture Builders and Killers 141
References and Further Reading 141

Chapter 10: Software Development Procedures 146

Standards, Procedures, and Guidelines, Oh My! 147
Local Development Guidelines 149
Our Software Development Guidelines 151
IEEE Standards 155
Other Standards Sources 156
Summary 158

xiv CONTENTS

Culture Builders and Killers 159
References and Further Reading 160

Part IV: The Bug Stops Here 163

Chapter 11: The Quality Culture 165

The Cost of Quality 167
Assuring Software Quality 168

How Dense Are Your Defects? 170
Lines of Code versus Application Functionality 172

How Good Is Good Enough? 174
An Assault on Defects 178
Explicit SQA Responsibilities 181
Why Do We Think Quality Practices Pay Off? 184
Summary 185
Culture Builders and Killers 185
References and Further Reading 186

Chapter 12: Improving Quality by Software Inspection 189

Inspections and Culture 190
Benefits of Inspections 190
Inspections, Walkthroughs, and Reviews 194
Guiding Principles for Reviews and Inspections 198
Keeping Records 201
Making Inspections Work in Your Culture 204
Summary 207
Culture Builders and Killers 207
References and Further Reading 208

Chapter 13: Structured Testing 211

Testing and the Quality Culture 212
A Unit Testing Strategy 215
Cyclomatic Complexity and Testing 218
Test Management and Automation 220
Structured Testing Guidelines 222
Summary 224
Culture Builders and Killers 224
References and Further Reading 225

CONTENTS XV

Part V: Methods, Measures, and Tools 229

Chapter 14: The CASE for Iteration 231

Types of CASE Tools 233
Hypes of CASE Tools 235
Lessons from Our CASE History 236
Fitting CASE into Your Culture 244
Other Benefits from CASE 247
Culture Change for CASE 248
Summary 249
Culture Builders and Killers 250
References and Further Reading 251

Chapter 15: Control Change Before It Controls You 254

Benefits of a Problem Tracking System 255
A Software Change Management Case Study 256
The Software Change Control Board 261
How Change Control Can Simplify Your Life 262
Learning from Bug Detection Trends 263
Proactive Failure Reporting 265
Making Change Management Work in Your Culture 267
Summary 268
Culture Builders and Killers 269
References and Further Reading 270

Chapter 16: Taking Measures to Stay on Track 272

Why Measurement Programs Fail 273
Metrics Programs Don't Have to Fail 276
What to Measure 276
How to Design Your Metrics Program 278
Summary 282
Culture Builders and Killers 283
References and Further Reading 284

Chapter 17: Case Study: Measurement in a Small Software Group 287

Software Work Effort Metrics 287
Trends and Applications 295
Metrics-Based Project Estimation 297

xvi CONTENTS

Lessons from Work Effort Metrics 300
Predicting Maintainability with Metrics 300
Summary 301
Culture Builders and Killers 302
References and Further Reading 302

Chapter 18: If It Makes Sense, Do It 304

Summary 308
Culture Builders and Killers 308
References and Further Reading 309

Part VI: What to Do on Monday 311

Chapter 19: Action Planning for Software Managers 313

Action Item Menu 315
Summary 318
References and Further Reading 318

Chapter 20: Action Planning for Software Engineers 319

Action Item Menu 320
Building a Healthy Workplace 324
Summary 327
References and Further Reading 327

Epilogue 329

Appendix A: Sources for Continued Software Learning 331

Appendix B: Contact Information for Selected Resources 337

Bibliography 339

Author Index 349

Subject Index 351

Reviewers' Comments 359

Figures and Tables

Figure 1.1. A software engineering culture. 5
Figure 1.2. Characteristics of Constantine's four organizational paradigms. 13
Table 1.1. Characteristics of a Structured Open Team. 14
Table 1.2. Aspects of "Roman" versus "Greek" Software Engineering Cultures. 15
Table 1.3. Software Engineering Cultural Principles. 17
Figure 2.1. The five dimensions of a software project. 29
Figure 2.2. Flexibility diagram for an internal information system. 30
Figure 2.3. Flexibility diagram for a quality-driven application. 31
Figure 2.4. Flexibility diagram for a competitive commercial application. 31
Figure 2.5. Sample form for documenting the negotiated dimensions for a project. 32
Figure 3.1. The simplest form of recognition. 36
Figure 3.2. Priorities for the enlightened software manager. 40
Figure 4.1. Growing better software engineers through continuing education. 47
Table 4.1. Technical and Nontechnical Skills for Software Developers. 48
Table 4.2. Professional Computing Societies. 51
Table 4.3. Professional Computing Certifications. 54
Figure 5.1 "Specification" for a Stonehenge replica. 62
Figure 5.2 The software development expectation gap. 63
Table 5.1. Effective Techniques for Requirements Engineering. 64
Figure 5.3. Project champion model for a large project. 68
Figure 5.4. The context diagram shows what is inside the system and what is not. 70
Figure 6.1. Process and deliverables from the use case method. 80
Figure 6.2. Use caseflipchart created in a workshop with user representatives. 81
Figure 6.3. IEEE template for software requirements specifications. 85
Table 6.1. Characteristics of a High-Quality Requirements Statement. 87
Table 6.2. Some Quality Attributes for Software Operation. 88
Table 6.3. Some Quality Attributes for Software Revision. 88
Table 6.4. Some Quality Attributes for Software Transition. 89
Figure 6.4. Sample dialog map. 92
Figure 6.5. Prototyping reduces the software development expectation gap. 94
Figure 6.6. Sample requirements traceability matrix. 96
Figure 7.1. Activities involved in the effective practice of software engineering. 107
Figure 7.2. A process improvement task cycle. 113
Figure 7.3. Template for action planning. 114
Figure 8.1. Add new skills to your toolbox for future projects. 120
Figure 8.2. Emotional reactions to pressure for change. 122
Figure 9.1. Several evolutionary scales for software development. 128
Figure 9.2. Software Engineering Institute's Capability Maturity Model for software. 129

XVII

XVÜi FIGURES AND TABLES

Table 9.1. Key Process Areas for the Repeatable Level. 132
Table 9.2. Key Process Areas for the Defined Level. 133
Table 9.3. Key Process Areas for the Managed Level. 133
Table 9.4. Key Process Areas for the Optimizing Level. 134
Figure 9.3. Where do you fit along the CMM philosophy spectrum? 137
Figure 10.1. Software guidelines, procedures, and standards. 148
Figure 10.2. Sample source file header documentation template. 153
Table 10.1. IEEE Software Development Standards. 157
Table 11.1. Some Components of the Cost of Quality for Soßware. 167
Figure 11.1. Internal rework and post-release maintenance. 169
Table 11.2. Source Statements, Assembler Instructions, and Function Points. 171
Table 11.3. Defect Levels Associated with Different Sigma Values. 172
Figure 11.2. Example of how to calculate defect detection efficiencies. 176
Table 11 A. Reaching Six-Sigma Quality in a C Program. 177
Figure 11.3. A customer/supplier process model for software. 179
Table 11.5. Allocating Software Quality Responsibilities. 183
Figure 11.4. Trends in defect-correction work effort over five years. 184
Figure 12.1. Increase in the cost of fixing bugs throughout the life cycle [Boehm, 1981]. 191
Table 12.1. Benefits from Software Inspections. 192
Table 12.2. Errors Found by Code Inspection or Testing. 193
Figure 12.2. Stages in a formal software inspection process (adapted from [Ebenau, 1994]). 195
Figure 12.3. Defects found versus inspection rate. 200
Figure 12.4. Inspection summary report. 202
Figure 12.5. Inspection issues list. 203
Figure 12.6. Record of code reviews carried out. 204
Table 13.1. Survey of Testing Practices Among Kodak R&D Software Engineers. 212
Table 13.2. Myers'Software Testing Axioms. 214
Figure 13.1. Dataflow model for operation of an automated test driver. 221
Figure 13.2. Sample test report from the Graphics Engine. 222
Figure 14.1. Some upper-CASE and lower-CASE tool categories. 223
Figure 14.2. Sample dataflow diagram that will generate a validation error. 234
Figure 14.3. Different platforms used for development steps. 243
Figure 14.4. The data stores connected to a DFD process define its external interfaces. 248
Figure 15.1. Architecture of the SWCHANGE problem tracking system. 257
Figure 15.2. SWCHANGE entry submission screen. 258
Figure 15.3. Example of reliability modeling from defect discovery rates [Walsh, 1993]. 263
Figure 15.4. Categorization of sources of software defects at Hewlett-Packard [Grady, 1993]. 265
Table 15.1. Top Level ofBeizer's Taxonomy of Bugs [Beizer, 1990]. 266
Figure 15.5. Sample e-mail message from a trapped REXX error. 267
Figure 16.1. A recommended starter set of software metrics. 277
Table 16.1. Some Measurable Dimensions of Software Products, Projects, and Processes. 279
Figure 16.2. Sample goal/question/metric strategy for a goal of early retirement. 280
Figure 16.3. Goal/cjuestion/metric feedback model for software metrics. 281
Figure 17.1. Work effort distribution over time for one software project. 291
Figure 17.2. Sample work effort distribution report for one project. 295
Figure 17.3. New development work effort distribution for one software group, by year. 296
Figure 17.4. Development time as a function of number of requirements. 298
Table 18.1. Relating Soßware Engineering Practices to Organizational Goals. 306
Figure 20.1. Recommended configurations of a safe computer work environment. 326
Table A.I. Some Suppliers of Software Training Seminars. 332
Table A.2. Some Software Development and Quality Conferences. 333
Table A.3. Some Software Engineering and Software Quality Periodicals. 334
Table A.4. Sources of Information about Testing Tools. 335
Table A.5. Sources of Information about CASE Tools. 335

Preface

Rrely has a professional field evolved as rapidly as software development,
he struggle to stay abreast of new technologies, to deal with accumulated
evelopment and maintenance backlogs, and to cope with people issues

has become a treadmill race, as software groups work hard just to stay in place. A
key goal of disciplined software engineering is to avoid the surprises that can
occur when software development goes awry. Software surprises almost always
lead to bad news: canceled projects, late delivery, cost overruns, dissatisfied cus-
tomers, and unemployment because of outsourcing.

The culture of an organization is a critical success factor in its efforts to sur-
vive, improve, and flourish. A culture based on a commitment to quality software
development and management differentiates a team that practices excellent soft-
ware engineering from a gaggle of individual programmers doing their best to
ship code. In a software engineering culture, the focus on quality is present at all
levels—individual, project, and organization.

In this book, I share a cultural framework that was effective in improving the
results obtained by several software groups at Eastman Kodak Company. Most of
our projects involved small teams of one to five developers, with typical durations
of six months to two years. Each part of the book discusses several guiding princi-
ples that shaped the way we chose to create software. I also describe the specific
software engineering practices that we adopted to improve the quality and pro-
ductivity of our work. We believe a culture based on these principles and practices
has improved our effectiveness as software engineers, the relationship and reputa-
tion we have with our customers, and our level of collaborative teamwork. Many
of the experiences related and suggestions offered are most relevant to work-
groups of two to ten engineers. Since even large software products are often con-
structed by small teams of engineers working together, these technical activities
are applicable in a wide variety of organizations.

XIX

XX PREFACE

With this book I hope to reach first-line software managers, project leaders,
and practitioners who wish to drive progress toward an improved, quality-orient-
ed culture in their organization. My goals are to provide practical ideas for imme-
diately improving the way a team performs software engineering, and to show
that continuous software process improvement is both possible and worthwhile. I
am assuming that the reader has the ability to actually change the culture of his
software group, or at least to positively influence those who can drive changes.

I present here a tool kit composed of many ideas and practices for those who
wish to improve the quality of the software they develop, along with case studies
of how these methods really worked. Our groups have applied all the methods
described, and I have used nearly all of them personally. Every anecdote is real,
although the names have been changed. While not every team member has used
every good method on every project, we invariably obtained better results when
we applied these solid engineering practices than when we did not.

An organization grows a quality-directed software culture by blending estab-
lished approaches from many sources with locally developed solutions to special-
ized problems. To help point toward useful sources in the voluminous software lit-
erature, each chapter provides an annotated bibliography of references and addi-
tional reading materials. The references I feel are particularly valuable are marked
with a bookshelf icon.

Each chapter contains several "Culture Builder" tips (marked with a hand-
shake icon), which are things a manager or project leader can do to promote an
attitude and environment that leads to software engineering excellence. "Culture
Killers" are also described, and are marked with a skull and crossbones warning
icon. Culture killers are management actions that will undermine a team devoted
to superior software engineering or prevent such a culture from developing. Sadly,
many of these are real examples. You can probably think of other culture killers
from your own experience, as either victim or unknowing perpetrator. Although
both builders and killers are written in the form of recommendations, remember
that the culture killers are tongue-in-cheek. Don't rush into work next Monday
with an agenda of action items selected from the culture killers!

Some of the experiences of our software groups at Kodak were published orig-
inally in the following articles; material is included here with permission from the
publishers:

Wiegers, Karl E. "Creating a Software Engineering Culture," Software Development,
Vol. 2, No. 7 (July 1994), pp. 59-66.

. "Effective Quality Practices in a Small Software Group," The Software QA
Quarterly, Vol. 1, No. 2 (Spring 1994), pp. 14-26.

. "Implementing Software Engineering in a Small Software Group,"
Computer Language, Vol. 10, No. 6 (June 1993), pp. 55-64.

PREFACE xxi

. "Improving Quality Through Software Inspections/' Software Development,
Vol. 3, No. 4 (April 1995), pp. 55-64.

. "Lessons from Software Work Effort Metrics/' Software Development, Vol. 2,
No. 10 (October 1994), pp. 36-47.

. "In Search of Excellent Requirements," Journal of the Quality Assurance
Institute, Vol. 9, No. 1 Qanuary 1995), pp. 23-32.

This page intentionally left blank

CREATING A
SOFTWARE

ENGINEERING
CULTURE

This page intentionally left blank

Chapter 3

Recognizing Achievements
Great and Small

Another major software player decided to "dangle" incentive
money in front of its developers. . . . The dictated delivery
date came and went and no product had been delivered. . . .
Senior management withdrew the incentive and threatened
jobs since developers were employed to deliver even without
the need for extra compensation. Some of the software engi-
neers (the good ones) left the company, morale was horrible,
and by the time a product was delivered, the company's mar-
ket share had eroded. What a terrible lesson to learn.

—Ken Whitaker, Managing Software Maniacs

"W "IT "Then I first became the supervisor of the Kodak software group in which I
%/\/ had worked for several years, I initiated a simple (and slightly corny)

w w recognition program. When someone reached a minor project milestone
or made a small contribution such as helping another team member with a prob-
lem, I gave him a package of M&M® candies, with a message tag attached express-
ing congratulations or thanks, as appropriate. Bigger achievements generated big-
ger bags of M&Ms, or something more tangible. It wasn't much, but it was more
than we were used to.

As I expected, the candy disappeared immediately, but I was pleasantly sur-
prised to see that some people kept the message tags visible around their desks. To
them, the important thing was not the bag of candy, but the words indicating that
their manager noticed and valued the progress being made. It soon became appar-
ent that group members preferred to have the presentations made publicly at our
weekly team meetings, indicating their desire for peer recognition of even small
achievements.

M&Ms worked with our group, but some other social recognition technique
might work better for you. We also gave this sort of micro-recognition award to
people outside the group who helped us in some way. It brought smiles to their
faces and goodwill to our relationships. However you choose to do it, appropriate
praise and commendation help to build the culture of teamwork and striving for
excellence that we all want, and it can motivate your team members to do an even
better job in the future, since they know you appreciate their efforts.

35

36 CREATING A SOFTWARE ENGINEERING CULTURE

The form and extent of recognition and reward is a visible indication of an
organization's culture. If managers believe the employees are lucky just to have
jobs, they won't go out of their way to offer even small gestures of appreciation or
congratulations. Conversely, in a market characterized by competitive hiring and
high staff turnover, an effective recognition program can help retain talented
developers. M&Ms won't make up for low salaries or unpleasant working condi-
tions, but simple recognition is an important step in the right direction.

Software engineers are like other people (well, pretty much): We want to be
appreciated, and we appreciate being wanted. Besides the internal satisfaction we
obtain from interesting, challenging work and the tangible compensation in our
paychecks, we want to feel that our efforts are noticed and valued by those around
us. We all enjoy receiving compliments, especially when they come from various
sources: peers, customers, team leader, senior managers, professional associates.

Praise for a job well done should be timely, direct, personal, and specific (see
Fig. 3.1). If you are a manager, don't wait until performance appraisal or salary
adjustment time rolls around to pass along some positive feedback. Tell the indi-
vidual exactly what he or she did well and why you appreciate it. A mumbled
"Keep up the good work" in the hallway is more likely to confuse than motivate
the recipient. Your team members must know you are sincere when you offer com-
pliments on their work. Though many people feel awkward when they receive a
compliment, they appreciate that someone took the trouble to say how pleased he
was with your work.

Figure 3.1: The simplest form of recognition.

CHAPTER 3: RECOGNIZING ACHIEVEMENTS GREAT AND SMALL 37

Recognition can take many forms. Donna Deeprose presents more than one hun-
dred ideas about how to select appropriate and meaningful recognition and
rewards for your employees [Deeprose, 1994]. Ask the members of your team what
kinds of recognition are important to them. Do they prefer a public pronouncement
at the weekly group meeting, or are they more comfortable with private cere-
monies? Should recognition come just from you, or is it meaningful to have higher-
level managers participate in certain recognition activities? Tailor the reinforce-
ment you offer to be significant to the recipients. The following paragraphs
describe some of the things the groups in which I have worked have done to
express appreciation and to build a positive culture. Some of these apply to indi-
viduals, while others are appropriate for teams of people.

Spend a few moments at weekly team meetings to give everyone a chance to
pass along some positive reinforcement ("R+") to others. Did a coworker help you
solve a problem this week? Did someone take some action out of the ordinary that
helped the team? If yes, say so! The group may be uncomfortable when you first
try this, but they should warm to the idea over time. If group members are so iso-
lated from each other that no one ever has any R+ to pass along, you may have
some serious issues of team dynamics to address.

A traveling trophy that moves from project to project can be used to recognize
team achievements. In keeping with the M&M motif, we used a framed three-
pound M&M bag (empty, sad to say) as a traveling trophy. Recipients displayed
the prize in their office area until another project reached a milestone worthy of
recognition. The trophy was ceremoniously passed from one team to the next in
our group meeting. If you try something like this, be sure to keep the trophy trav-
eling every few weeks, or its significance becomes lost.

Food and entertainment are also good ways to recognize someone's contribu-
tions or special achievement. Taking the team to a celebration luncheon when a
milestone is reached can be fun for everyone involved. A gift certificate for dinner
at a restaurant gives an individual recipient a chance to celebrate privately with
friends or family. Whenever a member of my team earned a college or advanced
degree, my wife and I took him and his significant other out to dinner. Maybe
going to dinner with the boss is not everyone's idea of a great time, but it worked
for us. On another occasion, I gave each team member a pair of movie passes as a
symbol of how much I appreciated their time and teamwork when, during an
intense period of selecting new members for our group, the entire team of ten
pitched in on short notice to participate in the interviews. It was a small gesture
but a sincere way of saying, "Thanks for the help, gang."

Recognize individuals outside your group for their contributions as well. It's
amazing how much future cooperation you can secure with a simple gesture of
appreciation. As the recipient of a few such gestures myself, it always makes me
feel good to know that someone really appreciated something I did, however rou-
tine it may have seemed to me. We have thanked project customer representatives
by taking them to lunch, giving them certificates to hang on the wall, and bestow-
ing restaurant gift certificates upon those who shouldered the most responsibility.

38 CREATING A SOFTWARE ENGINEERING CULTURE

One customer even reciprocated, throwing a lunch bash for the development
group. This sort of customer-developer interaction helps build a culture of con-
structive teamwork.

Be sure to recognize people for attaining minor milestones, as well as when
they complete a big project. Interim pats on the back help provide team members
with the incentive to keep pushing ahead. Again, it says to the recipient,
"Congratulations on making progress toward your goals."

As a manager, you must actively look for recognition opportunities, and seize
the moment as soon as you spot one. The manager who realizes an achievement is
worthy of formal recognition but waits to figure out what he wants to do about it,
and waits to execute his plan, may provide recognition too far removed from the
achievement itself to mean much to the recipient. "Oh, so you finally noticed what
I did," is a typical unspoken reaction to a belated recognition effort. A manager
who expects such opportunities automatically to pop up in front of him will miss
many of them, and will not deliver consistent recognition messages. Also remem-
ber that managers who fail to reward exceptional contributions are sowing the
seeds of discontent. The absence of well-deserved recognition is highly demotivat-
ing.

The Importance of Being Visible

The antithesis of being recognized for your achievements is feeling that your man-
agers do not know who you are, what you do on the project, how you do it, or
what your contributions are to the company as a whole. When was the last time
your supervisor stopped by your office just to say hello and to ask how things are
going? How about a visit from a manager farther up the corporate hierarchy?

Some people are uncomfortable with an unannounced manager visit, but oth-
ers welcome the opportunity to share their concerns and show the boss what they
are working on. "Management By Walking Around" is one way managers express
interest in the individuals in their organization; it can and should be practiced by
managers at all levels. Think about it: If you are a first-line supervisor and you
never see your boss in the engineering staff's offices, chances are you'll conclude
that he or she is hopelessly out of touch with the group.

People are more motivated to put in extra effort when they know the higher-
ups value it. We have all worked for managers who represented the other extreme,
having a limited awareness of the group's challenges and contributions. How
excited can you get about trying to please such managers? As a supervisor, make
sure you really know what the engineers in your department are doing. Who are
the contributors, the innovators, the leaders? Who is just along for the ride? The
team members will have no confidence that they can get fair performance
appraisals if they rarely talk to their supervisor. Your employees need to have ade-
quate opportunities to explain what they do and the problems they face.

When appropriate, a manager should also show interest in professional activi-
ties that are unrelated to specific projects. It is discouraging to put in extra time to

CHAPTER 3: RECOGNIZING ACHIEVEMENTS GREAT AND SMALL 39

prepare a presentation for a local software conference, then not to see your boss's
face in the audience. Telling you he is pleased you are doing something extra is not
nearly so meaningful as if he actually shows up for the event. Remember all those
plays, dance presentations, and concerts you sat through because your children
were on stage? Being a good manager demands some of the same actions as being
a good parent. It means a lot to know your supervisor cares about what you are
doing.

The Importance of Management Attitude

Here's a radical idea: Think of you, as a manager, working for the people who
report to you, as opposed to the more traditional view of subordinates working for
the supervisor. The people you supervise are the customers for your leadership
and management services, including

• coaching and mentoring

• setting project goals and priorities

• resolving problems and conflicts

• providing resources

• evaluating performance and providing feedback

• career development

• leading process improvement efforts

• providing technical guidance when appropriate

Give your own people top priority over the demands of others for your time. Your
priorities as a manager should be those shown in Fig. 3.2.

Unfortunately, too many managers are busy looking up the corporate organiza-
tion chart, not down. The sequence in Fig. 3.2 is frequently inverted, with the key
driver being what you think will make your own boss happy. In a healthy, congru-
ent workplace, the boss should be thrilled if you are meeting the needs of your
team and its customers. Not everyone is fortunate enough to work in such an
enlightened environment; priorities are usually defined by the perception of who
you think you have to please to keep your job.

One way a manager can tell if his priorities are straight is whether he ever
receives any recognition from his team members. It meant more to me to get an R+
from one of the people I supervised than to get one from my own supervisor. If
you are an individual contributor, remember to thank your managers for special

40 CREATING A SOFTWARE ENGINEERING CULTURE

contributions they make or extra help they provide to you. Managers are people,
too, with the same desire to be appreciated that anyone else has.

Figure 3.2: Priorities for the enlightened software manager.

Rewards for a Job Well Done

The skillful manager will use recognition and rewards to reinforce desired behav-
iors, rather than offering tangible incentives to individuals or teams to achieve spe-
cific goals. The main incentive for most software people to go to work each day is
the opportunity to work on challenging projects with stimulating colleagues, in an
environment that encourages quality work, in which software skills can be applied
and extended.

Dangling extra cash as a carrot in front of a software engineer to try to get him
to work faster-harder-longer can backfire [Whitaker, 1994]. If the ambitious goals
are not met, and developers know the pot of gold at the end of the rainbow won't
be forthcoming, how do you keep them motivated? Withdraw the incentives
(thereby destroying morale), or renew the incentives (thereby showing that falling
short of management's outrageous goals is just as meritorious as achieving them)?
Either way, everyone loses. Instead of offering incentives, design a reward pro-
gram that matches your organization's culture and means something to your team
members. Motivate your team through frequent interim recognition activities, and
reward them for a job well done when the job really is done. People should also be
rewarded for taking intelligent risks, even if a great notion or great effort doesn't

CHAPTER 3: RECOGNIZING ACHIEVEMENTS GREAT AND SMALL 41

pay off for reasons outside the development team's control. Public rewards indi-
cate to the rest of the group those behaviors you feel are desirable.

Rewards can be monetary or non-monetary. Slipping a few bonus bills in the
pay envelope may seem like a sure way to please an employee, but often some-
thing else would be preferable. Talk to your people and understand what rewards
they feel are significant. The corporate culture will have some influence in select-
ing feasible rewards. It may be easier to give someone a substantial, but non-cash,
award, such as a trip to a conference or trade show. Some companies reward
employees with frequent flyer miles, which can be purchased from airlines for a
few cents per mile. Some developers might enjoy extra vacation time; others might
want to buy a special software package with which to experiment, just because
they heard it was interesting. If someone does an exceptional job on a project, he
might appreciate a mini-sabbatical, a couple of weeks set aside to work on whatev-
er he likes.

Another kind of reward is the opportunity to work on an exciting new project.
In some groups, only the old hands have the skills and knowledge to keep the
legacy systems alive. Less experienced people may be assigned to projects involv-
ing newer technology, which are more fun than maintaining ancient applications.
This is a good way to drive your senior staff members out of the group, to search
for opportunities where they can learn contemporary skills and work on the kinds
of projects they read about in computer magazines. Creative and experienced engi-
neers don't want to be mired in legacy code for the rest of their careers. Look for
ways to reward your best workers by keeping them stimulated with new learning
opportunities and project challenges.

Summary

• People need to feel the work they do is appreciated.

• Receiving positive reinforcement from peers, managers, and
customers is highly motivating to most people. Failing to rec-
ognize someone's exceptional contributions and major achieve-
ments is demotivating. Why do extra work if your managers
don't care?

• Recognition says, "I appreciate your effort," "Congratulations
on your accomplishment," or simply, "I noticed what you did."

• Find out what kinds of recognition and rewards are meaning-
ful to your people, and tailor your R+ program accordingly to
foster a culture of desirable software engineering behaviors.

• Recognize minor accomplishments and milestones, to motivate
individuals to keep working toward their major objectives.

42 CREATING A SOFTWARE ENGINEERING CULTURE

Managers can build better relationships with their team mem-
bers simply by understanding the work they do and showing a
sincere interest in it. Talk to your people informally to find out
what they are excited and unhappy about. Sometimes, this
approach will let you deal with a concern before it becomes a
crisis.

A software manager should regard the people who report to
him as his most important customers. The manager's top prior-
ity should be to address the needs of his team members.

Reward your staff members, whatever their job, for a good per-
formance, rather than offering big incentives to induce them to
do great work in the future.

Culture Builders and Killers

Culture Builder: Distribute recognition awards equitably to your group
members. Don't reserve recognition events only for project leaders, mem-
bers of high-profile project teams, or your senior technical people. The

scale and frequency of rewards does not have to be the same for everyone—after
all, people are different—but it is demoralizing for an employee to see the same
coworkers being recognized repeatedly without anyone noticing his own achieve-
ments.

Culture Builder: Make sure you are accessible to the people who report
to you. Schedule one-on-one meetings with those who desire them, at
whatever interval is mutually acceptable to you and each individual. A

general open-door policy is important, too, but your team members may be reluc-
tant to bother you if they know how busy you are. They deserve a slice of your
undivided attention at regular intervals.

Culture Builder: If you make a verbal commitment to someone for a
reward, be sure to follow through on it. Forgetting that you made this
promise demonstrates a lack of sincerity. Be sure to reward the right peo-

ple for the right reasons. If you aren't sure who made key contributions to a suc-
cessful project, find out before you present any rewards or recognition. Few things
are more infuriating than seeing a person receive praise (or more) for work that
was actually done by someone else.

Culture Killer: In an era of political correctness carried to an extreme,
you don't dare run the risk of anyone crying "Discrimination!" on any
basis. Therefore, it is safest to offer exactly the same kinds of recognition to

CHAPTER 3: RECOGNIZING ACHIEVEMENTS GREAT AND SMALL 43

all of your team members, whether they excel in the performance of highly chal-
lenging work or they struggle to meet minimal expectations.

Culture Killer: Here are some good reasons to cancel, cut short, or
interrupt a regularly scheduled one-on-one meeting with one of your team
members:

• Someone else has already stopped by your office to chat.

• You need to work on one of your own projects.

• Your telephone rings.

• You have been invited to join a new committee that meets at
that same time.

• Your boss calls another meeting for that time.

• You have to travel to another site to meet with someone else.

• You forgot about it.

Whenever anything short of a true emergency interferes with a scheduled meeting
with someone you supervise, you are sending a clear message: "Everything else I
have to do is more important to me than you are."

Culture Killer: Offer recognition, such as a luncheon with several
ÍY7F important managers, to an individual who has done an ordinary job on an

ordinary assignment, but offer nothing to other group members for taking
significant initiative that extends outside the boundaries of their assignment. Word
will get around that recognition depends on who you are, not what you do.

References and Further Reading

Deeprose, Donna. How to Recognize and Reward Employees. New York:

D

AMACOM, 1994.

Deeprose presents ten guidelines that can give your recognition program more
impact. She lists one hundred ways you might provide recognition and
reward, in the form of structured reward programs, spontaneous rewards, and
day-to-day feedback. You can recover the cost of the book the first time you
provide an employee with recognition that motivates him to work a little bit
harder or smarter on the company's behalf.

44 CREATING A SOFTWARE ENGINEERING CULTURE

Whitaker, Ken. Managing Software Maniacs. New York: John Wiley & Sons,
1994.

In Chapter 3, "Attracting and Keeping Developers," Whitaker argues that
managers should reward developers after the project is completed, rather than
trying to motivate them by promising wonderful rewards in advance as an
incentive. This book contains many horror stories of management actions that
led to undesirable results.

Author Index

Ambler, S., 82,100,339
Ash, D., 303,340
Bach, J., 135,141, 271,339
Bankes, K., 200,208,339
Basili, V., 278,284,339
Beizer, B., 146, 211,215,216,217, 225,226,

264,266, 270,339
Bell, R., 252,346
Bergin, T., 234, 251,339
Binder, R., 126,339
Boddie, J., 56,339
Boehm, B., 19,190-91, 208,297, 302,340
Bollinger, T., 340
Bond, S., 142,341
Brooks, R, 11,19,231,340
Card, D., 278,284,340
Carleton, A., 143,343
Carmel, E., 76,344
Carnegie Mellon University/Software

Engineering Institute, 128,130,134,
142,149,160,169,186,340

Caswell, D., 285,343
Chidamber, S., 279,284,340
Chrissis, M., 144,345
Christerson, M., 102,344
Clark, J., 252,343
Cohen, R., 52,57,340
Coleman, D., 300,303,340
Constantine, L., 12,13,20, 79,100,340
Cornell, J., 93,100,341
Covey, S., 52,321, 327,341

Crosby, P., 61, 76,127,141,165,167,187,
313, 341

Curtis, B., 136,142,144,341,345
Daskalantonakis, M., 138,142,273,276,281,

284,341
Davis, A., 61, 78, 84, 95,100,341
Deeprose, D., 37,43,341
DeGrace, R, 14,20,86,101,233,245,251,

341
DeMarco, T., 3,19,20,23,45,51,57,127,

254,272,273,278,279, 284,292, 297,
303,317,318,341

Deutsch, M., 86, 87,101,187, 341
Dion, R., 128,142,342
Dixon, R., 235, 251,342
Dorfman, M., 77, 346
Dreger, J., 173,187,342
Ebenau, R., 192,194,195,196,200,208,342
Fagan, M., 192,194, 209,342
Falk, J., 226,271,344
Fenton, N., 342
Freedman, D., 201,209,342
Cause, D., 76,342
Gianturco, M., 215,226,342
Gilb, T., 86, 89,101,192,209,342
Glass, R., 86,87,101,187,342
Goodman, R, 342
Grady, R., 192,209,264,265,270,274,275,

276,281,284-85,342,343
Graham, D., 209,342
Harwin, R., 324, 327,343
Haynes, C, 327,343

349

350 AUTHOR INDEX

Hefley, W., 142,341
Herbsieb, J., 128,143,343
Hetzel, B., 282, 285,343
Hughes, C, 245, 252,343
Humphrey, W., 105,116,127,128,135,143,

160,166-67,170,187,192,196, 209,343
lannino, A., 271,345
IEEE, 84,101,160,211, 214,226,264, 270,

279,285,343
Ince, D., 156,160,343
Jacobsen, L, 79,102,344
Janos, L., 348
Johnson, M., 216, 226, 344
Johnson, M.L., 286,346
Jones, C., 63, 76,136,139,143,147,154,158,

161,168,170-71,173-74,180,188,193,
210, 215,226,273, 285,291,297,303,
316,344

Jonnson, R, 102, 344
Kaner, C, 216, 226, 271,344
Karten, N., 26, 34,344
Keil, M., 65, 76,344
Kemerer, C., 284,340
Keuffel, W., 57,271, 340,344
Kidd, J., 286,344
Konrad, M., 142,341
Kuzara, R., 346
Lao-tzu, 319
Layman, B., 161, 344
Lazell, R, 252, 346
Lister, T., 3,19, 20,23,45, 51,57,127, 292,

303, 317,318,341
Lorenz, M., 279, 286, 344
Lowther, B., 303,340
Mack, R., 345
Maguire, S., 20,34,46,57,344
Marose, B., 286,346
McCabe, T., 216,218,226,344
McConnell, S., 21,34,52,57,188,210,344
McGowan, C, 340
Miller, S., 142,341
Mosley, D., 217,219,227,345
Musa, J., 263-64,271,345
Myers, G., 61,181,188,213-14,227,345
Nguyen, H., 226,271,344
Nielsen, J., 345
Okumoto, K., 271,345
Oman, R, 303,340
Overgaard, G., 102,344
Page-Jones, M., 128,143,252,345

Paulk, M., 128,144,345
Perry, D., 303, 345
Perry, W., 188,345
Pfleeger, S., 345
Pirsig, R., 52
Port, O., 287
Pressman, R., 57,139,144, 345
Raynor, D., 57,345
Rettig, M., 94,102,345
Robertson, J., 234,252, 346
Robertson, S., 234, 252,346
Roetzheim, W., 158,161,346
Rombach, H., 284,339
Rozum, J., 143,343
Rubin, H., 273, 274, 276,286, 346
Saiedian, H., 346
Seilers, D., 324, 327, 346
Shafer, L., 100,341
Sharon, D., 234,252,346
Siegel, J., 143,343
Silver, D., 77,347
Spurr, K., 245, 252,346
Stahl, L., 14, 20,101,251,341
Staudenmayer, N., 303,345
Strauss, S., 208,342
Szmyt, P, 77,346
Thayer, R., 77,346
Tripp, L., 156,161, 346
Van Slack, T., 209, 343
Verdago, G., 286,346
Votta, L., 303, 345
Walsh, J., 263-64, 271, 346
Weber, C., 144,345
Weeks, K., 217-18, 227,346
Weinberg, G., 3, 7, 21, 76,128,135,144,188,

190, 209, 210, 272-73, 286,307,309, 317,
318,342,346,347

Weller, E., 191,192,210,347
Whitaker, K., 21,35,40,44,347
Wiegers, K., xx-xxi, 347
Willis, R., 101,187,341
Wilson, J., 244,253,347
Wirth, N., 347
Wood, J., 69, 77,347
Yeager, C., 16,22,348
Yourdon, E., 22, 52,58,117,188,253,309,

348
Zubrow, D., 143,343

Action plan, 113-14,123,124,138-39,311,
313ff.

for software engineers, 319ff.
for software managers, 313ff.
template for, 114

Analysis, 97, 238,242,249
iteration during, 232
paralysis, 89ff., 232
structured, 238

Applied Computer Research (ACR), 52,337
Appreciation, need for, 36,41

(see also Recognition; Rewards)
Assess-Plan-Do-Verify, 112-13,115,316
Assessment, process, 103,125,137-39,140,

149,151
CMM-based, 137-38,139,140
mini, 138-39
Software Productivity Research (SPR),

139,143
Association for Computing Machinery

(ACM), 50-51,53,334

Books, see Software literature, books
Brainstorming, 112,117-20,122-24,125,

137,140
Bugs, 163,165,189,256,258

(see also Defects; Errors; Fault, software)
categories of, 264-66
cost of correction, 190ff.
inspections and, 192,205
seeded, 175-76,207-8

taxonomy of, 264-65,270
trends in detection, 263-65

Capability Maturity Model (CMM), 63,
128ff., 137ff., 148,149,151,169,186,
305,340

key process areas (KPAs), 129-34,136,
138,140,149

levels of, 129-34,151
objections to, 135-37

CASE tools, 93,96-97, 231,233ff., 246,335
benefits from, 236,237,241, 244,247,

322
communication and, 235-36, 238ff., 249
culture change and, 241,244, 248-49
integrated, 234,243,251
iteration and, 237, 321
lessons, 236-44
lower-, 233,235, 242,246
success with, 244,245-46
training and, 245,249-51
types of, 233-35
upper-, 233,237-38,241,244,247
vendors, 235,335

Certification, see Training, professional cer-
tification

Change, 6,12,16,107,109ff., 120,122ff.,
313ff.

(see also Change management; Software
change control board)

agent, 107,122,314

351

Subject Index

352 SUBJECT INDEX

assessments, 258-59
control, 149,262, 254ff., 313
cultural, 16,107
goals and, 109-110,112,124,314
incentives for, 109-110
measurements and, 111
mini-projects, 112,115,118,120,123
need for, 120
pain and, 110,112,130
process, 18,313
reactions to, 6,122,314
request, 254,256,269-70
request process guidelines, 153
resistance to, 109,110,314
sustaining momentum,

Change management, 71-72,89-90,134,
229,254, 256ff.

culture and, 267-68
system, 181,268

Communication:
software engineers and, 78,108
tools for, 64, 78,98,235-36, 238,240,242,

321,335
Conferences, 50-51,55-56,126,313,333
Congruent behavior, 7,16
Constructive COst MOdel (COCOMO),

297ff., 302
Context diagram, 69, 70, 239, 240
Control flow diagram, 239
Control flowgraph, 217, 226
Coverage, test, see Test coverage
Culture, xix-xx, 1,4, 6-8,18,46,107,109,

125,131,135,137, 229,313ff.
(see also Software engineering culture)
definition of, 3-4
inspections and, 190-93,204-6
organizational paradigms and, 12-13,

122
of quality, 165-88

Customer:
(see also Cus tomer /supplier model for

software)
change requests, 269-70
failure reports, 265,268
integrity with, 24-26
involvement in requirements, 9,17,59,

61ff., 64-66, 74, 75,119,180,306

needs, 5,24,25,33, 61, 66, 78, 79-80, 84,
232,317

product errors and, 166,168
projects without, 69
quality and, 166,175,329
representatives, 25,37-38, 65, 66, 68,10,

90, 232
satisfaction metric, 277
software expertise, 25,33
voice of, 24,59, 63,66, 75, 79

Customer/supplier model for software,
178-79, 214,320

Cyclomatic complexity:
basic, 218-20
extended, 218-20
testing and, 216,218-20
tools for, 220

Data dictionary, 236,246,247
Data flow diagram (DFD), 66, 86,90,234,

236, 239,246, 247,248
Defects, 124,254,256

assault on, 178-81
classifying, 201-2, 264-65
correction of, 184,270,290, 296
culture and, 254-55
density of, 61,170-72,185,186,204, 277
found by peer, 168,190, 207
per function point, 170
names for, 165
opportunity, 170-71
prevention of, 133-34,167-68
removal efficiency, 193,203, 224
six-sigma quality and, 171-72,175
tracking of, 181,254, 268
units of, 170

Design, 5,97-98,133,231-32,238,242,249
iteration and, 232,319,320
measured aspects of, 289
modeling, 232-33
object-oriented, 233,234
structured, 244
tools, 234

Dialog map, 91-93
Documentation, 5,10, 71, 78,133,255

CASE tools and, 236,242-43,320
errors in, 165
guidelines for, 152-53,156

SUBJECT INDEX 353

inspection of, 191
procedure definition and, 149
templates for, 152
work effort metric, 290

Dogma, 17, 111, 120,135-36,229,240,305ff.

Education, professional, 9,46-47,49,54,55
(see also Training)
National Technological University, 53,

55,337
on-line information, 53
resources for, 331-35,337

Entity-relationship diagram (ERD), 86,234,
239

Ergonomics, 11,311ff.
environment and, 311,314,317,323ff.
recommended configuration, 326

Errors:
acceptable level of, 175
healthy engineering culture and, 166
by user, 259

Estimation:
and change, 90
metrics for, 27,297-300
of projects, 27-28,33,106,124,130,132,

297-300, 323
tools, 233

Expectations gap, 63,93-94

Fagan inspection, 189,194-95,197
Fault, software, 165,255

objections to term, 165
Features, 28-32,34
Flexibility diagram, 29-31,33
Function point:

backfiring estimates, 174
counting scheme, 172-74,187
defects per, 170
International Function Point Users

Group (IFPUG), 173,337
Functional metrics, 173,275,297

vs. LOG counts, 173-74

Goal/question/metric (GQM) paradigm,
278-82,283,292,316

definition of, 278-79
feedback model, 280-82,292

Guidelines, software development, 147-49,
151-55,158

areas omitted from, 151-52,154
glossary section, 154
local development, 149-51
review of, 155,158
as suggested approaches, 148,151
team involvement in, 150,158
for user interface, 154
for user manual, 154

IEEE Computer Society, 50,51,53,64,161,
334

IEEE standards for software development,
150,154,155-58,159,182

as guides, 149,151,154,305
for productivity metrics, 173
for quality metrics, 285
for software anomalies, 270
for software quality assurance plans, 182
for software requirements specification,

84-86
for test documentation, 182,214

Inspection, software, 180,193,194-96
(see also Fagan inspection)
benefits of, 190-93, 207,321
of code, formal, 193,201
culture and, 190-93,204-6
efficiency of, 175-76,177
etiquette, 199
failure, reasons for, 205-6
formal, 189,194-98
forms used in, 200,201-4
guiding principles for, 153,198-201
management involvement in, 195,205
participants, 194-95,205-7
rates, 199-200,203
records kept, 201-4, 207
seeded errors for, 207-8
of software requirements specification,

190,191,193, 207
stages of, 195-98
summary report, 202-3
time for, 191,193,205,206
training, 205,206
unit testing and, 191,193

Iteration, 229,231ff., 249,319

354 SUBJECT INDEX

Joint Application Design (JAD), 69, 77, 79

Key process area (KPA), see Capability
Maturity Model

Kiviat diagram, 29-30
Kodak software groups, vii, xix-xx

development guidelines, 15Iff.
Graphics Engine testing example,

220-22
IEEE standards and, 86,155,182
measurement programs and, 275,276,

281,287ff.
metrics, 180,292

Magazines, see Software literature, periodi-
cals

Maintainability, predicting, 300-301
Maintenance, 124,133,259

bug-fixing, 163
goal to reduce, 287-88,300
of orphan software, 185
phases, 289, 290
post-release, 169
reduced by initial quality, 178,180

Management:
behavior, 9,11
consensus, 109,110
goals, 287-88,299
leadership, 15-16, 39,109-10, 241, 274
measurement programs and, 274, 275,

283
priorities, 4,39^10
problem tracking, support for, 268, 270
role in leading change, 16,314, 317
services to staff, 39-40
visibility, 38-39,274
by walking around, 38

Manager:
action planning and, 313ff.
attitude toward quality, 166
education, 121,245
expectations, vague, 147
inspections and, 195, 205, 207, 208
integrity with, 27-28
personal improvement and, 48
process improvement and, 314,329-30
quality-related tasks vs., 168
tracking QA activities, 183

Maturity, software process, 127-45
(see also Capability Maturity Model;

Process, software)
culture and, 6,139-40

Measurement, software development, 119,
123,140,229, 272-86, 287-303

culture and, 272, 273, 290
dimensions of, 274, 278, 279
failure of, 273-75
vs. of performance, 274,283
programs, 273
reasons for, 272,282
stakeholders and, 274

Methodology, software development, 7,11,
69, 75,147,159,239, 304ff.

(see also Dogma)
CASE tools and, 234,236-37, 245

Metrics, software, 131
database, 276,294, 299, 300, 301,302
functional, 173-74
guidelines for, 153,155
Halstead, 220
indicators, 278
individual evaluation of, 229
maintainability and, 300-301
of maintenance efforts, 184
privacy of, 274,294
of productivity, 288
starter set, 277-78
trends in, 263-65, 275, 288, 295-97,301,

302
work effort, 184-85,287-95, 296,297,

300,301,303
Metrics programs, 203, 229,273ff., 276ff.,

287-303,335
accounting system vs., 293,302
designing, 276-77,278-82
failure, reasons for, 273-75
to monitor progress, 314,316,335
for project estimation, 297-300
reporting options, 294-95,300
as self-controlling process, 294
standards for definitions, 275

Modeling, 232ff., 236ff., 249
CASE tools and, 231-53

Object-orientation, 79,233,234,239,250,284

SUBJECT INDEX 355

PC-Metric, 220
Peer deskcheck, 197-98, 203,206,320-21
Peer reviews, 133,136,189,190,206,207,

208, 231,301,314, 316, 319, 320
(see also Inspection, software; Fagan

inspection; Reviews, by group)
People Capability Maturity Model (P-

CMM), 136,142
Performance:

self-assessment by manager, 314,315
of software developers, 3,124,208
of software groups, 3,313ff.

Personal Software Process (PSP), 134-35,
143,166-67,187

Problem tracking system (PTS), 255ff.
commercial, 256-57
as communication tool, 259,268
culture and, 259,260,264,269
databases used in, 257,261
philosophy of using, 260-61, 268
reports from, 256, 258-59, 261, 269
repository, 255-56
response time, 260,269
rules for, 260-61
submission example, 258-59
testing, uses with, 263ff.

Procedures, software development, 103,
146-62

(see also Guidelines)
documentation of, 149
engineers, new, and, 159
project schedule and, 160
realistic, 155
resistance to, 150
as step-by-step formula, 148

Process, software, 103ff.
(see also Assessment, process; Maturity,

software process; Process improve-
ment, software)

customer/supplier relationships, 178-79
defect prevention and, 168
evolutionary scales for, 127-28
maturity, 127-45

Process improvement, software, 4, 7,8,16,
17,103ff., 106,114,117ff., 120,125,
134,137-38,141,149,254

culture and, 103,106,114
errors as indicators for, 166

evolutionary, 108-109,114,130
goals for, 108,139, 278,313ff., 319ff.
objectives of, 136
principles of, 106-112
problem tracking system and, 259-60
time and, 106,120

Productivity:
CASE tools and, 321
quality and, 163,185

Programmers, 160,168, 287
reviews and, 190,208
standards and, 150, 307
testing and, 181,214,225

Programming, egoless, 8,190, 210
Project, software development:

change request tracking, 268
customer/supplier relationships,

178-79,214,320
dimensions of, 28-33,34
estimation metrics, 297-300
improvement goals, 313ff.
internal rework and, 168-69,292
measurement of, 272-73
negotiation, 27, 29,33
peer-review activity and, 189,314,316
pilot, 150
planning, 5,28,69,124,131,132,149,205
schedule, 28-32,34,186
work effort distribution, 291

Project champion, 59, 64, 66ff., 73-74, 75, 79,
81,90, 91, 246

change management, 258-59, 260, 262
change requests and, 256-57
characteristics of ideal, 67
expectations of, 69-73
resource team, 68-69
responsibilities, 66,152,153,194,258-59

Prototypes, 64, 69, 89,93ff., 95ff., 231
expectation gap and, 93-94

Publications, 51-52,334
(see also Software literature)

Quality, 23,28-32,33,59,175,186,193
(see also Conferences; Quality control;

Six-sigma quality; Software litera-
ture; Software quality; Software
quality assurance; Software quality
engineering)

356 SUBJECT INDEX

as conformance to requirements, 61, 76
CASE tools and, 235, 241,249
cost of, 46,167-68,180,187,191,303,

329
culture and, 4-5,163,165-88,301,315
filters, 90,224
improvement, first initiative, 186
individual concern for, 163,166,178,

319ff.
inspections and, 189-200
Management Maturity Grid, 127
methods, 193
productivity and, 163,168,184-85,186,

313ff.
schedules and, 186
work effort metrics and, 184-85

Quality Assurance Institute (QAI), 332,333
Quality control, 170,175,181, 268

defined, 169-70
efficiency, 175-76

Recognition, 35ff., 112,313ff., 317
(see also Rewards)
culture and, 35-36,40,41,123
forms of, 36-37
importance of interim, 38,40
M&Ms, 35-37
of outside contributors, 37-38
timeliness of, 36

Repetitive strain injuries (RSI), 11,311,324
Requirements, 26, 59ff., 62-64,102,105,131

(see also Requirements specification,
software)

analysis, 63, 66, 76, 79,91, 97,133,233
vs. business rules, 81, 82
changing, 26, 65, 89,97,98,132,254
correlation with effort, 297-99
creeping, 63, 76,97
culture and, 5,59, 63, 75,98
cursory understanding of, 231
customer involvement with, 9,17,59,

61ff., 64-66, 74, 75,119,180,306
documenting, 83-89,256,306
engineering, 61, 64
essential vs. chrome, 70
external functional, 215
gathering, 69-70,256
inspection of, 190,191,192,207

marketing department and, 65-66
new, 32-33,66,90
quality attributes negotiation, 175
tagging, 86
techniques for, 64
traceability matrix, 64, 96-97, 99,183

Requirements specification, software, 5, 62,
64, 71, 73, 76, 82, 83-90,91-92,
96-100,105,119,124,125,149,150,
180,243, 289, 296, 297-98

IEEE, 84-86, 99,101
inspection, 83, 90
iteration, 232
pitfalls, 89-90
quality attributes in, 86-89

Reuse, 84, 87, 98,115
benefits of, 322-23
modeling and, 247
testing and, 214

Reviews, 10
(see also Inspection)
abuses of, 190
of development guidelines, 155,158
development guidelines used in, 159
of documentation, 159
formal technical, 189
guiding principles for, 198-201
by group, 197-98,203
impact on quality, 180, 321-22
of requirements specification, 90
by team, 192

Rewards, 40-41,46-47,107
(see also Recognition)
examples of, 41
instead of incentives, 40^41,42

Rework, 167-69,292
Risk, 188,193,221,223,232,285

analysis and quality control, 175
-based decision after testing, 264
of failure, 175,245
laboratory process control example, 175

Six-sigma quality, 171-72,174,175,177,315
vs. more realistic goal, 186
ways to achieve, 177

Skills, professional, 48,119-20,140,244
assessment, 47,55,319ff.

SUBJECT INDEX 357

Software change control board (SCCB), 256,
261-62

Software configuration management
(SCM), 149,154

Software development:
(see also Measurement, software devel-

opment; Methodology, software
development; Procedures, software
development; Process, software;
Standards, software development)

incremental, 89,93, 231
lifecycle (SDLC), 152,290-91
phases, 289-90

Software engineering, 139,146
(see also Software engineering culture)
practices vs. goals, 306
process group (SEPG), 132
vs. quality control, 181
standards and, 146ff.

Software engineering culture, xix-xx, 1,4-5,
6, 8, 55,112,125,229,231,264, 304

(see also Culture; Quality, culture and)
CASE tools and, 241,244-46,249,321,335
change management and, 229
changing, 117,307
through consensus, 151
defined, 1,4-5
ergonomics and, 311ff.
errors and, 190
Greek versus Roman, 14-15,251
healthy, 4, 8-10,46,106,108, 307,311
measurement and, 273, 283, 288, 307
outsourcing and, 5
peer deskchecks and, 198
principles, 16-17
problem tracking system and, 259, 260,

264,269
procedures, written, and, 158
process maturity and, 137,139-40
quality and, 163, 329
standards and, 147,306-7,308
testing and, 183,212-15,307
tools, adoption of, 304
unhealthy, 10-12

Software Engineering Institute (SEI), 127ff.,
134,136,137,140-42,144-45,332,
337, 340

(see also Capability Maturity Model)

Software failure, 165-66
proactive reporting of, 265-67

Software literature, xx, 8,45,51-52,126
books, 48,51-52,55,56,119,304,314,

319
periodicals, 52,55-56,119,314,319,334

Software quality, 59,61-62,75,119,123,181
acceptable level, 174
attributes, 175
code quality and, 174
customer and, 166,175, 329
engineering, 182-83
good enough, 174-78
initiatives, five major, 180-81
low, causes of, 180
responsibility for, 183

Software quality assurance (SQA), 132,
168-74

as auditing function, 186
coordinator role, 182
defined, 169
function, 159,168-69
goals for, 160,313ff.
guidelines for, 153
plans, 182-83
responsibility for, 180,181-83

Software reliability, 263,269,271
Standards, software development, 7,11,

146ff., 150-51,306-7
(see also IEEE standards for software

development)
Department of Defense, U.S., 148,158
ISO, 147,156
ISO 9000-3 guidelines, 156,158
ISO 9001 registration, 111, 149,156,158,

160
sources of, 155,156-58

State-transition diagram (STD), 86,93,234,
239

Team, 125
behavior, 8-9,10
guidelines, involvement with, 150
interactions, 319,329-30
leadership, 13-14
reviews by, 192
structured open, 13-14

358 SUBJECT INDEX

Technologies, new, m, 8,9,41,244,249,250
Test cases, 71, 80, 83, 84,96,214, 219,220-22

benefits of, 82-83
review of, 232
software quality engineer, written by,

183
SQA coordinator, written by, 182

Test coverage, 216
branch, 215,217
condition, 215, 217, 225
path, 216,218
statement, 215ff., 225

Test plans, 182,214
process, guidelines for, 153

Testing, 106,123,125,133
(see also Test cases; Test coverage; Test

plans)
alpha, 263,268
automated, 220-22
baseline method, 218ff.
beta, 123-24,263,268
black box, 215,216,217,224
cyclomatic complexity and, 218-20, 224,

226
defined, 211
documentation, written, 211-13,223
efficiency of, 175-76,177
Graphics Engine example, 220-22
gray box, 217, 224
guidelines, 153, 222-24
vs. inspections, 193
integration, 186,191,213,225
management of, 220-22
measured aspects of, 289-90
need for, 181
quality, impact on, 180
vs. quality assurance, 170
quality culture and, 212-15
regression, 217,225
responsibilities for, 181-83
schedule delays and, 186
software quality engineer and, 183
structured, 180,211-28,319,320,322
system, 10,180,191,213,216
target quality level, 264
testers and, 186,224
tools, 216,217,335

unit, 212-13,215-18,222,224
white box, 215,220, 223, 224

Tools, 229ff.
CASE, 233-36
problem tracking, 256-61
testing, 216,217,335

Training, 45-58,119,133,332
(see also Conferences; Education)
as investment, 49,51,55
CASE, 245,249-51
culture and, 46
vs. education, 50
for inspections, 205
for metrics, 276,282, 283
professional certification, 46,53-54,55
professional societies, 45,46,53-54,55
seminars, 9,48,49-50,55-56,126,332
for testing, 211-12
value of, assessing, 317

U.S. Government, as standards body, 156
Use cases, 64, 79,83,90,95,99

definition, 79
requirements, 79,81-82,83
test cases from, 80, 82-83
workshops, 79-81,90

Usenet newsgroups, 53,235,256
User interface, 64, 79, 83,91

graphical, 91,154
guidelines for, 154
modeling, 91-93
prototyping, 93,125,256

User manual, guidelines for, 154
User needs, 64, 66,231, 329

(see also Customer, needs)
UX-Metric, 220

Videotape instruction, 53,55
Vision of the product, 59,63, 73-74, 78ff.,

82, 83,91,98

Walkthrough, 98,189,194,197-98
Work environment, health and, 311,323,

324-25
(see also Ergonomics)

World Wide Web, 50,53,235

	Contents
	Figures and Tables
	Preface
	Chapter 3: Recognizing Achievements Great and Small
	The Importance of Being Visible
	The Importance of Management Attitude
	Rewards for a Job Well Done
	Summary
	Culture Builders and Killers
	References and Further Reading

	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

