
 OPEN SOURCE SOFTWARE DEVELOPMENT SERIES

Embedded
Linux Systems with

the Yocto Project"

FREE SAMPLE CHAPTER

SHARE WITH OTHERS

�f, � � � �

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133443240
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133443240
https://plusone.google.com/share?url=http://www.informit.com/title/9780133443240
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133443240
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133443240/Free-Sample-Chapter

Embedded Linux
Systems with the

Yocto ProjectTM

This page intentionally left blank

Embedded Linux
Systems with the

Yocto ProjectTM

Rudolf J. Streif

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-344324-0
ISBN-10: 0-13-344324-8
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2016

http://www.pearsoned.com/permissions/

❖

To Janan, Dominic, Daniel, and Jonas

❖

This page intentionally left blank

Contents

Foreword xv

Preface xvii

Acknowledgments xxi

About the Author xxiii

1 Linux for Embedded Systems 1
1.1 Why Linux for Embedded Systems? 1
1.2 Embedded Linux Landscape 3

1.2.1 Embedded Linux Distributions 3
1.2.2 Embedded Linux Development Tools 5

1.3 A Custom Linux Distribution—Why Is It Hard? 8
1.4 A Word about Open Source Licensing 9
1.5 Organizations, Relevant Bodies, and

Standards 11
1.5.1 The Linux Foundation 11
1.5.2 The Apache Software Foundation 11
1.5.3 Eclipse Foundation 12
1.5.4 Linux Standard Base 12
1.5.5 Consumer Electronics Workgroup 13

1.6 Summary 13
1.7 References 14

2 The Yocto Project 15
2.1 Jumpstarting Your First Yocto Project Build 15

2.1.1 Prerequisites 16
2.1.2 Obtaining the Yocto Project Tools 17
2.1.3 Setting Up the Build Host 18
2.1.4 Configuring a Build Environment 20
2.1.5 Launching the Build 23
2.1.6 Verifying the Build Results 24
2.1.7 Yocto Project Build Appliance 24

2.2 The Yocto Project Family 26
2.3 A Little Bit of History 28

2.3.1 OpenEmbedded 29
2.3.2 BitBake 29
2.3.3 Poky Linux 29

viii Contents

2.3.4 The Yocto Project 30
2.3.5 The OpenEmbedded and Yocto Project

Relationship 30
2.4 Yocto Project Terms 31
2.5 Summary 33
2.6 References 34

3 OpenEmbedded Build System 35
3.1 Building Open Source Software Packages 35

3.1.1 Fetch 36
3.1.2 Extract 36
3.1.3 Patch 37
3.1.4 Configure 37
3.1.5 Build 38
3.1.6 Install 38
3.1.7 Package 38

3.2 OpenEmbedded Workflow 39
3.2.1 Metadata Files 41
3.2.2 Workflow Process Steps 43

3.3 OpenEmbedded Build System Architecture 45
3.3.1 Build System Structure 47
3.3.2 Build Environment Structure 50
3.3.3 Metadata Layer Structure 53

3.4 Summary 56
3.5 References 57

4 BitBake Build Engine 59
4.1 Obtaining and Installing BitBake 59

4.1.1 Using a Release Snapshot 60
4.1.2 Cloning the BitBake Development

Repository 60
4.1.3 Building and Installing BitBake 60

4.2 Running BitBake 61
4.2.1 BitBake Execution Environment 61
4.2.2 BitBake Command Line 63

4.3 BitBake Metadata 70
4.4 Metadata Syntax 71

4.4.1 Comments 71
4.4.2 Variables 72

ixContents

4.4.3 Inclusion 76
4.4.4 Inheritance 77
4.4.5 Executable Metadata 79
4.4.6 Metadata Attributes 85
4.4.7 Metadata Name (Key) Expansion 86

4.5 Source Download 86
4.5.1 Using the Fetch Class 87
4.5.2 Fetcher Implementations 88
4.5.3 Mirrors 94

4.6 HelloWorld—BitBake Style 95
4.7 Dependency Handling 99

4.7.1 Provisioning 99
4.7.2 Declaring Dependencies 101
4.7.3 Multiple Providers 101

4.8 Version Selection 102
4.9 Variants 103
4.10 Default Metadata 103

4.10.1 Variables 103
4.10.2 Tasks 107

4.11 Summary 107
4.12 References 108

5 Troubleshooting 109
5.1 Logging 110

5.1.1 Log Files 110
5.1.2 Using Logging Statements 114

5.2 Task Execution 116
5.2.1 Executing Specific Tasks 118
5.2.2 Task Script Files 118

5.3 Analyzing Metadata 119
5.4 Development Shell 120
5.5 Dependency Graphs 121
5.6 Debugging Layers 122
5.7 Summary 124

6 Linux System Architecture 127
6.1 Linux or GNU/Linux? 127
6.2 Anatomy of a Linux System 128

x Contents

6.3 Bootloader 129
6.3.1 Role of the Bootloader 130
6.3.2 Linux Bootloaders 130

6.4 Kernel 134
6.4.1 Major Linux Kernel Subsystems 136
6.4.2 Linux Kernel Startup 140

6.5 User Space 141
6.6 Summary 143
6.7 References 144

7 Building a Custom Linux Distribution 145
7.1 Core Images—Linux Distribution Blueprints 146

7.1.1 Extending a Core Image through Local
Configuration 149

7.1.2 Testing Your Image with QEMU 150
7.1.3 Verifying and Comparing Images Using the Build

History 151
7.1.4 Extending a Core Image with a Recipe 152
7.1.5 Image Features 153
7.1.6 Package Groups 155

7.2 Building Images from Scratch 160
7.3 Image Options 161

7.3.1 Languages and Locales 162
7.3.2 Package Management 162
7.3.3 Image Size 163
7.3.4 Root Filesystem Types 164
7.3.5 Users, Groups, and Passwords 166
7.3.6 Tweaking the Root Filesystem 167

7.4 Distribution Configuration 169
7.4.1 Standard Distribution Policies 169
7.4.2 Poky Distribution Policy 170
7.4.3 Distribution Features 176
7.4.4 System Manager 179
7.4.5 Default Distribution Setup 179

7.5 External Layers 181
7.6 Hob 181
7.7 Summary 184

xiContents

8 Software Package Recipes 185
8.1 Recipe Layout and Conventions 185

8.1.1 Recipe Filename 186
8.1.2 Recipe Layout 186
8.1.3 Formatting Guidelines 195

8.2 Writing a New Recipe 196
8.2.1 Establish the Recipe 198
8.2.2 Fetch the Source Code 199
8.2.3 Unpack the Source Code 200
8.2.4 Patch the Source Code 201
8.2.5 Add Licensing Information 201
8.2.6 Configure the Source Code 202
8.2.7 Compile 203
8.2.8 Install the Build Output 204
8.2.9 Setup System Services 206
8.2.10 Package the Build Output 207
8.2.11 Custom Installation Scripts 210
8.2.12 Variants 211

8.3 Recipe Examples 212
8.3.1 C File Software Package 212
8.3.2 Makefile-Based Software Package 213
8.3.3 CMake-Based Software Package 215
8.3.4 GNU Autotools-Based Software Package 216
8.3.5 Externally Built Software Package 217

8.4 Devtool 218
8.4.1 Round-Trip Development Using Devtool 219
8.4.2 Workflow for Existing Recipes 223

8.5 Summary 224
8.6 References 224

9 Kernel Recipes 225
9.1 Kernel Configuration 226

9.1.1 Menu Configuration 227
9.1.2 Configuration Fragments 228

9.2 Kernel Patches 231
9.3 Kernel Recipes 233

9.3.1 Building from a Linux Kernel Tree 234
9.3.2 Building from Yocto Project Kernel

Repositories 238

xii Contents

9.4 Out-of-Tree Modules 251
9.4.1 Developing a Kernel Module 251
9.4.2 Creating a Recipe for a Third-Party

Module 254
9.4.3 Including the Module with the Root

Filesystem 256
9.4.4 Module Autoloading 257

9.5 Device Tree 257
9.6 Summary 258
9.7 References 259

10 Board Support Packages 261
10.1 Yocto Project BSP Philosophy 261

10.1.1 BSP Dependency Handling 263
10.2 Building with a BSP 265

10.2.1 Building for the BeagleBone 265
10.2.2 External Yocto Project BSP 272

10.3 Inside a Yocto Project BSP 277
10.3.1 License Files 279
10.3.2 Maintainers File 279
10.3.3 README File 279
10.3.4 README.sources File 280
10.3.5 Prebuilt Binaries 280
10.3.6 Layer Configuration File 280
10.3.7 Machine Configuration Files 280
10.3.8 Classes 281
10.3.9 Recipe Files 281

10.4 Creating a Yocto Project BSP 282
10.4.1 Yocto Project BSP Tools 282
10.4.2 Creating a BSP with the Yocto Project BSP

Tools 286
10.5 Tuning 289
10.6 Creating Bootable Media Images 290

10.6.1 Creating an Image with Cooked Mode 292
10.6.2 Creating an Image with Raw Mode 292
10.6.3 Kickstart Files 293
10.6.4 Kickstart File Directives 295
10.6.5 Plugins 297
10.6.6 Transferring Images 298

xiiiContents

10.7 Summary 299
10.8 References 299

11 Application Development 301
11.1 Inside a Yocto Project ADT 302
11.2 Setting Up a Yocto Project ADT 304

11.2.1 Building a Toolchain Installer 304
11.2.2 Installing the Toolchain 305
11.2.3 Working with the Toolchain 307
11.2.4 On-Target Execution 310
11.2.5 Remote On-Target Debugging 311

11.3 Building Applications 315
11.3.1 Makefile-Based Applications 315
11.3.2 Autotools-Based Applications 316

11.4 Eclipse Integration 317
11.4.1 Installing the Eclipse IDE 317
11.4.2 Integrating a Yocto Project ADT 319
11.4.3 Developing Applications 321
11.4.4 Deploying, Running, and Testing on the

Target 323
11.5 Application Development Using an Emulated

Target 331
11.5.1 Preparing for Application Development

with QEMU 331
11.5.2 Building an Application and Launching It

in QEMU 333
11.6 Summary 333
11.7 References 334

12 Licensing and Compliance 335
12.1 Managing Licenses 335

12.1.1 License Tracking 337
12.1.2 Common Licenses 338
12.1.3 Commercially Licensed Packages 339
12.1.4 License Deployment 340
12.1.5 Blacklisting Licenses 340
12.1.6 Providing License Manifest and Texts 341

12.2 Managing Source Code 341
12.3 Summary 343
12.4 References 344

xiv Contents

13 Advanced Topics 345
13.1 Toaster 345

13.1.1 Toaster Operational Modes 346
13.1.2 Toaster Setup 347
13.1.3 Local Toaster Development 348
13.1.4 Toaster Configuration 349
13.1.5 Toaster Production Deployment 351
13.1.6 Toaster Web User Interface 356

13.2 Build History 358
13.2.1 Enabling Build History 358
13.2.2 Configuring Build History 359
13.2.3 Pushing Build History to a Git Repository

Server 360
13.2.4 Understanding the Build History 361

13.3 Source Mirrors 366
13.3.1 Using Source Mirrors 366
13.3.2 Setting Up Source Mirrors 368

13.4 Autobuilder 368
13.4.1 Installing Autobuilder 369
13.4.2 Configuring Autobuilder 370

13.5 Summary 374
13.6 References 375

A Open Source Licenses 377
A.1 MIT License (MIT) 377
A.2 GNU General Public License (GPL) Version 2 378
A.3 GNU General Public License (GPL) Version 3 384
A.4 Apache License Version 2.0 397

B Metadata Reference 403

Index 429

Foreword

The embedded Linux landscape is a little bit like the Old West: different outposts of
technology scattered here and there, with barren and often dangerous landscape in
between. If you’re going to travel there, you need to be well stocked, be familiar with
the territory, and have a reliable guide.

Just as people moved West during the Gold Rush in the mid-1800s, developers are
moving into the embedded Linux world with the rush to the Internet of Things. As
increased population brought law, order, and civilization to the Old West, important
new open source software projects are bringing order to embedded Linux.

The Yocto Project is a significant order-bringer. Its tools let you focus on designing
your project (what you want to build) and devote only the necessary minimum of your
time and effort to putting it all together (how you build what you want to build).

This book is your reliable guide. In logically ordered chapters with clear and com-
plete instructions, it will help you get your work done and your IoT project to market.
And with some luck, you’ll have fun along the way!

Enjoy your adventure!
Arnold Robbins

Series Editor

This page intentionally left blank

Preface

Smart home. Smart car. Smart phone. Smart TV. Smart thermostat. Smart lights.
Smart watch. Smart washer. Smart dryer. Smart fridge. Smart basketball. Welcome to
the brave new world of smart everything!

The proliferation of embedded computers in almost everything we touch and inter-
act with in our daily lives has moved embedded systems engineering and embedded
software development into the spotlight. Hidden from the direct sight of their users,
embedded systems lack the attractiveness of web applications with their f lashy user
interfaces or the coolness of computer games with their animations and immersive
graphics. It comes as no surprise that computer science students and software developers
hardly ever think of embedded software engineering as their first career choice. How-
ever, the “smart-everything revolution” and the Internet of Things (IoT) are driving
the demand for specialists who can bridge hardware and software worlds. Experts who
speak the language of electric schematics as well as programming languages are sought
after by employers.

Linux has become the first choice for an explosively growing number of embedded
applications. There are good reasons for this choice, upon which we will elaborate in the
coming chapters. Through my journey as an embedded software developer for vari-
ous industries, I have learned Linux for embedded systems the hard way. There is no
shortage of excellent development tools for virtually any programming language. The
vast majority of libraries and applications for Linux can easily be built natively because
of their tooling. Even building the Linux kernel from scratch is almost a breeze with
the kernel’s own build system. However, when it comes to putting it all together into a
bootable system, the choices are scarce.

The Yocto Project closes that gap by providing a comprehensive set of integrated
tools with the OpenEmbedded build system at its center. From source code to bootable
system in a matter of a few hours—I wish I had that luxury when I started out with
embedded Linux!

What This Book Is and What It Is Not
A build system that integrates many different steps necessary to create a fully functional
Linux OS stack from scratch is rather complex. This book is dedicated to the build sys-
tem itself and how you can effectively use it to build your own custom Linux distribu-
tions. This book is not a tutorial on embedded Linux. Although Chapter 6 explains the
basics of the Linux system architecture (as this foundation is necessary to understanding

xviii Preface

how the build system assembles the many different components into an operational
system), I do not go into the details of embedded Linux as such. If you are a beginning
embedded Linux developer, I strongly recommend Christopher Hallinan’s excellent
Embedded Linux Primer, published in this same book series.

In this book, you will learn how the OpenEmbedded build system works, how you
can write recipes to build your own software components, how to use and create Yocto
Project board support packages to support different hardware platforms, and how to
debug build failures. You will learn how to build software development kits for applica-
tion development and integrate them with the popular Eclipse integrated development
environment (IDE) for seamless round-trip development.

Who Should Read This Book
This book is intended for software developers and programmers who have a working
knowledge of Linux. I assume that you know your way around the Linux command
line, that you can build programs on a Linux system using the typical tools, such as
Make and a C/C++ compiler, and that you can read and understand basic shell scripts.

The build system is written entirely in Python. While you do not need to be a
Python expert to use it and to understand how it works, having some core knowledge
about Python is certainly advantageous.

How This Book Is Organized
Chapter 1, “Linux for Embedded Systems,” provides a brief look at the adoption of
Linux for embedded systems. An overview of the embedded Linux landscape and the
challenges of creating custom embedded Linux distributions set the stage.

Chapter 2, “The Yocto Project,” introduces the Yocto Project by jumpstarting an
initial build of a Linux OS stack using the build system. It also gives an overview of the
Yocto Project family of projects and its history.

Chapter 3, “OpenEmbedded Build System,” explains the fundamentals of the build
system, its workf low, and its architecture.

Chapter 4, “BitBake Build Engine,” gives insight into BitBake, the build engine at
the core of the OpenEmbedded build system. It explains the metadata concept of reci-
pes, classes, and configuration files and their syntax. A Hello World project in BitBake
style illustrates the build workf low. Through the information provided, you gain the
necessary knowledge for understanding provided recipes and for writing your own.

Chapter 5, “Troubleshooting,” introduces tools and mechanisms available to
troubleshoot build problems and provides practical advice on how to use the tools
effectively.

Chapter 6, “Linux System Architecture,” provides the basics of a Linux operating
system stack and explains how the different components are layered. It discusses the
concepts of kernel space and user space and how application programs interact with the
Linux kernel through system calls provided by the standard C library.

xixPreface

Chapter 7, “Building a Custom Linux Distribution,” details how to use the Yocto
Project to create your own customized Linux distribution. It starts with an overview of
the Linux distribution blueprints available with the build system and how to customize
them. It then demonstrates how to create a Linux distribution entirely from scratch
using the build system tools. After completing this chapter, you will know how to build
your own operating system images.

Chapter 8, “Software Package Recipes,” explains BitBake recipes and how to write
them to build your own software packages with the build system. The chapter provides
various real-world recipe examples that you can try.

Chapter 9, “Kernel Recipes,” examines the details of building the Linux kernel with
the OpenEmbedded build system. It explains how the build system tooling interacts
with the kernel’s own build environment to set kernel configuration and apply patches.
A discussion of how the build system handles out-of-tree kernel modules and incorpo-
rates building device trees with the build process closes this chapter.

Chapter 10, “Board Support Packages,” introduces how the build system supports
building for different hardware—that is, CPU architectures and systems. After an
explanation of the Yocto Project board support package concepts, the chapter details
how you can build a project using a board support package. We then look into the
internals of Yocto Project board support packages and explain how to create your own
with a practical example that you can put to use with actual hardware. The chapter
concludes with creating bootable media images for different hardware configurations.

Chapter 11, “Application Development,” describes Yocto Project support for
developing applications for Linux OS stacks created with the build system. It provides
hands-on instructions on how to build application development toolkits (ADT) that
include all the necessary tools for round-trip application development. Examples illus-
trate how to use an ADT for application development using the command-line tools as
well as with the Eclipse IDE. Step-by-step instructions teach how to remotely run and
debug applications on an actual hardware target.

Chapter 12, “Licensing and Compliance,” discusses requirements for compliance
with open source licenses and the tools the Yocto Project provides to facilitate meeting
them.

Chapter 13, “Advanced Topics,” introduces several tools that help you scale the
Yocto Project to teams. Toaster is a web-based graphical user interface that can be used
to create build systems that can be controlled remotely from a web browser. Build
history is a tool that provides tracking and audit capabilities. With source mirrors, you can
share source packages to avoid repeated downloads and to control source versions for
product delivery. Last but not least, Autobuilder provides an out-of-the-box continuous
build and integration framework for automating builds, quality assurance, and release
processes. Equipped with the knowledge from this chapter, you can effectively set up
team environments for the Yocto Project.

The appendices cover popular open source licenses and alphabetical references of
build system metadata layers and machines.

xx Preface

Hands-on Experience
The book is written to provide you with hands-on experience using the Yocto Project.
You will benefit the most if you follow along and try out the examples. The majority
of them you can work through simply with an x86-based workstation running a recent
Linux distribution (detailed requirements are provided in Chapter 2). For an even bet-
ter experience, grab one of the popular development boards, such as the BeagleBone,
the MinnowBoard Max, or the Wandboard. The BeagleBone makes an excellent low-
cost experimental platform. The other two boards offer more performance and let you
gain experience with multicore systems.

Analyze the code and try to understand the examples produced in the book. Follow the
steps and then veer off on your own by changing settings, applying your own configu-
ration, and more. It is the best way to learn, and I can tell you, it is a lot of fun too. It is
a great feeling to get your first own Linux distribution to work on a piece of hardware
of your choice.

Register your copy of Embedded Linux Systems with the Yocto ProjectTM at informit.com
for convenient access to downloads, updates, and corrections as they become
available. To start the registration process, go to informit.com/register and log in
or create an account. Enter the product ISBN (9780133443240) and click Submit.
Once the process is complete, you will find any available bonus content under
“Registered Products.”

Acknowledgments

What you are holding in your hands is my first attempt at writing a technical book. Well,
any book, for that matter. I humbly have to admit that I greatly underestimated the effort
that goes into a project like this, the hours spent experimenting with things, finding the
best way to make them work, and documenting everything in a concise and understandable
fashion. During the process, I have come to truly appreciate the work of the many authors
and technical writers whose books and manuals I have read and continue reading.

Foremost, I want to express my gratitude to my family, my loving wife, Janan, and
my three wonderful boys, Dominic, Daniel, and Jonas. Without their support and their
understanding, it would not have been possible for me to spend the many hours writing
this text.

Special thanks go to the Yocto Project team. When I approached Dave Stewart,
Project Manager for the Yocto Project at the time, and Jeffrey Osier-Mixon, the Yocto
Project’s Community Manager, they immediately welcomed the idea for the book and
offered their support. Several individuals from the team were especially helpful with
advice and answers to my questions: Beth Flanagan for Autobuilder, Belen Barros Pena
and Ed Bartosh for Toaster, and Paul Eggleton and Khem Raj who jumped on many of
the questions I posted to the Yocto Project mailing list.

Special thanks to Christopher Hallinan whose Embedded Linux Primer: A Practical Real-
World Approach (Prentice Hall, 2006) inspired me to write this book on the Yocto Project.

I especially want to thank Debra Williams Cauley, Executive Acquisitions Editor,
for her guidance and particularly her patience while this book was in the works. It took
much longer than expected, and I am the only one to blame for the missed deadlines.

I cannot thank and praise enough my dedicated review team, Chris Zahn, Jeffrey
Osier-Mixon, Robert Berger, and Bryan Smith, for their valuable contributions to the
quality of the book in the form of corrections and suggestions for improvements.

I also want to thank the production team at Prentice Hall, Julie Nahil and Anna Popick,
for their coordination and guidance through the process, and in particular Carol Lallier
for her diligence in copyediting the manuscript.

Thanks also to the Linux Foundation and Jerry Cooperstein, who gave me the
opportunity to develop the Linux Foundation’s training course on the Yocto Project.
Nothing teaches as well as teaching somebody else. Thank you to the students of the
classes that I taught. Through your critical questions and feedback, I gained a lot of
understanding for the many different problems you are facing when developing prod-
ucts with embedded Linux. One of your most asked questions was, “Is there a book on
the Yocto Project?” Finally, I can say, “Yes.”

This page intentionally left blank

About the Author

Rudolf Streif has more than twenty years of experience in software engineering as a
developer as well as a manager leading cross-functional engineering teams with more
than one hundred members. Currently, he is an independent consultant for software
technology and system architecture specializing in open source.

He previously served as the Linux Foundation’s Director of Embedded Solutions,
coordinating the Foundation’s efforts for Linux in embedded systems. Rudolf devel-
oped the Linux Foundation’s training course on the Yocto Project, which he delivered
multiple times to companies and in a crash-course variant during Linux Foundation
events.

Rudolf has been working with Linux and open source since the early 1990s and
developing commercial products since 2000. The projects he has been involved with
include high-speed industrial image processing systems, IPTV head-end system and
customer premises equipment, and connected car and in-vehicle infotainment.

In 2014, Rudolf was listed by PC World among the 50 most interesting people in the
world of technology (http://tinyurl.com/z3tbtns).

Rudolf lives with his wife and three children in San Diego, California.

http://tinyurl.com/z3tbtns

This page intentionally left blank

7
Building a Custom Linux

Distribution

In This Chapter

7.1 Core Images—Linux Distribution Blueprints
7.2 Building Images from Scratch
7.3 Image Options
7.4 Distribution Configuration
7.5 External Layers
7.6 Hob
7.7 Summary

In the preceding chapters, we laid the foundation for using the Yocto Project tools to
build custom Linux distributions. Now it is time that we put that knowledge to work.

Chapter 2, “The Yocto Project,” outlined the prerequisites for the build system and
how to set up your build host, configure a build environment, and launch a build that
creates a system ready to run in the QEMU emulator. In this chapter, we reuse that
build environment. If you have not yet prepared your build system, we recommend that
you go back to Chapter 2 and follow the steps. Performing a build using Poky’s default
settings validates your setup. It also downloads the majority of the source code packages
and establishes a shared state cache, both of which speed up build time for the examples
presented in this chapter.

In Chapter 3, “OpenEmbedded Build System,” and Chapter 4, “BitBake Build
Engine,” we explained the OpenEmbedded build system and the BitBake syntax. This
and following chapters show examples or snippets of BitBake recipes utilizing that syntax.
While the syntax is mostly straightforward and resembles typical scripting languages,
there are some constructs that are particular to BitBake. Referring to Chapter 4, you
find syntax examples and explanations.

When experimenting with the Yocto Project, you eventually encounter build fail-
ures. They can occur for various reasons, and troubleshooting can be challenging. You
may want to refer to Chapter 5, “Troubleshooting,” for the debugging tools to help you
track down build failures.

Chapter 6, “Linux System Architecture,” outlined the building blocks of a Linux
distribution. While bootloader and the Linux kernel are indispensable for a working

146 Chapter 7 Building a Custom Linux Distribution

Linux OS stack, user space makes up its majority. In this chapter, we focus on custom-
izing Linux OS stacks with user space libraries and applications from recipes provided
by the Yocto Project and other compatible layers from the OpenEmbedded project.

 7.1 Core Images—Linux Distribution Blueprints
The OpenEmbedded Core (OE Core) and other Yocto Project layers include several
example images. These images offer root filesystem configurations for typical Linux OS
stacks. They range from very basic images that just boot a device to a command-line
prompt to images that include the X Window System (X11) server and a graphical user
interface. These reference images are called the core images because the names of their
respective recipes begin with core-image. You can easily locate the recipes for the core
images with the find command from within the installation directory of your build
system (see Listing 7-1).

Listing 7-1 Core Image Recipes

user@buildhost:~/yocto/poky$ find ./meta*/recipes*/images -name "*.bb" \
 -print
./meta/recipes-core/images/core-image-minimal-initramfs.bb
./meta/recipes-core/images/core-image-minimal-mtdutils.bb
./meta/recipes-core/images/build-appliance-image_8.0.bb
./meta/recipes-core/images/core-image-minimal-dev.bb
./meta/recipes-core/images/core-image-minimal.bb
./meta/recipes-core/images/core-image-base.bb
./meta/recipes-extended/images/core-image-full-cmdline.bb
./meta/recipes-extended/images/core-image-testmaster-initramfs.bb
./meta/recipes-extended/images/core-image-lsb-sdk.bb
./meta/recipes-extended/images/core-image-lsb-dev.bb
./meta/recipes-extended/images/core-image-lsb.bb
./meta/recipes-extended/images/core-image-testmaster.bb
./meta/recipes-graphics/images/core-image-x11.bb
./meta/recipes-graphics/images/core-image-directfb.bb
./meta/recipes-graphics/images/core-image-weston.bb
./meta/recipes-graphics/images/core-image-clutter.bb
./meta/recipes-qt/images/qt4e-demo-image.bb
./meta/recipes-rt/images/core-image-rt-sdk.bb
./meta/recipes-rt/images/core-image-rt.bb
./meta/recipes-sato/images/core-image-sato-dev.bb
./meta/recipes-sato/images/core-image-sato-sdk.bb
./meta/recipes-sato/images/core-image-sato.bb
./meta-skeleton/recipes-multilib/images/core-image-multilib-example.bb

You can look at the core images as Linux distribution blueprints from which you
can derive your own distribution by extending them. All core image recipes inherit
the core-image class, which itself inherits from image class. All images set the IMAGE_
INSTALL variable to specify what packages are to be installed into the root filesystem.
IMAGE_INSTALL is a list of packages and package groups. Package groups are collections

1477.1 Core Images—Linux Distribution Blueprints

of packages. Defining package groups alleviates the need to potentially list hundreds of
single packages in the IMAGE_INSTALL variable. We explain package groups in a coming
section of this chapter. Image recipes either explicitly set Image_INSTALL or extend its
default value provided by the core-image class, which installs the two package groups
packagegroup-core-boot and packagegroup-base-extended. The default creates a
working root filesystem that boots to the console.

Let’s have a closer look at the various core images:

 n core-image-minimal: This is the most basic image allowing a device to boot to a
Linux command-line login. Login and command-line interpreter are provided by
BusyBox.

 n core-image-minimal-initramfs: This image is essentially the same as core-image-
minimal but with a Linux kernel that includes a RAM-based initial root filesystem
(initramfs).

 n core-image-minimal-mtdutils: Based on core-image-minimal, this image also
includes user space tools to interact with the memory technology device (MTD)
subsystem in the Linux kernel to perform operations on f lash memory devices.

 n core-image-minimal-dev: Based on core-image-minimal, this image also includes
all the development packages (header files, etc.) for all the packages installed in the
root filesystem. If deployed on the target together with a native target toolchain, it
allows software development on the target. Together with a cross-toolchain, it can
be used for software development on the development host.

 n core-image-rt: Based on core-image-minimal, this image target builds the
Yocto Project real-time kernel and includes a test suite and tools for real-time
applications.

 n core-image-rt-sdk: In addition to core-image-rt, this image includes the system
development kit (SDK) consisting of the development packages for all packages
installed; development tools such as compilers, assemblers, and linkers; as well as
performance test tools and Linux kernel development packages. This image allows
for software development on the target.

 n core-image-base: Essentially a core-image-minimal, this image also includes middle-
ware and application packages to support a variety of hardware such as WiFi,
Bluetooth, sound, and serial ports. The target device must include the necessary
hardware components, and the Linux kernel must provide the device drivers for
them.

 n core-image-full-cmdline: This minimal image adds typical Linux command-line
tools—bash, acl, attr, grep, sed, tar, and many more—to the root filesystem.

 n core-image-lsb: This image contains packages required for conformance with the
Linux Standard Base (LSB) specification.

 n core-image-lsb-dev: This image is the same as the core-image-lsb but also
includes the development packages for all packages installed in the root filesystem.

148 Chapter 7 Building a Custom Linux Distribution

 n core-image-lsb-sdk: In addition to core-image-lsb-dev, this image includes
development tools such as compilers, assemblers, and linkers as well as perfor-
mance test tools and Linux kernel development packages.

 n core-image-x11: This basic graphical image includes the X11 server and an X11
terminal application.

 n core-image-sato: This image provides X11 support that includes the OpenedHand
Sato user experience for mobile devices. Besides the Sato screen manager, the
image also provides several applications using the Sato theme, such as a terminal,
editor, file manager, and several games.

 n core-image-sato-dev: This image is the same as core-image-sato but also includes
the development packages for all packages installed in the root filesystem.

 n core-image-sato-sdk: In addition to core-image-sato-dev, this image includes
development tools such as compilers, assemblers, and linkers as well as performance
test tools and Linux kernel development packages.

 n core-image-directfb: An image that uses DirectFB for graphics and input device
management, DirectFB may include graphics acceleration and a windowing
system. Because of its much smaller footprint compared to X11, DirectFB is the
preferred choice for lower-end embedded systems that need graphics support but
not the entire functionality of X11.

 n core-image-clutter: This is an X11-based image that also includes the Clutter
toolkit. Clutter is based on OpenGL and provides functionality for animated
graphical user interfaces.

 n core-image-weston: This image uses Weston instead of X11. Weston is a compos-
itor that uses the Wayland protocol and implementation to exchange data with its
clients. This image also includes a Wayland-capable terminal program.

 n qt4e-demo-image: This image launches a demo application for the embedded Qt
toolkit after completing the boot process. Qt for embedded Linux provides a
development framework of graphical applications that directly write to the frame-
buffer instead of using the X11.

 n core-image-multilib-example: This image is an example of the support of multi-
ple libraries, typically 32-bit support on an otherwise 64-bit system. The image is
based on a core image and adds the desired multilib packages to IMAGE_INSTALL.

The following three images are not reference images for embedded Linux systems.
We include them in this discussion for completeness purposes.

 n core-image-testmaster, core-image-testmaster-initramfs: These images are
references for testing other images on actual hardware devices or in QEMU. They
are deployed to a separate partition to boot into and then use scripts to deploy the
image under test. This approach is useful for automated testing.

1497.1 Core Images—Linux Distribution Blueprints

 n build-appliance-image: This recipe creates the Yocto Project Build Appliance
virtual machine images that include everything needed for the Yocto Project
build system. The images can be launched using VMware Player or VMware
Workstation.

Studying the reference image recipes is a good way to learn how these images are
built and what packages comprise them. The core images are also a good starting point
for your own Linux OS stack. You can easily extend them by adding packages and
package groups to IMAGE_INSTALL. Images can only be extended, not shrunk. To build
an image with less functionality, you have to start from a smaller core image and add
only the packages you need. There is no simple way to remove packages. The majority
of them are added through package groups, and you would need to split up the package
group if you do not want to install a package included with it. Of course, if you are
removing a package, you also have to remove any other packages that depend on it.

There are several ways you can add packages and package groups to be included with
your root filesystem. The following sections explain them and also provide information
on why you would want to use one method over another.

7.1.1 Extending a Core Image through Local Configuration
The simplest method for adding packages and package groups to images is to add
IMAGE_INSTALL to the conf/local.conf file of your build environment:

IMAGE_INSTALL_append = " <package> <package group>"

As we have seen, image recipes set the IMAGE_INSTALL variable adding packages and
package groups. To extend an image, you have to append your packages and packages
group to the variable. You may wonder why we use the explicit _append operator
instead of the += or .+ operators. Using the _append operator unconditionally appends
the specified value to the IMAGE_INSTALL variable after all recipes and configuration
files have been processed. Image recipes commonly explicitly set the IMAGE_INSTALL
variable using the = or ?= operators, which may happen after BitBake processed the
settings in conf/local.conf.

For example, adding

IMAGE_INSTALL_append = " strace sudo sqlite3"

installs the strace and sudo tools as well as SQLite in the root filesystem. When using
the _append operator, you always have to remember to add a space in front of the first
package or package group, as this operator does not automatically include a space.

Using IMAGE_INSTALL in the conf/local.conf of your build environment uncondi-
tionally affects all images you are going to build with this build environment. If you
are looking to install additional packages only to a certain image, you can use condi-
tional appending:

IMAGE_INSTALL_append_pn-<image> = " <package> <package group>"

150 Chapter 7 Building a Custom Linux Distribution

This installs the specified packages and package groups only into the root filesystem of
image. For example,

IMAGE_INSTALL_append_pn-core-image-minimal = " strace"

installs the strace tool only into the root filesystem of core-image-minimal. All other
images are unaffected.

Using IMAGE_INSTALL also affects core images, that is, images that inherit from the
core-image class, as well as images that inherit directly from the image class. For conve-
nience purposes, the core-image class defines the variable CORE_IMAGE_EXTRA_INSTALL.
All packages and package groups added to this variable are appended to IMAGE_INSTALL
by the class. Using

CORE_IMAGE_EXTRA_INSTALL = "strace sudo sqlite3"

adds these packages to all images that inherit from core-image. Images that inherit
directly from image are not affected. Using CORE_IMAGE_EXTRA_INSTALL is a safer and
easier method for core images than appending directly to IMAGE_INSTALL.

7.1.2 Testing Your Image with QEMU
You can easily test your image with the QEMU emulator. Even though you eventually
build a system for the target hardware of your product, using QEMU for testing makes
good sense for the following reasons:

 n The round-trip time for launching QEMU is much quicker than deploying an
image to actual hardware.

 n Frequently, hardware is not yet available when software development begins.
 n Yocto Project board support packages (BSP) make it simple to switch from

QEMU to hardware and back.

In Chapter 2, when performing our first build, we used QEMU to verify the build
output. The Poky reference distribution provides the script runqemu that greatly simpli-
fies the task of launching QEMU by providing the necessary parameters. In its simplest
form, you launch the script with a single parameter

$ runqemu qemux86

which tells the script to locate the latest kernel and root filesystem image builds for the
provided QEMU machine and otherwise launch QEMU with default parameters. The
parameter values match the QEMU machine types in conf/local.conf.

When working with different root filesystem images, you probably want to select the
particular image when running QEMU. For example, you have built core-image-minimal
and core-image-base using the preceding command line, since runqemu launches what-
ever image you last built. Using the command as follows lets you choose the image:

$ runqemu qemux86 core-image-minimal

1517.1 Core Images—Linux Distribution Blueprints

The script automatically selects the correct kernel and uses the latest core-image-
minimal root filesystem. For even more control, you can directly specify the kernel
image and root filesystem image file:

$ runqemu <path>/bzImage-qemux86.bin <path>/core-image-minimal-qemux86.ext3

QEMU and the runqemu script are handy tools for rapid round-trip application
development, which we explore in Chapter 11, “Application Development.”

7.1.3 Verifying and Comparing Images Using the Build History
When building a product, you find yourself frequently modifying your images, adding
new packages, and removing extraneous packages to trim the footprint. A tool that
enables you to easily verify and compare image builds with each other can simplify that
otherwise tedious task.

To help maintain build output quality and enable comparison between different
builds, BitBake provides build history, which is implemented by the buildhistory
class. This class records information about the contents of all packages built and about
the images created by the build system in a Git repository where you can examine
them. Build history is disabled by default. To enable it, you need to add

INHERIT += "buildhistory"
BUILDHISTORY_COMMIT = "1"

to the conf/local.conf file of your build environment. Please note that INHERIT
(uppercase) is a variable to which you have to add the buildhistory class. It is different
from the inherit (lowercase) directive used by recipes and classes to inherit functional-
ity from classes. Every time you do a build, buildhistory creates a commit to the
Git repository with the changes.

The buildhistory Git repository is stored in a directory as defined by the BUILDHISTORY_
DIR variable. The default value of this variable is set to

BUILDHISTORY_DIR ?= "${TOPDIR}/buildhistory"

After enabling buildhistory and running a build, you see a buildhistory directory
added to the top-level directory of your build environment. The directory contains
the two subdirectories images and packages. The former contains build information
about the images you build, the latter information on the packages. We analyze the
buildhistory Git repository in Chapter 13, “Advanced Topics.” Here we just look at
the images subdirectory. Inside the images subdirectory, the images are sorted into
further subdirectories by target machine, target C library, and image name:

${TOPDIR}/buildhistory/images/<machine>/<clib>/<image>

For the build of our core-image-minimal for qemux86 using the default EGLIBC
target library, you find the image history in

${TOPDIR}/buildhistory/images/qemux86/eglibc/core-image-mininal

152 Chapter 7 Building a Custom Linux Distribution

The files in that directory give you detailed information on what makes up your
image:

 n image-info.txt: Overview information about the image in form of the most
important variables, such as DISTRO, DISTRO_VERSION, and IMAGE_INSTALL

 n installed-packages.txt: A list of the package files installed in the image, includ-
ing version and target information

 n installed-package-names.txt: Similar to the previous file but contains only the
names of the packages without version and target information

 n files-in-image.txt: A list of the root filesystem with directory names, file sizes,
file permissions, and file owner

Simply searching the file installed-package-names.txt gives you information on
whether or not a package has been installed.

7.1.4 Extending a Core Image with a Recipe
Adding packages and package groups to CORE_IMAGE_EXTRA_INSTALL and IMAGE_INSTALL
and in conf/local.conf may be straightforward and quick, but doing so makes a project
hard to maintain and complicates reuse. A better way is to extend a predefined image
through a recipe. Listing 7-2 shows a simple recipe that extends core-image-base.

Listing 7-2 Recipe Extending core-image-base

DESCRIPTION = "A console image with hardware support for our IoT device"

require recipes-core/images/core-image-base.bb

IMAGE_INSTALL += "sqlite3 mtd-utils coreutils"
IMAGE_FEATURES = "dev-pkgs"

The example includes the recipe for core-image-base and adds packages to IMAGE_
INSTALL and an image feature to IMAGE_FEATURES. We explain what image features are
and how to utilize them to customize image in the next section.

A couple of things to consider when extending images with recipes:

 n Unlike classes, you need to provide the path relative to the layer for BitBake to
find the recipe file to include, and you need to add the .bb file extension.

 n While you can use either include or require to include the recipe you are
extending, we recommend the use of require, since it causes BitBake to exit with
an explicit error message if it cannot locate the included recipe file.

 n Remember to use the += operator to add to IMAGE_INSTALL. Do not use = or :=
because they overwrite the content of the variable defined by the included recipe.

1537.1 Core Images—Linux Distribution Blueprints

For BitBake to actually be able to use this recipe as a build target, you have to add it
to a layer that is included into your build environment via the conf/bblayers.conf file.
It is not recommended that you add your recipes to the core Yocto Project layers, such
as meta, meta-yocto, and others, because it makes it hard to maintain your build envi-
ronment if you upgrade to a newer version of the Yocto Project. Instead, you should
create a layer in which to put your recipes.

Creating a layer for one recipe may seem like a lot of overhead, but hardly any proj-
ect ever stays small. What may start with one recipe eventually grows into a sophisti-
cated project with recipes for images, packages, and package groups. In Chapter 3, we
introduced the yocto-layer, which makes creating layers a breeze.

7.1.5 Image Features
Image features provide certain functionality that you can add to your target images.
This can be additional packages to be installed, modification of configuration files, and
more.

For example, the dev-pkgs image feature adds the development packages, which
typically include headers and other files required for development, for all packages
installed in the root filesystem. Using this image feature is a convenient way to enable
a target image for development without having to explicitly specify the development
packages in the IMAGE_INSTALL variable. For deployment, you can then simply remove
the dev-pkgs image feature.

Installation of image features is controlled by the two variables IMAGE_FEATURES and
EXTRA_IMAGE_FEATURES. The former is used in image recipes to define the required set of
image features. The latter is typically used in the conf/local.conf file to define additional
image features that, of course, then affect all images built with that build environment.
The content of EXTRA_IMAGE_FEATURES is simply added to IMAGE_FEATURES by the meta/
conf/bitbake.conf configuration file.

Image features are defined by different classes. The list of currently available image
features contains the following:

 n Defined by image.bbclass:
 n debug-tweaks: Prepares an image for development purposes. In particular, it sets

empty root passwords for console and Secure Shell (SSH) login.
 n package-management: Installs the package management system according to the

package management class defined by PACKAGE_CLASSES for the root filesystem.
 n read-only-rootfs: Creates a read-only root filesystem. This image feature

works only if System V Init (SysVinit) system is used rather than sytemd.
 n splash: Enables showing a splash screen instead of the boot messages during

boot. By default, the splash screen is provided by the psplash package, which
can be customized. You can also define an alternative splash screen package by
setting the SPLASH variable to a different package name.

154 Chapter 7 Building a Custom Linux Distribution

 n Defined by populate_sdk_base.bbclass:
 n dbg-pkgs: Installs the debug packages containing symbols for all packages

installed in the root filesystem.
 n dev-pgks: Installs the development packages containing headers and other

development files for all packages installed in the root filesystem.
 n doc-pkgs: Installs the documentation packages for all packages installed in the

root filesystem.
 n staticdev-pkgs: Installs the static development packages such as static library

files ending in *.a for all packages installed in the root filesystem.
 n ptest-pkgs: Installs the package test (ptest) packages for all packages installed in

the root filesystem.
 n Defined by core-image.bbclass:

 n eclipse-debug: Installs remote debugging tools for integration with the Eclipse
IDE, namely the GDB debugging server, the Eclipse Target Communication
Framework (TCF) agent, and the OpenSSH SFTP server.

 n hwcodecs: Installs the hardware decoders and encoders for audio, images, and
video if the hardware platform provides them.

 n nfs-server: Installs Network File System (NFS) server, utilities, and client.
 n qt4-pkgs: Installs the Qt4 framework and demo applications.
 n ssh-server-dropbear: Installs the lightweight SSH server Dropbear, which

is popular for embedded systems. This image feature is incompatible with
ssh-server-openssh. Either one of the two, but not both, can be used.

 n ssh-server-openssh: Installs the OpenSSH server. This image feature is incom-
patible with ssh-server-dropbear. Either one of the two, but not both, can be
used.

 n tools-debug: Installs debugging tools, namely the GDB debugger, the GDB
remote debugging server, the system call tracing tool strace, and the memory
tracing tool mtrace for the GLIBC library if it is the target library.

 n tools-profile: Installs common profiling tools such as oprofile, powertop,
latencytop, lttng-ust, and valgrind.

 n tools-sdk: Installs software development tools such as the GCC compiler,
Make, autoconf, automake, libtool, and many more.

 n tools-testapps: Installs test applications such as tests for X11 and middleware
packages like the telephony manager oFono and the connection manager
ConnMan.

 n x11: Installs the X11 server.
 n x11-base: Installs the X11 server with windowing system.
 n x11-sato: Installs the OpenedHand Sato user experience for mobile devices.

1557.1 Core Images—Linux Distribution Blueprints

It matters what classes define the image features when creating your own image
recipes and choosing the image class to inherit. The class image inherits populate_sdk_
base and thus all image features defined by those two classes are available to images
that inherit image. Image features defined by core-image are available only to images
that inherit that class, which in turn inherits image and with it also populate_sdk_base.

7.1.6 Package Groups
We have touched on package groups a couple of times during this discussion of creat-
ing custom Linux distribution images. Package groups are bundles of packages that are
referenced by a name. Using that name in the IMAGE_INSTALL variable installs all the
packages defined by the package group into the root filesystem of your target image.

The Yocto Project and OE Core layers define a common set of package groups that
you can readily use for your images. You can also create your own package groups
containing packages from any layer, including your own. We first describe the package
groups defined by the Yocto Project and OE Core layers and then look into the details
on how package groups are defined.

Predefined Package Groups

Package groups are defined by recipes. Conventionally, the recipe files begin with
packagegroup- and are placed inside packagegroup subdirectories of the respective
recipe categories. For instance, you can find package group recipes related to the Qt
development framework in the subdirectory meta/recipes-qt/packagegroups.

Using

find . -name "packagegroup-*" -print

from the installation directory of the Yocto Project build system gives you a list of all
the package group recipes for the predefined package groups of the Yocto Project build
system.

Following are the most common predefined package groups:

 n packagegroup-core-ssh-dropbear: Provides packages for the Dropbear SSH server
popular for embedded systems because of its smaller footprint compared to the
OpenSSH server. This package group conf licts with packagegroup-core-ssh-
openssh. You can include only one of the two in your image. The ssh- server-
dropbear image feature installs this package group.

 n packagegroup-core-ssh-openssh: Provides packages for the standard OpenSSH
server. This package group conf licts with packagegroup-core-ssh-dropbear. You
can include only one of the two in your image. The ssh-server-openssh image
feature installs this package group.

 n packagegroup-core-buildessential: Provides the essential development tools,
namely the GNU Autotools utilities autoconf, automake, and libtool; the GNU
binary tool set binutils which includes the linker ld, assembler as, and other tools;

156 Chapter 7 Building a Custom Linux Distribution

the compiler collection cpp; gcc; g++; the GNU internationalization and localiza-
tion tool gettext; make; libstc++ with development packages; and pkgconfig.

 n packagegroup-core-tools-debug: Provides the essential debugging tools, namely
the GDB debugger, the GDB remote debugging server, the system call tracing
tool strace, and, for the GLIBC target library, the memory tracing tool mtrace.

 n packagegroup-core-sdk: This package group combines the packagegroup-core-
buildessential package group with additional tools for development such as
GNU Core Utilities coreutils with shell, file, and text manipulation utilities;
dynamic linker ldd; and others. Together with packagegroup-core- standalone-
sdk-target, this package group forms the tools-sdk image feature.

 n packagegroup-core-standalone-sdk-target: Provides the GCC and standard
C++ libraries. Together with packagegroup-core-sdk, this package group forms
the tools-sdk image feature.

 n packagegroup-core-eclipse-debug: Provides the GDB debugging server,
the Eclipse TCF agent, and the OpenSSH SFTP server for integration with
the Eclipse IDE for remote deployment and debugging. The image feature
eclipse-debug installs this package group.

 n packagegroup-core-tools-testapps: Provides test applications such as tests for
X11 and middleware packages like the telephony manager oFono and the connec-
tion manager ConnMan. The tools-testapps image feature installs this package
group.

 n packagegroup-self-hosted: Provides all necessary packages for a self-hosted build
system. The build-appliance image target uses this package group.

 n packagegroup-core-boot: Provides the minimum set of packages necessary to
create a bootable image with console. All core-image targets install this package
group. The core-image-minimal installs just this package group and the postinstal-
lation scripts.

 n packagegroup-core-nfs: Provides NFS server, utilities, and client. The nfs-server
image feature installs this package group.

 n packagegroup-base: This recipe provides multiple package groups that depend
on each other as well as on machine and distribution configuration. The purpose
of these package groups is to add hardware, networking protocol, USB, filesystem,
and other support to the images dependent on the machine and distribution
configuration. The two top-level package groups are packagegroup-base and
 packagegroup-base-extended. The former adds hardware support for Blue-
tooth, WiFi, 3G, and NFC only if both the machine configuration and the
distribution configuration require them. The latter also adds configuration for
those technologies if the distribution configuration requires them. However, the
machine configuration does not support them directly but provides support for PCI,
PCMCIA, or USB host. This package group allows you to create an image with
support for devices that can physically be added to the target device; for exam-
ple, via USB hotplug. Most commonly, images providing hardware support use

1577.1 Core Images—Linux Distribution Blueprints

packagegroup-base-extended rather than packagegroup-base for dynamic hard-
ware support; for example, core-image-base.

 n packagegroup-cross-canadian: Provides SDK packages for creating a toolchain
using the Canadian Cross technique, which is building a toolchain on system A
that executes on system B to create binaries for system C. A use case for this pack-
age group is to build a toolchain with the Yocto Project on your build host that
runs on your image target but produces output for a third system with a different
architecture than your image target.

 n packagegroup-core-tools-profile: Provides common profiling tools such as oPro-
file, PowerTOP, LatencyTOP, LTTng-UST, and Valgrind. The tools-profile
image feature uses this package group.

 n packagegroup-core-device-devel: Provides distcc support for an image. Distcc
allows distribution of compilation across several machines on a network. The
distcc must be installed, configured, and running on your build host. On the target
you must define the cross-compiler variable to use distcc instead of the local com-
piler (e.g., export CC="distcc").

 n packagegroup-qt-toolchain-target: Provides the package to build applications for
the X11-based version of the Qt development toolkit on the target system.

 n packagegroup-qte-toolchain-target: Provides the package to build applications
for the embedded version of the Qt development toolkit on the target system.

 n packagegroup-core-qt: Provides all necessary packages for a target system using
the X11-based version of the Qt development toolkit.

 n packagegroup-core-qt4e: Provides all necessary packages for a target system using
the embedded Qt toolkit. The qt4e-demo-image installs this package group.

 n packagegroup-core-x11-xserver: Provides the X.Org X11 server only.
 n packagegroup-core-x11: Provides packagegroup-core-x11-xserver plus basic utili-

ties such as xhost, xauth, xset, xrandr, and initialization on startup. The x11 image
feature installs this package group.

 n packagegroup-core-x11-base: Provides packagegroup-core-x11 plus middleware
and application clients for a working X11 environment that includes the Matchbox
Window Manager, Matchbox Terminal, and a fonts package. The x11-base image
feature installs this package group.

 n packagegroup-core-x11-sato: Provides the OpenedHand Sato user experience
for mobile devices, which includes the Matchbox Window Manager, Matchbox
Desktop, and a variety of applications. The x11-sato image feature installs this
package group. To utilize this package group for your target image, you also have
to install packagegroup-core-x11-base.

 n packagegroup-core-clutter-core: Provides packages for the Clutter graphical
toolkit. To use the toolkit for your target image, you also have to install
packagegroup-core-x11-base.

158 Chapter 7 Building a Custom Linux Distribution

 n packagegroup-core-directfb: Provides packages for the DirectFB support with-
out X11. Among others, the package group includes the directfb package and
the directfb-example package, and it adds touchscreen support if provided by the
machine configuration.

 n packagegroup-core-lsb: Provides all packages required for LSB support.
 n packagegroup-core-full-cmdline: Provides packages for a more traditional Linux

system by installing the full command-line utilities rather than the more compact
BusyBox variant.

When explaining the different package groups, we used the terms provide and install
somewhat liberally, since the package group recipes actually do not provide or install
any packages. They only create dependencies that cause the build system to process the
respective package recipes, as we see in the next section.

Several of the package groups are used by image features, which raises the question
whether to use an image feature or to use the package group the image feature uses.

Package Group Recipes

Package groups are defined by recipes that inherit the packagegroup class. Package
group recipes are different from typical package recipes, as they do not build anything
or create any output. Package group recipes only create dependencies that trigger the
build system to process the recipes of the packages the package groups reference.

Listing 7-3 shows a typical package group recipe.

Listing 7-3 Package Group Recipe

SUMMARY = "Custom package group for our IoT devices"
DESCRIPTION = "This package group adds standard functionality required by \
 our IoT devices."

LICENSE = "MIT"

inherit packagegroup
PACKAGES = "\
 packagegroup-databases \
 packagegroup-python \
 packagegroup-servers"

RDEPENDS_packagegroup-databases = "\
 db \
 sqlite3"

RDEPENDS_packagegroup-python = "\
 python \
 python-sqlite3"

RDEPENDS_packagegroup-servers = "\
 openssh \
 openssh-sftp-server"

1597.1 Core Images—Linux Distribution Blueprints

RRECOMMENDS_packagegroup-python = "\
 ncurses \
 readline \
 zip"

Names of package group recipes, although not enforced or required by the build sys-
tem, should adhere to the convention packagegroup-<name>.bb. You also would want
to place them in the subdirectory packagegroup of the recipe category the package
groups are integrating. If package groups span recipes and possibly package groups from
multiple categories, it is good practice to place them into the recipes-core category.

The basic structure of package group recipes is rather simple. As should any recipe
(and we go into the details of writing recipes in Chapter 8, “Software Package Reci-
pes”), a package group recipe should provide a SUMMARY of what the recipe does. The
DESCRIPTION, which can provide a longer, more detailed explanation, is optional, but
it is good practice to add it. Any recipe also needs to provide a LICENSE for the recipe
itself. All package group recipes must inherit the packagegroup class.

The names of the actual package groups are defined by the PACKAGES variable.
This variable contains a space-delimited list of the package group names. In the
case of Listing 7-3, these are packagegroup-databases, packagegroup-python, and
packagegroup-servers. By convention, package group names begin with packagegroup-.
Although the build system does not require it, it is good practice if you adhere to it for
your own package group names.

For each package group, the recipe must define its dependencies in a conditional
RDEPENDS_<package-group-name> variable. These variables list the required dependen-
cies, which can be packages or package groups.

The RRECOMMENDS_<package-group-name> definitions are optional. As we saw
in Chapter 3, recommendations are weak dependencies that cause a package to be
included only if it already has been built.

You can reference package groups from other variables, such as IMAGE_INSTALL,
which of course causes these package groups to be installed in a target image. You can
also use them to create dependencies for other package groups for a hierarchy. You must
avoid circular dependencies of package groups. That may sound simple and straightfor-
ward but can easily happen by mistake in rather complex environments. BitBake, how-
ever, aborts with an error message in the case of a circular package group dependency.

Package group recipes can also be directly used as BitBake build targets. For exam-
ple, if the name of the package group recipe is packagegroup-core-iot.bb, you can
build all the packages of the package groups defined by the recipe using

$ bitbake packagegroup-core-iot

Doing so allows testing the package groups before referencing them by image builds,
which simplifies debugging.

160 Chapter 7 Building a Custom Linux Distribution

7 .2 Building Images from Scratch
Section 7.1 detailed the Yocto Project core images and how to extend them through
setting IMAGE_INSTALL, CORE_IMAGE_EXTRA_INSTALL, IMAGE_FEATURES, and EXTRA_
IMAGE_FEATURES in conf/local.conf and in recipes extending predefined image recipes.
Eventually, you may want to create your custom Linux distribution image from scratch
without relying on one of the reference images.

A custom image recipe must inherit either the image or the core-image class. The
latter is essentially an extension of the former and defines additional image features,
as described earlier in Section 7.1.5. Which one to choose for custom image recipes
depends on your requirements. However, inheriting core-image generally is sound
advice, since the image features are made available but only installed if explicitly
requested.

Listing 7-4 shows the simplest image recipe that creates a bootable console image.

Listing 7-4 Basic Image Recipe

SUMMARY = "Custom image recipe that does not get any simpler"
DESCRIPTION = "Well yes, you could remove SUMMARY, DESCRIPTION, LICENSE."

LICENSE = "MIT"

inherit core-image

The recipe creates an image with the core packages to boot and hardware sup-
port for the target device because the core-image class adds the two package groups
 packagegroup-core-boot and packagegroup-base-extended to IMAGE_INSTALL by
default. Also added to IMAGE_INSTALL by the class is the variable CORE_IMAGE_EXTRA_
INSTALL, which allows for simple image modification through conf/local.conf, as
described earlier.

The basic image with package-group-core-boot and package-base-extended pro-
vides a good starting point that easily can be extended by adding to IMAGE_INSTALL and
IMAGE_FEATURES, as shown in Listing 7-5.

Listing 7-5 Adding to the Basic Image

SUMMARY = "Custom image recipe adding packages and features"
DESCRIPTION = "Append to IMAGE_INSTALL and IMAGE_FEATURES for \
 further customization. "

LICENSE = "MIT"

We are using the append operator (+=) below to preserve the default
values set by the core-image class we are inheriting.
IMAGE_INSTALL += "mtd-utils"
IMAGE_FEATURES += "splash"

inherit core-image

1617.3 Image Options

Within image recipes, you append directly to IMAGE_INSTALL and IMAGE_FEATURES
using the += operator. Do not use EXTRA_IMAGE_FEATURES or CORE_IMAGE_EXTRA_INSTALL
in your image recipe. These variables are reserved for use in conf/local.conf where
they are directly assigned and overwrite any values assigned by the image recipe.

An image recipe that does not rely on the default values for IMAGE_INSTALL and
IMAGE_FEATURES is equally simple, as Listing 7-6 shows.

Listing 7-6 Core Image from Scratch

SUMMARY = "Custom image recipe from scratch"
DESCRIPTION = "Directly assign IMAGE_INSTALL and IMAGE_FEATURES for \
 for direct control over image contents."

LICENSE = "MIT"

We are using the assignment operator (=) below to purposely overwrite
the default from the core-image class.
IMAGE_INSTALL = "packagegroup-core-boot packagegroup-base-extended \
 ${CORE_IMAGE_EXTRA_INSTALL} mtd-utils"
IMAGE_FEATURES = "${EXTRA_IMAGE_FEATURES} splash"

inherit core-image

At first glance, the image recipes of Listings 7-5 and 7-6 look rather similar. In fact,
the two recipes produce exactly the same image. The differences are subtle but signifi-
cant. Listing 7-5 uses the append operator += for IMAGE_INSTALL and IMAGE_FEATURES to
take advantage of the default values provided by the core-image class. Listing 7-6 uses
the assignment operator = to purposely overwrite the default values.

Overwriting the default values gives you the most control over the content of your
image, but you also have to take care of the basics yourself. For any image, you would
most likely always want to include packagegroup-core-boot to get a bootable image.
Whether you want the hardware support that packagegroup-base-extended provides
depends on your requirements. Also at your disposal is CORE_IMAGE_EXTRA_INSTALL: if
you do not explicitly add it to IMAGE_FEATURES, you will not be able to use this variable
in conf/local.conf for local customization of your target image, but it may make sense
to do so for a controlled build environment for production.

The same holds true for IMAGE_FEATURES and EXTRA_IMAGE_FEATURES. If you use the
assignment operator with IMAGE_FEATURES and purposely do not add EXTRA_IMAGE_
FEATURES, it is not included, which means that the debug-tweaks image feature is not
applied, and you need to provide passwords for shell and SSH logins. Again, this makes
sense for production build environments where you do not want local configuration
settings to override the settings of your production images.

7 .3 Image Options
The following sections discuss a list of options that affect how the Yocto Project build
system creates your root filesystem images.

162 Chapter 7 Building a Custom Linux Distribution

7.3.1 Languages and Locales
Additional languages for different territories can easily be added to a root filesystem or
your image by adding the IMAGE_LINGUAS variable to an image recipe. Using

IMAGE_LINGUAS = "en-gb pt-br"

adds the specific language packages for British English and Brazilian Portuguese to the
image. However, not all software packages provide locales separated by language and
territory. Some of them provide the locale files only by language. In this case, the build
system defaults to installing the correct language local files regardless of the territory.

The minimum default for all packages is en-us and is always installed. In addition,
the image class defines

IMAGE_LINGUAS ?= "de-de fr-fr en-gb"

Any additional locale packages, of course, occupy additional space in your root
filesystem image. Therefore, if your device does not require any additional language
support, it is good practice to set

IMAGE_LINGUAS = ""

in image recipes.
The build system ignores the languages for packages that do not provide them.

7.3.2 Package Management
The build system can package software packages using the four different packaging for-
mats dpkg (Debian Package Management), opkg (Open Package Management), RPM
(Red Hat Package Manager), and tar. Only the first three can be used to create root
filesystems. Tar does not provide the necessary metadata package information and data-
base to log what packages in what versions have been installed, which packages conf lict
with each other, and so on.

The variable PACKAGE_CLASSES in conf/local.conf of your build environment con-
trols what package management systems are used for your builds:

PACKAGE_CLASSES = "package_rpm package_ipk package_tar"

You can declare more than one packaging class, but you have to provide at least one.
The build system creates packages for all classes specified; however, only the first pack-
aging class in the list is used to create the root filesystem of your distribution images.
The first packaging class in the list must not be tar.

The build system stores the package feeds organized by the package management
system in separate directories in tmp/deploy/<pms>, where <pms> is the name of the
respective package management system. Inside those directories, the packages are fur-
ther subdivided into common, architecture, and machine-dependent packages.

What package management system should you choose for your project? That
depends on the requirements of your project. Here are some considerations you may
want to take into account:

1637.3 Image Options

 n Opkg creates and utilizes less package metadata than dpkg and RPM. That makes
building faster, and the packages are smaller.

 n Dpkg and RPM offer better dependency handling and version management than
opkg because of the enhanced package metadata.

 n The RPM package manager is written in Python and requires Python to be
installed on the target to install packages during runtime of the system.

By default, the build system does not install the package manager on your target
system. If you are looking to install packages during runtime of your embedded system,
you have to add the package manager using its image feature:

IMAGE_FEATURES += "package_management"

The build system automatically installs the correct package manager depending on
the first entry of PACKAGE_CLASSES.

The package management system for your root filesystem is ultimately controlled
by the variable IMAGE_PKGTYPE. This variable is set automatically by the order of the
packaging classes defined by PACKAGE_CLASSES. The first packaging class in the list sets
the variable. We recommend that you do not set this variable directly.

7.3.3 Image Size
The final size of the root filesystem is dependent on multiple factors and is computed
by the build system using the function _get_rootfs_size() in the Python module
meta/lib/oe/image.py. The computation takes into account the actual space required
by the root filesystem and the following variable settings. It also ensures that the final
root filesystem image size is always sufficient to hold the entire image. Hence, even if
you set IMAGE_ROOTFS_SIZE to a specific value, the final image may be larger than that
value, but it is never smaller.

 n IMAGE_ROOTFS_SIZE: Defines the size in kilobytes of the created root filesystem
image. The build system uses this value as a request or recommendation. The final
root filesystem image size may be larger depending on the actual space required.
The default value is 65536.

 n IMAGE_ROOTFS_ALIGNMENT: Defines the alignment of the root filesystem image
in kilobytes. If the final size of the root filesystem image is not a multiple of this
value, it is rounded up to the nearest multiple of it. The default value is 1.

 n IMAGE_ROOTFS_EXTRA_SPACE: Adds extra free space to the root filesystem image.
The variable specifies the value in kilobytes. For example, to add an additional
4 GB of space, set the variable to IMAGE_ROOTFS_EXTRA_SPACE = "4194304". The
default value is 0.

 n IMAGE_OVERHEAD_FACTOR: This variable specifies a multiplicator for the root
filesystem image. The factor is applied after the actual space required by the root
filesystem has been determined. The default value is 1.3.

164 Chapter 7 Building a Custom Linux Distribution

After the build system has created the root filesystem in the staging area, a directory
specified by the variable IMAGE_ROOTFS, it calculates its actual size in kilobytes using
du -ks ${IMAGE_ROOTFS}. The function _get_rootfs_size() computes the final root
filesystem image size, as shown by Listing 7-7 in pseudocode.

Listing 7-7 Root Filesystem Image Size Computation in Pseudocode

_get_rootfs_size():

 ROOTFS_SIZE =`du -ks ${IMAGE_ROOTFS}`
 BASE_SIZE = ROOTFS_SIZE * IMAGE_OVERHEAD_FACTOR

 if (BASE_SIZE < IMAGE_ROOTFS_SIZE):
 IMG_SIZE = IMAGE_ROOTFS_SIZE + IMAGE_ROOTFS_EXTRA_SPACE
 else:
 IMG_SIZE = BASE_SIZE + IMAGE_ROOTFS_EXTRA_SPACE

 IMG_SIZE = IMG_SIZE + IMAGE_ROOTFS_ALIGNMENT – 1
 IMG_SIZE = IMG_SIZE % IMAGE_ROOTFS_ALIGNMENT

 return IMG_SIZE

Most commonly, your image recipes set IMAGE_ROOTFS_SIZE and IMAGE_ROOTFS_
EXTRA_SPACE to adjust the final root filesystem image size. If you are concerned with the
footprint of your root filesystem, then you may also want to reduce IMAGE_OVERHEAD_
FACTOR or set it to 1 to shrink your image.

7.3.4 Root Filesystem Types
Eventually, you use the root filesystem image to create a bootable medium for your tar-
get or to launch the QEMU emulator. For that purpose, the build system provides the
image_types class that can create a root filesystem for various filesystem types.

Your image recipes do not use the image_types class directly but rather set the vari-
able IMAGE_FSTYPES to one or more of the filesystem types provided by the class. Using

IMAGE_FSTYPES = "ext3 tar.bz2"

creates two root filesystem images, one using the ext3 filesystem and one that is a tar
archive compressed using the bzip2 algorithm.

The image_types class defines the variable IMAGE_TYPES, which contains a list of
all image types you can specify in IMAGE_FSTYPES. The list shows the filesystem types
ordered by core type. Commonly, some of the core types are also used in compressed for-
mats to preserve space. If a compression algorithm is used for the filesystem, the name of
the core type is appended with the compression type: <core name>.<compression type>.

 n tar, tar.gz, tar.bz2, tar.xz, tar.lz3: Create uncompressed and compressed root
filesystem images in the form of tar archives.

 n ext2, ext2.gz, ext2.bz2, ext2.lzma: Root filesystem images using the ext2 filesys-
tem without or with compression.

1657.3 Image Options

 n ext3, ext3.gz: Root filesystem images using the ext3 filesystem without or with
compression.

 n btrfs: Root filesystem image with B-tree filesystem.
 n jffs2, jffs2.sum: Uncompressed or compressed root filesystems based on the sec-

ond generation of the Journaling Flash File System (JFFS2). Since JFFS2 directly
supports NAND f lash devices, it is a popular choice for embedded systems. It also
provides journaling and wear-leveling.

 n cramfs: Root filesystem image using the compressed ROM filesystem (cramfs).
The Linux kernel can mount this filesystem without prior decompression. The
compression uses the zlib algorithm that compresses files one page at a time to
allow random access. This filesystem is read-only to simplify its design, as random
write access with compression is difficult to implement.

 n iso: Root filesystem image type using the ISO 9660 standard for bootable
CD-ROM. This filesystem type is not a standalone format. It uses ext3 as the
underlying filesystem type.

 n hddimg: Root filesystem image for bootable hard drives. It uses ext3 as the actual
filesystem type.

 n squashfs, squashfs-xz: Compressed read-only root filesystem type specifically for
Linux, similar to cramfs but with better compression and support for larger files
and filesystems. SquashFS also has a variable block size from 0.5 kB to 64 kB over
the fixed 4 kB block size of cramfs, which allows for larger file and filesystem sizes.
SquashFS uses gzip compression, while squashfs-xz uses Lempel–Ziv– Markov
(LZMA) compression for even smaller images.

 n ubi, ubifs: Root filesystem images using the unsorted block image (UBI) format
for raw f lash devices. UBI File System (UBIFS) is essentially a successor to JFFS2.
The main differences between the two is that UBIFS supports write caching.
Using ubifs in IMAGE_FSTYPES just creates the ubifs root filesystem image. Using
ubi creates the ubifs root filesystem image and also runs the ubinize utility to
create an image that can be written directly to a f lash device.

 n cpio, cpio.gz, cpio.xz, cpio.lzma: Root filesystem images using uncompressed or
compressed copy in and out (CPIO) streams.

 n vmdk: Root filesystem image using the VMware virtual machine disk format. It
uses ext3 as the underlying filesystem format.

 n elf: Bootable root filesystem image created with the mkelf Image utility from the
Coreboot project (www.coreboot.org).

Once again, which image types to use depends entirely on the requirements of
your project, particularly on your target hardware. Boot device, bootloader, memory
constraints, and other factors determine what root filesystem types are appropriate for
your project. Our recommendation is to specify the root filesystem types ext3 and
tar, or better, one of the compressed formats such as tar.bz2, in the image recipe. The

http://www.coreboot.org

166 Chapter 7 Building a Custom Linux Distribution

ext3 format allows you to easily boot your root filesystem with the QEMU emulator
for testing. The tar filesystem can easily be extracted onto partitioned and formatted
media. The machine configuration files for your target hardware can then add addi-
tional root filesystem types appropriate for it.

7.3.5 Users, Groups, and Passwords
The class extrausers provides a comfortable mechanism for adding users and groups to
an image as well as setting passwords for user accounts (see Listing 7-8).

Listing 7-8 Modifying Users, Groups, and Passwords

SUMMARY = "Custom image recipe from scratch"
DESCRIPTION = "Directly assign IMAGE_INSTALL and IMAGE_FEATURES for \
 for direct control over image contents."

LICENSE = "MIT"

We are using the assignment operator (=) below to purposely overwrite
the default from the core-image class.
IMAGE_INSTALL = "packagegroup-core-boot packagegroup-base-extended \
 ${CORE_IMAGE_EXTRA_INSTALL}"

inherit core-image
inherit extrausers

set image root password
ROOT_PASSWORD = "secret"
DEV_PASSWORD = "hackme"

EXTRA_USERS_PARAMS = "\
 groupadd developers; \
 useradd -p `openssl passwd ${DEV_PASSWORD}` developer; \
 useradd -g developers developer; \
 usermod -p `openssl passwd ${ROOT_PASSWORD}` root; \
 "

The listing adds a group named developers and a user account named developer
and adds the user account to the group. It also changes the password for the root
account. Commands for adding and modifying groups, users, and passwords are added
to the variable EXTRA_USERS_PARMS, which is interpreted by the class. The commands
understood by the class are

 n useradd: Add user account
 n usermod: Modify user account
 n userdel: Remove user account
 n groupadd: Add user group

1677.3 Image Options

 n groupmod: Modify user group
 n groupdel: Remove user group

The class executes the respective Linux utilities with the corresponding names.
Hence, the options are exactly the same and can easily be found in the Linux man
pages. Note that the individual commands must be separated with a semicolon.

Using the option -p with the commands useradd and usermod sets the password of
the user account. The password must be provided as the password hash. You can either
calculate the password hash manually and add it to the recipe or, as shown in the exam-
ple, have the recipe calculate it.

A word about the root user account: the build system sets up the root user for an
image with an empty password if debug-tweaks is included with IMAGE_FEATURES.
Removing debug-tweaks replaces the empty root password with *, which disables the
account, so logging in as root from the console is no longer possible. For production
use, we strongly recommend removing debug-tweaks from the build. If your embedded
system requires console login capability, you can either set the root password as shown
previously or add the sudo recipe and set up user accounts as sudoers.

For example, if you want to give the developer user account sudoer privileges, simply
add sudo to IMAGE_INSTALL and usermod -a -G sudo developer to EXTRA_USERS_PARAMS.

7.3.6 Tweaking the Root Filesystem
For further customization of the root filesystem after it has been created by the build
system and before the actual root filesystem images are created, ROOTFS_POSTPROCESS_
COMMAND is available (see Listing 7-9). The variable holds a list of shell functions sepa-
rated by semicolons.

Listing 7-9 ROOTFS_POSTPROCESS_COMMAND

SUMMARY = "Custom image recipe from scratch"
DESCRIPTION = "Directly assign IMAGE_INSTALL and IMAGE_FEATURES for \
 for direct control over image contents."

LICENSE = "MIT"

We are using the assignment operator (=) below to purposely overwrite
the default from the core-image class.
IMAGE_INSTALL = "packagegroup-core-boot packagegroup-base-extended \
 ${CORE_IMAGE_EXTRA_INSTALL}"

inherit core-image

Additional root filesystem processing
modify_shells() {
 printf "# /etc/shells: valid login shells\n/bin/sh\n/bin/bash\n" \
 > ${IMAGE_ROOTFS}/etc/shells
}
ROOTFS_POSTPROCESS_COMMAND += "modify_shells;"

168 Chapter 7 Building a Custom Linux Distribution

The example adds the bash shell to /etc/shells. Be sure to always use the += operator
to add to ROOTFS_POSTPROCESS_COMMAND, as the build system adds its own postprocessing
commands to it.

Sudo Configuration

If you followed the example on giving a user sudoer privileges in the previous paragraph,
you probably noticed that it does not work unless you uncomment the line %sudo
ALL=(ALL) ALL in /etc/sudoers. A simple shell function added to ROOTFS_POSTPROCESS_
COMMAND takes care of that when the root filesystem image is created (see Listing 7-10).

Listing 7-10 Sudo Configuration

modify_sudoers() {
 sed 's/# %sudo/%sudo/' < ${IMAGE_ROOTFS}/etc/sudoers > \
 ${IMAGE_ROOTFS}/etc/sudoers.tmp
 mv ${IMAGE_ROOTFS}/etc/sudoers.tmp ${IMAGE_ROOTFS}/etc/sudoers
}
ROOTFS_POSTPROCESS_COMMAND += "modify_sudoers;"

The script simply uncomments the line using sed.

SSH Server Configuration

All core images automatically include an SSH server for remote shell access to the system.
By default, the server is configured to allow login with user name and password. Using
public key infrastructure (PKI) provides an additional level of security but requires con-
figuration of the root server and installation of keys into the root filesystem. A ROOTFS_
POSTPROCESS_COMMAND can also easily be used to accomplish that task (see Listing 7-11).

Listing 7-11 SSH Server Configuration

configure_sshd() {
 # disallow password authentication
 echo "PasswordAuthentication no" >> ${IMAGE_ROOTFS}/etc/ssh/sshd_config
 # create keys in tmp/deploy/keys
 mkdir -p ${DEPLOY_DIR}/keys
 if [! -f ${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot]; then
 ssh-keygen -t rsa -N '' \
 -f ${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot
 fi
 # add public key to authorized_keys for root
 mkdir -p ${IMAGE_ROOTFS}/home/root/.ssh
 cat ${DEPLOY_DIR}/keys/${IMAGE_BASENAME}-sshroot.pub \
 >> ${IMAGE_ROOTFS}/home/root/.ssh/authorized_keys
}
ROOTFS_POSTPROCESS_COMMAND += "configure_sshd;"

The script first disables authentication with user name and password for SSH. It then
creates a key pair in tmp/deploy/keys inside the build environment using the name of

1697.4 Distribution Configuration

the root filesystem image, essentially the name of the image recipe. If a previous build
has already created a set of keys, they are preserved. Finally, the script adds the public
key to the authorized_keys file in /home/root/.ssh, which is typical for SSH configu-
ration. Login keys for other users can be created in a similar way.

This method works well if you do not require different keys for each device that you
build, as every copy of the root filesystem of course contains the same keys. If you need
different keys or, in general, individual configuration for your devices, then you need
to devise a provisioning system for your device production.

7.4 Di stribution Configuration
The build system provides a mechanism for global configuration that applies to all
images built. This mechanism is called distribution configuration or distribution policy. It is
simply a configuration file that contains variable settings. The distribution configuration
is included through the DISTRO variable setting in the build environment configuration
file conf/local.conf:

DISTRO = "poky"

The variable setting corresponds to a distribution configuration file whose base name
is the same as the variable’s argument with the file extension .conf. For the preceding
example, the build system searches for a distribution configuration file with the name
poky.conf in the subdirectory conf/distro in all metadata layers included by the build
environment.

7.4.1 Standard Distribution Policies
The Yocto Project provides several distribution configuration files for standard config-
uration policies:

 n poky: Poky is the default policy for the Yocto Project’s reference distribution Poky.
It is a good choice for getting started with the Yocto Project and as a template for
your own distribution configuration files.

 n poky-bleeding: This distribution configuration is based on poky but sets the
versions for all packages to the latest revision. It is commonly used by the Yocto
Project developers for integration test purposes. You may, of course, use it, but be
aware that there could be issues with packages with incompatible versions.

 n poky-lsb: This distribution configuration is for a stack that complies with LSB. It
is preferably used with the core-image-lsb image target and image targets derived
from it. It inherits the base settings from poky and adds global configuration set-
tings to enable security and includes default libraries required for LSB compliance.

 n poky-tiny: This distribution configuration tailors the settings to yield a very com-
pact Linux OS stack for embedded devices. It is based on poky but provides only
the bare minimum functionality necessary to support the hardware and a BusyBox

170 Chapter 7 Building a Custom Linux Distribution

environment. It does not support any video but only a serial console. Because of
its slim configuration, only the core-image-minimal image target and image tar-
gets based on it can be built with the poky-tiny distribution configuration.

The standard distribution policies, particularly poky, are good starting points for
your own distribution configuration. Let’s have a closer look at the poky distribution
configuration to understand how distribution policies are set and how we can use them
for our own projects.

7.4.2 Poky Distribution Policy
You can find the file poky.conf containing the Poky distribution policy in the meta-
yocto/conf/distro directory of the build system. We replicated its contents here for
convenience, reformatted the file to fit on the page, grouped the variable settings into
logical blocks, and added some comments (see Listing 7-12).

Listing 7-12 Poky Distribution Policy meta-yocto/conf/distro/poky.conf

Distribution Information

DISTRO = "poky"
DISTRO_NAME = "Poky (Yocto Project Reference Distro)"
DISTRO_VERSION = "1.6+snapshot-${DATE}"
DISTRO_CODENAME = "next"
MAINTAINER = "Poky <poky@yoctoproject.org>"
TARGET_VENDOR = "-poky"

SDK Information
SDK_NAME = \
 "${DISTRO}-${TCLIBC}-${SDK_ARCH}-${IMAGE_BASENAME}-${TUNE_PKGARCH}"
SDK_VERSION := \
 "${@'${DISTRO_VERSION}'.replace('snapshot-${DATE}','snapshot')}"
SDK_VENDOR = "-pokysdk"
SDKPATH = "/opt/${DISTRO}/${SDK_VERSION}"

Distribution Features
Override these in poky based distros
POKY_DEFAULT_DISTRO_FEATURES = "largefile opengl ptest multiarch wayland"
POKY_DEFAULT_EXTRA_RDEPENDS = "packagegroup-core-boot"
POKY_DEFAULT_EXTRA_RRECOMMENDS = "kernel-module-af-packet"

DISTRO_FEATURES ?= "${DISTRO_FEATURES_DEFAULT} ${DISTRO_FEATURES_LIBC} \
 ${POKY_DEFAULT_DISTRO_FEATURES}"

Preferred Versions for Packages
PREFERRED_VERSION_linux-yocto ?= "3.14%"
PREFERRED_VERSION_linux-yocto_qemux86 ?= "3.14%"
PREFERRED_VERSION_linux-yocto_qemux86-64 ?= "3.14%"
PREFERRED_VERSION_linux-yocto_qemuarm ?= "3.14%"
PREFERRED_VERSION_linux-yocto_qemumips ?= "3.14%"
PREFERRED_VERSION_linux-yocto_qemumips64 ?= "3.14%"
PREFERRED_VERSION_linux-yocto_qemuppc ?= "3.14%"

1717.4 Distribution Configuration

Dependencies
DISTRO_EXTRA_RDEPENDS += " ${POKY_DEFAULT_EXTRA_RDEPENDS}"
DISTRO_EXTRA_RRECOMMENDS += " ${POKY_DEFAULT_EXTRA_RRECOMMENDS}"

POKYQEMUDEPS = "${@bb.utils.contains(\
 "INCOMPATIBLE_LICENSE", "GPLv3", "", "qemu-config",d)}"
DISTRO_EXTRA_RDEPENDS_append_qemuarm = " ${POKYQEMUDEPS}"
DISTRO_EXTRA_RDEPENDS_append_qemumips = " ${POKYQEMUDEPS}"
DISTRO_EXTRA_RDEPENDS_append_qemuppc = " ${POKYQEMUDEPS}"
DISTRO_EXTRA_RDEPENDS_append_qemux86 = " ${POKYQEMUDEPS}"
DISTRO_EXTRA_RDEPENDS_append_qemux86-64 = " ${POKYQEMUDEPS}"

Target C Library Configuration
TCLIBCAPPEND = ""

Target Architectures for QEMU
(see meta/recipes-devtools/qemu/qemu-targets.inc)
QEMU_TARGETS ?= "arm i386 mips mipsel ppc x86_64"
Other QEMU_TARGETS "mips64 mips64el sh4"

Package Manager Configuration
EXTRAOPKGCONFIG = "poky-feed-config-opkg"

Source Mirrors
PREMIRRORS ??= "\
bzr://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
cvs://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
git://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
gitsm://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
hg://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
osc://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
p4://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
svk://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
svn://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n"

MIRRORS =+ "\
ftp://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
http://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n \
https://.*/.* http://downloads.yoctoproject.org/mirror/sources/ \n"

Build System Configuration

Configuration File and Directory Layout Versions
LOCALCONF_VERSION = "1"
LAYER_CONF_VERSION ?= "6"
#
OELAYOUT_ABI allows us to notify users when the format of TMPDIR changes
in an incompatible way. Such changes should usually be detailed in the
commit that breaks the format and have been previously discussed on the
mailing list with general agreement from the core team.
#
OELAYOUT_ABI = "8"

Default hash policy for distro
BB_SIGNATURE_HANDLER ?= 'OEBasicHash'

Build System Checks

172 Chapter 7 Building a Custom Linux Distribution

add poky sanity bbclass
INHERIT += "poky-sanity"

The CONNECTIVITY_CHECK_URIs are used to test whether we can successfully
fetch from the network (and warn you if not). To disable the test, set
the variable to be empty.
Git example url: \
 git://git.yoctoproject.org/yocto-firewall-test;protocol=git;rev=HEAD

CONNECTIVITY_CHECK_URIS ?= " \
 https://eula-downloads.yoctoproject.org/index.php \
 http://bugzilla.yoctoproject.org/report.cgi"

SANITY_TESTED_DISTROS ?= " \
 Poky-1.4 \n \
 Poky-1.5 \n \
 Poky-1.6 \n \
 Ubuntu-12.04 \n \
 Ubuntu-13.10 \n \
 Ubuntu-14.04 \n \
 Fedora-19 \n \
 Fedora-20 \n \
 CentOS-6.4 \n \
 CentOS-6.5 \n \
 Debian-7.0 \n \
 Debian-7.1 \n \
 Debian-7.2 \n \
 Debian-7.3 \n \
 Debian-7.4 \n \
 SUSE-LINUX-12.2 \n \
 openSUSE-project-12.3 \n \
 openSUSE-project-13.1 \n \
 "

QA check settings - a little stricter than the OE-Core defaults
WARN_QA = "textrel files-invalid incompatible-license xorg-driver-abi \
 libdir unknown-configure-option"
ERROR_QA = "dev-so debug-deps dev-deps debug-files arch pkgconfig la \
 perms useless-rpaths rpaths staticdev ldflags pkgvarcheck \
 already-stripped compile-host-path dep-cmp \
 installed-vs-shipped install-host-path packages-list \
 perm-config perm-line perm-link pkgv-undefined \
 pn-overrides split-strip var-undefined version-going-backwards"

The file shown in the listing is from the head of the Yocto Project Git repository
at the writing of this book. Depending on what version of the Yocto Project tools you
are using, this file may look slightly different. The file is an example of a distribution
policy only. It provides the variable settings most commonly associated with the con-
figuration of a distribution. You are not limited to using just the settings shown in the
listing, and you can remove settings if you do not need them for your project.

Distribution Information

This section of the distribution policy file contains settings for general information
about the distribution.

1737.4 Distribution Configuration

 n DISTRO: Short name of the distribution. The value must match the base name of
the distribution configuration file.

 n DISTRO_NAME: The long name of the distribution. Various recipes reference this
variable. Its contents are shown on the console boot prompt.

 n DISTRO_VERSION: Distribution version string. It is referenced by various recipes and
used in filenames’ distribution artifacts. It is shown on the console boot prompt.

 n DISTRO_CODENAME: A code name for the distribution. It is currently used only by
the LSB recipes and copied into the lsb-release system configuration file.

 n MAINTAINER: Name and e-mail address of the distribution maintainer.
 n TARGET_VENDOR: Target vendor string that is concatenated with various variables,

most notably target system (TARGET_SYS). TARGET_SYS is a concatenation of target
architecture (TARGET_ARCH), target vendor (TARGET_VENDOR), and target operat-
ing system (TARGET_OS), such as i586-poky-linux. The three parts are delimited
by hyphens. The TARGET_VENDOR string must be prefixed with the hyphen, and
TARGET_OS must not. This is one of the many unfortunate inconsistencies of the
OpenEmbedded build system. You may want to set this variable to your or your
company’s name.

SDK Information

The settings in this section provide the base configuration for the SDK.

 n SDK_NAME: The base name that the build system uses for SDK output files. It is
derived by concatenating the DISTRO, TCLIBC, SDK_ARCH, IMAGE_BASENAME, and
TUNE_PKGARCH variables with hyphens. There is not much reason for you to change
that string from its default setting, as it provides all the information needed to
distinguish different SDKs.

 n SDK_VERSION: SDK version string, which is commonly set to DISTRO_VERSION.
 n SDK_VENDOR: SDK vendor string, which serves a similar purpose as TARGET_VENDOR.

Like TARGET_VENDOR, the string must be prefixed with a hyphen.
 n SDKPATH: Default installation path for the SDK. The SDK installer offers this path

to the user during installation of an SDK. The user can accept it or enter an alter-
native path. The default value /opt/${DISTRO}/${SDK_VERSION} installs the SDK
into the /opt system directory, which requires root privileges. A viable alternative
would be to install the SDK into the user’s home directory by setting SDKPATH =
"${HOME}/${DISTRO}/${SDK_VERSION}".

Distribution Features

These feature settings provide specific functionality for the distribution.

 n DISTRO_FEATURES: A list of distribution features that enable support for certain
functionality within software packages. The assignment in the poky.conf distri-
bution policy file includes DISTRO_FEATURES_DEFAULT and DISTRO_FEATURES_LIBC.

174 Chapter 7 Building a Custom Linux Distribution

Both contain default distribution feature settings. We discuss distribution features
and how they work and the default configuration in the next two sections.

Preferred Versions

Version settings prescribe particular versions for packages rather than the default
versions.

 n PREFERRED_VERSION: Using PREFERRED_VERSION allows setting particular versions
for software packages if you do not want to use the latest version, as it is the
default. Commonly, that is done for the Linux kernel but also for software pack-
ages on which your application software has strong version dependencies.

Dependencies

These settings are declarations for dependencies required for distribution runtime.

 n DISTRO_EXTRA_RDEPENDS: Sets runtime dependencies for the distribution. Depen-
dencies declared with this variable are required for the distribution. If these
dependencies are not met, building the distributions fails.

 n DISTRO_EXTRA_RRECOMMENDS: Packages that are recommended for the distribution
to provide additional useful functionality. These dependencies are added if avail-
able but building the distribution does not fail if they are not met.

Toolchain Configuration

These settings configure the toolchain used for building the distribution.

 n TCMODE: This variable selects the toolchain that the build system uses. The default
value is default, which selects the internal toolchain built by the build system
(gcc, binutils, etc.). The setting of the variable corresponds to a configuration file
tcmode-${TCMODE}.inc, which the build system locates in the path conf/distro/
include. This allows including an external toolchain with the build system by
including a toolchain layer that provides the necessary tools as well as the con-
figuration file. If you are using an external toolchain, you must ensure that it is
compatible with the Poky build system.

 n TCLIBC: Specifies the C library to be used. The build system currently supports
EGLIBC, uClibc, and musl. The setting of the variable corresponds to a config-
uration file tclibc-${TCLIBC).inc that the build system locates in the path conf/
distro/include. These configuration files set preferred providers for libraries and
more.

 n TCLIBCAPPEND: The build system appends this string to other variables to dis-
tinguish build artifacts by C library. If you are experimenting with different C
libraries, you may want to use the settings
TCLIBCAPPEND = "-${TCLIBC}"
TMPDIR .= "${TCLIBCAPPEND}"

1757.4 Distribution Configuration

in your distribution configuration, which creates a separate build output directory
structure for each C library.

Mirror Configuration

The settings in this section configure the mirrors for downloading source packages.

 n PREMIRRORS and MIRRORS: The Poky distribution adds these variables to set its mir-
ror configuration to use the Yocto Project repositories as a source for downloads.
If you want to use your own mirrors, you can add them to your distribution con-
figuration file. However, since mirrors are not strictly distribution settings, you
may want to add these variables to the local.conf file of your build environment.
Another alternative would be to add them to the layer.conf file of a custom layer.

Build System Configuration

These settings define the requirements for the build system.

 n LOCALCONF_VERSION: Sets the expected or required version for the build environ-
ment configuration file local.conf. The build system compares this value to the
value of the variable CONF_VERSION in local.conf. If LOCALCONF_VERSION is a later
version than CONF_VERSION, the build system may be able to automatically upgrade
local.conf to the newer version. Otherwise, the build system exits with an error
message.

 n LAYER_CONF_VERSION: Sets the expected or required version for the bblayers.conf
configuration file of a build environment. The build system compares this version
to the value of LCONF_VERSION set by bblayers.conf. If LAYER_CONF_VERSION is a
later version than LCONF_VERSION, the build system may be able to automatically
upgrade bblayers.conf to the newer version. Otherwise, the build system exits
with an error message.

 n OELAYOUT_ABI: Sets the expected or required version for the layout of the output
directory TMPDIR. The build system stores the actual layout version in the file
abi_version inside of TMPDIR. If the two are incompatible, the build system exits
with an error message. This typically happens only if you are using a newer ver-
sion of the build system with a build environment that was created by a previous
version and the layout changed incompatibly. Deleting TMPDIR resolves the issue by
re-creating the directory.

 n BB_SIGNATURE_HANDLER: The signature handler used for signing shared state cache
entries and creating stamp files. The value references a signature handler function
that, because of its complexity, is typically implemented in Python. The code in
meta/lib/oe/sstatesig.py implements OEBasic and OEBasicHash based on the BitBake
signature generators SignatureGeneratorBasic and SignatureGeneratorBasicHash
defined by bitbake/lib/bb/siggen.py and illustrates how to insert your own sig-
nature handler function. The two signature handlers are principally the same, but
OEBasicHash includes the task code in the signature, which causes any change to

176 Chapter 7 Building a Custom Linux Distribution

metadata to invalidate stamp files and shared state cache entries without explicitly
changing package revision numbers. Using the default value of OEBasicHash is
typically sufficient for most applications.

Build System Checks

These configuration variables control various validators to catch build system
misconfigurations.

 n INHERIT += "poky-sanity": Inherits the class poky-sanity, which is required to
perform the build system checks. It is recommended that you include this directive
in your own distribution configuration files.

 n CONNECTIVITY_CHECK_URIS: A list of URIs that the build system tries to verify net-
work connectivity. In the case of Poky, these point to files on the Yocto Project’s
high-availability infrastructure. If you intend to use your own mirrors for down-
loading source packages, you could use URIs pointing to files on your mirror
servers to verify proper connectivity.

 n SANITY_TESTED_DISTROS: A list of Linux distributions the Poky build system has
been tested on. The build system verifies the Linux distribution it is running
on against this list. If that distribution is not in the list, Poky displays a warning
message and starts the build process regardless. Poky runs on most current Linux
distributions, and in most cases, building works just fine even if the distribution is
not officially supported.

QA Checks

The QA checks are defined and implemented by meta/classes/insane.bbclass. This
class also defines the QA tasks that are included with the build process. QA checks are
performed after configuration, packaging, and other build tasks. The following two
variables define which QA checks cause warning messages and which checks cause the
build system to terminate the build with an error message:

 n WARN_QA: A list of QA checks that create warning messages, but the build
continues

 n ERROR_QA: A list of QA checks that create error messages, and the build terminates

The preceding list represents the most common variable settings used by a distribu-
tion configuration. For your own distribution configuration, you may add and/or omit
variables as needed.

7.4.3 Distribution Features
Distribution features enable support for certain functionality within software packages.
Adding a distribution feature to the variable DISTRO_FEATURES adds the functionality
of this feature to software packages that support it during build time. For instance, if
a software package can be built for console as well as graphical user interfaces, then

1777.4 Distribution Configuration

adding x11 to DISTRO_FEATURES configures that software package so that it is built with
X11 support. Unlike the x11 image feature, this does not mean that the X11 packages
are installed in your target root filesystem. The distribution feature only prepares a
software package for X11 support so that it uses X11 on a system where the X11 base
packages are installed.

Using DISTRO_FEATURES gives you granular control over how software packages are
built. If you do not need a particular functionality, omitting the distribution feature
enabling it typically results in a smaller footprint for a particular software package.

Using

$ grep -R DISTRO_FEATURES *

from the installation directory of your build system gives you a list of all the recipes and
include files that use DISTRO_FEATURES to conditionally modify configuration settings
or build processes dependent on what distribution features are enabled.

Recipes typically scan DISTRO_FEATURES using

bb.utils.contains('DISTRO_FEATURES', <feature>, <true_val>, <false_val>)

to determine if a particular distribution feature is enabled by DISTRO_FEATURES. The
function returns true_val if DISTRO_FEATURES contains feature and false_val other-
wise. That makes it convenient for the developer to assign values to BitBake variables or
use the function in if-then-else statements. Typically, this is used by the do_configure
task to modify the configuration based on DISTRO_FEATURES. For some packages, it may
provide f lags to makefiles.

A prime example is the recipe to build the EGLIBC library. EGLIBC allows
enabling functionality by setting configuration options. The file meta/recipes-core/
egligc/egilbc-options.inc, which is included by the recipe, sets the configuration
options based on the distribution features provided by DISTRO_FEATURES.

The following list shows the most common distribution features that you can add
to DISTRO_FEATURES to enable functionality in software packages globally across your
distribution:

 n alsa: Enable support for the Advanced Linux Sound Architecture (ALSA), includ-
ing the installation of open source compatibility modules if available.

 n bluetooth: Enable support for Bluetooth.
 n cramfs: Enable support for the compressed filesystem CramFS.
 n directfb: Enable support for DirectFB.
 n ext2: Enable support and include tools for devices with internal mass storage

devices such as hard disks instead of f lash devices only.
 n ipsec: Enable support for authentication and encryption using Internet Protocol

Security (IPSec).
 n ipv6: Enable support for Internet Protocol version 6 (IPv6).

178 Chapter 7 Building a Custom Linux Distribution

 n irda: Enable support for wireless infrared data communication as specified by the
Infrared Data Association (IrDA).

 n keyboard: Enable keyboard support, which includes loading of keymaps during
boot of the system.

 n nfs: Enable client NFS support for mounting NFS exports on the system.
 n opengl: Include the Open Graphics Library (OpenGL), which is an application

programming interface for rendering 2D and 3D graphics. OpenGL runs on dif-
ferent platforms and provides bindings for most common programming languages.

 n pci: Enable support for the PCI bus.
 n pcmcia: Enable PCMCIA and CompactFlash support.
 n ppp: Enable Point-to-Point Protocol (PPP) support for dial-up networking.
 n smbfs: Enable support and include clients for Microsoft’s Server Message Block

(SMB) for sharing remote filesystems, printers, and other devices over networks.
 n systemd: Include support for the system management daemon (systemd) that

replaces the SysVinit script-based system for starting up and shutting down a
system.

 n sysvinit: Include support for the SysVinit system manager.
 n usbgadget: Enable support for the Linux-USB Gadget API Framework that allows

a Linux device to act like a USB device (slave role) when connected to another
system.

 n usbhost: Enable USB host support allowing client devices such as keyboards,
mice, cameras, and more to be connected to the system’s USB ports and detected
by it.

 n wayland: Enable support for the Wayland compositor protocol and include the
Weston compositor.

 n wifi: Enable WiFi support.
 n x11: Include the X11 server and libraries.

The list does not include the distribution features for the configuration of the C
library. These distribution features all begin with libc-. They enable support for
functionality provided by the C library if the C library is configurable like the Yocto
Project’s default C library glibc. If you are using glibc, then you do not have to worry
about setting these distribution features, as they are inherited from the default distribu-
tion setup, which is covered in the next section.

If you have already been working with the Yocto Project, you may have noticed
that there is also a variable called MACHINE_FEATURES and that the permissible list of
machine features has a large intersection with the distribution feature list. For example,
both MACHINE_FEATURES and DISTRO_FEATURES provide the feature bluetooth. Enabling
Bluetooth in DISTRO_FEATURES causes the Bluetooth packages for hardware support to
be installed and also enables Bluetooth support for various software packages. However,

1797.4 Distribution Configuration

enabling Bluetooth in MACHINE_FEATURES only causes the Bluetooth packages for hard-
ware support to be installed. This gives you control over functionality on the machine
and the distribution level. We discuss machine features in detail when we are looking
into Yocto Project board support packages.

7.4.4 System Manager
The build system supports SysVinit, the traditional script-based system manager, as well
as the system management daemon (systemd), a replacement for SysVinit that offers
better prioritization and dependency handling between services and the ability to start
services in parallel to speed up the boot sequence.

SysVinit is the default system manager for Linux distributions built by Poky. You do
not have to change the configuration if you want to use SysVinit.

To enable systemd, you need to add it to the distribution features and set it as the
system manager. Add the following to your distribution configuration file:

DISTRO_FEATURES_append = " systemd"
VIRTUAL-RUNTIME_init_manager = "systemd"

The first line installs systemd in the root filesystem. The second line enables it as the
system manager. Installing and enabling systemd does not remove SysVinit from your
root filesystem if it is also included in DISTRO_FEATURES. If you are using one of the
standard distribution configurations, such as poky, then you can remove it from DISTRO_
FEATURES with

DISTRO_FEATURES_BACKFULL_CONSIDERED = "sysvinit"

which is easier than redefining DISTRO_FEATURES altogether. For your own distribution
configuration, you can of course simply omit SysVinit from the DISTRO_FEATURES list.

The SysVinit initscripts to start the individual system services are typically part of
the package that provides the service. To conserve space in the root filesystem, you may
not want to install the initscripts if you want to use systemd exclusively. Use

VIRTUAL-RUNTIME_initscripts = ""

to prevent the build system from installing the SysVinit initscripts.
A word of caution: some daemons may not yet have been adapted for use with

systemd and therefore systemd service files are not available. If you come across such
software, you may have to do the adaptation yourself. If you do so, please consider
 submitting your work to upstream.

7.4.5 Default Distribution Setup
The OE Core metadata layer provides default distribution setup through the file meta/
conf/distro/defaultsetup.conf and a series of other files included by it (see Listing 7-13).
It is not quite obvious how this default distribution setup is included into the build
configuration, as this file is not included by distribution policy configuration files such

180 Chapter 7 Building a Custom Linux Distribution

as poky.conf, which we discussed earlier. Instead, the file is included by BitBake’s main
configuration file, bitbake.conf.

Knowing about defaultsetup.conf and understanding its settings is important
because your own distribution policy configuration may extend or overwrite some of
the default variable settings provided by it. If you do not set up the default distribution
correctly, you may inadvertently lose important default settings, and your distribution
build may fail or not yield the desired results.

Listing 7-13 Default Distribution Setup meta/conf/distro/defaultsetup.conf

include conf/distro/include/default-providers.inc
include conf/distro/include/default-versions.inc
include conf/distro/include/default-distrovars.inc
include conf/distro/include/world-broken.inc

TCMODE ?= "default"
require conf/distro/include/tcmode-${TCMODE}.inc

TCLIBC ?= "eglibc"
require conf/distro/include/tclibc-${TCLIBC}.inc

Allow single libc distros to disable this code
TCLIBCAPPEND ?= "-${TCLIBC}"
TMPDIR .= "${TCLIBCAPPEND}"

CACHE = "${TMPDIR}/cache/${TCMODE}-${TCLIBC}${@['', '/' + \
 str(d.getVar('MACHINE', True))][bool(d.getVar('MACHINE', \
 True))]}${@['', '/' + str(d.getVar('SDKMACHINE', True))] \
 [bool(d.getVar('SDKMACHINE', True))]}"

USER_CLASSES ?= ""
PACKAGE_CLASSES ?= "package_ipk"
INHERIT_BLACKLIST = "blacklist"
INHERIT_DISTRO ?= "debian devshell sstate license"
INHERIT += "${PACKAGE_CLASSES} ${USER_CLASSES} ${INHERIT_DISTRO} \
 ${INHERIT_BLACKLIST}"

The file first includes three other files with default settings: default-providers.inc,
default-versions.inc, and default-distrovars.inc. The names for these files are
indicative of what the file content is providing.

The file default-distrovars.inc in particular provides default settings for DISTRO_
FEATURES, DISTRO_FEATURES_DEFAULT, DISTRO_FEATURES_LIBC, and DISTRO_FEATURES_
LIBC_DEFAULT. If you are going to set DISTRO_FEATURES in your own distribution policy
configuration file, you need to pay attention that you do not inadvertently remove the
default settings by overwriting the variable. A safe way of doing so is to use an assign-
ment like

DISTRO_FEATURES ?= "${DISTRO_FEATURES_DEFAULT} ${DISTRO_FEATURES_LIBC} \
 ${MY_DISTRO_FEATURES}"
MY_DISTRO_FEATURES = "<distro features>"

1817.6 Hob

which includes all default settings and adds another variable to include additional distri-
bution features as needed.

The configuration file defaultsetup.conf also sets the defaults for TCMODE and
TCLIBC and includes their respective configuration files, as described earlier.

7 .5 External Layers
For the examples in the preceding sections, we used software packages and package
groups from the OE Core layer meta and the Yocto Project base layer meta-yocto.

With steadily increasing support and contributions to the Yocto Project and Open-
Embedded, a growing number of additional layers with hundreds of recipes for myriad
software packages are now available. Many of them are cataloged on the OpenEmbedded
website. If you are looking for a recipe to build a specific software package, chances are
that someone has already done the work.

The OpenEmbedded website’s metadata index1 lets you search by layer, recipe, and
machine. For example, searching for Java by layer gives you a list of the layers that
provide Java. Searching for JDK by recipes gives you a list of all recipes that build JDK
packages together with the layer that provides the recipe.

The metadata index also lets you filter for the supported Yocto Project release to see
if a recipe or layer is compatible with that particular release. Once you find the layer
containing the software package recipe you are looking for, all you need to do is down-
load the layer, include its path into the BBLAYERS variable of the conf/bblayers.conf of
your build environment, and add the desired software package to your image using one
of the methods described earlier.

7 .6 Hob
Hob is a graphical user interface for BitBake provided by the Yocto Project. It is one of
the Yocto Project’s subprojects and is maintained by the Yocto Project development team.

Why is it called Hob? In the early days of Hob, the three letters stood for
Human-Oriented Builder. However, that does not really sound too appealing and now the
name of the tool is commonly associated with hob, the British English word for cook-
top. And that fits well into the scheme of BitBake and recipes.

With Hob you can conveniently customize your root filesystem images using your
mouse rather than editing text files. If that’s the case, why didn’t we introduce Hob
first rather than explain how to build your custom Linux distribution the “hard” way?
There are a couple of reasons:

 n You can do a lot with Hob, but not everything.
 n Hob is a frontend to BitBake and your build environment. It manipulates

files in your build environment, launches BitBake, and collects build results.

 1. http://layers.openembedded.org

http://layers.openembedded.org

182 Chapter 7 Building a Custom Linux Distribution

Understanding how this is done manually helps you understand what Hob does in
particular if something goes wrong.

 n Although Hob may hide some of the complexity, you still need to know the ter-
minology and how certain variable settings inf luence your build results.

Using Hob is rather simple. First, set up a build environment and then launch Hob
from inside it:

$ source oe-init-build-env build
$ hob

Hob launches and then verifies your build environment. After that check is com-
pleted, you see a screen similar to the one in Figure 7-1 (we already made choices for
the machine and image recipe).

The Hob user interface is easy to understand:

 n Select a machine: From the drop-down menu, choose the machine you want
to build for. The list shows all the machines that are defined by any layer included
with the build environment. Selecting the machine changes the MACHINE variable
setting in the con/local.conf file.

Figure 7-1 Hob

1837.6 Hob

 n Layers: Click this button to open a graphical editor that lets you include layers
with and remove them from your build environment. Doing so modifies the
conf/bblayers.conf file in your build environment.

 n Select an image recipe: From this drop-down menu, you can choose the image
that you want to build. This provides the image target to BitBake similar to run-
ning bitbake <image-target>. The menu contains image targets from all layers
included with your build environment.

 n Advanced configuration: Clicking on this button opens a menu that lets you
select root filesystem types, packaging format, distribution policy, image size, and
more, as outlined in Sections 7.3 and 7.4. Hob adds these options to the conf/
local.conf file of the build environment.

 n Edit image recipe: This button at the bottom of the screen lets you modify the
image recipe by adding and/or removing packages and/or package groups. Doing
so effectively modifies the IMAGE_INSTALL variable of the image target. You can-
not, however, define new package groups from the Hob user interface. For that
task, you have to write your package group recipe as explained in Section 7.1.6.
But, of course, if you wrote your package recipe and included the layer it resides
in with Hob, then you are able to select it from the package groups list.

 n Settings: This button in the upper right corner of the user interface allows you to
modify general settings contained in conf/local.conf such as parallelism, down-
load directory, shared state cache, mirrors, and network proxies. Using the Others
tab, you can add any variable to conf/local.conf and assign a value to it.

 n Images: This button next to the Settings button in the upper right corner of the
Hob user interface displays a list of previously built images. The list is created by
parsing the tmp/deploy/images/<machine> subdirectories of the build environment.
You can select an image from the list, run it if it is a QEMU image, or rebuild it.

 n Build image: This button launches BitBake with the selected configuration and
image target. The user interface switches to the Log tab of the build view from
which you can follow the build process. This view has a major advantage over the
BitBake output when started from the command line: not only do you see the tasks
that are currently run but also the pending tasks and the ones that already have com-
pleted. If there are any build issues, warnings, or errors, they are logged underneath
the Issues tab. There you can examine build issues and directly view the entire log
file of a task without navigating through the build environment directory structure.

After the build finishes, Hob presents you with a summary page where you can view
the created files in the file browser of your build system. You can also examine a sum-
mary log showing the run results for each task as well as any notes, warnings, or error
messages. If you used Hob to build a root filesystem image and Linux kernel for the
QEMU emulator, you can launch QEMU directly from Hob to verify your image by
clicking on the Run image button in the lower right corner of the user interface. From the
summary page, you can also make changes to your configuration and run a new build.

184 Chapter 7 Building a Custom Linux Distribution

Whether you prefer Hob over configuring your build environment, customizing
your target images, and launching BitBake manually is entirely up to you. Hob is great
for rapid prototyping and to quickly enable somebody who is not all that familiar with
BitBake and the Yocto Project to build predefined root filesystem image targets. Hob
does not allow you to create your own image recipes, nor can you create your own
distribution policy files with it (or even edit them). For these tasks, you need to set up
your own layer and create the necessary files and recipes manually.

From Yocto Project version 2.1 on, Hob is being deprecated in favor of the web-
based Toaster, which we explore in detail in Chapter 13.

7. 7 Summary
The largest building block of a Linux distribution is the user space that contains the
various libraries and applications that provide the essential functionality of the system.
This chapter presented the fundamental concepts on how the Poky build system creates
root filesystem images and how you can customize them to meet your requirements.

 n The OpenEmbedded build system’s core images provide distribution blueprints
that you can extend and modify.

 n Core images can easily be extended by appending packages and package groups to
the list contained in the variable IMAGE_INSTALL.

 n The QEMU emulator is a convenient and quick way to test your root file before
booting it on an actual device.

 n Enabling the build history lets you track changes to your images and compare
subsequent executions of the build process.

 n Creating your own image recipes that build on core image recipes by including
them provides you with more control over what packages your root filesystem
image contains. Image recipes that directly inherit the core-image class let you
build root filesystem images from scratch.

 n Package groups are a mechanism to bundle multiple packages and reference
them by a single name, which greatly simplifies image customization with the
IMAGE_INSTALL variable. Poky provides a series of predefined package groups that
organize common packages.

 n The build system can produce root filesystem images in various output formats. Some
of them can be written directly to storage media such as f lash devices to boot a system.

 n Setting up a distribution policy allows operating system configuration indepen-
dent of the content of the root filesystem. It also provides the means to use an
external toolchain with the build system and to change the C library.

 n Hob is a graphical user interface for BitBake. Launched from within an initialized
build environment, it allows configuring and building of root filesystem images
without modifying files using a text editor.

Symbols
" (double quote)

in assignments, 195–196
variable delimiter, 72

/ (forward slash), in symbolic names, 100
- (hyphen), in variable names, 72
() (parentheses), in license names, 201
:= (colon equal sign), variable expansion, 74
?= (question mark equal), default value

assignment, 73
??= (question marks equal), weak default

assignment, 73
.= (dot equal), appending variables, 75
' (single quote), variable delimiter, 72
@ (at sign), variable expansion, 74
\ (backslash), line continuation, 195–196
(hash mark), comment indicator, 21, 71, 19
% (percent sign), in BitBake version strings,

102
+= (plus equal), appending variables, 74
= (equal sign), direct value assignment, 73
=. (equal dot), prepending variables, 75
=+ (equal plus), prepending variables, 74
${} (dollar sign curly braces), variable

expansion, 74
_ (underscore)

conditional variable setting, 76
in variable names, 72

. (dot)
in hidden file names, 226
in variable names, 72

& (ampersand), concatenating license names,
201, 337

| (pipe symbol)
concatenating license names, 201, 337
separating kernel names, 237

~ (tilde), in variable names, 72

A
ABI (application binary interface), 289
abi_version f ile, 52
--active parameter, 296
Administrative privileges for ordinary users,

28
ADT (Application Development Toolkit), 26.

See also SDK (software development kit).
components, 302–304
cross-development toolchain, 302
definition, 301
description, 26
Eclipse IDE plugin, 302
environment setup, 302
integrating into Eclipse, 27

ADT (Application Development Toolkit),
building applications

Autotools based, 316, 322–323
makefile based, 315–316

ADT (Application Development Toolkit),
Eclipse integration

Arguments tab, 326
Autotools-based applications, 322–323
CMake-based applications, 321–322
Common tab, 326–327
configuration screen, 320–321
Debugger tab, 328–329
debugging applications on the target,

327–330
developing applications, 321–323
GDB/CLI command line interpreter, 328
GDB/MI command line interpreter, 328
Gdbserver Settings subtab, 329
inspecting the target system, 324–325
installing Eclipse IDE, 317–319
Main subtab, 329
Main tab, 326

Index

430 Index

ADT (Application Development Toolkit),
Eclipse integration (continued)

overview, 317
preparing the target for remote control,

323–324
running applications on the target, 325–327
Shared Libraries subtab, 329
Source tab, 330
Target Explorer, 324–325
TCF network protocol, 323
tracing library functions, 330–331
Yocto Project Eclipse, 319–321

ADT (Application Development Toolkit),
setting up

building a toolchain installer, 304
cross-canadian toolchain binaries, 306
debugging standard libraries, 314–315
Eclipse IDE, 311
environment variables, 308–309
file and subdirectory categories, 307
GDB (GNU Debugger), 311–315
gdbserver, 311–315
inferior processes, 311
installing the toolchain, 305–307
non-stripped binary information, 311
on-target execution, 310
overview, 304
post-mortem debugging, 311
remote on-target debugging, 311–315
working with toolchains, 307–310

ADT (Application Development Toolkit),
with emulated targets

application development with QEMU,
331–333

extracting the root filesystem, 332
integrating with Eclipse, 332–333
launching applications with QEMU, 333
NFS (Network File System), 332
overview, 331

--align parameter, 296
Aligned development, 30
alsa feature, 177
Ampersand (&), concatenating license names,

201, 337
Analysis mode, Toaster, 346, 348
Android devices, licensing and compliance,

336

Android distribution, 4
Ångström Distribution, 4
_anonymous keyword, 80
Apache Licenses, 12, 397–401
Apache Software Foundation, 11–12
Append files

definition, 31
description, 43, 71
file extension, 43

_append operator, 75, 84–85, 149–150
--append parameter, 297
Appending

BitBake variables, 74–75, 76
functions, 84–85

Appends, recipe layout, 194
Application binary interface (ABI), 289
Application development. See ADT

(Application Development Toolkit).
Application software management, embedded

Linux, 8
Application space. See User space.
AR variable, 308
arch subdirectory, 249
ARCH variable, 308
Architecture-dependent code, 136
Architecture-independent packaging, 210
ARCHIVER_MODE f lags, 341
arch-x86.inc f ile, 289
Arguments tab, 326
AS variable, 308
Assigning values, to BitBake variables, 72–73
Assignments, formatting guidelines, 195
At sign (@), variable expansion, 74
Attributes, BitBake metadata, 85
Attribution, open source licenses, 10
Auditing. See Build history.
Authentication category, Toaster, 350
AUTHOR variable, 189
Autobuilder

description, 26, 368
environment variables, 370
installing, 369–370
passwords, 369–370
user names, 369–370

Autobuilder, configuring
buildset configuration, 373–374
controller configuration file, 372

431Index

global configuration file, 370–371
worker configuration file, 372–373

Automated build systems, Buildbot, 368–369.
See also Autobuilder.

Autotools, 37–38, 203, 205
Autotools-based ADT applications, 316,

322–323
Autotools-based recipe, example, 216–217

B
-b parameter, 64–66, 293
B variable, 104, 192
backports subdirectory, 249
Backslash (\), line continuation, 195–196
bareclone parameter, 91
Base branches, kernel recipes, 239–240
Baserock, 6
.bb f iles, 70–71
.bbappend f ile extension, 43
.bbappend f iles, 56, 71
.bbclass f ile extension, 78–79
BBCLASSEXTEND variable, 103, 211
BBFILE_COLLECTIONS variable, 62
BBFILE_PATTERN variable, 62–63
BBFILE_PRIORITY variable, 63
BBFILES variable, 62, 104
BBLAYERS variable, 51, 104
bblayers.conf f ile, 40–41, 51
BB_NUMBER_THREADS variable, 22
BBPATH variable, 62, 104
BB_SIGNATURE_HANDLER variable, 175
BB_VERSION variable, 111–112
BeagleBoard-xM development board, 273
BeagleBone Black development board, 273
BeagleBone boards

boot order, changing, 272
boot process, 266–267
boot SD card, 267–269
booting, 269, 271
connecting to your development computer,

269
display, 266
FTDI cables, 270
images, 267
overview, 266–267
serial-to-USB cable, 270
terminal emulation, 270–272

BeagleBone development board, 273
Berkeley Software Distribution (BSD), 10
Binaries, BSP (board support packages), 262
Bionic libc, C library, 142
BitBake

classes, 27
definition, 31
description, 26
directives for building software packages.

See Recipes.
documentation and man pages, 48
execution environment, 61–63
graphical user interface, 27, 28
HelloWorld program, 95–99
history of Yocto Project, 29
launching a build, 23
layer configuration file, 61–63
layers, 27
metadata layers, 31
scripts, 27
variants, 103
version selection, 102
working directory, specifying, 22

BitBake, command line
BitBake server, starting, 69–70
configuration data, providing and

overriding, 68–69
dependency graphs, creating, 67–68
dependency handling, 65
displaying program version, 65
executing specific tasks, 66
forcing execution, 66
--help option, 63–65
metadata, displaying, 67
obtaining and restoring task output, 64
omitting common packages, 68
overview of options, 63–65
package dependencies, graphing, 67–68
set-scene, 64

BitBake, dependency handling
build dependencies, 99
declaring dependencies, 101
multiple providers, 101–102
overview, 99
provisioning, 99–101
runtime dependencies, 99
types of dependencies, 99

432 Index

BitBake, obtaining and installing
building and installing, 60–61
cloning the development repository, 60
release snapshot, 60

bitbake directory, 48
BitBake metadata

append files, 71
class files, 71
classes, 78–79
configuration files, 70
executable, 70
file categories, 70–71
f lags, 85
include files, 71
recipe files, 70–71
sharing settings, 76–77
types of, 70
variables, 70

BitBake metadata, executable
anonymous Python functions, 80
appending functions, 84–85
global Python functions, 80
local data dictionary, creating, 83
prepending functions, 84–85
Python functions, 79–80
shell functions, 79
tasks, 81–82, 107
variables containing value lists, 84

BitBake metadata, source download
Bazaar fetcher, 93
checksums for download verification, 89–90
CVS (Current Versions System) fetcher,

92–93
fetch class, 87–88
fetchers, 88–93
Git fetcher, 90–91
Git submodules fetcher, 91
HTTP/HTTPS/FTP fetcher, 89–90
local file fetcher, 88–89
Mercurial fetcher, 93
mirrors, 94–95
OBS (Open Build Service) fetcher, 93
overview, 86–87
password requirements, 90
Perforce fetcher, 93
Repo fetcher, 93
from secure FTP sites, 90

SFTP fetcher, 90
SVK fetcher, 93
SVN (Subversion) fetcher, 91–92
upstream repositories, 86

BitBake metadata syntax
attributes, 85
comments, 71–72
including other metadata files, 76–77
inheritance, 77–79
name (key) expansion, 86
optional inclusion, 77
required inclusion, 77

BitBake metadata syntax, variables
accessing from functions, 82
accessing from Python functions, 83
accessing from shell functions, 82–83
appending and prepending, 74–75, 76
assignment, 72–73
conditional setting, 76
containing value lists, 84
defaults, 103–107
expansion, 73–74
internally derived, 104
naming conventions, 72
project specific, 104
referencing other variables, 73–74
removing values from, 75
scope, 72
standard runtime, 104
string literals, 72

BitBake server, starting, 69–70
bitbake.conf f ile, 40
bitbake-whatchanged script, 50
Blacklisting licenses, 340
bluetooth feature, 177
Board support packages (BSPs). See BSPs

(board support packages).
Books and publications. See Documentation

and man pages.
Bootable media images, creating

Cooked mode, 292
kickstart file directives, 295–297
kickstart files, 293–295
operational modes, 291–293
overview, 290–291
plugins, 297–298
Raw mode, 292–293

433Index

transferring images, 298–299
--bootimg-dir parameter, 293
bootloader directive, 296–297
Bootloaders

bootrom, 130
choosing, 130–131
commonly used, 131–134. See also specific

bootloaders.
EEPROM (electrically erasable

programmable read-only memory), 130
embedded Linux, 8
first stage, 130
f lash memory, 130
loaders, 129
monitors, 129
overview, 129
role of, 130

Bootrom, 130
Bootstrap loader, 140
Bottom-up approach to embedded Linux, 9
branch parameter, 90
Branches, kernel recipes, 239–244
BSD (Berkeley Software Distribution), 10
BSPs (board support packages). See also Yocto

Project BSPs.
binaries, 262
building with BeagleBone boards, 265–272
components, 262
definition, 31
dependency handling, 263–264
development tools, 262
documentation, 262
filesystem images, 262. See also Bootable

media images.
operating system source code, 262
orthogonality, 264
overview, 261–263
source code patches, 262
tuning, 289–290

BSP branches, kernel recipes, 240
BSP collection description, kernel recipes,

246–247
BSP layers, Yocto Project kernel recipes,

configuring, 50
bsp subdirectory, 249
btrfs compression, 165
BUGTRACKER variable, 189

Build configuration, Toaster, 356
Build control category, Toaster, 350
Build dependencies, 99
Build environments

configuring, 20–23, 41
deleting, 22
layer configuration, 41

Build history
configuring, 359–360
core images, 151–152
description, 358
directory and file structure, 361–363
enabling, 358
overview, 358
package information, 364–365
pushing changes to a Git repository,

360–361
SDK information, 365

Build host, setting up, 18–20
Build log, Toaster, 357
Build machine type, selecting, 22
Build mode, Toaster, 346–347, 348, 349
Build results, verifying, 24
Build statistics

storing, 52
Toaster, 357

Build system. See OpenEmbedded system.
build task, 107
BUILD_ARCH variable, 105
Buildbot, 368–369
--buildfile option, 64–66
buildhistory class, 151–152
BUILD_HISTORY_COLLECT parameter, 371
BUILDHISTORY_COMMIT variable, 359
BUILDHISTORY_COMMIT_AUTHOR variable, 359
BUILD_HISTORY_DIR parameter, 371
BUILDHISTORY_DIR variable, 151, 359
BUILDHISTORY_FEATURES variable, 359
BUILDHISTORY_IMAGE_FILES variable, 359
BUILDHISTORY_PUSH_REPO variable, 359–360
BUILD_HISTORY_REPO parameter, 371
build-id.txt f ile, 363
Buildroot, 6
--build-rootfs parameter, 292–293
Buildset configuration, 373–374
buildstats directory, 52
BUILD_SYS variable, 112

434 Index

BURG bootloader, 131, 134
BusyBox, 6

C
C file software recipes, example, 212–213
-c parameter, 64, 66, 284, 292–293
C standard libraries, 142–143
cache directory, 52
CACHE variable, 105
Caching, metadata, 52
CC variable, 308
CCACHE_PATH variable, 308
CE (Consumer Electronics) Workgroup, 13
CELF (Consumer Electronics Linux Forum), 13
cfg subdirectory, 249
CFLAGS variable, 308
CGL (Carrier-Grade Linux), 2
checksettings command, 354, 356
Class extensions, recipe layout, 194
Class files, 71
Classes

BitBake, 27, 78–79
definition, 32
formatting guidelines, 195–196
Yocto Project BSPs, 281

classes subdirectory, 281
cleanup-workdir script, 50
--clear-stamp option, 64, 66
Cloning, development repository, 60
CMake configuration system, 203, 205
CMake-based ADT applications, 321–322
CMake-based recipes, example, 215–216
CMakeLists.txt f ile, 203
--cmd option, 64, 66
Code names for Yocto Project releases, 277
--codedump parameter, 284
collectstatic checksettings command, 354
Colon equal sign (:=), variable expansion, 74
Command line utility applications, tools and

utilities, 6
Commands. See BitBake, command line;

specific commands.
Comments

(hash mark), comment indicator, 21, 71,
196

BitBake metadata, 71–72
Commercial support for embedded Linux, 3

Commercially licensed packages, 339
Common licenses, 338–339
Common tab, 326–327
COMMON_LICENSE_DIR variable, 338
Comparing core images, 151–152
COMPATIBLE_MACHINE variable, 236, 237, 243
Compile step, OpenEmbedded workf low, 44
Compiling, recipe source code, 203–204
Compression

algorithms, 164–165. See also specific algorithms.
common formats, 36. See also specific formats.

--compress-with parameter, 292–293
.conf f ile extension, 40
.conf f iles, 41–42, 70, 72
conf/bblayers.conf f ile, 61–62
config subcommands, 285
config/autobuilder.conf f ile, 370–371
CONFIG_SITE variable, 308
Configuration collection description, kernel

recipes, 245
Configuration files

BitBake metadata, 70
definition, 32
formatting guidelines, 195–196
OpenEmbedded workf low, 40

Configuration step, OpenEmbedded
workf low, 44

configure.ac f ile, 203
CONFIGURE_FLAGS variable, 308
Configuring

Autobuilder. See Autobuilder, configuring.
BitBake, 68–69
distributions, 42
layers, 40
machines, 42
open source software packages, 37–38
recipe source code, 202–203
Toaster, 349–354
Toaster web server, 354–355
tools, 7
user interface, 6
Yocto Project kernel recipes, 50

Configuring, kernel recipes
configuration fragments, 228–231
menu configuration, 227–228
merging partial configurations, 228–231
overview, 226–227

435Index

conf/layer.conf f ile, 62
CONNECTIVITY_CHECK_URIS variable, 176
Consumer Electronics Linux Forum (CELF),

13
Consumer Electronics (CE) Workgroup, 13
Continuation, formatting guidelines, 195
Controller configuration file, 372
Conveyance, open source licenses, 10
Cooked mode, 292
Cooker process

definition, 69–70
logging information, 52
starting, 69–70

COPYLEFT_LICENSE_EXCLUDE variable, 342–343
COPYLEFT_LICENSE_INCLUDE variable, 342–343
COPYLEFT_TARGET_TYPES variable, 343
COPY_LIC_DIRS variable, 340–341
COPY_LIC_MANIFEST variable, 340–341
Core images

build history, 151–152
building from scratch, 160–161
comparing, 151–152
examples, 146–149
external layers, 181
graphical user interface, 181–184
image features, 153–155
package groups, 155–159
packages, 149–150
testing with QEMU, 150–151
verifying, 151–152

Core images, distribution configuration
build system checks, 176
build system configuration, 175–176
default setup, 179–181
dependencies, 174
distribution features, 173–174, 176–179
general information settings, 172–173
information, 173
mirror configuration, 175
Poky distribution policy, 170–176
preferred versions, 174
standard distribution policies, 169–170
system manager, 179
toolchain configuration, 174–175

Core images, extending
with a recipe, 152–153
through local configuration, 149–150

Core images, options
compression algorithms, 164–165
groups, 166–167
image size, 163–164
languages and locales, 162
package management, 162–163
passwords, 166–167
root filesystem tweaks, 167–169
root filesystem types, 164–166
SSH server configuration, 168
sudo configuration, 168
users, 166–167

core-image images, 146–149
core-image.bbclass class, 154
CORE_IMAGE_EXTRA_INSTALL variable,

160–161
cpio compression, 165
cpio.gz compression, 165
cpio.lzma compression, 165
cpio.xz compression, 165
CPP variable, 308
CPPFLAGS variable, 308
CPU, 135
cramfs compression, 165
cramfs feature, 177
createCopy method, 83
create-recipe script, 50
Cross-build access, detecting, 28
Cross-development toolchains, 32, 302
Cross-prelink, description, 27
Cross-prelinking memory addresses, 27
crosstool.ng, 6
CubieBoard 2 development board, 274
CubieBoard 3 development board, 274
CubieTruck development board, 274
CVSDIR variable, 105
CXX variable, 308
CXXFLAGS variable, 308

D
-D parameter, 292–293
D variable, 105
Das U-Boot. See U-Boot bootloader.
Data dictionary

local, creating, 83
printing, 119

date parameter, 92

436 Index

dbg-pkgs feature, 154
Debian distribution, 5, 39
Debian Package Management (dpkg),

162–163
--debug parameter, 292–293
Debugger tab, 328–329
Debugging. See also Troubleshooting.

applications on the target, 327–330
GDB (GNU Debugger), 311–315
message severity, 114–115
post-mortem, 311
remote on-target, 311–315
standard libraries, 314–315

debug-tweaks feature, 153
Declaring dependencies, 101
def keyword, 80
DEFAULT_PREFERENCE variable, 102
defaultsetup.conf f ile, 181
DEFAULT_TUNE variable, 289–290
define keyword, 244
Deleting. See also Removing.

build environments, 22
user accounts, 166–167
user groups, 167

Dependencies
build, 99
declaring, 101
runtime, 99
types of, 99

Dependency graphs
creating, 67–68
troubleshooting, 121–122
visual representation, 122

Dependency handling
BitBake command line, 65. See also

BitBake, dependency handling.
BSPs (board support packages), 263–264

DEPENDS variable, 101, 105, 191
depends.dot f ile, 363, 365
depends-nokernel.dot f ile, 363
depends-nokernel-nolibc.dot f ile, 363
depends-nokernel-nolibc-noupdate.dot f ile,

363
depends-nokernel-nolibc-noupdate-

nomodules.dot f ile, 363
deploy directory, 52
DEPLOY_DIR variable, 105

DEPLOY_DIR_IMAGE variable, 105
Deploying. See also Toaster, production

deployment.
licenses, 340
packages, 222

Deployment output, directory for, 52
Derivative works, open source licenses, 10
Description files, kernel recipes, 244
DESCRIPTION variable, 189
Determinism, 2
Developer support for embedded Linux, 3
Development shell

disabling, 121
troubleshooting, 120–121

Development tools. See Tools and utilities.
Device drivers, 8, 136
Device management, kernel function, 8
Device tree compiler (DTC), 257
Device trees, 133, 257–258
dev-pkgs feature, 154
devshell command, 120–121
Devtool

deploying packages, 222
for existing recipes, 223–224
images, building, 222
overview, 218–219
recipes, building, 222
recipes, updating, 223–224
removing packages, 222
round-trip development, 219–223

Devtool, workspace layers
adding recipes, 220–221, 223
creating, 219–220
displaying information about, 223

dietlibc, C library, 143
diffconfig command, 231
Digital assistant, first Linux based, 28
directfb feature, 177
Directives for building software packages. See

Recipes.
Directories, removing obsolete, 50. See also

specific directories.
Disk space, 16
Dispatching, 135
Display support recipes, Yocto Project BSPs,

281
Displays, BeagleBone boards, 266

437Index

Distribution configuration, OpenEmbedded
workf low, 42

Distribution policy. See Distribution
configuration.

DISTRO variable
distribution configuration, 169
in log files, 112
Poky distribution, 173
SDK information, 365

DISTRO_CODENAME variable, 173
DISTRO_EXTRA_RDEPENDS variable, 174
DISTRO_EXTRA_RRECOMMENDS variable, 174
DISTRO_FEATURES variable

adding features to, 176–179
default settings, 179–180
description, 173

DISTRO_NAME variable, 173
DISTRO_VERSION variable, 112, 173, 365
Django framework, administering in Toaster,

350–351
DL_DIR variable, 22, 105
dmesg command, 268
doc directory, 48
do_configure_partition() method, 297–298
doc-pkgs feature, 154
Documentation and man pages

BitBake, 48
BSPs (board support packages), 262
Buildbot, 372
DULG (DENX U-Boot and Linux Guide),

133
Embedded Linux Primer, xviii
U-Boot bootloader, 133
Yocto Project Application Developer’s Guide,

304
Yocto Project Board Support Package, 264
Yocto Project Reference Manual, 209

do_fetch task, 199–200
do_install task, 204, 205
do_install_disk() method, 297–298
Dollar sign curly braces (${}), variable

expansion, 74
do_prepare_partition() method, 297–298
do_stage_partition() method, 297–298
Dot (.)

in hidden file names, 226
in variable names, 72

Dot equal (.=), appending variables, 75
Download location, specifying, 22
downloadfilename parameter, 89
Downloading, BitBake metadata. See BitBake

metadata, source download.
dpkg (Debian Package Management), 39,

162–163
.dtb f ile extension, 258
DTC (device tree compiler), 257
.dts f ile extension, 257
DULG (DENX U-Boot and Linux Guide), 133

E
-e option, 64, 67
ebuild, history of Yocto Project, 29
Eclipse IDE plugin. See also ADT

(Application Development Toolkit),
Eclipse integration; Yocto Project Eclipse.

for ADT applications, 302, 311
description, 27, 317
installing, 317–319
integrating ADT, 27

Eclipse Project, 12
eclipse-debug feature, 154
Edison development board, 274
EEPROM (electrically erasable

programmable read-only memory), 130
EFI LILO bootloader, 131, 132
EGLIBC, C library, 27, 142
elf compression, 165
ELILO bootloader, 131, 132
Embedded Linux. See also Linux.

commercial support, 3
developer support, 3
development tools. See Tools and utilities.
hardware support, 2
kernel function, 8
modularity, 3
networking, 3
reasons for rapid growth, 2–3
royalties, 2
scalability, 3
source code, 3
tooling, 3

Embedded Linux distributions
Android, 4
Ångström Distribution, 4

438 Index

Embedded Linux distributions (continued)
Debian, 5
embedded full distributions, 5
Fedora, 5
Gentoo, 5
for mobile phones and tablet computers, 4
online image assembly, 4–5
OpenWrt, 5
routing network traffic, 5
SUSE, 5
Ubuntu, 5

Embedded Linux distributions, components
application software management, 8
bootloader, 8
device drivers, 8
kernel, 8
life cycle management, 8

Embedded Linux distributions, creating
bottom-up approach, 9
design strategies, 8–9
top-down approach, 8–9

Embedded Linux Primer, xviii
emerge, history of Yocto Project, 29
--environment option, 64, 67
environment-setup-* scripts, 307
Equal dot (=.), prepending variables, 75
Equal plus (=+), prepending variables, 74
Equal sign (=), direct value assignment, 73
Error checking, 209–210
Error message severity, 114–115
ERROR_QA variable, 176, 209
ERROR_REPORT_COLLECT parameter, 371
ERROR_REPORT_EMAIL parameter, 371
EULA (End-User License Agreement), 335
Executable metadata, 70
Expansion, BitBake variables, 73–74
ext2 compression, 164
ext2 feature, 177
ext2.bz2 compression, 164
ext2.gz compression, 164
ext2.lzma compression, 164
ext3 compression, 165
ext3.gz compression, 165
External layers, core images, 181
Externally built recipe package, example,

217–218
EXTLINUX bootloader, 133

Extracting open source code, 36
EXTRA_IMAGE_FEATURES variable, 153, 161
EXTRA_OECMAKE variable, 192
EXTRA_OECONF variable, 192
EXTRA_OEMAKE variable, 192
--extra-space parameter, 296
extrausers class, 166–167

F
-f parameter, 292–293
Fatal message severity, 114–115
FDT (f lattened device tree), 257. See also

Device trees.
Feature collection description, kernel recipes,

246
feature command, 285–286
features subdirectory, 249
Fedora distribution, 5, 19
Fetching

open source code, 36
recipe source code, 199–200
source code, OpenEmbedded workf low,

43–44
File categories, BitBake, 70–71
FILE_DIRNAME variable, 105
Files, unified format, 37
FILES variable, 193, 208
FILESDIR variable, 88–89, 105
FILESEXTRAPATHS variable, 192
files-in-image.txt f ile, 152, 363
files-in-package.txt f ile, 364
files-in-sdk.txt f ile, 365
FILESPATH variable, 88–89, 105
Filesystem, Linux, 2
Filesystem images, 262. See also Bootable

media images.
Filtering licenses, 342–343
First-stage bootloader, 130
Flags, 85
Flash memory, 130
flatten command, 124
Flattened device tree (FDT), 257. See also

Device trees.
Fragmentation, 30
Free software, definition, 10
--fsoptions parameter, 296
--fstype parameter, 296

439Index

FTDI cables, 270
fullpath parameter, 93
Functions. See also Python functions; Shell

functions.
accessing BitBake variables, 82
appending, 84–85
prepending, 84–85

G
-g option, 64, 67–68, 121–122
Galileo development board, 274
gconfig command, 6
GDB (GNU Debugger)

DDD (Data Display Debugger), 313–314
debugging applications, 311–315
debugging standard libraries, 314–315
graphical user interface, 313–314
launching on the development host,

312–314
GDB variable, 308
GDB/CLI command line interpreter, 328
GDB/MI command line interpreter, 328
gdbserver

debugging applications, 311–315
installing, 312
launching, 312

Gdbserver Settings subtab, 329
General-purpose operating system (GPOS), 1
Gentoo distribution, 5
getVar function, 83
git clone command, 60
GITDIR variable, 105
GitHub repository server, 360–361
GLIBC (GNU C Library), 27, 142
Global configuration file, 370–371
GNU Autotools. See Autotools.
GNU Debugger (GDB). See GDB (GNU

Debugger).
GNU General Public License (GPL), 10
GNU General Public License (GPL) Version

2, 377–384
GNU General Public License (GPL) Version

3, 384–397
GNU GRUB bootloader, 131, 132
GNU/Linux, vs. Linux, 127–128
GPOS (general-purpose operating system), 1

Graphical user interface. See also Toaster.
BitBake, 27, 28
core images, 181–184
Hob, 27, 50, 181–184

--graphviz option, 64, 67–68, 121–122
groupadd command, 166
groupdel command, 167
groupmod command, 167
Groups, user accounts, 166–167
GRUB bootloader, 131, 132
GRUB 2 bootloader, 132
GRUB Legacy bootloader, 132

H
-h option, 64–65
Hallinan, Chris, xviii
Hard real-time systems, 2
Hardware requirements, 16
Hardware support for embedded Linux, 2
Hash mark (#), comment indicator, 21, 71,

196
hddimg compression, 165
head.o module, 140–141
HelloWorld program, 95–99
Help. See Documentation and man pages.
help command, bitbake-layers tool, 123
--help option, BitBake, 63–65
Hob

description, 27, 181–184
launching, 50

hob script, 50
HOMEPAGE variable, 189
host directory, 365
Host leakage, 204
Host pollution, 28
hwcodecs feature, 154

I
-i parameter, 64, 68, 284
if...then keywords, 244
--ignore-deps option, 64, 68
I/O devices, 135
image.bbclass class, 153–155
IMAGE_FEATURES variable, 153, 161
image-info.txt f ile, 152, 363
IMAGE_LINGUAS variable, 162

440 Index

IMAGE_OVERHEAD_FACTOR variable, 163
IMAGE_PKGTYPE variable, 163
IMAGE_ROOTFS_ALIGNMENT variable, 163
IMAGE_ROOTFS_EXTRA_SPACE variable, 163
IMAGE_ROOTFS_SIZE variable, 163
Images. See also Bootable media images,

creating; Core images.
BeagleBone boards, 267
building, 222
creating, OpenEmbedded workf low, 45
definition, 32
features, core images, 153–155
filesystem, 262
information about, Toaster, 357
size, 163–164
targets, Toaster, 357
transferring, 298–299

.inc f iles, 71
include directive, 77
Include files, 71
include keyword, 244
Includes, recipe layout, 190
INCOMPATIBLE_LICENSE variable, 340
Inferior processes, 311
--infile parameter, 284
inherit directive, 77–78
INHERIT variable, 151, 176
Inheritance, BitBake metadata, 77–79
Inheritance directives, recipe layout, 190
INITSCRIPT_NAME variable, 206
INITSCRIPT_PACKAGES variable, 206
INITSCRIPT_PARAMS variable, 207
In-recipe space metadata, kernel recipes,

247–248
insane class, 208
INSANE_SKIP variable, 209
Installation step, OpenEmbedded workf low,

44
installed-package-names.txt f ile, 152, 363,

365
installed-package-sizes.txt f ile, 363, 365
installed-packages.txt f ile, 152, 363, 365
Installing

Autobuilder, 369–370
BitBake, 60–61
Eclipse IDE, 317–319
open source software packages, 38

Poky Linux, 19–20
recipe build output, 204–206
software packages, 19, 29
Toaster, 352–354
Toaster build runner service, 355–356
Toaster requirements, 348
toolchains, 305–307

Integration and support scripts, 50
Internally derived BitBake variables, 104
Internet connection, Yocto Projects

requirements, 16–17
Interprocess communication, 139
In-tree configuration files, 238
In-tree metadata, kernel recipes, 248–250
ipkg (Itsy Package Management System), 39
ipsec feature, 177
ipv6 feature, 177
irda feature, 178
iso compression, 165
ISOLINUX bootloader, 133

J
jffs2 compression, 165
jffs2.sum compression, 165
Jitter, 2

K
-k parameter, 64–65, 293
KBRANCH variable, 242
KCFLAGS variable, 308
kconf keyword, 244
KCONF_BSP_AUDIT_LEVEL variable, 243
kconfig configuration system, 226–227
Kernel. See also Linux architecture, kernel.

device management, 8
embedded Linux, 8
main functions, 8
memory management, 8
responding to system calls, 8

Kernel recipes. See also Recipes.
device tree, 257–258
factors to consider, 225–226
overview, 225–226
patching, 231–233

Kernel recipes, building
configuration settings, 237
from a Git repository, 236–237

441Index

in-tree configuration files, 238
from a Linux kernel tarball, 235–236
from a Linux kernel tree, 234–238
overview, 233–234
patching, 237

Kernel recipes, building from Yocto Project
repositories

base branches, 239–240
branches, 239–244
BSP branches, 240
BSP collection description, 246–247
configuration collection description, 245
description files, 244
feature collection description, 246
in-recipe space metadata, 247–248
in-tree metadata, 248–250
kernel infrastructure, 238–244
kernel type collection description, 246
LTSI (Long-Term Support Initiative),

250–251
master branch, 239
meta branch, 240
metadata application, 250
metadata organization, 247–250
metadata syntax, 244–247
orphan branches, 240, 250
overview, 238
patch collection description, 245–246

Kernel recipes, configuration
configuration fragments, 228–231
menu configuration, 227–228
merging partial configurations, 228–231
overview, 226–227

Kernel recipes, out-of-tree modules
build targets, 254
developing a kernel module, 251–254
including with the root filesystem,

256–257
install targets, 255
kernel source directory, 254
license file, 255
module autoloading, 257
subdirectory structure, 255
third-party modules, 254–256

Kernel space, 129
Kernel type collection description, kernel

recipes, 246

kernel.bbclass class, 233
kernel_configme command, 227
--kernel-dir parameter, 293
KERNEL_FEATURES variable, 243, 250
kernel-module-split class, 254
KERNEL_PATH variable, 254
KERNEL_SRC variable, 254
keyboard feature, 178
KFEATURE_COMPATIBILITY variable, 245
KFEATURE_DESCRIPTION variable, 245
Kickstart file directives, 295–297
Kickstart files, 293–295
klibc, C library, 143
KMACHINE variable, 243–244
KMETA variable, 243
ktypes subdirectory, 249
kver f ile, 249

L
--label parameter, 296
Languages and locales, configuring, 162
LatencyTOP, 302
latest f ile, 364
latest.pkg_* f iles, 364
Launching a build, 23
Layer configuration file, 61–63, 280
Layer layout

OpenEmbedded system, 53–55
Yocto Project BSPs, 277–278

Layer management, Toaster, 357
layer.conf f ile, 40, 54–55
LAYER_CONF_VERSION variable, 175
Layers

base layers for OpenEmbedded system, 47
BitBake, 27
configuration, OpenEmbedded workf low,

40
creating, OpenEmbedded system, 56
debugging, 122–124
definition, 32
f lattening hierarchy, 124
listing, 123
metadata reference, 404–414

LD variable, 308
LDFLAGS variable, 193, 308
LIBC (C Standard Library), 142
LICENSE f ile, 48–49, 337

442 Index

License files
kernel recipes, 255
Yocto Project BSPs, 278

LICENSE variable, 190, 201, 337–338
LICENSE_FLAGS variable, 339
LICENSE_FLAGS_WHITELIST variable, 339
Licensing and compliance. See also Open

source licenses.
Android devices, 336
Apache Licenses, 12
attribution, 10
blacklisting licenses, 340
BSD (Berkeley Software Distribution), 10
commercially licensed packages, 339
common licenses, 338–339
conveyance, 10
derivative works, 10
EULA (End-User License Agreement), 335
filtering licenses, 342–343
first open source, 10
GPL (GNU General Public License), 10
license deployment, 340
license manifests and texts, 341
license naming conventions, 201
license tracking, 337–338
managing source code, 341–343
multiple license schemes, 336–337
OSI (Open Source Initiative), 336
overview, 335–337
permissive licenses, 10
Poky Linux, 48–49
recipe layout, 190
recipes, 201–202
self-perpetuating licenses, 10
SPDX (Software Package Data Exchange),

337
LIC_FILES_CHKSUM variable, 190, 201, 235,

237, 337–338
Life cycle management, embedded Linux, 8
LILO (LInux LOader), 131, 132
Linux

CGL (Carrier-Grade Linux), 2
for embedded devices, 2. See also

Embedded Linux.
filesystem, 2
vs. GNU/Linux, 127–128
MMU (memory management unit), 2

portability, 1
real time operation, 2

Linux architecture. See also Bootloaders.
C standard libraries, 142–143
core computer resources, 135
CPU, 135
dispatching, 135
I/O devices, 135
Linux vs. GNU/Linux, 127–128
memory, 135
overview, 128–129
privileged mode, 129
restricted mode, 129
scheduling, 135
unrestricted mode, 129
user mode, 129
user space, 140

Linux architecture, kernel
architecture-dependent code, 136
bootstrap loader, 140
default page size, 137–138
device drivers, 136
interprocess communication, 139
kernel space, 129
memory management, 136–137
microkernels, 135
monolithic kernels, 135
network stack, 138–139
primary functions, 134
process management, 138
SCI (system call interface), 139–140
slab allocator, 137
socket layer, 138–139
startup, 140–141
subsystems, 136–140
system call slot, 139
threads, 138
VFS (virtual filesystem), 137–138
virtual addressing, 136–137

Linux Foundation, 11
Linux kernel recipes, Yocto Project BSPs,

282
LInux LOader (LILO), 131, 132
Linux Standard Base (LSB), 12–13
Linux Trace Toolkit—Next Generation

(LTTng), 303
LINUX_KERNEL_TYPE variable, 243

443Index

LINUX_RC variable, 236
LINUX_VERSION variable, 235, 237, 242
Listing

changed components, 50
recipes, 123
tasks, 116–117

listtasks command, 107, 116–117
Loaders, 129
local.conf f ile, 41–42
LOCALCONF_VERSION variable, 175
localdir parameter, 92
log directory, 52
Log files

cooker, 110–112
general, 110–112
tasks, 112–114

LOG_DIR variable, 110
log.do f iles, 112
Logging, cooker process information, 52
Logging statements

message severity, 114–115
Python example, 115
shell example, 115–116

LSB (Linux Standard Base), 12–13
LTSI (Long-Term Support Initiative), 13,

250–251
LTTng (Linux Trace Toolkit—Next

Generation), 303

M
Machine configuration, OpenEmbedded

workf low, 42
Machine configuration files, Yocto Project

BSPs, 280–281
MACHINE variable, 22, 112
Machine-dependent packaging, 210
MACHINE_ESSENTIAL_EXTRA_RDEPENDS

variable, 256
MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS

variable, 256
MACHINE_EXTRA_RDEPENDS variable, 256
MACHINE_EXTRA_RRECOMMENDS variable,

256–257
MACHINE_FEATURES variable, 178–179
MACHINEOVERRIDES variable, 264
Machines, metadata reference, 415–428
Main subtab, 329

Main tab, 326
main.c f ile, 141
MAINTAINER variable, 173
Maintainers file, Yocto Project BSPs, 279
Make build system, 205
make gconfig command, 227
make menuconfig command, 227
make xconfig command, 227
Makefile-based ADT applications, 315–316
Makefile-based recipe package, example,

213–215
Man pages. See Documentation and man

pages.
Manuals. See Documentation and man pages.
Master branch, kernel recipes, 239
Matchbox, description, 27
md5sum parameter, 89
Memory

description, 135
Linux architecture, 135
virtual, 135
Yocto Projects, 16

Memory management
cross-prelinking memory addresses, 27
kernel function, 8
Linux kernel, 136–137
prelinking memory addresses, 27

Memory management unit (MMU), 2
menuconfig command, 6
Meta branch, kernel recipes, 240
meta directory, 49
meta metadata layer, 47
meta [-xxxx] variable, 112
Metadata. See also BitBake metadata.

analyzing, 119120
build, 191–193
caching, 52
core collection for OpenEmbedded build

system, 27
definition, 32
descriptive, 189
displaying, 67
executable, 42
layer structure, 53–56
layers, creating, 50
licensing, 190
package manager, 189–190

444 Index

Metadata (continued)
packaging, 193–194
runtime, 194
syntax, kernel recipes, 244–247

Metadata application, kernel recipes, 250
Metadata files. See OpenEmbedded

workf low, metadata files.
Metadata layers

BitBake, 31
meta layer, 47
meta-yocto layer, 47
meta-yocto-bsp layer, 47
OE (OpenEmbedded) Core, 31
OpenEmbedded system architecture, 49

Metadata organization, kernel recipes,
247–250

Metadata reference
layers, 404–414
machines, 415–428

meta-fsl-arm BSP layer, 276
meta-fsl-ppc BSP layer, 276
meta-hob directory, 49
meta-intel BSP layer, 276
meta-intel-galileo BSP layer, 276
meta-intel-quark BSP layer, 276
meta-minnow BSP layer, 276
meta-raspberrypi BSP layer, 276
meta-renesas BSP layer, 276
meta-selftest directory, 49
meta-skeleton directory, 49
meta-ti BSP layer, 276
meta-xilinx BSP layer, 276
meta-yocto directory, 49
meta-yocto metadata layer, 47
meta-yocto-bsp directory, 49
meta-yocto-bsp metadata layer, 47
meta-zynq BSP layer, 276
method parameter, 92
Microkernels, 135
migrate command, 354
Minicom, 270–271
MinnowBoard Max development board, 275
Mirror sites, 366
Mirrors

configuring, 175
creating, 95
definition, 43

downloading BitBake source, 94–95
postmirrors, 367
source mirrors, 366–368

MIRRORS variable, 94–95, 174
MIT License, 377
MKTEMPCMD variable, 106
MKTEMPDIRCMD variable, 106
MMU (memory management unit), 2
Mobile phones

embedded distributions for, 4
tools and utilities, 7

Modularity, embedded Linux, 3
module parameter, 92
module_do_install task, 254
Monitors, 129
Monolithic kernels, 135
musl, C library, 143

N
-n parameter, 293
Name (key) expansion, 86
name parameter, 89–90
Naming conventions, BitBake variables, 72
Narcissus, 4–5
NATIVELSBSTRING variable, 112
--native-sysroot parameter, 293
Network stack, Linux kernel, 138–139
Networking, embedded Linux, 3
Newlib, C library, 143
NFS (Network File System), 332
nfs feature, 178
nfs-server feature, 154
NM variable, 309
nocheckout parameter, 91
Non-stripped binary information, 311
norecurse parameter, 92
--no-setscene option, 65, 66
--no-table parameter, 296
Note message severity, 114–115

O
-o parameter, 284, 292–293
OBJCOPY variable, 309
OBJDUMP variable, 309
Object-oriented mapping (ORM), 345–346
Object-relational model category, Toaster,

350–351

445Index

ODROID-XU4 development board, 275
OE (OpenEmbedded) Core

definition, 32
description, 27
metadata layer, 31, 53–56

OECORE_ACLOCAL_OPTS variable, 309
OECORE_DISTRO_VERSION variable, 309
OECORE_TARGET_SYSROOT variable, 309
oe-init-build-env script, 20, 46, 49
oe-init-build-env-memres script, 49
OELAYOUT_ABI variable, 175
OE_TERMINAL variable, 121, 227
OGIT_MIRROR_DIR parameter, 371
OGIT_TRASH_CRON_TIME parameter, 371
OGIT_TRASH_DIR parameter, 371
OGIT_TRASH_NICE_LEVEL parameter, 371
--ondisk parameter, 296
--ondrive parameter, 296
Online image assembly, 4–5
On-target execution, 310
Open firmware. See Device trees.
Open Package Management (opkg), 162–163
Open Services Gateway Initiative (OSGi), 317
Open Source Initiative (OSI), 336
Open source licenses. See also Licensing and

compliance.
Apache License Version 2.0, 397–401
BSD (Berkeley Software Distribution), 10
vs. commercial licenses, 10
GNU GPL (General Public License), 10
GNU GPL (General Public License)

Version 2, 377–384
GNU GPL (General Public License)

Version 3, 384–397
MIT License, 377
overview, 9–11
permissive licenses, 10
self-perpetuating licenses, 10

Open source software, packaging, 38–39
Open source software packages, workf low

building, 38
configuration, 37–38
extracting source code, 36
fetching source code, 36
installation, 38
packaging, 38–39
patching, 37

OpenEmbedded (OE) Core
definition, 32
description, 27
metadata layer, 31, 53–56

OpenEmbedded system
aligned development, 30
build environment structure, 50–53
caching metadata, 52
cooker process logging information, 52
core collection of metadata, 27
deployment output, directory for, 52
history of Yocto Project, 29, 30–31
launching Hob, 50
layer creation, 56
layer layout, 53–55
listing changed components, 50
metadata layer structure, 53–56
metadata layers, creating, 50
OE Core layer, 53–56
overview, 7
QEMU emulator, launching, 50
recipes, creating, 50
relationship to Yocto Project, 30–31
removing obsolete directories, 50
root filesystems, 52
shared software packages, directory for, 52
shared state manifest files, 52
storing build statistics, 52
task completion tags and signature data, 52
tmp directory layout version number, 52
working subdirectories, 52
Yocto Project BSP layer, creating a, 50
Yocto project kernel recipes, configuring, 50

OpenEmbedded system architecture
base layers, 47. See also specific layers.
basic components, 45–46
build system structure, 47–50
integration and support scripts, 50
meta metadata layer, 47
metadata layers, 49
meta-yocto metadata layer, 47
meta-yocto-bsp metadata layer, 47

OpenEmbedded workf low, diagram, 40
OpenEmbedded workf low, metadata files

build environment configuration, 41
build environment layer configuration, 41
configuration files, 40

446 Index

OpenEmbedded workf low, metadata files
(continued)

distribution configuration, 42
layer configuration, 40
machine configuration, 42
recipes, 42–43

OpenEmbedded workf low, process steps
compile, 44
configuration, 44
fetching source code, 43–44
image creating, 45
installation, 44
output analysis, 44
packaging, 44
patching source code, 44
SDK generation, 45
unpacking source code, 44

opengl feature, 178
OpenMoko, 7
OpenSIMpad, 7
OpenSUSE, setting up a build host, 19
OpenWrt distribution, 5
OpenZaurus project, 7, 28
opkg (Open Package Management), 39,

162–163
OProfile, 302
OPTIMIZED_GIT_CLONE parameter, 371
Optional inclusion, 77
Organizations

Apache Software Foundation, 11–12
CE (Consumer Electronics) Workgroup,

13
CELF (Consumer Electronics Linux

Forum), 13
Eclipse Project, 12
Linux Foundation, 11
LSB (Linux Standard Base), 12–13

ORM (object-oriented mapping), 345–346
Orphan branches, kernel recipes, 240, 250
Orthogonality, 264
OSGi (Open Services Gateway Initiative), 317
OSI (Open Source Initiative), 336
--outdir parameter, 284, 292–293
Output analysis, OpenEmbedded workf low,

44
--overhead-factor parameter, 296
OVERRIDES variable, 75, 106

P
P variable, 106
Package groups

core images, 155–159
naming conventions, 159
predefined, 155–158
recipes, 158–159

Package management
choosing, 162–163
core image configuration, 162–163
core image options, 162–163
dpkg (Debian Package Management),

162–163
opkg (Open Package Management),

162–163
RPM (Red Hat Package Manager),

162–163
tar, 162

Package management systems. See also specific
systems.

definition, 33
most common, 39
shared software packages, directory for, 52
splitting files into multiple packages, 44

Package recipes, Toaster, 357
Package splitting, 207–209
PACKAGE_ARCH variable, 193
PACKAGE_BEFORE_PN variable, 193
PACKAGE_CLASSES variable, 162
PACKAGECONFIG variable, 192
PACKAGE_DEBUG_SPLIT_STYLE variable, 194
package-depends.dot f ile, 67, 121
packagegroup class, 158–159
packagegroup- predefined packages, 155–158
package-management feature, 153
Packages

architecture adjustment, 210
core images, 149–150
definition, 32
dependencies, graphing, 67–68
deploying, 222
directives for building. See Recipes.
managing build package repositories, 29
omitting common packages, 68
QA, 209–210
removing, 222

PACKAGES variable, 193, 208

447Index

PACKAGESPLITFUNCS variable, 194
Packaging

architecture-independent, 210
machine-dependent, 210
open source software, 38–39
OpenEmbedded workf low, 44
recipe build output, 207–210

Parallel build failure, 204
Parallelism options, 22
PARALLEL_MAKE variable, 22
Parentheses (()), in license names, 201
partition directive, 295–296
--part-type parameter, 296
Passwords

Autobuilder, 369–370
shell and SSH logins, 161
user accounts, 166–167

Patch collection description, kernel recipes,
245–246

patch command, 244, 285–286
patches subdirectory, 249
Patching

BSP source code, 262
kernel recipes, 231–233, 237
open source software, 37
recipe source code, 201
source code, OpenEmbedded workf low, 44

PATH variable, 309
pci feature, 178
pcmcia feature, 178
Percent sign (%), in BitBake version strings, 102
Perf, 303
Performance information, Toaster, 357
Period. See Dot.
PERSISTENT_DIR variable, 106
PF variable, 106
Pipe symbol (|)

concatenating license names, 201, 337
separating kernel names, 237

PKG_CONFIG_PATH variable, 309
PKG_CONFIG_SYSROOT variable, 309
pkg_postinst_ script, 210
pkg_postrm_ script, 210
pkg_preinst_ script, 210
pkg_prerm_ script, 210
PKI (public key infrastructure), 360
Plain message severity, 114–115

Plausibility checking, 209–210
Plus equal (+=), appending variables, 74
PN variable, 100, 106, 191
pn-buildlist f ile, 121
pn-depends.dot f ile, 67, 121
poky distribution configuration, 169
Poky distribution policy, 170–176
Poky Linux

architecture, 46
build system. See Yocto Project Build

Appliance.
definition, 33
description, 28
history of Yocto Project, 29–30
installing, 19–20
licensing information, 48–49
obtaining, 17–18

poky-bleeding distribution configuration, 169
poky.conf f ile, 42, 170–176
poky-lsb distribution configuration, 169
poky-tiny distribution configuration, 169
populate_sdk_base_bbclass class, 154
port parameter, 92
Portage, 29
Postmirrors, 43, 367
Post-mortem debugging, 311
--postread option, 64, 68–69
PowerTOP, 302
ppp feature, 178
PR variable, 100, 106, 191
Prebuilt binaries, Yocto Project BSPs, 280
PREFERRED_VERSION variable, 102
Prelinking memory addresses, 27
PREMIRRORS variable, 94–95, 174
_prepend operator, 75, 84–85
Prepending

BitBake variables, 74–75, 76
functions, 84–85

Prepends, recipe layout, 194
PRIORITY variable, 190
Privileged mode, 129
Process management, Linux kernel, 138
Processes

definition, 138
interprocess communication, 139
vs. threads, 138

Project management, Toaster, 356

448 Index

Project-specific BitBake variables, 104
protocol parameter

Git fetcher, 90
SVN (Subversion) fetcher, 92

PROVIDES variable, 99–100, 106, 191
Provisioning

BitBake dependency handling, 99–101
explicit, 100
implicit, 99–100
symbolic, 100–101

Pseudo, description, 28
ptest-pkgs feature, 154
Public key infrastructure (PKI), 360
PUBLISH_BUILDS parameter, 371
PUBLISH_SOURCE_MIRROR parameter, 371
PUBLISH_SSTATE parameter, 371
PV variable

build metadata, 191
building kernel recipes, 237
explicit provisioning, 100
runtime variable, 106
setting package version number, 243

PXELINUX bootloader, 133
Python

logging statements, example, 115
variable expansion, 74
version verification, 19

Python functions. See also Functions.
accessing BitBake variables, 83
anonymous, 80
executable metadata, 79–80
formatting guidelines, 196
global, 80

python keyword, 79–80
Python virtual environment, Toaster,

347–348
PYTHONHOME variable, 309

Q
QEMU emulator

application development with, 331–333
launching, 50
launching applications, 333
purpose of, 302
terminating, 24

qt4-pkgs feature, 154

Question mark equal (?=), default value
assignment, 73

Question marks equal (??=), weak default
assignment, 73

R
-r parameter, 64, 68–69, 293
RANLIB variable, 309
Raspberry Pi 2 B development board, 275
Raw mode, 292–293
RCONFLICTS variable, 195
RDEPENDS variable, 101, 194
--read option, 64, 68–69
README f ile, Yocto Project BSPs, 279
README.sources f ile, Yocto Project BSPs, 280
read-only-rootfs feature, 153
Real time operation, Linux, 2
Real-time systems, hard vs. soft, 2
rebaseable parameter, 91
Recipe files, 70–71, 281–282
Recipes. See also Kernel recipes.

appending files, listing, 123
building, 222
definition, 33
extending core images, 152–153
filenames, 186
formatting source code, 195
listing, 123
listing tasks, 116–117
metadata dependent, listing, 124
OpenEmbedded workf low, 42–43
package groups, 158–159
tools and utilities, 7
updating, 223–224

Recipes, creating
architecture-independent packaging, 210
common failures, 204
compiling source code, 203–204
configuring source code, 202–203
custom installation scripts, 210–211
establishing the recipe, 198–199
fetching source code, 199–200
host leakage, 204
installing the build output, 204–206
licensing information, 201–202
machine-dependent packaging, 210

449Index

missing headers or libraries, 204
overview, 196–198
package architecture adjustment, 210
package QA, 209–210
package splitting, 207–209
packaging the build output, 207–210
parallel build failure, 204
patching source code, 201
plausibility and error checking, 209–210
from a script, 50
setup system services, 206–207
skeleton recipe, 198
source configuration systems, 203
systemd, setting up, 207
SysVinit, setting up, 206–207
tools for. See Devtool.
unpacking source code, 200
variants, 211
workf low, 197

Recipes, examples
Autotools-based package, 216–217
C file software, 212–213
CMake-based package, 215–216
externally built package, 217–218
makefile-based package, 213–215

Recipes, layout
appends, 194
build metadata, 191–193
class extensions, 194
code sample, 187–189
descriptive metadata, 189
includes, 190
inheritance directives, 190
licensing metadata, 190
overview, 186
package manager metadata, 189–190
packaging metadata, 193–194
prepends, 194
runtime metadata, 194
task overrides, 194
variants, 194

recipes-bsp directory, 281
recipes-core directory, 281
recipes-graphics directory, 281
recipes-kernel directory, 282
Red Hat bootloader. See RedBoot bootloader.

Red Hat Package Manager (RPM), 29, 39,
162–163

RedBoot bootloader, 131, 134
Release schedule, Yocto Project, 17
Releases, code names, 277
Relevant bodies. See Organizations.
Remote on-target debugging, 311–315
_remove operator, 75
Removing. See also Deleting.

obsolete directories, 50
packages, 222
values from BitBake metadata, 75

required directive, 77
Required inclusion, 77
Restricted mode, 129
rev parameter, 92
Root filesystems

OpenEmbedded system, 52
tweaking, 167–169
types of, 164–166

Root user accounts, 167
--rootfs-dir parameter, 293
ROOTFS_POSTPROCESS_COMMAND, 167–169
Routing network traffic, distributions for, 5
Royalties, embedded Linux, 2
RPM (Red Hat Package Manager), 29, 39,

162–163
RPROVIDES variable, 195
RRECOMMENDS variable, 194
RREPLACES variable, 195
rsh parameter, 92
RSUGGESTS variable, 194
run.do f ile, 118–119
runqemu script, 50
Runtime dependencies, 99

S
-s parameter, 284, 292
S variable, 106, 191, 236
SANITY_TESTED_DISTROS variable, 176
saved_tmpdir f ile, 52
Scalability, embedded Linux, 3
Scaling to teams. See Autobuilder; Build

history; Mirrors; Toaster.
Scheduling, 135, 368
SCI (system call interface), 139–140

450 Index

Scope, BitBake variables, 72
Scripts. See also specific scripts.

BitBake, 27
integration and support, 50

SDK (software development kit). See also ADT
(Application Development Toolkit).

generating, 45
in OpenEmbedded workf low, 45

SDKIMAGE_FEATURES variable, SDK
information, 365

sdk-info.txt f ile, 365
SDKMACHINE variable, SDK information, 365
SDK_NAME variable, 173, 365
SDKPATH variable, 173
SDKSIZE variable, SDK information, 365
SDKTARGETSYSROOT variable, 309
SDK_VENDOR variable, 173
SDK_VERSION variable, 173, 365
SECTION variable, 189
Semicolon (;), command separator, 167
Serial-to-USB cable, 270
set substitute-path command, 330
set sysroot command, 330
Set-scene, 64
setup.py script, 60–61
setVar function, 83
sha256sum parameter, 89
Shared Libraries subtab, 329
Shared software packages, directory for, 52
Shared state cache, specifying path to, 22
Sharing

metadata settings, 76–77
source packages. See Mirrors.

Sharp Zaurus SL-5000D, 28
Shell functions

accessing BitBake variables, 82–83
executable metadata, 79
formatting guidelines, 196

Shell variables, setting, 20–22
show-appends command, 123
show-cross-depends command, 124
show-layers command, 123
show-overlayed command, 123
show-recipes command, 123
Single quote ('), variable delimiter, 72
sites-config-* f iles, 307
--size parameter, 296

--skip-build-check parameter, 292
-skip-git-check parameter, 284
Slab allocator, 137
smbfs feature, 178
Socket layer, 138–139
Soft real-time systems, 2
Software development kit (SDK). See also

ADT (Application Development Toolkit).
generating, 45
in OpenEmbedded workf low, 45

Software Package Data Exchange (SPDX), 337
Software requirements, Yocto Project, 17
Source code. See also Open source software.

configuring, tools and utilities for, 37–38
embedded Linux, 3
extracting, 36
fetching, 36, 43–44
managing licensing and compliance,

341–343
OpenEmbedded workf low, 43–44
patches, 262
patching, 44
unpacking, 44

Source mirrors, 366–368
--source parameter, 295–296
Source tab, 330
SPDX (Software Package Data Exchange),

337
splash feature, 153
SquashFS compression, 165
SquashFS-xz compression, 165
SRCDATE variable, 191
SRCREV variable, 106, 237, 242
SRC_URI variable

build metadata, 191
building kernel recipes, 236, 237, 242
fetching source code, 199–200
runtime variable, 106

SSH server configuration, 168
ssh-server-dropbear feature, 154
ssh-server-openssh feature, 154
sstate-control directory, 52
SSTATE_DIR variable, 22
staging subdirectory, 249
STAGING_KERNEL_DIR variable, 254
Stallman, Richard, 10
stamps directory, 52

451Index

Standard runtime BitBake variables, 104
Standards, LSB (Linux Standard Base), 12–13
State manifest files, shared, 52
staticdev-pkgs feature, 154
String literals, BitBake variables, 72
STRIP variable, 309
Sudo configuration, 168
Sudoer privileges, 167
SUMMARY variable, 189
SUSE distribution, 5, 19
SVNDIR variable, 106
Swabber, description, 28
syncdb command, 354
SYSLINUX bootloader, 131, 133
sysroots directory, 52
System call interface (SCI), 139–140
System call slot, 139
System calls

kernel function, 8
tracing, 139–140

System manager
core image configuration, 179
default, 179

System root, ADT applications, 302
System Tap, 303
systemd, setting up, 207
systemd feature, 178
systemd system manager, 178
systemd-boot bootloader, 131, 134
SYSTEMD_PACKAGES variable, 207
SYSTEMD_SERVICE variable, 207
SysVinit, setting up, 206–207
sysvinit feature, 178
SysVinit system manager, 179

T
T variable, 106
Tablet computers, embedded distributions

for, 4
tag parameter

CVS (Current Versions System) fetcher, 92
Git fetcher, 90

Tanenbaum, Andrew S., 135
tar, package management, 162
tar compression, 164
tar.bz2 compression, 164
target directory, 365

Target Explorer, 324–325
TARGET_ARCH variable, 106
TARGET_FPU variable, 112
TARGET_PREFIX, CROSS COMPILE variable, 309
TARGET_SYS variable, 112
TARGET_VENDOR variable, 173
tar.gz compression, 164
tar.lz3 compression, 164
tar.xz compression, 164
Task execution

dependencies, 117–118
listing tasks, 116–117
script files, 118–119
specific tasks, 118
troubleshooting, 116–119

Task overrides, recipe layout, 194
task-depends.dot f ile, 67, 121
Tasks

BitBake metadata, 81–82, 107
clean, 112
completion tags and signature data, 52
defining, 81–82
definition, 33
executing specific, 66
obtaining and restoring output, 64

TCF network protocol, 323
TCLIBC variable, 174
TCLIBCAPPEND variable, 174
TCMODE variable, 174
terminal class, 227
Terminal emulation, 270–272
Testing, core images with QEMU, 150–151
Threads

definition, 138
vs. processes, 138

Tilde (~), in variable names, 72
--timeout parameter, 297
Timing error, 2
tmp directory layout version number, 52
TMPBASE variable, 106
TMPDIR variable, 106
TMP_DIR variable, 22
Toaster

administering the Django framework,
350–351

Analysis mode, 346, 348
authentication category, 350

452 Index

Toaster (continued)
build configuration, 356
build control category, 350
build log, 357
Build mode, 346–347, 348, 349
build statistics, 357
configuration, 349–351
description, 28, 345
image information, 357
image targets, 357
installing requirements, 348
layer management, 357
local Toaster development, 348–349
object-relational model category, 350–351
operational modes, 346–347
ORM (object-oriented mapping), 345–346
overview, 345–346
package recipes, 357
performance information, 357
project management, 356
Python virtual environment, 347–348
setting the port, 349
setup, 347–348
web user interface, 356–358

Toaster, production deployment
installation and configuration, 352–354
installing the build runner service, 355–356
maintaining your production interface, 356
preparing the production host, 351–352
web server configuration, 354–355
WSGI (Web Server Gateway Interface),

354–355
Toolchains

in ADT applications, 307–310
building a toolchain installer, 304
configuring, 174–175
cross-canadian toolchain binaries, 306
cross-compilation, building, 6
cross-development, 32, 302
installing, 305–307

Tooling, embedded Linux, 3
Tools and utilities

ADT profiling tools, 302–303
Autotools, 37–38
Baserock, 6
bitbake-layers, 122–124
BSP development tools, 262

build history, 151–152
Buildroot, 6
BusyBox, 6
for command line utility applications, 6
configuring source code, 37–38
creating bootable media images, 291
creating Yocto Project BSPs, 282–289
cross-compilation toolchain, building, 6
crosstool.ng, 6
embedded Linux systems, building, 6–7
Linux distributions, building, 6
Minicom, 270–271
for mobile phones, 7
OpenEmbedded, 7
recipes, 7
terminal emulation, 270–271
tools configuration data, 7
uClibc, 6
user interface configuration, 6
verifying and comparing core images,

151–152
wic, 291
yocto-bsp, 283–284
yocto-kernel, 284–286

Tools configuration data, 7
tools-debug feature, 154
tools-profile feature, 154
tools-sdk feature, 154
tools-testapps feature, 154
Top-down approach to embedded Linux, 8–9
Torvalds, Linus

creating Git, 236
on Linux portability, 1
on microkernel architecture, 135

Tracing library functions, 330–331
Tracing system calls, 139–140
Tracking. See Build history.
Troubleshooting. See also Debugging; Log

files; Logging statements.
analyzing metadata, 119120
debugging layers, 122–124
dependency graphs, 121–122
development shell, 120–121
task execution, 116–119
tracing system calls, 139–140

TUNE_ARCH, 289
TUNE_ASARGS, 290

453Index

TUNE_CCARGS, 290
tune-core2.inc f ile, 289
tune-corei7.inc f ile, 289
TUNE_FEATURES, 289–290
TUNE_FEATURES variable, 112
tune-i586.inc f ile, 289
TUNE_LDARGS, 290
TUNE_PKGARCH, 290
Twisted Python networking engine, 368–369

U
ubi compression, 165
ubifs compression, 165
U-Boot bootloader, 131, 133
Ubuntu distribution, 5, 19
uClibc, C library, 6, 142
Underscore (_)

conditional variable setting, 76
in variable names, 72

Unpacking
recipe source code, 200
source code, OpenEmbedded workf low,

44
Unrestricted mode, 129
Upstream, definition, 33
usbgadget feature, 178
usbhost feature, 178
User accounts

adding, 166–167
deleting, 166–167
managing, 166–167
modifying, 166–167
root, 167
sudoer privileges, 167

User groups
adding, 166–167
deleting, 167
modifying, 167

User interface configuration, tools and
utilities, 6

User mode, 129
User names, Autobuilder, 369–370
User space, 140
useradd command, 166–167
userdel command, 166–167
Userland. See User space.
usermod command, 166–167

--use-uuid parameter, 296
--uuid parameter, 296

V
Variables, listing, 120–121. See also BitBake

metadata syntax, variables; specific
variables.

Variants, 194, 211
Verifying core images, 151–152
version-* f iles, 307
--version option, 64–65
Version selection, BitBake, 102
Versions, displaying, 65
VFS (virtual filesystem), 137–138
Virtual addressing, 136–137
Virtual environments, 28
Virtual memory, 135
virtualenv command, 347–348
Vmdk compression, 165

W
WandBoard development board, 275
Warn message severity, 114–115
WARN_QA variable, 176, 209
wayland feature, 178
Web user interface, Toaster, 356–358
wget command, 60
wic tool, 291
wifi feature, 178
Window manager, 27
work directory, 52
WORKDIR variable, 107
Worker configuration file, 372–373
Working subdirectories, OpenEmbedded

system, 52
work-shared directory, 52
workspace layers

adding recipes, 220–221, 223
creating, 219–220
displaying information about, 223

WSGI (Web Server Gateway Interface),
354–355

X
x11 feature, 154, 178
x11-base feature, 154
xconfig command, 6

454 Index

Y
Yocto Project. See also BSPs (board support

packages); Kernel recipes, building from
Yocto Project repositories.

aligned development, 30
BSP layer, creating, 50
building and installing software packages, 29
definition, 15
definition of common terms, 31–33. See

also specific terms.
kernel recipes, configuring, 50
layers, 276–278
overview, 7
reference distribution. See Poky Linux.
release schedule, 17
tools and utilities, 17–18

Yocto Project, getting started
BitBake working directory, specifying, 22
configuring a build environment, 20–23
disk space, 16
hardware requirements, 16
installing software packages, 19
Internet connection, 16–17
launching a build, 23
location for downloads, specifying, 22
memory, 16
obtaining tools, 17–18
parallelism options, 22
path to shared state cache, specifying, 22
prerequisites, 16–17
setting shell variables, 20–22
setting up the build host, 18–20
software requirements, 17
target build machine type, selecting, 22
verifying build results, 24
without using a build host, 24–26

Yocto Project, history of
BitBake, 29
ebuild, 29
emerge, 29
first Linux-based digital assistant, 28
OpenEmbedded project, 29, 30–31
OpenZaurus project, 28
Poky Linux, 29–30
Portage, 29
Sharp Zaurus SL-5000D, 28

Yocto Project Application Developer’s Guide, 304
Yocto Project Autobuilder. See Autobuilder.
Yocto Project BSPs

classes, 281
display support recipes, 281
layer configuration file, 280
layer layout, 277–278
license files, 278
Linux kernel recipes, 282
machine configuration files, 280–281
maintainers file, 279
prebuilt binaries, 280
README f ile, 279
README.sources f ile, 280
recipe files, 281–282

Yocto Project BSPs, creating
approaches to, 282
kernel configuration options, 285
kernel features, 285–286
kernel patches, 285–286
tools for, 282–289
workf low, 286–289

Yocto Project BSPs, external
BSP layers, 276
building with layers, 276–277
development boards, 272–276
overview, 272

Yocto Project Build Appliance, 24–26
Yocto Project Eclipse, 319–321. See also

Eclipse IDE plugin.
Yocto Project family subprojects, 26–28. See

also specific subprojects.
Yocto Project Reference Manual, 209
Yocto Projects, release code names, 277
yocto-bsp create command, 284
yocto-bsp list command, 283–284
yocto-bsp script, 50
yocto-bsp tool, 283–284
yocto-controller/controller.cfg f ile, 372
yocto-kernel config add command, 285
yocto-kernel config list command, 285
yocto-kernel config rm command, 285
yocto-kernel feature add command, 286
yocto-kernel feature create command, 286
yocto-kernel feature destroy command,

286

455Index

yocto-kernel feature list command, 286
yocto-kernel feature rm command, 286
yocto-kernel features list command, 286
yocto-kernel patch add command, 286
yocto-kernel patch list command, 285

yocto-kernel patch rm command, 286
yocto-kernel script, 50
yocto-kernel tool, 284–286
yocto-layer script, 50, 56
yocto-worker/buildbot.tac f ile, 372–373

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	7 Building a Custom Linux Distribution
	7.1 Core Images—Linux Distribution Blueprints
	7.1.1 Extending a Core Image through Local Configuration
	7.1.2 Testing Your Image with QEMU
	7.1.3 Verifying and Comparing Images Using the Build History
	7.1.4 Extending a Core Image with a Recipe
	7.1.5 Image Features
	7.1.6 Package Groups

	7.2 Building Images from Scratch
	7.3 Image Options
	7.3.1 Languages and Locales
	7.3.2 Package Management
	7.3.3 Image Size
	7.3.4 Root Filesystem Types
	7.3.5 Users, Groups, and Passwords
	7.3.6 Tweaking the Root Filesystem

	7.4 Distribution Configuration
	7.4.1 Standard Distribution Policies
	7.4.2 Poky Distribution Policy
	7.4.3 Distribution Features
	7.4.4 System Manager
	7.4.5 Default Distribution Setup

	7.5 External Layers
	7.6 Hob
	7.7 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

