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Preface

“Toto, I’ve got a feeling we’re not in Kansas anymore.”

—JUDY GARLAND AS DOROTHY GALE IN The Wizard of Oz (1939)

Data and algorithms rule the day. Welcome to the new world of business, a
fast-paced, data-intensive world, an open-source world in which competi-
tive advantage, however fleeting, is obtained through analytic prowess and
the sharing of ideas.

Many books about predictive analytics talk about strategy and manage-
ment. Some focus on methods and models. Others look at information
technology and code. This is that rare book that tries to do all three, appeal-
ing to modelers, programmers, and business managers alike.

We recognize the importance of analytics in gaining competitive advantage.
We help researchers and analysts by providing a ready resource and refer-
ence guide for modeling techniques. We show programmers how to build
upon a foundation of code that works to solve real business problems. We
translate the results of models into words and pictures that management
can understand. We explain the meaning of data and models.

Growth in the volume of data collected and stored, in the variety of data
available for analysis, and in the rate at which data arrive and require anal-
ysis, makes analytics more important with every passing day. Achieving
competitive advantage means implementing new systems for information
management and analytics. It means changing the way business is done.

v
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Covering a variety of applications, this book is for people who want to
know about data, modeling techniques, and the benefits of analytics. This
book is for people who want to make things happen in their organizations.

Predictive analytics is data science. The literature in the field is massive,
drawing from many academic disciplines and application areas. The rele-
vant code (even if we restrict ourselves to R) is growing quickly. Indeed,
it would be a challenge to provide a comprehensive guide to predictive
analytics. What we have done is offer a collection of vignettes with each
chapter focused on a particular application area and business problem.

Our objective is to provide an overview of predictive analytics and data
science that is accessible to many readers. There is scant mathematics in the
book—statisticians and modelers may look to the references for details and
derivations of methods. We describe methods in plain English and use data
visualization to show solutions to business problems.

Given the subject of the book, some might wonder if I belong to either the
classical or Bayesian camp. At the School of Statistics at the University of
Minnesota, I developed a respect for both sides of the classical/Bayesian
divide. I regard highly the perspective of empirical Bayesians and those
working in statistical learning, an area that combines machine learning and
traditional statistics. I am a pragmatist when it comes to modeling and
inference. I do what works and express my uncertainty in statements that
others can understand.

What made this book possible is the work of thousands of experts across
the world, people who contribute time and ideas to the R community. The
growth of R and the ease of growing it further ensures that the R envi-
ronment for modeling techniques in predictive analytics will be around
for many years to come. Genie out of the lamp, wizard from behind the
curtain—rocket science is not what it used to be. Secrets are being revealed.
This book is part of the process.

Most of the data in the book were obtained from public domain data sources.
Bobblehead promotional data were contributed by Erica Costello. Com-
puter choice study data were made possible through work supported by
Sharon Chamberlain. The call center data of “Anonymous Bank” were
provided by Avi Mandelbaum and Ilan Guedj. Movie information was
obtained courtesy of The Internet Movie Database, used with permission.
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IMDb movie reviews data were organized by Andrew L. Mass and his col-
leagues at Stanford University. Some examples were inspired by working
with NCR Comten, Hewlett-Packard Company, Union Cab Cooperative of
Madison, Site Analytics Co. of New York, and Sunseed Research LLC of
Madison, Wisconsin.

As with vignettes under the Comprehensive R Archive Network, program
examples in the book show what can be done with R. We work in a world
of open source, sharing with one another. The truth about what we do is
in programs for everyone to see and for some to debug. The code in this
book contains step-by-step comments to promote student learning. Each
program example ends with suggestions to build on the analysis that has
been presented.

Many have influenced my intellectual development over the years. There
were those good thinkers and good people, teachers and mentors for whom
I will be forever grateful. Sadly, no longer with us are Gerald Hahn Hinkle
in philosophy and Allan Lake Rice in languages at Ursinus College, and
Herbert Feigl in philosophy at the University of Minnesota. I am also most
thankful to David J. Weiss in psychometrics at the University of Minnesota
and Kelly Eakin in economics, formerly at the University of Oregon. Good
teachers—yes, great teachers—are valued for a lifetime.

Thanks to Michael L. Rothschild, Neal M. Ford, Peter R. Dickson, and Janet
Christopher who provided invaluable support during our years together
at the University of Wisconsin–Madison and the A. C. Nielsen Center for
Marketing Research.

Those who know me well are not surprised by my move to the Los Ange-
les area. Two Major League Baseball teams, movies, and good weather is a
hard combination to beat. I am most fortunate to be involved with gradu-
ate distance education at Northwestern University’s School of Continuing
Studies. Distance learning faculty and students at this school can live and
work anywhere they like.

Thanks to Glen Fogerty who offered me the opportunity to teach and take
a leadership role in the Predictive Analytics program at Northwestern Uni-
versity. Thanks to colleagues and staff who administer this exceptional
graduate program. And thanks to the many students and fellow faculty
from whom I have learned.
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Amy Hendrickson of TEXnology Inc. applied her craft, making words, ta-
bles, and figures look beautiful in print—another victory for open source.
Thanks to Donald Knuth and the TEX/LATEX community for their contribu-
tions to this wonderful system for typesetting and publication.

Thanks to readers and reviewers who provided much needed assistance, in-
cluding Suzanne Callender, Philip M. Goldfeder, Melvin Ott, and Thomas P.
Ryan. Jennifer Swartz provided proofreading assistance. Candice Bradley
served dual roles as a reviewer and copyeditor. I am most grateful for their
feedback and encouragement. Thanks to my editor, Jeanne Glasser Levine,
and publisher, Pearson/FT Press, for making this book possible. Any writ-
ing issues, errors, or items of unfinished business, of course, are my respon-
sibility alone.

My good friend Brittney and her daughter Janiya keep me company when
time permits. And my son Daniel is there for me in good times and bad, a
friend for life. My greatest debt is to them because they believe in me.

Thomas W. Miller
Glendale, California
July 2013
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1
Analytics and Data Science

Mr. Maguire: “I just want to say one word to you, just one word.”

Ben: ”Yes, sir.”

Mr. Maguire: “Are you listening?”

Ben: ”Yes, I am.”

Mr. Maguire: “Plastics.”

—WALTER BROOKE AS MR. MAGUIRE AND DUSTIN HOFFMAN

AS BEN (BENJAMIN BRADDOCK) IN The Graduate (1967)

While earning a degree in philosophy may not be the best career move
(unless a student plans to teach philosophy, and few of these positions are
available), I greatly value my years as a student of philosophy and the lib-
eral arts. For my bachelor’s degree, I wrote an honors paper on Bertrand
Russell. In graduate school at the University of Minnesota, I took courses
from one of the truly great philosophers, Herbert Feigl. I read about science
and the search for truth, otherwise known as epistemology. My favorite
philosophy was logical empiricism.

Although my days of “thinking about thinking” (which is how Feigl de-
fined philosophy) are far behind me, in those early years of academic train-
ing I was able to develop a keen sense for what is real and what is just talk.

1
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When we use the word model in predictive analytics, we are referring to a
representation of the world, a rendering or description of reality, an attempt
to relate one set of variables to another. Limited, imprecise, but useful, a
model helps us to make sense of the world.

Predictive analytics brings together management, information technology,
and modeling. It is for today’s data-intensive world. Predictive analytics
is data science, a multidisciplinary skill set essential for success in busi-
ness, nonprofit organizations, and government. Whether forecasting sales
or market share, finding a good retail site or investment opportunity, iden-
tifying consumer segments and target markets, or assessing the potential of
new products or risks associated with existing products, modeling methods
in predictive analytics provide the key.

Data scientists, those working in the field of predictive analytics, speak the
language of business—accounting, finance, marketing, and management.
They know about information technology, including data structures, al-
gorithms, and object-oriented programming. They understand statistical
modeling, machine learning, and mathematical programming. Data scien-
tists are methodological eclectics, drawing from many scientific disciplines
and translating the results of empirical research into words and pictures
that management can understand.

Predictive analytics, like much of statistics, involves searching for mean-
ingful relationships among variables and representing those relationships
in models. There are response variables—things we are trying to predict.
There are explanatory variables or predictors—things we observe, manip-
ulate, or control that could relate to the response.

Regression and classification are two common types predictive models. Re-
gression involves predicting a response with meaningful magnitude, such
as quantity sold, stock price, or return on investment. Classification in-
volves predicting a categorical response. Which brand will be purchased?
Will the consumer buy the product or not? Will the account holder pay off
or default on the loan? Is this bank transaction true or fraudulent?

Predictive modeling involves searching for useful predictors. Prediction
problems are defined by their width or number of potential predictors and
their depth or number of observations or cases in the data set. It is the num-
ber of potential predictors in business, marketing, and investment analysis
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Figure 1.1. Data and models for research

Traditional Research
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Real Data
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Real Data
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Real Data

that causes the most difficulty. There can be thousands of potential pre-
dictors with weak relationships to the response. With the aid of computers,
hundreds or thousands of models can be fit to subsets of the data and tested
on other subsets of the data, providing an evaluation of each predictor.

Predictive modeling involves finding good subsets of predictors or explana-
tory variables. Models that fit the data well are better than models that fit
the data poorly. Simple models are better than complex models. Working
with a list of useful predictors, we can fit many models to the available data,
then evaluate those models by their simplicity and by how well they fit the
data.

Consider three general approaches to research and modeling as employed
in predictive analytics: traditional, data-adaptive, and model-dependent.
See figure 1.1. The traditional approach to research and modeling begins
with the specification of a theory or model. Classical or Bayesian methods
of statistical inference are employed. Traditional methods, such as linear
regression and logistic regression, estimate parameters for linear predictors.
Model building involves fitting models to data. After we have fit a model,
we can check it using model diagnostics.

When we employ a data-adaptive approach, we begin with data and search
through those data to find useful predictors. We give little thought to the-
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ories or hypotheses prior to running the analysis. This is the world of ma-
chine learning, sometimes called statistical learning or data mining. Data-
adaptive methods adapt to the available data, representing nonlinear rela-
tionships and interactions among variables. The data determine the model.
Data-adaptive methods are data-driven.

Model-dependent research is the third approach. It begins with the spec-
ification of a model and uses that model to generate data, predictions, or
recommendations. Simulations and mathematical programming methods,
primary tools of operations research, are examples of model-dependent
research. When employing a model-dependent or simulation approach,
models are improved by comparing generated data with real data. We
ask whether simulated consumers, firms, and markets behave like real con-
sumers, firms, and markets.

It is often a combination of models and methods that works best. Consider
an application from the field of financial research. The manager of a mutual
fund is looking for additional stocks for a fund’s portfolio. A financial engi-
neer employs a data-adaptive model (perhaps a neural network) to search
across thousands of performance indictors and stocks, identifying a subset
of stocks for further analysis. Then, working with that subset of stocks,
the financial engineer employs a theory-based approach (CAPM, the capi-
tal asset pricing model) to identify a smaller set of stocks to recommend to
the fund manager. As a final step, using model-dependent research (math-
ematical programming), the engineer identifies the minimum-risk capital
investment for each of the stocks in the portfolio.

Data may be organized by observational unit, time, and space. The observa-
tional or cross-sectional unit could be an individual consumer or business
or any other basis for collecting and grouping data. Data are organized in
time by seconds, minutes, hours, days, and so on. Space or location is often
defined by longitude and latitude.

Consider numbers of customers entering grocery stores (units of analysis)
in Glendale, California on Monday (one point in time), ignoring the spa-
tial location of the stores—these are cross-sectional data. Suppose we work
with one of those stores, looking at numbers of customers entering the store
each day of the week for six months—these are time series data. Then
we look at numbers of customers at all of the grocery stores in Glendale
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across six months—these are longitudinal or panel data. To complete our
study, we locate these stores by longitude and latitude, so we have spatial
or spatio-temporal data. For any of these data structures we could consider
measures in addition to the number of customers entering stores. We look
at store sales, consumer or nearby resident demographics, traffic on Glen-
dale streets, and so doing move to multiple time series and multivariate
methods. The organization of the data we collect affects the structure of the
models we employ.

As we consider business problems in this book, we touch on many types
of models, including cross-sectional, time series, and spatial data models.
Whatever the structure of the data and associated models, prediction is the
unifying theme. We use the data we have to predict data we do not yet
have, recognizing that prediction is a precarious enterprise. It is the process
of extrapolating and forecasting.

To make predictions, we may employ classical or Bayesian methods. Or
we may dispense with parametric formulations entirely and rely upon ma-
chine learning algorithms. We do what works.1 Our approach to predictive
analytics is based upon a simple premise:

The value of a model lies in the quality of its predictions.

We learn from statistics that we should quantify our uncertainty. On the one
hand, we have confidence intervals, point estimates with associated stan-
dard errors, and significance tests—that is the classical way. On the other
hand, we have probability intervals, prediction intervals, Bayes factors,
subjective (perhaps diffuse) priors, and posterior probability distributions—
the path of Bayesian statistics. Indices like the Akaike information crite-
rion (AIC) or the Bayes information criterion (BIC) help us to to judge one
model against another, providing a balance between goodness-of-fit and
parsimony.

Central to our approach is a training-and-test regimen. We partition sample
data into training and test sets. We build our model on the training set and

1 Within the statistical literature, Seymour Geisser (1929–2004) introduced an approach best described
as Bayesian predictive inference (Geisser 1993). Bayesian statistics is named after Reverend Thomas Bayes
(1706–1761), the creator of Bayes Theorem. In our emphasis upon the success of predictions, we are in
agreement with Geisser. Our approach, however, is purely empirical and in no way dependent upon
classical or Bayesian thinking.
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Figure 1.2. Training-and-Test Regimen for Model Evaluation
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evaluate it on the test set. Simple two- and three-way data partitioning are
shown in figure 1.2.

A random splitting of a sample into training and test sets could be fortu-
itous, especially when working with small data sets, so we sometimes con-
duct statistical experiments by executing a number of random splits and
averaging performance indices from the resulting test sets. There are exten-
sions to and variations on the training-and-test theme.

One variation on the training-and-test theme is multi-fold cross-validation,
illustrated in figure 1.3. We partition the sample data into M folds of ap-
proximately equal size and conduct a series of tests. For the five-fold cross-
validation shown in the figure, we would first train on sets B through E and
test on set A. Then we would train on sets A and C through E, and test on
B. We continue until each of the five folds has been utilized as a test set.
We assess performance by averaging across the test sets. In leave-one-out
cross-valuation, the logical extreme of multi-fold cross-validation, there are
as many test sets as there are observations in the sample.
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Figure 1.3. Training-and-Test Using Multi-fold Cross-validation
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Figure 1.4. Training-and-Test with Bootstrap Resampling
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Another variation on the training-and-test regimen is the class of boot-
strap methods. If a sample approximates the population from which it was
drawn, then a sample from the sample (what is known as a resample) also
approximates the population. A bootstrap procedure, as illustrated in fig-
ure 1.4, involves repeated resampling with replacement. That is, we take
many random samples with replacement from the sample, and for each of
these resamples, we compute a statistic of interest. The bootstrap distribu-
tion of the statistic approximates the sampling distribution of that statistic.
What is the value of the bootstrap? It frees us from having to make as-
sumptions about the population distribution. We can estimate standard er-
rors and make probability statements working from the sample data alone.
The bootstrap may also be employed to improve estimates of prediction er-
ror within a leave-one-out cross-validation process. Cross-validation and
bootstrap methods are reviewed in Davison and Hinkley (1997), Efron and
Tibshirani (1993), and Hastie, Tibshirani, and Friedman (2009).
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Table 1.1. Data for the Anscombe Quartet

Set I Set II Set III Set IV

x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58
8 6.95 8 8.14 8 6.77 8 5.76

13 7.58 13 8.74 13 12.74 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.39 19 12.50

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

Data visualization is critical to the work of data science. Examples in this
book demonstrate the importance of data visualization in discovery, diag-
nostics, and design. We employ tools of exploratory data analysis (dis-
covery) and statistical modeling (diagnostics). In communicating results
to management, we use presentation graphics (design).

There is no more telling demonstration of the importance of statistical graph-
ics and data visualization than a demonstration that is affectionately known
as the Anscombe Quartet. Consider the data sets in table 1.1, developed by
Anscombe (1973). Looking at these tabulated data, the casual reader will
note that the fourth data set is clearly different from the others. What about
the first three data sets? Are there obvious differences in patterns of rela-
tionship between x and y?

When we regress y on x for the data sets, we see that the models provide
similar statistical summaries. The mean of the response y is 7.5, the mean
of the explanatory variable x is 9. The regression analyses for the four data
sets are virtually identical. The fitted regression equation for each of the
four sets is ŷ = 3 + 0.5x. The proportion of response variance accounted
for is 0.67 for each of the four models.

Anscombe (1973) argues that statistical summaries do not tell the story of
data. It is not sufficient to look at data tables, regression coefficients, and
the results of statistical tests. As the plots in figure 1.5 clearly show, the four
Anscombe data sets are very different from one another.
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Figure 1.5. Importance of Data Visualization: The Anscombe Quartet
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The Anscombe Quartet shows that we must look at data to understand
data. The program for the Anscombe Quartet demonstration is provided in
exhibit 1.1 at the end of this chapter. The program uses standard R graphics.

Visualization tools help us learn from data . We explore data, discover pat-
terns in data, identify groups of observations that go together and unusual
observations or outliers. We note relationships among variables, sometimes
detecting underlying dimensions in the data.

Graphics for exploratory data analysis are reviewed in classic references
by Tukey (1977) and Tukey and Mosteller (1977). Regression graphics are
covered by Cook (1998), Cook and Weisberg (1999), and Fox and Weis-
berg (2011). Statistical graphics and data visualization are illustrated in the
works of Tufte (1990, 1997, 2004, 2006), Few (2009), and Yau (2011, 2013).
Wilkinson (2005) presents a review of human perception and graphics, as
well as a conceptual structure for understanding statistical graphics. Heer,
Bostock, and Ogievetsky (2010) provide a collection of contemporary visu-
alization techniques.

The R programming environment provides a rich collection of open-source
tools for data visualization, including interfaces to visualization applica-
tions on the World Wide Web. An R graphics overview is provided by Mur-
rell (2011). R lattice graphics, discussed by Sarkar (2008, 2013), build upon
the conceptual structure of an earlier system called S-Plus TrellisTM (Cleve-
land 1993; Becker and Cleveland 1996). Wilkinson’s (2005) “grammar of
graphics” approach has been implemented in the R ggplot2 package (Wick-
ham and Chang 2013), with programming examples provided by Chang
(2013).

Zeileis, Hornik, and Murrell (2009, 2013) provide advice about colors for
statistical graphics. Ihaka et al. (2013) show how to specify colors in R by
hue, chroma, and luminance.

Specialized techniques for data visualization may be needed when working
with very large data sets as we often do in predictive analytics (Unwin,
Theus, and Hofmann 2006). Partial transparency techniques can help, and
hexbin plots are often better than scatter plots for showing relationships
between variables (Carr, Lewin-Koh, and Maechler 2013; Lewin-Koh 2013).
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These are the things that data scientists do—things that we discuss in this
book:

Finding out about. This is the first thing we do—information search,
finding what others have done before, learning from the literature.
We draw on the work of academics and practitioners in many fields
of study, contributors to predictive analytics and data science.2

Looking at data. We begin each modeling project with exploratory
data analysis, data visualization for the purpose of discovery. We pre-
pare data for further analysis.
Predicting how much. We are often asked to predict how many units
or dollars of product will be sold, the price of financial securities or
real estate. Regression techniques are useful for making these predic-
tions. This book begins and ends with regression problems.
Predicting yes or no. Many business problems are classification prob-
lems. Predicting whether a person will buy or not, default on a loan
or not, click on a Web page or not. We use classification techniques in
predicting consumer behavior and in text classification.
Testing it out. We examine models with diagnostic graphics. We see
how well a model developed on one data set works on other data
sets. We employ a training-and-test regimen with data partitioning,
cross-validation, or bootstrap methods.
Playing what-if. We may need to manipulate key variables to see
what happens to our predictions. In pricing research we play what-
if games in a simulated marketplace. In operations management we
employ sensitivity testing of mathematical programming models. We
see how new values for input variables affect outcomes or payoffs.
Explaining it all. Data and models help us to understand the world.
We turn what we have learned into an explanation that others can
understand. We present project results in a clear and concise manner.
These presentations benefit from well constructed data visualizations
(design with a purpose).

Let us begin.

2 We start with the title of Richard Belew’s (2000) book—Finding Out About—at the top of the list.
This title describes well the task of information search.
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Exhibit 1.1. R Program for the Anscombe Quartet

# The Anscombe Quartet in R

# demonstration data from
# Anscombe, F. J. 1973, February. Graphs in statistical analysis.
# The American Statistician 27: 1721.

# define the anscombe data frame
anscombe <- data.frame(

x1 = c(10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5),
x2 = c(10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5),
x3 = c(10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5),
x4 = c(8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8),
y1 = c(8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26,10.84, 4.82, 5.68),
y2 = c(9.14, 8.14, 8.74, 8.77, 9.26, 8.1, 6.13, 3.1, 9.13, 7.26, 4.74),
y3 = c(7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73),
y4 = c(6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.5, 5.56, 7.91, 6.89))

# show results from four regression analyses
with(anscombe, print(summary(lm(y1 ~ x1))))
with(anscombe, print(summary(lm(y2 ~ x2))))
with(anscombe, print(summary(lm(y3 ~ x3))))
with(anscombe, print(summary(lm(y4 ~ x4))))

# place four plots on one page using standard R graphics
# ensuring that all have the same scales
# for horizontal and vertical axes
pdf(file = "fig_more_anscombe.pdf", width = 8.5, height = 8.5)
par(mfrow=c(2,2),mar=c(3,3,3,1))
plot(x1, y1, xlim=c(2,20),ylim=c(2,14),
pch = 19, col = "darkblue", cex = 2, las = 1)

title("Set I")
plot(x2, y2, xlim=c(2,20),ylim=c(2,14),
pch = 19, col = "darkblue", cex = 2, las = 1)

title("Set II")
plot(x3, y3, xlim=c(2,20),ylim=c(2,14),
pch = 19, col = "darkblue", cex = 2, las = 1)

title("Set III")
plot(x4, y4, xlim=c(2,20),ylim=c(2,14),
pch = 19, col = "darkblue", cex = 2, las = 1)

title("Set IV")
dev.off()

par(mfrow=c(1,1),mar=c(5.1, 4.1, 4.1, 2.1)) # return to plotting defaults

# suggestions for the student
# see if you can develop a quartet of your own
# or perhaps just a duet...
# two very different data sets with the same fitted model
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