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Preface  

   “The only thing that is constant is change.”   
 —Greek philosopher Heraclitus, circa 500 B. C.  

 Some days I can’t believe it, but I’ve now been a consultant in the IT industry for more than 
20 years. During that time, I’ve seen a number of technology shifts. When I started in the indus-
try, the client/server wave was just beginning. What is now called the first generation of the web 
(or Web 1.0) came next, quickly followed by Web 2.0. Web 2.0 is now cresting, followed closely 
by the mobile wave.  

 The amazing part of all this is that each new technology wave appears to have little in com-
mon with the ones before them, but the lessons learned during one wave are actually foundations 
for the next wave. We developers learned the hard lessons of distributed computing during the 
client/server wave; that affected the way we went about building distributed systems in Web 1.0. 
In Web 1.0, we learned quickly that you can’t easily separate the design of your website from the 
functionality of your website, and we saw that a good dynamic website is not the same as either 
a static  website or a client/server system. These lessons about separation of concerns prepared 
us for the work of designing Web 2.0 websites that were more much responsive and easier to 
use. Likewise, the lessons we’ve learned in Web 2.0 about designing for different browsers and 
screen aspects have prepared us for the mobile wave.  

 Essentially, that’s what this book is about. My co-authors and I have written it to help you 
understand how to apply all these different lessons we’ve learned over time in the context of a 
coherent strategy for building what we’re terming “Modern” Web Applications (meaning ones 
suitable for use by mobile devices, or browser-based systems using Web 2.0 design techniques).  

 This book had its genesis in a previous book I wrote for IBM ®  press titled  Enterprise 
Java ™  Programming for IBM WebSphere  ® . In the two editions of those books, my coauthors 
and I concentrated on both providing soup-to-nuts coverage of the capabilities of IBM Web-
Sphere Application Server and delivering that same kind of “here’s the lessons you need to learn” 
approach. But the problem is that Enterprise Java, or JEE, has grown so large (as has WebSphere 
Application Server) that it’s no longer feasible to cover all of it effectively in one book.  

 Instead, we’ve found that developers of Modern Web Applications have started to spe-
cialize in one of two areas: “Front-end” developers write the code that provides both the user 
interface and the API to the application. “Back-end” developers are more concerned with 
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building infrastructure and dealing with issues of enterprise connectivity to mainframe systems, 
messaging systems, and so on. We feel that this forms a natural split between the issues involved, 
and the book you hold in your hand is our first of at least a two-part set.  

 Of course, just as in earlier books we had to show how developers build applications for 
IBM WebSphere Application Server using the Rational ®  VisualAge ®  for Java and then Rational 
Application Developer Toolset, now we have a whole new set of tools that developers need to 
understand. These include not only the tools that come in Eclipse for building Java applications 
with RESTful services, but also tools for building and deploying mobile applications, such as 
IBM Worklight ® . We demonstrate to you in this book how the different parts of your team can 
use these tools to build Modern Web Applications more effectively.  

Revamped IBM developerWorks Series

 At the same time we were planning this book, my editors at IBM Press and I looked at 
the landscape of books about IBM products and noticed a gap in the coverage we needed to fill. 
 Enterprise Java Programming with IBM WebSphere  was one of the first titles in the IBM Press 
imprint. It was designed to provide practical, hands-on advice to teams adopting the then-new 
WebSphere Application Server. We’ve seen that, as new technologies such as mobile, cloud, and 
social computing technologies have developed, we’ve not provided that same level of practical, 
hands-on coverage. Thus, we also intend to meet  that need with additional topics in the revamped 
IBM developerWorks ®  series—this book is the first example.  

 Just as IBM developerWorks has always provided the most up-to-the-minute information 
on topics of interest to developers, we want the books in this series to provide the best combina-
tion of in-depth instruction and links to new and updated material on the web so that the books 
will both inform our readers on the subjects that interest them and help readers follow along with 
exercises and examples even when the underlying technologies and products change.  

 So one of the key aspects of the books in this new series is that we not only provide links 
to information on developerWorks that is relevant to the topics in the text, but we also provide a 
“landing pad” about each book on developerWorks that links to constantly updated instructions 
for installing the tools, working through the examples, and helping developers understand what 
they need to do to be effective with the IBM products that the books are about.  

 You can find the landing page for this book at  www.ibm.com/developerworks/dwbooks/
modernwebdev/index.html . We hope you enjoy reading this book as much as we’ve enjoyed 
writing it.  

—Kyle Brown, January 2014

http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html
http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html
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  How This Book Is Organized  

 This book gives you with a simple guide to the principal techniques and tools necessary 
to build Modern Web Applications with the IBM WebSphere Application Server and devel-
oper tools such as Eclipse and IBM Worklight. We alternate between more in-depth chapters 
focusing on our example and concept-focused chapters to help you gain an understanding of both 
the material and our recommended approach.  

   •      Chapter   1   , “The Modern Web,”  defines what we mean by a Modern Web Application 
and introduces you to the landscape of technologies and tools that we use for developing 
Modern Web Applications. We also introduce you to the example we reference through-
out the rest of the book.   

  •      Chapter   2   , “WAS and the Liberty Profile,”  describes the first of our tools: the Web-
Sphere Application Server Liberty profile for lightweight JEE application development. 
We provide a short “conventional” JEE application example to show you how applica-
tions are developed, deployed, and run with WebSphere Liberty.   

  •      Chapter   3   , “Design,”  discusses the importance of an agile, user-centered design method 
and introduces Page-Oriented User Interface design. We also introduce the UI design 
patterns and elements for our example.   

  •      Chapter   4   , “REST Web Services in WebSphere Liberty,”  demonstrates the advan-
tages of using the WebSphere Application Server Liberty profile as a server for writing 
REST services. We introduce the JEE annotations used in building REST services and 
provide a progressively more complex example to show you how to construct useful 
REST services with WebSphere Liberty and Eclipse.   

  •      Chapter   5   , “Application Architecture on the Glass,”  provides an overview of how to 
build an effective front-end application architecture. This includes lessons about build-
ing and using front-end frameworks, and it also covers the front-end JavaScript design of 
the example application.   

  •      Chapter   6   , “Designing and Building RESTful Applications with Modern Java EE,”  
introduces the techniques, technologies, and annotations to help you understand how to 
build more complex transactional RESTful services that interface with databases and 
other data sources. In this chapter, we revisit and complete our earlier samples to show 
you a full example of what constitutes a functional RESTful interface for a Modern Web 
Application.   

  •      Chapter   7   , “Introduction to IBM Worklight,”  looks at the elements, architecture, and 
fundamental components of Worklight, the IBM platform for developing, deploying, 
and managing mobile and multiplatform applications.   
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  •      Chapter   8   , “Building a Worklight Hybrid App with Open Source Frameworks,”  
covers how to build a Worklight application using the open source frameworks of jQuery 
Mobile, Backbone, Require.js, and Handlebars.   

  •      Chapter   9   , “Testing and Debugging,”  introduces a number of techniques and tools for 
finding and fixing problems in cross-platform, multilanguage Modern Web Applications.   

  •      Chapter   10   , “Advanced Topics,”  covers other topics relevant to building enterprise-
scale Modern Web Applications. This includes scalability and caching, security, and ser-
vices connectivity into the wider enterprise.   

  •      Chapter   11   , “Key Takeaways for Modern Web Development,”  wraps up our cover-
age by discussing how Modern Web Development fits in with other emerging and domi-
nant trends in the industry.   

  •      Appendix   A   , “Installation Instructions,”  covers how to locate, install, and configure 
all the software necessary to compile, run, and debug our examples, as well as how to 
obtain and download the sample code for the book. You can find its complete and most 
up-to-date form here:  

  www.ibm.com/developerworks/dwbooks/modernwebdev/index.html .        

http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html
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  C H A P T E R  4 

 REST Web Services in 
WebSphere Liberty  

     What Is REST?  

 Earlier in  Chapter   1   , “The Modern Web,” and again in  Chapter   3   , “Design,” we discussed the 
REST approach to building web services. REST is about creating web services around a set of 
constraints. By sticking to the constraints that stem from the way the web was designed and built, 
you can take better advantage of the existing web infrastructure. Routers, caching proxies, and 
web servers are all optimized to deliver web content. Delivering your services as web content 
through these channels enables you to take advantage of existing optimizations in these channels.  

 The philosophy of RESTful services construction has two parts. One part centers on expos-
ing resources, putting them into the hands of the masses and then allowing others in the commu-
nity to create new types of applications by mixing and matching content from various places. In 
our context, you can view REST services as the data source for your model layer inside a Modern 
Web Application that runs in the browser or as a mobile app. REST services can provide data for 
reusable widgets that you can mix together to create mashups. REST services can also present 
data as feeds, notifying  end users of content through the use of feed readers.  

 In general, almost any data—including business logic—can easily be expressed through 
REST. What’s more, it’s easy to build REST services that provide content in different forms (for 
instance, JSON and XML). For these reasons, REST services are extending into the API space 
and rapidly becoming accepted as the default standard for providing externally accessible web 
APIs. This services exposure for enabling reuse is a central part of the REST philosophy.  

 The second aspect of the REST philosophy focuses on using RESTful idioms to simplify 
access, increase orthogonality, and enable discovery. This is where the arguments tend to start. 
REST is based on a set of simple principles that derive from the HTTP specification and other 
web standards. Some developers tend to follow these principles very closely, whereas others are 
more lax in their compliance with the principles set forward in the original REST paper by Roy 
Fielding. In our examples, we tend toward a more strict interpretation of REST, but we do point 
out places where deviations might commonly occur.   
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  The Pieces of a RESTFul Web Service  

 Creating a RESTful web service is like forming a sentence: You need a noun, a verb, and an 
adjective. In REST terms, nouns are the resources URLs point to. The verbs are the HTTP actions 
on resources. The adjectives (okay, this might be stretching the analogy) are the formats of data in 
which the resources are represented. We like to lay this out in tables similar to the way we broke 
down sentences in primary school. For example,  Table   4.1    outlines how you might describe a 
set of services related to a prospect list application, such as the one in  Chapter    2   , “WAS and the 
Liberty Profile.”  

  Table 4.1   Prospect URI Structure  

  Sentence (Resource 

Description)   

  Noun (URI)     Verb (Action)     Adjectives (Formats)   

 List all the prospects.  .../prospects GET  JSON, XML  

 Get a specific prospect.  .../prospects/
{id}

GET  JSON, XML  

 Add a contact.  .../prospects POST  JSON, XML  

 Delete a specific 
contact.  

.../prospects/
{id}

DELETE  JSON, XML  

   •    Nouns/URIs:       URLs are the most identifiable part of the web and, as such, are a straight-
forward way of organizing your services. Organizing a unique URI for each resource 
avoids confusion and promotes scalability.   

  •    Verbs/actions:       In REST, you usually perform four HTTP operations against these 
URLs:  POST ,  GET ,  PUT , and  DELETE . (HTTP supports a few more actions, or officially 
 request-methods , but these are the interesting ones.) Although having just four opera-
tions might seem constraining, the simplicity is somewhat liberating. These operations 
roughly map to Create, Read, Update, and Delete (CRUD). CRUD provides the founda-
tional functions needed to interface with a relational database or other data store, so you 
can use these four methods in interesting and powerful ways.   

  •    Adjectives/data formats:       There are well known data types (the MIME types—text/
html, image/jpeg) that HTTP servers and browsers natively support. Simple XML and 
JSON allow more custom data formats that are self-describing and can easily be parsed 
by the user. (When we say  parse , we also mean “read with your eyes and parse with your 
brain.”)    
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 Using REST enables you to take advantage of many assumptions made by web infrastruc-
ture. Because you constrain the problem to only HTTP, you can make assumptions about items 
such as caching and HTTP-based security models. Because these technologies are ubiquitous, 
following this approach enables you to take advantage of existing solutions such as browser 
caches and web security proxies. By making your resources stateless, you can easily partition 
your resources across multiple servers, providing scalability opportunities. Another advantage 
is you can easily test HTTP-based services using a browser or a simple command-line tool such 
as cURL. By following RESTful idioms  such as representing connections between resources 
by links in the data, you can enable runtime discovery of additional services. Finally, from the 
consumer perspective, services written to RESTful idioms have a regularity that enables you to 
benefit from examples and to practice reuse through cut-and-paste.  

 Building an effective REST architecture involves many aspects:  

   •   Resources   

  •   Resource types   

•   Query formats, headers, and status codes   

  •   Content negotiation   

  •   Linking   

  •   Versioning   

  •   Security   

  •   Documentation   

  •   Unit tests    

 We begin to cover these issues in this chapter, and we address more of these topics more 
fully in later chapters.   

  Introducing JAX-RS  

 Very soon after the REST model was described, it began to gain acceptance in the Java commu-
nity. Early efforts focused on building REST services directly with Java Servlets, but an effort 
soon concentrated on creating a draft specification (JSR) for developing REST services in Java. 
The specification that resulted from that effort (JSR-033) became the JAX-RS standard. The 
authors of the JAX-RS standard set some specific goals for the JAX-RS approach:  

   •    POJO based:       The authors of the specification wanted to allow developers to build their 
services entirely with annotated POJOs—no special component model, such as earlier 
versions of EJB or web services standards, required.   

  •    HTTP-centric:       In keeping with the REST architectural approach, the JAX-RS standard 
assumes that HTTP is the only underlying network protocol. It does not attempt to be 
protocol independent—in fact, it provides simple mechanisms for exploiting the under-
lying HTTP protocol.   
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  •    Format independent:       The developers of the standard also wanted to make the JAX-RS 
standard compatible with a number of different content types. Therefore, they focused 
on providing plugability so that additional content types could be added in a compli-
ant way.    

  Basic Concepts: Resources and Applications  

 The most basic concept in the JAX-RS standard is the notion of a resource. A resource is a Java 
class that uses annotations to implement a RESTful service. If you consider a web resource to be 
a specific URI (or pattern of URIs) that represents an entity type, then the resource is the imple-
mentation of that entity. Resources are tied together logically by your  Application  subclass, 
which extends the  javax.ws.rs.core.Application  class provided by the JAX-RS runtime. 
To implement the simplest JAX-RS service in WebSphere Liberty profile, all you need are two 
classes and a bit of configuration.   

  A JAX-RS “Hello World” in WebSphere Liberty  

 Given that we need to introduce several concepts with JAX-RS, we assume that you’ll be devel-
oping your JAX-RS services inside Eclipse using the WebSphere Liberty Profile Test Server. For 
instructions on downloading and installing Eclipse, WebSphere Liberty, and the WebSphere Lib-
erty tools for Eclipse, either see our website or take a look at  Appendix   A   , “Installation Instruc-
tions.” Note that the following instructions were specifically written and tested on Eclipse Juno 
for Java EE Developers Service Release 2 and the WAS 8.5.5 Liberty Profile. If you’re using 
a different (later) version of Eclipse or WAS, you might see some differences, but  they should 
remain nearly the same.    

  AUTHORS’ NOTE  

 This chapter walks you through the process of creating a new web project and a number 
of new classes. If you’d rather not type in the code and you instead want to just run the 
completed examples, then follow the instructions in  Appendix   A    and load the  Chapter4Ex-
amples.zip  file from the book’s website into your Eclipse workspace.   

 You start the process by creating a new Eclipse Dynamic Web Project. The JAX-RS speci-
fication gives container providers some flexibility in how they can implement the specification, 
but they assume that artifacts will be deployed in a Servlet container such as WebSphere Liberty. 
In the Eclipse web development tool suite, a web project represents artifacts that are meant to be 
deployed to a Servlet container and packaged in a WAR file. If you’re not familiar with develop-
ment in Eclipse, you might want to first refer to any of the helpful tutorials on Java development 
with Eclipse.  1    
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 First, switch to a Java EE perspective in Eclipse. Then select  File > New . The menu that 
pops up enables you to select a Dynamic Web Project. After you select that, the dialog box in 
 Figure   4.1    appears.  

 

 Figure 4.1   Creating a new web project         

 Name your project  RestServicesSamples . For this particular project, we want to walk you 
through all the pieces included in a web project using REST in Eclipse, so you won’t actually use 
all the built-in wizards for creating REST services that the Eclipse web tools provide. However, 
you will use some of the features to set up a project that uses JAX-RS and WebSphere Liberty.  
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 Make sure that the Include in EAR check box is unchecked; you only need a WAR file 
from this project, so you don’t need to worry about inclusion in an EAR.  

 Next, click the  Modify  button. This takes you to the page in  Figure   4.2   , which enables you 
to add  facets  to your project. Facets enable you to specify requirements and dependencies on 
specific technologies—Eclipse automatically handles modifications such as classpaths after you 
declare that you need those facets. On this page, check the check boxes to include support for 
JAX-RS and JAXB in your project (we explain why you need JAXB in the later section “JAXB 
and More Interesting XML-Based Web Services”).  

 

 Figure 4.2   Modifying Facets         

 Finally, back on the Dynamic Web Project creation page, click  Finish . Eclipse creates the 
project and might inform you through a dialog box that this type of project is best viewed in the 
JEE perspective; it asks if you want to open that perspective now. If you are not already in that 
perspective, answer Yes; you can work in the JEE perspective from then on.  
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 Next, you need to create your first resource class. This resource class simply introduces 
you to many of the common annotations in JAX-RS and familiarizes you with the way you start 
and test REST services using Eclipse and the WebSphere Liberty Profile. Go to  File > New > 
Class  from within the web perspective, and open the dialog box in  Figure   4.3    that enables you to 
create your first resource class.  

 

 Figure 4.3   Creating GreetingResource         
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 Name your new class  GreetingResource , and put it in a package named com.ibm.
mwdbook.restexamples. Click Finish, and the Java Editor for your newly created class opens. At 
this point, you can go into the Java editor and change the newly created class stub to match the 
code in  Listing   4.1   .  

  Listing 4.1    GreetingResource   

package com.ibm.mwdbook.restexamples;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/Greeting")
public class GreetingResource {
@GET

public String getMessage() {
return "Hello World";

      }
}

 This little example doesn’t do much, but it does point out a few key aspects of resource 
classes in JAX-RS. First, notice that this class doesn’t descend from any specialized subclass, nor 
does it implement any special interfaces. This is in accordance with the design of the JAX-RS 
specification, which aimed to allow developers to implement services as annotated POJOs. This 
was a principle that originated in JEE5 and has continued into later specifications. Next, notice 
the  @Path  annotation at the class level. As with the other annotations,  @Path  corresponds to a 
particular class—in this case,  javax.ws.rs.Path , which you must import. In  fact, each of the 
annotations you import in this example come from the  javax.ws.rs  package.  @Path  deter-
mines where in the URI space this particular resource is placed. Adding a path of  /Greeting  
states that the last part of the URL (the resource identifier) will end in  /Greeting . Other parts 
of the URL can be in front of the path identifier, but at least this identifies the end. In terms of the 
JAX-RS specification, annotating a class like this makes it a root resource class. This distinction 
becomes important when we start discussing subresources later.  

 The final point to notice about this simple example is the  @GET  annotation. Remember that, 
in the REST model, the HTTP methods are the verbs of the service. If the URI represents the 
noun that the action is performed against, then the method is the action that is performed. So the 
meaning of this simple example is that you are  GET ting a greeting. That makes the response that 
we are returning,  Hello World! , very appropriate! Now, of course,  @GET  isn’t the only HTTP 
method annotation you can use; in the later section “Handling Entity Parameters with POST and 
the Consumes Annotation,” we  cover a case in which you use  @POST , and  Chapter   6    shows uses 
for  @DELETE  and  @PUT  as well.  
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 The next piece of the puzzle to put in place is the  Application  subclass. According to the 
JAX-RS specification, the purpose of the  Application  subclass is to configure the resources 
and providers (we cover those later) of the JAX-RS application. In fact, you’ll be editing and 
adding to the  Application  subclass as we expand the examples. For now, we start with another 
 File > New > Class  and bring up the new class dialog box. Your  Application  subclass should 
be named  BankingApplication  and should be placed in the  com.ibm.mwdbook.rest
examples  package. The class needs to inherit from  javax.ws.rs.core.Application .  
Figure   4.4    shows the completed fields in the dialog box.  

 

 Figure 4.4   Creating the Application subclass         
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 After you enter these fields, click  Finish  and then replace the template text of the newly 
created class with the text in  Listing   4.2   .  

  Listing 4.2    BankingApplication   Class   

package com.ibm.mwdbook.restexamples;
import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/banking/*")
public class BankingApplication extends Application {

}

 Note that we’ve added a single annotation in this class, the  @ApplicationPath  annota-
tion. This annotation instructs the JAX-RS runtime what the path for JAX-RS resources will be. 
The path segment referenced in the annotation is added after the server name and web project 
context root, so resources are referenced by this pattern:  

http://localhost:9090/RestServicesSamples/banking/your_resource_here

 This is only one of three mechanisms defined in the Infocenter for configuring JAX-RS in 
the WebSphere Liberty Profile. This approach enables you to specify multiple JAX-RS appli-
cations with different application paths in the same JAR file, but it doesn’t allow you to set up 
security constraints for the applications. For information on how to set up JAX-RS to allow that, 
refer to the Infocenter.  2     

  Creating the WebSphere Liberty Server  

 You’re almost ready to put the final piece in place for this simple example. Now that you’ve 
created all the artifacts necessary to implement a service, you need to deploy those artifacts into 
the WebSphere Liberty Profile. To do so, you must define a server in Eclipse. In this section, we 
assume that you created one server back in  Chapter   2    when you tested a simple Web 1.0 example 
in Eclipse. If you haven’t done so, your panels might differ slightly. Remember the discussion 
in  Chapter   2    on how you might have different servers for different layers in your application. 
One advantage  of defining multiple servers is that it keeps your servers from being cluttered by 

http://localhost:9090/RestServicesSamples/banking/your_resource_here
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association with projects you don’t need that might slow the startup of your particular server. For 
now, begin in the JEE Perspective by clicking the  Servers  tab at the bottom of the page, selecting 
the existing server you created in  Chapter   2   , and then using the right mouse button menu to select 
 New > Server . The dialog box in  Figure   4.5    then appears.  

 

 Figure 4.5   Define a New Server dialog box         
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 In the Define a New Server dialog box, make sure you have selected WebSphere Applica-
tion Server V8.5 Liberty Profile, and then click  Next . The page in  Figure   4.6    appears.  

 

 Figure 4.6   Creating a new server from an existing server         

 This dialog box informs you that you have already created one server named defaultServer 
and that this name is in use. On this page, click the  New  button. That action brings up the next 
page of this dialog box (see  Figure   4.7   ).  
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 Figure 4.7   New RESTServer creation         

 Give the server the name RESTServer. When you click  Finish  on the dialog box in  Figure 
  4.7   , you are taken back to the new Servers page, but this time you see a description of the server 
configuration for your new server, as in  Figure   4.8   . Note that your server is pretty bare bones at 
this time—only the basic configuration for your HTTP host and port is defined. That changes in 
the next step.  

 The final task in creating your server is associating your project with the server you just 
created. Click the  Next  button one final time. The dialog box in  Figure   4.8    enables you to associ-
ate your project with the server by clicking the  Add  button to move the project from the list of 
available projects on the left side over to the list of configured servers on the right side.  
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 Figure 4.8   Add Project dialog box         

 At this point, you can finally click the  Finish  button to finish configuring the server. This 
adds the required features (in this case, JAX-RS support) to the  server.xml  file. Feel free to 
examine the  server.xml  file to verify that it has been reconfigured.   

  Starting the Server and Testing the Application  

 You’re finally ready to test your application. Begin the process by starting the server you just cre-
ated. On the  Servers  tab, click the green  Start  button in  Figure   4.9   .  
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 Figure 4.9   Starting the server         

 Now switch to the Console tab and make sure you see a message stating something like the 
following:  

[AUDIT   ] CWWKZ0001I: Application SimpleBankingProject started in 
0.419 seconds. 

 If you don’t see this message, or if see an error message instead, take a look through the 
earlier messages in the console to find out what you did wrong. You can also turn to the end of 
this chapter and look at the debugging hints for JAX-RS services. Finally, presuming that every-
thing went well, you can open a browser and type the following into the URL line:  

http://localhost:9080/RestServicesSamples/banking/Greeting

 If everything worked correctly, you should see your REST service greeting you with 
 Hello World!  (see  Figure   4.10   ).  

 

 Figure 4.10   Greeting results           

http://localhost:9080/RestServicesSamples/banking/Greeting
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  More JAX-RS Annotations  

 Having a REST service greet you is nice, but it’s hardly a very useful service. Next you’ll imple-
ment a simple service that ties directly to our Banking example. Remember from the description 
of the sample in  Chapter   1    that often a development team wants to mock up services so that 
the UI and Java development teams can test independently. The rest of this chapter walks you 
through the implementation of such a set of services—in  Chapter   7   , “Introduction to IBM Work-
light,” we show you a complete example that is much more like the production code that would 
be used to implement  these services.  Table   4.2    shows a set of services you need to implement as 
part of the example online and mobile banking solution.  

  Table 4.2   Services for Online Banking  

  URI     Description   

  /banking/accounts    List of accounts  

  /banking/accounts/{id}    Detail of given account ID  

  /banking/accounts/{id}/
transactions   

 List of transactions for a given account  

  /banking/accounts/{id}/
transactions/{id}   

 Detail of given account ID/transaction ID  

 We begin by looking at the Accounts resource. You can see two interesting resource refer-
ences here: one service to return a list of accounts and another service to return the detail for a 
specific account. From this point on in the chapter, we assume that you know how to create new 
resource classes, so we just look at the code for each new class. Let’s start by creating a new 
class in  com.ibm.mwdbook.restexamples  named  SimpleAccountResource , with the code 
shown in  Listing   4.3   . We begin with this class in the listing and use it to learn some more features 
of JAX-RS; then  we replace it with a more complete implementation in  Listing   4.4   . Remember 
that this class, as with all resource classes, has no special base class.  

  Listing 4.3    SimpleAccountResource  Class  

package com.ibm.mwdbook.restexamples;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;

@Path("/simple/accounts")
public class SimpleAccountResource {
      @GET
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      @Produces("application/xml")
public String getAccounts() {

return "<accounts><account>123</account>"+
                        "<account>234</account></accounts>";
      }
      @Path("{id}")
      @GET
      @Produces("application/xml")

public String getAccount(@PathParam(value="id") int accountId){
if (accountId==123)

return "<account><id>123</id>" +
                              "<description>Savings</description>" +
                              "<balance>110.00</balance></account>";

else
return "<error>No account having that id</error>";

      }
}

 In this example, the code implementing the functionality of the service isn’t the interesting 
part; it’s the annotations that surround the functionality. The first  @Path  annotation simply sets 
up the basic URI of this example—remember that you’re initially building a throwaway example 
that you will replace, so you don’t use the actual URI in  Table   4.2    for this example. Instead, to 
differentiate this example from others later, you prefix the end of this test URI with  simple  
instead of just  accounts , as the table shows.  

 As in the previous example, you begin with the method named  getAccounts() , which 
returns an XML string representing a collection of two different accounts. The first point to 
notice is a new tag,  @Produces , which states what type of content the method returns. In the 
case of both our new methods, this is  application/xml . At this point, you might be wondering 
why we didn’t need this for our previous example. The answer is simple—if you don’t add the  @
Produces  annotation to a resource method, the JAX-RS provider assumes that the content type 
is  text/html .  

 As useful as that is, you can see a much more interesting new feature in the second  @Path  
annotation added to the bottom method. Here we’re adding the mechanism to handle a second 
part of the URI that comes after the  /accounts  portion handled by  getAccounts() . In the 
example, we want to provide access to a specific account that is identified by an integer account 
number placed after the  /accounts  portion of the URI. The  @Path({id})  annotation identi-
fies that specific account number. But then the question becomes, how do we manage to map the 
account number information from the URI to the  getAccount(int)  method? That’s  the role of 
the  @PathParam(value="id")  annotation.  
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  @PathParam  is probably the single most useful source of parameter information for 
resource methods, but it’s not the only source.  Table   4.3    shows some other common sources of 
information that you can use as parameters in your resource classes.  

  Table 4.3   Sources of Parameter Information in Resource Classes  

  Source     Description   

  @QueryParam    Individual query string parameter attached to the URI in the form  ?name=value   

  @PathParam    Parameter from URI template  

  @CookieParam    Http cookies value  

  @HeaderParam    Http header value  

  @FormParam    HTML form elements  

  @Context    Limited set of context objects  

  Testing the New Example  

 Entering that little bit of code is all you need to do for this new example. At this point, you should 
be able to test your new examples in your browser. You don’t even need to restart the server—
when you change the classes, Eclipse and Liberty automatically update the files on the server 
(using the  dropins  directory on the Liberty server that we mentioned in  Chapter   2   ), so your 
changes take effect immediately.  

 Enter the following URLs into your browser to view the results. First, to see the list type, 
use this:  

http://localhost:9080/RestServicesSamples/banking/simple/accounts

 Then to see the individual account, type this:  

http://localhost:9080/RestServicesSamples/banking/simple/accounts/123

 Finally, to see the error path, type this:  

http://localhost:9080/RestServicesSamples/banking/simple/accounts/234

  JAXB and More Interesting XML-Based Web Services  

 We’ve now implemented a simple RESTful web service for the banking example, but it still 
leaves a lot to be desired. Hand-crafting XML might have been an appealing thought at the dawn 
of the REST services era, but it’s hardly a scalable solution. Instead, we need to discuss ways 
of generating the XML produced by our services from our POJOs. This can be accomplished in 

http://localhost:9080/RestServicesSamples/banking/simple/accounts
http://localhost:9080/RestServicesSamples/banking/simple/accounts/123
http://localhost:9080/RestServicesSamples/banking/simple/accounts/234
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several ways. One is using the  org.w3c.dom.Document  interface to generate a document from 
its parts. In some cases, this is the best possible approach, especially if you have to handle the 
generation of several different XML  schemas. However, you usually don’t need the flexibility 
of a dynamic approach. In such a case, a simple static approach that ties your POJOs to a single 
XML schema is best. The JAXB standard gives you the capability to easily generate XML docu-
ments from your POJO objects with just a few annotations.  

  The JAXB Annotations  

 Essentially, only two annotations are needed to get going with JAXB:  

   •     @XmlRootElement:        This annotation maps an entire Java class or enum type to an XML 
element. It’s called the “RootElement” because it’s the root of the tree of XML tags 
(with the attributes of the class being the leaves of the tree).   

  •     @XmlElement:        This annotation maps a JavaBean property or a nonstatic, nontransient 
field to an XML element.    

 One of the common changes made to the XML tags that are output by a JAXB mapping is 
to change the name of the tag (which, by default, is the same as the name of the field or property). 
This is done with the  name  parameter to the annotation. Consider the following example where 
you have a field named  foo  in your code, which you annotate with a standard  @XMLElement  tag:  

@XmlElement
public int foo; 

 Your XML output then is of the form  <foo>123</foo> . That might not be helpful for 
someone trying to read and parse the XML without knowledge of your special variable naming 
conventions. Instead, using  name  as follows  

@XmlElement(name="accountNumber")
public int foo; 

 results in more readable output:  

<accountNumber>123</accountNumber>.

 Combining these annotations is easy. Consider a simple POJO class that represents an 
account in our banking example. As in previous examples, you create a new class in your proj-
ect, named  com.ibm.mwdbook.restexamples.Account , and then fill in the code from the 
example (see  Listing   4.4   ).  
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  Listing 4.4   Account Class  

package com.ibm.mwdbook.restexamples;

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Account{

int id;
      String accountType;
      String description;
      String currency;

double balance;

      // For JAXB Serialization to work every class must have a
      // default no-arg constructor
      // if there are any other constructors defined!

public Account() {
      }

public Account( int i, String name, String type, double balance) {
            setId(i);
            setDescription(name);
            setAccountType(type);
            setBalance(balance);
            setCurrency("USD");
      }

      @XmlElement
public int getId() {

return id;
      }

public void setId( int id) {
this.id = id;

      }

      @XmlElement(name="name")
public String getDescription() {

return description;
      }

public void setDescription(String description) {
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this.description = description;
      }

      @XmlElement(name="type")
public String getAccountType() {

return accountType;
      }

public void setAccountType(String accountType) {
this.accountType = accountType;

      }

      @XmlElement
public String getCurrency() {

return currency;
      }

public void setCurrency(String currency) {
this.currency = currency;

      }

      @XmlElement
public double getBalance() {

return balance;
      }

public void setBalance( double balance) {
this.balance = balance;

      }
}

 A couple of points are worth calling out in this example. The first is the use of the  no-arg  
constructor. Even if your code doesn’t use a  no-arg  constructor, one is necessary for any class 
serialized by JAXB because the JAXB framework itself expects to use it. The second point to 
notice is that we’ve annotated the getter methods. This means that we’ve annotated the  proper-
ties  for this example; later in  Listing   4.7   , we annotate the  fields  and discuss the differences. In 
one particular case, we’ve even illustrated a common aspect of properties annotation—note this 
annotation:  

@XmlElement(name="type")
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 Here, we want the name of the tag in the XML to differ from the name of the property 
itself. You can do this by specifying the  name=  property within the annotation. This way, the seg-
ment of XML generated would be of this form  

<type> somevalue </type> 

 instead of the default:  

<accountType> somevalue </accountType> 

 You’ll find yourself substituting names like this fairly often when you have to work with 
existing XML schemas or JSON formats.   

  A Trivial DAO (and Its Use)  

 Now that we have an annotated POJO class representing our accounts, we need to turn our atten-
tion to how accounts are created and managed. One of the biggest contributions to the field of 
Java EE design over the last 15 years is the book  Core J2EE Patterns,  by Alur, et. al. Later devel-
opments in JEE have superseded many of the patterns called out in this book, but some are still 
as appropriate as ever. One in particular that is extremely helpful in many different situations, 
and one that we will follow in this book, is the Data Access Object (DAO) pattern.  (You might 
remember that you built a simple JDBC-based DAO in  Chapter   2   .) The benefit of this pattern is 
that it provides an interface that encapsulates and abstracts away all the details of access to any 
data source. This enables you to replace one implementation of a DAO with another, without 
having to change any of the code that uses the DAO. So in this case, we’re building a very trivial 
DAO that’s useful for testing and hides the details of retrieving an account from an account list. 
 Listing   4.5    shows the code for this DAO.  

  NOTE 

 Most of the example snippets in the rest of the chapter leave out the package declaration 
(always the same,  com.ibm.mwdbook.restexamples ) and the  includes  statements. 
For the most part, you’ve seen everything that needs to be included—besides, Eclipse can 
automatically patch these up for you using Source > Organize Imports. This makes the 
examples much shorter.   

  Listing 4.5    AccountDao  Class  

public class AccountDao {
      HashMap<Integer, Account> accounts = new HashMap<Integer, 
Account>();
      public AccountDao() {
            Account anAccount = new Account(123,"savings",110.0);
            accounts.put(123, anAccount);
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      }
      public List<Account> getAccounts() {
            List<Account> accountslist = new Vector<Account>();
            accountslist.addAll(accounts.values());
            return accountslist;
      }
      public Account get(int id) {
            return (Account) accounts.get(id);
      }
}

 That’s all you need for now—just a simple constructor that creates a  HashMap  of accounts 
and adds one to the list, and then a getter for both a list of all accounts and an account stored at a 
specific ID. However, that’s enough to help implement our next, more useful example of a JAX-
RS resource (see  Listing   4.6   ).  

  Listing 4.6    AccountResource  Class  

@Path("/accounts")
public class AccountResource {
      AccountDao dao = new AccountDao();
      public AccountResource() {
      }
      @GET
      @Produces(MediaType.APPLICATION_XML)
      public List<Account> getAccounts() {
            return dao.getAccounts();
      }
      @GET
      @Path("{id}")
      @Produces(MediaType.APPLICATION_XML)
      public Account getAccount(@PathParam(value="id")  int id){
            return dao.get(id);
      }
}

 We now have an example that’s complete enough to be of some use. This is exactly the type 
of simple resource that you would implement when testing an AJAX UI that relies on a number 
of REST services to provide information that you can manipulate through JavaScript and HTML. 
You can see that we’ve used all the different annotations we’ve examined already, and we’ve 
also used the constants in the class  MediaType  instead of hand-coding  application/xml  for 
the  @Produces  annotation (which is a best practice to eliminate the possibility of mistyping).  

 To test the example, simply type the following into your browser:  

http://localhost:9080/RestServicesSamples/banking/accounts/123

http://localhost:9080/RestServicesSamples/banking/accounts/123
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  JSON Serialization  

 Although RESTful services that produce XML are common, it is perhaps even more common 
for the service to produce JSON, or the JavaScript Object Notation. JSON is a simple notation 
based on name/value pairs and ordered lists that are both easy to produce in many languages and 
extremely easy (in fact, part of the language) for JavaScript to parse and create. It’s actually noth-
ing more than a proper subset of the JavaScript object literal notation.  3    

 When it comes to Java, especially inside the WebSphere Liberty Profile, you have sev-
eral ways to produce JSON, just as you have different ways of producing XML. You can, of 
course, manually hand-code it, although that is not recommended. For more complex situations 
requiring a great deal of flexibility, a dynamic method of producing JSON might be needed, just 
as a dynamic approach to producing XML is sometimes helpful. However, the most common 
approach for producing JSON is the same as that for XML—using static annotations with JAXB.  

  A Simple Transaction Example with JAX-RS  

 To show how annotations for JSON work, we going to introduce another service from the list ear-
lier in the chapter. The Transaction service enables you to view a transaction with  GET , view a list 
of transactions with  GET , and also create a new transaction by  POST ing to the appropriate URL.  

 Let’s start by introducing our  BankingTransaction  class (see  Listing   4.7   ).  

  Listing 4.7    BankingTransaction  Class  

package com.ibm.mwdbook.restexamples;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class BankingTransaction {
      @XmlElement

protected String id;
      @XmlElement

protected Date;
      @XmlElement

protected double amount;
      @XmlElement

protected String currency;
      @XmlElement

protected String merchant;
      @XmlElement(name="memo")

protected String description;
      @XmlElement
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protected String tranType;

public BankingTransaction() {
      }

public BankingTransaction(String id, long date,String currency,
➥String memo, double amount, String tranType, String merchant) {
            setId(id);
            setDescription(memo);
            setAmount(amount);
            setCurrency(currency);
            setTranType(tranType);
            setMerchant(merchant);
            setDate( new Date(date));
      }

public String getDescription() {
return description;

      }
public void setDescription(String aDescription) {

            description = aDescription;
      }

public double getAmount() {
return amount;

      }
public void setAmount( double anAmount) {

            amount = anAmount;
      }

public String getCurrency() {
return currency;

      }
public void setCurrency(String currency) {

this.currency = currency;
      }

public String getId() {
return id;

      }
public void setId(String id) {

this.id = id;
      }

public String getTranType() {
return tranType;

      }
public void setTranType(String tranType) {

this.tranType = tranType;
      }
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public String getMerchant() {
return merchant;

      }
public void setMerchant(String merchant) {

this.merchant = merchant;
      }

public Date getDate() {
return date;

      }
public void setDate(Date date) {

this.date = date;
      }
}

 At this point, you might be thinking that this looks exactly like the annotations in the previ-
ous example. That’s the point. If you use JAXB annotations, you have to annotate the class only 
once; you don’t have to put in separate annotations for JSON and XML. Also, it’s not entirely the 
same. Note that, in this case, we annotated the fields and not the properties—in practice, there is 
little difference between the two, and you can use either.   

  Handling Entity Parameters with  POST  and the Consumes Annotation  

 Now that you’ve seen how you can create a class with annotations that work for both XML and 
JSON, you can explore how to add methods to a service to take advantage of that. We’re only 
introducing a couple new concepts in this part of the example—take a look at the following new 
method from the  AccountResource  class:  

@Path("{account}/transaction")
@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
@POST
public int  putTransaction(@PathParam(value="account") int account,
                          BankingTransaction aTrans){

return txnDao.putTransaction(account, aTrans);
}

 The first new annotation is the  @Consumes  annotation. None of the previous services 
we’ve written have taken in any message bodies, so this is the first time we’ve needed to use it. 
As you can see, it’s essentially similar to the  @Produces  annotation. The interesting part is how 
the browser interacts with the server based on these annotations. In this case, we’re being very 
restrictive—we insist that the format of the message body be in JSON, but we also provide the 
response back in JSON. This information about what format is acceptable to the server and the 
client is communicated in specific  HTTP headers.  Figure   4.11    shows the interaction.  
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 Figure 4.11   Header and annotation interaction         

 For a resource method to process a request, the  Content-Type  header of the request must 
be compatible with the supported type of the  @Consumes  annotation (if one is provided). Like-
wise, the  Accept  header of the request must be compatible with the supported type of the  @
Produces  annotation. The  Content-type  header of the response will be set to a type listed in 
the  @Produces  annotation. This case is very simple—we’re allowing only a single content type 
( application/json ) into our service and a single content type (also  application/json ) out 
of the service; more complex cases might require  content negotiation , which we discuss in more 
detail in the later  section “More on Content Negotiation.”  

 Looking back at the code for our  BankingTransaction  class, you see one more interest-
ing fact about the  putTransaction()  method. Not only does it take a  @PathParam , as have 
several of our preceding examples, but another method parameter is not attached to a  @Path-
Param  annotation: an instance of a  BankingTransaction  named  aTrans . Where does this 
parameter come from? The JAX-RS specification is very clear on this: A resource method may 
have only one nonannotated parameter; that special parameter is called the entity parameter and 
is mapped from the request body. It is possible to handle that mapping yourself, but in our case 
(and in most  cases), that mapping will be handled by a mapping framework such as JAXB.   

  The Use of Singletons in Application Classes  

 Before you can test your simple transaction-posting method, you need to understand a couple 
more concepts. The first is how we’re implementing the DAO for this example. All the previous 
DAOs we implemented were just for prepopulating a collection with examples that we could 
retrieve with a  GET . However, if we are now enabling  POST , we want to be able to check that the 
information that we  POST  to the resource will be available on the next  GET  to that resource. In a 
“real” implementation of a DAO, that would be fine—we’d just fetch the values from a relational 
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database on a   GET  and create the new rows on a  POST . However, in our simplified example, we 
don’t yet have that option (we show that in  Chapter   6   ). Our solution for this case is very simple—
we add a static variable that is an instance of our DAO to the DAO class. That way, we implement 
what in Design Patterns parlance is often called a singleton, a class that has a single instance. You 
can see this in the source code ( see Listing   4.8   ) of our very simple  BankingTransactionDao , 
which holds on to a single static variable that is an instance of the class that  we name  instance .  

  Listing 4.8    BankingTransactionDao  Class  

package com.ibm.mwdbook.restexamples;

import java.util.HashMap;

public class BankingTransactionDao {

static BankingTransactionDao instance = new
➥BankingTransactionDao();

public static BankingTransactionDao getInstance() {
return instance;

      }

      HashMap<String, BankingTransaction> accounts =
new HashMap<String, BankingTransaction>();

int lastId=123;

public BankingTransactionDao() {
            String key=deriveKey(123,123);
            BankingTransaction aTrans = new BankingTransaction("123",
➥1388249396976L,"USD", "paycheck", 110.0, "DEPOSIT", "DIRECT");
            accounts.put(key, aTrans);
      }

private String deriveKey( int account, int id) {
            StringBuffer buf = new StringBuffer();
            buf.append(account);
            buf.append("-");
            buf.append(id);
            String key = buf.toString();

return key;
      }

public BankingTransaction getTransaction( int account, int id){
            String key = deriveKey(account, id);

return (BankingTransaction)accounts.get(key);
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      }

public int putTransaction( int account, BankingTransaction aTrans)
      {

int id=getNextID();
            String key = deriveKey(account,id);
            aTrans.setId(Integer. toString(id));
            accounts.put(key, aTrans);

return id;
      }

private int getNextID() {
return ++lastId;

      }

}

 Now the variable declaration of  txnDao  within our  AccountResource  class simply needs 
to obtain the instance of the  Dao  by invoking the  getInstance()  method, as follows:  

BankingTransactionDao txnDao = BankingTransactionDao.getInstance(); 

 However, although this is simple, it’s not the best solution for most cases. A better approach 
is to consider that JAX-RS provides you with the capability to produce singleton instances of 
resource classes. In JAX-RS, the normal process is that a new instance of the resource class is 
created for every request. However, this might not always be the best choice. Even though it 
is a best practice that resources be stateless (as are the REST services themselves), sometimes 
a singleton instance can be useful—notably, when it needs to contain cached information to 
improve performance. Our simple service has another  reason for this—to provide a stateful test 
service that mimics a service implemented on a backing store such as a relational database. You 
achieve this through the use of the  @Singleton  annotation. When your resource class contains 
this annotation, the resource class itself is considered to be a singleton and will live through the 
lifetime of the server. We show you many examples of  @Singleton -annotated resource classes 
in our more fully fleshed-out example in  Chapter   7   .  

  NOTE 

 If you’re interested in learning about the Singleton pattern, see  Design Patterns, Elements 
of Reusable Object Oriented Software,  by Gamma, et. al.   
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 To complete this example, simply create a new class for your  BankingTransactionDao  
and enter the previous code and then modify the  AccountResource  class to add the variable 
declaration for the  txnDao  and the new  putTransaction()  method we earlier described. You 
then need to let Eclipse patch up your import list using  Source > Organize Imports  so that the 
example compiles cleanly.   

  Testing  POST  and Other Actions with RESTClient  

 Now it’s time to test adding a banking transaction to our newly defined  POST  resource method 
in our  AccountResource  class. However, that brings up a problem: In all the previous examples, 
we’ve been testing only  GET ting a response from a resource, which can be tested in any browser. 
How can we test  POST ing to a resource? That requires you to provide a message body and also (as 
you’ve already seen) a special  Content-Type  HTTP header. Essentially, a basic browser won’t do 
for this case. You can look into several testing options:  

   •   Curl ( http://curl.haxx.se/ ) is a commonly used command-line client tool for transferring 
data with a URL syntax that can be used over a variety of protocols, including HTTP. 
Curl is especially useful for scripting if you need to write reusable test scripts.   

  •   rest-client ( http://code.google.com/p/rest-client/ ) is a simple Java GUI application from 
Google (although it also comes in a command-line version) that can be used for testing 
REST resources.    

 The solution we demonstrate in this chapter fits better with our methodology of testing 
resource methods within the browser: We use RESTClient, a free Mozilla add-on written by 
Chao Zhou that is available on the Mozilla add-ons site (see  https://addons.mozilla.org/en-US/
firefox/addon/restclient/ ).  Chapter   9    discusses similar plug-ins for Chrome.  

 Obtaining RESTClient and installing it into Firefox is easy; just visit the site and follow the 
instructions. To start a RESTClient session, click the red RESTClient icon in the upper-right cor-
ner of your screen that is added during the installation process. You will see a new tab that looks 
something like the one in  Figure   4.12   .   

 When you are ready to test your new service, first select POST from the Method drop-
down list. Then type the following URL on the URL line:  

http://localhost:9080/RestServicesSamples/banking/accounts/123/
transaction

 You need to add an appropriate  Content-Type  header. Click the Headers menu and 
choose Custom Header; then in the Request Header dialog box, type  Content-Type  as the Name 
and  application/json  as the value before clicking  OK  to dismiss the dialog box. Finally, type this 
into the body text area and click Send:  

{"currency":"USD","memo":"books","amount":10,"tranType":"PURCHASE",
"merchant":"Amazon" } 

http://curl.haxx.se/
http://code.google.com/p/rest-client/
https://addons.mozilla.org/en-US/firefox/addon/restclient/
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction
http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction


More on Content Negotiation 95

 If you look at either of the Response Body tabs, they should show the new ID number 
of your transaction ( 124  if you’ve added only one  BankingTransaction ). Likewise, the 
Response Header tab should show a status code of  200 OK  and a  Content-Type  of  applica-
tion/json , as explained in our earlier diagram.    

  More on Content Negotiation  

 One of the most challenging parts of writing a resource is determining what  Content-Type  the 
resource for each method will accept and what  Content-Type  will be returned. The problem is 
that different  Content-Type s are better suited for different purposes, as we hinted at earlier. For 
instance, XML is extremely well suited to Enterprise-level SOA services because a number of 
languages can parse and generate XML. Likewise, XML has the benefit of a commonly accepted 
schema language (XML Schema) for defining valid XML documents. This enables you to asso-
ciate a particular schema document representing the entire range of valid request or response 

 Figure 4.12   RESTClient for  POST  testing        
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bodies  with each service that you write—this capability can be useful for creating an Enterprise 
registry of your services.  

 However, a great number of services will be mostly consumed by JavaScript code as part 
of the Modern Web Application architecture we’ve described. Thus, the simplicity and efficiency 
of JSON needs to be strongly considered also. So in practice, many of the actual services you 
write will have to handle the possibility of consuming and producing multiple  Content-Type s. 
People have suggested handling this content negotiation problem in a few ways.  

 You could accept different URI parameters for each content type and then implement dif-
ferent methods in your  Resource  class (each having a different  @Path  annotation) to differenti-
ate between the two. The problem with this approach is that, although it’s simple, it’s not natural. 
Appending  .xml  or  .json  to the end of URI is not something most developers would think to 
do. Also, it has the problem that you now have two different methods that effectively do the same 
thing—so any changes thus have to be made in two places.  

 Another possibility is to use  QueryParams . With this solution, you append a 
 ?format=   someformat   query parameter to the end of each URI or for cases when you want to 
use a format other than the default (presuming that you remembered to test for the query param-
eter being null). Although this avoids the two-method problem of the previous solution, it’s still 
not natural. It makes the format request not part of the structure of the request URI itself, but 
something that hangs off the end. The problem with that kind of extension by query parameter is 
that when it’s begun, it’s hard to  stop.  4    

 The best way to avoid this kind of pain is simply not to follow  any  of these approaches. 
HTTP already gives you the right mechanism for negotiating the content type that should be 
returned, and JAX-RS provides easy support for this approach. To illustrate this, take a look at 
the following example, which is a new method in the  AccountResource  class:  

@Path("{account}/transaction/{id}")
@Produces(MediaType.APPLICATION_XML+ ","+MediaType. APPLICATION_JSON)
@GET
public BankingTransaction getTransaction(@PathParam(value="account")
➥int account,@PathParam(value="id") int id){
      BankingTransaction aTrans = txnDao.getTransaction(account, id);

return aTrans;
}

 Note that, in this method, we’ve simply expanded on our earlier examples by adding two 
different  MediaTypes  into the  @Produces  method. Here, if the client states that it wants to 
receive back JSON, it needs to send along  application/json  in the  Accept  header. If the 
client wants to receive back XML, it sends  application/xml  instead. Likewise, this method 
interprets either XML or JSON correctly as its input; it uses the  Content-Type  header (looking 
for those same two values) to figure out which is which and determine how to interpret what is 
sent in.  
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 Testing the new method is simple: After it has been added to the class, go back into the 
RESTClient in your browser and set the  Accept  header to  application/json . Then perform 
a  GET  on the following URL:  

http://localhost:9080/RestServicesSamples/banking/accounts/123/
transaction/123

 The returned value in the body should be in JSON. However, you change the  Accept  
header value to  application/xml , you’ll receive the value in XML.  

  Introducing the JAX-RS Response  

 So far in our examples, the only thing we’ve ever returned from a  Resource  method is what cor-
responds to the value the client should receive in the best of all possible cases—the case in which 
the request works. However, in the real world, you often need some more sophisticated error-
handling techniques to deal with more complex problems. The JAX-RS spec essentially says that 
you can return three things from a  Resource  method. If you return  void , that gives you back an 
empty message body and an HTTP status code 204 ( No Content ). We’ve seen the second case 
several times: You return an  entity of some type, and the status code sent back is HTTP status 
code 200 ( OK ). However, sometimes it’s important to be able to set your own status codes for 
more complicated error handling cases. That is where the JAX-RS spec defines one more thing 
you can return: an instance of  javax.ws.rs.core.Response .  Response  contains methods 
for adding bodies that have other status codes—for instance,  temporaryRedirect()  for redi-
rect (HTTP status code 307) and, the one we are interested in,  status , which we use to send the 
correct response for a missing resource, HTTP status code 404 ( Not Found ). We demonstrate 
this in the  following code snippet, which is a rewritten version of the  getAccount()  method 
from the  AccountResource  class:  

@GET
@Path("/{id}")
@Produces(MediaType.APPLICATION_XML)
public Response getAccount(@PathParam(value="id") int id){
      Account value = dao.get(id);

if (value != null)
return Response. ok(value).build();

else
return Response. status(404).build();

}

 Note a couple important points about what we’ve done to this method. First, the return type 
of the method is no longer  Account , but  Response . We are using two helpful static methods in 
 Response : The method  ok(Object)  simply indicates that the response should be built around 
the object that is passed in as a parameter, and that the HTTP return code should be status code 
200. By contrast, the  status(int)  method indicates that you simply want to return an HTTP 

http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction/123
http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction/123
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status code. Both of these methods actually return an instance of a  ResponseBuilder  object. 
You create a  Response  from the  ResponseBuilder  by sending it the  message  build() . You 
might want to investigate the many other useful methods on the  Response  class on your own.   

  Hints on Debugging: Tips and Techniques  

 So far, we’ve assumed that everything has gone well for you in writing and running these exam-
ples. However, that’s not always the case; sometimes you need to debug problems in the code. 
Eclipse itself provides a lot of helpful features. You can always examine the console log (which 
is STDOUT), and you can start the server in debug mode (using the bug icon to start it) to set 
breakpoints and step through your code. However, when the console doesn’t give you enough 
information to help you determine the cause of your problems, another helpful place to look for 
more detailed  information that is unique to the WebSphere Liberty profile is in your server’s 
logs directory. We briefly passed by this directory in  Chapter   2    when we examined the Liberty 
directory structure. Look under your WAS Liberty Profile installation directory for  /wlp/usr/
RESTServer/logs . In particular, if you encounter a problem that keeps a service from execut-
ing (for example, a mismatch between the  @Produces Content-Type  and the annotations that 
you provide in your entity classes), you can often find helpful information in the  TRACEXXX  logs 
that are created in this directory. The FFDC (First Failure Data Capture) logs are also good places 
to look for additional  information in debugging problems.  

  NOTE 

 As we’ve mentioned, if you get tired of typing in these examples on your own, you can 
always download them from the book’s website:     
www.ibm.com/developerworks/dwbooks/modernwebdev/index.html     

  Simple Testing with JUnit  

 One of the best approaches to software development that has emerged in the last 15 years is the 
notion of Test Driven Development, popularized by Kent Beck as a part of the Extreme Pro-
gramming method. Many other agile methods have adopted this principle, and we’ve found it to 
be extremely useful in our own development as well. A helpful tool that has emerged from this 
movement is the JUnit testing tool. JUnit enables you to write simple test cases that you can use 
to validate your own code.  

 From what you’ve learned in this chapter, you’ve probably concluded that testing at the 
browser is helpful for fast little validation tests, but it quickly becomes tedious. What’s more, 
you’ve probably noticed that it is quite error prone and hardly repeatable, especially when you 
have to use a tool such as RESTClient to manually enter JSON or XML request bodies.  

http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html
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 Let’s finish the code examples in this chapter with an example of how to write a JUnit test 
for one of the previous examples (see  Listing   4.9   ).  

  Listing 4.9   JUnit Test for  SimpleAccountResource   

package com.ibm.mwdbook.restexamples.tests;
import static org.junit.Assert.*;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.URLConnection;

import org.junit.Test;

public class SimpleAccountResourceTest {

      @Test
public void testGetAccounts() {

            String address = "http://localhost:9080/
➥RestServicesSamples/banking/simple/accounts";
            StringBuffer result = new StringBuffer();
            String expectedResult = "<accounts><account>123</account>"+
                        "<account>234</account></accounts>";

try {

                  fetchResult(address,result);
            } catch (MalformedURLException e) {
                  e.printStackTrace();

fail("MalformedURLException caught");
            } catch (IOException e) {
                  e.printStackTrace();

fail("IOException caught");
            }

assertEquals(expectedResult, result.toString());
      }

private void fetchResult(String address,StringBuffer result) 
➥throws MalformedURLException,IOException 
            {
            URL;
            url = new URL(address);
            URLConnection conn = url.openConnection();
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            BufferedReader in = new BufferedReader( new
            InputStreamReader(
                        conn.getInputStream()));
            String inputLine;

while ((inputLine = in.readLine()) != null)
                  result.append(inputLine);
            in.close();
      }

}

 JUnit tests are like most other classes in Java today—they are annotated POJOs. In this 
case, the annotation  @Test  (from  org.junit.test ) identifies a method as a JUnit test method. 
A single class can have many test methods, each individually identified. In this excerpt, we show 
only the test method for the  getAccounts()  method, which corresponds to a  GET  to the URL 
http://localhost:9080/RestServicesSamples/banking/simple/accounts. If you browse the full class 
definition as included in the sample code, you’ll see that we also include test methods that test 
retrieving an account that has an account number defined, as well as the error case of retrieving 
an  account that does not have an account number defined. All these methods use a utility method 
named  fetchResult()  that uses a  URLConnection  to fetch the contents of a particular URL.  

 After fetching the results, we use JUnit assertions (from  org.junit.Assert ) to compare 
the value we receive against an expected value. So if you know the XML or JSON you want to 
compare against ahead of time, you can easily set up a test that can validate that your code still 
functions, even after multiple changes.  

 Running the JUnit Test is extremely easy. Just select the  SimpleAccountResourceTest  
class in the Java EE explorer pane and then right-click and select  Run As > JUnit Test  from the 
menu. You should see a result in the bottom-right pane that looks like  Figure   4.13   .  

 

 Figure 4.13   JUnit test results         

http://localhost:9080/RestServicesSamples/banking/simple/accounts
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 This is an improvement over using a browser for testing, but as you can tell from 
close inspection of the code, even this approach leaves much to be desired. In particular, the 
 fetchResult()  utility method is limited to  GET s and does not provide a way to pass in header 
values or even a message body. You can address each of these issues, but the method becomes 
more complicated as a result (see the corresponding method in the class  AccountResource-
Test  for an example of exactly how complicated). Thus, you’ll want a better mechanism for 
invoking the REST APIs than hand-coding it with a   URLConnection . In  Chapter   7   , you exam-
ine using the Apache Wink client for just that purpose.    

  RESTful SOA  

 Before closing this chapter, which has been a whirlwind tour of REST, JAX-RS, and JAXB, as 
well as how to use them in the WebSphere Liberty Profile and Eclipse, we need to talk about the 
way in which the services we’ve been talking about here relate to the Enterprise services you 
might also want to implement. The problem is exactly how often the technologies discussed here, 
as powerful as they are, should be applied.  

 An old adage that still rings true is, “If all you have is a hammer, everything looks like a 
nail.” That’s true of technologies as well as physical tools. Another truism is that all technologies 
follow the “hype cycle,” popularized by the analyst firm Gartner, Inc.  5   In the hype cycle, all tech-
nologies first encounter a period of inflated expectations, followed by the inevitable “trough of 
disillusionment.” In the years since the publication of the predecessor volume to this book,  6   the 
hype cycle has definitely run its course for Enterprise Web Services with SOAP and the WS-* 
standards. Many people tried applying the  WS-* standards to situations for which they were not 
appropriate, or when something simpler would definitely have worked better. However, it’s easy 
to see that the REST services that are rapidly replacing WS-* in the hearts and minds of Enter-
prise developers could soon suffer the same fate. You have to be smart about what you’re build-
ing when you’re crafting a service and what you’re building it for. Otherwise, REST can simply 
become another hammer used inappropriately for trying to insert a wood screw.  

 It also comes down determining what each different service implementation approach is 
best suited for. REST is about exposing content through HTTP; it does not replace traditional 
WS-* web services. Traditional web services are much more about program-to-program integra-
tion. The WS-* approach allows for a variety of protocols and integrating logic. For example, 
you might need distributed transactions and message delivery on top of a reliable protocol such 
as JMS when assured delivery is essential.  

 Traditional web services built using WS-* standards are about technology abstraction to 
allow for a wide variety of infrastructures. REST-based web services are about HTTP exploi-
tation, to take advantage of a single delivery channel. For example, WS-* abstracts security 
through WS- Security, enabling you to apply security policies away from the code and abstract-
ing the encryption methods and decisions such as token providers. REST-based services, on the 
other hand, make assumptions, using HTTP security mechanisms such as Open ID or HTTPS for 
encryption.  
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 The real key lies in channel abstraction rather than channel exploitation. REST does not 
address transactions, reliability, or standard context propagation, or other protocols such as mes-
saging. However, these are important considerations for the enterprise as a whole. REST is great 
for the responsibilities it is meant to handle, but it can’t do everything. The two approaches can 
coexist in the same enterprise—and they should. Always make sure you choose the right tool for 
the job.   

  Summary  

 This chapter discussed a lot. You’ve seen how the JAX-RS standard defines REST services in 
Java, you’ve explored how to annotate POJOs with JAXB, and you examined how to implement 
these services in the WAS Liberty Profile. In the following chapters, you use the things you’ve 
learned in this chapter to build more complex REST services using JAX-RS; then you connect 
these to front ends built using JavaScript.   

  Endnotes    

1. See Eclipse Java IDE – Tutorial:  www.eclipse.org/resources/resource.php?id=505 .     

2. See Configuring JAX-RS applications using JAX-RS 1.1 methods:  http://tinyurl.com/
latksog .     

3. See JSON in JavaScript:  www.json.org/js.html .     

4. The Google Search REST API ( https://developers.google.com/custom-search/v1/
using_rest ) is a particularly egregious example of this: its documentation has multiple 
pages of required and optional parameters.     

5. See Hype Cycles,  www.gartner.com/technology/research/methodologies/hype-cycle.
jsp .     

6. Brown, Kyle et al.  Enterprise Java Programming with IBM WebSphere  (Second Edi-
tion). IBM Press 2004.      
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