

Mastering XPages
A Step-by-Step Guide to XPages
Application Development and the
XSP Language
By Martin Donnelly, Mark Wallace, Tony McGuckin
ISBN: 0-13-248631-8

The fi rst complete, practical guide to XPages
development—direct from members of the
XPages development team at IBM Lotus.
Martin Donnelly, Mark Wallace, and Tony
McGuckin have written the defi nitive program-
mer’s guide to utilizing this breakthrough
technology. Packed with tips, tricks, and best
practices from IBM’s own XPages developers,
Mastering XPages brings together all the
information developers need to become
experts—whether you’re experienced with
Notes/Domino development or not. The authors
start from the very beginning, helping developers
steadily build your expertise through practical
code examples and clear, complete explanations.
Readers will work through scores of real-world
XPages examples, learning cutting-edge XPages
and XSP language skills and gaining deep
insight into the entire development process.
Drawing on their own experience working directly
with XPages users and customers, the authors
illuminate both the technology and how it can be
applied to solving real business problems.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

XPages Extension
Library
A Step-by-Step Guide to the Next
Generation of XPages Components
By Paul Hannan, Declan Sciolla-Lynch,
Jeremy Hodge, Paul Withers, Tim Tripcony
ISBN: 0-13-290181-1

The XPages Extensibility Framework is one of the
most powerful application development features
found in IBM Lotus Notes Domino. It enables
developers to build their own artifacts and move
far beyond XPages’ out-of-the-box features.
The XPages Extension Library is the greatest
manifestation of this framework. A team of
all-star XPages experts from inside and outside
IBM show developers how to take full advantage
of the XPages Extensibility Library and the grow-
ing portfolio of components built with them. The
authors walk through installing and confi guring
the XPages Extension Library, integrating it
with Domino Designer, and using new XPages
components to quickly build state-of-the-art
applications for web, the Notes client and
mobile devices.

Related Books of Interest

Visit ibmpressbooks.com

Web 2.0 and Social
Networking for the
Enterprise
Guidelines and Examples
for Implementation and
Management Within Your
Organization
Bernal
ISBN: 0-13-700489-3

Survival Guide for
Lotus Notes and
Domino Administrators
By Mark Elliott
ISBN: 0-13-715331-7

Mark Elliott has created a true encyclopedia of
proven resolutions to common problems and has
streamlined processes for infrastructure support.
Elliott systematically addresses support solutions
for all recent Lotus Notes and Domino
environments.

IBM Lotus Connections 2.5
Planning and Implementing Social
Software for Your Enterprise
By Stephen Hardison, David Byrd, Gary Wood,
Tim Speed, Michael Martin, Suzanne Livingston,
Jason Moore, and Morten Kristiansen
ISBN: 0-13-700053-7

In IBM Lotus Connections 2.5, a team of IBM
Lotus Connections 2.5 experts thoroughly intro-
duces the newest product and covers every facet
of planning, deploying, and using it success-
fully. The authors cover business and technical
issues and present IBM’s proven, best-practices
methodology for successful implementation. The
authors begin by helping managers and technical
professionals identify opportunities to use social
networking for competitive advantage–and by
explaining how Lotus Connections 2.5 places full-
fl edged social networking tools at their fi ngertips.
IBM Lotus Connections 2.5 carefully describes
each component of the product–including
profi les, activities, blogs, communities, easy social
bookmarking, personal home pages, and more.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

DB2 9 for Linux, UNIX, and
Windows
DBA Guide, Reference, and
Exam Prep, 6th Edition
Baklarz, Zikopoulos
ISBN: 0-13-185514-X

The Art of Enterprise
Information Architecture
A Systems-Based Approach for
Unlocking Business Insight
Godinez, Hechler, Koening,
Lockwood, Oberhofer, Schroeck
ISBN: 0-13-703571-3

Enterprise Master
Data Management
An SOA Approach to Managing
Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN: 0-13-236625-8

Mainframe Basics for
Security Professionals
Getting Started with RACF
Pomerantz, Vander Weele, Nelson,
Hahn
ISBN: 0-13-173856-9

Understanding DB2 9
Security
Bond, See, Wong, Chan
ISBN: 0-13-134590-7

The Social Factor
Innovate, Ignite, and Win through Mass
Collaboration and Social Networking
By Maria Azua
ISBN: 0-13-701890-8

Business leaders and strategists can drive im-
mense value from social networking “inside the
fi rewall.” Drawing on her unsurpassed experience
deploying innovative social networking systems
within IBM and for customers, Maria Azua
demonstrates how to establish social networking
communities, and then leverage those communi-
ties to drive extraordinary levels of innovation.
The Social Factor offers specifi c techniques for
promoting mass collaboration in the enterprise
and strategies to monetize social networking to
generate new business opportunities.
Whatever your industry, The Social Factor will
help you learn how to choose and implement the
right social networking solutions for your unique
challenges...how to avoid false starts and wasted
time...and how to evaluate and make the most
of today’s most promising social technologies—
from wikis and blogs to knowledge clouds.

Listen to the author’s podcast at:
ibmpressbooks.com/podcasts

This page intentionally left blank

XPages Portable
Command Guide

This page intentionally left blank

XPages Portable
Command Guide
A Compact Resource to XPages Application
Development and the XSP Language

Martin Donnelly, Maire Kehoe, Tony McGuckin,
Dan O’Connor

IBM Press, Pearson plc

Upper Saddle River, NJ  •  Boston  •  Indianapolis  •  San Francisco
New York  •  Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid
Cape Town  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City

ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights
reserved.

Note to U.S. Government Users: Documentation related to restricted right.
Use, duplication, or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer

Cover design: IBM Corporation

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

The following terms are trademarks of International Business Machines
Corporation in many jurisdictions worldwide: IBM Press, Notes, Domino, Java,
IBM, Rational, WebSphere, LotusScript, developerWorks, and Sametime. Other
product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at “Copyright and trade-
mark information” at www.ibm.com/legal/copytrade.shtml. Java and all Java-
based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates. Microsoft, Windows, Windows NT, and the Windows logo
are trademarks of Microsoft Corporation in the United States, other countries,
or both. Linux is a registered trademark of Linus Torvalds in the United States,
other countries, or both. Other company, product, or service names may be
trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

XPages portable command guide : a compact resource to XPages application
development and the XSP language / Martin Donnelly ... [et al.].
 p. cm.
 Includes bibliographical references.
 ISBN 978-0-13-294305-5 (pbk.)
 1. XPages. 2. Application software--Development. 3. Web site development.
I. Donnelly, Martin, 1963-
 QA76.625.X63 2012
 006.7’6--dc23
 2011047429

All rights reserved. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.

First printing February 2012

ISBN-13: 978-0-13-294305-5
ISBN-10: 0-13-294305-0

Associate Publisher
Dave Dusthimer

Marketing Manager
Stephane Nakib

Executive Editor
Mary Beth Ray

Publicist
Heather Fox

Development Editor
Eleanor Bru

Managing Editor
Kristy Hart

Designer
Alan Clements

Project Editor
Anne Goebel

Copy Editor
Krista Hansing
Editorial Services, Inc.

Indexer
Lisa Stumpf

Compositor
Nonie Ratcliff

Proofreader
Debbie Williams

Manufacturing Buyer
Dan Uhrig

www.ibm.com/legal/copytrade.shtml

Dedications

To the memory of my parents, Betty and Paddy, whose love and support I will always
cherish.

—Martin

To my parents and my husband, Nelius, for all their support.

—Maire

To Martin: Once again, you pulled us over the line! You deserve a medal.

To my parents and family: I love you all and hope you enjoy reading another great book
about XPages!

For “my two girls,” Paula and Anna-Rose: a beautiful wife and special daughter who
mean absolutely everything to me!

—Tony

Dedicated to the memory of my parents, Peter and Rita—I miss you both.

To my family—in particular, my wife, Anne Marie, and daughter, Aileen—my contribution
to this book would not have been possible without your support and encouragement.
I love you both.

Finally, to my coauthors—thank you for putting faith in a “Designer developer”
to contribute to this fine book!

—Dan

This page intentionally left blank

Contents

Chapter 1	 Working with XSP Properties  1

Locating and Updating xsp.properties  7

The Timeout Properties  9

xsp.application.timeout  10

xsp.session.timeout  10

xsp.session.transient  12

xsp.application.forcefullrefresh  13

The Theme Properties  13

xsp.theme  13

xsp.theme.web  14

xsp.theme.notes  15

The Resources Properties  18

xsp.resources.aggregate  18

The File Upload Properties  21

xsp.upload.maximumsize  21

xsp.upload.directory  21

The JSF Persistence Properties  22

xsp.persistence.discardjs  23

xsp.persistence.mode  24

xsp.persistence.tree.maxviews  29

xsp.persistence.file.maxviews  30

xsp.persistence.viewstate  30

xsp.persistence.file.gzip  32

xsp.persistence.file.async  32

xsp.persistence.file.threshold  33

xsp.persistence.dir.xspstate  34

xsp.persistence.dir.xspupload  35

xsp.persistence.dir.xsppers  35

The Client Side JavaScript Properties  37

xsp.client.script.dojo.version  37

xsp.client.script.dojo.djConfig  42

The HTML Page-Generation Properties  44

xsp.html.doctype  44

xsp.html.meta.contenttype  45

xsp.html.preferredcontenttypexhtml  46

xsp.html.page.encoding  47

xii   XPages Portable Command Guide

xsp.compress.mode  47

xsp.client.validation  48

xsp.redirect  49

The Error-Management Properties  50

xsp.error.page.default  50

xsp.error.page  52

The User Preferences Properties  55

xsp.user.timezone  55

xsp.user.timezone.roundtrip  56

The AJAX Properties  57

xsp.ajax.renderwholetree  57

The Script Cache Size Properties  60

ibm.jscript.cachesize  60

ibm.xpath.cachesize  60

The Active Content Filtering Properties  61

The Resource Servlet Properties  65

xsp.expires.global  65

The Repeating Control Properties  66

xsp.repeat.allowZeroRowsPerPage  67

The Partial Update Properties  68

xsp.partial.update.timeout  68

The Link Management Properties  69

xsp.default.link.target  69

xsp.save.links  71

The Control Library Properties  73

xsp.library.depends  73

The Composite Data Properties  75

xsp.theme.preventCompositeDataStyles  76

Other Ways of Applying xsp.properties Settings  77

Viewroot Properties  77

Request Properties  78

Applying Properties Using a Theme  80

What Works Where?  81

Conclusion  81

Chapter 2	 Working with Notes/Domino Configuration Files  83

INI Variables You Should Know About  83

The Java Heap  86

HTTPJVMMaxHeapSize Variable  88

Contents   xiii  

HTTPJVMMaxHeapSizeSet Variable  89

JavaMaxHeapSize Variable  89

JavaMinHeapSize Variable  90

JavaEnableDebug Variable  90

JavaDebugOptions Variable  90

JavaUserClasses Variable  90

OSGI_HTTP_DYNAMIC_BUNDLES Variable  91

XPagesPreload Variable  92

XPagesPreloadDB Variable 93 

When and Why Is Preloading Important?  93

Avoid Unnecessary Network Transactions in Your
Application Code  95

Optimizing Client Memory Usage  96

vmarg.Xms  97

vmarg.Xmx  97

Enabling Extended Java Code with the java.policy File  97

JavaUserClasses  100

Conclusion  102

Chapter 3	 Working with the Console  103

About the XSP Command Manager  103

How to Execute the XSP Command Manager Commands  103

show data directory  104

show program directory  105

show version  105

show settings  106

show modules  108

refresh  108

heapdump  109

javadump  109

systemdump  111

Working with the OSGi Console  112

diag <bundle-symbolic-name>  114

ss, ss <bundle-symbolic-name>, or
ss <bundle-name-prefix>  116

start <bundle-symbolic-name>  119

stop <bundle-symbolic-name>  120

b <bundle-symbolic-name>  120

headers <bundle-symbolic-name>  121

help  122

xiv   XPages Portable Command Guide

How to Launch Notes/Designer Along
with the OSGi Console  123

Common Console Commands You Should Know  126

help  127

load [task-name]  127

load [task-name] -?  128

quit  129

restart server  129

tell [task-name] quit  130

restart task [task-name]  130

show server  131

show conf [notes.ini variable]  132

set conf [notes.ini variable=value]  132

tell adminp [options]  132

load chronos [options]  133

load updall [path] [options]  134

load design [source] [target] [options]  134

load fixup [path] [options]  135

show tasks  136

show allports  136

show diskspace  137

show heartbeat  137

Conclusion  138

Chapter 4	 Working with the XSP Client Side JavaScript Object  139

What Is the XSP Client Side JavaScript Object?  139

Summary of the XSP Client Side JavaScript Object Functions  145

The Public XSP Client Side JavaScript Object Functions  160

XSP.alert(message) : void  161

XSP.confirm(message) : boolean  162

XSP.error(message) : void  162

XSP.prompt(message, defaultValue) : string  163

XSP.djRequire(moduleName) : object  164

XSP.addPreSubmitListener(formId, listener, clientId, scriptId)
: void  165

XSP.addQuerySubmitListener(formId, listener, clientId,
scriptId) : void  166

XSP.canSubmit() : boolean  167

XSP.allowSubmit() : void  168

Contents   xv  

XSP.setSubmitValue(submitValue) : void  169

XSP.getSubmitValue() : object  170

XSP.validateAll(formId, valmode, execId) : boolean  171

XSP.getFieldValue(node) : string  172

XSP.getDijitFieldValue(dj) : object  173

XSP.validationError(clientId, message) : void  174

XSP.scrollWindow(x, y) : void  176

XSP.partialRefreshGet(refreshId, options) : void  176

XSP.partialRefreshPost(refreshId, options) : void  177

XSP.attachClientFunction(targetClientId, eventType,
clientScriptName) : void  179

XSP.attachClientScript(targetClientId, eventType,
clientScript) : void  180

XSP.addOnLoad(listener) : void  181

XSP.showSection(sectionId, show) : void  182

XSP.findForm(nodeOrId) : object  183

XSP.findParentByTag(nodeOrId, tag) : object  183

XSP.getElementById(elementId) : object  184

XSP.hasDijit() : boolean  184

XSP.trim(s) : string  185

XSP.startsWith(s, prefix) : boolean  186

XSP.endsWith(s, suffix) : boolean  186

XSP.toJson(o) : string  187

XSP.fromJson(s) : object  187

XSP.log(message) : void  188

XSP.dumpObject(object) : string  189

How XPages Uses the Dojo Framework  189

Dojo Types and Attributes  190

Working with Dojo Dijits  193

IDs in the HTML Source and the Requirement to Use the
“#{id:” Syntax  193

Scripts Accessing Dojo Controls Need to Use dijit.byId  195

Dojo Controls Are Not Available While the HTML Page Is
Loading  196

Bad AJAX Requests to an XPage Can Cause Loss of
Data  197

XPages Input Validation Can Interact with Dojo Layout
Controls  198

Dojo Control Interaction with XPages Partial Update  199

xvi   XPages Portable Command Guide

Client-Side Debugging Techniques  201

XSP Object Debug Functions  201

Client-Side Debugging with Dojo  202

Other Miscellaneous Client-Side Debugging
Information  204

Conclusion  207

Chapter 5	 Server-Side Scripting  209

What Can I Do with Server Side JavaScript?  210

XPages Object Model  210

Server-Side Scripting Objects and System Libraries  210

Summary of Server-Side Global Functions  216

getComponent(id:String): UIComponent  219

getClientId(id:String): String  223

getLabelFor(component:UIComponent):UIComponent  224

getView(): UIViewRoot  225

getForm(): UIForm  225

save():void  226

Working with Java Made Simpler  226

Importing Java Packages into Server Side JavaScript  226

Creating Custom Java Classes  227

Creating Managed Beans  227

Conclusion  238

Chapter 6	 Server-Side Debugging Techniques  239

The “Poor Man’s” Debugger  239

print(message) : void & println(message) : void  239

_dump(object) : void  241

Using try/catch Blocks  246

How to Set Up a Server for Remote Debugging  247

Debugging Java Code and Managed Beans  250

Debugging XPages Extension Plug-ins  261

How to Configure notes.ini and rcpinstall.properties
for Logging  262

Contents   xvii  

Interpreting a Stack Trace: Where to Go from Here?  268

Understanding the XPages Request Handling
Mechanism  268

Understanding the XPages Request Processing Lifecycle  269

XPages Toolbox  275

Conclusion  276

Appendix A	 Definitive Resources  277

Appendix B	 Useful Online Resources  279

Appendix C	 Make Your Own Journal  281

index  285

Introduction

Welcome to the XPages Portable Command Guide! This book is designed, for the
most part, as a quick information guide for XPages developers with some real-world
experience under their belts. It focuses on the road less traveled—xsp.properties
parameters, notes.ini settings, XSP JS object functions, and such. In other words,
it covers the little-known magic bullets that are not well documented but invariably
help get you out of a programming bind. In that sense, it is an ideal companion for
more holistic tomes such as Mastering XPages, which is designed to give broad
coverage to the runtime and application development experience in general. Having
said that, this book does dive into detail, when appropriate—after all, the authors are
developers, so we just can’t help ourselves!

XPages is a rich and powerful application development framework for Notes/
Domino, first introduced in version 8.5 at Lotusphere 2009. Since that time, XPages
has gone from strength to strength, with three further release updates, an open source
XPages Extension Library, a dedicated IBM XWork server, a best-selling IBM Press
book, and many other initiatives and innovations. We hope this Portable Command
Guide helps add to the general success of XPages by bringing new information to the
community and making application development a little bit easier for all concerned.

Reading Audience

This book is for XPages developers with some practical experience. Neophytes are
advised to start with a more general book, such as Mastering XPages, or perhaps to
use this book as its companion guide.

Conventions

Any programming code, markup, or XSP keywords are illustrated in numbered list-
ings using a fixed width font.

User interface elements (menus, links, buttons, and so on) of the Notes client,
Domino Designer, or any sample applications are referenced using a bold font.
So too are file system paths, locations, and artifacts, such as the notes.ini and
xsp.properties files.

Important words and phrases are emphasized using an italic font.

Visual representations of the design-time experience or runtime features are typically
captured as screen shots and written up as numbered figures, using super-imposed
callouts where appropriate.

In general, chapters feature a summary table of XPages commands, parameters,
or properties near the beginning and seek to explain these in brief, concise terms.
These items, or important subsets thereof, are typically then given more expansive

Introduction   xix  

treatment in the rest of the chapter. Most chapters also have an accompanying NSF
sample application containing practical examples that can be perused using Domino
Designer and run in preview mode for the web or Notes client. These samples are
available online for download at the following website: www.ibmpressbooks.com/
title/0132943050

The samples are based on the latest release of XPages available at the time of writing
(version 8.5.3), although many examples work with earlier releases. Visit this website
to download the no-charge version of Domino Designer 8.5.3: www.ibm.com/
developerworks/downloads/ls/dominodesigner/

How This Book Is Organized

This book is divided into six chapters, to separately address the many different
aspects of XPages software development in as logical a manner as possible.

	 n	 Chapter 1, “Working with XSP Properties,” gives you all the details you
need to locate, edit, and load the xsp.properties file, and thus configure the
XPages runtime for your own specific requirements. An XSP property is a
simple parameter definition that can modify the behavior of the XPages run-
time in “magical” ways.

	 n	 Chapter 2, “Working with Notes/Domino Configuration Files,” concerns
itself with the practical business of identifying the notes.ini settings that have
particular relevance to XPages and explains their usage in detail.

	 n	 Chapter 3, “Working with the Console,” gives an overview of the many
ways you can interact with the XPages runtime at the console level for runtime
analysis, troubleshooting, or application debugging.

	 n	 Chapter 4, “Working with the XSP Client Side JavaScript Object,” exam-
ines the XSP Client Side JavaScript Object and lists simple examples of all
the publically exposed functions that that can be used in an XPage. It also
provides a general overview of Client Side JavaScript scripting techniques and
other miscellaneous features relevant to XPages development.

	 n	 Chapter 5, “Server-Side Scripting,” gives an overview of Server Side
JavaScript scripting objects and supporting libraries. This chapter also exam-
ines ways to integrate custom Java classes and create Managed Beans.

	 n	 Chapter 6, “Server-Side Debugging Techniques,” provides detail on set-
ting up a debug and logging environment for your XPages applications. It also
explains the details of stack traces and how you can analyze and decipher such
information when troubleshooting an application.

	 n	 Appendix A, “Definitive Resources,” points to a collection of definitive
reference sources that describe all the details of the XSP tags and Java and
JavaScript classes. It also points to specification documents that define the
technologies that XPages consumes or extends.

www.ibmpressbooks.com/title/0132943050
www.ibmpressbooks.com/title/0132943050
www.ibm.com/developerworks/downloads/ls/dominodesigner/
www.ibm.com/developerworks/downloads/ls/dominodesigner/

xx   XPages Portable Command Guide

	 n	 Appendix B, “Useful Online Resources,” gives a snapshot of the authors’
favorite XPages websites at the time of writing. This list of sites should help
you find whatever you need to know about XPages that you cannot find in this
book.

	 n	 Appendix C, “Make Your Own Journal,” provides blank pages for you to
add your own specific notes on settings, markup, code fragments, or whatever
else you need that might not be listed in this book.

Acknowledgments

We would like to start by thanking our two very thorough and knowledgeable techni-
cal reviewers, Mark Wallace and David Taieb. Thanks to you both for keeping us
honest and for providing invaluable feedback—most of which we included here. ;-)

A big and sincere thank you to all those in the Notes/Domino application develop-
ment leadership team for supporting this project—especially to Eamon Muldoon,
Pete Janzen, Maureen Leland, Peter Rubinstein, and Philippe Riand.

Behind us are some very special teams of people—particularly the XPages runtime
team in IBM Ireland and the Domino Designer team in Littleton, Massachusetts.
Each member of these teams has unique strengths and skills, which we have com-
pletely exploited over the course of writing this book. The user experience and docu-
mentation teams also worked closely with us and helped bring clarity and objectivity
to all we do. Our thanks to all: Andrejus Chaliapinas, Brian Gleeson, Darin Egan,
Edel Gleeson, Graham O’Keeffe, Greg Grunwald, Jim Cooper, Jim Quill, Kathy
Howard, Lisa Henry, Lorcan McDonald, Mark Vincenzes, Michael Blout, Mike
Kerrigan, Padraic Edwards, Paul Hannan, Robert Harwood, Robert Perron, Simon
McLoughlin, Teresa Monahan, and Vin Manduca.

It was once again a tremendous privilege for us to work with our friends at IBM
Press, particularly Mary Beth Ray, Ellie Bru, Anne Goebel, Vanessa Evans, and
Chris Cleveland. On the IBM side, Steven Stansel and Ellice Uffer worked tirelessly
on getting the message out there for the Mastering XPages book and are already beat-
ing the drum for this one! Thanks for the help and the fun along the way.

Finally a great big thank you as always to our customers and business partners for
continuing to explore new ground with XPages and driving further adoption of this
most truly wonderful technology. Viva XPages!

About the Authors

The authors of this book have a few things in common. All four hail from Ireland, work
for the IBM software group, and have made significant contributions to the development
of both XPages and Domino Designer.

Martin Donnelly is a software architect and tech lead for the XPages runtime team
in IBM Ireland. He graduated with a Bachelor of Commerce degree from University
College Cork in 1984 and later completed a Master’s degree in Computer Science at
Boston University (2000). Martin has worked on all XPages releases, from Notes/
Domino 8.5 through 8.5.3, and also worked on a precursor technology: XFaces for Lotus
Component Designer. In the 1990s, while living and working in Massachusetts, he was
a lead developer on Domino Designer. Now based once again in Ireland, Martin lives in
Cork with his wife, three daughters, and two greyhounds. Despite the fact that he should
have hung up his boots years ago, he still persists in playing soccer on a weekly basis
and enjoys salmon angling during the summer when the opportunity presents itself.

Maire Kehoe is a senior software engineer in the IBM Ireland software lab. She com-
pleted an Honors Bachelor of Science degree in Computer Applications in Dublin
City University (DCU) and began working for IBM in 2003. She worked on the Lotus
Component Designer product from 2004 to 2007 and moved to IBM Lotus Domino to
help develop the XPages runtime for the Domino server. Maire lives in Dublin with her
husband and enjoys travel and musicals (and tea).

Tony McGuckin is a senior software engineer in the IBM Ireland software lab. After
studying Software Engineering at the University of Ulster, he began his career with IBM
in 2006, working in software product development on the Lotus Component Designer
runtime. He then transitioned into the XPages core runtime team when XPages was born.
When not directly contributing to the core runtime, Tony is kept busy with research
and development of the next generation of IBM software development tools, as well as
middleware, conferencing, and consultancy. Outside the lab, Tony enjoys food, wine,
and cooking; recently acquired a curious taste for classical music; and likes to get off the
beaten track to take in Irish scenery and wildlife.

Dan O’Connor is a senior software engineer in the Littleton, Massachusetts, software
lab. He graduated with a Bachelor of Engineering degree in Computer Engineering from
the University of Limerick, Ireland in 2000. He joined IBM through Lotus Software in
Cambridge, Massachusetts, in 2000. Since then, Dan has worked on different projects,
but most have focused on Eclipse and JavaServer Faces. In 2002, he joined the Rational
Application Developer team to work on a “new” technology called JSF. In 2006, he
rejoined the Lotus division to work on Lotus Component Designer and moved to
Domino Designer in 2008 as the UI team lead. Dan lives in Milton, Massachusetts, with
his wife and daughter. In his spare time, he spends too many hours following Gaelic
football and occasionally dabbles in “home improvement,” much to the profit of the
local plumber!

When working with an application running on an application server, it is often necessary
to interact with the server’s console to analyze, troubleshoot, and debug any problems
that might arise. This is also true for XPages applications and controls. The Domino
server console provides the developer with a wide variety of commands, ranging from
starting a server task to reporting the status of an OSGi bundle running on the server. At
some point, the XPage developer inevitably will need to call on the console to analyze
why an application is not working or functioning as desired.

The Domino server has a long history. Over time, the Domino server’s console has
served Domino administrators and developers alike as the first line of attack when
troubleshooting problems. In an effort to maintain this level of service over the evolution
of the server, and to enable administrators and developers to quickly get to the root of
issues relating to XPages applications, the server’s console has been instrumented with a
large array of commands specifically built with the XPages runtime in mind.

About the XSP Command Manager

The XPages runtime is embedded within the Domino server’s HTTP task. The XSP
Command Manager serves as the common link for the Domino HTTP task, the server’s
JVM, and the XPages runtime. The XSP command manager is responsible for dispatch-
ing XPages’ requests received from the HTTP task and the Domino console, and is also
ultimately responsible for the XPages runtime’s lifecycle. The XSP Command Manager
has many useful commands built in that enable the administrator or developer to quickly
analyze whether a particular XSP setting is causing an issue. It also can generate Java
dumps that the development team can analyze.

How to Execute the XSP Command Manager Commands

Commands are executed via the XSP Command Manager similar to any other command
on the Domino server. The XSP Command Manager is running within the HTTP task, so
the commands it executes must be fed through the HTTP task, as in this example:

tell http xsp <<xsp command manager command>>

Chapter 3

Working with the Console

104  H ow to Execute the XSP Command Manager Commands

Table 3.1 lists all the XSP Command Manager Commands.

Table 3.1  XSP Command Manager Commands

Command Name Description

show data directory Shows the location of the Domino server’s data directory.

show program directory Shows the location of the Domino server’s program
directory.

show version Displays the exact version of the XPages runtime that is
installed and running on the Domino server.

show settings Shows all the variables/properties that have been set on
the server’s bootstrap.properties file. If a bootstrap.
properties file does not exist, the XPages runtime pro-
vides reasonable recommended defaults.

show modules Displays the modules loaded in the system. The XPages
runtime dynamically loads each Domino database as a
web application module.

refresh Causes the services in the XPages runtime to be refreshed.
This is mainly reserved for future use.

heapdump Performs a live dump of all objects on the Domino
server’s Java heap. Creates a dump file that must be read
by other tools (such as the Eclipse Memory Analyzer); the
file is not human readable.

javadump Performs a Java dump, sometimes referred to as a thread
dump or JavaCore dump, of the Domino server’s JVM.
The information collected during the dump operation is
stored in human-readable format.

systemdump Performs a full system dump, sometimes referred to as a
core dump, of the Domino server’s JVM. The dump infor-
mation is platform specific and contains all the memory,
process, and thread information for the JVM at the time
the dump occurred.

These commands can greatly aid administrators and developers when trying to analyze
particular issues. The dump commands are of particular importance because they per-
form diagnostic dumps on the server’s JVM but do not cause the JVM or the server to
stop operation.

show data directory

As the name suggests, this command simply tells the user where the Domino server’s
data directory resides on the operating system’s file system. In a Domino server envi-
ronment, the data directory stores all the databases that are available through the Dom-
ino server. The location of this directory is significant because all applications running
on the server will reside in this directory or within a subdirectory of this directory.

How to Execute the XSP Command Manager Commands   105  

Sample usage:

tell http xsp show data directory

Figure 3.1 shows the results of running the show data directory command on a
Domino server.

Figure 3.1  Result of running the show data directory command

show program directory

This command tells the user where the Domino server’s program directory resides on
the operating system’s file system. This command can be convenient for developers who
are not familiar with a particular setup of an individual server machine. The command
enables developers or administrators to quickly identify the file system location of the
Domino server’s program directory.

Sample usage:

tell http xsp show program directory

Listing 3.1 shows the result of running the show program directory command in
the Domino server console.

Listing 3.1  Result of Running the show program directory Command in the Console

> tell http xsp show program directory

09/20/2011 10:52:33 PM C:\Program Files\IBM\Lotus\Domino

show version

This command shows the exact version of the XPages runtime that is installed and run-
ning on the Domino server. The version number is updated only when upgrading from
one release to another of XPages core runtime. Adding or upgrading extensions such as

106  H ow to Execute the XSP Command Manager Commands

the XPages Extension library does not update the version number. This command typi-
cally is used when a developer or administrator needs to confirm which version of the
XPages runtime is running on a particular server. New features are added to the XPages
runtime with each release. These features can range from new properties on existing
controls to entirely new controls. Over time, a developer or administrator must confirm
that the version of XPages runtime is at the appropriate release level for the applications
running on the server. This command enables the developer or administrator to quickly
confirm the XPages runtime version.

Sample usage:

tell http xsp show version

Listing 3.2 shows how to determine the version of the XPages runtime.

Listing 3.2  Result of Running the show version Command in the Console

> tell http xsp show version

09/20/2011 04:34:21 PM XSP Runtime Version: [DSI8.5.3] 20110629.1645

In the previous example, the version number can be broken down as follows:

	 n	 The DSI prefix is a constant, which does not vary from release to release.

	 n	 8.5.3 represents the Major.Minor.Maintenance version number. The first digit
is updated with each major feature release, the second digit is updated with each
minor feature release, and the last digit is updated with each maintenance release.

	 n	 The final number (20110629.1645) represents the time stamp (yyyyMMdd.
hhmm) at which the build in question occurred.

show settings

This command makes a request to the XPages runtime to print all the settings in use by
the runtime. By default, the XPages runtime is configured with a host of default settings.
These settings can be overwritten by adding a bootstrap.properties file to the xsp direc-
tory, which resides in the Domino server’s program directory (for example C:\domino\
xsp). As a result of being able to override the default settings in the XPages runtime (via
bootstrap.properties), it is not guaranteed that the XPages runtime defaults will apply
from server to server. This command enables developers and administrators to quickly
list all the current settings without needing to manually access various file system loca-
tions to determine which properties are being applied.

Sample usage:

tell http xsp show settings

Listing 3.3 shows the XPages runtime default settings being output to the Domino server
console.

How to Execute the XSP Command Manager Commands   107  

Listing 3.3  Result of Running the show settings Command in the Console
(Default Case)

> tell http xsp show settings

09/16/2011 11:24:26 AM xsp.commas.not.delimiters.in.cookie=false

09/16/2011 11:24:26 AM com.ibm.faces.USE_UNENCODED_CONTEXT_PATH=/xsp

09/16/2011 11:24:26 AM xsp.gc.on.shutdown=false

09/16/2011 11:24:26 AM xsp.sessionid.name=SessionID

09/16/2011 11:24:26 AM xsp.default.charset=UTF-8

09/16/2011 11:24:26 AM xsp.log.severe.stack.trace=false

09/16/2011 11:24:26 AM xsp.default.post.buffer.size=1024

09/16/2011 11:24:26 AM xsp.allow.cookie.sessionid=true

09/16/2011 11:24:26 AM xsp.global.context.path=/xsp

09/16/2011 11:24:26 AM xsp.send.set.cookie2.header=true

09/16/2011 11:24:26 AM xsp.max.cookies.per.session=50

09/16/2011 11:24:26 AM xsp.allow.packagenames=false

09/16/2011 11:24:26 AM xsp.allow.url.sessionid=true

09/16/2011 11:24:26 AM xsp.default.chunk.post.buffer.size=8

In some cases, it is necessary to set extra system settings or even overwrite existing
settings. Being able to quickly analyze which settings have changed can be invaluable.
Listing 3.4 shows a case in which some settings (xsp.sessionid.name) have been
overwritten by bootstrap.properties and some new logging settings (log_
configuration and logdir) have been added. Chapter 6, “Server-Side Debugging
Techniques,” explains these settings

Listing 3.4  Result of Running the show settings Command in the Console

> tell http xsp show settings

09/16/2011 11:01:47 PM xsp.commas.not.delimiters.in.cookie=false

09/16/2011 11:01:47 PM com.ibm.faces.USE_UNENCODED_CONTEXT_PATH=/xsp

09/16/2011 11:01:47 PM xsp.gc.on.shutdown=false

09/16/2011 11:01:47 PM log_configuration=xsp/log.properties

09/16/2011 11:01:47 PM xsp.sessionid.name=FOOID

09/16/2011 11:01:47 PM xsp.default.charset=UTF-8

09/16/2011 11:01:47 PM xsp.log.severe.stack.trace=false

09/16/2011 11:01:47 PM xsp.default.post.buffer.size=1024

09/16/2011 11:01:47 PM xsp.allow.cookie.sessionid=true

09/16/2011 11:01:47 PM xsp.global.context.path=/xsp

09/16/2011 11:01:47 PM xsp.send.set.cookie2.header=true

09/16/2011 11:01:47 PM xsp.max.cookies.per.session=50

09/16/2011 11:01:47 PM xsp.allow.packagenames=false

09/16/2011 11:01:47 PM xsp.allow.url.sessionid=true

09/16/2011 11:01:47 PM logdir=c:/Domino/log

09/16/2011 11:01:47 PM xsp.default.chunk.post.buffer.size=8

108  H ow to Execute the XSP Command Manager Commands

show modules

Each Domino database (.NSF) that is running within the XPages runtime is loaded by
the XPages runtime as an application module. The show modules command shows
all the databases (NSF modules) that are currently running within the XPages runtime.
This command also shows registered system service modules that the XPages runtime
automatically loads. This command is convenient for server administrators who need to
know which XPages applications are being served by the XPages runtime at any point in
time.

Sample usage:

tell http xsp show modules

Listing 3.5 shows all the active modules running within a Domino server that has ses-
sions open for three XPages applications.

Listing 3.5  Result of Running the show modules Command in the Console

> tell http xsp show modules

09/16/2011 11:47:36 AM XSP Resources

09/16/2011 11:47:36 AM Default Http Registry Module

09/16/2011 11:47:36 AM OSGI WebContainer Bridge Service

09/16/2011 11:47:36 AM oauthtokenstore.nsf

09/16/2011 11:47:36 AM lsdemo2011.nsf

09/16/2011 11:47:36 AM xpagessbt.nsf

In Listing 3.5, six modules are listed. Three of these modules are XPages runtime system
modules; the other three modules represent XPages applications that are currently run-
ning on the server.

	 n	 xpagessbt.nsf, lsdemo2011.nsf, and oauthtokenstore.nsf are all
XPages applications that were running on the server when the command was
executed.

	 n	 XSP Resources is a module loaded by the XPages runtime; it is not configurable.

	 n	 Default Http Registry Module is a module loaded by the Domino web container;
it is not configurable.

	 n	 OSGI WebContainer Bridge Service is a module loaded by the Domino to OSGi
bridge; it is not configurable.

The core runtime modules are not configurable and can be removed or added to in future
releases.

refresh

This command was implemented with future extensions of the XSP Command Man-
ager’s HTTP service in mind. As of release 8.5.3 of the Domino server, this command

How to Execute the XSP Command Manager Commands   109  

does nothing. It is intended to be used with HTTP services and will enable services to be
refreshed as necessary without restarting the HTTP task or the XPages runtime.

Sample usage:

tell http xsp refresh

heapdump

The heapdump command performs a live dump of all objects on the Domino server’s
Java heap. The operation creates a dump file that must be read by third-party tools; the
file is not human readable. The dump file can be read using tools such as the Eclipse
Memory Analyser Tool (www.eclipse.org/mat). Because the dump file is written in the
IBM JVM heap dump format, it is necessary to install further add-ons to the Eclipse
Memory Analyser Tool to read the heap dump information. You can download the add-
on for the Eclipse Memory Analyzer tool from www.ibm.com/developerworks/java/
jdk/tools/dtfj.html. The heapdump command causes a dump file to be generated in the
server’s program directory, as demonstrated in Figure 3.2.

Sample usage:

tell http xsp heapdump

Figure 3.2  Result of running the heapdump command in the console

When configured, the Eclipse Memory Analyzer tool enables the user to read the content
of the dump file and provide information on where memory is potentially being leaked
and which objects are in use when the dump occurs. Figure 3.3 shows sample output
from the Eclipse Memory Analyzer Tool.

javadump

Running the javadump command causes the server’s JVM to create a Java Dump file.
Sometimes referred to as a thread dump or a Javacore dump, the dump information is
written to disk in a human-readable format—the contents of the dump file can be opened
with applications such as Microsoft Notepad. The information stored as a result of a
javadump is generally diagnostic information relating to the threads, stacks, locks, and
memory that were in use by the JVM when the dump occurred. Javadump files are of
particular use where the developer or administrator needs to quickly obtain system infor-
mation (such as operating system version, JVM version, and loaded threads).

www.eclipse.org/mat
www.ibm.com/developerworks/java/jdk/tools/dtfj.html
www.ibm.com/developerworks/java/jdk/tools/dtfj.html

110  H ow to Execute the XSP Command Manager Commands

The Javadump file is lightweight by nature and can help to quickly identify which
threads are hung in the system.

Sample usage:

tell http xsp javadump

Listing 3.6 shows the console output when the javadump command is executed.

Listing 3.6  Result of Running the javadump Command in the Console

> tell http xsp javadump

10/18/2011 11:40:00 PM HTTP JVM: JVMDUMP034I User requested
Java dump using 'C:\Program Files\IBM\Lotus\Domino\
javacore.20111018.233959.8220.0001.txt' through com.ibm.jvm.Dump.
➥JavaDump

10/18/2011 11:40:01 PM HTTP JVM: JVMDUMP010I Java dump written to C:\
Program Files\IBM\Lotus\Domino\javacore.20111018.233959.8220.0001.txt

In Listing 3.6, you can see the result of executing the javadump command. A Java
dump file is written to the location specified in the console output. It is beyond the scope
of this book to go into the details of reading the contents of dump files. However, in
the case of Javadump files, a few tips can easily be bestowed upon the reader to make

Figure 3.3  Eclipse Memory Analyzer Tool

How to Execute the XSP Command Manager Commands   111  

reading the contents of the Javadump file easier. The dump file can essentially be broken
down into different sections:

	 n	 Date and time of the javadump.

	 n	 Operating system signal information (who initiated the javadump and how it was
initiated). The signal information tells the reader whether the user initiated the
dump or whether the operating system did so due to a program fault. The signal
information is operating system specific.

	 n	 Java (JVM) version.

	 n	 Information about threads running when the javadump occurred.

	 n	 Operating system and processor details.

	 n	 Native libraries loaded by the JVM.

	 n	 Full command line, including arguments, that the Domino server used to launch
the JVM.

	 n	 JVM monitor information.

	 n	 Current stack for each thread running within the JVM.

For further in-depth information on how to read the contents of the Javadump file, see
the following article from IBM support:

www-01.ibm.com/support/docview.wss?uid=swg21181068

Alternatively, you can search for information on how to read a javacore dump file in
your favorite Internet search engine.

systemdump

The systemdump command is the most intensive of the three dump commands avail-
able through the XSP Command Manager. As a result, the footprint of the resulting
systemdump file can be quite large. The systemdump file contains detailed information
on the JVM’s threads, memory, and active processes. When a Java application crashes as
a result of general protection fault failure or as a result of a major JVM error, a system-
dump file is generated by default.

Sample usage:

tell http xsp systemdump

Listing 3.7 shows the console output when the systemdump command is executed.

Listing 3.7  Result of Running the systemdump Command in the Console

09/20/2011 12:36:30 AM HTTP JVM: JVMDUMP034I User requested
System dump using 'C:\Program Files\IBM\Lotus\Domino\
core.20110920.003630.8220.0002.dmp' through com.ibm.jvm.Dump.SystemDump

112   Working with the OSGi Console

09/20/2011 12:38:26 AM HTTP JVM: JVMDUMP010I System dump written to
C:\Program Files\IBM\Lotus\Domino\core.20110920.003630.8220.0002.dmp

The dump file is stored in a platform-specific format and, as a result, must be read by
tools specific to the platform on which the dump was created. The IBM Dump Analyzer
enables you to read and analyze the contents of a system dump that is performed on the
Domino server. For more information on the IBM Dump Analyzer tool, refer to the fol-
lowing websites:

	 n	 “Java Diagnostics, IBM Style, Part 1: Introducing the IBM Diagnostic and
Monitoring Tools for Java—Dump Analyzer,” at IBM.com: www.ibm.com/
developerworks/java/library/j-ibmtools1/

	 n	 “Installing the IBM Monitoring and Diagnostic Tools for Java—Dump Analyzer,”
at IBM.com: www.tinyurl.com/IBMJavaDumpAnalyzer

The information generated by a system dump is extremely granular in nature. An XPage
developer rarely will need to create a system dump because the information the dump
generates details information about every process executing on the system, not just the
information pertinent to the JVM. A system dump generally is needed only when the
failure is as a result of complex interactions with programs running outside the Domino
server.

Working with the OSGi Console

Before delving into the inner workings of the OSGi console, it is best to briefly explain
OSGi. OSGi stands for Open Services Gateway initiative framework. This framework
allows software to be written and executed as independent components. In OSGi-speak,
these components are referred to as bundles. OSGi is used in a wide range of applica-
tions, from client programs such as Eclipse and IBM Lotus Notes, to mobile phones,
to server applications such as IBM Lotus Domino. As a result of their modular nature,
OSGi bundles can be started, stopped, and debugged on an individual basis, without
the need for stopping or restarting the entire platform. Both the Domino server and the
Notes client use Eclipse’s implementation of OSGi (Equinox) as their OSGi runtime
platform.

OSGi was added to the Domino platform in release 8.5.2. As a result, in Domino 8.5.2,
the XPages runtime was repackaged to run as OSGi bundles (instead of just a regular
collection of Java JARS), also referred to as Eclipse plug-ins.

The OSGi console allows for the input of commands that the OSGi platform then per-
forms. The platform posts the results of such commands back to the console. The OSGi
platform itself has a whole host of commands that can simplify the troubleshooting of
problems. The OSGi console can assist developers in developing XPages controls and
applications, as well as assisting support personnel in diagnosing runtime issues. Devel-
opers who extend the XPages runtime by creating libraries will find the OSGi console
commands to be a particularly powerful tool in analyzing problems. The OSGi console

www.ibm.com/developerworks/java/library/j-ibmtools1/
www.ibm.com/developerworks/java/library/j-ibmtools1/
www.tinyurl.com/IBMJavaDumpAnalyzer

Working with the OSGi Console   113  

is of particular use when the developer/administrator needs to know whether individual
plug-ins (or sets of plug-ins) are loading correctly or which version of a plug-in is in use.

As mentioned earlier, OSGi is embedded within both the Notes client and the Domino
server. Depending on where your XPages application is running (whether on the cli-
ent or the server), your method of accessing the OSGi console will vary. We start by
explaining how to access the OSGi console on the Domino server.

OSGi is embedded within the HTTP task on the Domino server, as a result, the OSGi
console is started automatically whenever the HTTP task is started. OSGi console com-
mands are routed to the OSGi console via the HTTP task. That is, when entering an
OSGi console command on the Domino server, the user must tell the HTTP task to route
the specified command to the OSGi console—for example:

tell http osgi <<command>>

Here, <<command>> is the name of the OSGi console command. Any OSGi command
can be executed using the preceding syntax.

When it comes to OSGi commands, every developer and administrator should know
several rudimentary commands. These commands can be your “go to” commands when
problems arise—say, when you suspect bundle loading might be a factor. Even when
you do not think that bundle loading is the problem, it is often best to first confirm that
the bundle is actually loaded before proceeding with other debugging techniques.

Table 3.2 lists some of the more commonly used OSGi commands that are available to
use for diagnosing plug-in issues on the Domino server (and also the Notes client). In
Table 3.2, bundle-symbolic-name is referenced extensively. This is the name by which
the OSGi platform references bundles. bundle-symbolic-name correlates directly to the
Bundle-SymbolicName manifest header, often referred to as the plug-in name.

Table 3.2  OSGi Console Commands

Command Syntax Description

tell http osgi diag
<bundle-symbolic-name>

Diagnoses the status of the bundle whose name
is provided. Determines whether the bundle is
resolved and, if not, states why the bundle is not
resolved.

tell http osgi ss
<bundle-symbolic-name>

Lists the status of all bundles in the system.
Optionally, a symbolic name or a symbolic name
prefix can be provided to obtain the status of a par-
ticular bundle or a subset of bundles.

tell http osgi start
<bundle-symbolic-name>

Starts the bundle with the specified symbolic name.

tell http osgi stop
<bundle-symbolic-name>

Stops the bundle with the specified symbolic name.

tell http osgi b
<bundle-symbolic-name>

Prints metadata relating to the specified bundle.

114   Working with the OSGi Console

Command Syntax Description

tell http osgi headers
<bundle-symbolic-name>

Lists the OSGi headers for the specified bundle.

tell http osgi help Lists all the OSGi command available on the serv-
er, along with some text describing each command.

All the commands listed in Table 3.2 can be entered via the Domino server console,
with the results of such commands being printed back to the console, as illustrated in
Figure 3.4.

Figure 3.4  Running an OSGi command on the Domino Server Console

All the commands referenced in Table 3.2 can alternatively take the bundle id as a
parameter (instead of the bundle-symbolic-name). The bundle id is a numeric ID that the
OSGi runtime assigns to the bundle during platform initialization. The ID might vary
from instance to instance of the platform, but users might find it easier to input than hav-
ing to enter the entire bundle symbolic name. Examples of how to determine and use the
bundle id are given later in this chapter.

Rarely does a single OSGi console command answer all the questions on why a plug-in
is not loading or operating as expected. The following sections explain in greater detail
how you can use each of these commands and the results you can expect to see from
executing such commands.

diag <bundle-symbolic-name>

This is one of the most valuable commands in your arsenal and will likely be the one
you’ll use most frequently when diagnosing issues. You can use this command to deter-
mine whether a bundle is resolved within the OSGi platform. The status returned by this
command will be one of the following:

	 n	 No unresolved constraints

	 n	 Unresolved constraint

If No unresolved constraints is the returned status, it suggests that the system
has recognized the bundle and that all dependencies of the bundle are satisfied. When
an Unresolved constraint status is returned, it suggests that one or more bundles

Working with the OSGi Console   115  

or packages that the bundle requires are missing or cannot be loaded. It is worth not-
ing here that a bundle might still fail to start even though the OSGi console reports that
the bundle has been resolved. If a bundle fails to start and is resolved, some code in the
bundle’s activator likely is failing (throwing an exception).

Sample usage:

tell http osgi diag com.ibm.xsp.core

Listing 3.8 shows the typical output of running the diag command against the com.ibm.
xsp.core plug-in.

Listing 3.8  Result of Running the diag Command Against a Specific Bundle—
Successful Case

> tell http osgi diag com.ibm.xsp.core

10/17/2011 09:43:14 PM

 initial@reference:file:../../shared/eclipse/plugins/com.ibm.xsp.
core_8.5.3.20110629-1645/[119]

10/17/2011 09:43:14 PM No unresolved constraints.

In this case, the diag command reports that there were No unresolved
constraints against the entered bundle symbolic name—in other words, the system
recognizes the given bundle. Upon closer examination, the user can obtain further infor-
mation about the bundle in question. It can determine where the bundle being used by
the platform is installed, and the platform-assigned bundle id can also be obtained.

From reading the console output, the user can see that the bundle is installed to ../../
shared/eclipse/plugins/com.ibm.xsp.core_8.5.3.20110629-1645. The location speci-
fied is relative to the osgi/rcp/eclipse directory, which is a child of the Domino program
directory. In this case, the console output indicates that the plug-in is installed at:
<domino program directory>/osgi/shared/eclipse/plugins.

Finally, the output states the platform-assigned bundle id for the specified bundle. 119 is
the id assigned to this bundle in this example. As stated previously, the OSGi commands
listed here can use the bundle id interchangeably. In this example, executing the follow-
ing command has identical output to that in Listing 3.8.

Sample usage:

tell http osgi diag 119

Listing 3.9 shows sample output of running the diag command in an unsuccessful
scenario.

Listing 3.9  Result of Running the diag Command Against a Specific Bundle—
Error Case

> tell http osgi diag com.ibm.xsp.extlib.sbt 09/09/2011 04:05:51 PM

update@../../../data/domino/workspace/applications/eclipse/plugins/com.
ibm.xsp.extlib.sbt_8.5.3.201108111413.jar [116] 09/09/2011 04:05:51

116   Working with the OSGi Console

PM Direct constraints which are unresolved: 09/09/2011 04:05:51 PM
Missing host com.ibm.xsp.extlib_0.0.0.

In Listing 3.9, you can see that the OSGi platform reports that the bundle in question is
not resolved as a result of a missing dependency. We can see from the console output
that the OSGi platform has actually found the bundle that we are looking for (com.
ibm.xsp.extlib.sbt), but as one of the bundles that com.ibm.xsp.extlib.
sbt depends on is not resolved, the com.ibm.xsp.extlib.sbt bundle does not get
resolved itself. Looking a little more closely at the console output, we can determine the
following:

The bundle com.ibm.xsp.extlib.sbt is installed at ../../../data/domino/workspace/
applications/eclipse/plugins/com.ibm.xsp.extlib.sbt_8.5.3.201108111413.jar. We now
know that this path is relative to the <domino program directory>/osgi/rcp/eclipse
directory. Hence, we can deduce that com.ibm.extlib.sbt is installed at the
<domino program directory>/data/domino/workspace/applications/eclipse/plugins/
directory.

The OSGi platform–assigned bundle id for this bundle is 116.

One other tidbit of information can be extracted from the console output, in this case.
The final line of the output tells us that the host is missing:

Missing host com.ibm.xsp.extlib_0.0.0

This tells us that the bundle we are looking for (com.ibm.xsp.extlib.sbt) is, in
fact, a plug-in fragment, and the unresolved constraint (com.ibm.xsp.extlib) is the
host plug-in.

ss, ss <bundle-symbolic-name>, or ss <bundle-name-prefix>

Similar to the diag command, this command quickly determines the status of a particu-
lar bundle—or all the bundles installed in the platform. Users can optionally specify a
bundle name or a bundle name prefix to get the status of specific bundles. The returned
status shows the bundle id, state, and bundle name of all bundles. In many situations,
this command is just as useful as the diag command because it also reports the status of
a bundle. This command does not tell the user why a particular bundle is not loading, but
it does tell the user the state of a bundle.

Sample usage:

tell http osgi ss

Listing 3.10 shows the result of running the ss command without any parameters.

Working with the OSGi Console   117  

Listing 3.10  Result of Running the ss Command Without Any Bundle Name Parameter

> tell http osgi ss

09/09/2011 01:46:07 PM Framework is launched.

09/09/2011 01:46:07 PM id State Bundle

09/09/2011 01:46:07 PM 0 ACTIVE org.eclipse.
osgi_3.4.3.R34x_v20081215-1030-RCP20110624-1648

09/09/2011 01:46:07 PM Fragments=57, 76, 88, 89, 235

09/09/2011 01:46:07 PM 1 RESOLVED org.eclipse.equinox.
event_1.1.0.v20080225

09/09/2011 01:46:07 PM Fragments=32

09/09/2011 01:46:07 PM 2 RESOLVED com.ibm.pvc.jndi.provider.
java.nl_6.2.3.20110625-0109

09/09/2011 01:46:07 PM Master=71

09/09/2011 01:46:07 PM 3 RESOLVED com.ibm.eclipse.equinox.
preferences.nl_6.2.3.20110624-1648

09/09/2011 01:46:07 PM Master=85

09/09/2011 01:46:07 PM 4 <<LAZY>> com.ibm.icu.
base_3.8.1.v20080530

09/09/2011 01:46:07 PM 5 RESOLVED com.ibm.pvc.servlet.
jsp_2.1.0.20110625-0109

09/09/2011 01:46:07 PM 6 RESOLVED org.apache.commons.
logging_1.0.4.20110625-0109

Listing 3.10 lists a subset of the information that displays when this command is run in
a normal server environment. However, the listing does show all the information needed
to understand the output of the command.

The command outputs several important pieces of information about each bundle:

	 n	 Bundle-id—for example, 2, which is the OSGi platform–assigned ID of the
bundle.

	 n	 Bundle state—for example, RESOLVED, which is the state of the bundle within
the OSGi platform. A bundle can have one of seven states. Table 3.3 explains all
of these.

	 n	 Bundle name—for example com.ibm.eclipse.equinox.preferences.
nl_6.2.3.20110624-1648, which is the bundle symbolic name with its ver-
sion information appended to the name.

	 n	 Master or Fragments—for example, Master=71. This data tells whether
the bundle in question is a plug-in or a fragment. If the bundle specifies neither
Master nor Fragments, it is automatically implied that the bundle is a plug-in
bundle. The digits corresponding to the fragments or plug-ins are the OSGi plat-
form–assigned bundle ids of the fragments or the master plug-in of the bundle in
question.

118   Working with the OSGi Console

Sample usage:

tell http osgi ss com.ibm.xsp.extlib

Listing 3.11 shows the result of running the ss command with a bundle prefix specified.

Listing 3.11  Result of Running the ss Command, Specifying a Bundle Prefix

> tell http osgi ss com.ibm.xsp.extlib

09/09/2011 02:25:36 PM Framework is launched.

09/09/2011 02:25:36 PM id State Bundle

09/09/2011 02:25:36 PM 108 RESOLVED com.ibm.xsp.extlib.
conns_8.5.2.20110724

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 109 RESOLVED com.ibm.xsp.extlib.
domino_8.5.2.201107241628

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 112 RESOLVED com.ibm.xsp.extlib.
oneui_8.5.2.201107241628

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 115 RESOLVED com.ibm.xsp.extlib.
stime_8.5.2.201107241628

09/09/2011 02:25:36 PM Master=117

09/09/2011 02:25:36 PM 117 ACTIVE com.ibm.xsp.
extlib_8.5.2.201107241628

Similar to Listing 3.10, Listing 3.11 shows the results of executing the ss command,
only this time the command is passed a bundle symbolic name as a parameter. The ss
command finds all bundles on the system that either start with the parameter or have a
bundle symbolic name that is the same as the parameter. Listing 3.11 lists all the bun-
dles, along with their bundle id and state.

Table 3.3 lists all the possible states of an OSGi bundle.

Table 3.3  OSGi Bundle States

State Description

UNINSTALLED The bundle is uninstalled and is unusable.

INSTALLED The bundle has been installed, but the platform has not yet
resolved it.

RESOLVED The bundle has been resolved and is in a position to be start-
ed. Note that it is still possible for the bundle to fail to start,
even though it has been resolved by the environment.

<<LAZY>> Similar to RESOLVED, the platform has resolved the bundle
and is in a position to be started. The bundle is not yet
ACTIVE because it has been configured (via its bundle
manifest) to be initialized lazily—that is, only when another
ACTIVE bundle references the bundle will it be activated.

Working with the OSGi Console   119  

State Description

STARTING The bundle is in the process of starting. Either another bun-
dle has specifically caused the bundle to start (by referring
to a class within the bundle) or the user has manually started
the bundle via the console. Rarely is a bundle in this state
because it is transient.

STOPPING The bundle is in the process of shutting down. Similar to
STARTING, a bundle rarely is in this state.

ACTIVE The bundle is running within the OSGi platform.

Developers and administrators should be aware that, on the Domino server, the state of
a bundle is not persisted from one session to the next—that is, after the HTTP task is
restarted, any bundles that were started manually in the previous session must be started
again. Luckily, the ss command has an argument for filtering all bundles in a given
state. The ss command can filter the bundles based on their state, by appending -s
[state] to the command syntax.

Sample usage:

tell http osgi ss -s active

Figure 3.5 shows the output of running the ss command with the -s active argument.

Figure 3.5  Result of running the ss command in the Domino server console

start <bundle-symbolic-name>

This command requests that the platform manually start the specified bundle. Calling
this command does not guarantee that the specified bundle will be started. An excep-
tion can still occur during bundle initialization that would cause the bundle initialization
to fail. Performing an ss command after the start command reports the status of the
bundle. This command is helpful when a new bundle has been installed on the server,

120   Working with the OSGi Console

but the administrator or developer is not in a position to restart the HTTP task to start the
new bundle.

Sample usage:

tell http osgi start com.ibm.xsp.extlib.sbt

Figure 3.6 shows that, by running a combination of the ss and start commands, a
bundle can be started and its state can be verified.

Figure 3.6  Result of running the start and ss commands in the console

stop <bundle-symbolic-name>

This command tells the platform to stop the specified bundle. Users should be careful
when calling this on a production environment. In some cases, it might not be possible
for the platform to stop the bundle. If this is the case, the reason will be printed to the
console.

Sample usage:

tell http osgi stop com.ibm.xsp.extlib.sbt

Figure 3.7 shows how running a combination of the ss and stop command stops a
bundle and verifies its state.

b <bundle-symbolic-name>

This command prints all metadata relating to the specified bundle. The metadata
includes imported packages, required bundles, exported packages, bundle location, and
so on. This command is useful when the developer needs to quickly verify that the bun-
dle loaded by the platform has the meta information that the developer believes it has.

Sample usage:

tell http osgi b com.ibm.xsp.extlib

com.ibm.xsp.extlibx.sbt plugin
is “RESOLVED” but not started

com.ibm.xsp.extlibx.sbt
plugin is listed as “ACTIVE”

Manually ‘start’
com.ibm.xsp.extlibx.sbt plugin

Working with the OSGi Console   121  

Listing 3.12 shows a subset of the output from running the b command against a speci-
fied bundle.

Listing 3.12  Sample Result of Running the b Command Against a Specified Bundle

tell http osgi b com.ibm.xsp.extlib

09/09/2011 02:15:21 PM

update@../../../data/domino/workspace/applications/eclipse/plugins/com.
ibm.xsp.extlib_8.5.2.201107241628NTF.jar [117]

 09/09/2011 02:15:21 PM Id=117, Status=<<LAZY>> Data Root=C:\
Program Files\IBM\Lotus\Domino\data\domino\workspace\.config\

 org.eclipse.osgi\bundles\117\data

 09/09/2011 02:15:21 PM No registered services.

 09/09/2011 02:15:21 PM No services in use.

 09/09/2011 02:15:21 PM Exported packages

 09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client.data;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client.dojo;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.client.dojo.fx;
version="0.0.0"[exported]

09/09/2011 02:15:21 PM com.ibm.xsp.extlib.actions.server;
version="0.0.0"[exported]

Figure 3.7  Result of running the start and ss commands in the console

headers <bundle-symbolic-name>

This command causes the OSGi header information for the specified bundle to be
printed to the console. This command is convenient for checking information such as the
packages that a specific bundle exports or the bundles that the specified bundle depends

com.ibm.xsp.extlibx.sbt
plugin is listed as ‘ACTIVE’

com.ibm.xsp.extlibx.sbt plugin
is listed as ‘RESOLVED’

Manually stop
com.ibm.xsp.extlibx.sbt plugin

122   Working with the OSGi Console

upon. All the information stored in the bundle’s manifest.mf file is printed to the
console.

Sample usage:

tell http osgi headers com.ibm.xsp.extlib.sbt

Listing 3.13 shows the result of running the headers command on the Domino server
console.

Listing 3.13  Sample Result of Running the headers Command with a Specified
Bundle Name

tell http osgi headers com.ibm.xsp.extlib.sbt

 09/09/2011 04:34:52 PM Bundle headers:

 09/09/2011 04:34:52 PM Bundle-ClassPath = .,lib/httpclient-
4.0.1.jar,lib/httpcore-4.0.1.jar,lib/commons-codec-1.3.jar,lib/
oauth-20100527.jar,lib/
oauth-consumer-

20090617.jar,lib/oauth-consumer-20100527.jar,lib/oauth-httpclient4-

20090913.jar,lib/oauth-provider-20100527.jar

 09/09/2011 04:34:52 PM Bundle-ManifestVersion = 2

 09/09/2011 04:34:52 PM Bundle-Name = IBM Social Business Toolkit

09/09/2011 04:34:52 PM Bundle-SymbolicName = com.ibm.xsp.extlib.
sbt;singleton:=true

 09/09/2011 04:34:52 PM Bundle-Vendor = IBM

 09/09/2011 04:34:52 PM Bundle-Version = 8.5.3.201108111413

 09/09/2011 04:34:52 PM Export-Package =

com.ibm.xsp.extlib.fragment,com.ibm.xsp.extlib.model,com.ibm.xsp.extlib.
resources,com.ibm.xsp.extlib.sbt.activitystreams,com.ibm.xsp.extlib.sbt.
activitystreams.entry,com.ibm.xsp.

extlib.sbt.activitystreams.queue,com.ibm.xsp.extlib.sbt.connections,com.
ibm.xsp.extlib.sbt.connections.meta,com.ibm.xsp.extlib.security.
authorization,com.ibm.xsp.extlib.security

.authorization.beans,com.ibm.xsp.extlib.security.oauth_10a,com.ibm.xsp.
extlib.security.oauth_10a.servlet

 09/09/2011 04:34:52 PM Fragment-Host = com.ibm.xsp.extlib

 09/09/2011 04:34:52 PM Manifest-Version = 1.0

Listing 3.13 lists many different OSGi headers. You can find a full list of OSGi headers
and their descriptions in the official OSGi specification: www.osgi.org/download/r4v43/
r4.core.pdf.

help

This command tells the OSGi platform to print all commands that it supports, along with
a short description of each command.

www.osgi.org/download/r4v43/r4.core.pdf
www.osgi.org/download/r4v43/r4.core.pdf

How to Launch Notes/Designer Along with the OSGi Console    123  

Sample usage:

tell http osgi help

Figure 3.8 shows the sample output from running the help OSGi command on the
Domino server console.

Figure 3.8  Result of running the help command in the console

How to Launch Notes/Designer Along
with the OSGi Console

As of release 8.0 of Lotus Notes and release 8.5.0 of Domino Designer, both applica-
tions have been built upon the Eclipse platform. Eclipse itself is built upon the OSGi
platform. As of Notes 8.5.1, it is now possible to run XPages applications within the
Notes client.

With the emergence of the official XPages extension APIs in Notes/Domino 8.5.2 and
the powerful functionality delivered as extensions to XPages (such as the XPages Exten-
sion Library), it is becoming more likely that, over time, end users will have Extension
Library plug-ins installed into the Notes client platform. Either this can occur directly as
a result of the user manually installing them or the plug-ins may be autoprovisioned to
the platform via policy directives. Undoubtedly, at some point, XPages developers will
need to debug the Notes client to figure out why certain XPages applications or function-
ality is not working as expected. The first step in such debugging should almost always

124  H ow to Launch Notes/Designer Along with the OSGi Console

be analysis to determine whether the extended plug-ins in question are actually installed
and running on the Notes client. The most accurate way to determine whether a plug-in
is installed and running within the Notes client (or Domino Designer) is through the use
of the OSGi console.

All the commands previously discussed and documented are available both on the Dom-
ino server and on the Notes client (and Domino Designer). However, the OSGi console
that runs with the Notes client is a pure OSGi console, so it is not necessary to enter the
HTTP task prefix required on the Domino server console. In the case of the Notes client
OSGi console, it is necessary only to type the actual OSGi command—for example:

diag com.ibm.xsp.core

as opposed to

tell http osgi diag com.ibm.xsp.core.

To display the OSGi console for the Notes client or Domino Designer, the user must
launch Notes with some additional arguments that tell the core Notes code to launch the
console in a separate window when the Notes client is launching.

To do this, the user must navigate to the Notes program directory in a DOS prompt and
enter the following DOS command:

notes.exe –RPARAMS –console

The RPARAMS argument for Notes and Domino Designer signals to both programs that
the user is entering arguments that are to be redirected to the Eclipse and OSGi runtime.
It may be useful to create a new shortcut on your desktop that enables you to easily
launch the OSGi Console with Notes or Domino Designer. To do this, simply copy your
existing Notes or Domino Designer launch shortcut and modify the Target information
as follows:

C:\Notes85\notes.exe -RPARAMS -console "=C:\Notes85\notes.ini"

Here, C:\Notes85\ is the location of your Notes program directory. All the remaining
shortcut information should be the same as your existing Notes or Domino Designer
shortcut, as shown in Figure 3.9.

Arguments after the –RPARAMS parameter are sent to the Eclipse and OSGi runtimes for
processing. Users should be aware that closing the Notes OSGi console window directly
is not supported and can cause undesired behavior, such as causing the Notes program
to hang. All instances of Notes, Domino Designer, and Domino Administrator should be
shut down before running this command. Figure 3.10 shows the OSGi console running
with Notes.

How to Launch Notes/Designer Along with the OSGi Console    125  

Figure 3.10  Notes client running with the OSGi console

You can find more information on specific OSGi commands at these sites:

http://eclipse.org/equinox/

http://fusesource.com/docs/esb/4.1/command_ref/ESBosgi.html

Figure 3.9  Shortcut to launch Notes with the OSGi console

http://eclipse.org/equinox/
http://fusesource.com/docs/esb/4.1/command_ref/ESBosgi.html

126   Common Console Commands You Should Know

Common Console Commands You Should Know

Beyond the realm of OSGi and the XSP command manager, the Domino server has a
rich set of commands. Knowing at least a subset of them will greatly benefit any bud-
ding XPages developer or administrator. Table 3.4 lists some of the more commonly
used commands.

Table 3.4  Common Domino Server Commands

Command Description

help Displays a list of server commands, with a
brief description

load [task name] Loads the named Domino server task

load [task name] -? Gets help for the specified command

quit Tells the Domino server to shut down

restart server Tells the Domino server to shut down
completely and restart

tell [task name] quit Tells the named Domino server task to shut
down

restart task [task name] Tells the name Domino server task to restart

show server Prints all basic statistics relating to the
server to the console

show conf [notes.ini variable] Prints the value of the server’s notes.ini vari-
able to the console

set conf [notes.ini variable=value] Sets the value of the server’s notes.ini vari-
able to the specified value

tell adminp [options] Performs various administrative tasks on the
Domino server

load chronos [options] Updates full-text indexes that are marked to
be updated hourly or daily

load updall [path] [options] Updates the view indexes and the full-text
index for the specified database (or for all
databases, if one is not provided)

load design [source] [target] [options] Updates all databases with design updates
from their master templates

load fixup [path] [options] Locates and fixes corrupted databases on the
server

show allports Shows all enabled and disabled ports on the
server

show diskspace Displays the amount of free disk space on
the server

show heartbeat Displays a value if the server is responding

Common Console Commands You Should Know   127  

Command Description

show memory Displays the amount of RAM available on
the server

show tasks Displays the names of all the Domino server
tasks running

You can obtain a much more extensive list of server commands by reading the Domino
Administrator help, which is installed on the Domino server under the help directory.

help

This command displays a list of server console commands, with a brief description
of each command, the command’s arguments, and a sample of the syntax of each
command.

Sample usage:

help

Figure 3.11 shows a subset of the sample output from running the help command on
the Domino server console.

Figure 3.11  Result of running the help command on the Domino server console

load [task-name]

This command loads and starts the specified server task. It loads tasks that run continu-
ally until the server is stopped or loads a task that runs until complete. Further task
arguments can be passed to the task as needed. This command is convenient because it

128   Common Console Commands You Should Know

enables developers and administrators to dynamically start server tasks without needing
to restart the entire server. For example, the HTTP task can be started without affecting
other tasks running on the Domino server.

Sample usage:

load http

In this example, the HTTP task is loaded, allowing the Domino server to act as a HTTP
server.

Listing 3.14 shows the console output of running the previous command.

Listing 3.14  Result of Running the load http Command on the Domino Server Console

> load http

09/19/2011 08:05:03 PM HTTP Server: Using Web Configuration View

09/19/2011 08:05:07 PM JVM: Java Virtual Machine initialized.

09/19/2011 08:05:07 PM HTTP Server: Java Virtual Machine loaded

09/19/2011 08:05:07 PM HTTP Server: DSAPI Domino Off-Line Services
HTTP extension Loaded successfully

09/19/2011 08:05:12 PM XSP Command Manager initialized

09/19/2011 08:05:12 PM HTTP Server: Started

load [task-name] -?

This command displays help information that relates to the task specified. In general, the
help information lists any options or flags that can or should be passed to the task.

Sample usage:

load chronos -?

Listing 3.15 shows the sample output from running the help command against a specific
task name.

Listing 3.15  Sample Output from Running the help Command Against the
Chronos Task

> load chronos -?

>

Purpose: Performs automatic hourly and daily full text indexing.

Usage: Load CHRONOS [options]...

[options]:

hourly Update all hourly full text indexes.

daily Update all daily full text indexes.

Common Console Commands You Should Know   129  

quit

This command stops the server. The server shuts down completely after running this
command.

Sample usage:

quit

Figure 3.12 shows output from running the quit command on the Domino server
console.

Figure 3.12  Result of running the quit command on the Domino server console

restart server

This command stops the server completely and then restarts the server after a brief delay.

Sample usage:

restart server

Figure 3.13 shows output from running the restart server command on the Domino
server console.

Figure 3.13  Result of running the restart server command on the Domino server console

130   Common Console Commands You Should Know

tell [task-name] quit

This command stops the named task. All other server tasks remain in their current state.

Sample usage:

tell http quit

Listing 3.16 shows the sample console output after executing the quit command on a
specific task.

Listing 3.16  Domino Server Console Output from Running the quit Command on the
HTTP Task

> tell http quit

10/19/2011 08:50:21 PM Domino Off-Line Services HTTP extension
unloaded.

10/19/2011 08:50:21 PM XSP Command Manager terminated

10/19/2011 08:50:22 PM HTTP Server: Shutdown

This sample terminates the HTTP task so that the Domino web server and all other
HTTP functions are shut down. XPages developers might find this useful if the web
server needs to be quickly and independently recycled—say, to reread and apply new
XSP runtime settings.

restart task [task-name]

This command stops and restarts the named task. All other server tasks remain in their
current state. XPages developers will find this to be a particularly powerful command
because it enables them to completely and quickly restart the XPages runtime. This is of
particular importance when debugging OSGi bundles running on the server. Chapter 6
discusses this in greater detail.

Sample usage:

restart task http

Listing 3.17 shows the Domino server output that results from restarting a specific task.

Listing 3.17  Sample Output from Running the restart task http Command

> restart task http

10/19/2011 09:03:10 PM Domino Off-Line Services HTTP extension
unloaded.

10/19/2011 09:03:10 PM XSP Command Manager terminated

10/19/2011 09:03:11 PM HTTP Server: Shutdown

10/19/2011 09:03:13 PM HTTP Server: Using Web Configuration View

10/19/2011 09:03:16 PM JVM: Java Virtual Machine initialized.

10/19/2011 09:03:16 PM HTTP Server: Java Virtual Machine loaded

10/19/2011 09:03:16 PM HTTP Server: DSAPI Domino Off-Line Services

Common Console Commands You Should Know   131  

HTTP extension Loaded successfully

10/19/2011 09:03:19 PM XSP Command Manager initialized

10/19/2011 09:03:19 PM HTTP Server: Started

show server

This command prints all the basic information to the server’s console, including (but
not limited to) the server’s name, data directory location, amount of time since the
server was started, and total number of transactions completed by the server since it was
started.

Sample usage:

show server

Listing 3.18 shows sample output from executing the show server command on the
Domino server console.

Listing 3.18  Sample Output from the show server Command

> show server

 Lotus Domino (r) Server (Build V853_06302011 for Windows/32)
09/14/2011 07:28:42 PM

Server name:	 greenane/GAA - Greenane

Domain name:	 ibm

Server directory:	 C:\Program Files\IBM\Lotus\Domino\data

Partition:	 C.Program Files.IBM.Lotus.Domino.data

Elapsed time:	 1 day 01:38:37

Transactions/minute:	 Last minute: 10; Last hour: 200; Peak: 997

Peak # of sessions:	 60 at 09/14/2011 06:50:06 PM

Transactions: 4524	 Max. concurrent: 40

ThreadPool Threads:	 40 (TCPIP Port)

Availability Index:	 100 (state: AVAILABLE)

Mail Tracking:	 Not Enabled

Mail Journalling:	 Not Enabled

Number of Mailboxes:	 10

Pending mail: 0	 Dead mail: 0

Waiting Tasks: 	 0

DAOS: 	 Not Enabled

Transactional Logging:	 Not Enabled

Fault Recovery:	 Not Enabled

Activity Logging:	 Not Enabled

Server Controller:	 Not Enabled

Diagnostic Directory:	 C:\Program Files\IBM\Lotus\Domino\data\
➥IBM_TECHNICAL_SUPPORT

Console Logging:	 Enabled (10240K)

Console Log File:	 C:\Program Files\IBM\Lotus\Domino\data\
➥IBM_TECHNICAL_SUPPORT\console.log

DB2 Server: Not Enabled

132   Common Console Commands You Should Know

show conf [notes.ini variable]
This command enables the developer or administrator to examine the value of any given
notes.ini variable without needing to physically open the notes.ini file residing in the
Domino server’s program directory. This is a powerful command because it allows
developers and administrators alike to view the values of notes.ini variables that the
runtime is using without needing to wade through the array of variables present in the
Domino server’s notes.ini file.

Sample usage:

show conf HTTPJVMMaxHeapSize

Listing 3.19 shows sample output as a result of executing the show conf command on
the Domino server console.

Listing 3.19  Result of Executing the show conf Command Using the
HTTPJVMMaxHeapSize Variable

> show conf HTTPJVMMAxHeapSize

HTTPJVMMAXHEAPSIZE=256M

set conf [notes.ini variable=value]

This command enables developers and administrators to quickly and easily set a
notes.ini variable in the Domino server’s notes.ini without actually physically opening
the file and editing the value. This command is particularly useful because it enables
users to set the notes.ini variable while the server is running. A typical use case for this
command is one in which the administrator wants to increase the minimum Java heap
size of the HTTP task’s JVM without worrying about accidentally overwriting any other
server settings that may have been written to notes.ini in the time the file was open for
editing.

Sample usage:

set conf JavaMinHeapSize=64M

Figure 3.14 shows how the JavaMinHeapSize notes.ini variable can be reset using
the set conf command and displays how the setting is applied by restarting the HTTP
task.

tell adminp [options]

This command performs various automated administration tasks on the server. A wide
range of options can be passed to this task; you can obtain the complete listing of
adminp options from the Lotus Domino Administrator help, installed in the help direc-
tory of the Domino server.

Sample usage:

tell adminp show databases

Common Console Commands You Should Know   133  

Listing 3.20 shows the output from executing adminp with the show databases
option specified.

Listing 3.20  Result of Executing the adminp Task on the Domino Server Console

> tell adminp show databases

10/20/2011 04:11:32 PM Admin Process: These databases have greenane/
➥GAA designated as their Administration Server.

10/20/2011 04:11:32 PM Title: Administration Requests Path: admin4.nsf

10/20/2011 04:11:32 PM Title: CPP FreeBusy WebService Path:
➥cppfbws.nsf

10/20/2011 04:11:32 PM Title: Domino Directory Cache (6) Path:
➥dbdirman.nsf

10/20/2011 04:11:32 PM Title: Offline Services Path: doladmin.nsf

10/20/2011 04:11:32 PM Title: greenane's Log Path: log.nsf

10/20/2011 04:11:32 PM Title: admin admin Path: mail\aadmin.nsf

10/20/2011 04:11:32 PM Title: Eileen Leonard Path: mail\eleonard.nsf

10/20/2011 04:11:32 PM Title: Frank Adams Path: mail\fadams.nsf

load chronos [options]

This command loads the chronos task on the Domino server. The task is responsible
for updating the full-text indexes of databases that are marked to be updated daily or
hourly. This is useful to XPage developers when the full-text index of a database is
needed to test particular functionality. This task enables developers to force the creation
or update of the index without needing to modify the indexing schedule.

Sample usage:

load chronos hourly

Figure 3.14  Result of running the set conf command on the JavaMinHeapSize
notes.ini variable

Reset JavaMinHeapSize set to 64MB

Restart HTTP
task

JavaMinHeapSize set to 16MB

134   Common Console Commands You Should Know

Listing 3.21 shows the sample output from running the chronos task.

Listing 3.21  Sample Console Output from Running the chronos Task

>load chronos hourly

09/14/2011 08:35:06 PM Chronos: Performing hourly full text indexing

09/14/2011 08:35:09 PM Chronos: Full text indexer terminating

load updall [path] [options]

This command updates all changed views and/or all full-text indexes within the given
database or all databases on the server. Obviously, this is quite useful if you are work-
ing with FTSearch features in your XPages application because testing and debugging
requires an up-to-date full-text index.

You can pass a wide range of options to this task. The Lotus Domino Administrator
help, installed in the help directory of the Domino Server, includes a complete listing of
adminp options.

Sample usage:

load updall XPagesSBT.nsf –f

Listing 3.22 shows the output received on the Domino server console from running the
updall task on the Domino server.

Listing 3.22  Sample Console Output from Running the updall Task to Update Full-Text
Indexes on a Specified Application

> load updall XPagesSBT.nsf -f

09/14/2011 08:44:39 PM Index update process started: XPagesSBT.nsf -f

09/14/2011 08:44:39 PM Updating views in C:\Program
➥Files\IBM\Lotus\Domino\data\XPagesSBT.nsf

09/14/2011 08:44:39 PM Index update process shutdown

load design [source] [target] [options]

This command updates all databases on the server with design updates from their mas-
ter template. This command can be quite useful when an administrator has accidentally
modified the design of a particular database and needs to update the design of that data-
base from the master template outside the regular design update schedule.

Sample usage:

load design rossacussane.swg.myco.com greenane.swg.myco.com –f
➥XPagesSBT.nsf

Listing 3.23 shows the Domino server console output received from executing the design
task on the Domino server.

Common Console Commands You Should Know   135  

Listing 3.23  Sample Console Output from Running the Design Task

> load design rossacussane.swg.myco.com greenane.swg.myco.com
➥-f XPagesSBT.nsf

09/14/2011 08:54:52 PM Database Designer started

09/14/2011 08:54:52 PM Opened session for rossacussane/GAA (Release
➥8.5.3)

09/14/2011 08:54:55 PM Closed session for rossacussane/GAA Databases
accessed: 3 Documents read: 0 Documents written: 0

09/14/2011 08:54:55 PM Opened session for greenane/GAA (Release 8.5.3)
➥09/14/2011

08:54:55 PM Closed session for greenane/GAA Databases accessed:
1 Documents read: 0

Documents written: 0

09/14/2011 08:54:55 PM Opened session for greenane/GAA (Release 8.5.3)

09/14/2011 08:54:55 PM Database Designer shutdown

09/14/2011 08:54:55 PM Closed session for greenane/GAA Databases
➥accessed: 1

Documents read: 0 Documents written: 0

load fixup [path] [options]

This command runs the fixup task on the specified database or on all databases on the
server. The fixup task scans for databases that contain inconsistencies from partially
written operations that may have occurred during a previous failure, such as a hardware
failure or a crash. You can pass a wide range of options to this task. The complete listing
of adminp options is available from the Lotus Domino Administrator help, installed in
the help directory of the Domino server.

Sample usage:

load fixup XPagesSBT.nsf –l

Listing 3.24 shows the result of running the fixup command against a particular data-
base on the Domino server.

Listing 3.24  Sample Console Output from Running the fixup Command

> load fixup XPagesSBT.nsf -l

 09/14/2011 09:08:55 PM Database Fixup: Started: XPagesSBT.nsf -l

 09/14/2011 09:08:55 PM Checking database C:\Program Files\IBM\
➥Lotus\Domino\data\XPagesSBT.nsf

 09/14/2011 09:08:55 PM Performing consistency check on
➥XPagesSBT.nsf...

 09/14/2011 09:08:56 PM Completed consistency check on XPagesSBT.nsf

 09/14/2011 09:08:56 PM Performing consistency check on views in
➥database XPagesSBT.nsf

136   Common Console Commands You Should Know

 09/14/2011 09:08:56 PM Completed consistency check on views in
➥database XPagesSBT.nsf

 09/14/2011 09:08:56 PM Database Fixup: Shutdown

show tasks

This command shows the names of all the Domino Server tasks that are running on the
server. Administrators will find this useful for determining which tasks are running on
any given server.

Sample usage:

show tasks

Figure 3.15 shows the sample output received when running the show tasks command
on a Domino server.

Figure 3.15  Result of running the show tasks command on the Domino server console

show allports

This command prints the configuration of all enabled and disabled ports on the server.

Sample usage:

show allports

Listing 3.25 shows the result of executing the show allports command on the Dom-
ino server console.

Common Console Commands You Should Know   137  

Listing 3.25  Sample Console Output from Running the show allports Command

> show allports

Enabled Ports:

TCPIP=TCP, 0, 15, 0

Disabled Ports:

LAN0=NETBIOS, 0, 15, 0

LAN1=NETBIOS, 1, 15, 0

LAN2=NETBIOS, 2, 15, 0

LAN3=NETBIOS, 3, 15, 0

LAN4=NETBIOS, 4, 15, 0

LAN5=NETBIOS, 5, 15, 0

LAN6=NETBIOS, 6, 15, 0

LAN7=NETBIOS, 7, 15, 0

LAN8=NETBIOS, 8, 15, 0

show diskspace

This command prints the amount of disk space available on the server.

Sample usage:

show diskspace

Listing 3.26 displays the results from executing the show diskspace command.

Listing 3.26  Sample Console Output from the show diskspace Command

> show diskspace

Available disk space 83,342,319,616 bytes

show heartbeat

This command prints a value to the console if the server is still responding.

Sample usage:

show heartbeat

Listing 3.27 shows the result of running the show heartbeat command on the
Domino server console.

Listing 3.27  Sample Console Output for the show heartbeat Command

> show heartbeat

greenane/GAA's elapsed time: 100827 seconds

138   Conclusion

Conclusion

This chapter outlined the most relevant commands available to you as an XPages devel-
oper via the Domino server console and the Notes OSGi console. Over time, these com-
mands will undoubtedly prove to be powerful tools in the resolution of issues. Although
executing the commands is a relatively simple exercise, the result they yield will often
lead you directly to the source of a problem. These commands will also improve produc-
tivity by reducing the amount of time needed to test an application. For example, sched-
uled tasks, such as indexing operations, can be run on demand using these commands,
without having to wait for tasks to execute on schedule. Make the most of them!

Index

Symbol
 “#{id:” syntax, 193-195

A
Active Content Filtering properties, 61-64
AJAX properties, 57

xsp.ajax.renderwholetree, 57-59
applicationScope, 214-216
Apply Request Values phase, 270
attributes, Dojo, 190-193
avoiding unnecessary network

transactions, INI variables, 95-96

B
b <bundle-symbolic-name>, 120-121
Back-End Class profiler, 275
bad AJAX requests, Dojo Dijits, 197
bundles, OSGi, 112-114

C
cache size limits, XPages behavior, 26
classes, custom Java classes, 227
client memory usage, optimizing,

96-97
client side debugging techniques,

202-203
with Dojo, 202-203
picking debuggers, 206
XPiNC quirks, 204-206

XSP object debug functions,
201-202

Client Side JavaScript, 139
client side JavaScript properties, 37

xsp.client.script.dojo.djConfig,
42-44

xsp.client.script.dojo.version, 37-39
commands, 126-127

help, 127
load chronos [options], 133-134
load design [source] [target]

[options], 134-135
load fixup [path] [options], 135
load [task-name], 127-128
load [task-name]-?, 128-129
load updall [path] [options], 134
quit, 129
restart server, 129
restart task [task-name], 130-131
set conf [notes.ini

variable=value], 132
show allports, 136-137
show conf [notes.ini variable], 132
show diskspace, 137
show heartbeat, 137-138
show server, 131
show tasks, 136
tell adminp [options], 132-133
tell [task-name] quit, 130

composite data properties, 75
xsp.theme.

preventCompositedDataStyles,
75-76

286   configuring

dijit.byId, 195-196
IDs in HTML source and

requirements to use”#{id:”
syntax, 193-195

input validation, 199-200
unavailable controls while HTML

pages are loading, 196-197
XPages partial update, 199-200

Dojo framework, 189-190
dojo.isIE(), 189
Dojo Toolkit resources, 37
dojoType, 190-193
_dump(), poorMansDebugger,

241-246

E
Eclipse plug-ins, 112
error-management properties, 50-51

xsp.error.page, 52-54
xsp.error.page.default, 50-52

errors
control state saving issues, 28
serialization problems, 27-28

executing XSP Command Manager
commands, 103-104

heapdump, 109
javadump, 109-110
show data directory, 104-105
show modules, 108
show program directory, 105
show settings, 106-107
show version, 105-106
systemdump, 111-112

extended Java code, enabling with java.
policy file, 97-100

JavaUserClasses, 100-101

F
file upload properties, 21

xsp.upload.directory, 21
xsp.upload.maximumsize, 21-23

configuring
notes.ini, 262-268
rcpinstall.properties, 262-268

control library properties, 73-74
xsp.library.depends, 73-74

control state saving issues, 28
CPU profiler, 275
custom Java classes, creating, 227

D
debugging

Client Side JavaScript, 201-202
debugging with Dojo, 202-203
XPiNC quirks, 204-206
XSP object debug functions,

201-202
Java code, 250-261
Managed Beans, 250-261
server-side debugging

techniques, 239
poorMansDebugger. See

poorMansDebugger
remote debugging, 247-250

XPages extension plug-ins, 261-262
Designer

choosing persistence mode, 25-26
launching with OSGi console,

123-125
diag <bundle-symbolic-name>, 114-116
dijit.byId, 195-196
dijits, IDs in HTML source and

requirements to use”#{id:”
syntax, 193-195

disk is full, 28-29
Dojo

client side debugging techniques,
203-204

installing multiple versions, 40-42
reasons to use different versions,

39-40
types and attributes, 190-193

dojoAttribute, 190-193
Dojo Dijits, 193

bad AJAX requests, 197

JSF persistence properties   287  

INI variables, avoiding unnecessary
network transactions, 95-96

input validation, Dojo Dijits, 199-200
installing Dojo, multiple versions,

40-42
Invoke Application phase, 271

J-K
Java classes, creating custom, 227
Java code, debugging, 250-261
Java debug variables, notes.ini, 248
Java heap

HTTPJVMMaxHeapSizeSet
variable, 89

HTTPJVMMaxHeapSize variable,
88-89

JavaDebugOptions variable, 90
JavaEnableDebug variable, 90
JavaMaxHeapSize variable, 89-90
JavaMinHeapSize variable, 90
JavaUserClasses variable, 90
notes.ini, 86-88
OSGI_HTTP_DYNAMIC_

BUNDLES variable, 91-92
XPagesPreload variable, 92
XPagesPreloadDB variable, 93

Java packages, importing into SSJS,
226-227

java.policy file, enabling extended Java
code with, 97-100

JavaUserClasses, 100-101
JavaDebugOptions parameters, 249
JavaDebugOptions variable, 90
javadump, 109-110
JavaEnableDebug variable, 90
JavaMaxHeapSize, 88-90
JavaMinHeapSize, 88-90
JavaScript, 209
JavaUserClasses, 90, 100-101
js.gz versions, 140
js.uncompressed.js, 141
JSF persistence properties, 23

xsp.persistence.dir.xsppers, 35-36
xsp.persistence.dir.xspstate, 34-35

G
garbage collection, 86
getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
global functions, SSJS, 216-218

getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
save(), 226

Global Objects, SSJS, 216-217
gzipped verions, 140

H
headers <bundle-symbolic-name>,

121-122
heapdump, 109
help, 122-123, 127
HTML page-generation properties, 44

xsp.client.validation, 48
xsp.compress.mode, 47
xsp.html.doctype, 44-46
xsp.html.page.encoding, 47-48
xsp.html.preferredcontenttypexhtml,

46-47
xsp.redirect, 49

HTML page-generation properties, xsp.
html.meta.contenttype, 45

HTTPJVMMaxHeapSize, 88
HTTPJVMMaxHeapSizeSet

variable, 89
HTTPJVMMaxHeapSize variable, 88-89
HTTP tasks, notes.ini, 85

I
ibm.jscript.cachesize, 5, 60-61
ibm.xpath.cachesize, 5, 60-61
importing Java packages into SSJS,

226-227

288   JSF persistence properties

N
Notes, launching with OSGi console,

123-125
notes.ini, 83-85

configuring, 262-268
HTTP tasks, 85
Java debug variables, 248
Java heap, 86-88
settings, 84

Notes JVM, 96
NotSerializableException, 27-28

O
object model (XPages), SSJS, 210
objects

XSP Client Side JavaScript, 141
XSP Client Side JavaScript object

functions, 145-146
public functions. See public

functions
optimizing client memory usage, 96-97
OSGi console, 112-114

b <bundle-symbolic-name>,
120-121

commands, 113
diag <bundle-symbolic-name>,

114-116
headers <bundle-symbolic-name>,

121-122
help, 122-123
launching Notes/Designer, 123-125
ss, 116-119
ss <bundle-name-prefix>, 116-119
ss <bundle-symbolic-name>,

116-119
start <bundle-symbolic-name>,

119-120
stop <bundle-symbolic-name>, 120

OSGI_HTTP_DYNAMIC_BUNDLES
variable, 91-92

OSGi (Open Services Gateway
initiative), bundles, 112-114

xsp.persistence.dir.xspupload, 35-36
xsp.persistence.discardjs, 23-24
xsp.persistence.file.async, 32
xsp.persistence.file.gzip, 32
xsp.persistence.file.maxviews, 30
xsp.persistence.file.threshold, 33-34
xsp.persistence.stateview, 30-32
xsp.persistence.tree.maxviews,

29-30
jvm.properties, 97

L
launching Notes/Designer with OSGi

console, 123-125
link management properties, 69

xsp.default.link.target, 69-71
xsp.save.links, 71-72

load chronos [options], 133-134
load design [source] [target] [options],

134-135
load fixup [path] [options], 135
load [task-name], 127-128
load [task-name]-?, 128-129
load updall [path] [options], 134
locating xsp.properties, 7-9
logging, configuring notes.ini and

rcpinstall.proerties for, 262-268

M
Managed Bean Properties, SSJS,

233-237
Managed Beans

creating, 227-233
debugging, 250-261

memory, client memory usage,
optimizing, 96-97

Memory profiler, 275

Runtime monitoring   289  

XSP.log(), 188
XSP.partialRefreshGet(), 176-177
XSP.partialRefreshPost(), 177-178
XSP.prompt(), 163-164
XSP.scrollWindow(), 176-177
XSP.setSubmitValue(), 169-170
XSP.showSection(), 182
XSP.startsWith(), 186
XSP.toJson(), 187
XSP.trim(), 185-186
XSP.validateAll(), 171-172
XSP.validationError(), 174-175

Q–R
quit, 129

rcpinstall.properties, configuring for
logging, 262-268

refresh, 108-109
remote debugging, 247-250
Render Response phase, 271
repeating control properties, 66

xsp.repeat.allowZeroRowsPerPage,
67-68

request handling mechanisms, stack
trace, 268

request processing lifecycle, stack trace,
269-274

request properties, 78-79
requestScope, 213
resource properties, 18

xsp.resources.aggregate, 18-20
resource servlet properties, 65

xsp.expires.global, 65-66
restart server, 129
restart task [task-name], 130-131
Restore View phase, 270
Runtime monitoring, 275

P
partial update, Dojo Dijits, 199-200
partial update properties, 68

xsp.partial.update.timeout, 68-70
persistence mode, choosing in

Designer, 25-26
poorMansDebugger,

_dump(), 241-246
print(), 239-240
printIn(), 239-240
try/catch blocks, 246-247

preloading, importance of, 93-94
print(), poorMansDebugger, 239-240
printIn(), poorMansDebugger,

239-240
Process Validations phase, 270
public functions

XSP.addOnLoad(), 181-182
XSP.addPreSubmitListener(),

165-166
XSP.addQuerySubmitListener(),

166
XSP.alert(), 161-162
XSP.allowSubmit(), 168-169
XSP.attachClientFunction(),

179-180
XSP.attachClientScript(), 180
XSP.canSubmit(), 167-168
XSP Client Side JavaScript object

functions, 160
XSP.confirm(), 162
XSP.djRequire(), 164
XSP.dumpObject(), 189
XSP.endsWith(), 186-187
XSP.error(), 162-163
XSP.findForm(), 183-184
XSP.findParentByTag(), 183
XSP.fromJson(), 187-188
XSP.getDijitFieldValue(), 173-174
XSP.getElementById(), 184
XSP.getFieldValue(), 172-173
XSP.getSubmitValue(), 170
XSP.hasDijit(), 184-185

290   save()

show modules, 108
show program directory, 105
show server, 131
show settings, 106-107
show tasks, 136
show version, 105-106
space, lack of, 28-29
ss, OSGi console, 116-119
ss <bundle-symbolic-name>, 116-119
SSJS (Server Side JavaScript), 209

global functions, 216-218
getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
save(), 226

importing Java packages, 226-227
Managed Bean Properties, 233-237
server-side scripting objects,

210-213
Global Objects, 216-217
scope objects, 213-216

system libraries, 210-213
XPages object model, 210

stack trace, 268
request handling mechanisms, 268
request processing lifecycle,

269-274
start <bundle-symbolic-name>,

119-120
stop <bundle-symbolic-name>, 120
system libraries, SSJS, 210-213
systemdump, 111-112

T
tell adminp [options], 132-133
tell [task-name] quit, 130
theme properties, 13

xsp.theme, 13-14
xsp.theme.notes, 15-18
xsp.theme.web, 14

themes, applying properties, 80

S
save(), 226
scope objects, SSJS, 213

applicationScope, 214-216
requestScope, 213
sessionScope, 214
viewScope, 213-214

screen reader software, 224
script cache size properties, 60

ibm.jscript.cachesize, 60-61
ibm.xpath.cachesize, 60-61

serialization problems,
NotSerializableException, 27-28

server-side debugging techniques, 239
poorMansDebugger

_dump(), 241-246
print(), 239-240
printIn(), 239-240
try/catch blocks, 246-247

remote debugging, 247-250
Server Side JavaScript (SSJS), 209

global functions, 216-218
getClientId(), 223-225
getComponent(), 219-223
getForm(), 225
getLabelFor(), 224
getView(), 225
save(), 226

importing Java packages, 226-227
Managed Bean Properties, 233-237
server-side scripting objects,

210-213
Global Objects, 216-217
scope objects, 213-216

system libraries, 210-213
XPages object model, 21

server-side scripting objects, SSJS,
210-213

sessionScope, 214
set conf [notes.ini variable=value], 132
show allports, 136-137
show conf [notes.ini variable], 132
show data directory, 104-105
show diskspace, 137
show heartbeat, 137-138

XSP Client Side JavaScript objects   291  

XSP.addPreSubmitListener(), 147, 166
XSP.addQuerySubmitListener(),

147, 166
xsp.ajax.renderwholetree, 5, 57-59
XSP.alert(), 146, 161-162
XSP.alert function, 143
XSP.allowSubmit(), 148, 168-169
xsp.application.forcefullrefresh, 2, 13
xsp.application.time, 10
xsp.application.timeout, 2
XSP.attachClientFunction(), 150, 179-180
XSP.attachClientScript(), 150, 180
XSP.attachDirtyListener(), 157
XSP.attachDirtyUnloadListener(), 157
XSP.attachEvent(), 155
XSP.attachPartial(), 157
XSP.attachSimpleConfirmSubmit(), 158
XSP.attachValidator(), 152
XSP.attachViewColumnCheckbox

Toggler(), 158
XSP.caIUavaAction(), 160
XSP.canSubmit, 148
XSP.canSubmit(), 167-168
xspClientCA, 141
xspClientDebug, 141-143
xspClientDojo, 141-143
xspClientDojoUI, 141-143
xspClientLite, 141
xspClientMashup, 141
xspClientRCP, 141-143
xspClientRCP.js.uncompressed.js, 142
xsp.client.script.dojo.djConfig, 4, 42-44
xsp.client.script.dojo.version, 4, 37-39
xsp Client Side JavaScript, 142
XSP Client Side JavaScript, 139-144
XSP Client Side JavaScript objects, 141

functions of, 145-146
XSP Client Side JavaScript objects

public functions
XSP.addOnLoad(), 181-182
XSP.addPreSubmitListener(),

165-166
XSP.addQuerySubmitListener(),

166
XSP.alert(), 161-162

timeout properties, 9
xsp.application.forcefullrefresh, 13
xsp.session.timeout, 10-11
xsp.session.transient, 12

try/catch blocks, poorMansDebugger,
246-247

types, Dojo, 190-193

U
unresolved constraint status, 115
Update Model Values phase, 271
updating xsp.properties, 7-9
user preferences properties, 55

xsp.user.timezone, 55-57
xsp.user.timezone.roundtrip, 56

V-W
viewroot properties, 77-78
viewScope, 213-214
vmarg.Xms, 97
vmarg.Xmx, 97

X-Y-Z
Xms (minimum heap size), 86
Xmx (maximum heap size), 86
XPages

behavior when cache size limits are
encountered, 26

Dojo framework, 189
problems when storing pages on file

systems, 26
XPages Extensibility APIs, 28
XPages extension plug-ins, debugging,

261-262
XPages object model, SSJS, 210
XPages partial update, Dojo Dijits,

199-200
XPages Toolbox, 275-276
XPagesPreload variable, 92
XPagesPreloadDB variable, 93
XPiNC quirks, 204-206
XSP.addOnLoad(), 150, 181-182

292   XSP Client Side JavaScript objects

show version, 105-106
systemdump, 111-112

xsp.compress.mode, 4, 47
XSP.confirm(), 146, 162
XSP.DateConverter(), 153
XSP.DateTimeConverter(), 154
XSP.DateTimeRangeValidator(), 154
xsp.default.link.target, 6, 69-71
XSP.dispatchEvent(), 159
XSP.dispatchJSONEvent(), 160
XSP.djRequire(), 146, 164
XSP._doFireSaveEvent(), 158
XSP._dumpObject(), 159
XSP.dumpObject(), 152, 189
XSP._embedControl(), 160
XSP.endsWith(), 151, 186-187
XSP.error(), 146, 162-163
xsp.error.page, 5, 52-54
xsp.error.page.default, 5, 50-52
XSP.execScripts(), 158
xsp.expires.global, 6, 65-66
XSP.ExpressionValidator(), 155
XSP.findForm(), 151, 183-184
XSP.findParentByTag(), 151, 183
XSP.fireEvent(), 156
XSP.firePartial(), 157
XSP.fromJson(), 151, 187-188
XSP.getDijitFieldValue(), 149, 173-174
XSP._getDirtyFormId, 156
XSP.getElementById(), 151, 184
XSP._getEventData(), 155
XSP.getFieldValue(), 149, 172-173
XSP.getMessage(), 152
XSP.getSubmitValue(), 148, 170
XSP.hasDijit(), 151, 184-185
xsp.html.doctype, 44-46
xsp.htmlfilter.acf.config, 6
xsp.html.meta.contenttype, 4, 45
xsp.html.page.encoding, 4, 47-48
xsp.html.preferredcontenttypexhtml,

4, 46-47
XSP.initSectionScript(), 159
XSP.IntConverter(), 153
XSP._isAllowDirtySubmit, 156
XSP._isDirty, 156

XSP.allowSubmit(), 168-169
XSP.attachClientFunction(),

179-180
XSP.attachClientScript(), 180
XSP.canSubmit(), 167-168
XSP Client Side JavaScript

object functions, 160
XSP.confirm(), 162
XSP.djRequire(), 164
XSP.dumpObject(), 189
XSP.endsWith(), 186-187
XSP.error(), 162-163
XSP.findForm(), 183-184
XSP.findParentByTag(), 183
XSP.fromJson(), 187-188
XSP.getDijitFieldValue(),

173-174
XSP.getElementById(), 184
XSP.getFieldValue(), 172-173
XSP.getSubmitValue(), 170
XSP.hasDijit(), 184-185
XSP.log(), 188
XSP.partialRefreshGet(),

176-177
XSP.partialRefreshPost(),

177-178
XSP.prompt(), 163-164
XSP.scrollWindow(), 176-177
XSP.setSubmitValue(), 169-170
XSP.showSection(), 182
XSP.startsWith(), 186
XSP.toJson(), 187
XSP.trim(), 185-186
XSP.validateAll(), 171-172
XSP.validationError(), 174-175

xsp.client.validation, 4, 48
XSP Command Manager, 103

executing commands, 103-104
heapdump, 109
javadump, 109-110
refresh, 108-109
show data directory, 104-105
show modules, 108
show program directory, 105
show settings, 106-107

xsp.properties   293  

composite data properties, 75
xsp.theme.
preventCompositedDataStyles,

75-76
control library properties, 73-74

xsp.library.depends, 73-74
error-management properties, 50-51

xsp.error.page, 52-54
xsp.error.page.default, 50-52

file upload properties, 21
xsp.upload.directory, 21
xsp.upload.maximumsize, 21-23

HTML page-generation
properties, 44
xsp.client.validation, 48
xsp.compress.mode, 47
xsp.html.doctype, 44-46
xsp.html.page.encoding, 47-48
xsp.html.preferredcontenttype

xhtml, 46-47
xsp.redirect, 49

HTML page-generation properties
xsp.html.meta.contenttype, 45

JSF persistence properties, 23
xsp.persistence.dir.xsppers,

35-36
xsp.persistence.dir.xspupload,

35-36
xsp.persistence.discardjs, 23-24
xsp.persistence.file.async, 32
xsp.persistence.file.gzip, 32
xsp.persistence.file.max

views, 30
xsp.persistence.file.threshold,

33-34
xsp.persistence.mode, 24-25
xsp.persistence.stateview, 30-32
xsp.persistence.tree.maxviews,

29-30
JSF persistence properties

xsp.persistence.dir.xspstate,
34-35

link management properties, 69
xsp.default.link.target, 69-71

XSP.isViewPanenlRowSelected(), 159
XSP.LengthValidator, 154
xsp.library.depends, 6, 73-74
XSP._loaded(), 158
XSP.log(), 151, 188
XSP.logw(), 159
XSP._moveAttr(), 159
XSP.NumberConverter(), 154
XSP.NumberRangeValidator(), 155
XSP object debug functions, 201-202
XSP.onComponentLoaded(), 160
XSP.parseDojo(), 158
XSP._partialRefresh(), 158
XSP.partialRefreshGet(), 150, 176-177
XSP.partialRefreshPost(), 150, 177-178
xsp.partial.update.timeout, 6, 68-70
xsp.persistence.dir.xsppers, 4, 35-36
xsp.persistence.dir.xspstate, 3, 28, 34-35
xsp.persistence.dir.xspupload, 4, 35-36
xsp.persistence.discardjs, 3, 23-24
xsp.persistence.file.async, 3, 32
xsp.persistence.file.gzip, 3, 28, 32
xsp.persistence.file.maxviews, 3, 30
xsp.persistence.file.threshold, 3, 29, 33-34
xsp.persistence.mode, 3, 24-25, 198

JSF persistence properties, 24-25
xsp.persistence.stateview, 30-32

JSF persistence properties, 30-32
xsp.persistence.tree.maxviews, 3, 29-30
xsp.persistence.viewstate, 3, 29
XSP._processListeners(), 152
XSP.processScripts(), 158
XSP.prompt(), 146, 163-164
xsp.properties

Active Content Filtering properties,
61-64

AJAX properties, 57
xsp.ajax.renderwholetree, 57-59

applying properties using
themes, 80

client side JavaScript properties, 37
xsp.client.script.dojo.djConfig,

42-44
xsp.client.script.dojo.version,

37-39

294   xsp.properties

Xsp.richtext.default.htmlfilter, 5
Xsp.richtext.default.htmlfilterin, 5
xsp.resources.aggregate, 2, 18-20
XSP._saveDirtyForm(), 157
xsp.save.links, 6, 71-72
XSP._scrollPosition, 156
XSP.scrollWindow(), 149, 176-177
XSP.serialize(), 159
xsp.session.timeout, 2, 10-11, 29
xsp.session.transient, 12, 29
XSP._setAllowDirtySubmit(), 156
XSP.setComponentMode(), 160
XSP._setDirty(), 156
XSP.setSubmitValue(), 148, 169-170
XSP.showSection(), 150, 182
XSP.startsWith(), 151, 186
XSP._SubmitListener(), 152
XSP.tagCloudSliderOnChange(), 158
xsp.theme, 2, 13-14
xsp.theme.notes, 2, 15-18
xsp.theme.preventComposited

DataStyles, 6, 75-76
xsp.theme.web, 2, 14
XSP.TimeConverter, 153
XSP._toggleViewComunCheck

Boxes(), 158
XSP.toJson(), 151, 187
XSP.trim(), 151, 185-186
xsp.upload.directory, 3, 21
xsp.upload.maximumsize, 2, 21-23
xsp.user.timezone, 5, 55-57
xsp.user.timezone.roundtrip, 5, 56
XSP.validateAll(), 149, 171-172
XSP._validateDirtyForm(), 157
XSP.validationError(), 149, 174-175
XSP._Validator(), 152

locating, 7-9
partial update properties, 68

xsp.partial.update.timeout, 68-70
repeating control properties, 66

xsp.repeat.
allowZeroRowsPerPage,
67-68

request properties, 78-79
resource properties, 18

xsp.resources.aggregate, 18-20
resource servlet properties, 65

xsp.expires.global, 65-66
script cache size properties, 60-61
theme properties, 13

xsp.theme, 13-14
xsp.theme.notes, 15-18
xsp.theme.web, 14

timeout properties, 9
xsp.application.forcefull-

refresh, 13
xsp.application.time, 10
xsp.session.timeout, 10-11
xsp.session.transient, 12

updating, 7-9
user preferences properties, 55

xsp.user.timezone.roundtrip, 56
viewroot properties, 77-78

XSP.publishEvent(), 159
XSP._pushListener(), 152
xsp.redirect, 5, 49
XSP.RegExpValidator(), 155
xsp.repeat.allowZeroRowsPerPage, 6,

67-68
XSP._replaceNode(), 158
XSP.RequiredValidator(), 154
XSP._resize(), 160

	Contents
	CHAPTER 3 Working with the Console
	About the XSP Command Manager
	How to Execute the XSP Command Manager Commands
	show data directory
	show program directory
	show version
	show settings
	show modules
	refresh
	heapdump
	javadump
	systemdump

	Working with the OSGi Console
	diag <bundle-symbolic-name>
	ss, ss <bundle-symbolic-name>, or ss <bundle-name-prefix>
	start <bundle-symbolic-name>
	stop <bundle-symbolic-name>
	b <bundle-symbolic-name>
	headers <bundle-symbolic-name>
	help

	How to Launch Notes/Designer Along with the OSGi Console
	Common Console Commands You Should Know
	help
	load [task-name]
	load [task-name] -?
	quit
	restart server
	tell [task-name] quit
	restart task [task-name]
	show server
	show conf [notes.ini variable]
	set conf [notes.ini variable=value]
	tell adminp [options]
	load chronos [options]
	load updall [path] [options]
	load design [source] [target] [options]
	load fixup [path] [options]
	show tasks
	show allports
	show diskspace
	show heartbeat

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V-W
	X-Y-Z

