
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133440652
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133440652
https://plusone.google.com/share?url=http://www.informit.com/title/9780133440652
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133440652
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133440652/Free-Sample-Chapter

iOS Auto Layout
Demystified

Erica Sadun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800)-382-3419
 corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

 International Sales
 international@pearsoned.com

Visit us on the Web: http://informit.com/aw

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited re-
production, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua,
Bonjour, the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode, Finder, FireWire,
iMac, Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch, iTunes, the
iTunes logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch, Objective-C, Quartz, Quick-
Time, QuickTime logo, Safari, Snow Leopard, Spotlight, and Xcode are trademarks of
Apple, Inc., registered in the United States and other countries. OpenGL and the logo are
registered trademarks of Silicon Graphics, Inc. The YouTube logo is a trademark of Goo-
gle, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in the United States and
other countries.

Editor-in-Chief
Mark Taub
Senior
Acquisitions
Editor
Trina
MacDonald
Senior
Development
Editor
Chris Zahn
Managing Editor
Kristy Hart
Project Editor
Jovana Shirley
Copy Editor
Keith Cline
Proofreader
Sheri Cain
Technical
Reviewers
Richard Wardell
Editorial Assistant
Olivia Basegio
Cover Designer
Chuti Prasertsith
Compositor
Nonie Ratcliff

ISBN-13: 978-0-13-344065-2
ISBN-10: 0-13-344065-6

!"

Hop. Hop. THOOM.

!"

Contents
Preface

Chapter 1: Introducing Auto Layout

Saying “No” to Auto Layout
Saying “Yes” to Auto Layout

Visual Relationships

Content-Driven Layout
Prioritizing Rules

Auto Layout Strengths

Constraints

Satisfiability

Sufficiency

Constraint Attributes

Missing Views

Underconstrained Missing Views

Missing Views with Inconsistent Rules

Tracking Missing Views

Ambiguous Layout
Exercising Ambiguity

Visualizing Constraints

Intrinsic Content Size

Compression Resistance and Content Hugging

Auto Layout and Frames

Visualizing Alignment Rectangles

Image Alignment Insets

Declaring Alignment Rectangles

Implementing Alignment Rectangles

Summary

Chapter 2: Constraints

Constraint Types

Priorities

Conflicting Priorities

Enumerated Priorities

Content Size Constraints

Content Hugging

Compression Resistance

Setting Content Size Constraints

Layout Constraints

Constraint Math

The Layout Constraint Class

First and Second Items

Creating Layout Constraints

Using NSLayoutConstraint

Unary Constraints

Zero-Item Constraints

View Items

Constraints, Hierarchies, and Bounds Systems

Installing Constraints

Removing Constraints

Comparing Constraints

Using Matched Constraints

Laws of Layout Constraints

Summary

Chapter 3: Interface Builder Layout

Constraints in Interface Builder
What’s What in the IB Editor
Beginning Constraints

Constraint Listings

Constraint Colors

Constraint Icons

Constraint Listings and Xcode Labels

Adding Xcode Identities

Selecting Constraints

Inspecting Constraints

The Constraint Attributes Inspector
View Size Inspector

Frame and Layout Rectangles

Constraint Options

Adding User Constraints

Including Your Own Constraints

Conflicting Constraints

Building New Constraints

The Missing Views Problem

Balancing Requests

Balancing Constraint Priorities

Constraints and Outlets

Hybrid Layout
Building a NIB File for Testing

Adding the NIB File in Code

Advantages of Hybrid Layout
Constraints/Resizing Pop-Up Menu

Summary

Chapter 4: Visual Formats

Introducing Visual Format Constraints

Options

Alignment
Combining Options

Skipping Options

Variable Bindings

The Problem with Indirection

Indirection Workaround

Metrics

Real-World Metrics

Format String Structure

Orientation

Retrieving Constraints by Axis

View Names

Superviews

Connections

Empty Connections

Standard Spacers

Numeric Spacers

Referencing the Superview

Spacing from the Superview

Flexible Spaces

Parentheses

Negative Numbers

Priorities

Multiple Views

View Sizes

Format String Components

Getting It Wrong

NSLog and Visual Formats

Constraining to a Superview

View Stretching

Constraining Size

Building Rows or Columns

Matching Sizes

Why You Cannot Distribute Views

How to Pseudo-Distribute Views (Part 1: Equal Centers)
Pseudo-Distributing Views (Part 2: Spacer Views)

Summary

Chapter 5: Debugging Constraints

Reading Console Logs

Example: Autosizing Issues

Solution: Switch Off Autosizing Translation

Example: Auto Layout Conflicts

Solution: Adjusting Priorities

The Nuclear Approach

The Balance Approach

Tracing Ambiguity

Examining Constraint Logs

Example: Alignment Constraint
Example: Standard Spacers

Example: Equation-Based Constraint
Example: Complex Equation

Example: The Multiplier and Constant
A Note about Layout Math

Constraint Equation Strings

Adding Names

Using Nametags

Naming Views

Describing Views

Example: Unexpected Padding

Example: The Hugged Image

Example: View Centering

Retrieving Referencing Constraints

Descent Reports

Example: Ambiguity

Example: Expanding on Console Dumps

Visualizing Constraints

Automating Visualization

Launch Arguments

Internationalization

Doubled Strings

Flipped Interfaces (OS X)
Flipped Interfaces (iOS)

Profiling Cocoa Layout
Auto Layout Rules of Debugging
Summary

Chapter 6: Building with Auto Layout

Basic Principles of Auto Layout
Layout Libraries

Planning Interfaces

Building for Modularity

Updating Constraints

Calling Updates and Animating Changes

Animating Constraint Changes on OS X

Fading Changes

Handling Orientation-Specific Text Layout
Designing for Edge Conditions

Building a View Drawer
Building the Drawer Layout
Managing Layout for Dragged Views

Dragged Views

Window Boundaries

Summary

Chapter 7: Layout Solutions

Table Cells

Preserving Image Aspect
Accordion Sizing

Auto Layout
Building a Paged Image Scroll View

Inherent Drawbacks

Centering View Groups

Custom Multipliers and Random Positions

Building Grids

Constraint Animation on Steroids

Summary

Acknowledgments
No book is the work of one person. I want to thank my team who made this possible. The
lovely Trina MacDonald green lit this title, thus ultimately providing the opportunity you
now have to read it. Chris Zahn is my wonderful development editor, and Olivia Basegio
makes everything work even when things go wrong.

I send my thanks to the entire Addison-Wesley/Pearson production team, specifically
Kristy Hart, Jovana San Nicolas-Shirley, Keith Cline, Sheri Cain, Nonie Ratcliff, and Chuti
Prasertsith.

Thanks go as well to Neil Salkind, my agent of many years; to Rich Wardwell, my techni-
cal editor; and to my colleagues, both present and former, at TUAW and the other blogs
I’ve worked at.

I am deeply indebted to the wide community of iOS developers who supported me in IRC
and who helped by reading drafts of this book and offering feedback. Particular thanks go
to Oliver Drobnik, Aaron Basil (of Ethervision), Harsh Trivedi, Michael Prenez-Isbell,
Alex Hertzog, Neil Taylor, Maurice Sharp, Rod Strougo, Chris Samuels, Hamish Allan,
Jeremy Tregunna, Lutz Bendlin, Mahipal Raythattha, Robert Jen, Greg Hartstein, Jonathan
Thompson, Ajay Gautam, Shane Zatezalo, Wil Macaulay, Bill DeMuro, Evan Stone, Alex
Mault, David Smith, Duncan Champney, August Joki, Remy “psy” Demarest, Joshua
Weinburg, Emanuele Vulcano, and Charles Choi. Their techniques, suggestions, and feed-
back helped make this book possible. If I have overlooked anyone who contributed to this
effort, please accept my apologies for the oversight.

Special thanks also go to my husband and kids. You are wonderful.

About the Author
Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books on
programming, digital video and photography, and web design, including the widely popular
The Core iOS 6 Developer's Cookbook, Fourth Edition. She currently blogs at TUAW.com,
and has blogged in the past at O'Reilly's Mac Devcenter, Lifehacker, and Ars Technica. In
addition to being the author of dozens of iOS-native applications, Erica holds a Ph.D. in
computer science from Georgia Tech's Graphics, Visualization and Usability Center. A
geek, a programmer, and an author, she's never met a gadget she didn't love. When not writ-
ing, she and her geek husband parent three geeks-in-training, who regard their parents with
restrained bemusement when they're not busy rewiring the house or plotting global domina-
tion.

Preface

Auto Layout re-imagines the way developers create user interfaces. It creates a flexible and
powerful system that describes how views and their content relate to each other and to the
windows and superviews they occupy. In contrast to older design approaches, this
technology offers incredible control over layout with a wider range of customization than
frames, springs, and struts can express. Somewhat maligned by exasperated developers,
Auto Layout has gained a reputation for difficulty and frustration, particularly when used
through Interface Builder (IB).

That’s why this book exists. You’re about to learn Auto Layout mastery by example, with
plenty of explanations and tips. Instead of struggling with class documentation, you’ll learn
in simple steps how the system works and why it’s far more powerful than you first
imagined. You’ll read about common design scenarios and discover best practices that
make Auto Layout a pleasure rather than a chore to use.

This book aims to be inspirational. I’ve tried to show examples of nonobvious ways to use
Auto Layout to build interactive elements, animations, and other features beyond what you
might normally encounter in IB. These chapters provide a launch pad for Auto Layout work
and introduce unfamiliar features that expand your design possibilities.

As the name suggests, this book is primarily targeted at iOS developers. I have included OS
X coverage where possible. So, if you’re an OS X developer, you’re not left out completely
in the cold. I live primarily in the iOS world. Please keep that in mind as you read.

Auto Layout has made a profound difference in my day-to-day development. I wrote this
book hoping it will do the same for you. It’s my intention that you walk away from this
book with a solid grounding in Auto Layout. And, if I’m lucky, the book will provide you
with a “Eureka!” moment or two to lead you forward.

—Erica Sadun, February 2013

How This Book Is Organized
This book offers practical Auto Layout tutorials and how-tos. Here’s a rundown of what
you find in this book's chapters:

! Chapter 1, "Introducing Auto Layout"—Ready to get started? This chapter ex-
plains the basic concepts that lie behind Auto Layout and, for those who need to,
how to opt out of Auto Layout until you’re ready to proactively take advantage of
its many benefits.

! Chapter 2, "Constraints"—With Auto Layout, you build interfaces by declaring
rules about views. Each layout rule you add creates a requirement about how part of
the interface should be laid out. These rules are ranked based on a numeric priority
that you supply to the system, and Auto Layout builds your interface’s visual pres-
entation accordingly. This chapter introduces constraints, the rules of your layout,
and explains why those rules must be unambiguous and satisfiable.

! Chapter 3, "Interface Builder Layout"—Working with constraint-based design
in Interface Builder can sometimes prove a frustrating experience for developers
new to Auto Layout. With IB, you must move away from a normal developer mind-
set. You can’t approach IB-based Auto Layout by asking, “Which constraints do I
want to add to express my design goals?” Instead, you need to consider, “How do I
modify the constraints that I’ve built and that Interface Builder has given me to
achieve my design goals?” This chapter explains how.

! Chapter 4, "Visual Formats"—This chapter explores what visual constraints look
like, how you build them, and how they are used in your projects. You’ll read how
metrics dictionaries and constraint options extend visual formats for more flexibil-
ity. And you’ll see numerous examples that demonstrate these formats and explore
the results they create.

! Chapter 5, "Debugging Constraints"—Constraints can be maddeningly opaque.
The code and interface files you create them with don’t lend themselves to easy pe-
rusal. It takes only a few “helpful” Xcode log messages to make some developers
start tearing out their hair. This chapter dedicates itself to shining light upon the
lowly constraint and helping you debug your work.

! Chapter 6, "Building with Auto Layout"—Designing for Auto Layout changes
the way you build interfaces. It’s a descriptive system that steps away from exact
metrics like frames and centers. You focus on expressing relationships between
views, describing how items follow one another onscreen. You uncover the natural
relationships in your design and detail them through constraint-based rules. This
chapter introduces the expressiveness of Auto Layout design, spotlighting its under-
lying philosophy and offering examples that showcase its features.

! Chapter 7, "Layout Solutions"—The chapters that led up to this focused on
know-how and philosophy. This chapter introduces solutions. You’ll read about a
variety of real-world challenges and how Auto Layout provides practical answers
for day-to-day development work. The topics are grab bag, showcasing requests
developers commonly ask about.

About the Sample Code
This book follows the trend I started in my iOS Developer Cookbooks. This book's iOS
sample code always starts off from a single main.m file, where you’ll find the heart of the
application powering the example. This is not how people normally develop iOS or Cocoa
applications, or, honestly, how they should be developing them, but it provides a great way

of presenting a single big idea. It's hard to tell a story when readers must search through
many files while trying to find out what is relevant and what is not. Offering a single
launching point concentrates that story, allowing access to that idea in a single chunk.

The presentation in this book does not produce code in a standard day-to-day best-practices
approach. Instead, it offers concise solutions that you can incorporate back into your work
as needed. For the most part, the examples for this book use a single application identifier:
com.sadun.helloworld. This avoids clogging up your iOS devices with dozens of examples
at once. Each example replaces the preceding one, ensuring that your home screen remains
relatively uncluttered. If you want to install several examples simultaneously, simply edit
the identifier, adding a unique suffix, such as com.sadun.helloworld.table-edits.

You can also edit the custom display name to make the apps visually distinct. Your Team
Provisioning Profile matches every application identifier, including com.sadun.helloworld.
This allows you to install compiled code to devices without having to change the identifier;
just make sure to update your signing identity in each project's build settings.

There is a smattering of OS X code in here as well. This is not (as the title suggests) an OS
X-centered book, but I’ve covered OS X topics where it made sense to do so. I spend the
majority of my time in iOS, so please forgive any OS X faux pas I make along the way and
do drop me notes to help me correct whatever I got wrong.

Getting the Sample Code

You'll find the source code for this book at http://github.com/erica/Auto-Layout-
Demystified on the open-source GitHub hosting site. There, you find a chapter-by-chapter
collection of source code that provides working examples of the material covered in this
book.

If you do not feel comfortable using git directly, GitHub offers a download button. It was at
the right-center of the page at the time of this writing. It enables you to retrieve the entire
repository as a ZIP archive or tarball.

Contribute!

Sample code is never a fixed target. It continues to evolve as Apple updates its SDK and
the Cocoa Touch libraries. Get involved. You can pitch in by suggesting bug fixes and
corrections and by expanding the code that's on offer. GitHub allows you to fork
repositories and grow them with your own tweaks and features and then share those back to
the main repository. If you come up with a new idea or approach, let me know. My team
and I are happy to include great suggestions both at the repository and in the next edition of
this book.

Getting Git

You can download this book's source code using the git version control system. An OS X
implementation of git is available at http://code.google.com/p/git-osx-installer. OS X git

http://github.com/erica/Auto-Layout-Demystified
http://code.google.com/p/git-osx-installer
http://github.com/erica/Auto-Layout-Demystified

implementations include both command-line and GUI solutions, so hunt around for the
version that best suits your development needs.

Getting GitHub

GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 public
repositories. It provides both free hosting for public projects and paid options for private
projects. With a custom Web interface that includes wiki hosting, issue tracking, and an
emphasis on social networking of project developers, it's a great place to find new code or
collaborate on existing libraries. You can sign up for a free account at their Web site, which
then allows you to copy and modify this repository or create your own open-source iOS
projects to share with others.

Contacting the Author
If you have any comments or questions about this book, please drop me an e-mail message
at erica@ericasadun.com, or stop by the GitHub repository and contact me there.

http://github.com

Editor's Note: We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like
to see us publish in, and any other words of wisdom you're willing to pass our way.

You can e-mail or write me directly to let me know what you did or didn't like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or e-mail address. I will carefully review your comments and share them with the author
and editors who worked on the book.

E-mail: trina.macdonald@pearson.com
Mail: Trina MacDonald
 Senior Acquisitions Editor
 Addison-Wesley/Pearson Education, Inc.
 75 Arlington St., Ste. 300
 Boston, MA 02116

1
Introducing Auto Layout

Auto Layout re-imagines the way developers create user interfaces. It’s provides a flexible and
powerful system that describes how views and their content relate to each other and to the
windows and superviews they occupy. In contrast to older design approaches, this technology
offers incredible control over layout with a wider range of customization than frames, springs,
and struts can express. Somewhat maligned by exasperated developers, Auto Layout has gained
a reputation for difficulty and frustration, particularly when used through Interface Builder
(IB).

That’s why this book exists. You’re about to learn Auto Layout mastery by example, with
plenty of explanations and tips. Instead of struggling with class documentation, you’ll learn, in
simple steps, how the system works and why it’s far more powerful than you first imagined.
You’ll read about common design scenarios and discover best practices that make Auto Layout
a pleasure rather than a chore to use.

Ready to get started? This chapter explains the basic concepts that lie behind Auto Layout and,
for those who need to, how to opt out of Auto Layout until you’re ready to proactively take
advantage of its many benefits.

 Note

Auto Layout first debuted for iOS 6 in 2012. It also appears in OS X starting with 10.7 Lion. Its
technology is based on the Cassowary constraint-solving toolkit developed at the University of
Washington by Greg J. Badros and Alan Borning. Cassowary’s constraint system has been
ported to JavaScript, .NET/Java, Python, Smalltalk, C++, and to Cocoa.

The similarly themed CAConstraint and CAConstraintLayoutManager classes debuted in
OS X 10.5 and are used with Core Animation layer trees. They are otherwise unrelated to Auto
Layout.

Saying “No” to Auto Layout
Before diving into Auto Layout, it helps to know how to opt out. If you’re not yet ready to use
these new features, you can easily switch off Auto Layout for individual storyboard and NIB
files. All it takes is a simple switch to have Xcode revert you to the old style of Autosizing
edits.

Here’s what you do:

1. In Xcode, select any user interface document (storyboards or NIB file) from the Project
Navigator (View > Navigators > Show Project Navigator).

2. Open the File Inspector (View > Utilities > Show File Inspector).

3. In the File Inspector, locate the Interface Builder Document section. Just below
Document Versioning, you’ll find a Use Autolayout (or Use Auto Layout) check box,
which you see in Figure 1-1.

Figure 1-1 Disable Auto Layout by unchecking the Use Autolayout (sic) or Use
Auto Layout box in Xcode’s File Inspector. This option appears for both iOS and
OS X projects. Although Apple documentation from 2012 and later now
universally refers to the technology as Auto Layout, some references still use
Autolayout as a single phrase.

4. Uncheck this box to return Interface Builder to Autosizing behavior.

Under Autosizing, views use the autoresizingMask property to ensure that they resize
correctly, such as when a device reorients or a user resizes a window. With Auto Layout
disabled, you work with struts, springs, and autoresizingMasks. Figure 1-2 shows the
Size Inspector (View > Utilities > Show Size Inspector) for a view with Auto Layout enabled
(left) and disabled (right).

Figure 1-2 When Auto Layout is enabled (left), IB’s Size Inspector offers
controls to adjust a view’s layout priorities and a provides list of constraints that
mention the view. When disabled (right), the inspector reverts to the Autosizing
struts and springs editor that correspond to a view’s autoresizingMask.

In code, Autosizing layout is even easier. You opt views out of Autosizing to participate in the
new Auto Layout system. All views default to the older behavior even when modern runtimes
use constraint-based layout. That’s because the runtime invisibly handles the translation
between your old-style code and the new-style constraint system on your behalf.

When a view’s translatesAutoresizingMaskIntoConstraints property is set to
YES (the default), the runtime uses that view’s autoresizing mask to produce matching
constraints in the new Auto Layout system. The rules apply like they always did, even though
the implementation details have been modernized.

Here’s what Apple has to say on the matter. This comment is from the UIView.h header file,
and it’s essentially identical to the text in NSLayoutConstraint.h on OS X:

By default, the autoresizing mask on a view gives rise to constraints that fully determine the view's
position. Any constraints you set on the view are likely to conflict with autoresizing constraints, so you
must turn off this property first. IB will turn it off for you.

Autoresizing translation creates constraints to implement Autosizing rules and adds them to
each superview. As you will see throughout this book, this pattern of generating constraints and
adding them to a superview is quite common. In Chapter 2, “Constraints,” you learn exactly
where each constraint should live. In this instance, you do no work yourself. The Auto Layout
system handles all migration from autoresizing.

When you’re ready to move to Auto Layout, make sure that the constraints automatically
generated for you don’t conflict with constraints you build on your own. Auto Layout
constraints belong to the private NSAutoresizingMaskLayoutConstraint class.
Constraints you build belong to the public NSLayoutConstraint class.

You may see instances of the resizing constraints mentioned in debugging logs produced by
Xcode and should not be surprised by them. When conflicts do occur, check each view’s
translatesAutoresizingMaskIntoConstraints property. Ensure that the Auto
Layout system is not trying to create constraints that conflict with the ones that you are building
yourself. In many cases, disabling autoresizing mask translation resolves basic conflicts.

That’s not to say that you must disable autoresizing entirely. You are welcome to mix and
match autoresizing views with constraint-based layout as long as rules don’t clash. For
example, you can load a NIB whose subviews are laid out using struts and springs and allow
that view, in turn, to operate as a first-class member of the Auto Layout world (see Chapter 3,
“Interface Builder Layout,” for an example). The key is encapsulation. As long as rules do not
conflict, you can reuse complex views you have already established in your projects.

Saying “Yes” to Auto Layout
Auto Layout revolutionizes view layout with something wonderful, fresh, and new. Apple's
layout features make your life easier and your interfaces more consistent, and they add
resolution-independent placement for free. You get all this regardless of device geometry,
orientation, and window size.

Auto Layout works by creating relationships between onscreen objects. It specifies the way the
runtime system automatically arranges your views. The outcome is a set of robust rules that
adapt to screen and window geometry. With Auto Layout, you describe requirements (called
constraints) that specify how views relate to one another and you set view properties that
describe a view’s relationship to its content. With Auto Layout, you can make requests such as
the following:

! Match one view’s size to another view’s size so that they always remain the same width.

! Center a view in its parent no matter how much the parent reshapes.

! Align one view to another view’s bottom while laying out a row of items.

! Offset a pair of items by some constant distance (for example, pad with a standard
8-point space).

! Tie the bottom of one view to another view’s top so that when you move one, you move
them both.

! Don’t allow an image view to shrink to the point where the image cannot be fully seen at
its natural size. (That is, don’t compress or clip the view’s content.)

! Prevent a button from showing too much padding around its text.

The first five items in this list describe constraints that define view geometry and layout,
establishing visual relationships between views. The last two items reference view properties
that relate each view to the content it presents. When working with Auto Layout, you negotiate
both of these kinds of tasks.

Visual Relationships

Figure 1-3 shows a custom iOS control built entirely with Auto Layout. This picker enables
users to select a color. Each pencil consists of a fixed-size tip view placed directly above a
stretchable bottom view. As users make selections, items move up and down to indicate their
current choice. Auto Layout constraints ensure that the each tip stays exactly on top of its base,
that each “pencil” is sized to match, and that the paired tip/base items are laid out in a bottom-
aligned row.

Figure 1-3 This pencil-picker custom control was built entirely with Auto
Layout.

This particular pencil picker is built programmatically; that is, a data source supplies the
number of pencils and the art for each tip. By describing the relationships between each item,
Auto Layout simplifies the process of extending this control. You need only say “place each
new item to the right, match its width to the existing pencils, and align its bottom” to grow this
picker from 10 items to 11, 12, or more. Best of all, constraint changes can be animated. The
pencil tip animates up and down as the base reshapes to new constraint offsets.

Content-Driven Layout

Auto Layout can also consider a view’s content during layout. To accomplish this, it may need
to negotiate competing requests. For example, imagine a resizable content view with several
subviews, like the one shown in Figure 1-4. Suppose that you want to be able to resize this
view but don’t want to clip any subview content while doing so. Auto Layout helps you express
these desires and rank them so that the system makes sure not to clip when resizing.

Figure 1-4 shows a small OS X application whose primary window protects the content of its
two subviews. These include a label whose content is the string Label and a resizable button
whose content is, similarly, the string Button. The original content view as the application
launches is shown in the left screenshot.

Figure 1-4 Auto Layout can ensure that the stretchable button shown in the original view (left)
won’t clip its subviews while resizing. The window cannot resize any smaller than the small view
(right) because doing so would cause either the label or button to clip.

At the right of Figure 1-4, you see the smallest possible version of this view. Because its Auto
Layout rules resist clipping (these rules are called compression resistance), the window cannot
resize any further. The only way to allow it to shrink beyond this size is to demote one or both
of its “do not clip” subview rules.

A similar rule called content hugging allows a view to resist padding and stretching, keeping
the frame of each view close to the natural size of the content it presents. Both compression
resistance and content hugging are demonstrated further later in this chapter as well as in
Chapter 2.

Prioritizing Rules

Rule-balancing forms an important backbone of Auto Layout design work. You not only
specify the layout qualities of each view, you also prioritize them. When rules come into
conflict—and they do quite regularly—the system uses these rankings to select the most
important layout qualities to preserve.

In the example of Figure 1-4, the integrities of the label and button contents have priority over
any request for a smaller window. That forces a natural minimum on the window size,
preventing it from resizing any further than the smaller version shown at the bottom of the
figure.

Auto Layout Strengths

To summarize, you can do a lot with Auto Layout. Auto Layout offers a flexible and powerful
descriptive system that updates and strengthens view layout. You can make rules about how
views relate to each other and to their content, and you can prioritize rules to determine which
rules prevail in the event of conflict.

You’ve seen just a taste of what Auto Layout can do. If you’re not using Auto Layout, you’re
missing out on one of the best tools Apple has delivered to developers in years.

 Note

Auto Layout does not exist on OS versions earlier than iOS 6 and OS X 10.7. Should you
attempt to run on earlier systems, your app will crash. To write backward-compatible
applications that leverage Auto Layout, make sure to implement two versions of your layout
routines: one for Auto Layout and one with Autosizing for earlier deployments. If you use
Autosizing exclusively, you will miss out on the power of an amazing new technology.

Constraints
Constraints are rules that allow you to describe view layout. They limit how things relate to
each other, specifying how they may be laid out. With constraints, you can say "these items are
always lined up in a horizontal row" or "this item resizes itself to match the height of that
item." Constraints provide a layout language that you add to views to describe visual
relationships.

The constraints you work with belong to the NSLayoutConstraint class. This Objective-C
class specifies relationships between view attributes, such as heights, widths, positions, and
centers. What’s more, constraints are not limited to equalities. They can describe views using
greater-than-or-equal and less-than-or-equal relations so that you can say that one view must be
at least as big or no bigger than another. Auto Layout development is built around creating and
adjusting these relationship rules in a way that fully defines your interfaces.

Together, an interface’s constraints describe the ways views can be laid out to dynamically fit
any screen or window geometry. In Cocoa and Cocoa Touch, a well-designed interface consists
of constraints that are satisfiable and sufficient. The next sections introduce these terms and
explain why they are important.

 Note

Each individual constraint refers to either one or two views. Constraints relate one view’s
attributes either to itself or to another view.

Satisfiability

Cocoa/Cocoa Touch takes charge of meeting layout demands via a constraint satisfaction
system. The rules must make sense. In logic systems, this is called satisfiability or validity. A
view cannot be both to the left and the right of another view. So, the key challenge when
working with constraints is ensuring that the rules are rigorously consistent.

Any views you lay out in Interface Builder are guaranteed to be satisfiable. You cannot create a
wrong interface with inconsistent rules in IB. The same is not true in code. You can easily build
views and tell them to be exactly 360 points wide and 140 points wide at the same time. This
can be mildly amusing if you’re trying to make things fail, but it is more often utterly
frustrating when you’re trying to make things work, which is what most developers spend their
time doing.

When rules fail, they fail loudly. Xcode provides you with verbose updates explaining what
might have gone wrong. In some cases, your code will raise exceptions. Your app terminates if
you haven’t implemented handlers. In others (as in the example that follows), the Auto Layout
keeps your app running by deleting conflicting constraint rules on your behalf. This produces
interfaces that can be somewhat random.

Regardless of the situation, it’s up to you to start debugging your code and your IB layouts to
try to track down why things have broken and the source of the conflicting rules. This is not
fun.

Consider the following console output. The text refers to that view I mentioned that attempts to
be both 360 points and 140 points wide at the same time. The bolding in the text is mine. I’ve
highlighted the sizes for each constraint, plus the reason for the error. In this example, both
rules have the same priority and are inconsistent with each other:
2013-01-14 09:02:48.590 HelloWorld[69291:c07]

 Unable to simultaneously satisfy constraints.

Probably at least one of the constraints in the following list is one you

don't want. Try this: (1) look at each constraint and try to figure out which

you don't expect; (2) find the code that added the unwanted constraint or

constraints and fix it.

(Note: If you're seeing NSAutoresizingMaskLayoutConstraints that you don't

understand, refer to the documentation for the UIView property

translatesAutoresizingMaskIntoConstraints)

(

 "<NSLayoutConstraint:0x7147d40 H:[TestView:0x7147c50(360)]>",

 "<NSLayoutConstraint:0x7147e70 H:[TestView:0x7147c50(140)]>"

)

Will attempt to recover by breaking constraint

 <NSLayoutConstraint:0x7147d40 H:[TestView:0x7147c50(360)]>

Break on objc_exception_throw to catch this in the debugger.

The methods in the UIConstraintBasedLayoutDebugging category on

 UIView listed in <UIKit/UIView.h> may also be helpful.

This unsatisfiable conflict cannot be resolved except by breaking one of the constraints, which
the Auto Layout system does. It arbitrarily discards one of the two size requests (in this case,
the 360 size) and logs the results.

Sufficiency

Another key challenge is making sure that your rules are specific enough. An underconstrained
interface (one that is insufficient or ambiguous) can create random results when faced with
many possible layout solutions (see Figure 1-5, top). You might request that one view lies to
the right of the other, but unless you tell the system otherwise, you might end up with the left
view at the top of the screen and the right view at the bottom. That one rule doesn't say
anything about vertical orientation.

Figure 1-5 Odd layout positions (top) are the hallmark of an underconstrained
layout. Although these particular views are constrained to show up onscreen,
their near-random layout indicates insufficient rules describing their positions.
By default, views may not show up at all, especially when they are
underconstrained. Chapter 4, “Visual Formats,” discusses fallback rules that
ensure views are both visibly sized and onscreen. A sufficient layout (bottom)
provides layout rules for each of its views.

A sufficient set of constraints fully expresses a view’s layout, as in Figure 1-5 (bottom). In this
image, each view has a well-defined size and position.

Sufficiency does not mean “hard coded.” In this example, none of these positions are exactly
specified. The Auto Layout rules say to place the views in a horizontal row, center-aligned
vertically to each other. The first view is pinned off of the parent’s left-center. These
constraints are sufficient because every view’s position can be determined from its relations to
other views.

A sufficient or unambiguous layout generally offers at least two geometric rules per axis, or a
minimum of four rules in all. For example, a view might have an origin and a size—as you
would with frames—to specify where it is and how big it is. But, you can express much more
with Auto Layout. The following sufficient rule examples define a view’s position and extent
along one axis, illustrated in Figure 1-6:

! You could pin the horizontal edges (A) of a view to exact positions in its superview. (The
two properties defined in this example are the view’s minimum X and maximum X
positions.)

! You could match the width of one view to another subview (B), and then center it
horizontally to its parent (width and center X).

! You could declare a view’s width to match its intrinsic content, such as the length of text
drawn on it (C), and then pin its right (trailing) edge to the left (leading) edge of another
view (width and maximum X).

! You could pin the top and bottom of a view to the parent (D) so that the view stretches
vertically along with its parent (minimum Y and maximum Y).

! You could specify a view’s vertical center and its maximum extent (E), letting Auto
Layout calculate the height from that offset (center Y and maximum Y).

! You could specify a view’s height and its offset from the top of the view (F), hanging the
view off the top of the parent (minimum Y and height.).

Figure 1-6 Examples of sufficient layout involve two rules per axis.

Each of these rules provides enough information along one axis to avoid ambiguity. That’s
because each one represents a specific declaration about how the view fits into the overall
layout.

When rules fail, they lack this exactness. For example, if you supply only the width, where
should the system place the item along the X-axis? At the left? Or the right? Somewhere in the
middle? Or maybe entirely offscreen? Or if you only specify a Y position, how tall should the
view be? 50 points? 50,000 points? 0 points? Missing information leads to ambiguous layouts.

You often encounter ambiguity when working with inequalities, as in the top image of Figure
1-5. The rules for these views say to stay within the bounds of the parent, but where? If their
minimum X value is greater than or equal to their parent’s minimum X value, what should that
X value be? The rules are insufficient, and the layout is ambiguous.

Constraint Attributes
Constraints work with a limited geometric vocabulary. Attributes are the "nouns" of the
constraint system, describing positions within a view's alignment rectangle. Relations are
"verbs," specifying how the attributes compare to each other.

The attribute nouns (see Figure 1-7) speak to physical geometry. Constraints offer the
following view attribute vocabulary:

! left, right, top, and bottom—The edges of a view's alignment rectangle on the left (A),
right (B), top (C), and bottom (D) of the view. These correspond to a view’s minimum X,
maximum X, minimum Y, and maximum Y values.

! leading and trailing—The leading and trailing edges of the view's alignment rectangle.
In left-to-right (English-like) systems, these correspond to "left" (leading, A)) and "right"
(trailing, B). In right-to-left linguistic environments like Arabic or Hebrew, these roles
flip; right is leading (B), and left is trailing (A).

 Tip

When internationalizing your applications, always prefer leading and trailing over left and right.
This allows your interfaces to flip properly when using right-to-left languages, like Arabic and
Hebrew.

! width and height—The width (E) and height (F) of the view's alignment rectangle.

! centerX and centerY—The x-axis (H) and y-axis (G) centers of the views' alignment
rectangle.

! baseline—The alignment rectangle's baseline (I), typically a set offset above its bottom
attribute.

Figure 1-7 Attributes specify geometric elements of a view.

The relation verbs compare values. Constraint math is limited to three relations: setting equality
or setting lower and upper bounds for comparison. You can use the following layout relations:

! Less-than-or-equal inequality—NSLayoutRelationLessThanOrEqual

! Equality—NSLayoutRelationEqual

! Greater-than-or-equal inequality—NSLayoutRelationGreaterThanOrEqual

This might not sound like a lot expressively. However, these three relations cover all the
ground needed for specific equalities and for maximum and minimum limits.

Missing Views
It’s common for developers new to Auto Layout to “lose” their views. They discover that views
they have added end up offscreen or at that they have a zero size due to constraints.
(Incidentally, Auto Layout works with positive sizes, zero or bigger. You cannot create views
with negative widths and heights.) The missing views problem catches many devs. This
problem happens both with underconstrained views and views with inconsistent rules.

In this section, you see a little bit of constraint code, even before you’ve read about the details
of the constraint class and how instances work. Please bear with me. I’ve added highlights that
help explain ambiguous and underconstrained scenarios to make a point. If you work with Auto
Layout, you should be aware of these situations before you start using the technology.

Underconstrained Missing Views

With underconstrained views, there’s not enough information for the Auto Layout system to
build from, so it often defaults to a size of zero. Consider the following example. This code
creates a new view, prepares it for Auto Layout, and then adds two sets of constraints, which I
bolded:
// Create a new view and add it into the Auto Layout system

// This view goes missing despite the initWithFrame: size

UIView *view = [[UIView alloc]

 initWithFrame:CGRectMake(0.0f, 0.0f, 30.0f, 30.0f)];

[self.view addSubview:view];

view.translatesAutoresizingMaskIntoConstraints = NO;

// Add two sets of rules, pinning the view and setting height

[self.view addConstraints:[NSLayoutConstraint

 constraintsWithVisualFormat:@"V:|[view(==80)]" // 80 height

 options:0 metrics:nil

 views:NSDictionaryOfVariableBindings(view)]];

[self.view addConstraints:[NSLayoutConstraint

 constraintsWithVisualFormat:@"H:|[view]"

 options:0 metrics:nil

 views:NSDictionaryOfVariableBindings(view)]];

The first set of constraints pins the view to the top of its parent and sets the height to 80. The
second set pins the view to the parent’s leading edge. (This is the left side in the United States,
with English’s left-to-right writing system.) I deliberately did not specify a width. The view’s
size is, therefore, underconstrained.

You might expect Auto Layout to default to the initial frame size, which was set to 30 by 30
points. It does not. When this snippet set
translatesAutoresizingMaskIntoConstraints to NO, that initialization was
essentially thrown away. As the view appears onscreen, the ambiguous rules passed to Auto
Layout result in a width that falls to zero, creating a nonvisible view:
2013-01-14 10:47:40.460 HelloWorld[73891:c07]

 <UIView: 0x884dfc0; frame = (0 0; 0 80); layer = <CALayer: 0x884e020>>

Missing Views with Inconsistent Rules

Inconsistent rules may also produce views that are missing in action. For example, imagine a
pair of rules that say “View A is three times the width of View B” and “View B is twice the
width of View A.” The following code snippets implement these rules. I’ve highlighted the
parts of the code that tell the rule story:
NSLayoutConstraint *constraint;

constraint = [NSLayoutConstraint

 constraintWithItem:viewA

 attribute:NSLayoutAttributeWidth

 relatedBy:NSLayoutRelationEqual

 toItem:viewB

 attribute:NSLayoutAttributeWidth

 multiplier:3.0f constant:0.0f];

[self.view addConstraint:constraint];

constraint = [NSLayoutConstraint

 constraintWithItem:viewA

 attribute:NSLayoutAttributeWidth

 relatedBy:NSLayoutRelationEqual

 toItem:viewB

 attribute:NSLayoutAttributeWidth

 multiplier:2.0f constant:0.0f];

[self.view addConstraint:constraint];

Surprisingly, these two rules are neither unsatisfiable nor ambiguous, even though common
sense suggests otherwise. That’s because both rules are satisfied when View A and View B
have zero width. At a zero size, View A’s width can be three times the width of View B, and
View B twice the width of View A:

0 = 0 * 3 and 0 = 0 * 2

When this code is run and the rules applied, the views present the zero-width frames expected
from this scenario:
2013-01-14 11:02:38.005 HelloWorld[74460:c07]

 <TestView: 0x8b30910; frame = (320 454; 0 50); layer = <CALayer: 0x8b309d0>>

2013-01-14 11:02:38.006 HelloWorld[74460:c07]

 <TestView: 0x8b32570; frame = (320 436; 0 68); layer = <CALayer: 0x8b32450>>

Tracking Missing Views

You can track down “missing” views with the debugger by inspecting their geometry after you
expect them to appear (for example, viewWillAppear: and awakeFromNib). You may
want to add NSAssert statements about their expected size and positions. Some will be, as
discussed, zero sized.

The following view, for example, had a zero-sized frame because it was underconstrained in
the Auto Layout system:
2013-01-09 14:31:41.869 HelloWorld[29921:c07] View: <UIView: 0x71bb390;

frame = (30 430; 0 0); layer = <CALayer: 0x71bb3f0>>

Others may simply be offscreen because you haven’t told Auto Layout that the views must
appear onscreen. This view had a positive size (20 points by 20 points), but its frame with its
(–20, –20) origin lay outside of its view controller’s presentation:
2013-01-09 14:33:37.546 HelloWorld[29975:c07] View: <UIView: 0x7125f70;

frame = (-20 -20; 20 20); layer = <CALayer: 0x7125fd0>>

In other cases, you might load a view from a storyboard or NIB and see only part of it onscreen,
or it may occupy the entire screen at once. These are hallmarks of an underlying Auto Layout
issue.

Ambiguous Layout
During development, you can test whether a view’s constraints are sufficient by calling
hasAmbiguousLayout. This returns a Boolean value of YES for a view that could have
occupied a different frame and NO for a view whose constraints are fully specified.

These results are view specific. For example, imagine a fully constrained view whose child is
underconstrained. The view itself does not have ambiguous layout, even though its child does.
You can and should test the layout individually for each view in your hierarchy, as follows:
@implementation VIEW_CLASS (AmbiguityTests)

// Debug only. Do not ship with this code

- (void) testAmbiguity

{

 NSLog(@"<%@:0x%0x>: %@",

 self.class.description, (int)self,

 self.hasAmbiguousLayout ? @"Ambiguous" : @"Unambiguous");

 for (VIEW_CLASS *view in self.subviews)

 [view testAmbiguity];

}

@end

 Note
In this code snippet, and throughout this book, VIEW_CLASS is defined as either UIView or
NSView, depending on the system of deployment.

This code descends through a view hierarchy and lists the results for each level. Here’s what a
simple layout with two subviews returned for the underconstrained layout code originally
shown in Figure 1-5 (top). The parent view does not express ambiguous layout but its child
views do:
HelloWorld[76351:c07] <UIView:0x715a9a0>: Unambiguous

HelloWorld[76351:c07] <TestView:0x715add0>: Ambiguous

HelloWorld[76351:c07] <TestView:0x715c9e0>: Ambiguous

You can run these tests as soon as you like—in loadView or wherever you set up new views
and add constraints. It’s generally a good first step for any time you’re adding new views to
your system as well. It ensures that your constraints really are as fully specified as you think
they are.

You do not need to test any views produced in Interface Builder. IB guarantees that the rules it
produces are unambiguous.

Exercising Ambiguity

Apple offers a curious tool in the form of its exerciseAmbiguityInLayout view
method. It automatically tweaks view frames that express ambiguous layouts. This is a view
method (UIView and NSView) that checks for ambiguous layout and attempts to randomly
change a view’s frame.

Figure 1-8 shows this call in action. Here, you see an OS X window with three
underconstrained subviews. These views appear in gray (bottom left), green (top right), and tan
(bottom right). Their positions have not been set programmatically, so they end up wherever
Auto Layout places them. In this example, after exercising ambiguity (see Figure 1-8, right),
the tan view moves to the bottom left.

Figure 1-8 Exercising ambiguity allows you to change view frames to other legal values
allowable under your current set of Auto Layout constraints.

This tells you that (1) this is one of the affected underconstrained views and (2) you can see
some of the range that might apply to this view due to its lack of positioning constraints.

Exercising ambiguity is a blunt and limited weapon. In this example, the green and gray views
are unchanged, even though they also had ambiguous layout. Don’t relay exercising ambiguity
to exhaustively find issues in your project, although it can be a useful tool for the right
audience.

I am not a big fan of this feature, but, to be absolutely honest, it has helped me out of a pickle
or two.

Visualizing Constraints

A purple outline surrounds the window in Figure 1-8. This is an OS X-only feature. On OS X,
you can visualize constraints by calling visualizeConstraints: on any NSWindow
instance. You pass it an array of constraints you want to view.

Here is a simple way to exhaustively grab the constraints from a view and all its subviews
using simple class extension:
@implementation VIEW_CLASS (GeneralConstraintSupport)

// Return all constraints from self and subviews

- (NSArray *) allConstraints

{

 NSMutableArray *array = [NSMutableArray array];

 [array addObjectsFromArray:self.constraints];

 for (VIEW_CLASS *view in self.subviews)

 [array addObjectsFromArray:[view allConstraints]];

 return array;

}

@end

 Note

Apple can and does regularly extend classes. When creating categories for production code, do
not use obvious names (like allConstraints) that may conflict with Apple’s own
development. Adding custom prefixes, typically company initials, guards your code against
conflicts with potential future updates. This book does not follow its own advice solely to make
the code more readable.

The purple backdrop that appears tells you whether the window’s layout is ambiguous. It tests
from the window down its view hierarchy all the way to its leaves. If it finds any ambiguity, it
offers the Exercise Ambiguity button, which means that you don’t have to call the option from
your own code.

This option also shows you the constraints you passed as clickable blue lines, helping you
visualize those constraints in a live application. Click any item to log it to the Xcode debugging
console.

All of these methods—testing for ambiguous layout, exercising that layout ambiguity, and
visualizing constraints—are meant for development builds only. Don’t ship production code
that calls them.

Intrinsic Content Size
Under Auto Layout, a view’s content plays as important a role in its layout as its constraints.
This is expressed through each view’s intrinsicContentSize. This size describes the
minimum space needed to express the full view content without squeezing or clipping that data.
It derives from the natural properties of the content each view presents.

For an image view, for example, this corresponds to the size of the image it presents. A larger
image requires a larger intrinsic content size. Consider the following code snippet. It loads a
standard Icon.png image into an image view and reports the view’s intrinsic content size. As
you’d expect, this size is 57 by 57 points, the size of the image supplied to the view (see Figure
1-9, top):
UIImageView *iv = [[UIImageView alloc]

 initWithImage:[UIImage imageNamed:@"Icon.png"]];

NSLog(@"%@", NSStringFromCGSize(iv.intrinsicContentSize));

Figure 1-9 A view’s intrinsic content size relates the natural size that its
contents occupy.

For a button, this varies with its title (see the three button images in Figure 1-9). As a title
grows or shrinks, the button’s intrinsic content size adjusts to match. This snippet creates a
button and assigns it a pair of titles, reporting the intrinsic content size after each assignment:
UIButton *button =

 [UIButton buttonWithType:UIButtonTypeRoundedRect];

// Longer title, Figure 1-9, bottom-left image

[button setTitle:@"Hello World" forState:UIControlStateNormal];

NSLog(@"%@: %@", [button titleForState:UIControlStateNormal],

 NSStringFromCGSize(button.intrinsicContentSize));

// Shorter title, Figure 1-9, bottom-right image

[button setTitle:@"On" forState:UIControlStateNormal];

NSLog(@"%@: %@", [button titleForState:UIControlStateNormal],

 NSStringFromCGSize(button.intrinsicContentSize));

When run, this snippet outputs the following sizes. The Hello World version of the button
expresses a wider intrinsic content size than the On version, and both use the same height.
These values can vary further as you customize a font face and font size and title text:
2013-01-11 12:16:46.616 HelloWorld[47516:c07] Hello World: {107, 43}

2013-01-11 12:16:46.616 HelloWorld[47516:c07] On: {45, 43}

A view’s intrinsic size allows Auto Layout to best match a view’s frame to its natural content.
Earlier, you read that unambiguous layout generally requires setting two attributes in each axis.
When a view has an intrinsic content size, that size accounts for one of the two attributes. You
can, for example, place a text-based control or an image view in the center of its parent and its
layout will not be ambiguous. The intrinsic content size plus the location combine for a fully
specified placement.

When you change a view’s intrinsic contents, call invalidateIntrinsicContentSize
to let Auto Layout know to recalculate at its next layout pass.

Compression Resistance and Content Hugging
As the name suggests, compression resistance refers to the way a view protects its content. A
view with a high compression resistance fights against shrinking. It won’t allow that content to
clip. Consider the buttons at the right of Figure 1-10. Both screenshots show an application
responding to a constraint that wants to set that button width to 40 points.

Figure 1-10 Compression resistance describes how a view attempts to maintain its
minimum intrinsic content size. The top screenshot’s button has a high compression
resistance.

The top version uses a high compression resistance value and the bottom version uses a lower
value. As you can see, the higher priority ensures that the top button succeeds in preserving its
intrinsic content. In the case of the bottom button, its resistance is too low. The resizing
succeeds and the button compresses, clipping the text.

The button’s “don’t clip” request is still there, but it’s no longer important enough to prevent
the “please set the width to 40” constraint from resizing the view to the button’s detriment.
Auto Layout often comes across two conflicting requests. When only one of those requests can
win, it satisfies the one with the higher priority.

You specify a view’s compression resistance through Interface Builder’s Size Inspector (View
> Utilities > Show Size Inspector, View > Content Compression Resistance Priority), as shown
in Figure 1-11, or by setting a value in code. Set the value separately for each axis, horizontal
and vertical. Values may range from 1 (lowest priority) to 1,000 (required priority):
[button setContentCompressionResistancePriority:500

 forAxis:UILayoutConstraintAxisHorizontal];

Figure 1-11 Adjust a view’s Content Compression Resistance and Content
Hugging priorities in IB’s Size Inspector or through code. Although these
numbers are presented as a scale of positive integers in IB, they’re actually
typed as floats: typedef float UILayoutPriority (iOS) and
NSLayoutPriority (OS X).

This inspector is also where you set a view’s content hugging priority. This refers to the way a
view prefers to avoid extra padding around its core content (as shown here) or stretching of that
core content (as with an image view that uses a scaled content mode). The buttons in Figure
1-12 are being told to stretch to meet up with label at the left.

The button at the top has a high content hugging priority, so it resists that stretching. It hugs to
the content (in this case, the word Button). The button in the bottom screenshot has a lower
content hugging priority. The request to stretch left wins out. The button pads its contents and
produces the wide result you see.

Figure 1-12 Content hugging describes a view’s desire to match its frame to the
natural size of its content. A strong hugging priority limits the view from growing
much larger than the content it presents. A weak priority may allow a view to
stretch and isolate its content among a sea of padding.

As with compression resistance, you set a view’s hugging priority in IB’s Size Inspector (refer
to Figure 1-11) or in code:
[button setContentHuggingPriority:501

 forAxis:UILayoutConstraintAxisHorizontal]

Auto Layout and Frames
With Auto Layout, view frames play a new, less important role. In an Auto Layout world,
frames are now the guys in an opera who stands around holding a spear while the constraints
and intrinsic content sizes sing their arias. The focus moves from specific sizes and placement
to suggestions and relations.

When you worked with Autosizing, frames said where to place views on the screen and how
big those views would be. In Auto Layout, constraints determine view size and placement using
a geometric element called an alignment rectangle.

As developers create complex views, they may introduce visual ornamentation such as
shadows, exterior highlights, reflections, and engraving lines. As they do, these features usually
become attached as subviews or sublayers or integrated into a view’s image. As a consequence,
a view's full extent may grow as items are added.

Unlike frames, a view’s alignment rectangle is limited to a core visual element. Its size remains
unaffected as new items join the primary view. Consider Figure 1-13 (left). It depicts a view
with an attached shadow and a badge. When laying out this view, you want Auto Layout to
focus on aligning just the core element.

Figure 1-13 A view's alignment rectangle (center) refers strictly to the core
visual element to be aligned, without embellishments.

The center image shows the view’s alignment rectangle. This rectangle excludes all
ornamentation, including the drop shadow and badge. It’s the part of the view you want
considered when Auto Layout does its work. Contrast this with the rectangle shown in the right
image of Figure 1-13. This version includes all the visual ornamentation, extending the view’s
frame beyond the area that should be considered for alignment.

This rectangle encompasses all the view's visual elements. It includes the shadow and badge.
These ornaments could potentially throw off a view's alignment features (for example, its
center, bottom, and right) if they were considered during layout.

By working with alignment rectangles instead of frames, Auto Layout ensures that key
information, like a view's edges and center, are properly considered during layout. In Figure
1-14, the adorned view is perfectly aligned on the background grid. Its badge and shadow are
not considered during placement.

Figure 1-14 Auto Layout only considers this view’s alignment rectangle when
laying it out as centered in its parent. The shadow and badge don’t affect its
placement.

Visualizing Alignment Rectangles

Both iOS and OS X enable you to overlay views with their alignment rectangles in your
running application. You set a simple launch argument from your app’s scheme. This is
UIViewShowAlignmentRects for iOS and NSViewShowAlignmentRects for OS X.
Set the argument value to YES and make sure to prefix with a dash, as shown in Figure 1-15.

When the app runs, rectangles show over each view. The resulting rectangles are light and can
be difficult to see.

Figure 1-15 Set launch arguments in the scheme editor.

Image Alignment Insets

Alignment issues affect the way you handle images. Image art often contains hard-coded
embellishments, like highlights, shadows, and so forth. These items take up little memory and
run more efficiently than those created by adding layer effects. Because of that, many
developers use images enhancements in preference to Quartz 2D effects because of their low
overhead.

Figure 1-16 demonstrates the typical problem encountered when using image-based
ornamentation with Auto Layout. The left image shows a basic image view, whose art I
created in Photoshop. I used a standard drop shadow effect. When added to the image view,
the 20-point by 20-point area I left for the shadow throws off the view’s alignment rectangle,
causing it to appear slightly too high and left.

In its default implementation, the image view has no idea that the image contains ornamental
elements. You have to tell it how to adjust its intrinsic content so that the alignment rectangle
considers just that core material.

To accommodate the shadow, you load and then rebuild the image. This is a two-step process.
First, you load the image as you normally would (for example, with imageNamed:). Then,
you call imageWithAlignmentRectInsets: on that image to produce a new version
supporting the specified insets:
UIImage *image = [[UIImage imageNamed:@"Shadowed.png"]

 imageWithAlignmentRectInsets:UIEdgeInsetsMake(0, 0, 20, 20)];

UIImageView *imageView = [[UIImageView alloc] initWithImage:image];

After specifying the alignment rect insets, the updated version now properly aligns, as you see
in Figure 1-16, right. I logged out the pertinent details so that you can compare the view details.
Here’s what the view frame looks like (it shows the full 200!200 image size), the intrinsic
content size built from the image’s alignment insets (180!180), and the resulting alignment
rectangle used to center the image view’s frame:
HelloWorld[53122:c07] Frame: {{70, 162}, {200, 200}}

HelloWorld[53122:c07] Intrinsic Content Size: {180, 180}

HelloWorld[53122:c07] Alignment Rect: {{70, 162}, {180, 180}}

Figure 1-16 Adjust your images to account for alignment when using Auto Layout. At the
left, the image view was created with a raw, unadjusted image. It displays slightly too far left
and up, which you can inspect by looking at the points where the circle crosses the
background grid. I added lines over the screenshot to emphasize where the centering
should have occurred. The right screenshot shows the adjusted image view. It centers
exactly onto its parent view.

Declaring Alignment Rectangles

Cocoa and Cocoa Touch offer a several additional ways to report alignment geometry. You
may implement alignmentRectForFrame:, frameForAlignmentRect:,
baselineOffsetFromBottom, and alignmentRectInsets. These methods allow
your views to declare and translate alignment rectangles from code.

For the most part, thankfully, you can ignore alignment rectangles and insets. Things just, for
the most part, work. The edge cases you encounter usually happen when Auto Layout comes
into conflict with transforms (and other circumstances when the actual frame doesn’t match the
visual frame as with buttons).

A few notes on these items:

! alignmentRectForFrame: and frameForAlignmentRect: must always be
mathematical inverses of each other.

! Most custom views only need to override alignmentRectInsets to report content
location within their frame.

! baselineOffsetFromBottom is available only for NSView and refers to the
distance between the bottom of a view’s alignment rectangle and the view’s content
baseline, such as that used for laying out text. This is important when you want to align
views to text baselines and not to the lowest point reached by typography descenders, like
j and q.

Here’s some information about alignmentRectForFrame:and
frameForAlignmentRect: from the UIView.h documentation:

These two methods should be inverses of each other. UIKit will call both as part of layout computation.
They may be overridden to provide arbitrary transforms between frame and alignment rect, though the
two methods must be inverses of each other. However, the default implementation uses
alignmentRectInsets, so just override that if it's applicable. It's easier to get right.

A view that displayed an image with some ornament would typically override these, because the
ornamental part of an image would scale up with the size of the frame. Set the NSUserDefault
UIViewShowAlignmentRects to YES to see alignment rects drawn.

NSLayoutConstraint.h on OS X adds the following comment:

If you do override these be sure to account for the top of your frame being either minY or maxY
depending on the superview's flippedness.

You’ll see this flippedness adjustment made in Listing 1-1, which is introduced in the next
section.

Implementing Alignment Rectangles

Listing 1-1 offers a trivial example of code-based alignment geometry. This OS X app
builds a fixed-size view and draws a shadowed rounded rectangle into it. When
USE_ALIGNMENT_RECTS is set to 1, its alignmentRectForFrame: and
frameForAlignmentRect: methods convert to and from frames and alignment rects. As
Figure 1-17 shows, these reporting methods allow the view to display with proper alignment.

Figure 1-17 Implementing intrinsic content size and frame/alignment rect conversion
methods ensures that your view will align and display correctly (left) rather than be
misaligned and clipped (right).

Listing 1-1 Using Code-Based Alignment Frames

@interface CustomView : NSView

@end

@implementation CustomView

- (void) drawRect:(NSRect)dirtyRect

{

 NSBezierPath *path;

 // Calculate offset from frame for 170x170 art

 CGFloat dx = (self.frame.size.width - 170) / 2.0f;

 CGFloat dy = (self.frame.size.height - 170);

 // Draw a shadow

 NSRect rect = NSMakeRect(8 + dx, -8 + dy, 160, 160);

 path = [NSBezierPath

 bezierPathWithRoundedRect:rect xRadius:32 yRadius:32];

 [[[NSColor blackColor] colorWithAlphaComponent:0.3f] set];

 [path fill];

 // Draw fixed-size shape with outline

 rect.origin = CGPointMake(dx, dy);

 path = [NSBezierPath

 bezierPathWithRoundedRect:rect xRadius:32 yRadius:32];

 [[NSColor blackColor] set];

 path.lineWidth = 6;

 [path stroke];

 [ORANGE_COLOR set];

 [path fill];

}

- (NSSize)intrinsicContentSize

{

 // Fixed content size - base + frame

 return NSMakeSize(170, 170);

}

#define USE_ALIGNMENT_RECTS 1

#if USE_ALIGNMENT_RECTS

- (NSRect)frameForAlignmentRect:(NSRect)alignmentRect

{

 // 1 + 10 / 160 = 1.0625

 NSRect rect = (NSRect){.origin = alignmentRect.origin};

 rect.size.width = alignmentRect.size.width * 1.06250;

 rect.size.height = alignmentRect.size.height * 1.06250;

 return rect;

}

- (NSRect)alignmentRectForFrame:(NSRect)frame

{

 // 160 / 170 = 0.94117

 // Account for vertical flippage

 CGFloat dy = (frame.size.height - 170) / 2.0;

 rect.origin = CGPointMake(frame.origin.x, frame.origin.y + dy);

 rect.size.width = frame.size.width * 0.94117;

 rect.size.height = frame.size.height * 0.94117;

 return rect;

}

#endif

@end

Summary
This chapter introduced the core concepts that underpin Auto Layout, Cocoa’s declarative
constraint-based descriptive layout system. You learned that Auto Layout focuses on the
relationships between views, and between views and their content, instead of on their frames. A
logical priority-based framework drives Auto Layout. You discovered that its rules must be
satisfiable, consistent, and sufficient. Here are a few final thoughts to take away with you from
this chapter:

! Constraints are fun and powerful, and they provide elegant solutions to common layout
situations. Do not be put off by Interface Builder’s layout editor, which can be
disappointing for nontrivial layout; constraints are brilliant!

! Don’t be afraid to mix and match Auto Layout and Autosizing. So long as their rules do
not conflict, you may port your existing layouts to a new world.

! Auto Layout is more than just constraints. Its content-protecting features provide a key
component that helps specify what to show and not just where to show it. Compression
resistance and content hugging play major roles in adapting graphical user interfaces
(GUIs) during internationalization. When languages change, labels can vary widely in
size.

! Several projects are underway attempting to backport Auto Layout to iOS 5 and earlier.
Search around the Web for details. None of these projects have made significant headway
yet, but they’re worth keeping an eye on.

	Contents
	Preface
	Chapter 1: Introducing Auto Layout
	Saying “No” to Auto Layout
	Saying “Yes” to Auto Layout
	Visual Relationships
	Content-Driven Layout
	Prioritizing Rules
	Auto Layout Strengths

	Constraints
	Satisfiability
	Sufficiency

	Constraint Attributes
	Missing Views
	Underconstrained Missing Views
	Missing Views with Inconsistent Rules
	Tracking Missing Views

	Ambiguous Layout
	Exercising Ambiguity
	Visualizing Constraints

	Intrinsic Content Size
	Compression Resistance and Content Hugging
	Auto Layout and Frames
	Visualizing Alignment Rectangles
	Image Alignment Insets
	Declaring Alignment Rectangles
	Implementing Alignment Rectangles

	Summary

