
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133440751
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133440751
https://plusone.google.com/share?url=http://www.informit.com/title/9780133440751
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133440751
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133440751/Free-Sample-Chapter

iOS Core
Animation

iOS Core
Animation

Advanced Techniques

Nick Lockwood

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Copyright © 2014 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-
3290.

ISBN-13: 978-0-13-344075-1
ISBN-10: 0-13-344075-3

Editor-in-Chief
Mark Taub

Acquisitions
Editor
Trina MacDonald

Angie Doyle

Development
Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Sara Schumacher

Copy Editor
Keith Cline

Proofreader
Sarah Kearns

Technical Reviewer
Mugunth Kumar

Publishing
Coordinator
Olivia Basegio

❖

For Zoe

❖

Contents at a Glance

I: The Layer Beneath

1 The Layer Tree

2 The Backing Image

3 Layer Geometry

4 Visual Effects

5 Transforms

6 Specialized Layers

II: Setting Things in Motion

7 Implicit Animations

8 Explicit Animations

9 Layer Time

10 Easing

11 Timer-Based Animation

III: The Performance of a Lifetime

12 Tuning for Speed

13 Efficient Drawing

14 Image IO

15 Layer Performance

Table of Contents
Preface

Audience and Material

Book Structure

Before We Begin

I: The Layer Beneath

1 The Layer Tree

Layers and Views

CALayer

Parallel Hierarchies

Layer Capabilities

Working with Layers

Summary

2 The Backing Image

The contents Image

contentsGravity

contentsScale

masksToBounds

contentsRect

contentsCenter

Custom Drawing

Summary

3 Layer Geometry

Layout

anchorPoint

Coordinate Systems

Flipped Geometry

The Z Axis

Hit Testing

Automatic Layout

Summary

4 Visual Effects

Rounded Corners

Layer Borders

Drop Shadows

Shadow Clipping

The shadowPath Property

Layer Masking

Scaling Filters

Group Opacity

Summary

5 Transforms

Affine Transforms

Creating a CGAffineTransform

Combining Transforms

The Shear Transform

3D Transforms

Perspective Projection

The Vanishing Point

The sublayerTransform Property

Backfaces

Layer Flattening

Solid Objects

Light and Shadow

Touch Events

Summary

6 Specialized Layers

CAShapeLayer

Creating a CGPath

Rounded Corners, Redux

CATextLayer

Rich Text

Leading and Kerning

A UILabel Replacement

CATransformLayer

CAGradientLayer

Basic Gradients

Multipart Gradients

CAReplicatorLayer

Repeating Layers

Reflections

CAScrollLayer

CATiledLayer

Tile Cutting

Retina Tiles

CAEmitterLayer

CAEAGLLayer

AVPlayerLayer

Summary

II: Setting Things in Motion

7 Implicit Animations

Transactions

Completion Blocks

Layer Actions

Presentation Versus Model

Summary

8 Explicit Animations

Property Animations

Basic Animations

CAAnimationDelegate

Keyframe Animations

Virtual Properties

Animation Groups

Transitions

Implicit Transitions

Animating Layer Tree Changes

Custom Transitions

Canceling an Animation in Progress

Summary

9 Layer Time

The CAMediaTiming Protocol

Duration and Repetition

Relative Time

fillMode

Hierarchical Time

Global Versus Local Time

Pause, Rewind, and Fast-Forward

Manual Animation

Summary

10 Easing

Animation Velocity

CAMediaTimingFunction

UIView Animation Easing

Easing and Keyframe Animations

Custom Easing Functions

The Cubic Bézier Curve

More Complex Animation Curves

Keyframe-Based Easing

Automating the Process

Summary

11 Timer-Based Animation

Frame Timing

NSTimer

CADisplayLink

Measuring Frame Duration

Run Loop Modes

Physical Simulation

Chipmunk

Adding User Interaction

Simulation Time and Fixed Time Steps

Avoiding the Spiral of Death

Summary

III: The Performance of a Lifetime

12 Tuning for Speed

CPU Versus GPU

The Stages of an Animation

GPU-Bound Operations

CPU-Bound Operations

IO-Bound Operations

Measure, Don’t Guess

Test Reality, Not a Simulation

Maintaining a Consistent Frame Rate

Instruments

Time Profiler

Core Animation

OpenGL ES Driver

A Worked Example

Summary

13 Efficient Drawing

Software Drawing

Vector Graphics

Dirty Rectangles

Asynchronous Drawing

CATiledLayer

drawsAsynchronously

Summary

14 Image IO

Loading and Latency

Threaded Loading

GCD and NSOperationQueue

Deferred Decompression

CATiledLayer

Resolution Swapping

Caching

The +imageNamed: Method

Custom Caching

NSCache

File Format

Hybrid Images

JPEG 2000

PVRTC

Summary

15 Layer Performance

Inexplicit Drawing

Text

Rasterization

Offscreen Rendering

CAShapeLayer

Stretchable Images

shadowPath

Blending and Overdraw

Reducing Layer Count

Clipping

Object Recycling

Core Graphics Drawing

The -renderInContext: Method

Summary

About the Author
Nick Lockwood is head of iOS development at the digital agency AKQA in London, and a pro-
lific developer of applications and open source libraries. He has been working with the iOS plat-
form for the past four years, after making the switch from HTML5 web-app development. Nick
first picked up a programming book in 1993 at a middle school rummage sale and hasn’t looked
back since. He lives in Sidcup with his wife and daughter.

Acknowledgments
I would like to thank my wife, Angela, and daughter, Zoe, for putting up with seeing even less
of me than normal while I wrote this. Thanks to David Deutsch and P.J. Cook for their valuable
feedback on the early manuscript. Thanks to Mugunth Kumar for generously agreeing to be my
technical editor, and to all the staff at Pearson, particularly Michael Thurston, Sara Schumacher,
Angie Doyle, Trina MacDonald, and Olivia Basegio, who between them somehow managed to
extract a book from me in the space of four months. Thanks to my parents, for buying me my
first programming book at the tender age of 12, and so starting me on the path to my eventual
career. Finally, thanks to Kate for all the cups of tea!

Editor's Note: We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like
to see us publish in, and any other words of wisdom you're willing to pass our way.

You can e-mail or write me directly to let me know what you did or didn't like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or e-mail address. I will carefully review your comments and share them with the author
and editors who worked on the book.

E-mail: trina.macdonald@pearson.com
Mail: Trina MacDonald
 Senior Acquisitions Editor
 Addison-Wesley/Pearson Education, Inc.
 75 Arlington St., Ste. 300
 Boston, MA 02116

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Preface

When Apple engineers created the iPhone, they faced a challenge: they needed to create a
modern, fast, and fluid user interface, the likes of which had never been seen outside of a video
game, and they needed to do it on mobile hardware that was a decade behind current desktops
and laptops in terms of graphics performance.

They also had an opportunity: to rebuild AppKit (the Mac OS user interface framework) from
the ground up using modern graphics technology without needing to maintain support for the
legacy applications inherited from nearly 25 years of Macintosh and NeXTSTEP history.

Their solution was a private framework called Layer Kit, developed by the iPhone software
team to provide a high-performance, hardware-accelerated animation and compositing library to
replace the slower, Quartz-based software drawing used by AppKit. This framework actually
debuted first on Mac OS 10.5 under the name Core Animation, shortly before the iPhone was
announced.

Core Animation is not just a set of functions for performing animations; it lies at the very heart
of iOS, powering everything you see on screen. Even if you never invoke it explicitly, you are
using it implicitly every time you display a view or transition from one screen to the next. As an
iOS developer, you can build great applications without ever consciously touching Core
Animation, but if you truly embrace its features, you can achieve much richer user experiences.

The purpose of this book is to demystify Core Animation, to bring it out from behind the
curtains and help you to harness its full power to make spectacular applications. By the end, you
will have learned exactly where and when to use Core Animation, how to work with and around
its limitations, and what to do to avoid performance pitfalls so that your apps can be as
responsive as Apple’s own.

Audience and Material
This is neither a beginner’s guide to Cocoa nor an introduction to the iOS platform for Mac
developers. It is most definitely not an introduction to programming in general.

This book is written for an audience that is reasonably familiar with Xcode, Cocoa Touch, and
UIKit but has no prior knowledge of the Core Animation framework. You need not be a very
seasoned developer (perhaps you have just finished your “Hello World” project and are looking
for something a bit more advanced), but you will need to be fluent in Objective-C to be able to
follow the code examples.

Although no prior knowledge of Core Animation is assumed, this is not merely a cursory
introduction to the framework. The aim of this book is to leave no stone unturned when it comes
to the Core Animation APIs. Even if you have already used Core Animation for many years in
an iOS-specific context, it would be surprising if you did not find things in here that you don’t
already know about or fully understand.

This book is specifically geared toward the iOS platform. Where appropriate, differences
between Core Animation on iOS and Mac OS are mentioned, but Mac-specific Core Animation
features such as CALayoutManager or Core Image integration or are not discussed in detail. If
you are already well versed in Core Animation on Mac OS, much of the material will already be
familiar to you, but this should serve as a useful conversion guide.

Core Animation has been a key part of iOS since the beginning, and the majority of its features
are available on older iOS versions. Any methods or classes that are new to iOS 6 are
highlighted as such, but the purpose of this book is to document the current feature set of Core
Animation; so with very few exceptions, the task of providing backward compatibility for
earlier iOS versions is left as an exercise for the reader.

Book Structure
This book is structured in a linear fashion, with each chapter building upon concepts introduced
in the previous ones. That said, wherever we refer back to a concept covered in an earlier
chapter, the chapter is referenced explicitly so that you can read the book in a nonlinear fashion
if you prefer.

The subject matter is split into three parts, dealing with static content, animation, and
performance optimization, respectively. These parts are self-contained, so (for example) if you
already know about animation and layout, you can dive straight into the part on performance.

Each chapter contains figures and example code to illustrate the topics discussed. The sample
code projects are available for download from www.informit.com/title/9780133440751 if you
prefer not to retype them by hand.

Before We Begin
The examples in this book were written and tested using Xcode 4.6 on Mac OS 10.8 (Mountain
Lion). The latest version of Xcode can be downloaded free of charge from the Mac App Store,
and most of the examples can be run in the iOS simulator. In addition, you need to sign up for a
free Apple developer account to access most of the tools and documentation for the classes
referenced in the book.

The code examples have all been tested with iOS 6.1, but most will either run unmodified on
iOS 5+, or can be trivially modified to do so by removing noncritical iOS 6 features such as
Autolayout. All examples make use of modern Objective-C practices such as ARC (Automatic
Reference Counting), automatic property synthesis, and object literals and so require Xcode 4.5
and iOS 4 as a minimum.

http://www.informit.com/title/9780133440751

The examples in the final, performance-focused section of the book must be installed on a
physical iPhone 5 running iOS 6.1 to demonstrate the exact behavior described in the text. To
run the examples on an iPhone, you need to pay for an iOS developer license, which you can
purchase directly from Apple. These examples will still work on the simulator, or a different
device or iOS version, but will likely exhibit different performance characteristics.

This page intentionally left blank

1
The Layer Tree

Ogres have layers. Onions have layers. You get it? We both have layers.

Shrek

Core Animation is misleadingly named. You might assume that its primary purpose is
animation, but actually animation is only one facet of the framework, which originally bore
the less animation-centric name of Layer Kit.

Core Animation is a compositing engine; its job is to compose different pieces of visual
content on the screen, and to do so as fast as possible. The content in question is divided
into individual layers stored in a hierarchy known as the layer tree. This tree forms the
underpinning for all of UIKit, and for everything that you see on the screen in an iOS
application.

Before we discuss animation at all, we’re going to cover Core Animation’s static
compositing and layout features, starting with the layer tree.

Layers and Views
If you’ve ever created an app for iOS or Mac OS, you’ll be familiar with the concept of a
view. A view is a rectangular object that displays content (such as images, text, or video),
and intercepts user input such as mouse clicks or touch gestures. Views can be nested inside
one another to form a hierarchy, where each view manages the position of its children
(subviews). Figure 1.1 shows a diagram of a typical view hierarchy.

Figure 1.1 A typical iOS screen (left) and the view hierarchy that forms it (right)

In iOS, views all inherit from a common base class, UIView. UIView handles touch
events and supports Core Graphics-based drawing, affine transforms (such as rotation or
scaling), and simple animations such as sliding and fading.

What you may not realize is that UIView does not deal with most of these tasks itself.
Rendering, layout, and animation are all managed by a Core Animation class called
CALayer.

CALayer

The CALayer class is conceptually very similar to UIView. Layers, like views, are
rectangular objects that can be arranged into a hierarchical tree. Like views, they can
contain content (such as an image, text, or a background color) and manage the position of
their children (sublayers). They have methods and properties for performing animations
and transforms. The only major feature of UIView that isn’t handled by CALayer is user
interaction.

CALayer is not aware of the responder chain (the mechanism that iOS uses to propagate
touch events through the view hierarchy) and so cannot respond to events, although it does
provide methods to help determine whether a particular touch point is within the bounds of
a layer (more on this in Chapter 3, “Layer Geometry”).

Parallel Hierarchies

Every UIView has a layer property that is an instance of CALayer. This is known as
the backing layer. The view is responsible for creating and managing this layer and for
ensuring that when subviews are added or removed from the view hierarchy that their
corresponding backing layers are connected up in parallel within the layer tree (see
Figure 1.2).

Figure 1.2 The structure of the layer tree (left) mirrors that of the view hierarchy (right)

It is actually these backing layers that are responsible for the display and animation of
everything you see onscreen. UIView is simply a wrapper, providing iOS-specific
functionality such as touch handling and high-level interfaces for some of Core
Animation’s low-level functionality.

Why does iOS have these two parallel hierarchies based on UIView and CALayer? Why
not a single hierarchy that handles everything? The reason is to separate responsibilities,
and so avoid duplicating code. Events and user interaction work quite differently on iOS
than they do on Mac OS; a user interface based on multiple concurrent finger touches
(multitouch) is a fundamentally different paradigm to a mouse and keyboard, which is why
iOS has UIKit and UIView and Mac OS has AppKit and NSView. They are functionally
similar, but differ significantly in the implementation.

Drawing, layout, and animation, in contrast, are concepts that apply just as much to
touchscreen devices like the iPhone and iPad as they do to their laptop and desktop cousins.
By separating out the logic for this functionality into the standalone Core Animation
framework, Apple is able to share that code between iOS and Mac OS, making things
simpler both for Apple’s own OS development teams and for third-party developers who
make apps that target both platforms.

In fact, there are not two, but four such hierarchies, each performing a different role. In
addition to the view hierarchy and layer tree, there are the presentation tree and render tree,
which we discuss in Chapter 7, “Implicit Animations,” and Chapter 12, “Tuning for
Speed,” respectively.

Layer Capabilities
So if CALayer is just an implementation detail of the inner workings of UIView, why do
we need to know about it at all? Surely Apple provides the nice, simple UIView interface
precisely so that we don’t need to deal directly with gnarly details of Core Animation itself?

This is true to some extent. For simple purposes, we don’t really need to deal directly with
CALayer, because Apple has made it easy to leverage powerful features like animation
indirectly via the UIView interface using simple high-level APIs.

But with that simplicity comes a loss of flexibility. If you want to do something slightly out
of the ordinary, or make use of a feature that Apple has not chosen to expose in the
UIView class interface, you have no choice but to venture down into Core Animation to
explore the lower-level options.

We’ve established that layers cannot handle touch events like UIView can, so what can
they do that views can’t? Here are some features of CALayer that are not exposed by
UIView:

▪ Drop shadows, rounded corners, and colored borders

▪ 3D transforms and positioning

▪ Nonrectangular bounds

▪ Alpha masking of content

▪ Multistep, nonlinear animations

We explore these features in the following chapters, but for now let’s look at how
CALayer can be utilized within an app.

Working with Layers
Let’s start by creating a simple project that will allow us to manipulate the properties of a
layer. In Xcode, create a new iOS project using the Single View Application template.

Create a small view (around 200×200 points) in the middle of the screen. You can do this
either programmatically or using Interface Builder (whichever you are more comfortable
with). Just make sure that you include a property in your view controller so that you can
access the small view directly. We’ll call it layerView.

If you run the project, you should see a white square in the middle of a light gray
background (see Figure 1.3). If you don’t see that, you may need to tweak the background
colors of the window/view.

Figure 1.3 A white UIView on a gray background

That’s not very exciting, so let’s add a splash of color. We’ll place a small blue square
inside the white one.

We could achieve this effect by simply using another UIView and adding it as a subview
to the one we’ve already created (either in code or with Interface Builder), but that
wouldn’t really teach us anything about layers.

Instead, let’s create a CALayer and add it as a sublayer to the backing layer of our view.
Although the layer property is exposed in the UIView class interface, the standard
Xcode project templates for iOS apps do not include the Core Animation headers, so we
cannot call any methods or access any properties of the layer until we add the appropriate
framework to the project. To do that, first add the QuartzCore framework in the application

target’s Build Phases tab (see Figure 1.4), and then import
<QuartzCore/QuartzCore.h> in the view controller’s .m file.

Figure 1.4 Adding the QuartzCore framework to the project

After doing that, we can directly reference CALayer and its properties and methods in our
code. In Listing 1.1, we create a new CALayer programmatically, set its
backgroundColor property, and then add it as a sublayer to the layerView backing
layer. (The code assumes that we created the view using Interface Builder and that we have
already linked up the layerView outlet.) Figure 1.5 shows the result.

The CALayer backgroundColor property is of type CGColorRef, not UIColor
like the UIView class’s backgroundColor, so we need to use the CGColor property
of our UIColor object when setting the color. You can create a CGColor directly using
Core Graphics methods if you prefer, but using UIColor saves you from having to
manually release the color when you no longer need it.

Listing 1.1 Adding a Blue Sublayer to the View

#import "ViewController.h"
#import <QuartzCore/QuartzCore.h>

@interface ViewController ()

@property (nonatomic, weak) IBOutlet UIView *layerView;

@end

@implementation ViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 //create sublayer
 CALayer *blueLayer = [CALayer layer];
 blueLayer.frame = CGRectMake(50.0f, 50.0f, 100.0f, 100.0f);
 blueLayer.backgroundColor = [UIColor blueColor].CGColor;

 //add it to our view
 [self.layerView.layer addSublayer:blueLayer];
}

@end

Figure 1.5 A small blue CALayer nested inside a white UIView

A view has only one backing layer (created automatically) but can host an unlimited
number of additional layers. As Listing 1.1 shows, you can explicitly create standalone
layers and add them directly as sublayers of the backing layer of a view. Although it is

possible to add layers in this way, more often than not you will simply work with views and
their backing layers and won’t need to manually create additional hosted layers.

On Mac OS, prior to version 10.8, a significant performance penalty was involved in using
hierarchies of layer-backed views instead of standalone CALayer trees hosted inside a
single view. But the lightweight UIView class in iOS barely has any negative impact on
performance when working with layers. (In Mac OS 10.8, the performance of NSView is
greatly improved, as well.)

The benefit of using a layer-backed view instead of a hosted CALayer is that while you
still get access to all the low-level CALayer features, you don’t lose out on the high-level
APIs (such as autoresizing, autolayout, and event handling) provided by the UIView class.

You might still want to use a hosted CALayer instead of a layer-backed UIView in a real-
world application for a few reasons, however:

▪ You might be writing cross-platform code that will also need to work on a Mac.

▪ You might be working with multiple CALayer subclasses (see Chapter 6,
“Specialized Layers”) and have no desire to create new UIView subclasses to host
them all.

▪ You might be doing such performance-critical work that even the negligible overhead
of maintaining the extra UIView object makes a measurable difference (although in
that case, you’ll probably want to use something like OpenGL for your drawing
anyway).

But these cases are rare, and in general, layer-backed views are a lot easier to work with
than hosted layers.

Summary
This chapter explored the layer tree, a hierarchy of CALayer objects that exists in parallel
beneath the UIView hierarchy that forms the iOS interface. We also created our own
CALayer and added it to the layer tree as an experiment.

In Chapter 2, “The Backing Image,” we look at the CALayer backing image and at the
properties that Core Animation provides for manipulating how it is displayed.

	Table of Contents
	Preface
	Audience and Material
	Book Structure
	Before We Begin

	1 The Layer Tree
	Layers and Views
	Layer Capabilities
	Working with Layers
	Summary

