
http://www.facebook.com/share.php?u=http://www.ibmpressbooks.com/title/9780133067033
http://twitter.com/?status=RT: download a free sample chapter http://www.ibmpressbooks.com/title/9780133067033
https://plusone.google.com/share?url=http://www.ibmpressbooks.com/title/9780133067033
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ibmpressbooks.com/title/9780133067033
http://www.stumbleupon.com/submit?url=http://www.ibmpressbooks.com/title/9780133067033/Free-Sample-Chapter

Mastering XPages
IBM’s Best-Selling Guide to XPages
Development—Now Updated and
Expanded for Lotus Notes/Domino 9.0.1
By Martin Donnelly, Mark Wallace, Tony McGuckin

ISBN-10: 0-13-337337-1

ISBN-13: 978-0-13-337337-0

Three key members of the IBM XPages team have

brought together comprehensive knowledge for

delivering outstanding solutions. They have added

several hundred pages of new content, including

four new chapters. Drawing on their unsurpassed

experience, they present new tips, samples, and

best practices refl ecting the platform’s growing

maturity. Writing for both XPages newcomers and

experts, they cover the entire project lifecycle,

including problem debugging, performance

optimization, and application scalability.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks.com/newsletters

XPages Portable
Command Guide
A Practical Primer for XPages
Application Development, Debugging,
and Performance
By Martin Donnelly, Maire Kehoe, Tony

McGuckin, Dan O’Connor

ISBN-10: 0-13-294305-0

ISBN-13: 978-0-13-294305-5

A perfect portable XPages quick reference

for every working developer. Straight from the

experts at IBM®, XPages Portable Command
Guide offers fast access to working code,

tested solutions, expert tips, and example-

driven best practices. Drawing on their

unsurpassed experience as IBM XPages lead

developers and customer consultants, the

authors explore many lesser known facets

of the XPages runtime, illuminating these

capabilities with dozens of examples that solve

specifi c XPages development problems. Using

their easy-to-adapt code examples, you can

develop XPages solutions with outstanding

performance, scalability, fl exibility, effi ciency,

reliability, and value.

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Mobile Strategy
How Your Company Can Win by
Embracing Mobile Technologies
By Dirk Nicol

ISBN-10: 0-13-309491-X

ISBN-13: 978-0-13-309491-6

Mobile Strategy gives IT leaders the ability to

transform their business by offering all the

guidance they need to navigate this complex

landscape, leverage its opportunities, and protect

their investments along the way. IBM’s Dirk Nicol

clearly explains key trends and issues across

the entire mobile project lifecycle. He offers

insights critical to evaluating mobile technolo-

gies, supporting BYOD, and integrating mobile,

cloud, social, and big data. Throughout, you’ll fi nd

proven best practices based on real-world case

studies from his extensive experience with IBM’s

enterprise customers.

XPages Extension Library
A Step-by-Step Guide to the
Next Generation of XPages Components
By Paul Hannan, Declan Sciolla-Lynch, Jeremy

Hodge, Paul Withers, Tim Tripcony

ISBN-10: 0-13-290181-1

ISBN-13: 978-0-13-290181-9

XPages Extension Library is the fi rst and only

complete guide to Domino development with

this library; it’s the best manifestation yet of

the underlying XPages Extensibility Framework.

Complementing the popular Mastering XPages,

it gives XPages developers complete information

for taking full advantage of the new components

from IBM.

Combining reference material and practical use

cases, the authors offer step-by-step guidance for

installing and confi guring the XPages Extension

Library and using its state-of-the-art applications

infrastructure to quickly create rich web applica-

tions with outstanding user experiences.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks.com/newsletters

IBM WebSphere DataPower
SOA Appliance Handbook
Hines, Rasmussen, Ryan,

Kapadia, Brennan

ISBN: 0-13-343041-3

Dynamic SOA and BPM
Best Practices for Business Process

Management and SOA Agility

Fiammante

ISBN: 0-13-701891-6

WebSphere Engineering
A Practical Guide for WebSphere

Support Managers and Senior

Consultants

Ding

ISBN: 0-13-714225-0

Executing SOA
A Practical Guide for the Service-
Oriented Architect
by Norbert Bieberstein, Robert G. Laird,

Dr. Keith Jones, and Tilak Mitra

ISBN: 0-13-235374-1

ISBN-13 978-0-13-235374-1

In Executing SOA, four experienced SOA

implementers share realistic, proven, “from-the-

trenches” guidance for successfully delivering on

even the largest and most complex SOA initiative.

This book follows up where the authors’ best-

selling Service-Oriented Architecture Compass

left off, showing how to overcome key obstacles

to successful SOA implementation and identifying

best practices for all facets of execution—

technical, organizational, and human. Among

the issues it addresses: introducing a services

discipline that supports collaboration and

information process sharing; integrating services

with preexisting technology assets and strategies;

choosing the right roles for new tools; shifting

culture, governance, and architecture; and

bringing greater agility to the entire organizational

lifecycle, not just isolated projects.

SOA Governance
Achieving and Sustaining

Business and IT Agility

Brown, Laird, Gee, Mitra

ISBN: 0-13-714746-5

Application Architecture
for WebSphere
A Practical Approach to Buiding

WebSphere Applications

Bernal

ISBN: 0-13-712926-2

WebSphere Application
Server Administration
Using Jython
Gibson, McGrath, Bergman

ISBN: 0-13-358008-3

This page intentionally left blank

 Modern Web
Development
with
IBM® WebSphere®

This page intentionally left blank

 Modern Web
Development
with
IBM® WebSphere®

IBM Press
Pearson plc
 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
 New York • Toronto • Montreal • London • Munich • Paris • Madrid
 Cape Town • Sydney • Tokyo • Singapore • Mexico City

 ibmpressbooks.com

 Kyle Brown , Roland Barcia,

Karl Bishop , Matthew Perrins

 The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

 © Copyright 2014 by International Business Machines Corporation. All rights reserved.

 Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

 IBM Press Program Managers: Steven M. Stansel, Ellice Uffer
 Cover design: IBM Corporation

 Associate Publisher: Dave Dusthimer
 Executive Editor: Mary Beth Ray
 Marketing Manager: Stephane Nakib
 Publicist: Heather Fox
 Senior Development Editor: Christopher Cleveland
 Technical Editors: David Artus, Gang Chen
 Managing Editor: Kristy Hart
 Cover Designer: Alan Clements
 Senior Project Editor: Lori Lyons
 Copy Editor: Krista Hansing Editorial Services, Inc.
 Indexer: Publishing Works
 Senior Compositor: Gloria Schurick
 Proofreader: The Wordsmithery LLC
 Manufacturing Buyer: Dan Uhrig

 Published by Pearson plc
 Publishing as IBM Press

 For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@
pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 The following terms are trademarks of International Business Machines Corporation in many jurisdictions
worldwide: IBM, IBM Press, WebSphere, Rational, VisualAge, Worklight, developerWorks, Cast
Iron, DataPower, Redbooks, MaaS360, PureApplication and IBM SmartCloud. Softlayer is a registered
trademark of SoftLayer, Inc., an IBM Company. Kenexa is a registered trademark of Kenexa, an IBM
Company. Other product and service names might be trademarks of IBM or other companies. A current list
of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/
legal/copytrade.shtml .

 Oracle, Java, JavaScript, and all Java-based trademarks and logos are trademarks or registered trademarks
of Oracle and/or its affiliates. Microsoft, Windows, Visual Basic, Internet Explorer, Windows Phone are
trademarks of Microsoft Corporation in the United States, other countries, or both. Linux is a registered
trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or
service names may be trademarks or service marks of others.

 Library of Congress Control Number: 2014935480

 All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-13-306703-3
 ISBN-10: 0-13-306703-3

Text printed in the United States on recycled paper at Courier Westford in Westford, Massachusetts.
First printing June 2014

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

 Kyle:
This one is dedicated to my wife, Ann, and my son, Nate,

who supported me and sometimes worried me
(yes, that was you, Nate!) during its writing.

 Roland:
Thank you to God the Father and my Lord Jesus Christ.

Thank you, Blanca, for all your support.
Thank you to my children: Alyssa, Savannah, Amadeus, and Joseph.

Thank you, Kyle, for being a great mentor.
Thanks to my coauthors and to my family and friends.

 Karl:
I’d like to thank my family—my wife, Cheryl, and my awesome kids, Matthew and Aubriana.

It still amazes me that you put up with me being so continually
distracted by work and this book for so long.

I would also like to thank IBM for being a great place to work and grow,
as well as all the IBM clients I’ve had the pleasure of working

with to provide high-quality solutions for your customers.

 Matt:
To my family, Tania, Elyse, Fintan, Joe, and Tabitha—thanks for being patient.

 Contents-at-a-Glance

 Preface . xviii

Chapter 1 The Modern Web . 1

Chapter 2 WAS and the Liberty Profile . 29

Chapter 3 Design . 49

Chapter 4 REST Web Services in WebSphere Liberty 65

Chapter 5 Application Architecture on the Glass 103

Chapter 6 Designing and Building RESTful Applications with
Modern Java EE . 167

Chapter 7 Introduction to IBM Worklight . 213

Chapter 8 Building a Worklight Hybrid App with Open Source
Frameworks . 227

Chapter 9 Testing and Debugging . 261

Chapter 10 Advanced Topics . 287

Chapter 11 Key Takeaways of Modern Web Development 307

 Appendix A Installation Instructions . 315

 Index . 335

 Contents

 Preface . xviii

Chapter 1 The Modern Web .1
How the Web Has Changed. 1
The Mobile Effect . 7

Mobile Application Development Styles . 7
Building for the Mobile Experience . 11
Choosing a Mobile Development Approach. 13

The Convergence of Desktop Web and Mobile:
Multichannel Development . 15
REST and Web APIs . 17
IBM WebSphere and IBM Worklight . 18
The Process of Building Modern Web Applications . 19

Introducing the Team . 19
Following a User-Centered Design and Development Process . 20

Introducing User-Centered Design . 22
Applying the Design Process: Descriptions from Our Example. 22
Introducing Development into the Process . 25
Division of Labor: Defining the User Model and REST Interfaces . 25

Summary . 27
Endnotes . 27

Chapter 2 WAS and the Liberty Profile .29
How We Got Here . 29

A Brief History of WAS . 29
What Changed in the Programming Model?. 31

What Is Liberty? . 33
Some Coding Considerations and a Servlet and JDBC Example . 36

Deploying the Example Using the Liberty Profile . 41
Server Creation and Structure. 42
Deploying an Application on a Server . 43

Contents xiii

Testing the Sample Application . 44
Running the Example Within Eclipse. 45

Summary . 48
Endnotes . 48

Chapter 3 Design .49
Agile UI Design Process . 49
More on User Centric Design . 51

Design for Multichannel . 52
Page-Oriented User Interfaces . 53
Patterns for User Interface Design Web . 55
View Interaction Patterns . 55
Targeted Mobile Apps vs. Multichannel Applications . 57

UI Design Example . 58
Summary . 63

Chapter 4 REST Web Services in WebSphere Liberty 65
What Is REST? . 65
The Pieces of a RESTFul Web Service . 66
Introducing JAX-RS . 67

Basic Concepts: Resources and Applications . 68
A JAX-RS “Hello World” in WebSphere Liberty . 68
Creating the WebSphere Liberty Server . 74
Starting the Server and Testing the Application . 78

More JAX-RS Annotations . 80
Testing the New Example. 82

JAXB and More Interesting XML-Based Web Services. 82
The JAXB Annotations. 83
A Trivial DAO (and Its Use). 86

JSON Serialization . 88
A Simple Transaction Example with JAX-RS . 88
Handling Entity Parameters with POST and the Consumes Annotation 90
The Use of Singletons in Application Classes . 91
Testing POST and Other Actions with RESTClient . 94

More on Content Negotiation . 95
Introducing the JAX-RS Response . 97
Hints on Debugging: Tips and Techniques. 98
Simple Testing with JUnit . 98

RESTful SOA . 101
Summary . 102
Endnotes . 102

xiv Contents

Chapter 5 Application Architecture
on the Glass. .103

Why Well-Designed Applications Matter . 103
Defining a Client-Side Architecture . 104
Responsive Design . 109
Client-Side Architecture . 114

Application Controller . 115
Model-View-Controller . 116
Error Logging and Management. 120
Data Storage and Caching. 121
Configuration . 121

Introduction to the Dojo Toolkit . 123
Dojo . 124
Dijit . 124
DojoX . 124
Util . 125

Why Use Dojo . 125
Asynchronous Module Definition . 126
Future of Dojo . 129
Using Dojo in Your Application . 130

Section: HTML Declaration . 132
Section: Styling. 132
Section: Configure Dojo . 132
Section: Load Dojo . 134
Section: Initialize Application . 134
Section: Body Content . 135

Creating Your Own Widgets . 136
Building the Application . 140
Summary . 166

Chapter 6 Designing and Building RESTful Applications
with Modern Java EE .167

Modern Java EE . 167
EJB 3.1 and CDI . 168
JPA . 171

Application Architecture for Modern RESTful Systems. 172
Division of Labor: Defining the User Model and REST Interfaces 174
Application Layers . 179

Building the Application . 185
Loading the Example and Setting Up Liberty. 185
Test-Driven Development . 190
Building REST Services . 195
Domain Model . 201

Contents xv

Building DAO and Business Logic. 205
Running the Application. 209

A Discussion on Choices. 210
Summary . 211

Chapter 7 Introduction to IBM Worklight 213
What Is IBM Worklight?. 213
Elements of IBM Worklight . 213
The IBM Worklight Product Family . 214
Developing with IBM Worklight . 215
IBM Worklight Deployment Architecture . 216
IBM Worklight Server Architecture . 221
The Structure of a Worklight Application . 223
What This Means for You . 224
Summary . 226

Chapter 8 Building a Worklight Hybrid App with
Open Source Frameworks. .227

Design for the Hybrid Application . 227
Overview of Frameworks . 228

jQuery . 229
jQuery Mobile. 229
Require.js . 229
Backbone and Underscore . 230
Handlebars . 230

Building a Hybrid App with Worklight. 230
Setting Up the Project . 230
Worklight Adapter Code. 233
Worklight Hybrid App Folder Structure. 240
Examining the Application . 242
Running the Example . 255

Summary . 260

Chapter 9 Testing and Debugging .261
HTML . 261
JavaScript . 262

Global Variables . 263
Asynchronous Module Definition (AMD) . 263
Context . 264
CSS . 267
Data. 269

Unit Testing. 269
The Browser as a Test Platform. 272

xvi Contents

Exploring Chrome’s DevTools. 273
Essential Browser Plug-ins . 279

IBM Worklight Specific Concerns . 281
Disabling AppCache for Mobile Web Apps . 281
Disabling Security for Cross-Domain Ajax in Mobile Apps . 283

Remote Debugging . 284
Safari Remote Debugging. 284
Chrome Remote Debugging . 285
Online Code Snippit Runners . 285

Summary . 286

Chapter 10 Advanced Topics .287
Understanding Where Your Application Fits . 287
Achieving Reliability Through Clustering . 292
Versioning . 292

Versioning in the URI. 293
Versioning in the Header . 294

Mechanisms for Improving Performance . 294
Pagination . 295
Caching Overview . 296
Response Caching. 297
Server-Side Caching with WXS . 298

Security Issues for Modern Web Applications . 302
Summary . 304
Endnotes . 305

Chapter 11 Key Takeaways of Modern Web Development307
The Engaging Enterprise . 307

Mobile-First Development . 308
Web APIs . 309
Polyglot Programming . 310
Cloud Computing . 310

Summary . 313
Endnote . 313

Appendix A Installation Instructions .315
Development Machine Installation . 315

Installing Java Runtime Environment, v1.7 . 316
Installing Eclipse Juno IDE, v4.3 . 317
Installing IBM WebSphere Liberty Profile Developer Tools, v8.5.5 318
Installing the Source Code for the Book Examples . 319

Contents xvii

Optional Development Tooling for Mobile Web Apps . 321
IBM Worklight Studio v6.0 . 321
Android Development Tools and Eclipse Plug-in . 324
OSX XCode IDE . 327

Server Installation . 328
IBM WebSphere Liberty Profile, v8.5.5. 329
Apache Derby, v10 . 330

Downloading and Installing Example Source Code . 333
Summary . 333

 Index .335

Preface

 “The only thing that is constant is change.”
 —Greek philosopher Heraclitus, circa 500 B. C.

 Some days I can’t believe it, but I’ve now been a consultant in the IT industry for more than
20 years. During that time, I’ve seen a number of technology shifts. When I started in the indus-
try, the client/server wave was just beginning. What is now called the first generation of the web
(or Web 1.0) came next, quickly followed by Web 2.0. Web 2.0 is now cresting, followed closely
by the mobile wave.

 The amazing part of all this is that each new technology wave appears to have little in com-
mon with the ones before them, but the lessons learned during one wave are actually foundations
for the next wave. We developers learned the hard lessons of distributed computing during the
client/server wave; that affected the way we went about building distributed systems in Web 1.0.
In Web 1.0, we learned quickly that you can’t easily separate the design of your website from the
functionality of your website, and we saw that a good dynamic website is not the same as either
a static website or a client/server system. These lessons about separation of concerns prepared
us for the work of designing Web 2.0 websites that were more much responsive and easier to
use. Likewise, the lessons we’ve learned in Web 2.0 about designing for different browsers and
screen aspects have prepared us for the mobile wave.

 Essentially, that’s what this book is about. My co-authors and I have written it to help you
understand how to apply all these different lessons we’ve learned over time in the context of a
coherent strategy for building what we’re terming “Modern” Web Applications (meaning ones
suitable for use by mobile devices, or browser-based systems using Web 2.0 design techniques).

 This book had its genesis in a previous book I wrote for IBM ® press titled Enterprise
Java ™ Programming for IBM WebSphere ® . In the two editions of those books, my coauthors
and I concentrated on both providing soup-to-nuts coverage of the capabilities of IBM Web-
Sphere Application Server and delivering that same kind of “here’s the lessons you need to learn”
approach. But the problem is that Enterprise Java, or JEE, has grown so large (as has WebSphere
Application Server) that it’s no longer feasible to cover all of it effectively in one book.

 Instead, we’ve found that developers of Modern Web Applications have started to spe-
cialize in one of two areas: “Front-end” developers write the code that provides both the user
interface and the API to the application. “Back-end” developers are more concerned with

Preface xix

building infrastructure and dealing with issues of enterprise connectivity to mainframe systems,
messaging systems, and so on. We feel that this forms a natural split between the issues involved,
and the book you hold in your hand is our first of at least a two-part set.

 Of course, just as in earlier books we had to show how developers build applications for
IBM WebSphere Application Server using the Rational ® VisualAge ® for Java and then Rational
Application Developer Toolset, now we have a whole new set of tools that developers need to
understand. These include not only the tools that come in Eclipse for building Java applications
with RESTful services, but also tools for building and deploying mobile applications, such as
IBM Worklight ® . We demonstrate to you in this book how the different parts of your team can
use these tools to build Modern Web Applications more effectively.

Revamped IBM developerWorks Series

 At the same time we were planning this book, my editors at IBM Press and I looked at
the landscape of books about IBM products and noticed a gap in the coverage we needed to fill.
 Enterprise Java Programming with IBM WebSphere was one of the first titles in the IBM Press
imprint. It was designed to provide practical, hands-on advice to teams adopting the then-new
WebSphere Application Server. We’ve seen that, as new technologies such as mobile, cloud, and
social computing technologies have developed, we’ve not provided that same level of practical,
hands-on coverage. Thus, we also intend to meet that need with additional topics in the revamped
IBM developerWorks ® series—this book is the first example.

 Just as IBM developerWorks has always provided the most up-to-the-minute information
on topics of interest to developers, we want the books in this series to provide the best combina-
tion of in-depth instruction and links to new and updated material on the web so that the books
will both inform our readers on the subjects that interest them and help readers follow along with
exercises and examples even when the underlying technologies and products change.

 So one of the key aspects of the books in this new series is that we not only provide links
to information on developerWorks that is relevant to the topics in the text, but we also provide a
“landing pad” about each book on developerWorks that links to constantly updated instructions
for installing the tools, working through the examples, and helping developers understand what
they need to do to be effective with the IBM products that the books are about.

 You can find the landing page for this book at www.ibm.com/developerworks/dwbooks/
modernwebdev/index.html . We hope you enjoy reading this book as much as we’ve enjoyed
writing it.

—Kyle Brown, January 2014

http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html
http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html

xx Preface

 How This Book Is Organized

 This book gives you with a simple guide to the principal techniques and tools necessary
to build Modern Web Applications with the IBM WebSphere Application Server and devel-
oper tools such as Eclipse and IBM Worklight. We alternate between more in-depth chapters
focusing on our example and concept-focused chapters to help you gain an understanding of both
the material and our recommended approach.

 • Chapter 1 , “The Modern Web,” defines what we mean by a Modern Web Application
and introduces you to the landscape of technologies and tools that we use for developing
Modern Web Applications. We also introduce you to the example we reference through-
out the rest of the book.

 • Chapter 2 , “WAS and the Liberty Profile,” describes the first of our tools: the Web-
Sphere Application Server Liberty profile for lightweight JEE application development.
We provide a short “conventional” JEE application example to show you how applica-
tions are developed, deployed, and run with WebSphere Liberty.

 • Chapter 3 , “Design,” discusses the importance of an agile, user-centered design method
and introduces Page-Oriented User Interface design. We also introduce the UI design
patterns and elements for our example.

 • Chapter 4 , “REST Web Services in WebSphere Liberty,” demonstrates the advan-
tages of using the WebSphere Application Server Liberty profile as a server for writing
REST services. We introduce the JEE annotations used in building REST services and
provide a progressively more complex example to show you how to construct useful
REST services with WebSphere Liberty and Eclipse.

 • Chapter 5 , “Application Architecture on the Glass,” provides an overview of how to
build an effective front-end application architecture. This includes lessons about build-
ing and using front-end frameworks, and it also covers the front-end JavaScript design of
the example application.

 • Chapter 6 , “Designing and Building RESTful Applications with Modern Java EE,”
introduces the techniques, technologies, and annotations to help you understand how to
build more complex transactional RESTful services that interface with databases and
other data sources. In this chapter, we revisit and complete our earlier samples to show
you a full example of what constitutes a functional RESTful interface for a Modern Web
Application.

 • Chapter 7 , “Introduction to IBM Worklight,” looks at the elements, architecture, and
fundamental components of Worklight, the IBM platform for developing, deploying,
and managing mobile and multiplatform applications.

Preface xxi

 • Chapter 8 , “Building a Worklight Hybrid App with Open Source Frameworks,”
covers how to build a Worklight application using the open source frameworks of jQuery
Mobile, Backbone, Require.js, and Handlebars.

 • Chapter 9 , “Testing and Debugging,” introduces a number of techniques and tools for
finding and fixing problems in cross-platform, multilanguage Modern Web Applications.

 • Chapter 10 , “Advanced Topics,” covers other topics relevant to building enterprise-
scale Modern Web Applications. This includes scalability and caching, security, and ser-
vices connectivity into the wider enterprise.

 • Chapter 11 , “Key Takeaways for Modern Web Development,” wraps up our cover-
age by discussing how Modern Web Development fits in with other emerging and domi-
nant trends in the industry.

 • Appendix A , “Installation Instructions,” covers how to locate, install, and configure
all the software necessary to compile, run, and debug our examples, as well as how to
obtain and download the sample code for the book. You can find its complete and most
up-to-date form here:

 www.ibm.com/developerworks/dwbooks/modernwebdev/index.html .

http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html

Acknowledgments

 We would first like to thank our wonderful technical reviewers, David Artus and Gang
Chen, whose time, dedication, and effort made this book a much more valuable and insightful
document. We would also like to thank Andrew Ferrier, Chris Mitchell, Cory Eden, Mohsen
Yasarizare, Alberto Manjarrez, Leigh Williamson, Greg Truty, and others for additional insight.

 We also want to thank the team at IBM Press for the opportunity to deliver this book to
you. Thanks to Chris Cleveland for making this the best it can be. Thanks also to Executive Edi-
tor Mary Beth Ray for giving us the opportunity to create this book on a flexible schedule, despite
several restarts and delays. Finally, we want to thank Steve Stansel, Editorial Program Manager
for IBM Press, who helped us immensely through this whole process by cajoling us, lending a
sympathetic ear, and keeping things moving along.

About the Authors

 Kyle Brown is a Distinguished Engineer and CTO of Emerging Technologies with IBM
Software Services and Support for WebSphere. He has 20 years of experience in designing and
architecting large-scale systems. In his role as a DE, he is responsible for helping customers
adopt emerging technologies, specifically cloud technologies and services-oriented approaches.
He specializes in developing and promoting best practices approaches to designing large-scale
systems using SOA, Java Enterprise Edition (JEE), and the IBM WebSphere product family. He
is a best-selling author and regular conference speaker, as well as an internationally recognized
expert in patterns, JEE, and object technology.

 Roland Barcia is an IBM Distinguished Engineer and CTO for the Mobile and Web-
Sphere Foundation for Software Group Lab Services. Roland is responsible for technical thought
leadership and strategy, practice technical vitality, and technical enablement. He works with
many enterprise clients on mobile strategy and implementations. He is the coauthor of four books
and has published more than 50 articles and papers on topics such as mobile technologies, IBM
MobileFirst, Java™ Persistence, Ajax, REST, JavaServer Faces, and messaging technologies. He
frequently presents at conferences and to customers on various technologies. Roland has spent
the past 16 years implementing middleware systems on various platforms, including Sockets,
CORBA, Java EE, SOA, REST, web, and mobile platforms. He has a master’s degree in com-
puter science from the New Jersey Institute of Technology

 Karl Bishop is a Product Manager with the IBM Worklight team. He currently works with
the IBM Worklight Product Design team, focusing on developer experience. Before that, Karl
spent many years working within the IBM Software Services for WebSphere group. His techni-
cal focus has been mobile app development, HTML5, Web 2.0, and JavaScript toolkits. Karl has
worked for IBM for more than 16 years. He previously spent another dozen years honing his geek
credentials at another computer company in California. Karl currently works out of his house,
hidden away in the Sandhills near Pinehurst, North Carolina.

 Matthew Perrins is an Executive IT Specialist and the lead architect for the BlueMix
Mobile Backend as a Service Client SDK. He is the technical lead for IBM Software Services for
Mobile for Europe, which is focused on delivering first-of-their-kind mobile solutions for IBM
clients. He has worked for IBM since 1989 and has spent a significant amount of time designing
and building Java-based enterprise solutions based on WebSphere.

This page intentionally left blank

This page intentionally left blank

65

 C H A P T E R 4

 REST Web Services in
WebSphere Liberty

 What Is REST?

 Earlier in Chapter 1 , “The Modern Web,” and again in Chapter 3 , “Design,” we discussed the
REST approach to building web services. REST is about creating web services around a set of
constraints. By sticking to the constraints that stem from the way the web was designed and built,
you can take better advantage of the existing web infrastructure. Routers, caching proxies, and
web servers are all optimized to deliver web content. Delivering your services as web content
through these channels enables you to take advantage of existing optimizations in these channels.

 The philosophy of RESTful services construction has two parts. One part centers on expos-
ing resources, putting them into the hands of the masses and then allowing others in the commu-
nity to create new types of applications by mixing and matching content from various places. In
our context, you can view REST services as the data source for your model layer inside a Modern
Web Application that runs in the browser or as a mobile app. REST services can provide data for
reusable widgets that you can mix together to create mashups. REST services can also present
data as feeds, notifying end users of content through the use of feed readers.

 In general, almost any data—including business logic—can easily be expressed through
REST. What’s more, it’s easy to build REST services that provide content in different forms (for
instance, JSON and XML). For these reasons, REST services are extending into the API space
and rapidly becoming accepted as the default standard for providing externally accessible web
APIs. This services exposure for enabling reuse is a central part of the REST philosophy.

 The second aspect of the REST philosophy focuses on using RESTful idioms to simplify
access, increase orthogonality, and enable discovery. This is where the arguments tend to start.
REST is based on a set of simple principles that derive from the HTTP specification and other
web standards. Some developers tend to follow these principles very closely, whereas others are
more lax in their compliance with the principles set forward in the original REST paper by Roy
Fielding. In our examples, we tend toward a more strict interpretation of REST, but we do point
out places where deviations might commonly occur.

66 Chapter 4 REST Web Services in WebSphere Liberty

 The Pieces of a RESTFul Web Service

 Creating a RESTful web service is like forming a sentence: You need a noun, a verb, and an
adjective. In REST terms, nouns are the resources URLs point to. The verbs are the HTTP actions
on resources. The adjectives (okay, this might be stretching the analogy) are the formats of data in
which the resources are represented. We like to lay this out in tables similar to the way we broke
down sentences in primary school. For example, Table 4.1 outlines how you might describe a
set of services related to a prospect list application, such as the one in Chapter 2 , “WAS and the
Liberty Profile.”

 Table 4.1 Prospect URI Structure

 Sentence (Resource

Description)

 Noun (URI) Verb (Action) Adjectives (Formats)

 List all the prospects. .../prospects GET JSON, XML

 Get a specific prospect. .../prospects/
{id}

GET JSON, XML

 Add a contact. .../prospects POST JSON, XML

 Delete a specific
contact.

.../prospects/
{id}

DELETE JSON, XML

 • Nouns/URIs: URLs are the most identifiable part of the web and, as such, are a straight-
forward way of organizing your services. Organizing a unique URI for each resource
avoids confusion and promotes scalability.

 • Verbs/actions: In REST, you usually perform four HTTP operations against these
URLs: POST , GET , PUT , and DELETE . (HTTP supports a few more actions, or officially
 request-methods , but these are the interesting ones.) Although having just four opera-
tions might seem constraining, the simplicity is somewhat liberating. These operations
roughly map to Create, Read, Update, and Delete (CRUD). CRUD provides the founda-
tional functions needed to interface with a relational database or other data store, so you
can use these four methods in interesting and powerful ways.

 • Adjectives/data formats: There are well known data types (the MIME types—text/
html, image/jpeg) that HTTP servers and browsers natively support. Simple XML and
JSON allow more custom data formats that are self-describing and can easily be parsed
by the user. (When we say parse , we also mean “read with your eyes and parse with your
brain.”)

Introducing JAX-RS 67

 Using REST enables you to take advantage of many assumptions made by web infrastruc-
ture. Because you constrain the problem to only HTTP, you can make assumptions about items
such as caching and HTTP-based security models. Because these technologies are ubiquitous,
following this approach enables you to take advantage of existing solutions such as browser
caches and web security proxies. By making your resources stateless, you can easily partition
your resources across multiple servers, providing scalability opportunities. Another advantage
is you can easily test HTTP-based services using a browser or a simple command-line tool such
as cURL. By following RESTful idioms such as representing connections between resources
by links in the data, you can enable runtime discovery of additional services. Finally, from the
consumer perspective, services written to RESTful idioms have a regularity that enables you to
benefit from examples and to practice reuse through cut-and-paste.

 Building an effective REST architecture involves many aspects:

 • Resources

 • Resource types

• Query formats, headers, and status codes

 • Content negotiation

 • Linking

 • Versioning

 • Security

 • Documentation

 • Unit tests

 We begin to cover these issues in this chapter, and we address more of these topics more
fully in later chapters.

 Introducing JAX-RS

 Very soon after the REST model was described, it began to gain acceptance in the Java commu-
nity. Early efforts focused on building REST services directly with Java Servlets, but an effort
soon concentrated on creating a draft specification (JSR) for developing REST services in Java.
The specification that resulted from that effort (JSR-033) became the JAX-RS standard. The
authors of the JAX-RS standard set some specific goals for the JAX-RS approach:

 • POJO based: The authors of the specification wanted to allow developers to build their
services entirely with annotated POJOs—no special component model, such as earlier
versions of EJB or web services standards, required.

 • HTTP-centric: In keeping with the REST architectural approach, the JAX-RS standard
assumes that HTTP is the only underlying network protocol. It does not attempt to be
protocol independent—in fact, it provides simple mechanisms for exploiting the under-
lying HTTP protocol.

68 Chapter 4 REST Web Services in WebSphere Liberty

 • Format independent: The developers of the standard also wanted to make the JAX-RS
standard compatible with a number of different content types. Therefore, they focused
on providing plugability so that additional content types could be added in a compli-
ant way.

 Basic Concepts: Resources and Applications

 The most basic concept in the JAX-RS standard is the notion of a resource. A resource is a Java
class that uses annotations to implement a RESTful service. If you consider a web resource to be
a specific URI (or pattern of URIs) that represents an entity type, then the resource is the imple-
mentation of that entity. Resources are tied together logically by your Application subclass,
which extends the javax.ws.rs.core.Application class provided by the JAX-RS runtime.
To implement the simplest JAX-RS service in WebSphere Liberty profile, all you need are two
classes and a bit of configuration.

 A JAX-RS “Hello World” in WebSphere Liberty

 Given that we need to introduce several concepts with JAX-RS, we assume that you’ll be devel-
oping your JAX-RS services inside Eclipse using the WebSphere Liberty Profile Test Server. For
instructions on downloading and installing Eclipse, WebSphere Liberty, and the WebSphere Lib-
erty tools for Eclipse, either see our website or take a look at Appendix A , “Installation Instruc-
tions.” Note that the following instructions were specifically written and tested on Eclipse Juno
for Java EE Developers Service Release 2 and the WAS 8.5.5 Liberty Profile. If you’re using
a different (later) version of Eclipse or WAS, you might see some differences, but they should
remain nearly the same.

 AUTHORS’ NOTE

 This chapter walks you through the process of creating a new web project and a number
of new classes. If you’d rather not type in the code and you instead want to just run the
completed examples, then follow the instructions in Appendix A and load the Chapter4Ex-
amples.zip file from the book’s website into your Eclipse workspace.

 You start the process by creating a new Eclipse Dynamic Web Project. The JAX-RS speci-
fication gives container providers some flexibility in how they can implement the specification,
but they assume that artifacts will be deployed in a Servlet container such as WebSphere Liberty.
In the Eclipse web development tool suite, a web project represents artifacts that are meant to be
deployed to a Servlet container and packaged in a WAR file. If you’re not familiar with develop-
ment in Eclipse, you might want to first refer to any of the helpful tutorials on Java development
with Eclipse. 1

Introducing JAX-RS 69

 First, switch to a Java EE perspective in Eclipse. Then select File > New . The menu that
pops up enables you to select a Dynamic Web Project. After you select that, the dialog box in
 Figure 4.1 appears.

 Figure 4.1 Creating a new web project

 Name your project RestServicesSamples . For this particular project, we want to walk you
through all the pieces included in a web project using REST in Eclipse, so you won’t actually use
all the built-in wizards for creating REST services that the Eclipse web tools provide. However,
you will use some of the features to set up a project that uses JAX-RS and WebSphere Liberty.

70 Chapter 4 REST Web Services in WebSphere Liberty

 Make sure that the Include in EAR check box is unchecked; you only need a WAR file
from this project, so you don’t need to worry about inclusion in an EAR.

 Next, click the Modify button. This takes you to the page in Figure 4.2 , which enables you
to add facets to your project. Facets enable you to specify requirements and dependencies on
specific technologies—Eclipse automatically handles modifications such as classpaths after you
declare that you need those facets. On this page, check the check boxes to include support for
JAX-RS and JAXB in your project (we explain why you need JAXB in the later section “JAXB
and More Interesting XML-Based Web Services”).

 Figure 4.2 Modifying Facets

 Finally, back on the Dynamic Web Project creation page, click Finish . Eclipse creates the
project and might inform you through a dialog box that this type of project is best viewed in the
JEE perspective; it asks if you want to open that perspective now. If you are not already in that
perspective, answer Yes; you can work in the JEE perspective from then on.

Introducing JAX-RS 71

 Next, you need to create your first resource class. This resource class simply introduces
you to many of the common annotations in JAX-RS and familiarizes you with the way you start
and test REST services using Eclipse and the WebSphere Liberty Profile. Go to File > New >
Class from within the web perspective, and open the dialog box in Figure 4.3 that enables you to
create your first resource class.

 Figure 4.3 Creating GreetingResource

72 Chapter 4 REST Web Services in WebSphere Liberty

 Name your new class GreetingResource , and put it in a package named com.ibm.
mwdbook.restexamples. Click Finish, and the Java Editor for your newly created class opens. At
this point, you can go into the Java editor and change the newly created class stub to match the
code in Listing 4.1 .

 Listing 4.1 GreetingResource

package com.ibm.mwdbook.restexamples;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

@Path("/Greeting")
public class GreetingResource {
@GET

public String getMessage() {
return "Hello World";

 }
}

 This little example doesn’t do much, but it does point out a few key aspects of resource
classes in JAX-RS. First, notice that this class doesn’t descend from any specialized subclass, nor
does it implement any special interfaces. This is in accordance with the design of the JAX-RS
specification, which aimed to allow developers to implement services as annotated POJOs. This
was a principle that originated in JEE5 and has continued into later specifications. Next, notice
the @Path annotation at the class level. As with the other annotations, @Path corresponds to a
particular class—in this case, javax.ws.rs.Path , which you must import. In fact, each of the
annotations you import in this example come from the javax.ws.rs package. @Path deter-
mines where in the URI space this particular resource is placed. Adding a path of /Greeting
states that the last part of the URL (the resource identifier) will end in /Greeting . Other parts
of the URL can be in front of the path identifier, but at least this identifies the end. In terms of the
JAX-RS specification, annotating a class like this makes it a root resource class. This distinction
becomes important when we start discussing subresources later.

 The final point to notice about this simple example is the @GET annotation. Remember that,
in the REST model, the HTTP methods are the verbs of the service. If the URI represents the
noun that the action is performed against, then the method is the action that is performed. So the
meaning of this simple example is that you are GET ting a greeting. That makes the response that
we are returning, Hello World! , very appropriate! Now, of course, @GET isn’t the only HTTP
method annotation you can use; in the later section “Handling Entity Parameters with POST and
the Consumes Annotation,” we cover a case in which you use @POST , and Chapter 6 shows uses
for @DELETE and @PUT as well.

Introducing JAX-RS 73

 The next piece of the puzzle to put in place is the Application subclass. According to the
JAX-RS specification, the purpose of the Application subclass is to configure the resources
and providers (we cover those later) of the JAX-RS application. In fact, you’ll be editing and
adding to the Application subclass as we expand the examples. For now, we start with another
 File > New > Class and bring up the new class dialog box. Your Application subclass should
be named BankingApplication and should be placed in the com.ibm.mwdbook.rest
examples package. The class needs to inherit from javax.ws.rs.core.Application .
Figure 4.4 shows the completed fields in the dialog box.

 Figure 4.4 Creating the Application subclass

74 Chapter 4 REST Web Services in WebSphere Liberty

 After you enter these fields, click Finish and then replace the template text of the newly
created class with the text in Listing 4.2 .

 Listing 4.2 BankingApplication Class

package com.ibm.mwdbook.restexamples;
import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/banking/*")
public class BankingApplication extends Application {

}

 Note that we’ve added a single annotation in this class, the @ApplicationPath annota-
tion. This annotation instructs the JAX-RS runtime what the path for JAX-RS resources will be.
The path segment referenced in the annotation is added after the server name and web project
context root, so resources are referenced by this pattern:

http://localhost:9090/RestServicesSamples/banking/your_resource_here

 This is only one of three mechanisms defined in the Infocenter for configuring JAX-RS in
the WebSphere Liberty Profile. This approach enables you to specify multiple JAX-RS appli-
cations with different application paths in the same JAR file, but it doesn’t allow you to set up
security constraints for the applications. For information on how to set up JAX-RS to allow that,
refer to the Infocenter. 2

 Creating the WebSphere Liberty Server

 You’re almost ready to put the final piece in place for this simple example. Now that you’ve
created all the artifacts necessary to implement a service, you need to deploy those artifacts into
the WebSphere Liberty Profile. To do so, you must define a server in Eclipse. In this section, we
assume that you created one server back in Chapter 2 when you tested a simple Web 1.0 example
in Eclipse. If you haven’t done so, your panels might differ slightly. Remember the discussion
in Chapter 2 on how you might have different servers for different layers in your application.
One advantage of defining multiple servers is that it keeps your servers from being cluttered by

http://localhost:9090/RestServicesSamples/banking/your_resource_here

Introducing JAX-RS 75

association with projects you don’t need that might slow the startup of your particular server. For
now, begin in the JEE Perspective by clicking the Servers tab at the bottom of the page, selecting
the existing server you created in Chapter 2 , and then using the right mouse button menu to select
 New > Server . The dialog box in Figure 4.5 then appears.

 Figure 4.5 Define a New Server dialog box

76 Chapter 4 REST Web Services in WebSphere Liberty

 In the Define a New Server dialog box, make sure you have selected WebSphere Applica-
tion Server V8.5 Liberty Profile, and then click Next . The page in Figure 4.6 appears.

 Figure 4.6 Creating a new server from an existing server

 This dialog box informs you that you have already created one server named defaultServer
and that this name is in use. On this page, click the New button. That action brings up the next
page of this dialog box (see Figure 4.7).

Introducing JAX-RS 77

 Figure 4.7 New RESTServer creation

 Give the server the name RESTServer. When you click Finish on the dialog box in Figure
 4.7 , you are taken back to the new Servers page, but this time you see a description of the server
configuration for your new server, as in Figure 4.8 . Note that your server is pretty bare bones at
this time—only the basic configuration for your HTTP host and port is defined. That changes in
the next step.

 The final task in creating your server is associating your project with the server you just
created. Click the Next button one final time. The dialog box in Figure 4.8 enables you to associ-
ate your project with the server by clicking the Add button to move the project from the list of
available projects on the left side over to the list of configured servers on the right side.

78 Chapter 4 REST Web Services in WebSphere Liberty

 Figure 4.8 Add Project dialog box

 At this point, you can finally click the Finish button to finish configuring the server. This
adds the required features (in this case, JAX-RS support) to the server.xml file. Feel free to
examine the server.xml file to verify that it has been reconfigured.

 Starting the Server and Testing the Application

 You’re finally ready to test your application. Begin the process by starting the server you just cre-
ated. On the Servers tab, click the green Start button in Figure 4.9 .

Introducing JAX-RS 79

 Figure 4.9 Starting the server

 Now switch to the Console tab and make sure you see a message stating something like the
following:

[AUDIT] CWWKZ0001I: Application SimpleBankingProject started in
0.419 seconds.

 If you don’t see this message, or if see an error message instead, take a look through the
earlier messages in the console to find out what you did wrong. You can also turn to the end of
this chapter and look at the debugging hints for JAX-RS services. Finally, presuming that every-
thing went well, you can open a browser and type the following into the URL line:

http://localhost:9080/RestServicesSamples/banking/Greeting

 If everything worked correctly, you should see your REST service greeting you with
 Hello World! (see Figure 4.10).

 Figure 4.10 Greeting results

http://localhost:9080/RestServicesSamples/banking/Greeting

80 Chapter 4 REST Web Services in WebSphere Liberty

 More JAX-RS Annotations

 Having a REST service greet you is nice, but it’s hardly a very useful service. Next you’ll imple-
ment a simple service that ties directly to our Banking example. Remember from the description
of the sample in Chapter 1 that often a development team wants to mock up services so that
the UI and Java development teams can test independently. The rest of this chapter walks you
through the implementation of such a set of services—in Chapter 7 , “Introduction to IBM Work-
light,” we show you a complete example that is much more like the production code that would
be used to implement these services. Table 4.2 shows a set of services you need to implement as
part of the example online and mobile banking solution.

 Table 4.2 Services for Online Banking

 URI Description

 /banking/accounts List of accounts

 /banking/accounts/{id} Detail of given account ID

 /banking/accounts/{id}/
transactions

 List of transactions for a given account

 /banking/accounts/{id}/
transactions/{id}

 Detail of given account ID/transaction ID

 We begin by looking at the Accounts resource. You can see two interesting resource refer-
ences here: one service to return a list of accounts and another service to return the detail for a
specific account. From this point on in the chapter, we assume that you know how to create new
resource classes, so we just look at the code for each new class. Let’s start by creating a new
class in com.ibm.mwdbook.restexamples named SimpleAccountResource , with the code
shown in Listing 4.3 . We begin with this class in the listing and use it to learn some more features
of JAX-RS; then we replace it with a more complete implementation in Listing 4.4 . Remember
that this class, as with all resource classes, has no special base class.

 Listing 4.3 SimpleAccountResource Class

package com.ibm.mwdbook.restexamples;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;

@Path("/simple/accounts")
public class SimpleAccountResource {
 @GET

More JAX-RS Annotations 81

 @Produces("application/xml")
public String getAccounts() {

return "<accounts><account>123</account>"+
 "<account>234</account></accounts>";
 }
 @Path("{id}")
 @GET
 @Produces("application/xml")

public String getAccount(@PathParam(value="id") int accountId){
if (accountId==123)

return "<account><id>123</id>" +
 "<description>Savings</description>" +
 "<balance>110.00</balance></account>";

else
return "<error>No account having that id</error>";

 }
}

 In this example, the code implementing the functionality of the service isn’t the interesting
part; it’s the annotations that surround the functionality. The first @Path annotation simply sets
up the basic URI of this example—remember that you’re initially building a throwaway example
that you will replace, so you don’t use the actual URI in Table 4.2 for this example. Instead, to
differentiate this example from others later, you prefix the end of this test URI with simple
instead of just accounts , as the table shows.

 As in the previous example, you begin with the method named getAccounts() , which
returns an XML string representing a collection of two different accounts. The first point to
notice is a new tag, @Produces , which states what type of content the method returns. In the
case of both our new methods, this is application/xml . At this point, you might be wondering
why we didn’t need this for our previous example. The answer is simple—if you don’t add the @
Produces annotation to a resource method, the JAX-RS provider assumes that the content type
is text/html .

 As useful as that is, you can see a much more interesting new feature in the second @Path
annotation added to the bottom method. Here we’re adding the mechanism to handle a second
part of the URI that comes after the /accounts portion handled by getAccounts() . In the
example, we want to provide access to a specific account that is identified by an integer account
number placed after the /accounts portion of the URI. The @Path({id}) annotation identi-
fies that specific account number. But then the question becomes, how do we manage to map the
account number information from the URI to the getAccount(int) method? That’s the role of
the @PathParam(value="id") annotation.

82 Chapter 4 REST Web Services in WebSphere Liberty

 @PathParam is probably the single most useful source of parameter information for
resource methods, but it’s not the only source. Table 4.3 shows some other common sources of
information that you can use as parameters in your resource classes.

 Table 4.3 Sources of Parameter Information in Resource Classes

 Source Description

 @QueryParam Individual query string parameter attached to the URI in the form ?name=value

 @PathParam Parameter from URI template

 @CookieParam Http cookies value

 @HeaderParam Http header value

 @FormParam HTML form elements

 @Context Limited set of context objects

 Testing the New Example

 Entering that little bit of code is all you need to do for this new example. At this point, you should
be able to test your new examples in your browser. You don’t even need to restart the server—
when you change the classes, Eclipse and Liberty automatically update the files on the server
(using the dropins directory on the Liberty server that we mentioned in Chapter 2), so your
changes take effect immediately.

 Enter the following URLs into your browser to view the results. First, to see the list type,
use this:

http://localhost:9080/RestServicesSamples/banking/simple/accounts

 Then to see the individual account, type this:

http://localhost:9080/RestServicesSamples/banking/simple/accounts/123

 Finally, to see the error path, type this:

http://localhost:9080/RestServicesSamples/banking/simple/accounts/234

 JAXB and More Interesting XML-Based Web Services

 We’ve now implemented a simple RESTful web service for the banking example, but it still
leaves a lot to be desired. Hand-crafting XML might have been an appealing thought at the dawn
of the REST services era, but it’s hardly a scalable solution. Instead, we need to discuss ways
of generating the XML produced by our services from our POJOs. This can be accomplished in

http://localhost:9080/RestServicesSamples/banking/simple/accounts
http://localhost:9080/RestServicesSamples/banking/simple/accounts/123
http://localhost:9080/RestServicesSamples/banking/simple/accounts/234

JAXB and More Interesting XML-Based Web Services 83

several ways. One is using the org.w3c.dom.Document interface to generate a document from
its parts. In some cases, this is the best possible approach, especially if you have to handle the
generation of several different XML schemas. However, you usually don’t need the flexibility
of a dynamic approach. In such a case, a simple static approach that ties your POJOs to a single
XML schema is best. The JAXB standard gives you the capability to easily generate XML docu-
ments from your POJO objects with just a few annotations.

 The JAXB Annotations

 Essentially, only two annotations are needed to get going with JAXB:

 • @XmlRootElement: This annotation maps an entire Java class or enum type to an XML
element. It’s called the “RootElement” because it’s the root of the tree of XML tags
(with the attributes of the class being the leaves of the tree).

 • @XmlElement: This annotation maps a JavaBean property or a nonstatic, nontransient
field to an XML element.

 One of the common changes made to the XML tags that are output by a JAXB mapping is
to change the name of the tag (which, by default, is the same as the name of the field or property).
This is done with the name parameter to the annotation. Consider the following example where
you have a field named foo in your code, which you annotate with a standard @XMLElement tag:

@XmlElement
public int foo;

 Your XML output then is of the form <foo>123</foo> . That might not be helpful for
someone trying to read and parse the XML without knowledge of your special variable naming
conventions. Instead, using name as follows

@XmlElement(name="accountNumber")
public int foo;

 results in more readable output:

<accountNumber>123</accountNumber>.

 Combining these annotations is easy. Consider a simple POJO class that represents an
account in our banking example. As in previous examples, you create a new class in your proj-
ect, named com.ibm.mwdbook.restexamples.Account , and then fill in the code from the
example (see Listing 4.4).

84 Chapter 4 REST Web Services in WebSphere Liberty

 Listing 4.4 Account Class

package com.ibm.mwdbook.restexamples;

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement
public class Account{

int id;
 String accountType;
 String description;
 String currency;

double balance;

 // For JAXB Serialization to work every class must have a
 // default no-arg constructor
 // if there are any other constructors defined!

public Account() {
 }

public Account(int i, String name, String type, double balance) {
 setId(i);
 setDescription(name);
 setAccountType(type);
 setBalance(balance);
 setCurrency("USD");
 }

 @XmlElement
public int getId() {

return id;
 }

public void setId(int id) {
this.id = id;

 }

 @XmlElement(name="name")
public String getDescription() {

return description;
 }

public void setDescription(String description) {

JAXB and More Interesting XML-Based Web Services 85

this.description = description;
 }

 @XmlElement(name="type")
public String getAccountType() {

return accountType;
 }

public void setAccountType(String accountType) {
this.accountType = accountType;

 }

 @XmlElement
public String getCurrency() {

return currency;
 }

public void setCurrency(String currency) {
this.currency = currency;

 }

 @XmlElement
public double getBalance() {

return balance;
 }

public void setBalance(double balance) {
this.balance = balance;

 }
}

 A couple of points are worth calling out in this example. The first is the use of the no-arg
constructor. Even if your code doesn’t use a no-arg constructor, one is necessary for any class
serialized by JAXB because the JAXB framework itself expects to use it. The second point to
notice is that we’ve annotated the getter methods. This means that we’ve annotated the proper-
ties for this example; later in Listing 4.7 , we annotate the fields and discuss the differences. In
one particular case, we’ve even illustrated a common aspect of properties annotation—note this
annotation:

@XmlElement(name="type")

86 Chapter 4 REST Web Services in WebSphere Liberty

 Here, we want the name of the tag in the XML to differ from the name of the property
itself. You can do this by specifying the name= property within the annotation. This way, the seg-
ment of XML generated would be of this form

<type> somevalue </type>

 instead of the default:

<accountType> somevalue </accountType>

 You’ll find yourself substituting names like this fairly often when you have to work with
existing XML schemas or JSON formats.

 A Trivial DAO (and Its Use)

 Now that we have an annotated POJO class representing our accounts, we need to turn our atten-
tion to how accounts are created and managed. One of the biggest contributions to the field of
Java EE design over the last 15 years is the book Core J2EE Patterns, by Alur, et. al. Later devel-
opments in JEE have superseded many of the patterns called out in this book, but some are still
as appropriate as ever. One in particular that is extremely helpful in many different situations,
and one that we will follow in this book, is the Data Access Object (DAO) pattern. (You might
remember that you built a simple JDBC-based DAO in Chapter 2 .) The benefit of this pattern is
that it provides an interface that encapsulates and abstracts away all the details of access to any
data source. This enables you to replace one implementation of a DAO with another, without
having to change any of the code that uses the DAO. So in this case, we’re building a very trivial
DAO that’s useful for testing and hides the details of retrieving an account from an account list.
 Listing 4.5 shows the code for this DAO.

 NOTE

 Most of the example snippets in the rest of the chapter leave out the package declaration
(always the same, com.ibm.mwdbook.restexamples) and the includes statements.
For the most part, you’ve seen everything that needs to be included—besides, Eclipse can
automatically patch these up for you using Source > Organize Imports. This makes the
examples much shorter.

 Listing 4.5 AccountDao Class

public class AccountDao {
 HashMap<Integer, Account> accounts = new HashMap<Integer,
Account>();
 public AccountDao() {
 Account anAccount = new Account(123,"savings",110.0);
 accounts.put(123, anAccount);

JAXB and More Interesting XML-Based Web Services 87

 }
 public List<Account> getAccounts() {
 List<Account> accountslist = new Vector<Account>();
 accountslist.addAll(accounts.values());
 return accountslist;
 }
 public Account get(int id) {
 return (Account) accounts.get(id);
 }
}

 That’s all you need for now—just a simple constructor that creates a HashMap of accounts
and adds one to the list, and then a getter for both a list of all accounts and an account stored at a
specific ID. However, that’s enough to help implement our next, more useful example of a JAX-
RS resource (see Listing 4.6).

 Listing 4.6 AccountResource Class

@Path("/accounts")
public class AccountResource {
 AccountDao dao = new AccountDao();
 public AccountResource() {
 }
 @GET
 @Produces(MediaType.APPLICATION_XML)
 public List<Account> getAccounts() {
 return dao.getAccounts();
 }
 @GET
 @Path("{id}")
 @Produces(MediaType.APPLICATION_XML)
 public Account getAccount(@PathParam(value="id") int id){
 return dao.get(id);
 }
}

 We now have an example that’s complete enough to be of some use. This is exactly the type
of simple resource that you would implement when testing an AJAX UI that relies on a number
of REST services to provide information that you can manipulate through JavaScript and HTML.
You can see that we’ve used all the different annotations we’ve examined already, and we’ve
also used the constants in the class MediaType instead of hand-coding application/xml for
the @Produces annotation (which is a best practice to eliminate the possibility of mistyping).

 To test the example, simply type the following into your browser:

http://localhost:9080/RestServicesSamples/banking/accounts/123

http://localhost:9080/RestServicesSamples/banking/accounts/123

88 Chapter 4 REST Web Services in WebSphere Liberty

 JSON Serialization

 Although RESTful services that produce XML are common, it is perhaps even more common
for the service to produce JSON, or the JavaScript Object Notation. JSON is a simple notation
based on name/value pairs and ordered lists that are both easy to produce in many languages and
extremely easy (in fact, part of the language) for JavaScript to parse and create. It’s actually noth-
ing more than a proper subset of the JavaScript object literal notation. 3

 When it comes to Java, especially inside the WebSphere Liberty Profile, you have sev-
eral ways to produce JSON, just as you have different ways of producing XML. You can, of
course, manually hand-code it, although that is not recommended. For more complex situations
requiring a great deal of flexibility, a dynamic method of producing JSON might be needed, just
as a dynamic approach to producing XML is sometimes helpful. However, the most common
approach for producing JSON is the same as that for XML—using static annotations with JAXB.

 A Simple Transaction Example with JAX-RS

 To show how annotations for JSON work, we going to introduce another service from the list ear-
lier in the chapter. The Transaction service enables you to view a transaction with GET , view a list
of transactions with GET , and also create a new transaction by POST ing to the appropriate URL.

 Let’s start by introducing our BankingTransaction class (see Listing 4.7).

 Listing 4.7 BankingTransaction Class

package com.ibm.mwdbook.restexamples;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
@XmlRootElement
@XmlAccessorType(XmlAccessType.FIELD)
public class BankingTransaction {
 @XmlElement

protected String id;
 @XmlElement

protected Date;
 @XmlElement

protected double amount;
 @XmlElement

protected String currency;
 @XmlElement

protected String merchant;
 @XmlElement(name="memo")

protected String description;
 @XmlElement

JSON Serialization 89

protected String tranType;

public BankingTransaction() {
 }

public BankingTransaction(String id, long date,String currency,
➥String memo, double amount, String tranType, String merchant) {
 setId(id);
 setDescription(memo);
 setAmount(amount);
 setCurrency(currency);
 setTranType(tranType);
 setMerchant(merchant);
 setDate(new Date(date));
 }

public String getDescription() {
return description;

 }
public void setDescription(String aDescription) {

 description = aDescription;
 }

public double getAmount() {
return amount;

 }
public void setAmount(double anAmount) {

 amount = anAmount;
 }

public String getCurrency() {
return currency;

 }
public void setCurrency(String currency) {

this.currency = currency;
 }

public String getId() {
return id;

 }
public void setId(String id) {

this.id = id;
 }

public String getTranType() {
return tranType;

 }
public void setTranType(String tranType) {

this.tranType = tranType;
 }

90 Chapter 4 REST Web Services in WebSphere Liberty

public String getMerchant() {
return merchant;

 }
public void setMerchant(String merchant) {

this.merchant = merchant;
 }

public Date getDate() {
return date;

 }
public void setDate(Date date) {

this.date = date;
 }
}

 At this point, you might be thinking that this looks exactly like the annotations in the previ-
ous example. That’s the point. If you use JAXB annotations, you have to annotate the class only
once; you don’t have to put in separate annotations for JSON and XML. Also, it’s not entirely the
same. Note that, in this case, we annotated the fields and not the properties—in practice, there is
little difference between the two, and you can use either.

 Handling Entity Parameters with POST and the Consumes Annotation

 Now that you’ve seen how you can create a class with annotations that work for both XML and
JSON, you can explore how to add methods to a service to take advantage of that. We’re only
introducing a couple new concepts in this part of the example—take a look at the following new
method from the AccountResource class:

@Path("{account}/transaction")
@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
@POST
public int putTransaction(@PathParam(value="account") int account,
 BankingTransaction aTrans){

return txnDao.putTransaction(account, aTrans);
}

 The first new annotation is the @Consumes annotation. None of the previous services
we’ve written have taken in any message bodies, so this is the first time we’ve needed to use it.
As you can see, it’s essentially similar to the @Produces annotation. The interesting part is how
the browser interacts with the server based on these annotations. In this case, we’re being very
restrictive—we insist that the format of the message body be in JSON, but we also provide the
response back in JSON. This information about what format is acceptable to the server and the
client is communicated in specific HTTP headers. Figure 4.11 shows the interaction.

JSON Serialization 91

 Figure 4.11 Header and annotation interaction

 For a resource method to process a request, the Content-Type header of the request must
be compatible with the supported type of the @Consumes annotation (if one is provided). Like-
wise, the Accept header of the request must be compatible with the supported type of the @
Produces annotation. The Content-type header of the response will be set to a type listed in
the @Produces annotation. This case is very simple—we’re allowing only a single content type
(application/json) into our service and a single content type (also application/json) out
of the service; more complex cases might require content negotiation , which we discuss in more
detail in the later section “More on Content Negotiation.”

 Looking back at the code for our BankingTransaction class, you see one more interest-
ing fact about the putTransaction() method. Not only does it take a @PathParam , as have
several of our preceding examples, but another method parameter is not attached to a @Path-
Param annotation: an instance of a BankingTransaction named aTrans . Where does this
parameter come from? The JAX-RS specification is very clear on this: A resource method may
have only one nonannotated parameter; that special parameter is called the entity parameter and
is mapped from the request body. It is possible to handle that mapping yourself, but in our case
(and in most cases), that mapping will be handled by a mapping framework such as JAXB.

 The Use of Singletons in Application Classes

 Before you can test your simple transaction-posting method, you need to understand a couple
more concepts. The first is how we’re implementing the DAO for this example. All the previous
DAOs we implemented were just for prepopulating a collection with examples that we could
retrieve with a GET . However, if we are now enabling POST , we want to be able to check that the
information that we POST to the resource will be available on the next GET to that resource. In a
“real” implementation of a DAO, that would be fine—we’d just fetch the values from a relational

92 Chapter 4 REST Web Services in WebSphere Liberty

database on a GET and create the new rows on a POST . However, in our simplified example, we
don’t yet have that option (we show that in Chapter 6). Our solution for this case is very simple—
we add a static variable that is an instance of our DAO to the DAO class. That way, we implement
what in Design Patterns parlance is often called a singleton, a class that has a single instance. You
can see this in the source code (see Listing 4.8) of our very simple BankingTransactionDao ,
which holds on to a single static variable that is an instance of the class that we name instance .

 Listing 4.8 BankingTransactionDao Class

package com.ibm.mwdbook.restexamples;

import java.util.HashMap;

public class BankingTransactionDao {

static BankingTransactionDao instance = new
➥BankingTransactionDao();

public static BankingTransactionDao getInstance() {
return instance;

 }

 HashMap<String, BankingTransaction> accounts =
new HashMap<String, BankingTransaction>();

int lastId=123;

public BankingTransactionDao() {
 String key=deriveKey(123,123);
 BankingTransaction aTrans = new BankingTransaction("123",
➥1388249396976L,"USD", "paycheck", 110.0, "DEPOSIT", "DIRECT");
 accounts.put(key, aTrans);
 }

private String deriveKey(int account, int id) {
 StringBuffer buf = new StringBuffer();
 buf.append(account);
 buf.append("-");
 buf.append(id);
 String key = buf.toString();

return key;
 }

public BankingTransaction getTransaction(int account, int id){
 String key = deriveKey(account, id);

return (BankingTransaction)accounts.get(key);

JSON Serialization 93

 }

public int putTransaction(int account, BankingTransaction aTrans)
 {

int id=getNextID();
 String key = deriveKey(account,id);
 aTrans.setId(Integer. toString(id));
 accounts.put(key, aTrans);

return id;
 }

private int getNextID() {
return ++lastId;

 }

}

 Now the variable declaration of txnDao within our AccountResource class simply needs
to obtain the instance of the Dao by invoking the getInstance() method, as follows:

BankingTransactionDao txnDao = BankingTransactionDao.getInstance();

 However, although this is simple, it’s not the best solution for most cases. A better approach
is to consider that JAX-RS provides you with the capability to produce singleton instances of
resource classes. In JAX-RS, the normal process is that a new instance of the resource class is
created for every request. However, this might not always be the best choice. Even though it
is a best practice that resources be stateless (as are the REST services themselves), sometimes
a singleton instance can be useful—notably, when it needs to contain cached information to
improve performance. Our simple service has another reason for this—to provide a stateful test
service that mimics a service implemented on a backing store such as a relational database. You
achieve this through the use of the @Singleton annotation. When your resource class contains
this annotation, the resource class itself is considered to be a singleton and will live through the
lifetime of the server. We show you many examples of @Singleton -annotated resource classes
in our more fully fleshed-out example in Chapter 7 .

 NOTE

 If you’re interested in learning about the Singleton pattern, see Design Patterns, Elements
of Reusable Object Oriented Software, by Gamma, et. al.

94 Chapter 4 REST Web Services in WebSphere Liberty

 To complete this example, simply create a new class for your BankingTransactionDao
and enter the previous code and then modify the AccountResource class to add the variable
declaration for the txnDao and the new putTransaction() method we earlier described. You
then need to let Eclipse patch up your import list using Source > Organize Imports so that the
example compiles cleanly.

 Testing POST and Other Actions with RESTClient

 Now it’s time to test adding a banking transaction to our newly defined POST resource method
in our AccountResource class. However, that brings up a problem: In all the previous examples,
we’ve been testing only GET ting a response from a resource, which can be tested in any browser.
How can we test POST ing to a resource? That requires you to provide a message body and also (as
you’ve already seen) a special Content-Type HTTP header. Essentially, a basic browser won’t do
for this case. You can look into several testing options:

 • Curl (http://curl.haxx.se/) is a commonly used command-line client tool for transferring
data with a URL syntax that can be used over a variety of protocols, including HTTP.
Curl is especially useful for scripting if you need to write reusable test scripts.

 • rest-client (http://code.google.com/p/rest-client/) is a simple Java GUI application from
Google (although it also comes in a command-line version) that can be used for testing
REST resources.

 The solution we demonstrate in this chapter fits better with our methodology of testing
resource methods within the browser: We use RESTClient, a free Mozilla add-on written by
Chao Zhou that is available on the Mozilla add-ons site (see https://addons.mozilla.org/en-US/
firefox/addon/restclient/). Chapter 9 discusses similar plug-ins for Chrome.

 Obtaining RESTClient and installing it into Firefox is easy; just visit the site and follow the
instructions. To start a RESTClient session, click the red RESTClient icon in the upper-right cor-
ner of your screen that is added during the installation process. You will see a new tab that looks
something like the one in Figure 4.12 .

 When you are ready to test your new service, first select POST from the Method drop-
down list. Then type the following URL on the URL line:

http://localhost:9080/RestServicesSamples/banking/accounts/123/
transaction

 You need to add an appropriate Content-Type header. Click the Headers menu and
choose Custom Header; then in the Request Header dialog box, type Content-Type as the Name
and application/json as the value before clicking OK to dismiss the dialog box. Finally, type this
into the body text area and click Send:

{"currency":"USD","memo":"books","amount":10,"tranType":"PURCHASE",
"merchant":"Amazon" }

http://curl.haxx.se/
http://code.google.com/p/rest-client/
https://addons.mozilla.org/en-US/firefox/addon/restclient/
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction
http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction

More on Content Negotiation 95

 If you look at either of the Response Body tabs, they should show the new ID number
of your transaction (124 if you’ve added only one BankingTransaction). Likewise, the
Response Header tab should show a status code of 200 OK and a Content-Type of applica-
tion/json , as explained in our earlier diagram.

 More on Content Negotiation

 One of the most challenging parts of writing a resource is determining what Content-Type the
resource for each method will accept and what Content-Type will be returned. The problem is
that different Content-Type s are better suited for different purposes, as we hinted at earlier. For
instance, XML is extremely well suited to Enterprise-level SOA services because a number of
languages can parse and generate XML. Likewise, XML has the benefit of a commonly accepted
schema language (XML Schema) for defining valid XML documents. This enables you to asso-
ciate a particular schema document representing the entire range of valid request or response

 Figure 4.12 RESTClient for POST testing

96 Chapter 4 REST Web Services in WebSphere Liberty

bodies with each service that you write—this capability can be useful for creating an Enterprise
registry of your services.

 However, a great number of services will be mostly consumed by JavaScript code as part
of the Modern Web Application architecture we’ve described. Thus, the simplicity and efficiency
of JSON needs to be strongly considered also. So in practice, many of the actual services you
write will have to handle the possibility of consuming and producing multiple Content-Type s.
People have suggested handling this content negotiation problem in a few ways.

 You could accept different URI parameters for each content type and then implement dif-
ferent methods in your Resource class (each having a different @Path annotation) to differenti-
ate between the two. The problem with this approach is that, although it’s simple, it’s not natural.
Appending .xml or .json to the end of URI is not something most developers would think to
do. Also, it has the problem that you now have two different methods that effectively do the same
thing—so any changes thus have to be made in two places.

 Another possibility is to use QueryParams . With this solution, you append a
 ?format= someformat query parameter to the end of each URI or for cases when you want to
use a format other than the default (presuming that you remembered to test for the query param-
eter being null). Although this avoids the two-method problem of the previous solution, it’s still
not natural. It makes the format request not part of the structure of the request URI itself, but
something that hangs off the end. The problem with that kind of extension by query parameter is
that when it’s begun, it’s hard to stop. 4

 The best way to avoid this kind of pain is simply not to follow any of these approaches.
HTTP already gives you the right mechanism for negotiating the content type that should be
returned, and JAX-RS provides easy support for this approach. To illustrate this, take a look at
the following example, which is a new method in the AccountResource class:

@Path("{account}/transaction/{id}")
@Produces(MediaType.APPLICATION_XML+ ","+MediaType. APPLICATION_JSON)
@GET
public BankingTransaction getTransaction(@PathParam(value="account")
➥int account,@PathParam(value="id") int id){
 BankingTransaction aTrans = txnDao.getTransaction(account, id);

return aTrans;
}

 Note that, in this method, we’ve simply expanded on our earlier examples by adding two
different MediaTypes into the @Produces method. Here, if the client states that it wants to
receive back JSON, it needs to send along application/json in the Accept header. If the
client wants to receive back XML, it sends application/xml instead. Likewise, this method
interprets either XML or JSON correctly as its input; it uses the Content-Type header (looking
for those same two values) to figure out which is which and determine how to interpret what is
sent in.

More on Content Negotiation 97

 Testing the new method is simple: After it has been added to the class, go back into the
RESTClient in your browser and set the Accept header to application/json . Then perform
a GET on the following URL:

http://localhost:9080/RestServicesSamples/banking/accounts/123/
transaction/123

 The returned value in the body should be in JSON. However, you change the Accept
header value to application/xml , you’ll receive the value in XML.

 Introducing the JAX-RS Response

 So far in our examples, the only thing we’ve ever returned from a Resource method is what cor-
responds to the value the client should receive in the best of all possible cases—the case in which
the request works. However, in the real world, you often need some more sophisticated error-
handling techniques to deal with more complex problems. The JAX-RS spec essentially says that
you can return three things from a Resource method. If you return void , that gives you back an
empty message body and an HTTP status code 204 (No Content). We’ve seen the second case
several times: You return an entity of some type, and the status code sent back is HTTP status
code 200 (OK). However, sometimes it’s important to be able to set your own status codes for
more complicated error handling cases. That is where the JAX-RS spec defines one more thing
you can return: an instance of javax.ws.rs.core.Response . Response contains methods
for adding bodies that have other status codes—for instance, temporaryRedirect() for redi-
rect (HTTP status code 307) and, the one we are interested in, status , which we use to send the
correct response for a missing resource, HTTP status code 404 (Not Found). We demonstrate
this in the following code snippet, which is a rewritten version of the getAccount() method
from the AccountResource class:

@GET
@Path("/{id}")
@Produces(MediaType.APPLICATION_XML)
public Response getAccount(@PathParam(value="id") int id){
 Account value = dao.get(id);

if (value != null)
return Response. ok(value).build();

else
return Response. status(404).build();

}

 Note a couple important points about what we’ve done to this method. First, the return type
of the method is no longer Account , but Response . We are using two helpful static methods in
 Response : The method ok(Object) simply indicates that the response should be built around
the object that is passed in as a parameter, and that the HTTP return code should be status code
200. By contrast, the status(int) method indicates that you simply want to return an HTTP

http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction/123
http://localhost:9080/RestServicesSamples/banking/accounts/123/transaction/123

98 Chapter 4 REST Web Services in WebSphere Liberty

status code. Both of these methods actually return an instance of a ResponseBuilder object.
You create a Response from the ResponseBuilder by sending it the message build() . You
might want to investigate the many other useful methods on the Response class on your own.

 Hints on Debugging: Tips and Techniques

 So far, we’ve assumed that everything has gone well for you in writing and running these exam-
ples. However, that’s not always the case; sometimes you need to debug problems in the code.
Eclipse itself provides a lot of helpful features. You can always examine the console log (which
is STDOUT), and you can start the server in debug mode (using the bug icon to start it) to set
breakpoints and step through your code. However, when the console doesn’t give you enough
information to help you determine the cause of your problems, another helpful place to look for
more detailed information that is unique to the WebSphere Liberty profile is in your server’s
logs directory. We briefly passed by this directory in Chapter 2 when we examined the Liberty
directory structure. Look under your WAS Liberty Profile installation directory for /wlp/usr/
RESTServer/logs . In particular, if you encounter a problem that keeps a service from execut-
ing (for example, a mismatch between the @Produces Content-Type and the annotations that
you provide in your entity classes), you can often find helpful information in the TRACEXXX logs
that are created in this directory. The FFDC (First Failure Data Capture) logs are also good places
to look for additional information in debugging problems.

 NOTE

 As we’ve mentioned, if you get tired of typing in these examples on your own, you can
always download them from the book’s website:
www.ibm.com/developerworks/dwbooks/modernwebdev/index.html

 Simple Testing with JUnit

 One of the best approaches to software development that has emerged in the last 15 years is the
notion of Test Driven Development, popularized by Kent Beck as a part of the Extreme Pro-
gramming method. Many other agile methods have adopted this principle, and we’ve found it to
be extremely useful in our own development as well. A helpful tool that has emerged from this
movement is the JUnit testing tool. JUnit enables you to write simple test cases that you can use
to validate your own code.

 From what you’ve learned in this chapter, you’ve probably concluded that testing at the
browser is helpful for fast little validation tests, but it quickly becomes tedious. What’s more,
you’ve probably noticed that it is quite error prone and hardly repeatable, especially when you
have to use a tool such as RESTClient to manually enter JSON or XML request bodies.

http://www.ibm.com/developerworks/dwbooks/modernwebdev/index.html

More on Content Negotiation 99

 Let’s finish the code examples in this chapter with an example of how to write a JUnit test
for one of the previous examples (see Listing 4.9).

 Listing 4.9 JUnit Test for SimpleAccountResource

package com.ibm.mwdbook.restexamples.tests;
import static org.junit.Assert.*;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.URLConnection;

import org.junit.Test;

public class SimpleAccountResourceTest {

 @Test
public void testGetAccounts() {

 String address = "http://localhost:9080/
➥RestServicesSamples/banking/simple/accounts";
 StringBuffer result = new StringBuffer();
 String expectedResult = "<accounts><account>123</account>"+
 "<account>234</account></accounts>";

try {

 fetchResult(address,result);
 } catch (MalformedURLException e) {
 e.printStackTrace();

fail("MalformedURLException caught");
 } catch (IOException e) {
 e.printStackTrace();

fail("IOException caught");
 }

assertEquals(expectedResult, result.toString());
 }

private void fetchResult(String address,StringBuffer result)
➥throws MalformedURLException,IOException
 {
 URL;
 url = new URL(address);
 URLConnection conn = url.openConnection();

100 Chapter 4 REST Web Services in WebSphere Liberty

 BufferedReader in = new BufferedReader(new
 InputStreamReader(
 conn.getInputStream()));
 String inputLine;

while ((inputLine = in.readLine()) != null)
 result.append(inputLine);
 in.close();
 }

}

 JUnit tests are like most other classes in Java today—they are annotated POJOs. In this
case, the annotation @Test (from org.junit.test) identifies a method as a JUnit test method.
A single class can have many test methods, each individually identified. In this excerpt, we show
only the test method for the getAccounts() method, which corresponds to a GET to the URL
http://localhost:9080/RestServicesSamples/banking/simple/accounts. If you browse the full class
definition as included in the sample code, you’ll see that we also include test methods that test
retrieving an account that has an account number defined, as well as the error case of retrieving
an account that does not have an account number defined. All these methods use a utility method
named fetchResult() that uses a URLConnection to fetch the contents of a particular URL.

 After fetching the results, we use JUnit assertions (from org.junit.Assert) to compare
the value we receive against an expected value. So if you know the XML or JSON you want to
compare against ahead of time, you can easily set up a test that can validate that your code still
functions, even after multiple changes.

 Running the JUnit Test is extremely easy. Just select the SimpleAccountResourceTest
class in the Java EE explorer pane and then right-click and select Run As > JUnit Test from the
menu. You should see a result in the bottom-right pane that looks like Figure 4.13 .

 Figure 4.13 JUnit test results

http://localhost:9080/RestServicesSamples/banking/simple/accounts

RESTful SOA 101

 This is an improvement over using a browser for testing, but as you can tell from
close inspection of the code, even this approach leaves much to be desired. In particular, the
 fetchResult() utility method is limited to GET s and does not provide a way to pass in header
values or even a message body. You can address each of these issues, but the method becomes
more complicated as a result (see the corresponding method in the class AccountResource-
Test for an example of exactly how complicated). Thus, you’ll want a better mechanism for
invoking the REST APIs than hand-coding it with a URLConnection . In Chapter 7 , you exam-
ine using the Apache Wink client for just that purpose.

 RESTful SOA

 Before closing this chapter, which has been a whirlwind tour of REST, JAX-RS, and JAXB, as
well as how to use them in the WebSphere Liberty Profile and Eclipse, we need to talk about the
way in which the services we’ve been talking about here relate to the Enterprise services you
might also want to implement. The problem is exactly how often the technologies discussed here,
as powerful as they are, should be applied.

 An old adage that still rings true is, “If all you have is a hammer, everything looks like a
nail.” That’s true of technologies as well as physical tools. Another truism is that all technologies
follow the “hype cycle,” popularized by the analyst firm Gartner, Inc. 5 In the hype cycle, all tech-
nologies first encounter a period of inflated expectations, followed by the inevitable “trough of
disillusionment.” In the years since the publication of the predecessor volume to this book, 6 the
hype cycle has definitely run its course for Enterprise Web Services with SOAP and the WS-*
standards. Many people tried applying the WS-* standards to situations for which they were not
appropriate, or when something simpler would definitely have worked better. However, it’s easy
to see that the REST services that are rapidly replacing WS-* in the hearts and minds of Enter-
prise developers could soon suffer the same fate. You have to be smart about what you’re build-
ing when you’re crafting a service and what you’re building it for. Otherwise, REST can simply
become another hammer used inappropriately for trying to insert a wood screw.

 It also comes down determining what each different service implementation approach is
best suited for. REST is about exposing content through HTTP; it does not replace traditional
WS-* web services. Traditional web services are much more about program-to-program integra-
tion. The WS-* approach allows for a variety of protocols and integrating logic. For example,
you might need distributed transactions and message delivery on top of a reliable protocol such
as JMS when assured delivery is essential.

 Traditional web services built using WS-* standards are about technology abstraction to
allow for a wide variety of infrastructures. REST-based web services are about HTTP exploi-
tation, to take advantage of a single delivery channel. For example, WS-* abstracts security
through WS- Security, enabling you to apply security policies away from the code and abstract-
ing the encryption methods and decisions such as token providers. REST-based services, on the
other hand, make assumptions, using HTTP security mechanisms such as Open ID or HTTPS for
encryption.

102 Chapter 4 REST Web Services in WebSphere Liberty

 The real key lies in channel abstraction rather than channel exploitation. REST does not
address transactions, reliability, or standard context propagation, or other protocols such as mes-
saging. However, these are important considerations for the enterprise as a whole. REST is great
for the responsibilities it is meant to handle, but it can’t do everything. The two approaches can
coexist in the same enterprise—and they should. Always make sure you choose the right tool for
the job.

 Summary

 This chapter discussed a lot. You’ve seen how the JAX-RS standard defines REST services in
Java, you’ve explored how to annotate POJOs with JAXB, and you examined how to implement
these services in the WAS Liberty Profile. In the following chapters, you use the things you’ve
learned in this chapter to build more complex REST services using JAX-RS; then you connect
these to front ends built using JavaScript.

 Endnotes

1. See Eclipse Java IDE – Tutorial: www.eclipse.org/resources/resource.php?id=505 .

2. See Configuring JAX-RS applications using JAX-RS 1.1 methods: http://tinyurl.com/
latksog .

3. See JSON in JavaScript: www.json.org/js.html .

4. The Google Search REST API (https://developers.google.com/custom-search/v1/
using_rest) is a particularly egregious example of this: its documentation has multiple
pages of required and optional parameters.

5. See Hype Cycles, www.gartner.com/technology/research/methodologies/hype-cycle.
jsp .

6. Brown, Kyle et al. Enterprise Java Programming with IBM WebSphere (Second Edi-
tion). IBM Press 2004.

http://www.eclipse.org/resources/resource.php?id=505
http://tinyurl.com/latksog
http://tinyurl.com/latksog
https://developers.google.com/custom-search/v1/using_rest
https://developers.google.com/custom-search/v1/using_rest
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.json.org/js.html

This page intentionally left blank

335

Index

 A
 Account class, 83 - 86
 Account DAO, 205 - 207
 Account Service, 196 - 200
 AccountController.js, 248 - 249
 AccountDao class, 86
 account.html, 247
 AccountList application

 AccountList.js, 155 - 156
 back-end services, invoking,

 156 - 157
 context object, 156
 desktop

 mode, 160
 view, 153

 event handling, 159 - 160
 grids

 building, 157 - 158
 implementing, 154

 HTML, 154
 internationalization, 163
 loading, 152 - 153 , 155
 localserver mode, setting, 164
 logging in, 165
 mobile

 version, 161
 view, 153

 real services, 165
 transaction details

 loading, 163
 template, 162 - 163

 translation fi le, 164
 accountLoaded() method, 249
 AccountResource class, 87
 Accounts test spike, 272
 AccountTest class

 Admin test case, 192
 createTransaction test case,

 193 - 195
 defi nition, 192
 methods, 190
 test cases, 191 , 209

 adapters (Worklight), 218 ,
 221 - 222

 fi les, 233
 logic, implementing, 234 - 235
 security confi gurations,

 235 - 236
 testing, 236 - 238
 XML, 233

 Admin Account Test test case,
 192

 agile UI design, 49 - 50
 design artifacts, creating, 51
 learning about users, 50 - 51
 process, 50

 Ajax (Asynchronous JavaScript
and XML), 3 - 4

 AMD (Asynchronous Module
Defi nition), 126

 defi ne() method, 127 - 128
 future, 130
 JavaScript syntax rules,

 263 - 264
 overview, 126
 primary macros, 128
 require() method, 126 - 127

 Android
 ADT Eclipse plug-in,

installing, 324 - 326
 Developer Tools, installing,

 325 - 326
 Development Kit, installing,

 324
 Emulator, 259
 environments, 258 - 259
 testing development kit/tools

installation, 326 - 327
 annotations

 adding to classes, 74
 Consumes, 90 - 91
 JAXB

 JSON, 88 - 90
 XML, 83 - 86

336 Index

 JAX-RS, 81
 Path, 81
 PathParam, 82
 Produces, 81

 Apache
 Cordova, 11 , 217
 Derby

 database server
confi guration, 186 - 189

 installing, 330 - 331
 APIs. See REST APIs; web APIs
 Apple

 app caches, disabling, 281
 hybrid-based mobile apps,

running, 256 - 257
 iOS

 SDK, 6
 Simulator, 257

 Application Center (Worklight),
 220

 Application subclass, 73 - 74
 ApplicationController class, 146
 applications

 controllers, 115 - 116
 banking example, 146
 mapping, 123
 module loading, 115
 navigation routing, 116
 template, 148 - 149

 deploying
 Eclipse, 45 - 48
 Liberty profi le, 43

 hybrid. See hybrid
applications

 initializing
 banking example, 143
 Dojo toolkit, 134 - 135

 JAX-RS, 68
 layers

 bank example, 180
 DAO, 183
 database schema, 182
 domain objects, 183
 Java EE architecture, 179
 JAX-RS services, 181 - 182
 utility classes, 185

 logging in, 165
 mobile. See mobile

applications

 packaging, 216
 servers, 1
 sharing, 220
 testing

 REST service greeting,
 78 - 79

 sampleServer, 44 - 45
 Worklight, 216

 Worklight structure, 223 - 224
 architecture

 classic web, 1
 client-side

 application controllers,
 115 - 116

 banking example. See
client-side architecture,
banking example

 building principles, 114
 confi guration layer, 121
 data storage and

caching, 121
 design, 103
 Dojo Mobile, 106
 error handling, 120 - 121
 frameworks, 106 , 122 - 123
 jQuery, 106
 mobile frameworks,

 104 - 105
 multichannel

applications, 108
 MVC, 116 - 120

 enterprise infrastructure. See
enterprise infrastructure
architecture

 mobile application
deployment. See mobile
applications, deployment

 RESTful web services, 66 - 67
 effective

characteristics, 67
 prospect URI example, 66

 servers, 36
 Worklight

 Server, 221 - 222
 shells, 223
 Studio, 215

 aspect-oriented connectivity, 292
 assertions, 270

 Asynchronous JavaScript and
XML (Ajax), 3 - 4

 Asynchronous Module
Defi nition. See AMD

 attach-events, 138
 attach points (templates),

138 , 149
 attack paths (mobile

security), 303
 Audit tab (Chrome DevTools),

 277
 authentication

 adapter-based, 235 - 236
 mobile

 application
deployment, 218

 security, 304
 authorization (mobile

security), 304

 B
 back-end

 data sources, generating, 172
 interactions sequence

diagram, 175 - 176
 services, invoking, 156 - 157

 Backbone, 230
 banking example, 36

 Account class, 83 - 86
 account list. See AccountList

application
 Account Test. See

AccountTest class
 AccountDao class, 86
 adapters

 fi les, 233
 logic, implementing,

 234 - 235
 security confi guration,

 235 - 236
 testing, 236 - 238
 XML, 233

 application controller, 146 ,
 148 - 149

 application layers, 180
 DAO, 183
 database schema, 182

Index 337

 domain objects, 183
 JAX-RS services, 181 - 182
 utility classes, 185

 ApplicationController
class, 146

 attach points, 149
 bank

 administrator actions
diagram, 175 - 176

 customer actions diagram,
 174 - 175

 rules, creating, 208 - 209
 transactions, adding,

 94 - 95
 BankingApplication class, 74
 BankingTransaction class,

 88 - 90
 BankingTransactionDao

class, 92 - 94
 Bijit superclass, 147 - 148
 bookmarking, implementing,

 150 - 152
 DAO

 Account, 205 - 207
 Transaction, 207 - 208

 desktop web menu, 149
 domain objects

 Account, 202 - 203
 Transaction, 203 - 205

 DoradoBank folder structure
 common, 240
 environment, 240 - 242

 frameworks, 141
 hybrid-based mobile

application. See mobile
applications, hybrid-based

 importing projects, 140
 JAX-RS annotations example

 annotations, 81 - 82
 services needed, 80
 SimpleAccountResource

class, 80
 testing, 82

 JSON model, defi ning, 26
 menu template, 254 - 255
 mobile web menu, 150
 REST APIs, defi ning,

 176 - 178

 REST services
 Account Service, 196 - 200
 JAXRS providers,

confi guring, 196
 Transaction Service,

 200 - 201
 Web application project

structure, 195
 SimpleAccountResource

class, 99 - 100
 stubbed JSON location, 141
 team organization, 19 - 20
 Transaction list JSON

model, 179
 transaction-posting method,

 90 - 91
 UCD. See UCD
 UI design. See UI design

 BankingApplication class, 74
 BankingTransaction class, 88 - 90
 BankingTransactionDao class,

 92 - 94
 BankRules class, 208 - 209
 Beck, Kent, 98
 Bijit class, 147 - 148
 bin folder (Worklight

Server), 238
 bookmarking, implementing,

 150 - 152
 Bootstrap, 148
 bring your own device

(BYOD), 303
 browsers

 as debuggers, 272 - 273
 Chrome DevTools. See

Chrome DevTools
 multiple browsers, 273

 mobile devices, 8
 plug-ins, 279 - 280

 performance analyzers,
 280

 REST Client, 280
 web developer, 280

 remote debugging
 Chrome, 285
 Safari, 284

 resource methods, testing,
 94 - 95

 build systems, mapping, 122
 business factors (mobile

development), 13 - 15
 business rules, creating, 208 - 209
 BYOD (bring your own

device), 303

 C
 Cache-Control directive, 297
 caching

 client-side architectures, 121
 disabling, 281
 performance, improving,

 296 - 297
 response directives,

 297 - 298
 server-side caching,

 298 - 302
 predictive, 301

 Canonical Data Model, 172
 Cascading Style Sheets. See CSS
 Cast Iron adapters, 222
 CDI (Contexts and Dependency

Injection), 171 , 196 - 200
 channel shifting, 53
 Chrome DevTools, 273

 Audit tab, 277
 Console tab, 277 - 279

 Inspector, 279
 logging methods, 277
 module/method names,

 278
 multiple arguments, 279
 output, 279

 Elements tab, 274 - 275
 Network tab, 275 - 276
 Profi les tab, 277
 Resources tab, 273 - 274 , 275
 Sources tab, 276 - 277
 Timeline tab, 277

 Chrome remote debugging, 285
 classes

 Account, 83 - 86
 AccountDao, 86
 AccountResource, 87
 AccountTest

 Admin test case, 192
 createTransaction test

case, 193 - 195

338 Index

 defi nition, 192
 methods, 190
 test cases, 191

 annotations, adding, 74
 ApplicationController, 146
 BankingApplication, 74
 BankingTransaction, 88 - 90
 BankingTransactionDao,

 92 - 94
 BankRules, 208 - 209
 Bijit, 147 - 148
 MWBApplication, 196
 POJO annotated, creating,

 83 - 86
 Prospect, 37
 resource

 creating, 71 - 72
 parameter information

sources, 82
 Path annotation, 81
 Produces annotation, 81

 Response, 97 - 98
 SimpleAccountResource

 creating, 80
 JUnit testing, 99 - 100

 singletons, 92 - 94
 utility, 185

 classic web architecture, 1
 client-side architectures

 application controllers,
 115 - 116

 module loading, 115
 navigation routing, 116

 banking example
 application initialization,

 143
 confi guration fi le, 144
 index.html fi le, 141 - 143
 stub fi les, 145

 building principles, 114
 confi guration layer, 121
 data storage and caching, 121
 defi ning, 104 - 108
 design, 103
 error handling, 120 - 121
 frameworks, mapping,

 122 - 123

 mobile frameworks, 104 - 105
 choosing, 106
 Dojo, 106
 jQuery, 106

 multichannel
applications, 108

 MVC. See MVC
 cloud computing, 310 - 313
 clustering, 292
 CMP Entity Bean, 31
 code, example fi les, 333
coherence (multichannel

design), 53
 combination multichannel

development, 16
 common folder (hybrid-based

mobile app), 240
 compatibility (Liberty

profi le), 34
 complementarity (multichannel

design), 53
 composite, 56
 confi guring

 client-side architectures, 117
 JAXRS providers, 196
 servers, 186 - 189

 Console (Worklight), 219
 Console tab (Chrome DevTools),

 277 - 279
 Inspector, 279
 logging

 methods, 277
 module/method names,

 278
 multiple arguments, 279
 output, 279

 constructor() method, 136
 Consumes annotation, 90 - 91
 content types (resource

methods), 96 - 97
 context

 JavaScript, 264 - 267
 object, 156

 Contexts and Dependency
Injection (CDI), 171 , 196 - 200

 Cordova, 11 , 217
 Core J2EE Patterns (Alur, et.

al), 86

 create, read, update, delete
(CRUD) interaction pattern, 56

 createHandler() method, 250
 createTransaction test case,

 193 - 195
 Crockford, Douglas, 262 - 263
 cross-domain Ajax security,

disabling, 283
 CRUD (create, read, update,

delete) interaction pattern, 56
 CSS (Cascading Style Sheets)

 CSS3 rules, 267 - 268
 media queries

 example, 109 - 110
 HTML, 111 - 112

 syntax rules, 267 - 268
 cssvalidator plug-in, 268
 Curl, 94
 custom launchers

 creating, 281 - 282
 icon, editing, 282

 D
 DAOs (Data Transfer Objects)

 application layers tier, 183
 banking example

 Account, 205 - 207
 Transaction, 207 - 208

 data source, retrieving, 38 - 39
 defi ning, 37
 get() method, 39 - 40
 XML-based web services,

 86 - 87
 data

 binding, mapping, 122
 caching, 121
 Domain Model, 172

 domain object, 202 - 203
 Transaction domain

object, 203 - 205
 fl ows (Modern Web

Applications), 5
 sources, retrieving, 38 - 39
 storage, 121

 Data Tier
 application layers

 bank example, 180
 DAO, 183

Index 339

 database schema, 182
 domain objects, 183
 Java EE architecture, 179
 JAX-RS services, 181 - 182
 utility classes, 185

 Canonical Data Model, 172
 front-end/back-end

interactions sequence
diagrams, 174 - 176

 JSON
 defi ning, 178 - 179
 generating from back-end

data sources, 172
 REST APIs, defi ning,

 176 - 178
 User Model, 173

 Data Transfer Object. See DAOs
 database schema, 182
 debugging. See also testing

 with browsers, 272 - 273
 Chrome DevTools, 273

 Audit tab, 277
 Console tab, 277 - 279
 Elements tab, 274 - 275
 Network tab, 275 - 276
 Profi les tab, 277
 Resources tab, 275
 settings, 273 - 274
 Sources tab, 276 - 277
 Timeline tab, 277

 HTML, 261 - 262
 JavaScript

 AMD, 263 - 264
 context, 264 - 267
 CSS, 267 - 268
 external data, 269
 global variables, 263
 JSLint.com tool, 263

 jsFiddle tool, 285 - 286
 JUnit testing tool, 98 - 100
 mobile web applications

 app caches, disabling, 281
 cross-domain Ajax

security disabling, 283
 nonwrapped

simulator, 283

 remote, 284
 Chrome, 285
 Safari, 284

 tips and techniques, 98
 defi ne() method

 AccountController.js, 249
 AMD, 127 - 128

 demilitarized zone. See DMZ
 deploying

 applications
 Eclipse, 45 - 48
 Liberty profi le, 43

 mobile applications. See
mobile applications

 Worklight Console, 219
 Worklight Server

artifacts, 239
 design

 artifacts, creating, 51
 bank example

 account summary
view, 60

 bank use case diagram, 58
 larger form factor, 62
 much larger form

factor, 62
 transaction details, 61
 transaction summary

view, 60
 client-side architectures, 103
 hybrid applications, 227
 mobile apps, 57 - 58
 multichannel, 52 - 53

 channel shifting, 53
 coherence, 53
 complementarity, 53
 Enterprise

expectations, 52
 screen sharing, 53
 simultaneity, 53
 synchronization, 53
 user expectations, 52

 patterns, 55
 responsive, 109

 CSS media queries,
 109 - 110

 example, 109
 feature detection, 114

 grid-based
frameworks, 112

 HTML for CSS media
queries, 111 - 112

 Micro Responsive Design,
 113 - 114

 ranges, 112
 UI design phase, 113

 UI. See UI design
 websites, 51

 desktops
 applications, 160
 grids, building, 157 - 158
 mobile devices, compared, 7
 web and mobile convergence.

 See multichannel design
 web menu (banking

example), 149
 destroy() method, 136
 development machine

installation, 315 - 316
 Eclipse Juno IDE, v4.3,

 317 - 318
 Java Runtime Environment,

v1.7, 316
 source code for book

examples, 319 - 321
 WebSphere Liberty Profi le

Developer Tools, v8.5.5,
 318 - 319

 development styles (mobile)
 business factors, 13 - 15
 HTML 5, 9
 native mobile, 8
 summary, 7
 web applications, 8

 DGrid website, 154
 dijits

 future, 130
 overview, 124
 widgets, creating, 136

 dependencies, 139
 instantiating, 139
 lifecycle events, 136
 module basis example,

 137 - 138
 templates, 138

 disabling app caches, 281

340 Index

 display form interaction
pattern, 56

 DMZ (demilitarized zone)
 overview, 287
 secure gateway, 288
 server roles, 288

 DOH (Dojo Objective Harness),
 125 , 270

 Dojo
 AMD

 defi ne() method, 127 - 128
 overview, 126
 primary macros, 129
 require() method, 126 - 127

 banking account list
application

 account list component,
 152 - 153

 AccountList.js, 155 - 156
 application controller

template, 148 - 149
 ApplicationController

class, 146
 attach points, 149
 back-end services,

invoking, 156 - 157
 Bijit superclass, 147 - 148
 bookmarking,

implementing, 150 - 152
 context object, 156
 desktop mode, 160
 event handling, 159 - 160
 grids, building, 157 - 158
 grids, implementing, 154
 HTML, 154
 internationalization, 163
 loading account lists, 155
 localserver mode, setting,

 164
 logging in, 165
 mobile version, 161
 real services, 165
 transaction detail

template, 162 - 163
 transaction details,

loading 163
 translation fi le, 164

 benefi ts, 125

 client-side architectures,
building, 114

 Deferred Objects, 144
 dojo router website, 150
 future, 129
 HTML example

 applications, initializing,
 134 - 135

 body content, 135 - 136
 confi guring Dojo, 132
 explanation, 130
 HTML declaration, 132
 loading dojo, 134
 styling, 132

 Mobile, 106
 object orientation

website, 146
 Objective Harness. See DOH
 overview, 106 , 123
 packages, 124

 dijits, 124
 Dojo, 124
 dojox, 124
 util, 125

 website, 123
 widgets, creating, 136

 dependencies, adding, 139
 instantiating, 139
 lifecycle events, 136
 module basis example,

 137 - 138
 superclass, 146
 templates, 138

 dojoConfi g global variable, 132
 dojox, 124
 Domain Model, 172

 domain object, 202 - 203
 Transaction domain object,

 203 - 205
 domain objects

 Account, 202 - 203
 application layers, 183
 Transaction, 203 - 205

 doPost() method, 38
 DoradoBank folder structure

 common, 240
 environment, 240 - 242

 DoradoBankAdapter fi les, 233

 DoradoBank.html fi le, 242 - 243
 DoradoBank.js, 246
 dynamic CSS compilers/

interpreters, mapping, 122
 dynamic pages, rendering,

 246 - 247

 E
 Eclipse

 Android ADT plug-in,
installing, 325 - 326

 applications, deploying,
 45 - 48

 debugging, 98
 Juno IDE, v4.3, installing,

 317 - 318
 EJBs (Enterprise JavaBeans), 33 ,

 168 - 170
 3.0

 container, 168
 Java annotations, 169
 POJOs, 169
 specifi cation history, 168

 3.1
 asynchronous

methods, 170
 JAXRS components,

implementing, 196 - 200
 Lite, 170
 Singletons, 169

 CDI (Contexts and
Dependency Injection), 170

 Elements tab (Chrome
DevTools), 274 - 275

 endpoint management, 303
 engaging enterprises, 307 - 308

 cloud computing, 310 - 313
 mobile-fi rst development,

 308 - 309
 polyglot programming, 310
 web APIs, managing, 309

 enterprise infrastructure
architecture

 DMZ
 overview, 287
 security gateway, 288
 server roles, 288

Index 341

 ESB
 aspect-oriented

connectivity, 292
 implementing, 292
 integration, 290 - 292
 overview, 291
 service virtualization, 291

 Web API and secure
gateway, 289

 Worklight as channel entry
point, 289

 WXS caching servers, 292
 Enterprise JavaBeans. See EJBs
 Enterprise services, 101 - 102
 entity parameters, handling, 91
 environment folders

(hybrid-based mobile app),
 240 - 242

 Environment Optimization
technology, 216

 error handling, 120 - 121
 ESB (Enterprise Services

Bus), 290
 aspect-oriented

connectivity, 292
 implementing, 292
 overview, 291
 service virtualization, 291
 Worklight and Liberty

integration, 290
 event handling, 159 - 160
 Expires directive, 297
 external data (JavaScript), 269

 F
 facets, modifying, 70
 feature detection

 multichannel
development, 15

 MVC, 119
 responsive design, 114

 Fiberlink MaaS 360, 303
 Fielding, Roy, 4
 FIrebug debugger, 272
 folder structure (hybrid-based

mobile app)
 common, 240
 environment, 240 - 242

 forms
 defi ned, 56
 factors

 client-side architectures,
 108

 larger, 62
 much larger, 62
 Worklight skins, 217

 frameworks
 Apache Cordova, 11 , 217
 Backbone, 230
 banking example, 141
 client-side architectures

 choosing, 106
 Dojo, 106
 jQuery Mobile, 106
 mobile, 104 - 105

 grid-based, 112
 Handlebars. See Handlebars
 JPA, 171 - 172

 instances, fi nding, 172
 lifecycle, 171 - 172
 overview, 171

 jQuery, 106
 client-side architectures,

building, 114
 future, 130
 overview, 229

 jQuery Mobile
 hybrid-based mobile app

default HTML content,
 243

 login pages, 251
 overview, 229

 mapping, 122 - 123
 OSGi, 32
 RequireJS

 hybrid-based mobile app
example fi le, 244 - 245

 login pages, 251
 overview, 229

 Underscore, 230
 unit testing, 270

 front-end/back-end interactions
sequence diagram, 174 - 176

 G
 Garrett, Jesse James, 3
 gateways (security), 288
 get() method

 data source, retrieving, 38
 ProspectDAO example,

 39 - 40
 getAccount object, 156
 getAccounts() method, 234 , 249
 getCurrentAccount()

method, 249
 getTransactions() method,

200 , 234
 global variables

(JavaScript), 263
 GreetingResource class, creating,

 71 - 72
 grids

 desktop/mobile, building,
 157 - 158

 frameworks, 112
 implementing, 154

 H
 Handlebars

 account template, 251-252
 expression language, 252
 hybrid-based mobile app

 defi ning templates, 243
 dynamic page, rendering,

 246 - 247
 menu template, 254 - 255
 overview, 230
 view, 252

 handleChallenge() method, 250
 handling

 errors, 120 - 121
 events, 159 - 160

 headers, versioning, 294
 Hello World application, 68 - 74

 Application subclass, 73 - 74
 facets, modifying, 70
 GreetingResource class,

creating, 71 - 72
 testing, 78 - 79
 web project, creating, 68 - 70
 WebSphere Liberty server,

creating, 74 - 78

342 Index

 Hewitt, Joe, 272
 history

 Ajax, 3 - 4
 application servers, 1
 classic web architecture, 1
 Java EE, 1
 Modern Web Applications

 advantages, 6
 competition, 6
 data fl ows, 5
 mobile technologies, 6

 open source frameworks, 3
 RIA, 5
 WAS, 29 - 31
 Web 2.0, 4

 HTML
 consistency rules, 261 - 262
 CSS media queries, 111 - 112
 Dojo example

 applications, initializing,
 134 - 135

 body content, 135 - 136
 confi guring Dojo, 132
 explanation, 130
 HTML declaration, 132
 loading dojo, 134
 styling, 132

 HTML 5, 9
 hybrid-based mobile apps

main fi le, 242 - 243
 invalid, fi nding, 262
 lexical analyzer, 262
 XML, compared, 261

 HTTP adapters, 222
 hybrid applications, 11 , 227

 AccountController, 248 - 249
 Adapters. See adapters
 design, 227
 dynamic pages, rendering,

 246 - 247
 HTML page implementing a

jQuery page, 246 - 247
 init() method, 246
 login page, 251 - 252
 LoginController, 249 - 250
 main HTML fi le, 242 - 243

 menu
 template, 254 - 255
 view, 252 - 254

 projects, importing, 230 - 231
 require.js fi le, 244 - 245
 router logic, 248
 running

 Android environments,
 258 - 259

 iOS Simulator, 257
 Macs, 256 - 257
 Mobile Browser

Simulator, 256
 preview mode, 255

 UI design, 227
 Worklight folder

structure, 232
 common, 240
 environment, 240 - 242

 Worklight Server artifacts,
 238 - 239

 I
 IaaS (Infrastructure as a Service),

 311
 IBM design websites, 51
 implementing

 adapter logic, 234 - 235
 ESB, 292
 grids, 154
 JAX-RS

 components as EJB 3.1,
 196 - 200

 resources, 87
 MVC patterns, 118
 views with templates,

 162 - 163
 Import Project Wizard, 230
 importing sample projects, 140 ,

 189 , 230 - 231
 improving performance, 294 - 295

 caching, 296 - 297
 response, 297 - 298
 server-side, 298 - 302

 pagination, 295 - 296
 Infrastructure as a Service

(IaaS), 311

 init() method, 246
 initialize() method, 248 , 252
 initializing applications

 banking example, 143
 Dojo toolkit, 134 - 135

 Inspector (Chrome
DevTools), 279

 installing
 Android

 Developer Tools, 325 - 326
 Development Kit, 324

 Apache Derby, v10, 330 - 331
 Eclipse Juno IDE, v4.3,

 317 - 318
 Java Runtime Environment,

v1.7, 316
 source code for book

examples, 319 - 321
 WebSphere Liberty Profi le

Developer Tools, v8.5.5,
 318 - 319

 WebSphere Liberty Profi le,
v8.5.5, 329

 Xcode, 327
 instance variable tokens, 138
 instantiating widgets, 139
 integrated SDKs, 216
 interaction patterns, 55 - 57
 interactive user interfaces,

mapping, 123
 interface transformation

virtualization, 291
 internationalization, 163
 iOS

 SDK, 6
 Simulator, 257

 isCustomResponse()
method, 250

 J
 J2EE evolution, 30
 Java

 annotations, 169
 adding to classes, 74
 Consumes, 90 - 91
 JAXB, 83 - 86 , 88 - 90
 JAX-RS, 81

Index 343

 Path, 81
 PathParam, 82
 Produces, 81

 JAX-RS
 application layers,

 181 - 182
 defi ned, 67
 entity parameters,

handling, 91
 goals, 67 - 68
 Hello World application,

 68 - 74
 resources/applications, 68

 JSON, 88
 annotations, 88 - 90
 Consumes annotation,

 90 - 91
 entity parameters,

handling, 91
 generating from back-end

data sources, 172
 singletons, 92 - 94
 stubbed, locating, 141
 testing resource methods

within browsers, 94 - 95
 Runtime Environment (JRE),

v1.7, installing, 316
 Java EE, 1

 application layers, 179
 DAO, 183
 database scheme, 182
 domain objects, 183
 JAX-RS services, 181 - 182
 utility classes, 185

 Contexts and Dependency
Injection (CDI), 171 ,
 196 - 200

 EJBs. See EJBs
 evolution, 30 - 31
 JPA, 171 - 172

 instances, fi nding, 172
 lifecycle, 171 - 172
 overview, 171

 servers
 confi guring, 186 - 189
 creating, 168

 test-driven development. See
test-driven development

 typical application
architecture, 179

 v6 Web profi le specs,
 167 - 168

 v7/v8.5 specs, 168
 JavaScript

 debugging
 AMD, 263 - 264
 context, 264 - 267
 CSS, 267 - 268
 external data, 269
 global variables, 263
 JSLint tool, 263

 Object Notation (JSON). See
JSON

 templates, 117
 JavaScript: The Good Parts

(Crockford), 262
 JavaServer Faces (JSF), 3
 JAXB annotations

 JSON, 88 - 90
 XML, 83 - 86

 JAX-RS
 Account Service, 196 - 200
 annotations

 Path, 81
 PathParam, 82
 Produces, 81

 application layers, 181 - 182
 defi ned, 67
 entity parameters,

handling, 91
 goals, 67 - 68
 Hello World application,

 68 - 74
 Application subclass,

 73 - 74
 facets, modifying, 70
 GreetingResource class,

creating, 71 - 72
 testing, 78 - 79
 web project, creating,

 68 - 70
 WebSphere Liberty

server, creating, 74 - 78
 implementing as EJB 3.1

components, 196 - 200
 JSON annotations, 88 - 90

 providers, confi guring, 196
 resources, 68 , 87
 Response, 97 - 98
 singletons, 93
 Transaction Service, 200 - 201
 web APIs, 211

 JMS adapters, 222
 JPA persistence framework,

 171 - 172
 instances, fi nding, 172
 lifecycle, 171 - 172
 overview, 171

 jQuery, 106
 client-side architectures,

building, 114
 future, 130
 overview, 229

 jQuery Mobile
 hybrid-based mobile app, 243
 login pages, 251
 overview, 229

 JRE (Java Runtime
Environment), v1.7,
installing, 316

 JSF (JavaServer Faces), 3
 jsFiddle tool, 285 - 286
 JSLint website, 263
 JSON (JavaScript Object

Notation), 88
 annotations, 88 - 90
 Consumes annotation, 90 - 91
 defi ning

 Account list example, 178
 DoradoBank example, 26
 Transaction list example,

 179
 entity parameters,

handling, 91
 generating from back-end

data sources, 172
 singletons, 92 - 94
 stubbed, locating, 141
 testing resource methods

within browsers, 94 - 95
 JSP (JavaServer Pages), 33
 JUnit

 test cases, running, 209
 testing tool, 98 - 100

344 Index

 L
 larger form factor, 62
 layouts

 CSS media queries
 example, 109 - 110
 HTML, 111 - 112

 ranges, 112
 shells, 117

 lexical analyzer (HTML), 262
 Liberty profi le

 applications
 deploying, 43
 testing, 44 - 45

 compatibility, 34
 Developer Tools,v8.5.5,

installing, 318 - 319
 enterprise infrastructure

architecture
 DMZ, 287 - 288
 ESB integration, 290 - 292
 security gateway, 289
 web API and secure

gateway, 289
 Worklight as channel

entry point, 289
 WXS caching servers, 292

 installing, 329
 JAX-RS Hello World

application, 68 - 74
 Application subclass,

 73 - 74
 facets, modifying, 70
 GreetingResource class,

creating, 71 - 72
 testing, 78 - 79
 web project, creating,

 68 - 70
 WebSphere Liberty

server, creating, 74 - 78
 overview, 33 - 34
 reliability through

clustering, 292
 RESTful web services

 DAOs, 86 - 87
 JAXB annotations, 83 - 86
 JSON. See JSON
 servers, creating, 74 - 78

 sample server.xml, 34 - 36

 servers
 applications, running, 209
 architecture, 36
 confi guring, 186 - 189
 creating, 42 - 43 , 185

 testing installation, 329 - 330
 Web 1.0 pattern example,

 36 - 41
 data source, retrieving,

 38 - 39
 Data Transfer Object, 37
 get() method, 39 - 40
 HTML forms page posting

to Java Servlet, 37
 servlet doPost() method,

 37 - 38
 WXS server-side

caching, 300
 lifecycles

 JPA, 171 - 172
 widget events, 136

 linked list interaction pattern, 56
 list to list interaction pattern, 56
 listings

 Account class, 84 - 85
 Account DAO, 206
 Account domain object, 202
 Account JSON stub data, 178
 Account Service, 196 - 200
 Account Test

 Admin test case, 193
 createTransaction test

case, 193 - 195
 AccountDao class, 86
 account.html, 247
 AccountList component, 152
 AccountList event

handling, 159
 AccountList HTML, 154
 AccountList.js, 155
 AccountList mobile response,

 159
 AccountList rendering

logic, 157
 AccountResource class, 87
 AccountTest class, 192
 adapter logic, 234
 app initialization, 143
 app.js init method, 144

 application controller
template, 148

 ApplicationController
class, 146

 ApplicationController.js, 150
 banking example client-side

architecture, 142 - 143
 BankingApplication class, 74
 BankingTransaction class, 88
 BankingTransactionDao

class, 92
 BankRules class, 208
 Bijit superclass, 147
 CSS media query, 110
 CSS3 rules with vendor

prefi xes, 268
 defi ne() method in AMD, 128
 getAccount object, 156
 GreetingResource class, 72
 HTML for media query, 111
 JAXRS MWBApplication

class, 196
 Liberty profi le sample server.

xml, 34
 loading

 dojo, 134
 transaction details, 163

 login.html, 251
 menu template, 254
 MenuRenderer.js, 253
 module/method names in

login, 278
 require() method in

AMD, 126
 require statements,

nesting, 135
 require.js confi g fi le, 245
 responsive design ranges, 112
 server confi guration, 34, 187
 servlets and JSP features

required, 33
 SimpleAccountResource

class, 80
 stub URLs, 145
 Transaction DAO, 207
 Transaction domain object,

203-205
 Transaction JSON stub

data, 179

Index 345

 Transaction Service, 200
 translation fi le, 164
 translation substitution, 164
 Web 1.0 Liberty profi le

example
 data source, retrieving, 38
 get() method, 39
 index.html fi le, 37
 Prospect class, 37
 servlet doPost() method,

 37 - 38
 widgets

 module example, 137
 parsing, 134
 templating, 138

 lists, 56
 loadAccountList() method, 155
 loading

 AccountList component,
 152 - 153

 dojo, 134
 modules, 115
 transaction details, 163

 localserver mode, setting, 164
 location virtualization, 291
 logging

 Chrome console
 methods, 277
 module/method names,

 278
 multiple arguments, 279
 output, 279

 logging in, 165 , 251 - 252
 login() method, 250
 LoginController.js, 249 - 250

 M
 MaaS 160, 303
 Macs

 app caches, disabling, 281
 hybrid-based mobile apps,

running, 256 - 257
 iOS

 SDK, 6
 Simulator, 257

 master detail interaction
pattern, 56

 MEAP (Mobile Enterprise
Application Platform)
vendors, 11

 media queries (CSS)
 example, 109 - 110
 HTML, 111 - 112

 menu template, 254 - 255
 MenuRenderer.js, 253
 Message Driven Beans, 169
 methods

 accountLoaded(), 249
 AccountTest class, 190
 constructor(), 136
 createHandler(), 250
 defi ne()

 AccountController.js, 249
 AMD, 127 - 128

 destroy(), 136
 doPost(), 38
 get()

 data source, retrieving, 38
 ProspectDAO example,

 39 - 40
 getAccounts(), 234 , 249
 getCurrentAccount(), 249
 getTransactions(), 200 , 234
 handleChallenge(), 250
 init(), 246
 initialize(), 248 , 252
 isCustomResponse(), 250
 loadAccountList(), 155
 login(), 250
 postCreate(), 136
 postMixinProperties(), 136
 render(), 252
 require(), 126 - 127
 resources

 content types, 96 - 97
 testing within browsers,

 94 - 95
 runAccounts(), 248
 runLogin(), 251
 wlCommonInit(), 246

 Micro Responsive Design,
 113 - 114

 mobile applications
 bank example

 account summary
view, 60

 larger form factor, 62
 transaction details, 61
 transaction summary

view, 60
 banking account list

example, 161
 characteristics, 11 - 13
 context, 11
 deployment

 application sharing, 220
 authentication, 218
 device runtime, 216 - 217
 enterprise resources,

exposing, 218
 native device

functionality,
accessing, 217

 push notifi cations, 218
 server-side functionality,

accessing, 218
 Worklight component

interactions, 220 - 221
 Worklight Console, 219
 Worklight skins, 217

 frameworks, 104 - 105
 grids, building, 157 - 158
 hybrid-based, 11

 AccountController,
 248 - 249

 adapter fi les, 233
 adapter logic,

implementing, 234 - 235
 adapter XML, 233
 Android environments,

 258 - 259
 common folder, 240
 design, 227
 dynamic pages, rendering,

 246 - 247
 environment folders,

 240 - 242
 Handlebars template, 252
 Handlebars View, 252
 HTML page

implementing a jQuery
page, 246 - 247

 init() method, 246
 iOS Simulator, 257

346 Index

 launching from Macs,
 256 - 257

 login page, 251 - 252
 LoginController, 249 - 250
 main HTML fi le, 242 - 243
 menu template, 254 - 255
 menu view, 252 - 254
 Mobile Browser

Simulator, running, 256
 preview mode, 255
 projects, importing,

 230 - 231
 require.js fi le, 244 - 245
 router logic, 248
 security confi guration,

 235 - 236
 testing adapters, 236 - 238
 Worklight folder

structure, 232
 Worklight Server artifacts,

 238 - 239
 mobile web advantages, 9 - 10
 native versus mobile web,

 10 - 11
 remote debugging, 284

 Chrome, 285
 Safari, 284

 targeted versus multichannel,
 57 - 58

 testing/debugging
 app caches, disabling, 281
 cross-domain Ajax

security, disabling, 283
 nonwrapped

simulator, 283
 web menu (banking

example), 150
 Mobile Browser Simulator, 256
 mobile devices

 browsers, 8
 desktop web and mobile

convergence. See
multichannel design

 desktops, compared, 7
 development styles

 business factors, 13 - 15
 summary, 7

 fueling Modern Web
Applications, 6

 runtime, 216 - 217
 Worklight, 18 - 19

 Mobile Enterprise Application
Platform (MEAP) vendors, 11

 mobile-fi rst development,
 214 - 215 , 308 - 309

 mobile security
 attack paths, 303
 authentication, 304
 authorization, 304
 BYOD (bring your own

device), 303
 layers, 302
 protection, 303

 Model component, 116
 Model-View-Controller. See

MVC
 Modern Web Applications

 advantages, 6
 competition, 6
 data fl ows, 5
 mobile technologies, 6

 Modern Web Development with
IBM WebSphere website,
 98 , 315

 modules
 loading, 115
 mapping, 122
 widgets, 137 - 138

 much larger form factor, 62
 multichannel design, 15 - 16 ,

 52 - 53 , 108
 channel shifting, 53
 coherence, 53
 complementarity, 53
 Enterprise expectations, 52
 mobile applications, 57 - 58
 screen sharing, 53
 simultaneity, 53
 synchronization, 53
 user expectations, 52

 multiple language
programming, 310

 MVC (Model-View-Controller),
 55 , 116 - 120

 confi guration component, 117
 feature detection, 119

 implementing, 118
 JavaScript templates, 117
 layout shells, 117
 Model, 116
 screen navigation/history,

 118
 security component, 117
 storing/retrieving data, 117
 View component, 116

 MWBApplication class, 196

 N
 native device functionality,

accessing, 217
 native mobile applications, 8 ,

 10 - 11
 native shell, mapping, 122
 navigation routing, 116
 nesting require statements, 135
 Network tab (Chrome

DevTools), 275 - 276
 networking (DMZ)

 overview, 287
 secure gateway, 288
 server roles, 288

 O
 O’Reilly, Tim, 4
 objects

 Account domain, 202 - 203
 context, 156
 getAccount, 156
 POJOs, 32

 annotated classes,
creating, 83 - 86

 EJB 3, 169
 Transaction domain, 203 - 205

 online LINT checker
website, 268

 open source frameworks, 3
 Backbone, 230
 Handlebars. See Handlebars
 jQuery

 client-side architectures,
building, 114

 future, 130
 overview, 229

Index 347

 jQuery Mobile
 hybrid-based mobile app

default HTML
content, 243

 login pages, 251
 overview, 229

 RequireJS
 hybrid-based mobile app

example fi le, 244 - 245
 login pages, 251
 overview, 229

 Underscore, 230
 Oracle JRE download, 316
 organizing teams, 19 - 20
 OSGi framework, 32

 P
 PaaS (Platform as a Service), 311
 packages

 Dojo toolkit
 dijits, 124
 Dojo, 124
 dojox, 124
 util, 125

 managers, 122
 packaging applications, 216
 page-oriented user interfaces,

 53 - 54
 pagination, 295 - 296
 parameters

 entity, handling, 91
 information sources, 82

 parsing widgets, 134
 Path annotation, 81
 PathParam annotation, 82
 patterns

 design, 55
 interaction, 55

 applying, 57
 composite, 56
 CRUD, 56
 Display Form, 56
 forms, 56
 Linked List, 56
 List to List, 56
 lists, 56
 Master Detail, 56

 Search Form, 56
 Search List, 56
 Simple List, 56
 Table List, 56
 Update Form, 56
 Validating Form, 56
 Validating Form

Wizard, 56
 MVC, 55

 performance analyzer browser
plug-ins, 280

 performance, improving,
 294 - 295

 caching, 296 - 297
 response, 297 - 298
 server-side, 298 - 302

 pagination, 295 - 296
 persistence, 171 - 172
 Plain Old Java Object. See

POJOs
 Platform as a Service (PaaS), 311
 plug-ins

 Android ADT Eclipse
plug-in, installing, 325 - 326

 browsers, 279 - 280
 performance

analyzers, 280
 REST Client, 280
 web developer, 280

 POJOs (Plain Old Java
Objects), 32

 annotated classes, creating,
 83 - 86

 EJB 3, 169
 polyglot programming, 310
 postCreate() method, 136
 Postman REST Client

plug-in, 280
 postMixinProperties()

method, 136
 predictive caching, 301
 preview mode, launching, 255
 primary Dojo macros, 128
 procedures (Worklight), 222
 Produces annotation, 81
 Profi les tab (Chrome

DevTools), 277
 programming model changes,

 31 - 33

 progressive enhancement, 309
 projects, importing, 140 , 189 ,

 230 - 231
 Prospect class, 37
 protecting mobile devices

 authentication, 304
 authorization, 304
 endpoint management, 303

 protocol and interaction
virtualization, 291

 push notifi cations, 218

 Q - R
 QUnit, 270
 ranges (screen design), 112
 reliability through

clustering, 292
 remote debugging, 284

 Chrome, 285
 Safari, 284

 render() method, 252
 Representational State Transfer.

 See REST
 require() method, 126 - 127
 require statements, nesting, 135
 RequireJS

 hybrid-based mobile app
example fi le, 244 - 245

 login pages, 251
 overview, 229

 resources
 classes

 creating, 71 - 72
 parameter information

sources, 82
 Path annotation, 81
 Produces annotation, 81

 content types, 96 - 97
 JAX-RS, 68 , 87
 methods, 94 - 95
 semantic changes, 293
 structure changes, 293
 URIs, versioning, 293 - 294

 Resources tab (Chrome
DevTools), 275

 response caching, 297 - 298
 Response class (JAX-RS), 97 - 98

348 Index

 responsive design, 109
 CSS media queries, 109 - 110
 example, 109
 feature detection, 114
 grid-based frameworks, 112
 HTML for CSS media

queries, 111 - 112
 Micro Responsive Design,

 113 - 114
 multichannel

development, 15
 ranges, 112
 UI design phase, 113

 REST (Representational State
Transfer), 4

 APIs. See REST APIs
 Client, 94

 browser plug-in, 280
 resource methods, testing,

 94 - 95
 website, 94

 defi ned, 17
 endpoints, testing. See

test-driven development
 JAX-RS

 defi ned, 67
 goals, 67 - 68
 Hello World application,

 68 - 74
 resources/applications, 68

 misconceptions, 17
 philosophies, 65
 servers

 confi guring, 186 - 189
 creating, 168

 services
 advantages over

Worklight, 223 - 224
 disadvantages over

Worklight, 225 - 226
 JAX-RS
 Account Service,

 196 - 200
 provider, confi guring,

 196
 Transaction Service,

 200 - 201
 pagination, 295 - 296
 Web application, 195

 User Model, 173
 web APIs, creating, 18
 web services. See web

services
 REST APIs

 application layers
 bank example, 180
 DAO, 183
 database schema, 182
 domain objects, 183
 Java EE architecture, 179
 JAX-RS services, 181 - 182
 utility classes, 185

 calling with Apache Wink
client API, 192

 defi ning, 26 , 176 - 178
 front-end/back-end

interactions sequence
diagrams, 174 - 176

 retrieving data sources, 38 - 39
 RIA (Rich Internet

Applications), 5
 routing, mapping, 123
 runAccounts() method, 248
 runLogin() method, 251
 running applications

 Android environments, 258
 hybrid-based mobile app, 255
 iOS Simulator, 257
 Mobile Browser

Simulator, 256

 S
 SaaS (Software as a Service),

 311
 Safari remote debugging, 284
 screens

 design ranges, 112
 navigation, 118
 sharing, 53

 search interaction patterns , 55
 forms, 56
 lists, 56

 security
 authentication

 adapter-based, 235 - 236
 mobile, 218 , 304

 authorization, 304
 client-side architectures, 117
 gateways, 288
 mobile

 attack paths, 303
 authentication, 304
 authorization, 304
 BYOD (bring your own

device), 303
 endpoint

management, 303
 layers, 302

 sequence diagrams, 174 - 176
 server folder (Worklight Server),

 238 - 239
 server-side caching, 298 - 302

 Liberty profi le, 300
 Worklight, 299

 server-side functionality,
accessing, 218

 servers
 application, 1
 applications, running, 209
 architecture, 36
 confi guring, 186 - 189
 creating, 42 - 43 , 185
 DMZ roles, 288
 installing

 Apache Derby, v10,
 330 - 331

 WebSphere Liberty
Profi le, v8.5.5, 329

 Liberty, creating, 74 - 78
 starting, 78
 WAS. See WAS
 Worklight. See Worklight
 WXS caching, 292

 services
 Account, 196 - 200
 back-end, invoking, 156 - 157
 JAX-RS, 181 - 182
 REST. See REST, services
 Transaction, 88 - 90
 versioning, 292

 headers, 294
 resource semantic

changes, 293

Index 349

 resource structure
changes, 293

 URIs, 293 - 294
 virtualization, 291
 web

 architecture, 66 - 67
 content negotiation, 96 - 97
 debugging, 98
 Enterprise services,

 101 - 102
 JAX-RS Response, 97 - 98
 JSON. See JSON
 XML. See XML, web

services
 servlets

 doPost() method, 38
 features required, 33

 Session Beans, 169
 sharing applications, 220
 shells (Worklight), 223 - 224
 simple list interaction pattern, 56
 SimpleAccountResource class

 creating, 80
 JUnit testing, 99 - 100

 simulators, testing/debugging,
 283

 simultaneity (multichannel
design), 53

 singletons, 91 - 94 , 169
 skins (Worklight), 217
 Software as a Service

(SaaS), 311
 source code for book examples,

installing, 319 - 321
 Sources tab (Chrome DevTools),

 276 - 277
 spikes, testing, 285 - 286
 SQL adapters, 222
 starting servers, 78
 Struts, 3
 stub fi les, 145
 Studio. See Worklight, Studio
 styles (mobile)

 business factors, 13 - 15
 HTML 5, 9
 summary, 7
 web applications, 8

 Sync, mapping, 123

 synchronization, 53
 systems of engagement, 307 - 308

 cloud computing, 310 - 313
 mobile-fi rst development,

 308 - 309
 polyglot programming, 310
 web APIs, managing, 309

 T
 T-WAS (Traditional WAS), 34
 table list interaction pattern, 56
 targeted mobile applications,

 57 - 58
 teams, organizing, 19 - 20
 templates

 application controllers,
 148 - 149

 attach points, 149
 Handlebars

 accounts, 252
 defi ning, 243
 dynamic pages, rendering,

 246 - 247
 menu, 254 - 255

 JavaScript, 117
 mapping, 122
 transaction detail, 162 - 163
 views, implementing,

 162 - 163
 widgets, 138

 test-driven development, 98
 Account Test

 AccountTest class
defi nition, 192

 createTransaction test
case, 193 - 195

 methods, 190
 reading/retrieving

accounts test case, 192
 test cases, 191

 architecture, 190
 frameworks, mapping, 122
 spikes, 271
 test cases, running, 209

 testing. See also debugging
 adapters, 236 - 238
 Android development kit/

tools installation, 326 - 327

 applications
 REST service greeting,

 78 - 79
 sampleServer, 44 - 45
 Worklight, 216

 HTML
 consistency rules, 261 - 262
 invalid code, fi nding, 262

 JavaScript
 AMD, 263 - 264
 context, 264 - 267
 CSS, 267 - 268
 external data, 269
 global variables, 263

 JAX-RS annotations banking
example, 82

 jsFiddle tool, 285 - 286
 JUnit testing tool, 98 - 100
 Liberty Profi le installation,

 329 - 330
 mobile web applications

 app caches, disabling, 281
 cross-domain Ajax

security, disabling, 283
 nonwrapped

simulator, 283
 resource methods within

browsers, 94 - 95
 spikes, 285 - 286
 unit testing. See unit testing
 Worklight Studio

installation, 323
 Xcode, 327 - 328

 Timeline tab (Chrome
DevTools), 277

 Traditional WAS (T-WAS), 34
 Transaction DAO, 207 - 208
 transaction details (banking

example)
 loading, 163
 template, 162 - 163

 Transaction service, 88 - 90 ,
 200 - 201

 translation fi les, 164

350 Index

 U
 UCD (User-Centered

Design), 20
 development team

collaboration, 20
 DoradoBank example

 design process, 22 - 25
 development,

introducing, 25
 interaction patterns, 55

 applying, 57
 composite, 56
 CRUD, 56
 Display Form, 56
 forms, 56
 Linked List, 56
 List to List, 56
 lists, 56
 Master Detail, 56
 Search Form, 56
 Search List, 56
 Simple List, 56
 Table List, 56
 Update Form, 56
 Validating Form, 56
 Validating Form

Wizard, 56
 JSON models, defi ning, 26
 mobile apps, 57 - 58
 multichannel, 52 - 53

 channel shifting, 53
 coherence, 53
 complementarity, 53
 Enterprise

expectations, 52
 screen sharing, 53
 simultaneity, 53
 synchronization, 53
 user expectations, 52

 REST APIs, defi ning, 26
 UI design. See UI design
 user task analysis, 22
 website, 22

 UI design, 49 - 50
 account summary view, 60
 application layers. See

applications, layers

 bank example
 account summary

view, 60
 bank use case diagram, 58
 larger form factor, 62
 much larger form

factor, 62
 transaction details, 61
 transaction summary

view, 60
 design artifacts, creating, 51
 design patterns, 55
 hybrid application

design, 227
 interaction patterns, 55

 applying, 57
 composite, 56
 CRUD, 56
 Display Form, 56
 forms, 56
 Linked List, 56
 List to List, 56
 lists, 56
 Master Detail, 56
 Search Form, 56
 Search List, 56
 Simple List, 56
 Table List, 56
 Update Form, 56
 Validating Form, 56
 Validating Form

Wizard, 56
 learning about users, 50 - 51
 mobile apps, 57 - 58
 MVC, 55
 page-oriented, 53 - 54
 process, 49 - 50
 responsive design, 113

 Underscore, 230
 unit testing

 assertions, 269
 banking application, 272
 DOH test, 270
 frameworks, 270
 importance, 270
 test spikes, 271

 update form interaction
pattern, 56

 URIs, versioning, 293 - 294
 User-Centered Design. See UCD
 user experience (UX) designs.

 See UCD
 User Model, 173

 application layers. See
applications, layers

 Canonical Model,
compared, 173

 front-end/back-end
interactions sequence
diagrams, 174 - 176

 JSON model, defi ning
 Account list example, 178
 Transaction list example,

 179
 REST APIs, defi ning,

 176 - 178
 util package, 125
 utility classes, 185
 UX (user experience) designs.

 See UCD

 V
 validating form interaction

patterns, 56
 variables

 dojoConfi g, 133
 JavaScript global, 263

 versioning, 292
 headers, 294
 resources

 semantic changes, 293
 structure changes, 293

 URIs, 293 - 294
 views

 components, 116
 implementing with templates,

 162 - 163
 virtualization, 291

 W
 WAS (WebSphere Application

Server), 18 , 29
 history, 29 - 31

Index 351

 Liberty profi le
 compatibility, 34
 deploying applications, 43
 overview, 33 - 34
 sample server.xml, 34 - 36
 server architecture, 36
 servers, creating, 42 - 43
 testing applications, 44 - 45
 Web 1.0 pattern example,

 36 - 41
 programming model changes,

 31 - 33
 web

 APIs. See web APIs
 developer plug-in, 280
 projects, creating, 68 - 70
 mobile convergence. See

multichannel design
 services. See web services

 Web 1.0 Liberty profi le example,
 36 - 41

 Data Transfer Object
 data source, retrieving,

 38 - 39
 defi ning, 37
 get() method, 39 - 40

 HTML forms page posting to
Java Servlet, 37

 servlet doPost() method,
 37 - 38

 Web 2.0, 4
 web APIs

 Account domain object,
 202 - 203

 banking example
 Account DAO, 205 - 207
 Account Service, 196 - 200
 Account Test. See

AccountTest class
 applications, running, 209
 bank rules, creating,

 208 - 209
 test cases, running, 209
 Transaction DAO,

 207 - 208
 Transaction domain

object, 203 - 205
 Transaction Service,

 200 - 201

 choices, 210 - 211
 JAX-RS, 211
 managing, 309
 REST principles, 18
 security gateway

architecture, 289
 web services (RESTful)

 architecture, 66 - 67
 effective

characteristics, 67
 prospect URI example, 66

 content negotiation, 96 - 97
 debugging, 98
 Enterprise services, 101 - 102
 JAX-RS Response, 97 - 98
 JSON

 annotations, 88 - 90
 Consumes annotation,

 90 - 91
 entity parameters,

handling, 91
 singletons, 92 - 94
 testing resource methods

within browsers, 94 - 95
 XML-based

 DAOs, 86 - 87
 JAXB annotations, 83 - 86

 websites
 Backbone, 230
 Bootstrap, 148
 CDI, 171
 cssvalidator plug-in, 268
 Curl, 94
 design, 51
 DGrid, 154
 Dijit templates, 149
 Dojo

 Deferred, 144
 object orientation, 146
 router, 150
 toolkit, 123
 widget superclass, 146

 Eclipse download, 317
 Handlebars, 230 , 252
 jQuery, 229
 jQuery Mobile, 229
 jsFiddle, 285
 JSLint, 263

 Modern Web Development
with IBM WebSphere,
98 , 315

 Oracle JRE download, 316
 RequireJS, 229
 RESTClient, 94
 T-WAS, 34
 UCD, 22
 Worklight

 security framework, 235
 tutorials, 233

 WebSphere, 18
 Application Server. See

WAS
 eXtreme Scale. See WXS
 Liberty profi le. See Liberty

profi le
 widgets

 attach points, 149
 banking account list

application
 account list component,

 152 - 153
 HTML, 154
 AccountList.js, 155 - 156
 application controller

template, 148 - 149
 ApplicationController

class, 146
 attach points, 149
 back-end services,

invoking, 156 - 157
 Bijit superclass, 147 - 148
 bookmarking,

implementing, 150 - 152
 context object, 156
 desktop mode, 160
 event handling, 159 - 160
 grids, building, 157 - 158
 grids, implementing, 154
 internationalization, 163
 loading account lists, 155
 localserver mode,

setting, 164
 logging in, 165
 mobile version, 161
 real services, 165

352 Index

 transaction detail
template, 162 - 163

 transaction details,
loading 163

 translation fi le, 164
 creating, 136

 dependencies, adding, 139
 instantiating, 139
 lifecycle events, 136
 module basis example,

 137 - 138
 templates, 138

 parsing, 134
 superclass website, 146

 wlCommonInit() method, 246
 Worklight, 18 - 19 , 213

 adapters, 218
 advantages, 224 - 225
 Application Center, 220
 application structure, 223 - 224
 Console, 219
 deployment architecture

 application sharing, 220
 authentication, 218
 component interactions,

 220 - 221
 Console, 219
 device runtime, 216 - 217
 enterprise resources,

exposing, 218
 native device

functionality, accessing,
 217

 push notifi cations, 218
 server-side functionality,

accessing, 218
 skins, 217

 development, 215 - 216
 Environment Optimization

technology, 216
 integrated SDKs, 216
 packaging, 216
 Studio, 215
 testing applications, 216

 disadvantages, 225
 elements, 213 - 214

 Application Center, 214
 Console, 214

 Device Runtime
Components, 213

 Server, 213
 Studio, 213

 enterprise infrastructure
architecture

 as channel entry
point, 289

 DMZ, 287 - 288
 ESB integration, 290 - 292
 security gateway, 289
 Web API and secure

gateway, 289
 WXS caching servers, 292

 IBM MobileFirst, 214 - 215
 Mobile Browser

Simulator, 256
 Mobile Web App, 281
 overview, 213
 procedures, 222
 security framework

website, 235
 Server

 architecture, 221 - 222
 hybrid app artifacts,

 238 - 239
 mobile application

deployment, 218 - 219
 shells, 223 - 224
 Studio

 application
development, 215

 architecture, 215
 installing, 321 - 323
 packaging

applications, 216
 testing installation, 323
 Worklight Server artifacts,

deploying, 239
 testing/debugging

 app caches, disabling, 281
 cross-domain Ajax

security, disabling, 283
 nonwrapped

simulator, 283
 tutorials website, 233
 web APIs, 211
 WXS caching, 299

 WXS (WebSphere eXtreme
Scale)

 caching, 298 - 302
 Liberty profi le, 300
 predictive, 301
 servers, 292
 Worklight, 299

 overview, 298

 X - Z
 Xcode

 hybrid-based mobile apps,
running, 256 - 257

 installing, 327
 testing, 327 - 328

 XDoclet, 32
 XHR (XMLHttpRequest)

object, 3
 XML

 HTML, compared, 261
 web services

 DAOs, 86 - 87
 JAXB annotations, 83 - 86

 Worklight adapters, 233

	Contents
	Preface
	Chapter 4 REST Web Services in WebSphere Liberty
	What Is REST?
	The Pieces of a RESTFul Web Service
	Introducing JAX-RS
	Basic Concepts: Resources and Applications
	A JAX-RS “Hello World” in WebSphere Liberty
	Creating the WebSphere Liberty Server
	Starting the Server and Testing the Application

	More JAX-RS Annotations
	Testing the New Example

	JAXB and More Interesting XML-Based Web Services
	The JAXB Annotations
	A Trivial DAO (and Its Use)

	JSON Serialization
	A Simple Transaction Example with JAX-RS
	Handling Entity Parameters with POST and the Consumes Annotation
	The Use of Singletons in Application Classes
	Testing POST and Other Actions with RESTClient

	More on Content Negotiation
	Introducing the JAX-RS Response
	Hints on Debugging: Tips and Techniques
	Simple Testing with JUnit

	RESTful SOA
	Summary
	Endnotes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z

