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Preface

Rrely has a professional field evolved as rapidly as software development,
he struggle to stay abreast of new technologies, to deal with accumulated
evelopment and maintenance backlogs, and to cope with people issues

has become a treadmill race, as software groups work hard just to stay in place. A
key goal of disciplined software engineering is to avoid the surprises that can
occur when software development goes awry. Software surprises almost always
lead to bad news: canceled projects, late delivery, cost overruns, dissatisfied cus-
tomers, and unemployment because of outsourcing.

The culture of an organization is a critical success factor in its efforts to sur-
vive, improve, and flourish. A culture based on a commitment to quality software
development and management differentiates a team that practices excellent soft-
ware engineering from a gaggle of individual programmers doing their best to
ship code. In a software engineering culture, the focus on quality is present at all
levels—individual, project, and organization.

In this book, I share a cultural framework that was effective in improving the
results obtained by several software groups at Eastman Kodak Company. Most of
our projects involved small teams of one to five developers, with typical durations
of six months to two years. Each part of the book discusses several guiding princi-
ples that shaped the way we chose to create software. I also describe the specific
software engineering practices that we adopted to improve the quality and pro-
ductivity of our work. We believe a culture based on these principles and practices
has improved our effectiveness as software engineers, the relationship and reputa-
tion we have with our customers, and our level of collaborative teamwork. Many
of the experiences related and suggestions offered are most relevant to work-
groups of two to ten engineers. Since even large software products are often con-
structed by small teams of engineers working together, these technical activities
are applicable in a wide variety of organizations.

XIX



XX PREFACE

With this book I hope to reach first-line software managers, project leaders,
and practitioners who wish to drive progress toward an improved, quality-orient-
ed culture in their organization. My goals are to provide practical ideas for imme-
diately improving the way a team performs software engineering, and to show
that continuous software process improvement is both possible and worthwhile. I
am assuming that the reader has the ability to actually change the culture of his
software group, or at least to positively influence those who can drive changes.

I present here a tool kit composed of many ideas and practices for those who
wish to improve the quality of the software they develop, along with case studies
of how these methods really worked. Our groups have applied all the methods
described, and I have used nearly all of them personally. Every anecdote is real,
although the names have been changed. While not every team member has used
every good method on every project, we invariably obtained better results when
we applied these solid engineering practices than when we did not.

An organization grows a quality-directed software culture by blending estab-
lished approaches from many sources with locally developed solutions to special-
ized problems. To help point toward useful sources in the voluminous software lit-
erature, each chapter provides an annotated bibliography of references and addi-
tional reading materials. The references I feel are particularly valuable are marked
with a bookshelf icon.

Each chapter contains several "Culture Builder" tips (marked with a hand-
shake icon), which are things a manager or project leader can do to promote an
attitude and environment that leads to software engineering excellence. "Culture
Killers" are also described, and are marked with a skull and crossbones warning
icon. Culture killers are management actions that will undermine a team devoted
to superior software engineering or prevent such a culture from developing. Sadly,
many of these are real examples. You can probably think of other culture killers
from your own experience, as either victim or unknowing perpetrator. Although
both builders and killers are written in the form of recommendations, remember
that the culture killers are tongue-in-cheek. Don't rush into work next Monday
with an agenda of action items selected from the culture killers!

Some of the experiences of our software groups at Kodak were published orig-
inally in the following articles; material is included here with permission from the
publishers:

Wiegers, Karl E. "Creating a Software Engineering Culture," Software Development,
Vol. 2, No. 7 (July 1994), pp. 59-66.

. "Effective Quality Practices in a Small Software Group," The Software QA
Quarterly, Vol. 1, No. 2 (Spring 1994), pp. 14-26.

. "Implementing Software Engineering in a Small Software Group,"
Computer Language, Vol. 10, No. 6 (June 1993), pp. 55-64.
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. "Improving Quality Through Software Inspections/' Software Development,
Vol. 3, No. 4 (April 1995), pp. 55-64.

. "Lessons from Software Work Effort Metrics/' Software Development, Vol. 2,
No. 10 (October 1994), pp. 36-47.

. "In Search of Excellent Requirements," Journal of the Quality Assurance
Institute, Vol. 9, No. 1 Qanuary 1995), pp. 23-32.
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Chapter 3

Recognizing Achievements
Great and Small

Another major software player decided to "dangle" incentive
money in front of its developers. . . . The dictated delivery
date came and went and no product had been delivered. . . .
Senior management withdrew the incentive and threatened
jobs since developers were employed to deliver even without
the need for extra compensation. Some of the software engi-
neers (the good ones) left the company, morale was horrible,
and by the time a product was delivered, the company's mar-
ket share had eroded. What a terrible lesson to learn.

—Ken Whitaker, Managing Software Maniacs

"W "IT "Then I first became the supervisor of the Kodak software group in which I
%/\/ had worked for several years, I initiated a simple (and slightly corny)

w w recognition program. When someone reached a minor project milestone
or made a small contribution such as helping another team member with a prob-
lem, I gave him a package of M&M® candies, with a message tag attached express-
ing congratulations or thanks, as appropriate. Bigger achievements generated big-
ger bags of M&Ms, or something more tangible. It wasn't much, but it was more
than we were used to.

As I expected, the candy disappeared immediately, but I was pleasantly sur-
prised to see that some people kept the message tags visible around their desks. To
them, the important thing was not the bag of candy, but the words indicating that
their manager noticed and valued the progress being made. It soon became appar-
ent that group members preferred to have the presentations made publicly at our
weekly team meetings, indicating their desire for peer recognition of even small
achievements.

M&Ms worked with our group, but some other social recognition technique
might work better for you. We also gave this sort of micro-recognition award to
people outside the group who helped us in some way. It brought smiles to their
faces and goodwill to our relationships. However you choose to do it, appropriate
praise and commendation help to build the culture of teamwork and striving for
excellence that we all want, and it can motivate your team members to do an even
better job in the future, since they know you appreciate their efforts.
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36 CREATING A SOFTWARE ENGINEERING CULTURE

The form and extent of recognition and reward is a visible indication of an
organization's culture. If managers believe the employees are lucky just to have
jobs, they won't go out of their way to offer even small gestures of appreciation or
congratulations. Conversely, in a market characterized by competitive hiring and
high staff turnover, an effective recognition program can help retain talented
developers. M&Ms won't make up for low salaries or unpleasant working condi-
tions, but simple recognition is an important step in the right direction.

Software engineers are like other people (well, pretty much): We want to be
appreciated, and we appreciate being wanted. Besides the internal satisfaction we
obtain from interesting, challenging work and the tangible compensation in our
paychecks, we want to feel that our efforts are noticed and valued by those around
us. We all enjoy receiving compliments, especially when they come from various
sources: peers, customers, team leader, senior managers, professional associates.

Praise for a job well done should be timely, direct, personal, and specific (see
Fig. 3.1). If you are a manager, don't wait until performance appraisal or salary
adjustment time rolls around to pass along some positive feedback. Tell the indi-
vidual exactly what he or she did well and why you appreciate it. A mumbled
"Keep up the good work" in the hallway is more likely to confuse than motivate
the recipient. Your team members must know you are sincere when you offer com-
pliments on their work. Though many people feel awkward when they receive a
compliment, they appreciate that someone took the trouble to say how pleased he
was with your work.

Figure 3.1: The simplest form of recognition.
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Recognition can take many forms. Donna Deeprose presents more than one hun-
dred ideas about how to select appropriate and meaningful recognition and
rewards for your employees [Deeprose, 1994]. Ask the members of your team what
kinds of recognition are important to them. Do they prefer a public pronouncement
at the weekly group meeting, or are they more comfortable with private cere-
monies? Should recognition come just from you, or is it meaningful to have higher-
level managers participate in certain recognition activities? Tailor the reinforce-
ment you offer to be significant to the recipients. The following paragraphs
describe some of the things the groups in which I have worked have done to
express appreciation and to build a positive culture. Some of these apply to indi-
viduals, while others are appropriate for teams of people.

Spend a few moments at weekly team meetings to give everyone a chance to
pass along some positive reinforcement ("R+") to others. Did a coworker help you
solve a problem this week? Did someone take some action out of the ordinary that
helped the team? If yes, say so! The group may be uncomfortable when you first
try this, but they should warm to the idea over time. If group members are so iso-
lated from each other that no one ever has any R+ to pass along, you may have
some serious issues of team dynamics to address.

A traveling trophy that moves from project to project can be used to recognize
team achievements. In keeping with the M&M motif, we used a framed three-
pound M&M bag (empty, sad to say) as a traveling trophy. Recipients displayed
the prize in their office area until another project reached a milestone worthy of
recognition. The trophy was ceremoniously passed from one team to the next in
our group meeting. If you try something like this, be sure to keep the trophy trav-
eling every few weeks, or its significance becomes lost.

Food and entertainment are also good ways to recognize someone's contribu-
tions or special achievement. Taking the team to a celebration luncheon when a
milestone is reached can be fun for everyone involved. A gift certificate for dinner
at a restaurant gives an individual recipient a chance to celebrate privately with
friends or family. Whenever a member of my team earned a college or advanced
degree, my wife and I took him and his significant other out to dinner. Maybe
going to dinner with the boss is not everyone's idea of a great time, but it worked
for us. On another occasion, I gave each team member a pair of movie passes as a
symbol of how much I appreciated their time and teamwork when, during an
intense period of selecting new members for our group, the entire team of ten
pitched in on short notice to participate in the interviews. It was a small gesture
but a sincere way of saying, "Thanks for the help, gang."

Recognize individuals outside your group for their contributions as well. It's
amazing how much future cooperation you can secure with a simple gesture of
appreciation. As the recipient of a few such gestures myself, it always makes me
feel good to know that someone really appreciated something I did, however rou-
tine it may have seemed to me. We have thanked project customer representatives
by taking them to lunch, giving them certificates to hang on the wall, and bestow-
ing restaurant gift certificates upon those who shouldered the most responsibility.
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One customer even reciprocated, throwing a lunch bash for the development
group. This sort of customer-developer interaction helps build a culture of con-
structive teamwork.

Be sure to recognize people for attaining minor milestones, as well as when
they complete a big project. Interim pats on the back help provide team members
with the incentive to keep pushing ahead. Again, it says to the recipient,
"Congratulations on making progress toward your goals."

As a manager, you must actively look for recognition opportunities, and seize
the moment as soon as you spot one. The manager who realizes an achievement is
worthy of formal recognition but waits to figure out what he wants to do about it,
and waits to execute his plan, may provide recognition too far removed from the
achievement itself to mean much to the recipient. "Oh, so you finally noticed what
I did," is a typical unspoken reaction to a belated recognition effort. A manager
who expects such opportunities automatically to pop up in front of him will miss
many of them, and will not deliver consistent recognition messages. Also remem-
ber that managers who fail to reward exceptional contributions are sowing the
seeds of discontent. The absence of well-deserved recognition is highly demotivat-
ing.

The Importance of Being Visible

The antithesis of being recognized for your achievements is feeling that your man-
agers do not know who you are, what you do on the project, how you do it, or
what your contributions are to the company as a whole. When was the last time
your supervisor stopped by your office just to say hello and to ask how things are
going? How about a visit from a manager farther up the corporate hierarchy?

Some people are uncomfortable with an unannounced manager visit, but oth-
ers welcome the opportunity to share their concerns and show the boss what they
are working on. "Management By Walking Around" is one way managers express
interest in the individuals in their organization; it can and should be practiced by
managers at all levels. Think about it: If you are a first-line supervisor and you
never see your boss in the engineering staff's offices, chances are you'll conclude
that he or she is hopelessly out of touch with the group.

People are more motivated to put in extra effort when they know the higher-
ups value it. We have all worked for managers who represented the other extreme,
having a limited awareness of the group's challenges and contributions. How
excited can you get about trying to please such managers? As a supervisor, make
sure you really know what the engineers in your department are doing. Who are
the contributors, the innovators, the leaders? Who is just along for the ride? The
team members will have no confidence that they can get fair performance
appraisals if they rarely talk to their supervisor. Your employees need to have ade-
quate opportunities to explain what they do and the problems they face.

When appropriate, a manager should also show interest in professional activi-
ties that are unrelated to specific projects. It is discouraging to put in extra time to
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prepare a presentation for a local software conference, then not to see your boss's
face in the audience. Telling you he is pleased you are doing something extra is not
nearly so meaningful as if he actually shows up for the event. Remember all those
plays, dance presentations, and concerts you sat through because your children
were on stage? Being a good manager demands some of the same actions as being
a good parent. It means a lot to know your supervisor cares about what you are
doing.

The Importance of Management Attitude

Here's a radical idea: Think of you, as a manager, working for the people who
report to you, as opposed to the more traditional view of subordinates working for
the supervisor. The people you supervise are the customers for your leadership
and management services, including

• coaching and mentoring

• setting project goals and priorities

• resolving problems and conflicts

• providing resources

• evaluating performance and providing feedback

• career development

• leading process improvement efforts

• providing technical guidance when appropriate

Give your own people top priority over the demands of others for your time. Your
priorities as a manager should be those shown in Fig. 3.2.

Unfortunately, too many managers are busy looking up the corporate organiza-
tion chart, not down. The sequence in Fig. 3.2 is frequently inverted, with the key
driver being what you think will make your own boss happy. In a healthy, congru-
ent workplace, the boss should be thrilled if you are meeting the needs of your
team and its customers. Not everyone is fortunate enough to work in such an
enlightened environment; priorities are usually defined by the perception of who
you think you have to please to keep your job.

One way a manager can tell if his priorities are straight is whether he ever
receives any recognition from his team members. It meant more to me to get an R+
from one of the people I supervised than to get one from my own supervisor. If
you are an individual contributor, remember to thank your managers for special
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contributions they make or extra help they provide to you. Managers are people,
too, with the same desire to be appreciated that anyone else has.

Figure 3.2: Priorities for the enlightened software manager.

Rewards for a Job Well Done

The skillful manager will use recognition and rewards to reinforce desired behav-
iors, rather than offering tangible incentives to individuals or teams to achieve spe-
cific goals. The main incentive for most software people to go to work each day is
the opportunity to work on challenging projects with stimulating colleagues, in an
environment that encourages quality work, in which software skills can be applied
and extended.

Dangling extra cash as a carrot in front of a software engineer to try to get him
to work faster-harder-longer can backfire [Whitaker, 1994]. If the ambitious goals
are not met, and developers know the pot of gold at the end of the rainbow won't
be forthcoming, how do you keep them motivated? Withdraw the incentives
(thereby destroying morale), or renew the incentives (thereby showing that falling
short of management's outrageous goals is just as meritorious as achieving them)?
Either way, everyone loses. Instead of offering incentives, design a reward pro-
gram that matches your organization's culture and means something to your team
members. Motivate your team through frequent interim recognition activities, and
reward them for a job well done when the job really is done. People should also be
rewarded for taking intelligent risks, even if a great notion or great effort doesn't
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pay off for reasons outside the development team's control. Public rewards indi-
cate to the rest of the group those behaviors you feel are desirable.

Rewards can be monetary or non-monetary. Slipping a few bonus bills in the
pay envelope may seem like a sure way to please an employee, but often some-
thing else would be preferable. Talk to your people and understand what rewards
they feel are significant. The corporate culture will have some influence in select-
ing feasible rewards. It may be easier to give someone a substantial, but non-cash,
award, such as a trip to a conference or trade show. Some companies reward
employees with frequent flyer miles, which can be purchased from airlines for a
few cents per mile. Some developers might enjoy extra vacation time; others might
want to buy a special software package with which to experiment, just because
they heard it was interesting. If someone does an exceptional job on a project, he
might appreciate a mini-sabbatical, a couple of weeks set aside to work on whatev-
er he likes.

Another kind of reward is the opportunity to work on an exciting new project.
In some groups, only the old hands have the skills and knowledge to keep the
legacy systems alive. Less experienced people may be assigned to projects involv-
ing newer technology, which are more fun than maintaining ancient applications.
This is a good way to drive your senior staff members out of the group, to search
for opportunities where they can learn contemporary skills and work on the kinds
of projects they read about in computer magazines. Creative and experienced engi-
neers don't want to be mired in legacy code for the rest of their careers. Look for
ways to reward your best workers by keeping them stimulated with new learning
opportunities and project challenges.

Summary

• People need to feel the work they do is appreciated.

• Receiving positive reinforcement from peers, managers, and
customers is highly motivating to most people. Failing to rec-
ognize someone's exceptional contributions and major achieve-
ments is demotivating. Why do extra work if your managers
don't care?

• Recognition says, "I appreciate your effort," "Congratulations
on your accomplishment," or simply, "I noticed what you did."

• Find out what kinds of recognition and rewards are meaning-
ful to your people, and tailor your R+ program accordingly to
foster a culture of desirable software engineering behaviors.

• Recognize minor accomplishments and milestones, to motivate
individuals to keep working toward their major objectives.
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Managers can build better relationships with their team mem-
bers simply by understanding the work they do and showing a
sincere interest in it. Talk to your people informally to find out
what they are excited and unhappy about. Sometimes, this
approach will let you deal with a concern before it becomes a
crisis.

A software manager should regard the people who report to
him as his most important customers. The manager's top prior-
ity should be to address the needs of his team members.

Reward your staff members, whatever their job, for a good per-
formance, rather than offering big incentives to induce them to
do great work in the future.

Culture Builders and Killers

Culture Builder: Distribute recognition awards equitably to your group
members. Don't reserve recognition events only for project leaders, mem-
bers of high-profile project teams, or your senior technical people. The

scale and frequency of rewards does not have to be the same for everyone—after
all, people are different—but it is demoralizing for an employee to see the same
coworkers being recognized repeatedly without anyone noticing his own achieve-
ments.

Culture Builder: Make sure you are accessible to the people who report
to you. Schedule one-on-one meetings with those who desire them, at
whatever interval is mutually acceptable to you and each individual. A

general open-door policy is important, too, but your team members may be reluc-
tant to bother you if they know how busy you are. They deserve a slice of your
undivided attention at regular intervals.

Culture Builder: If you make a verbal commitment to someone for a
reward, be sure to follow through on it. Forgetting that you made this
promise demonstrates a lack of sincerity. Be sure to reward the right peo-

ple for the right reasons. If you aren't sure who made key contributions to a suc-
cessful project, find out before you present any rewards or recognition. Few things
are more infuriating than seeing a person receive praise (or more) for work that
was actually done by someone else.

Culture Killer: In an era of political correctness carried to an extreme,
you don't dare run the risk of anyone crying "Discrimination!" on any
basis. Therefore, it is safest to offer exactly the same kinds of recognition to
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all of your team members, whether they excel in the performance of highly chal-
lenging work or they struggle to meet minimal expectations.

Culture Killer: Here are some good reasons to cancel, cut short, or
interrupt a regularly scheduled one-on-one meeting with one of your team
members:

• Someone else has already stopped by your office to chat.

• You need to work on one of your own projects.

• Your telephone rings.

• You have been invited to join a new committee that meets at
that same time.

• Your boss calls another meeting for that time.

• You have to travel to another site to meet with someone else.

• You forgot about it.

Whenever anything short of a true emergency interferes with a scheduled meeting
with someone you supervise, you are sending a clear message: "Everything else I
have to do is more important to me than you are."

Culture Killer: Offer recognition, such as a luncheon with several
ÍY7F important managers, to an individual who has done an ordinary job on an

ordinary assignment, but offer nothing to other group members for taking
significant initiative that extends outside the boundaries of their assignment. Word
will get around that recognition depends on who you are, not what you do.
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