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Introduction

Processes, methodologies, and methods for developing software have
become the center of much activity in recent years. Today's practices
for developing software are much more effective than those historically
employed. However, these practices are complex, and they rely heavily
on software tools. Neither processes nor tools are easy to adopt. Mas-
tering them takes time over a period of years, and the measurement of
improvement year by year keeps the ever-changing goal in manage-
ment's sights.

Moreover, a process improvement effort does not rest solely on the
enthusiasm of a solitary developer here or there. It encompasses the
entire software organization and even its clients, in-house or out. A
program of this magnitude depends on the understanding and support
of the management structure—not only at the beginning, when enthu-
siasm runs high, but also over the long haul.

But what can sustain such interest, if not wild enthusiasm, over
time without end? Let us look to the history of business for guidance.
Double-entry bookkeeping did not arrive with the first Homo sapiens,
tens of thousands of years ago. It was invented rather recently—in
fourteenth-century Venice. Bookkeeping is said by some to be the
epitome of dullness. Yet for six centuries, the principal output of the
accounting process—the profit metric—has maintained the interest

3
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and excited the daily effort of businesspeople. It is a way of keeping
score in the great game of business.

Software development is part of this great game. At some point,
profit tells the participants whether the software game is going well.
Unfortunately, profit comes rather late in the game. The project may
have crashed and burned long before the bean counters' profit-and-
loss statement reveals that the company is wallowing in loss.

Therefore, software development organizations need a more imme-
diate measure of how they are doing. This measure is especially
needed to motivate senior management to persist in its support of
process improvement. We need this measure to enable project man-
agers and the developers themselves to persist in their efforts to con-
trol software development. We need it to enlighten clients and users.

Some approaches use periodic assessment to motivate improve-
ment, such as the Capability Maturity Model (CMM) of the Software
Engineering Institute (SEI) and specification 9001 of the International
Standards Organization (ISO). The attention they have gained sup-
ports our belief that many managers feel the need, not only for the
guidance that these models provide, but also for the assurance that
assessment offers.

Unfortunately, assessments are of necessity periodic, years apart.
When performed, an assessment does indeed give a jolt to the pursuit
of process improvement, but in the long intervals between assess-
ments, motivation falters. Further, assessments are imprecise. They
depend upon the judgment of the assessors, who may be swayed by
the artifices of those assessed.

Metrics, in contrast, are continuous, that is, weekly or monthly—as
often as measures are made. They are reliable, since they rest upon
counting definable elements of software production. They meet the
need for immediate control at the project level. They also meet the
need to measure process improvement. Being accurate and frequent,
they quiet management's nerves—or excite management to action—
every week or month.

Many observers proclaim passionately that people are important.
Measures don't solve problems, they say, people do. Metrics just get in
the way, they add. We agree that people are important—leadership is
better than dictatorship, and people still have to solve the problems
encountered in software development. Metrics, when poorly chosen,
inaccurately collected, and unwisely applied, do upset people and
impede problem solving. But measures that are well chosen, accu-
rately collected, and wisely applied do intensify the motivation that
improves the process within which people solve problems.
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Software development, to be effective, needs an appropriate process.
A process, to endure successfully in a world of limited resources and
time, has to be measured, evaluated on those metrics, and often redi-
rected as a result. Its relationship to scarce resources is gauged
through metrics. The common complaint of overstimulated develop-
ers—"Just get out of our way"—fails to grasp these fundamentals.

Our intent in this book is to show that just a few key metrics—five,
in fact—are enough to meet these needs. These five metrics provide
the equivalent of the historic profit metric that energizes business, but
they provide it much sooner—during development, instead of after
release. Consequently, the metrics have more of a chance at critical
points to motivate senior management and senior stakeholders to con-
tinue their support. Simultaneously, the metrics encourage acquisi-
tion managers, project managers, and the developers themselves to
pursue the often frustrating path of process improvement.

Before describing the structure of this book, we pause to describe
the experiences from whence this research sprang.

The Evolution of the Metrics

The ideas expressed in this book are the outcome of Larry Putnam's
research and work in software development, first in the Army and then
with twenty-five years of operating the consulting firm Quantitative Soft-
ware Management, Inc. (QSM) of McLean, Virginia. Larry's final years in
the Army were particularly productive in developing these concepts:

My Army career roughly coincided with the early decades of
the computer age. In a series of assignments, between periods
with the troops, I became familiar with the ability of the pio-
neer computers to perform huge, tedious computations. It
was this experience that prepared me to apply computer
power, later on, to the metrics of software development.

Early on (between 1959 and 1961), in one of the physics
courses I took at the Naval Postgraduate School, I had to do
some tedious calculations to a precision of twelve decimal
places. The only tool available to us for that kind of work was
the desktop mechanical calculator, and I had to hire time on it
in town. Tedious experiences like that made computers very
appealing when I first encountered them.



6 FIVE CORE METRICS

Computing Nuclear Weapons Effects

My first encounter with nuclear weapons effects was at the
Army's Special Weapons Development Division in the Combat
Development Command at Fort Bliss, Texas, where I was sta-
tioned between 1961 and 1964. The computer we used was a
Bendix G15, which was the size of a refrigerator and had
about as much power as a programmable calculator has
today. One of my jobs was supervising the preparation of the
Army's nuclear weapons selection tables, which commanders
used to pick the right weapon for a particular tactical opera-
tion. As the weapons developers upgraded the weapons, the
Army had to recalculate these tables, each of them several
hundred pages in length.

At first we programmed the G15 in Assembly language.
Later, I had an opportunity to program the machine in a
higher-order language, ALGOL. These were very small engi-
neering programs of perhaps fifty-odd lines of code.

A few years later (in 1966), I needed to do some blast cal-
culations to support the course on nuclear weapons effects I
was teaching at the Defense Atomic Support Agency in Albu-
querque, New Mexico. Next door, Sandia Laboratories had
just received a Univac 1108, the largest scientific computer
then available. They had not yet fully loaded it, so they offered
time to users on the base, providing the applicants did their
own programming. They offered a FORTRAN course for this
purpose, and I took it.

As you may expect, when the night operators fed my first
deck of IBM punch cards into this giant computer, it immedi-
ately kicked me off. The FORTRAN course had failed to teach
the procedures for job control cards! After about ten tries, I
got my program past that hurdle, only to run into syntax
errors in my own program. It turned out to be a lengthy
period before I got my program to compile, run, and generate
the data I wanted. In the back of my head, however, I lodged a
firsthand appreciation for the perils of big-time computer pro-
gramming. Also lodged there, fortunately, was some ability to
apply mathematics and statistics to difficult problems. That
would come in handy later.
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Computer Budgets in the Pentagon

In 1972, after I'd completed a tour in Vietnam and two years
commanding troops at Fort Knox, Kentucky, the time came for
duty in Washington. The personnel people, in their
inscrutable way, divined that I was eminently qualified to take
charge of the Army's automatic data processing budget. I was
going to deal with the budgetary process for the Army's pro-
curement of computers and funding of software development
programs.

The Army was spending close to $100 million per year
developing software to automate its business functions—pay-
roll, inventory management, real property management of
bases around the world, mobilization plans, force deployment
plans, command and control structure. It was virtually every-
thing that had anything to do with business and logistics. The
hardware on which these programs were to run cost another
couple hundred million dollars.

As I began this tour, I knew little about software beyond
the FORTRAN, ALGOL, and Basic programs I had written.
Most of the initial work on these Army business functions had
been coded in Assembly language. The Army Computer Sys-
tems Command was redoing this Assembly code in higher-
order languages, principally COBOL. We were in the midst of
completing 50 to 70 systems in the range of 50,000 to 400,000
lines of COBOL when I began to hear those ominous words,
"overruns," and "slippages."

I really became aware of the Army's problems with soft-
ware the first time I went to the budget table across from the
people in the Office of the Secretary of Defense. We were look-
ing at the next fiscal year and the five years that followed. To
take an example, when the Standard Installation Division Per-
sonnel System first became operational the year before, its
project organization had 118 people. For the next year, we
had projected the count to fall to 116, then to 90 for each of
the next five years. Those were numbers that had come up
from the field.

"What are these ninety people going to do?" the budget
analyst from the Office of the Secretary of Defense asked, rea-
sonably enough. "Isn't the system finished?"

Well, there was a big silence in the room. I was new. I
didn't know the answer. I looked to my right, then to my left,
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at the long-term civilian employees who had come into the
Pentagon with the first computers. They were the acknowl-
edged experts, but they were strangely quiet. Finally, the lame
answer dribbled out: "maintenance." Nobody on the Army side
of the table could satisfactorily explain what that meant.

"Look, this is a ten-million-dollar item," the budget analyst
finally said. "Unless I can get an answer, I'll have to delete it.
It's getting late, so let's adjourn for today and reconvene at
nine A.M."

We scurried off and called the Army Computer Systems
Command, which was responsible for the Personnel System.
We waited by the phone into the evening. Finally, the
response came, again some lame comment about mainte-
nance, but we knew it would not make sense to the budget
people. And it didn't. By 9:15 the next morning, we had lost
$10 million.

After the budget meeting, as I walked down the halls of
the Pentagon with my boss, a major general from the Corps of
Engineers, he mused, "You know, Larry, this business of try-
ing to plan the resources and schedule for software projects is
very mystifying. It wasn't like that in the Corps of Engineers.
Even early on in a project—the big dams, the waterways—we
always had some feel for the physical resources we would
need: how many dump trucks, the number of cubic yards of
concrete, the power shovels, the people. From numbers like
these, we could make a crude estimate of schedule and costs."

We reached the elevators, and he fell silent until we got off
on our floor.

Then he continued: "Any time I try to get similar answers
on software, I get a dialogue on the architecture of the com-
puter itself, or a little explanation of bits and bytes, or some
other irrelevancy. Never anything about how long the work is
going to take, how many people it is going to require, what it
will cost, or how good it will be at delivery. That's the kind of
information we need at our level, here in the Pentagon. That's
what we need to come to grips with this business of planning
and managing software development."

At this point, he turned and went into his office. He didn't
seem to expect any immediate answer from me, but his com-
ments set me off on a line of thinking that has lasted to this
day. How do software systems projects behave? Can we
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model this behavior with a few core parameters? Is there a
way to get the answers that senior managers want?

A couple of weeks after this budget disaster, I stumbled
across a small paperback in the Pentagon bookstore. It had a
chapter on managing R&D projects, by Peter Norden of IBM.1

Norden showed a series of curves, such as the one in Figure I-1,
that depicted the buildup, peak, and tail-off of the staffing levels
required to move a project through research and development
and into production. He pointed out that some of these projects
were for software, some were hardware-related, and some were
composites of both.

What struck me about the function, which Norden identi-
fied as a Rayleigh curve, was that it had just two parameters.
One was the area under the curve, which was proportional to
the effort applied. (In the case of software projects, effort is
proportional to cost.) The other was the time parameter,
which related to the schedule.

Figure I-1: A Norden-Rayleigh curve showing the number of
staff and the amount of effort required by devel-
opment projects over time.

I found that I could easily adapt these Rayleigh curves to the
budgetary data I had on the Army software projects. We had
the number of person-years applied to each project in our
budget, for each fiscal year of each project. So, I quickly plot-

1 Peter V. Norden, "Useful Tools for Project Management," Operations Research in
Research and Development, ed. B.V. Dean (New York: John Wiley & Sons, 1963).
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ted all the software systems that we had in inventory and
under development. From the plots, I could establish the
parameters of the Rayleigh curves. Then, from these parame-
ters, I could project the curves out to the end of the budgeting
cycle. Within a month, I had about fifty large Army develop-
ment projects under this kind of control. I was able to do
credible budget forecasts for those projects—at least for five
years into the future.

The next time the budget hearings came around, a year
later, we were in the downsizing phase at the end of the Viet-
nam War. Budget cuts were endemic, and we were asked to
cut the application of effort on a number of existing systems.
The turnaround time was short; we had twenty-four hours to
report on the impact such cuts would have.

Now that I had the Rayleigh curve and an understanding
of that methodology, I was able, using a pocket calculator pro-
grammed with the Norden-Rayleigh function, to quickly make
estimates of what would happen if we reduced the projections
for several of the projects. It was easy to show that the aggre-
gate of these cuts would wipe out the Army's capability to start
any new software projects for the following three years.

We did not lose any money at that budget meeting.

Applying the Rayleigh Concept to New Projects

Naturally, the next important question was,

How do I use the equations that stand behind the
Rayleigh curve to generate an estimate for a new proj-
ect?

More questions followed:

It's nice to pick up those that are already under way,
but is there some way I can find the time and effort for
a new project? Is there a way to build a budgeting
and staffing profile for getting the work done?

I looked into that. Right away the notion arose that somehow
we had to relate the size of the Rayleigh curve—the time and
effort it represented—with the amount of function the project
was to create. To measure the functionality, we had to ask,
How do the people building software for the Army—its in-
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house developers, like the Army Computer Systems Command
and its contractors—think about the functionality they are
creating?

I found out that they thought about the lines of code they
had to write. They talked a lot about the number of files they
were creating, the number of reports they were generating,
and the number of screens they had to bring up. I saw that
those types of entities were clearly related to the amount of
functionality a project had to create. I would have to relate
these functional entities to the schedule and effort needed to
get the job done.

Here, my experience with analyzing nuclear effects data
came into play. I knew that I had to

• measure a number of samples of the activity
• find the pattern in these measurements2

The next year-and-a-half to two years, I spent about a third to
half of my daily Army schedule analyzing data. The first set of
data was a group of about fifteen to twenty systems from the
Army Computer Systems Command. I attempted some mathe-
matical curve-fitting, relating the size of those systems in lines
of code, files, reports, or screens to the known development
schedules and the associated person-months of effort.

The first approach was to use a simple regression analysis
of functionality, expressed in lines of code, as the independent
variable; person-months of effort served as the dependent vari-
able. I used the same approach with schedule.

Next, I did some multiple regression analysis in which I
related effort to combinations of lines of code, files, reports,
and screens. The statistical parameters that came out showed
that these relationships might be useful for predictions, but
they were not extraordinarily good fits. Certainly, more work
and investigation were needed before any conclusions could be
drawn.

By this time (1975 to 1976), I had been in contact with
other investigators in this area. Judy Clapp from the Mitre
Corporation had done some studies on ten to fifteen scientific
and engineering systems that were being built for the Elec-
tronics Systems Division of the Air Force Systems Command
at Hanscom Air Force Base. C.E. Walston and C.P. Felix at
IBM Federal Systems Division had published a paper in the

^Lawrence H. Putnam and Ware Myers, Industrial Strength Software: Effective Manage-
ment Using Measurement (Los Alamitos, Calif.: IEEE Computer Society, 1997), p. 5.
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IBM Systems Journal,3 having amassed a database of about
seventy-five projects that gave a good feel for a range of differ-
ent parameters related to software. All of this information was
very useful toward establishing relationships between lines of
code, pages of documentation, time, effort, and staffing.

In trying to do this analytical work, I had to go back about
twenty years, to my academic training at the Naval Postgradu-
ate School, to refresh my memory on statistical analyses,
working with data, and drawing logical inferences and conclu-
sions. I had to do a lot of relearning to polish skills that had
become very rusty from years of neglect.

The Rayleigh Concept Leads to the Software Equation

One promising experiment employed multiple regression
analysis to relate the size of the systems in lines of code to the
schedule and the person-months of effort applied. I did these
curve-fits first with the Army data, then with the Electronics
Systems Division data, followed by the IBM data. I was lucky
in that I got some very nice fits in about twenty of the Army
data systems.

Concurrently, I did some theoretical work on integrating
Rayleigh curves. I tried to establish the parameters of integra-
tion from a little bit of the historic data from the Army and
IBM. I found good consistency in generating the key parame-
ters for the Rayleigh equation:

• the work effort (area under the curve)
• the schedule parameter (distance along the horizontal

axis)

These different, independent approaches to getting a parame-
ter-estimating equation were leading me in the same direction
and producing similar results. What ultimately fell out is
what I now call the software equation. It related the amount of
function that had to be created to the time and effort required.
It originally looked like this:

Quantity of Function = Constant x Effort x Schedule

^C.E. Walston and C.P. Felix, "A Method of Programming Measurement and Estimation,'
IBM Systems Journal, Vol. 16, No. 1 (1977), pp. 54-73.
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In the process of fitting a curve to the data representing a
number of systems, I made three significant observations:

1. A constant was generated.
2. Effort and time were both raised to powers.
3. Effort and time were present in one equation.

Constant. The fact that a constant was generated in the
process of curve-fitting is not in itself significant. A constant
is always generated in this process. When you generate a line
or a curve from data on a number of instances, you will find
that you need a constant to balance the ensuing equation.
The point of importance here is that this constant is not
invented to balance the equation. It is an outcome of the his-
toric data. Consequently, it has some kind of relationship to
the data from which it originated.

Parenthetically, we should note that this constant is not
the single, unchanging number its name implies. It is actually
a parameter. Although in any given instance, such as a par-
ticular project, it is a single number, it may be different for
each project, depending on the associated facts.

I thought a lot about what this relationship might repre-
sent, what the physical meaning of this parameter might be.
Somehow, it seemed to be related to the efficiency of the devel-
opment organization or the level of technology the organization
was applying to its development practices. That is, where
expert opinion believed an organization to be more advanced,
a larger parameter was at work. That is, organizations that
expert opinion believed to be more advanced fell heir to a
larger parameter.

The first name I used to describe this empirically deter-
mined parameter was Technology Factor. I used that term in
the first papers I published with the IEEE Computer Society,
between 1976 and 1977. I have continued to use that para-
meter to represent the efficiency of the software development
organization. Over the years, I have renamed it several times:

• Technology Factor
• Technology Constant
• Productivity Constant
• Process Productivity Parameter
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The latter is probably the most descriptive term for the real
relationship of this mathematical parameter to the software
development process.

Powers. In the process of curve-fitting, I found that expo-
nents were associated with both the time and effort parame-
ters. The presence of these exponents means that the soft-
ware equation is nonlinear. This, in turn, signifies that the
software development process is not simple or linear; it is
complex, or nonlinear. Well, in view of the difficulty we have
always had with it, that complexity is not a great surprise!

Effort and time together. The curve-fitting brought effort
and schedule together in the same equation. In other words,
they influence each other. They are not independent entities.
This conjunction leads to some possibilities in project plan-
ning, such as the "time-effort trade-off that we will explore at
length in Chapter 11. The additional fact that both effort and
time carry exponents has further implications as well.

This work was the genesis of my software equation, which
we still use today. Though originally derived by statistical
analysis, the data I analyzed was itself real. Since then, the
QSM software equation has been applied to tens of thousands
of projects that were also real. The result: It has proven to be
a very good measurement and estimating tool for more than
twenty-five years.

The QSM software equation is a macro model that links
the amount of function to be created to the management para-
meters of schedule and the effort required for production. The
empirically determined constant, or process productivity para-
meter, represents the productive capability of the organization
doing the work. This equation brings together four of the
management-oriented measures that the major general from
the Engineer Corps yearned for, now some thirty years ago.

The presence of the process productivity parameter sug-
gests that the software equation provides a very good way to
tune an estimating process. If you know the size, time, and
effort of your completed projects, you can calculate your
process productivity parameter. Then you can use this calcu-
lated parameter in making an estimate for a new project. So
long as the environment, tools, methods, practices, and skills
of the people have not changed dramatically from one project
to the next, this process of playing back historic data can
serve as a very useful, simple, straightforward calibration tool.
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Second Key Relationship: Manpower Buildup Equation

The other relationship that emerged in these studies was the
direct one between time and effort. Clearly, these two were
parameters in our Rayleigh equation. But was there anything
we could learn from the basic data as to the relationship
between the two? Again, more curve-fitting. There was a dis-
tinct relationship:

Effort is proportional to schedule cubed.

This relationship had been noted and discovered earlier by
Felix and Walston and several other investigators who had
done research in software cost estimating.4

This finding was especially important because it gave me
the basis for making estimates. I had two equations and two
unknowns (time and effort). The software equation involved
size, time, effort, and the process productivity parameter. The
second equation linked effort with development time. With
two equations, one could solve for the two unknowns.

The second equation, of course, also required some para-
metric determinations. We found a parameter family that
seemed to relate to the staffing style of the organization. Orga-
nizations that use large teams of people tend to build up staff
rapidly. Rapid buildup produces a high value for the ratio of
effort divided by development time cubed.

Organizations that work in small teams generally take
longer to complete development. Small teams are typical of
engineering companies that tend to solve a sequential set of
problems one step at a time. For such companies, I saw that
the relationship of effort divided by development time cubed
produced a much smaller number for the buildup parameter.
This observation told us that organizations adopted different
staffing styles. This parameter was actually a measure of the
manpower acceleration being applied to a software project.

It became evident in studying these different types of orga-
nizations that large-team organizations tend to finish their proj-
ects a little bit faster than small-team organizations. The latter
took a little bit longer to complete their work, all other things
being equal. This finding suggested some sort of trade-off
between team size and how long it takes to get the work done.

4Ibid.
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The Rayleigh Curve As a Process Control Vehicle

The other significant idea that I started working on during my
Army years was the notion of using the Rayleigh curve as a
process control vehicle for projects while they are under way.
The curve projected the planned staffing and effort. As the
project progressed, actual staffing and effort could be com-
pared to the plan. Managers could observe deviations from
the plan and initiate prompt corrective action.

An extension of the control idea was to take real data as it
was happening on a project. If this data differed from the orig-
inal plan, something had to change. The purpose was to cal-
culate the actual process productivity parameter being
achieved. Using it, a new Rayleigh curve could be projected to
a new completion date. The new curve would let you dynami-
cally predict effort, cost, and schedule to completion.

I did some early curve-fitting investigations but ran into
some problems and snags that for a time prevented this idea
from being fully realized. Nevertheless, there was enough
work and enough positive results to suggest that the process
control application should be pursued.

It had become evident, however, that not many people
were interested in dynamic control. Most organizations were
having so much trouble coming up with the initial forecast
that the idea of learning how to control an ongoing project was
not high on their priority list. Trying to reach good solutions
in dynamic measurement and control was premature. (How-
ever, I did eventually work out the project control aspects, as
we report in Chapter 13.)

And now, the book itself, reflecting the experience of another quarter of
a century, is divided into four parts. Part I, What Software Stakehold-
ers Want, begins on a positive note with the view that some software
organizations are doing very well. They are doing well because they
have integrated key metrics into their development process. These
practices give them predictability.

Part II covers the five core metrics needed for effective control:
schedule time, effort, functionality (as expressed in size), reliability,
and productivity. Because these five metrics are related to each other,
developers can use known values to predict the others. This provides
a base for estimating. Then, they can control the progress of their
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projects against those predictions. Further, with these measures, they
can track improvements in the way they develop software.

Part III is given over to the application of metrics at the project
level. This set of chapters applies the metric concepts to the estima-
tion and control of a single project. Estimation and control are impor-
tant because software development does not in reality begin with pro-
grammers sitting down to write code. There are such preliminary
maneuvers as finding out what to do. That "what" is the essential
basis of the time, effort, and other resources needed to eventually write
code that implements the "what" successfully.

Part IV extends the employment of metrics to control that resides
above the project level. The general idea is that the acquirers of soft-
ware development capability can employ these metrics to guide their
relationship with development organizations. Higher levels of manage-
ment can use them to manage a portfolio of projects and to guide their
employment of reusable components. Organizations can gauge
improvement by tracking these metrics.
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Chapter 3
Integrate Metrics with

Software Development

People are important, and people have to solve the intricate problems
encountered in software development. It is equally true that collabora-
tive leadership is better than command management, especially in
knowledge work, for people do not solve problems on command—at
least not well. It is also true that a software development process,
clumsily applied, can get in the way of what people are trying to do.
Moreover, we might as well admit—for it is true—that when metrics are
poorly chosen, inaccurately collected, and unwisely applied, people get
upset. When people are upset, they solve problems poorly. To put it
in a nutshell, people solve problems; metrics provide the schedule time
and staff allowance within which people solve problems.

Thus, when pertinent metrics are applied effectively, people become
more productive. Metrics make the process of software development
more reliable and efficient. The challenge is to work metrics into that
process. This chapter begins the exploration of the typical phases of
development and the ways metrics can be integrated into the process.

Metrics Meter Limited Resources

As we pointed out in the previous chapter, software development, like
everything else on this third rock from the sun, operates on a planet of
limited resources that measures time by rotations of its globe. Every

40
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rotation carries costs because the people doing the work like to eat
every day. That is, we mean to say, neither staff power nor schedule
time are free goods.

The reliability of the product isn't free either. People work over a
period of time to produce software. That software may be of high relia-
bility—with few defects—because the people had sufficient time to
avoid or correct the defects. However, software released with many
defects merely transfers that working time, usually multiplied one
hundred-fold, to the users, the help-line crew, and the maintenance
staff.

Staff, schedule time, and the number of defects represent three of
the five core metrics. The fourth core metric is the amount of function
contained in a software product. It is commonly measured in lines of
source code or in function points. The fifth core metric is the produc-
tivity level—or process productivity—of the project. But when do we
measure the five core metrics: size, productivity, time, effort, and relia-
bility?

In the beginning, the software project is just a gleam in some
dreamer's eye, and there is nothing to measure. At the end, we have a
product and can count the lines of code, but at that point, the count is
of little value. Measurements would have come in handy earlier, when
we were trying to estimate the time and effort. It is evident also that
we need metrics at many in-between points. That is, between the start
and the end of the software development process. We need to have
metrics integrated into that process. The work has to be measured
and evaluated on those metrics, and often redirected as a result.

Thus, development operates through process. Process, in turn,
operates through resources. The key resources, time and effort, are
scarce. In consequence, they have to be metered out to projects. That
metering is properly the province of a measurement system, or metrics
for short.

That is the nub of the metric side of the argument. Unfortunately,
developers in the trenches often see the situation quite differently.
They see a rather amorphous project, full of problems that may take a
long time to penetrate. They see a schedule imposed by upper man-
agement or clients with little grasp of the problems still to be
unearthed. They see a staff of inadequate size with junior members
inexperienced in the problems to come. To them, that too-short sched-
ule and inexperienced staff are the "metrics" imposed on the project.
And, of course, in that situation, these "metrics" are what pass as the
outcome of management's stab at the time and effort metrics.

3
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That word "stab" is the key to a happier metric future. Suppose
that instead of "stabbing" more or less blindly at the metrics, manage-
ment were able to reach these metrics as the outcome of an intelligent
methodology. That is, the time and effort metrics were well suited to
the needs of the developers. The productivity level at which the staff
can function was well established. Under this scenario, developers
could be happy with the metrics offered with the project.

It is evident that developers are unhappy, not with metrics per se,
but with lousy metrics. In a world of finite resources, metrics have to
be an integral part of an effective software process. But they don't
have to be lousy.

What Is the Process?

An early representation of the software development process was the
waterfall model, summarized in the first column of Table 3-1. Many
understood the model to prescribe a one-way path through the work-
flows of software development: requirements capture, analysis, design,
and so on, as shown in the table. In truth, that understanding was
based on the first diagram of workflows in Winston Royce's landmark
paper, "Managing the Development of Large Software Systems." If
readers of the paper had turned the page, they would have seen that
the second diagram shows feedback arrows from each workflow to the
preceding one. "As each step progresses and the design is further
detailed, there is an iteration with the preceding and succeeding
steps," Royce wrote.1 Really, a quite modern attitude! Despite Royce's
iterative view, many software people still consider his model to be a
sequential, single-pass flow of work — not an iterative process.

The U.S. Department of Defense (DoD) divided the software prob-
lem into four phases: feasibility study, high-level design, main build,
and operation and maintenance. These phases were convenient for
managing contracted parts of the development. With little hard knowl-
edge to go on, the first two phases could be handled as level-of-effort
contracts. By the time the high-level design was completed, the knowl-
edge was on hand for a fixed-price contract.

Developed in 1999, the Unified Process brought together the previ-
ous processes or methodologies of Ivar Jacobson, Grady Booch, and
James Rumbaugh, each already a well-established methodologist.
Although divided into four phases like the Department of Defense's
version, the phase names are quite different. The four phases are
named not in terms of their content, but in terms of their position in

1 Winston W. Royce, "Managing the Development of Large Software Systems," Proceed
ings, IEEE WESCON (August 1970), p. 2.
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the development sequence. Within the Elaboration phase, for example,
the Unified Process locates a number of activities involved in getting
ready to build the system in the next phase.

Table 3-1: The waterfall model of software development,
originating in the 1960's, listed what we now
call workflow activities. It was followed by the
four phases of the Department of Defense
process. The Unified Process, pulled together
in 1999, redefines the four phases and assigns
them new names to make clear that they are
something different In the final column, a sur-
vey author, attempting to come up with a
generic set of names, confuses workflows and
phases.

Waterfall2 Dept. of Defense3 Unified Process4 Generic5

I

II

III

IV

V

VI

Requirements

Analysis

Design
Coding

Testing

Operations

Feasibility Study

High-Level Design

Main Build
Operation,
Maintenance

Inception

Elaboration

Construction
Transition

Initiation

Conceptual
Requirements

Analysis
Design

Construction

Deployment

The generic set, shown in Table 3-1, presents a combination of
sequence names, such as Initiation, and workflow names, such as
Analysis, that is confusing. The confusion arises from our long immer-
sion in the waterfall model. If you are going to go through the work-
flow activities (those listed in the first column of the table) only once—
in waterfall fashion—process and workflows are the same. However, in
the more modern sense of the spiral model or iterative development,
which assume repeated passes through workflows instead of a single
pass, there is a distinction between process and workflows. For exam-
ple, if a team decides that it needs to develop a prototype in the first
phase, it has to go through an abbreviated version of requirements
capture, analysis, design, and coding to get to the prototype. In other
words, part or all of the workflows may occur in any phase. There is a

^Royce, loc. cit., pp. 1-9.
3 Lawrence H. Putnam and Ware Myers, Measures for Excellence: Reliable Software on
Time, Within Budget (Englewood Cliffs, N.J.: Prentice Hall, 1992).
4Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Software Development
Process (Reading, Mass.: Addison-Wesley, 1999).
^Ellen Gottesdiener, "OO Methodologies: Process & Product Patterns," Component Strate-
gies (November 1998), pp. 34-44.
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distinction between phase and workflow, and the Unified Process
grasps this difference.

In the following sections, though, we describe each phase of the
software development process in terms of the Unified Process model,
and we note that the DoD model, or some version of it, is widely
employed.

Phase One: Inception

It would be nice to know, before spending a few million dollars, that
the proposed system is technically feasible and that there is a business
case for it. In the very beginning, when all you have is a high-level
executive waving his arm broadly and saying, "Wouldn't it be super to
have a single system that integrates all our operations?" you can't esti-
mate time and effort. You don't have enough information to make even
a rough estimate of the size of the necessary software.

You first have to take three preliminary steps: You have to break
the grand vision down into something concrete enough to study; you
have to define what is within the system and what is external to it;
you have to figure out if your organization can produce this system
that you have roughly defined.

Is the system technically feasible at the current state of the art?
This question seems to arise in areas such as the Department of
Defense, the Federal Aviation Administration, and other organizations
where well-meaning but not technically based leaders dream dreams
that reach beyond what is immediately possible. This question also
arises in new areas, sometimes called "green fields," in which we have
not previously done a project. In more mundane fields, feasibility of
many applications is more certain. It is enough to realize that the
project is a follow-on or that the developers have worked in this appli-
cation area before. That experience helps us feel certain that the work
is at least feasible.

Even if a proposal is technically feasible, though, it may not be
appropriate for our particular organization at this time. We may lack
certain skills needed by the project. Our organization may not have
access to the needed funds. The product may not be consonant with
our company's core competence. We explore these issues and others
in greater depth in Chapter 9. In the meantime, Figure 3-1 illustrates
the position of Phase One at the beginning of preliminary work on the
project.
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Figure 3-1: The Phase One (Inception or Feasibility) team
does enough work to justify the move into
Phase Two.

Several of the key decisions made in the first phase should rest on a
background of reliable metrics. Even the rough estimate of system size
that is possible in this phase depends upon having readily available
knowledge of the size of past systems. Coming up with the very rough
estimate of construction time, effort, and cost involves having some
knowledge of how to turn the size estimate into this very rough estimate.

Phase Two: Elaboration

In order to bid on a business basis, you need to extend further your
knowledge of the project. You need to know with considerable preci-
sion what you are going to do. That is the purpose of the Elaboration
phase. This phase has three goals:

3
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• Extend the requirements to the point of blocking out
most of the architecture.

• Block out most of the architecture.
• Identify the risks that, if not mitigated, could result in

excess costs.

Before you can proceed with the architecture, you have to have a good
grasp of the key requirements. It is these requirements on which you
base the architecture. You do not have to capture all the details of the
requirements in this phase. In familiar areas, it may be sufficient to
block out known subsystems. In less familiar areas, you may have to
carry the architecture to a lower level of structure.

Are there aspects of the architecture you understand so poorly that
you cannot count on implementing them within the time and effort esti-
mates toward which you are aiming? If so, you have to explore these
aspects further. For example, you may have to find an algorithm, or
even code one, to assure that it can be done. You may have to carry
this portion of the project through complete requirements capture,
analysis, design, implementation, and test, to a working prototype, to
be certain not only that it can be done but that it can be done within
business constraints. The latter, of course, are metrics of some sort.

When does your estimate become good enough? During this sec-
ond phase, as you find out more about what it will take to implement
the system, your size estimate becomes more precise. Your corre-
sponding time and effort estimates become more accurate. You carry
the architecture, design, and risk reduction to the point at which your
estimate meets two criteria. First, it falls within the plus and minus
limits normally associated with practice in your field of business. Sec-
ond, it is within some probability of successful completion. Note that
both of these criteria are based on metrics!

Figure 3-2 summarizes what the Phase Two team needs to accomplish.
Just where, during the progress through Phase Two, the size esti-

mate becomes good enough to base a bid on, is not a settled issue.
Under pressure from management, customers, and the market, this
phase is often ended prematurely before enough is known to support a
valid bid. Of course, for organizations with little in the way of a back-
ground in metrics, a lack of knowledge of the system being bid makes
little difference. They were just guessing anyway. For the organization
using metric methods, the size estimate midway through this phase
still has too large a margin of error. Its estimates of time and effort at
this point will have a comparably large range of uncertainty. Bidding
such numbers leads to all the troubles with which we are familiar in
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the third phase, Construction—time and effort overruns, poor quality,
even cancelled projects.

Figure 3-2: The Phase Two, Elaboration, team carries the
exploration of the project to the point of sup-
porting a bid.

As long as bids are based more on executive intuition than on metrics,
it makes little difference where you end the second phase. For organi-
zations that are using better estimating techniques and learning how
to make more precise estimates, it is more important to cany the sec-
ond phase to the point of having an accurate size estimate.

Well, that sounds reasonable, you may be thinking. Then, on fur-
ther thought, you ask, "Who is going to finance this up-front work?"
Business units sometimes like to think they are passing costs to some
other business unit. Between companies, the one requesting a bid
likes to think it is passing the cost of what it ought to absorb to the
software contractor. Similarly, within a company, a department need-
ing software sometimes tries to pass the cost of planning that software

2
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to the software department. If these little "successes" result in inade-
quate attention to Phase Two, it is the using company or department
that eventually suffers from the poor software that results. Thus, who-
ever finances Phase Two, the using organization needs to make sure
that the financing reaches the goal of providing the schedule and effort
funding required to complete Phase Three, Construction, successfully.

Extending Phase Two long enough to reach these goals may delay
the beginning of Construction. Psychologically, this deferral can be
hard to take. We all like to see that construction is under way. People
like to count lines of completed code. However, when construction is
started prematurely, developers may try to proceed under an inade-
quate bid, that is, in too short a time with an inadequate staffing level.
That is bad from both a business standpoint and a technical stand-
point. In mid-construction, developers realize that the architecture
does not entirely satisfy the requirements, that unmitigated risks
upset the schedule, and that necessary changes are costing more
money than is available.

One way to reduce these problems is to keep the project length
within bounds. Don't try to set up a five- or ten-year project that will
solve all your problems for all time. Too many factors—requirements,
environment, reusable components, hardware, and operating system
platform—are certain to change over such a long period of time.
Instead, try to set up a flexible architecture within which you can set
up a series of short projects. You should probably hold most projects
within a two-year time scale. The trick is to design an architecture
that is extendable into subsequent releases and generations of the
product.

In this second phase, Elaboration, a measurement system is even
more critical than in the first phase. It is this phase that, by defini-
tion, concludes with a business bid. A bid is the supreme metric that
governs the project through the Construction Phase and the Transition
Phase. But a bid does not spring into existence from nothing, like
lightning from the brow of Zeus. Rather, it is built up from lesser met-
rics, like size, productivity level, and reliability.

Phase Three: Construction

As we mentioned at the beginning of this chapter, people solve prob-
lems; metrics don't. However, metrics can help people solve problems.
There have to be enough people over time, and that is a metric known
as effort, measured in staff hours or staff months. There has to be a
sufficient period of time and that is another metric, schedule time,
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measured in weeks, months, or years. Moreover, users of software
generally want the people to solve the problems adequately—we might
hang the sobriquet "quality" on that desire. There are many aspects of
quality, some not readily reducible to a number. Reliability is quantifi-
able, however, and reflects to some extent the other aspects of quality.
In the form of defect rate (or its reciprocal, mean time to defect), relia-
bility is the third key metric.

Therefore, the time and effort implicit in the business bid provide
the problem-solving people with the effort and time they need in the
third phase to construct software to an acceptable level of reliability
and quality. Ergo, metrics are critically important to the success of the
third phase.

In addition, metrics play a second role in the Construction Phase:
control. That is an ominous word—nobody likes to be controlled. We
would all like to be free spirits! But remember, we live in a world of
limited resources, and control is what keeps us safely within those
limits.

Given the initial estimated metrics for effort (staff-months), sched-
ule, and defects at the end of the second phase, we can project the rate
at which effort will be expended and defects will be discovered during
the Construction Phase. We can also project the rate at which func-
tion, such as lines of code, will be completed. In addition to projecting
the average rate of occurrence of these metrics, we can project bands
above and below the average.

We have now established the basis for "statistical control" of the
key variables in the Construction Phase. Statistical control means
that we count up the actual number of staff members, the actual lines
of code produced, and the actual number of defects found during each
week and see if these actuals fall within the statistical-control band. If
they do, the project is proceeding according to plan. If an actual falls
outside the control band, it is out of control. Work is not going accord-
ing to plan. Something is probably wrong. It is a signal to look for the
problem.

Under statistical control, we discover the problems as they happen,
every week. They are fresh. The people who were involved are still
around. The traditional alternative is to discover such problems in
system test. At that point, there is little project schedule left. Some of
the people are gone, while others no longer remember very clearly what
they did—perhaps months ago—that now turns out to be wrong.

The Construction Phase is where most of the work of software
development is accomplished. It is where most of the money is spent.
Metrics are important in this phase for two reasons: to provide ade-
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quate resources and time for the task, and to confirm that the
resources are being utilized according to plan.

The alternative is to fly by the seat of your pants. That does not
work in the air. In a cloud, the seat of your pants is deceptive. Instru-
ment-flight instructors preach, "Depend on your instruments, not your
pants." We preach a similar message: "Depend on your metrics, not
your hopes and fears."

Phase Four Transition

The Construction Phase ended with system test conducted in-house,
resulting in a system state known as initial operational capability.
However, the system has not yet operated in a user or customer envi-
ronment. That is the province of the Transition Phase. This phase
oversees the movement of the product into the user environment,
which may differ slightly from the in-house environment.

In a broad sense, there are two types of products. The first, the
shrink-wrapped product, goes to many customers. As a start, the ven-
dor may conduct a beta test (usually toward the end of the Construc-
tion Phase) with a representative selection of those users. The second
type of product goes to one customer, often for installation at one site,
sometimes at several sites. The customer usually conducts an accep-
tance test in its own environment.

In general terms, there will be two types of feedback from the user
environment:

• Defects will turn up, either due to the new environment
or because they were undetected during the in-house
tests. The software organization has to correct them. In
some cases, it may be possible to hold them for the next
release.

• The software may fail to meet some of the needs the
users now identify. Again, the software organization
may be able to modify the system to accommodate these
needs, at least those that it can readily add within the
current structure. In other cases, the modification will
be added to the list for consideration in the next release.

The amount of effort and schedule time needed by the Transition
Phase depends upon the extent to which users encounter new needs
and defects. If requirements were carefully captured in the early
phases, if users were consulted during analysis and design, if users
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tried out operating prototypes, if they viewed operating increments
early in the Construction Phase, and if this early feedback resulted in
modification of the initial requirements to accommodate needs discov-
ered along the way, then few new needs should turn up in the Transi-
tion Phase. At best, however, a software organization will find it diffi-
cult to estimate the amount of modification work that will feed back
from users. Keeping a record of what happened on previous projects
can serve as a guide.

If a project has followed good inspection and testing practices, the
system will reach initial operational capability with fewer remaining
defects. However, there are metric methods for estimating the number
of defects that do remain at this point. Then, as the users operate the
system in their own environment, they gradually unearth these
defects. They or the system builder correct the defects and revise the
estimate of the number still remaining. Using this methodology, it is
possible to make a rough estimate of the amount of rework to be
expected from defect discovery.

On the whole, however, the core metrics—size, effort, time, produc-
tivity, and defect rate—are less applicable in the Transition Phase than
in the earlier phases. The best guide is the experience of navigating
previous projects through this phase. On that basis, the software
organization can allocate a certain amount of time and effort. It can
then make modifications and correct defects within that budget while
trying to defer more time-consuming modifications to the next release
or to the maintenance budget.
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