

The iOS Game
Programming

Collection

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Note from the Publisher
The iOS Game Programming Collection consists of two bestselling eBooks:

• Learning iOS Game Programming:A Hands-On Guide to Building Your First
iPhone Game

• Learning Cocos2D:A Hands-on Guide to Building iOS Games with Cocos2D, Box2D,
and Chipmunk

This collection walks you through the steps to develop games for the iPhone, iPad, and
iPod Touch. No game programming experience required! Learning iOS Game
Programming is a beginner’s guide to developing 2D apps for the iPhone. Learning
Cocos2D shows how Cocos2D makes iPhone and iPad game programming fun and easy.

To simplify access to each book, we’ve appended “A” to pages of Learning iOS Game
Programming and “B” to pages of Learning Cocos2D.This enabled us to produce a single,
comprehensive table of contents and dedicated indexes so that you can easily link to the
topics you want.We hope you find this collection useful!

—The editorial and production teams at Addison-Wesley Professional

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks.Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibit-
ed reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.To obtain permission
to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458,
or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-292862-5
ISBN-10: 0-13-292862-0

Table of Contents

LEARNING IOS GAME PROGRAMMING

1 Game Design . 1A
The Game That Started It All (For Me) 3A

So, What’s the Big Idea? . 4A

A Game That Fits with the iPhone 4A

The Storyline . 5A

What’s in a Name? . 5A

The Game’s Objective . 6A

Game Play Components . 7A

Time . 7A

Lives . 7A

Health . 8A

Objects . 8A

Doors . 9A

Weapons . 10A

Entities . 10A

Player . 11A

Summary . 11A

2 The Three Ts: Terminology, Technology,
and Tools . 13A

Terminology . 14A

Sprite . 14A

Sprite Sheet . 16A

Animation . 18A

Bitmap Fonts . 19A

Tile Maps . 20A

Particle System . 21A

Collision Detection . 22A

Artificial Intelligence (AI) 23A

Game Loop . 24A

Technology . 26A

Objective-C . 26A

Cocoa Touch . 27A

OpenGL ES . 27A

OpenAL . 30A

Tools . 31A

The iPhone SDK . 32A

Summary . 38A

3 The Journey Begins . 39A
Creating the Project in Xcode 39A

Running the Project . 42A

Under the Hood . 43A

Application Delegate . 43A

Examining the Header File 44A

Examining the Implementation File 46A

EAGLView . 49A

EAGLView.h . 49A

EAGLView.m . 50A

ES1Renderer . 58A

Examining ES1Renderer.h 58A

Examining ES1Renderer.m 59A

Creating the Framebuffer and Renderbuffer 60A

Defining the Color Values 66A

Positioning . 67A

How OpenGL Works . 68A

Applying Transformations on the Model 69A

Rendering to the Screen 70A

Summary . 72A

4 The Game Loop . 73A
Timing Is Everything . 73A

Collision Detection . 74A

The Game Loop . 75A

Frame-Based . 75A

Time-Based, Fixed Interval 77A

Getting Started . 78A

Inside the EAGLView Class 79A

Inside the EAGLView.m File 79A

ES1Renderer Class . 82A

Configuring the View Port 85A

Game Scenes and the Game Controller 86A

Creating the Game Controller 87A

The GameController Class 87A

vi Contents

Creating the Singleton 89A

Inside GameController.m 89A

AbstractScene Class . 92A

GameScene Class . 93A

Summary . 95A

Exercises . 95A

5 Image Rendering . 97A
Introduction to Rendering 97A

Rendering a Quad . 98A

Texture Mapping . 101A

Texture Coordinates 101A

Interleaved Vertex Arrays 104A

Structures . 106A

Image Rendering Classes 107A

Texture2D Class . 108A

TextureManager Class 116A

ImageRenderManager Class 119A

The Image Class . 126A

Initialization . 126A

Retrieving a Sub-Image 129A

Duplicate an Image . 130A

Rendering an Image 130A

Getters and Setters 134A

Summary . 134A

Exercise . 135A

6 Sprite Sheets . 137A
Introduction to Sprite Sheets 137A

Simple Sprite Sheet 138A

Complex Sprite Sheets 139A

Using Zwoptex . 141A

The SpriteSheet Class . 142A

Initialization . 143A

Retrieving Sprites . 146A

PackedSpriteSheet Class 147A

Initialization . 147A

Parsing the Control File 148A

Retrieving a Sprite . 149A

viiContents

Summary . 150A

Exercise . 151A

7 Animation . 153A
Animation Chapter Project 153A

Introduction to Animation 154A

Frames . 154A

State . 155A

Type . 155A

Direction . 155A

Bounce Frame . 155A

Animation Class . 156A

Initialization . 156A

Adding Frames . 157A

Animation Updates . 158A

Animation Rendering 160A

Finishing Things Off . 161A

Summary . 163A

Exercise . 163A

8 Bitmap Fonts . 165A
Bitmap Font Project . 165A

Introduction to Bitmap Fonts 166A

Creating the Bitmap Font Sprite Sheet 167A

The BitmapFont Class . 170A

Header File . 170A

What’s with the C? . 171A

Initializer . 171A

Parsing the Control File 172A

Rendering Text . 176A

Rendering Justified Text 178A

Text Width and Height 180A

Deallocation . 181A

Summary . 181A

Exercise . 182A

9 Tile Maps . 183A
Getting Started with the Tile Map Project 183A

Introduction to Tile Maps 184A

viii Contents

Tile Map Editor . 186A

Tile Palette . 188A

Layers . 188A

Creating a Tile Map . 189A

Create a New Tile Set 190A

Creating Map Layers 191A

Creating Object Layers 191A

Drawing the Map . 192A

Placing Objects . 192A

Understanding the Tiled Configuration File 193A

Map Element . 193A

Tileset Element . 193A

Layer Element . 194A

Object Group Element 195A

Tile Map Classes . 196A

Layer Class . 196A

TileSet Class . 202A

TiledMap Class . 204A

Initialization . 205A

Parsing a Map File . 207A

Creating the Layer Images 216A

Rendering a Layer . 218A

Getting Tile Informaiton 220A

Summary . 220A

Exercise . 221A

10 The Particle Emitter 223A
Particle Emitter Project 224A

Introduction to Particle Systems 225A

Particle System Parameters 226A

Life Cycle of a Particle . 227A

A Particle Is Born . 227A

A Particle Lives . 228A

A Particle Dies . 229A

A Particle Is Reborn 229A

Particle Emitter Configuration 230A

Particle Emitter Classes 231A

TBXMLParticleAdditions Class 231A

ParticleEmitter Class 233A

ixContents

Have a Play . 247A

Summary . 248A

11 Sound . 249A
Sound Project . 249A

Introduction to Sound on the iPhone 250A

Audio Sessions . 250A

Playing Music . 252A

Playing Sound Effects 252A

Creating Sound Effects 254A

Stereo Versus Mono 256A

Sound Manager Classes 256A

SoundManager Class 257A

Sound Effect Management 273A

Loading Sound Effects 274A

Playing Sound Effects 276A

Stopping Sound Effects 279A

Setting Sound Effect and Listener Position . . . 281A

Handling Sound Interruptions 281A

Summary . 284A

12 User Input . 285A
User Input Project . 285A

Introduction to User Input 287A

Touch Events . 287A

Processing Touch Events 289A

The touchesBegan Phase 290A

The touchesMoved Phase 292A

The touchesEnded Phase 294A

Processing Taps . 294A

Accelerometer Events . 296A

Summary . 298A

13 The Game Interface 299A
Game Interface Project 299A

OpenGL ES Interface . 300A

Rendering the Interface 301A

Defining Button Bounds 304A

x Contents

Handling Touches . 304A

Handling Transitions 308A

OpenGL ES Orientation 308A

UIKit Interfaces . 312A

Creating the Interface 312A

Wiring Up the Interface 315A

UIKit Orientation . 318A

Showing and Hiding a UIKit Interface 320A

Summary . 323A

14 Game Objects and Entities 325A
Game Objects and Entities Project 325A

Game Objects . 326A

AbstractObject Class 327A

EnergyObject Class . 329A

Game Entities . 338A

AbstractEntity Class 339A

Artificial Intelligence 341A

Player Entity Class . 343A

Saving a Game Object or Entity 352A

Summary . 355A

15 Collision Detection . 357A
Introduction to Collision Detection 357A

Collision Pruning . 358A

Frame-Based Versus Time-Based 359A

Axis-Aligned Bounding Boxes 360A

Detecting Collisions . 361A

Collision Map . 362A

Entity-to-Map Collision Detection 365A

Entity-to-Entity Collision Detection 367A

Summary . 368A

16 Putting It All Together 369A
The “Camera” . 369A

Saving the Game State and Settings 371A

Saving Game State . 371A

Loading Game State 373A

xiContents

Saving Game Settings 375A

Loading Game Settings 376A

Saving High Scores . 377A

Adding a Score . 379A

Saving High Scores . 380A

Loading High Scores 381A

Performance and Tuning 382A

Using Instruments . 383A

Leaks Instrument . 384A

Using the OpenGL ES Instrument 387A

Compiling for Thumb 389A

Beta Testing . 390A

Multiple Device Types 391A

Feedback . 392A

Summary . 392A

Index .395A

LEARNING COCOS2D

I Getting Started with Cocos2D 1B

1 Hello, Cocos2D .3B

Downloading and Installing Cocos2D 4B

Downloading Cocos2D .4B

Installing the Cocos2D Templates 5B

Creating Your First Cocos2D HelloWorld 6B

Inspecting the Cocos2D Templates 6B

Building the Cocos2D HelloWorld Project 7B

Taking HelloWorld Further 9B

Adding Movement .10B

For the More Curious: Understanding the Cocos2D
HelloWorld .11B

Scenes and Nodes .11B

From the Beginning .14B

Looking Further into the Cocos2D
Source Code .18B

xii Contents

Getting CCHelloWorld on Your iPhone or iPad 20B

Letting Xcode Do Everything for You 20B

Building for Your iPhone or iPad 21B

Summary .22B

Challenges .22B

2 Hello, Space Viking .23B

Creating the SpaceViking Project 23B

Creating the Space Viking Classes 24B

Creating the Background Layer 26B

The Gameplay Layer: Adding Ole the
Viking to the Game .29B

The GameScene Class: Connecting the
Layers in a Scene .31B

Creating the GameScene 32B

Commanding the Cocos2D Director 34B

Adding Movement .35B

Importing the Joystick Classes 35B

Adding the Joystick and Buttons 36B

Applying Joystick Movements to Ole the
Viking .40B

Texture Atlases .44B

Technical Details of Textures and
Texture Atlases .45B

Creating the Scene 1 Texture Atlas 48B

Adding the Scene 1 Texture Atlas to
Space Viking .51B

For the More Curious: Testing Out
CCSpriteBatchNode .52B

Fixing Slow Performance on iPhone 3G and
Older Devices .53B

Summary .54B

Challenges .54B

3 Introduction to Cocos2D Animations and
Actions .57B

Animations in Cocos2D .57B

Space Viking Design Basics 62B

Actions and Animation Basics in Cocos2D 66B

xiiiContents

Using Property List Files to Store Animation Data . .67B

Organization, Constants, and Common Protocols . .69B

Creating the Constants File 71B

Common Protocols File 72B

The GameObject and GameCharacter Classes 74B

Creating the GameObject 74B

Creating the GameCharacter Class 80B

Summary .82B

Challenges .82B

4 Simple Collision Detection and the
First Enemy .83B

Creating the Radar Dish and Viking Classes83B

Creating the RadarDish Class 83B

Creating the Viking Class 90B

Final Steps .105B

The GameplayLayer Class105B

Summary .112B

Challenges .113B

II More Enemies and More Fun 115B

5 More Actions, Effects, and Cocos2D
Scheduler .117B

Power-Ups .118B

Mallet Power-Up .118B

Health Power-Up .120B

Space Cargo Ship .122B

Enemy Robot .125B

Creating the Enemy Robot 126B

Adding the PhaserBullet 137B

GameplayLayer and Viking Updates 141B

Running Space Viking144B

For the More Curious: Effects in Cocos2D 145B

Effects for Fun in Space Viking 146B

Running the EffectsTest 148B

Returning Sprites and Objects Back to
Normal .149B

xiv Contents

Summary .149B

Exercises and Challenges 149B

6 Text, Fonts, and the Written Word 151B

CCLabelTTF .151B

Adding a Start Banner to Space Viking 152B

Understanding Anchor Points and Alignment153B

CCLabelBMFont .155B

Using Glyph Designer .156B

Using the Hiero Font Builder Tool156B

Using CCLabelBMFont Class159B

For the More Curious: Live Debugging 160B

Updating EnemyRobot 160B

Updating GameplayLayer 163B

Other Uses for Text Debugging 164B

Summary .165B

Challenges .165B

III From Level to Game .167B

7 Main Menu, Level Completed, and Credits
Scenes .169B

Scenes in Cocos2D .169B

Introducing the GameManager170B

Creating the GameManager 172B

Menus in Cocos2D .179B

Scene Organization and Images 180B

Adding Images and Fonts for the Menus 181B

Creating the Main Menu 182B

Creating the MainMenuScene 182B

MainMenuLayer class183B

Additional Menus and GameplayLayer 190B

Importing the Intro, LevelComplete, Credits, and
Options Scenes and Layers 190B

GameplayLayer .190B

Changes to SpaceVikingAppDelegate 192B

For the More Curious: The IntroLayer and
LevelComplete Classes 193B

LevelCompleteLayer Class 194B

xvContents

Summary .195B

Challenges .195B

8 Pump Up the Volume! 197B

Introducing CocosDenshion197B

Importing and Setting Up the Audio Filenames . . .198B

Adding the Audio Files to Space Viking 198B

Audio Constants .198B

Synchronous versus Asynchronous Loading
of Audio .201B

Loading Audio Synchronously 201B

Loading Audio Asynchronously 203B

Adding Audio to GameManager 204B

Adding the soundEngine to GameObjects 215B

Adding Sounds to RadarDish and
SpaceCargoShip .216B

Adding Sounds to EnemyRobot 219B

Adding Sound Effects to Ole the Viking 222B

Adding the Sound Method Calls in
changeState for Ole 226B

Adding Music to the Menu Screen 228B

Adding Music to Gameplay 228B

Adding Music to the MainMenu228B

For the More Curious: If You Need More
Audio Control .229B

Summary .230B

Challenges .230B

9 When the World Gets Bigger:
Adding Scrolling .231B

Adding the Logic for a Larger World 232B

Common Scrolling Problems 234B

Creating a Larger World 235B

Creating the Second Game Scene236B

Creating the Scrolling Layer 242B

Scrolling with Parallax Layers 250B

Scrolling to Infinity .252B

Creating the Scrolling Layer 254B

Creating the Platform Scene 263B

xvi Contents

Tile Maps .265B

Installing the Tiled Tool266B

Creating the Tile Map267B

Cocos2D Compressed TiledMap Class 271B

Adding a TileMap to a ParallaxNode 272B

Summary .276B

Challenges .276B

IV Physics Engines .277B

10 Basic Game Physics: Adding Realism with
Box2D .279B

Getting Started .279B

Mad Dreams of the Dead 281B

Creating a New Scene 282B

Adding Box2D Files to Your Project 284B

Box2D Units .288B

Hello, Box2D! .289B

Creating a Box2D Object 292B

Box2D Debug Drawing 295B

Putting It All Together 296B

Creating Ground .299B

Basic Box2D Interaction and Decoration 302B

Dragging Objects .304B

Mass, Density, Friction, and Restitution 309B

Decorating Your Box2D Bodies with Sprites . . .313B

Making a Box2D Puzzle Game320B

Ramping It Up .324B

Summary .332B

Challenges .332B

11 Intermediate Game Physics: Modeling,
Racing, and Leaping 333B

Getting Started .334B

Adding the Resource Files 334B

Creating a Basic Box2D Scene 335B

Creating a Cart with Box2D346B

Creating Custom Shapes with Box2D 346B

Using Vertex Helper .348B

Adding Wheels with Box2D Revolute Joints . . .352B

xviiContents

Making the Cart Move and Jump 356B

Making the Cart Move with the
Accelerometer .356B

Making It Scrollable .359B

Forces and Impulses 368B

Fixing the Tipping .368B

Making the Cart Jump 369B

More Responsive Direction Switching 373B

Summary .374B

Challenges .374B

12 Advanced Game Physics: Even Better
than the Real Thing375B

Joints and Ragdolls: Bringing Ole Back into
Action .376B

Restricting Revolute Joints 376B

Using Prismatic Joints 378B

How to Create Multiple Bodies and Joints
at the Right Spots .378B

Adding Ole: The Implementation 380B

Adding Obstacles and Bridges386B

Adding a Bridge .386B

Adding Spikes .390B

An Improved Main Loop 394B

The Boss Fight! .396B

A Dangerous Digger .405B

Finishing Touches: Adding a Cinematic
Fight Sequence .411B

Summary .417B

Challenges .417B

13 The Chipmunk Physics Engine
(No Alvin Required) 419B

What Is Chipmunk? .420B

Chipmunk versus Box2D 420B

Getting Started with Chipmunk 421B

Adding Chipmunk into Your Project 426B

Creating a Basic Chipmunk Scene 429B

Adding Sprites and Making Them Move 438B

Jumping by Directly Setting Velocity 444B

xviii Contents

Ground Movement by Setting Surface
Velocity .445B

Detecting Collisions with the Ground445B

Chipmunk Arbiter and Normals 446B

Implementation—Collision Detection446B

Implementation—Movement and Jumping 450B

Chipmunk and Constraints 455B

Revolving Platforms .458B

Pivot, Spring, and Normal Platforms 460B

The Great Escape! .467B

Following Ole .467B

Laying Out the Platforms 468B

Animating Ole .469B

Music and Sound Effects 473B

Adding the Background474B

Adding Win/Lose Conditions476B

Summary .477B

Challenges .477B

V Particle Systems, Game Center,
and Performance .479B

14 Particle Systems: Creating Fire, Snow,
Ice, and More .481B

Built-In Particle Systems 482B

Running the Built-In Particle Systems 482B

Making It Snow in the Desert 483B

Getting Started with Particle Designer 485B

A Quick Tour of Particle Designer 486B

Creating and Adding a Particle System to
Space Viking .489B

Adding the Engine Exhaust to Space Viking . . .490B

Summary .494B

Challenges .494B

15 Achievements and Leaderboards with
Game Center .495B

What Is Game Center? .495B

Why Use Game Center? 497B

xixContents

Enabling Game Center for Your App 497B

Obtain an iOS Developer Program Account497B

Create an App ID for Your App 498B

Register Your App in iTunes Connect 501B

Enable Game Center Support 505B

Game Center Authentication 506B

Make Sure Game Center Is Available 506B

Try to Authenticate the Player 507B

Keep Informed If Authentication Status
Changes .508B

The Implementation .508B

Setting Up Achievements 515B

Adding Achievements into iTunes Connect 515B

How Achievements Work 517B

Implementing Achievements 518B

Creating a Game State Class 519B

Creating Helper Functions to Load and
Save Data .522B

Modifying GCHelper to Send Achievements . . .524B

Using GameState and GCHelper in
SpaceViking .530B

Displaying Achievements within the App 534B

Setting Up and Implementing Leaderboards 536B

Setting up Leaderboards in iTunes Connect . . .536B

How Leaderboards Work538B

Implementing Leaderboards 539B

Displaying Leaderboards in-Game 540B

Summary .543B

Challenges .543B

16 Performance Optimizations 545B

CCSprite versus CCSpriteBatchNode 545B

Testing the Performance Difference 550B

Tips for Textures and Texture Atlases 551B

Reusing CCSprites .552B

Profiling within Cocos2D 554B

Using Instruments to Find Performance
Bottlenecks .557B

xx Contents

Time Profiler .558B

OpenGL Driver Instrument 560B

Summary .563B

Challenges .563B

17 Conclusion .565B

Where to Go from Here .567B

Android and Beyond .567B

Final Thoughts .568B

A Principal Classes of Cocos2D 569B

Index .571B

Learning iOS
Game

Programming

Praise for
Learning iOS Game Programming

“An excellent introduction into the world of game development explaining every aspect
of game design and implementation for the iPad, iPhone, and iPod touch devices.
A great way for anyone interested in writing games to get started.”

—Tom Bradley, Software Architect, Designer of TBXML

“A great developer and a great game.That’s everything you can find in this book to
learn how to write an awesome game for iPhone. Maybe you’re the next AppStore hit!”

—Sebastien Cardoso

“With Learning iOS Game Programming, you’ll be writing your own games in no time.
The code included is well explained and will save you hours of looking up obscure stuff
in the documentation and online forums.”

—Pablo Gomez Basanta, Founder, Shifting Mind

“I always thought that to teach others one has to be an expert and a person with an
established reputation in the field. Michael Daley proved me wrong. He is teaching oth-
ers while studying himself. Michael’s passion in teaching and studying, ease of solutions
to problems, and a complete game as a resulting project makes this book one of the best
I have ever read.”

—Eugene Snyetilov

“If you’re interested in 2D game programming with the iOS using OpenGL and OpenAL
directly, this book walks you through creating a complete and fun game without getting
bogged down in technical details.”

—Scott D.Yelich

“Michael Daley brings clarity to the haze of iPhone application development. Concrete
examples, thorough explanation, and timesaving tips make this book a must have for the
up and coming iPhone game developer.”

—Brandon Middleton, Creator of Tic Tac Toe Ten

“This is the A-Z guide to iOS game development; Michael’s book takes you from the
basics and terminology to using the techniques in practice on a fully working game.
Before you know it, you will find yourself writing your own game, fueled by a firm
grasp of the principles and techniques learned within. I could not ask for a better refer-
ence in developing our own games.”

—Rod Strougo, Founder Prop Group

Learning iOS
Game

Programming

Michael Daley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress cataloging-in-publication data is on file.

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-69942-8
ISBN-10: 0-321-69942-4
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing September 2010

Senior Acquisitions
Editor
Chuck Toporek

Senior
Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editors
Barbara Campbell
and Jovana
San Nicolas-Shirley

Copy Editor
Water Crest
Publishing

Indexer
Lisa Stumpf

Proofreader
Sheri Cain

Publishing
Coordinator
Romny French

Cover Designer
Chuti Prasertsith

❖

Dedicated to my mum, Jen

❖

Acknowledgments
Writing this book has been an amazing journey, and it’s only through the efforts of
many other people that you are reading this today.Without these people, I don’t believe
the book would have even been published, let alone become the valuable resource I
believe it to be. For this reason, I would like to acknowledge those people who have
supported me on this journey:

n First of all, I’d like to thank my editor at Addison-Wesley, Chuck Toporek, and his
faithful sidekick/editorial assistant, Romny French. Chuck stumbled upon the
video tutorials on my blog and encouraged me to write this book based on what
he saw there.Along the way, Romny helped keep things moving, chased/support-
ed me in getting my tax information in place so I could get paid, and helped us
deliver the book to production.Without their support, guidance, and encourage-
ment, I would never have been able to make the leap from game development
blogger to author.

n John Bloomfield is a professional web designer and is responsible for the design
and administration of the 71Squared.com blog.Without his great work on the
blog, Chuck would never have seen my tutorials, and the opportunity to write this
book may never have arisen. John is also my oldest and closest friend, and even
though he is now living on the other side of the world in Australia, it didn’t stop
him from supporting and contributing to this project.

n Tom Bradley, a good friend, talented developer, and creator of TBXML,1 spent
many hours working with me, even into the early hours of the morning, helping
me track down bugs and improve performance.Tom’s support helped me through
some sticky moments in the development of Sir Lamorak’s Quest and was instru-
mental in getting the game finished on time.

n Ryan Sumo is a freelance video game artist residing in Manila,The Philippines. He
created all the artwork used in Sir Lamorak’s Quest that gives the game its retro
look. He is a true professional and a pleasure to work with. His rapid delivery of
art and great feedback and suggestions really helped give the game its great look.
If you ever run into Ryan in Manila and show him a copy of this book, he is
sure to buy you a drink. Examples of Ryan’s work can be found at
ryansumo.carbonmade.com.

n Vince Webb is an award-winning composer currently enrolled on an undergradu-
ate music course in London and is the creator of the music and sound effects used
in Sir Lamorak’s Quest. His ability to create an atmosphere with his music really
took Sir Lamorak’s Quest to a new level.Vince is currently working on a number of
projects, and more information about him and his work can be found at
www.vincewebb.com.Vince is a real talent, and I’m pleased to have had the
opportunity to work with him.

www.vincewebb.com

n Games such as Sir Lamorak’s Quest need a lot of testing, and through my
71Squared.co.uk blog, I was able to get help from a great team of beta testers.
These testers were all followers of the iPhone game development tutorials on the
blog and provided fantastic feedback and suggestions.This feedback really helped
polish the final product. Details of all those involved can be found in the credits in
Sir Lamorak’s Quest:The Spell of Release game.

n Saving the best for last, I want to thank my family. Developing Sir Lamorak’s Quest
and writing this book have taken a considerable amount of time.Throughout this
period, my wife,Alison, and fantastic children, Caragh,Alex, and Matthew, have
had to deal with me being locked away for hours and days at a time.Without their
patience, love, and support, I would still be hunting for the game-development
book of my dreams.

I certainly hope that you find this book to be the useful resource I believe it is, and I
would appreciate any suggestions or feedback you have.

—Michael Daley
mike@71squared.com

About the Author
By day, Michael Daley works for the largest enterprise software company in the world
supporting large corporate customers in communications. By night, Michael has taken
on the task of learning how to build games for the iPhone. Michael started writing
adventure games in BASIC on a Sinclair Spectrum 48k and progressed onto the
Commodore 64 and the Amiga A500. Never having lost a passion for game program-
ming, Michael got inspired to learn Objective-C when the iPhone came out, and he set
out to learn how to build games for the iPhone.

Having written many games for his children over the years, the launch of the iPhone
inspired him to create games for the platform that would be available to more than his
children. Michael has a passion for learning new technologies and how to apply them.
He’s a true Apple fan, spending far too much time and money on the latest Apple
equipment.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re willing
to pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: chuck.toporek@pearson.com

Mail: Chuck Toporek
Senior Acquisitions Editor,Addison-Wesley
Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116 USA

Reader Services
Visit our website and register this book at www.samspublishing.com/register for conven-
ient access to any updates, downloads, or errata that might be available for this book.

www.samspublishing.com/register

Preface

Writing a game can be a daunting task. Even if you’re an experienced programmer,
the design patterns, terminology, and thought processes can seem strange and unusual.
Having spent most of my working life creating business applications, writing games has
been a hobby that has seen me create many games my children have played and enjoyed
over the years.With the release of the iPhone and iPod touch, it was time to unleash one
of my creations on the world.

My first task was to find a good book on developing games on the iPhone.After a lot
of research, I decided that the book I wanted just didn’t exist, and having had great feed-
back on a number of online tutorials I had created, I decided to write my own book.
This was a perfect opportunity for me to create the game programming book I’ve always
wanted myself.

Over the years, I’ve read many game development books and have been left wanting.
Although they provide information on the individual components required to make a
game and include small examples, they never go all the way to creating a complete game
good enough to publish. I’ve always believed that a good book should both tell the read-
er what is required to make a game but also demonstrate how those components can be
implemented inside a complete game project.

x Preface

Download the Game!
You can download Sir Lamorak’s Quest from the App Store:
http://itunes.apple.com/us/app/sir-lamoraks-quest-the-
spell/id368507448?mt=8. The game is freely available, so go ahead and download the
game, start playing around with it, and help Sir Lamorak escape from the castle!

So, this book not only describes the components and technology needed to create a
game on the iPhone, but it does so through the creation of a complete game: Sir
Lamorak’s Quest:The Spell of Release.This game is currently available for free download
from the App Store, and is the game you learn how to build as you work your way
through this book.

This book describes the key components needed to create this 2D game. It covers both
the technology, such as OpenGL ES and OpenAL, as well as the key game engine com-
ponents required, including sprite sheets, animation, touch input, and sound.

http://itunes.apple.com/us/app/sir-lamoraks-quest-the-spell/id368507448?mt=8
http://itunes.apple.com/us/app/sir-lamoraks-quest-the-spell/id368507448?mt=8

Each chapter describes in detail a specific component within the game, along with
the technology required to support it, be it a tile map editor, or some effect we’re trying
to create with OpenGL ES. Once an introduction to the functionality and technology is
complete, the chapter then provides details on how the component has been implement-
ed within Sir Lamorak’s Quest.This combination of theory and real-world implementa-
tion helps to fill the void left by other game development books.

About Sir Lamorak’s Quest
My game-playing experiences started when I was given a Sinclair Spectrum 48k for
Christmas in 1982. I was hooked from that moment, and I have had a close relationship
with computers ever since.

While thinking about the game I wanted to develop for this book, my mind kept
wandering back to the games I played in the 1980s.They may not have been visually
stunning, although at the time I was impressed, but they were fun to play.

I spent some time working on the design of the game, which included not only the
features I wanted in the game, but also how it should be implemented on the iPhone.
One key aspect of the game is that it should be casual—that is, the concept of the game
should be simple and easy to pick up, and players should be able to start and stop the
game easily without losing their progress.

I also wanted the controls to be easily recognizable and therefore decided to imple-
ment an onscreen joypad to control the main character. It was important, though, to
allow the player to swap the position of this joypad so that both left- and right-handed
players found the game comfortable.

As for the game play itself, I decided to take a number of design ideas from games I
played in the ‘80s and went with a top-down scroller, in which the player is trapped in a
haunted castle and has to find a magic spell so that he can escape.

Organization of This Book
There are 16 chapters in the book, each of which deals with a specific area of creating
Sir Lamorak’s Quest, as follows:

n Chapter 1,“Game Design”—This chapter describes the design considerations I
made while designing Sir Lamorak’s Quest. It provides an insight into the kind of
thought process required when sitting down to create a game. It doesn’t cover every
possible design decision needed for all genres of games, but it does cover the
important ones.

n Chapter 2,“The Three Ts:Terminology,Technology, and Tools”—Even experienced pro-
grammers can become confused by the three Ts used within game development.

xiPreface

This chapter runs through the common technology, terminology, and tools used to
create Sir Lamorak’s Quest and games in general.This chapter helps you understand
the terms and technology covered throughout the book.

n Chapter 3,“The Journey Begins”—This is where we start to get our hands on some
code and get the iPhone to render something to the screen.This chapter covers
the process of creating our first project using the OpenGL ES template project
within Xcode.The template is described in detail and sets the scene for the chap-
ters that follow.

n Chapter 4,“The Game Loop”—The heartbeat of any game is the game loop.This
loop is responsible for making sure that all the core elements of the game, such as
AI and rendering, are done at the right time and in the right order.This may
sound simple, but there are a number of different approaches to the game loop, and
this chapter discusses them and details the approach taken for Sir Lamorak’s Quest.

n Chapter 5,“Image Rendering”—Drawing images to the screen is a fundamental
requirement for any game.This chapter provides an overview of OpenGL ES and
runs through a number of classes created to simplify the creation and rendering of
images to the screen.

n Chapter 6,“Sprite Sheets”—Sprite sheets are images that contain a number of small-
er images.These sheets can be used to reduce the number of individual images
held in memory and the number of different textures OpenGL ES needs to bind
to improving performance.They are also commonly used when creating animated
sprites.This chapter covers how to create sprite sheets that contain the images used
in the game, regardless of whether they have fixed or variable dimensions.

n Chapter 7,“Animation”—Having created the means to store the different frames
needed in an animation using sprite sheets, this chapter describes how separate
images can be played in sequence to provide you with animation, such as the play-
er character running.

n Chapter 8,“Bitmap Fonts”—The most common way to interact with your game’s
user is through the use of text. Being able to render instructions and information
(such as the player’s score or instructions on how to use the game) is important.
This chapter describes how you can use open source tools to take any font and
turn it into a bitmap font. Once the bitmap font is created, you’ll see how to cre-
ate a sprite sheet that contains all the images needed to render the characters in
that font. It also details the Bitmap font class used in Sir Lamorak’s Quest, which
provides a simple API for rendering text to the screen.

n Chapter 9,“Tile Maps”—Tile maps allow large game worlds to be created from
reusing a small number of tile images.This common approach has been used in the
past to create large game worlds (think of the original Super Mario Brothers game

xii Preface

for Nintendo) when memory is limited, back in the early days of home game sys-
tems.This technique is still popular today, and this chapter describes the use of an
open source tile-editing tool to create tile maps, along with a class that can render
these maps to the screen.

n Chapter 10,“The Particle Emitter”—Many games have impressive effects, such as
fire, explosions, smoke, and sparks.These are created using a particle system.The
particle system is responsible for creating and controlling a number of particles;
each has its own properties, such as size, shape, direction, color, and lifespan.
During a particle’s life cycle, its position, speed, color, and size are changed based
on the particle’s configuration.This chapter details how to create a particle system
that can be used to generate any number of organic effects.

n Chapter 11,“Sound”—Giving the player feedback using sound is important in
today’s modern games.This chapter describes how the media player functionality
of the iPhone, along with OpenAL, can be used to play a cool soundtrack in the
game, as well as 3D (surround) sound effects.

n Chapter 12,“User Input”—This chapter describes how to use the iPhone’s unique
touch and accelerometer capabilities to control your game. It details how to cap-
ture and process multiple touches at the same time and also how data from the
accelerometer can be used within your own games.

n Chapter 13,“The Game Interface”—In this chapter, we start to look at how the
game interface for Sir Lamorak’s Quest was implemented.This includes how to deal
rotation events to make sure that the user interface is always oriented correctly. It
also describes how to mix both OpenGL ES and UIKit interface controls.

n Chapter 14,“Game Objects and Entities”—As the player runs around the castle in Sir
Lamorak’s Quest, we want him to be able to find objects, pick them up, and fight
baddies.This chapter describes how objects and entities have been implemented
within Sir Lamorak’s Quest.

n Chapter 15,“Collision Detection”—Having the player and baddies run through walls
and doors would really spoil the game, so it’s important to be able to register colli-
sions between either the player and the map or objects and entities within the cas-
tle.This chapter describes different types of collision detection and how this has
been implemented within Sir Lamorak’s Quest.

n Chapter 16,“Pulling It All Together”—At this point, a great deal of ground has been
covered.There is, however, a number of things you can do to the game to add pol-
ish.This chapter covers how to save the player’s game state for when he quits or
leaves the game when he has an incoming call. Chapter 16 also covers perform-
ance tuning using instruments and tips for getting your game beta tested.

xiiiPreface

Audience for This Book
This book has been written for people who are already programmers but who have
never written computer games before.Although it assumes that you already have
some experience with Objective-C, each chapter provides enough information on
both Objective-C and other technologies so you can follow the concepts and
implementations.

By the time you complete this book, you will have an in-depth understanding of the
game engine that was built for Sir Lamorak’s Quest and the key capabilities and consider-
ations are needed to create a 2D game engine.This enables you to take the same game
engine developed in this book and use it in your own games, or simply use the knowl-
edge you have gained about creating games in general and use one of the many game
engines available for the iPhone, such as Cocos2D.

Who This Book Is For
If you are already developing applications for the iPhone for other platforms, but want to
make a move from utility applications to games, this book is for you. It builds on the
development knowledge you already have and leads you into game development by
describing the terminology, technology, and tools required, as well as providing real-
world implementation examples.

Who This Book Isn’t For
If you already have a grasp of the workflow required to create a game or you have a
firm game idea that you know requires OpenGL ES for 3D graphics, this is not the
book for you.

It is expected that before you read this book, you are already familiar with Objective-
C, C, Xcode, and Interface Builder.Although the implementations described in this
book have been kept as simple as possible and the use of C is limited, a firm foundation
in these languages is required.

The following titles can help provide you with the grounding you need to work
through this book:

n Cocoa Programming for Mac OS X,Third Edition, by Aaron Hillegass (Addison-
Wesley, 2008).

n Learning Objective-C 2.0, by Robert Clair (Addison-Wesley, 2011).
n Programming in Objective-C 2.0, by Stephen G. Kochan (Addison-Wesley, 2009).
n Cocoa Design Patterns, by Erik M. Buck and Donald A.Yacktman (Addison-Wesley,

2009).

xiv Preface

n The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley,
2010).

n Core Animation: Simplified Animation Techniques for Mac and iPhone Development, by
Marcus Zarra and Matt Long (Addison-Wesley, 2010).

n iPhone Programming:The Big Nerd Ranch Guide, by Aaron Hillegass and Joe Conway
(Big Nerd Ranch, Inc., 2010).

These books, along with other resources you’ll find on the web, will help you learn
more about how to program for the Mac and iPhone, giving you a deeper knowledge
about the Objective-C language and the Cocoa frameworks.

Download the Source Code
Access to information is not only limited to the book.The complete, fully commented
source code to Sir Lamorak’s Quest is also available for download on InformIT.com.

There is plenty of code to review throughout this book, along with exercises for you
to try out, so it is assumed you have access to the Apple developer tools, such as Xcode
and the iPhone SDK. Both of these can be downloaded from the Apple iPhone Dev
Center.2

2 Apple’s iPhone DevCenter: developer.apple.com/iphone.

xvPreface

This page intentionally left blank

6
Sprite Sheets

Chapter 5,“Image Rendering,” was large and covered a number of complex concepts.
Having done all that hard work, and with the classes in place for representing and render-
ing images, we can move on to the other components needed in the game engine for Sir
Lamorak’s Quest.

As the title suggests, this chapter is all about sprite sheets. If you remember from
Chapter 2,“The Three Ts:Terminology,Technology, and Tools,” a sprite sheet is a large im-
age that contains a number of smaller images.

There are two key benefits to using sprite sheet, as follows:

n You reduce the number of times you need to ask OpenGL ES to bind to a new
texture, which helps with performance.

n You gain the ability to easily define and reuse image elements of the game, even in
animations.

This chapter reviews the SpriteSheet and PackedSpriteSheet classes and shows how to
extract specific images from within a larger image sprite sheet.

Introduction to Sprite Sheets
As mentioned in Chapter 2, there are two different types of sprite sheets, as follows:

n Basic, where all the images in the sprite sheet have the same dimensions.
n Complex, where the images in the sprite sheet could all have different dimensions.

For Sir Lamorak’s Quest, we are going to be using both kinds of sprite sheets.Although it
is possible to merge both the simple and complex sprite sheet functionality into a single
class, I have split them into two different classes to make things easier to understand. Basic
sprite sheets are handled in a class called SpriteSheet, whereas the PackedSpriteSheet
class handles complex sprite sheets.

138A Chapter 6 Sprite Sheets

Figure 6.1 Sprite sheet with spacing between each
sprite.

Note
I use the term packed because you can place smaller sprite sheets within this larger sprite
sheet, thus reducing the number of separate sprite sheets used in the game.

Another term for a sprite sheet is a texture atlas, but I will continue to use the old-school
term of “sprite sheet” throughout this book.

Simple Sprite Sheet
The SpriteSheet class takes the image provided and chops it up into equally sized sub-
images (sprites).The dimensions to be used when dividing up the sprite sheet will be pro-
vided when a new sprite sheet is instantiated. Information is also provided about any
spacing that has been used within the provided sprite sheet image. Spacing is an important
property within a sprite sheet.Without going into detail, when defining texture coordi-
nates within an image for OpenGL ES, it is possible to sample a pixel beyond the edge of
the texture you are defining.This can cause your textures to have an unwanted border that
is made up of pixels from the image around the image defined with your texture coordi-
nates.This is known as texture bleeding.

To reduce the risk of this happening, you can place a transparent border around each
image within a sprite sheet. If OpenGL ES then goes beyond the edge of your texture, it
will only sample a transparent pixel, and this should not interfere with the sprite you have
defined. Zwoptex1 enable you to specify the number of pixels you would like to use as a
border around your sprites. Figure 6.1 shows a simple sprite sheet image with single pixel
border between each sub-image. If you are drawing non-square triangles, the spacing may
need to be more than one pixel to help eliminate texture bleeding.

In terms of how we are going to access the sprites on a simple sprite sheet, we’re going to
use its grid location.A simple sprite sheet makes a nice grid because all the images are the

1 Zwoptex (www.zwoptexapp.com/flashversion/) is a Flash-based sprite sheet builder. There is also

a Cocoa-based version of this tool available. This Cocoa version generates output the same as the

flash version, but was not available during the writing of this book.

www.zwoptexapp.com/flashversion/

139AIntroduction to Sprite Sheets

Figure 6.2 Sprite sheet grid with location {5, 1}
highlighted.

Figure 6.3 Complex sprite sheet from Sir Lamorak’s Quest.

same size.This makes it easy to retrieve a sprite by providing its row and column number.
Figure 6.2 shows a sprite sheet of twelve columns and three rows with the sprite at loca-
tion {5, 1} highlighted.

Complex Sprite Sheets
The PackedSpriteSheet class takes an image and the name of the control file.The control
file is parsed to obtain the location and size of every sprite within the sprite sheet image.

The control file is the key difference between a basic (SpriteSheet) and complex
(PackedSpriteSheet) sprite sheet.With the basic sprite sheet, you can work out where
each sprite is by performing a simple calculation using its grid position.This is harder to
do with a complex sprite sheet because the sprites can be different sizes and are often
placed randomly throughout the image to make the best use of space.

To help identify the coordinates of the sprites in a complex sprite sheet, the control file
provides information on where each sprite is located inside the sprite sheet, along with its
dimensions.The control file also gives each image a key, usually the name of the image file
of the original sub-image, which then allows the PackedSpriteSheet class to reference
each sprite. Figure 6.3 shows the complex sprite sheet that we use in Sir Lamorak’s Quest.

140A Chapter 6 Sprite Sheets

Figure 6.4 The Flash-based Zwoptex tool, used for editing a complex
sprite sheet.

As you can see from Figure 6.3, a complex sprite sheet has many images that are all dif-
ferent sizes and shapes—thus the need for a control file to make sense of it all.

You could create your own control file for these files, providing the information on the
pixel locations within the image and its dimensions, but to be honest, that is a really te-
dious job. Luckily for us, there are tools that can help.

The Zwoptex tool (mentioned earlier, and discussed in Chapter 2) is one such tool. It
not only produces a PNG image of the generated sprite sheet, but it also creates the con-
trol file you need to identify the individual images within.

Zwoptex has a number of different algorithms that can help pack images, but it also
enables you to move the images around, making it possible for you to pack as many im-
ages as possible into a single sheet.There are some good algorithms out there for optimiz-
ing the packing of variably sized images, but you’ll always get the best results doing this
manually.

Figure 6.4 shows the flash version of Zwoptex editing the complex sprite sheet.

Zwoptex has three different outputs, as follows:

n A project file that stores your settings and images for a particular sprite sheet
n A PNG image of the sprite sheet
n A plist control file, which you can add to your game

The thing I like the most about Zwoptex is that it gave me the control file as a plist file.
Although you can obviously handle raw XML if needed (or any other format, for that

141AUsing Zwoptex

Figure 6.5 Import images into the sprite sheet.

Figure 6.6 Zwoptex imports the images in the
top-left corner of the canvas.

matter), having a plist file makes things so much easier (and I like to take the easy route
whenever possible).

Now that you know what Zwoptex is, let’s show you how to use it.

Using Zwoptex
Using Zwoptex is really easy. Just point your browser to www.zwoptexapp.com/
flashversion/. Once there, Zwoptex opens, and you can start creating your sprite sheet.

The first step is to import images. Start by going to the menu File > Import Images
(see Figure 6.5), and you see an Open File panel for you to navigate to the file(s) you
want to import.

After you select your images, hit the Select button to load the images into Zwoptex.All
the images you’ve selected will be placed at the top-left corner of the screen, as shown in
Figure 6.6.

www.zwoptexapp.com/flashversion/
www.zwoptexapp.com/flashversion/

142A Chapter 6 Sprite Sheets

Figure 6.7 Sprite options menu and arranged sprites.

Now that you’ve placed the images in Zwoptex, there are a number of ways to arrange
the sprites on the canvas. Under the Arrange menu, you will find different options for
laying out the sprites. Figure 6.7 shows the sprites having been laid out using the
Complex By Width (no spacing) option.

You can do this manually by clicking any sprite and moving it to the position you want.
You can also use the Modify menu to change the size of the canvas to fit your needs.

By default, Zwoptex trims transparent edges from the imported images.This can be a
problem, however, if the image you imported will be used as a simple sprite sheet.These
images need to retain their original dimensions or the calculations used to define the posi-
tion of each sprite will be incorrect.

Within the Modify menu is the option to Untrim Selected Images.This should be
used to ensure that the images are returned to their original size.This is not necessary if
the image won’t be used as a sprite sheet.

Having arranged your sprites, you can then export both the image (texture) and the
control file (coordinates).There are two options within the File menu that let you do this:
Export Texture and Export Coordinates. Both options enable you to select the loca-
tion where you would like the file(s) saved.

That’s it! You now have a sprite sheet image file and its accompanying control file.

The SpriteSheet Class
Having looked at the basics of a sprite sheet, we can now look at our implementation of
the SpriteSheet class. In Xcode, open the CH06_SLQTSOR project and look inside the
Game Engine group.You will see a new group called Sprite Sheet, inside of which are the
SpriteSheet classes header and implementation files.

143AThe SpriteSheet Class

Initialization
Inside the SpriteSheet.m file, you find the following class methods:

n spriteSheetForImageNamed:spriteSize:spacing:margin: imageFilter

n spriteSheetForImage:sheetKey:spriteSize:spacing:margin:

These methods are used to create new sprite sheets either from an image file or from an
Image instance that has already been created. Notice that both of these are class methods.
This means you don’t need an instance of the SpriteSheet class to access them. Having
also defined a static NSDictionary within the class, you can use these class methods to ac-
cess the dictionary information that only has a single instance.

The idea is that a sprite sheet is cached when it is created.Whenever a new sprite
sheet that either uses the same image file or key is requested, a reference to the sprite
sheet already created is returned.This helps with performance when you have a large
number of entities that share the same sprite sheet (for example, the Door class, which you
will see soon).

These class methods still make use of the standard initializer methods; they just cache
the sprite sheet returned by these methods for later use. Listing 6.1 shows the
spriteSheetForImageNamed:spriteSize:spacing:margin:imageFilter: method.

Listing 6.1 The spriteSheetForImageNamed:spriteSize:spacing:margin:imageFilter:
Method

static NSMutableDictionary *cachedSpriteSheets = nil;

+ (SpriteSheet*)spriteSheetForImageNamed:(NSString*)aImageName

spriteSize:(CGSize)aSpriteSize spacing:(NSUInteger)aSpacing

margin:(NSUInteger)aMargin imageFilter:(GLenum)aFilter {

SpriteSheet *cachedSpriteSheet;

if (!cachedSpriteSheets)

cachedSpriteSheets = [[NSMutableDictionary alloc] init];

if(cachedSpriteSheet = [cachedSpriteSheets objectForKey:aImageName])

return cachedSpriteSheet;

cachedSpriteSheet = [[SpriteSheet alloc]

initWithImageNamed:aImageName spriteSize:aSpriteSize

spacing:aSpacing margin:aMargin imageFilter:aFilter];

[cachedSpriteSheets setObject:cachedSpriteSheet forKey:aImageName];

[cachedSpriteSheet release];

return cachedSpriteSheet;

}

144A Chapter 6 Sprite Sheets

The first line in Listing 6.1 defines a static NSMutableDictionary.This creates a single in-
stance of NSMutableDictionary that the class methods use to cache the sprite sheets.This
dictionary has been defined at the class level, which means that only a single copy of this
dictionary will exist, regardless of how many SpriteSheet instances are created.This pro-
vides us with a single cache of the sprite sheets.

The rest of the class simply checks to see if an entry already exists in the dictionary for
an image name passed in (using spriteSheetForImageNamed). If the other method passes
in a ready-made image, the sheetKey provided is used.

If no match is found, a new sprite sheet is created and added to the dictionary. Other-
wise, the matching entry from the dictionary is passed back to the caller.

The initializer used when an image name is provided is shown in Listing 6.2.

Listing 6.2 SpriteSheet initWithImageNamed:spriteSize:spacing:margin:imageFilter
Method

- (id)initWithImageNamed:(NSString*)aImageFileName

spriteSize:(CGSize)aSpriteSize spacing:(NSUInteger)aSpacing

margin:(NSUInteger)aMargin imageFilter:(GLenum)aFilter {

if (self = [super init]) {

NSString *fileName = [[aImageFileName lastPathComponent]

stringByDeletingPathExtension];

self.image = [[Image alloc]

initWithImageNamed:filename filter:aFilter];

spriteSize = aSpriteSize;

spacing = aSpacing;

margin = 0;

[self cacheSprites];

}

return self;

}

The start of the initializer method is standard, and we have seen it many times already.The
first interesting action comes when we create an image instance of the image used as the
sprite sheet.

We are using the Image class that we created in the last chapter, passing in the image
name that has been provided along with the image filter.

Next, the sprite’s size, spacing, and margin are defined.At this point, we branch off and
call a private method, called cacheSprites, which caches the information for each sprite
in this sprite sheet. Calculating this information only once is important to help perform-
ance.This information should never change during the lifetime of a sprite sheet, so there
is no need to calculate each time we request a particular sprite.

145AThe SpriteSheet Class

We examine the cacheSprites method in a moment; first, there is another initializer
method to look at, as shown in Listing 6.3.

Listing 6.3 SpriteSheet initWithImage:spriteSize:spacing:margin Method

- (id)initWithImage:(Image*)aImage spriteSize:(CGSize)aSpriteSize

spacing:(NSUInteger)aSpacing margin:(NSUInteger)aMargin{

if (self = [super init]) {

self.image = aImage;

spriteSize = aSpriteSize;

spacing = aSpacing;

margin = aMargin;

[self cacheSprites];

}

return self;

}

The previous initializer took the name of an image file and created the image as part of
creating the sprite sheet.This second initializer takes an image that’s already been created.
Not only is it useful to create a sprite sheet using an image instance that already exists, but
it is also the method that’s used when we create a sprite sheet from an image held in a
complex (or packed) sprite sheet.

The only difference in this initializer from the last is that we set the sprite sheet’s image
to reference the Image instance that has been passed in.This method still calls the
cacheSprites method, and that’s the next method we discuss.

The cacheSprites method (shown in Listing 6.4) is a private method, as we only use
it internally in the SpriteSheet class.

Listing 6.4 SpriteSheet cacheSprites Method

- (void)cacheSprites {

horizSpriteCount = ((image.imageSize.width + spacing) + margin) /

((spriteSize.width + spacing) + margin);

vertSpriteCount = ((image.imageSize.height + spacing) + margin) /

((spriteSize.height + spacing) + margin);

cachedSprites = [[NSMutableArray alloc] init];

CGPoint textureOffset;

for(uint row=0; row < vertSpriteCount; row++) {

for(uint column=0; column < horizSpriteCount; column++) {

CGPoint texturePoint = CGPointMake((column *

146A Chapter 6 Sprite Sheets

(spriteSize.width + spacing) + margin),

(row * (spriteSize.height + spacing) + margin));

textureOffset.x = image.textureOffset.x *

image.fullTextureSize.width + texturePoint.x;

textureOffset.y = image.textureOffset.y *

image.fullTextureSize.height + texturePoint.y;

CGRect tileImageRect = CGRectMake(textureOffset.x,

textureOffset.y, spriteSize.width, spriteSize.height);

Image *tileImage = [[image subImageInRect:tileImageRect]

retain];

[cachedSprites addObject:tileImage];

[tileImage release];

}

}

}

The first two calculations work out how many sprites there are in the sprite image, and a
new NSMutableArray is created.This array holds Image instances created for each image
in the sprite sheet.Again, creating the images at this stage and caching them improves per-
formance.This is not an activity you want to be performing in the middle of game play.

With the array created, we then loop through each row and column, creating a new
image for each sprite.We use the information we have about the sprite sheet, such as size,
spacing, and margin, to calculate where within the sprite sheet image each sprite will be.
With this information, we are now able to use the subImageInRect method of the Image
class to create a new image that represents just the sub-image defined.

Retrieving Sprites
Having set up the sprites on the sprite sheet, the next key activity is to retrieve sprites.We
have already discussed that one of the key tasks of the SpriteSheet class is to return an
Image class instance configured to render a single sprite from the sprite sheet, based on the
grid location of the sprite.

The spriteImageAtCoords: method shown in Listing 6.5 implements the core mech-
anism for being able to retrieve a sprite.

Listing 6.5 SpriteSheet spriteImageAtCoords: Method

- (Image*)spriteImageAtCoords:(CGPoint)aPoint {

if(aPoint.x > horizSpriteCount-1 || aPoint.y < 0 || aPoint.y >

vertSpriteCount-1 ||

aPoint.y < 0)

147APackedSpriteSheet Class

return nil;

int index = (horizSpriteCount * aPoint.y) + aPoint.x;

return [cachedSprites objectAtIndex:index];

}

The first check we carry out in this class is on the coordinates that are being passed in.
This method takes the coordinates for the sprite in a CGPoint variable. CGPoint has an x
and y value that can be used to specify the grid coordinates in the sprite sheet.

When we know that the coordinates are within the sprite sheet, we use the coordinates
of the sprite to calculate its location within the NSMutableArray. It’s then a simple task of
retrieving the image from that index and passing it back to the caller

That’s it for this class. It’s not that long or complex, but it does provide an important
building block within our game engine.

PackedSpriteSheet Class
As mentioned earlier, the PackedSpriteSheet class is responsible for dealing with com-
plex sprite sheets.These sprite sheets contain many variably sized images to which we
want to get access.This often includes other sprite sheets.This class can be found in the
same group within the CH06_SLQTSOR project, as before.

Initialization
This class uses the same caching technique as the SpriteSheet class.There is, however,
only one initializer, which is shown in Listing 6.6.

Listing 6.6 PackedSpriteSheet initWithImageNamed:controlFile:filter Method

- (id)initWithImageNamed:(NSString*)aImageFileName
controlFile:(NSString*)aControlFile

filter:(GLenum)aFilter {

if (self = [super init]) {

NSString *fileName = [[aImageFileName lastPathComponent]

stringByDeletingPathExtension];

image = [[[Image alloc] initWithImageNamed:fileName

filter:aFilter] retain];

sprites = [[NSMutableDictionary alloc] init];

controlFile = [[NSDictionary alloc]

initWithContentsOfFile:[[NSBundle mainBundle]

pathForResource:aControlFile ofType:@"plist"]];

148A Chapter 6 Sprite Sheets

[self parseControlFile:controlFile];

[controlFile release];

}

return self;

}

Once inside the initializer, we create a new Image instance from the details passed in and
allocate an NSMutableDictionary instance called sprites that will hold the details of the
sprites in our packed sprite sheet.

The last section of the initializer grabs the contents of the control file that were passed
in and loads it into an NSDictionary called controlFile. It is always assumed that the
type of file is a plist, so the file type is hard coded.After we have the controlFile diction-
ary populated, we then parse the information inside that dictionary using the private
parseControlFile method shown in Listing 6.7.

Listing 6.7 PackedSpriteSheet parseControlFile: Method

- (void)parseControlFile:(NSDictionary*)aControlFile {

NSDictionary *framesDictionary = [controlFile objectForKey:@"frames"];

for (NSString *frameDictionaryKey in framesDictionary) {

NSDictionary *frameDictionary = [framesDictionary

objectForKey:frameDictionaryKey];

float x = [[frameDictionary objectForKey:@"x"] floatValue];

float y = [[frameDictionary objectForKey:@"y"] floatValue];

float w = [[frameDictionary objectForKey:@"width"] floatValue];

float h = [[frameDictionary objectForKey:@"height"] floatValue];

Image *subImage = [image subImageInRect:CGRectMake(x, y, w, h)];

[sprites setObject:subImage forKey:frameDictionaryKey];

}

}

Parsing the Control File
The parseControlFile method creates a dictionary from all the frames objects within
the dictionary we passed in.There are several objects inside the plist file, as follows:

n Texture, which holds the dimensions of the texture.
n Frames, which hold objects keyed on the image’s filename for each image in the

sprite sheet.

149APackedSpriteSheet Class

Figure 6.8 Sprite sheet plist control file.

An example of the plist file inside the Plist Editor can be seen in Figure 6.8.

The details we want for the sprites are therefore held in the frame’s objects.
Now that we have a dictionary called frames, we loop through each of them, extract-

ing the information we need. For each frame we find, we assign another NSDictionary
that contains the objects for the key we are dealing with. Remember that the key is a
string that contains the name of the original image file that was embedded into the larger
sprite sheet.This makes it easy later on to reference the image we need.

Once we have the information for the frame, we then add a new object to our
sprites dictionary.The key is the name of the image file we have just read from the con-
trol file, and the object is an Image instance.

Getting a sub-image from the full sprite sheet image creates the Image instance.Again,
we are just making use of functionality we have already built.

This process is repeated for each image in the sprite sheet control file, and we end up
with a dictionary that contains an image representing each image in our packed sprite sheet.

Retrieving a Sprite
Having all our sprites in a dictionary now makes retrieving a sprite from our
PackedSpriteSheet very simple.This is done using the imageForKey method. Listing 6.8
shows this method.

Listing 6.8 PackedSpriteSheet imageForKey Method

- (Image*)imageForKey:(NSString*)aKey {

Image *spriteImage = [sprites objectForKey:aKey];

if (spriteImage) {

return [sprites objectForKey:aKey];

}

150A Chapter 6 Sprite Sheets

NSLog(@"ERROR - PackedSpriteSheet: Sprite could not be found for key

'%@'", aKey);

return nil;

}

We pass an NSString into this method containing the key to the sprite’s dictionary that
we created earlier. If you remember, the key is the filename of the image that was placed
inside the packed sprite sheet. If an image is found for the key supplied, a reference to this
image is returned. Otherwise, an error is logged, so we know that the sprite we wanted
could not be found.

Note
Notice that, in some methods, an error is raised using NSLog. This is handy when debug-
ging your game, but this is also a huge performance hog. To reduce the possibility of an
NSLog message being called in the production code, it would be worth only generating the
log messages when running in debug code.

Summary
In this chapter, we have reviewed the SpriteSheet and PackedSpriteSheet classes that
continue to build out our game engine for Sir Lamorak’s Quest.These classes enable us to
retrieve sub-images from within a specified image in a number of ways:

n SpriteSheet class: As a new Image instance based on a sprite’s grid location.
n PackedSpriteSheet class: As an Image reference based on a sprite’s key (for ex-

ample, the sub-image’s original filename).

These important classes enable us to not only manage the number of textures we need,
but also provide us with a mechanism for grabbing the images needed to create anima-
tion.

Classes such as Image, SpriteSheet, and PackedSpriteSheet are the building blocks
that form the backbone of our game engine. Being comfortable with how they work and
how they can be used enable you to get the most out of the game engine itself, as well as
a clearer view of how to implement your own games.Although the game engine we are
building for Sir Lamorak’s Quest is not suited to all types of games, it provides you with
the basis for any future games you want to develop.This enables you to take the game en-
gine in new directions as your needs and experience grow.

The next chapter covers animation. It’s not exactly Pixar Animation,2 but animation
nonetheless.

2 Pixar Animation is an award-winning computer animation studio responsible for feature films such

as Toy Story, Monsters, Inc., and Finding Nemo, among many others.

151AExercise

Exercise
The example project that is provided with this chapter, CH06_SLQTSOR, displays three
different images that have been taken from a single sprite sheet.These images are scaled,
rotated, and colored using the features of the Image class covered in Chapter 5 to show
that the Image instance returned is an entirely separate image in its own right.

The current project is using a couple of sprite sheets from Sir Lamorak’s Quest that
have been placed inside a complex sprite sheet.

Using this project as a guide, why not try to create your own basic sprite sheet or
download one from the Internet? Once you have your sprite sheet, create a complex
sprite sheet using Zwoptex and then render your sprites to the screen.

Here are the steps you need to follow:

1. Decide what fancy sprites you want to create.

2. Work out the dimensions each sprite is going to be (for example, 40×40 or
50×80) and any spacing you want to use.

3. Open up your favorite graphics package and draw your sprites, remembering to
keep each sprite in a square that has the dimensions you decided.

4. Export your sprite sheet as a PNG file.

5. Open up the Zwoptex link (www.zwoptexapp.com/flashversion/), and add
the sprite sheets that are included in the project along with your own.

6. Export the texture and coordinates from Zwoptex.

7. Add the two files you have just generated to the Xcode project.This can be
done by right-clicking the Images group inside the Game Resources group and
selecting Add > Add Existing File. Inside the panel that pops up, navigate to
the file and select it.You should also select the Copy option to make sure the
files are copied to the project folder.

8. Finally, follow the code example in the current project to import and start using
your sprite sheet.

9. Once you are rendering your sprites, try to apply some image functions, such as
scaling, rotation, and color.

www.zwoptexapp.com/flashversion/

This page intentionally left blank

Index

A
A*, 343A

AABB (Axis-Aligned Bounding Boxes),
360A-361A

abstract classes, 7A9A

AbstractEntity class, 339A

AbstractObject class, 327A-329A

AbstractObject Methods, 329A

AbstractScene, 92A-93A

accelerometer, 285A

accelerometer events, 296A-298A

adding

frames,Animation class, 157A-158A
images to render queue,

ImageRenderManager, 120A-123A
object layers to maps, 335A
particles, ParticleEmitter class,

243A-244A
scores, to high scores, 379A-380A
tile images, to layers, 199A-200A
tiles, to layers, 198A-199A

AI (artificial intelligence), 23A

game entities, 341A-343A
alBufferData, 276A

alBufferDataStaticProc, 276A

alertView:clickedButtonAtIndex:
method, 378A

alGenSources, 261A

AngelCode, 20A

angleOfMovement, 348A-349A

animation, 18A-19A

bounce frames, 155A-156A
direction, 155A
frames, 154A-155A
projects, 153A-154A
rendering with Animation class,

160A-161A
states, 155A
types, 155A
updates,Animation class, 158A-160A

Animation class, 156A

animation
rendering, 160A-161A
updates, 158A-160A

finishing things off, 161A-163A
frames, adding, 157A-158A
initialization, 156A-157A

animationFrameInterval, 55A

applicationWillTerminate, 43A

application delegates, 43A-44A

header files, examining, 44A-46A
implementation files, examining,

46A-49A
applicationDidBecomeActive, 43A

applicationDidFinishLaunching, 43A

applicationWillResignActive, 43A

arrays, vertex arrays, 104A

artificial intelligence (AI), 23A

game entities, 341A-343A
audio playback formats, 255A

audio sessions, 250A-251A

AudioServices, 273A

AVAudioPlayer, 255A

AVAudioSessionCategorySoloAmbient,
250A-251A

Axe class, 339A

Axis-Aligned Bounding Boxes (AABB),
360A-361A

B
beta testing, 390A-391A

feedback, 392A
multiple device types, 391A

binding, texture and setting parameters,
Texture2D, 113A-114A

bitmap fonts, 19A-20A, 165A-167A

C, 171A
initializer, 171A-172A
parsing control files, 172A-174A

projects, 165A
rendering text, deallocation, 181A
sprite sheets, creating, 167A-170A

BitmapFont class, 170A

header files, 170A-171A
bounce frames, animation, 155A-156A

boundaries, visualizing, 306A-308A

button bounds, defining, 304A

bitmap fonts, 171A
initializer, 171A-172A
parsing control files, 172A-174A

C
cachedTextures, 118A

CADisplayLink, 56A

CAEAGLLayer, 52A

calloc command, 157A

cameras, 369A-371A

CGPoint, 147A

CGRectContainsPoint function, 305A

char id, 174A

parsing, 175A-176A
cheating, AI (artificial intelligence), 342A

checkForCollisionWithEntity: method,
333A-334A, 367A-368A

checkForParchment:pickup: method, 351A

checkJoypadSettings method, 322A

396A animation

@class, 45A

clipping, 67A

Cocoa Design Patterns, 312A

Cocoa Touch, 27A

Cocoa Touch Class, 312A

codecs, 255A

collision detection, 22A-23A, 357A-358A,
361A-362A

Axis-Aligned Bounding Boxes
(AABB), 360A-361A

entity-to-entity collision detection,
367A-368A

entity-to-map collision detection,
365A-366A

frame-based versus time-based,
359A-360A

game loops, 74A-75A
collision maps, 362A-365A

collision method, 334A

collisionBounds method, 334A

collisions

detecting, 361A-362A
EnergyObject class, 333A-334A
pruning, 358A-359A

color values, ES1Renderer, 66A

positioning, 67A-68A
common, 173A

parsing, 174A
Compiling for Thumb, performance,

389A-390A

components, 7A

doors, 9A
entities, 10A
health, 8A
lives, 7A-8A
objects, 8A

energy items, 9A
keys, 9A
parchment pieces, 9A

players, 11A
time, 7A
weapons, 10A

configuration, particle emitters, 230A-231A

configuring, view ports, 85A-86A

control files, 17A

parsing
C, 172A-174A
with PackedSpriteSheet class,

148A-149A
controlling music, SoundManager,

265A-266A

copyImageDetails method, 121A

Core Animation, 321A

CPU spike, OpenGL ES instrument, 377A

createLayerTileImage: method, 216A

D
dealloc method, 162A, 181A

deallocation, rendering text, 181A

delegates. See application delegates

design patterns, 312A

detecting, collisions, 361A-362A

direction, animation, 155A

directories, 353A-354A

doors, 9A, 338A

drawing maps, tile maps, 192A

dropInventoryFromSlot: method, 351A-352A

duplicating images, Image class, 130A

E
EAGLView, 49A, 290A

EAGLView class, 79A

EAGLView.h, 49A-50A

EAGLView.m, 50A-58A, 79A-82A

encodeWithCoder: method, 354A-355A

energy items, 9A

397Aenergy items

EnergyObject class, 329A

collisions, 333A-334A
initialization, 329A-332A
rendering, 333A
updating, 332A-333A

entities, 10A

entity-to-entity collision detection,
367A-368A

entity-to-map collision detection, 365A-366A

ES1Renderer, 58A

color values, 66A
positioning, 67A-68A

framebuffer, creating, 60A-66A
game loops, 82A-85A
render method, 63A-66A
renderbuffer, creating, 60A-66A

ES1Renderer.h, 58A-59A

ES1Renderer.m, 59A-60A

ES2Renderer, 52A

examining

header files, 44A-46A
implementation files, 46A-49A

F
fadeImage, 303A

fading music, SoundManager, 266A-268A

feedback, beta testing, 392A

fonts, bitmap fonts, 19A-20A. See bitmap
fonts

FPS (Frames Per Second), 74A

frame-based collision detection, versus time-
based, 359A-360A

frame-based game loops, 75A-76A

framebuffer, ES1Renderer, 60A-66A

frames

adding with Animation class,
157A-158A

animation, 154A-155A
Frames Per Second (FPS), 74A

G
game controllers, 79A, 86A-87A

creating, 87A
game entities, 325A, 338A-339A

AbstractEntity class, 339A-341A
artificial intelligence (AI), 341A-343A
Player class, 343A-344A

initialization, 344A
inventory, 350A-352A
updating, 344A-346A
updating player’s location,

346A-350A
projects, 325A-326A
saving, 352A-355A

game interfaces

OpenGL ES interfaces. See OpenGL
ES interfaces

projects, 299A-300A
game loops, 24A-26A, 75A

collision detection, 74A-75A
ES1Renderer class, 82A-85A
frame-based, 75A-76A
time-based, fixed interval, 77A-78A
timing, 73A-74A
view ports, configuring, 85A-86A

game objects, 325A-326A

AbstractObject class, 327A-329A
EnergyObject class, 329A

collisions, 333A-334A
initialization, 329A-332A
rendering, 333A
updating, 332A-333A

location, 336A
naming, 336A
projects, 325A-326A
saving, 352A-355A
tile maps and, 334A-337A

398A EnergyObject class

game scenes, 79A, 86A-87A

AbstractScene, 92A-93A
game settings

loading, 376A-377A
saving, 375A-376A

game state

loading, 373A-375A
saving, 371A-373A

GameController class, 87A-89A, 308A

GameController.m, 89A-91A

games

for the iPhone, special considerations
for, 4A-5A

Manic Miner, 3A
naming, 5A-6A
objectives, 6A-7A

GameScene class, 93A-95A

generating

image data,Texture2D, 111A-112A
texture names,Texture2D, 112A-113A

getters, 134A

getTileCoordsForBoundingRect method,
341A

GL_LINE_LOOP, 98A

GL_LINE_STRIP, 98A

GL_LINEAR, 114A

GL_LINES, 99A

GL_NEAREST, 114A

GL_POINTS, 98A

GL_TRIANGLE_FAN, 99A

GL_TRIANGLE_STRIP, 98A

OpenGL ES, 99A
GL_TRIANGLES, 98A-100A

glDrawArrays, 71A, 246A

glEnableClientState, 70A

glGenBuffers, 274A

glGenTextures, 113A

GlobalTileID, 199A

glTransferlatef, 69A-70A

glTranslate, 370A

glVertexPointer, 70A

GPUs (Graphics Processing Units), 30A

group headers, 79A

H
header files

BitmapFont class, 170A-171A
examining, 44A-46A

health, 8A

height, text, 180A-181A

hiding UIKit interfaces, 320A-322A

Hiero, 36A-37A, 166A

high score list, adding scores to, 379A-380A

high scores

loading, 381A-382A
saving, 377A-381A

I
IBAction keyword, 317A

IBAction methods, 317A

IBOutlet, 315A-316A

ideas for games, 4A

Image class, 126A

images
duplicating, 130A
rendering, 130A-133A

initialization, 126A-129A
sub-images, creating, 129A-130A

image data, loading into OpenGL texture,
114A-116A

399Aimage data, loading into OpenGL texture

image rendering, classes, 97A, 107A-108A

Image class. See Image class
ImageRenderManager. See

ImageRenderManager
Texture2D. See Texture2D
TextureManager. See TextureManager

ImageRenderManager, 119A

images
adding to render queue,

120A-123A
rendering, 123A-126A

initialization, 119A-120A
images

adding to render queue,
ImageRenderManager, 120A-123A

duplicating in Image class, 130A
generating data in Texture2D,

111A-112A
loading, in Texture2D, 108A-109A
rendering

with Image class, 130A-133A
ImageRenderManager, 123A-126A

sizing in Texture2D, 109A-111A
implementation files, examining, 46A-49A

initialization

Animation class, 156A-157A
bitmap fonts, Cocoa Touch,

171A-172A
EnergyObject class, 329A-332A
Image class, 126A-129A
ImageRenderManager, 119A-120A
Layer class, tile map classes,

196A-197A
PackedSpriteSheet class, 147A-148A
ParticleEmitter class, 234A-235A
Player class, 344A
SoundManager, 258A-262A

SpriteSheet class, 143A-146A
Texture2D, 108A
TextureManager, 117A
TiledMap class, 205A-207A
TileSet class, tile map classes,

202A-203A
initWithCoder: method, 51A, 355A

initWithTileLocation: method, 329A

Instruments, 35A, 382A-384A

Leaks Instrument, 384A-387A
OpenGL ES, 387A-389A

Interface Builder, 32A-33A, 315A

interfaceOrientation, 320A

Interleaved Vertex Arrays (IVA), 104A-106A

interruptions, sound, 281A-283A

inventory, Player class, 350A-352A

iOS, 256A

iPhone SDK, 32A

Hiero, 36A-37A
Instruments, 35A
Interface Builder, 32A-33A
iPhone Simulator, 34A-35A
Shark, 36A
Tiled, 37A
Xcode, 32A

iPhone Simulator, 34A-35A

iPhones, sound, 250A

audio sessions, 250A-251A
creating sound effects, 254A-256A
playing music, 252A
playing sound effects, 252A-253A
stereo versus mono, 256A

isBlocked:y: method, 366A

IVA (Interleaved Vertex Arrays), 104A-106A

structures, 106A-107A

400A image rendering, classes

J
justification values, 179A-180A

justified text, rendering, 178A-180A

K
keys, 9A

keywords, IBAction, 317A

kFadeInterval, 267A

L
Layer class, tile map classes, 196A-197A

adding tile images to layers,
199A-200A

adding tiles to layers, 198A-199A
getting and setting tile information,

201A-202A
initialization, 197A-198A

layer elements

parsing, 212A-216A
tiled configuration file, 194A-195A

layer images, creating, 216A-217A

layerClass method, 51A

layers

rendering, 218A-219A
tile maps, 188A-189A

Leaks Instrument, 384A-387A

life cycle of particles

birth of particles, 227A-228A
death, 229A
lives of, 228A-229A
rebirth, 229A-230A

linking, IBAction, 317A

listener positions, sound effects, 281A

listings

AbstractEntity encodeWithCoder:
Method, 354A-355A

AbstractEntity Methods, 340A

AbstractEntity Properties in
AbstractEntity.h, 339A-340A

AbstractObject Properties, 338A
Action Methods Defined in

SettingeViewController.h, 317A
The addFrameWithImage:delay:

Method, 158A
Adjusting the Image Size to

1024x1024, 110A-111A
Animation init Method, 156A
BitmapFont parseCharacterDefinition:

Method, 175A
BitmapFont parseCommon:

Method, 174A
BitmapFont parseFont:controlFile:

Method, 172A-173A
BitmapFont renderStringAt:text:

Method, 176A
BitmapFont

renderStringJustifiedInFrame:
justification:text: Method,
178A-179A

BitmapFonts
initWithFontImageNamed:
controlFile: Method, 171A

CGRect Variables Defined in
MenuScene.h, 304A

CH03A_SLQTSORAppDelegate.h,
44A

CH03A_SLQTSORAppDelegation.m,
46A-47A

Checking The Bounds of the Start
Button, 305A

Circle-to-Circle Collision Detection
Function, 362A

Circle-to-Rectangle Collision
Detection Function, 361A-362A

Code to Render Interface Element
Boundaries Inside
MainMenu.m, 307A

401Alistings

Code Used to Convert RGP565
Image Data from 32-16-Bits, 112A

Complete Layer Element within a
.tmx File, 194A

Complete objectgroup Element
Within a .tmx File, 195A

A Complete Tileset Element within a
.tmx File, 194A

Configure the Bitmap Context for
Rendering the Texture, 111A

EAGLView gameLoop: Method, 80A
EAGLView render Method, 83A
EAGLView Touch Methods, 290A
EnergyGame object

checkForCollisionWithEntity:
Method, 333A-334A

EnergyObject collisionBounds
Method, 334A

EnergyObject initWithTileLocation:
Method, 330A-331A

EnergyObject render Method, 333A
EnergyObject updateWithDelta:

Method, 332A
Entity State enums Defined in

Global.h, 340A
Entity-to-Map Collision Check, 366A
ES1Renderer orientationChanged

Method, 310A
Example Tile Elements with

Properties, 211A
Excerpt from the Bitmap Font

Control File, 173A
The Game Loop, 24A-25A
Game Object Type and Subtype

enums in Global.h, 327A-328A
GameController

addToHighScores:gameTime:players
Name:didWin: method, 379A

GameController
adjustTouchOrientationForTouch:
Method, 311A

GameController loadHighScores
Method, 381A-382A

GameController loadSettings
Method, 376A

GameController saveHighScores
Method, 381A

GameController saveSettings
Method, 375A

GameController sortHighScores
Method, 380A

GameScene
accelerometer:didAccelerate:
Method, 296A

GameScene
alertView:clickedButtonAtIndex:
Method, 378A

GameScene checkJoypadSettings
Method, 322A

GameScene
initCollisionMapAndDoors:
Method, 363A-364A

GameScene isBlocked:y: Method,
365A

GameScene loadGameState: Method,
374A-375A

GameScene saveGameState: Method,
372A-373A

GameScene saveGameState Method
NSKeyedArchiver Creation
Snippet, 353A

GameScene touchesBegan:withEvent:
view: Method, 291A

GameScene touchesBegan:withEvent:
view Method Handling Taps,
294A-295A

GameScene touchesEnded:withEvent:
view Method, 294A

GameScene touchesMoved:withEvent:
view Method, 292A-293A

GameScene updateSceneWithDelta:
Method, 297A

GameScene updateSceneWithDelta:
Method—Object Update,
358A-359A

402A listings

GameScene’s renderScene Method
Positions the Player in the Middle of
the Screen, 369A

GameScene’s renderScene Method
(Tile Map Rendering), 370A

The getHeightForString: Method,
180A-181A

Getters and Setters, 134A
The getWidthForString: Method,

180A
Ghost checkforCollisionWithEntity:

Method, 367A
The ImageDetails Structure, 107A
The imageDuplicate Method, 130A
ImageRenderManager

addImageDetailsToRenderQueue:
Method, 121A

ImageRenderManager
addToTextureList: Method, 122A

ImageRenderManager init
Method, 120A

ImageRenderManager
initializeImageDetails Method, 128A

ImageRenderManager renderImages
Method, 123A-124A

ImageRenderManager
subImageInRect: Method, 130A

Initialization of Button Bounds, 304A
Layer addTileAt:tileSetID:tileID

Method, 198A
Layer addTileImageAt: Method, 200A
Layer getGlobalTileIDAtX:

Method, 201A
Layer initWithName: Method, 197A
Layer setValueAtX: Method, 201A
Layer tileImageAt: Method, 202A
MenuScene renderScene Method,

302A
PackedSpriteSheet imageForKey

Method, 149A-150A
PackedSpriteSheet

initWithImageNamed:controlFile:
filter Method, 147A-148A

PackedSpriteSheet parseControlFile:
Method, 148A

Particle Emitter XML Configuration
File, 230A-231A

Particle Structure, 234A
ParticleEmitter addParticle Method

Exert, 244A
ParticleEmitter

initParticleEmitterWithFile:
Method, 235A

ParticleEmitter parseParticleConfig:
Partial Method (Part 1), 235A

ParticleEmitter parseParticleConfig:
Partial Method (Part 2), 236A

ParticleEmitter renderParticles
Method (Part 1), 244A-245A

ParticleEmitter renderParticles
Method (Part 2), 245A-246A

ParticleEmitter setupArrays
Method, 237A

ParticleEmitter stopParticleEmitter
Method, 246A

ParticleEmitter updateWithDelta
Method (Part 1), 239A

ParticleEmitter updateWithDelta
Method (Part 2), 240A

ParticleEmitter updateWithDelta
Method (Part 3), 242A-243A

Player checkForCollisionWithEntity:
Method, 367A-368A

Player Class Properties, 343A-344A
Player dropInventoryFromSlot:

Method, 351A-352A
Player placeInInventory: Method,

350A-351A
Player updateLocationWithDelta:

Method (Part 1), 347A
Player updateLocationWithDelta:

(Part 2), 349A
Player updateWithDelta: Method

(Part 1), 344A-345A
Player updateWithDelta: Method

(Part 2), 346A

403Alistings

PointSprite Structure, 234A
Primitives drawBox Function,

306A-307A
The render Method, 131A-132A
The Render Methods Within

Animation.m, 160A-161A
The renderCenteredAtPoint:scale:

rotation: Method, 131A
Rendering the Texture Image, 111A
Scene State as Defined in the

Global.h File, 303A
Setting the Image Size in Texture2D

to a Power-of-Two, 110A
SettingsViewController class, 318A
SettingsViewController hide

Method, 321A
SettingsViewController

shouldAutorotateToInterfaceOrientat
ion: Method, 318A-319A

SettingsViewController show
Method, 320A

SettingsViewController.h
IBOutlets, 315A

SettingsViewControllerviewWill
Appear: Method, 319A

A Simple Game Loop, 73A
SoundManager addToPlayListName:

track: Method, 268A-269A
SoundManager audioPlayerDidFinish

Playing:successfully: Method, 270A
SoundManager AVAudioSession

Delegate Methods, 282A
SoundManager fadeMusicVolume

From: toVolumen: duration: stop:
Method, 267A

SoundManager fadeVolume Method,
267A-268A

SoundManager init Method (Part 1),
258A

SoundManager init Method (Part 2),
258A-259A

SoundManager init Method (Part 3),
259A-260A

SoundManager initOpenAL Method
(Part 1), 260A

SoundManager initOpenAL Method
(Part 2), 261A

SoundManager initOpenAL Method
(Part 3), 262A

SoundManager isExternalAudio
Playing Method, 259A

SoundManager loadMusicWithKey:
musicFile Method, 263A

SoundManager loadSoundWithKey:
soundFile: Method, 275A-276A

SoundManager loadSoundWithKey:
soundFile: Method (Part 1), 274A

SoundManager nextAvailableSource
Method, 277A-278A

SoundManager
playMusicWithKey:timesToRepeat:
Method, 264A-265A

SoundManager playNextTrack
Method, 271A

SoundManager
playSoundWithKey:gain:pitch:
location:shouldLoop: Method
(Part 1), 277A

SoundManager playSoundWithKey:
gain:pitch:location:shouldLoop:
Method (Part 2), 278A

SoundManager removeFromPlaylist
Named:track:, 271A-272A

SoundManager removeMusicWith
Key: Method, 264A

SoundManager removePlaylistNamed:
and clearPlaylistNamed:
Method, 272A

SoundManager setActivate: Method,
282A-283A

SoundManager setListenerLocation
and setOrientation Methods, 281A

SoundManager startPlaylistNamed:
Method, 269A-270A

404A listings

SoundManager stopMusic,
pauseMusic, resumeMusic, and
setMusicVolume: Methods,
265A-266A

SoundManager stopSoundWithKey:
Method, 279A-280A

SpriteSheet cacheSprites Method,
145A-146A

SpriteSheet InitWithImageNamed:
spriteSize:spacing:margin:imageFilter
Method, 144A

SpriteSheet initWithImage:spriteSize:
spacing:margin Method, 145A

SpriteSheet spriteImageAtCoords:
Method, 146A-147A

The spriteSheetForImageName:
spriteSize:spacing:margin:image
Filter: Method, 143A

Structure of BitmapFontchar, 170A
TBXMLParticleAdditions Header

File, 232A
Texture and Ratio Calculations, 115A
The TexturedColoredQuad

Structure, 107A
The TexturedColoredVertex

Structure, 106A
TextureManage textureWithFile

Name:filter: Method, 117A-118A
TiledMap createLayerTileImages:

Method, 217A
TiledMap initWithFileName:

fileExtension Method (Part 1), 206A
TiledMap initWithFileName:

fileExtension Method (Part 2), 206A
TiledMap parseMapFileTBXML:

Method (Part 1), 207A-208A
TiledMap parseMapFileTBXML:

Method (Part 2), 208A
TiledMap parseMapFileTBXML:

Method (Part 3), 209A

TiledMap parseMapFileTBXML:
Method (Part 4), 210A

TiledMap parseMapFileTBXML:
Method (Part 5), 211A

TiledMap parseMapFileTBXML:
Method (Part 6), 212A

TiledMap parseMapFileTBXML:
Method (Part 7),213A

TiledMap parseMapFileTBXML:
Method (Part 8), 214A

TiledMap parseMapFileTBXML:
Method (Part 9), 215A

TiledMap
renderLayer:mapx:mapy:width:heigh
t:useBlending Method, 218A-219A

TileSet’s initWithImageNamed:
Method, 203A

TXMLParticleAdditions color4fFrom
ChildElementNamed:parentElement
Method, 232A-233A

The updateWithDelta: Method, 159A
Witch Chase Code in the update

WithDelta:scene: Method, 342A
lives, 7A-8A

loadGameState: method, 373A-375A

loadHighScores method, 381A-382A

loading

game settings, 376A-377A
game state, 373A-375A
high scores, 381A-382A
image data into OpenGL texture, into

OpenGL texture, 114A-116A
images,Texture2D, 108A-109A
music, SoundManager, 263A-264A
sound effects, 274A-276A

loadSettings method, 376A

location

of game objects, 336A
of players, updating, 346A-350A

405Alocation

M
managing

playlists, 271A-272A
sound effects, 273A

Manhattan distance, 293A

Manic Miner, 3A

map element, tile configuration file, 193A

map elements

parsing, 207A-209A
tiled configuration file, 193A

map files

parsing, 207A
map elements, 207A-209A

map layers, creating, 191A

maps

collision maps, 362A-365A
drawing, 192A

tile maps, 192A
message nesting, 48A

motion events, 287A

multiple device types, beta testing, 391A

multiple touches, 288A

music

controlling in SoundManager,
265A-266A

fading in SoundManager, 266A-268A
loading with SoundManager,

263A-264A
playing in SoundManager, 264A-265A
removing in SoundManager, 264A

music management, Sound, 262A-263A

music playlists, SoundManager, 268A-271A

musicPlaylists dictionary, 258A, 269A

N
naming

game objects, 336A
games, 5A-6A

nextAvailableSource method, 278A

nonatomic property, 50A

notifications, 308A

NSDataAdditions class, 205A

NSKeyedArchiver, 352A

NSNotificationCenter, 308A

NSUserDefaults, 375A

O
OBB (Oriented Bounding Boxes), 361A

object group element

tiled configuration file, 195A-196A
object group elements, parsing, 216A

object layers

adding to maps, 335A
creating, 191A-192A

objectgroups, 196A

Objective-C, 26A

@property, 46A
application delegates, 44A

Objective-C 2.0, 162A

objectives, games, 6A-7A

objects

components, 8A
energy items, 9A
keys, 9A
parchment pieces, 9A

placing, in tile maps, 192A
OES, 245A

Open GL texture, loading image data into,
114A-116A

OpenAL, 30A-31A, 253A

406A managing

OpenGL, 68A-69A

applying transformations on models,
69A-70A

axis configuration, 64A
rendering to screens, 70A-72A

OpenGL ES, 15A, 27A-29A

XXXX1.1 versus 2.029-30
GL_TRIANGLE_STRIP, 99A
instrument, 387A-389A

OpenGL ES interfaces, 300A-301A

defining button bounds, 304A
handling touches, 304A-308A
rendering, 301A-303A
transitions, 308A

OpenGL ES orientation, 308A

manually setting, 309A-311A
orientation

OpenGL ES, 308A
manually setting, 309A-311A

UIKit interfaces, 318A-320A
orientationChanged method, 310A

Oriented Bounding Boxes (OBB), 361A

P
PackedSpriteSheet class, 147A

bitmap fonts, 167A
initialization, 147A-148A
parsing control files, 148A-149A
sprites, retrieving, 149A-150A

parameters, particle systems, 226A-227A

parchment pieces, 9A

parseParticleConfig method, 235A

parsing

char id, 175A-176A
common prefix, 174A

control files
C, 172A-174A
PackedSpriteSheet class,

148A-149A
layer elements, 212A-216A
map files, 207A

map elements, 207A-209A
object group elements, 216A
particle configuration, 235A-237A
tile set elements, 209A-212A

particle arrays, 237A-238A

particle configuration, parsing, 235A-237A

Particle Designer, 247A

particle emitters

configuration, 230A-231A
playing with, 247A-248A
projects, 224A-225A
stopping, 246A-247A

particle systems, 21A-22A

overview, 225A-226A
parameters, 226A-227A

ParticleEmitter class, 233A

initialization, 234A-235A
parsing particle configuration,

235A-237A
particles

adding, 243A-244A
rendering, 244A-246A
updating, 239A-243A

setting up particle and render arrays,
237A-238A

stopping particle emitters, 246A-247A
structures, 233A-234A

ParticleEmitter classes, 231A

TBXMLParticleAdditons class,
231A-233A

407AParticleEmitter classes

particles, 21A

adding in ParticleEmitter class,
243A-244A

life cycle of
birth of particles, 227A-228A
death, 229A
lives of, 228A-229A
rebirth, 229A-230A

rendering in ParticleEmitter class,
244A-246A

updating in ParticleEmitter class,
239A-243A

performance, Compiling for Thumb,
389A-390A

phases, tracking touches between, 292A

pixelLocation, 327A

placeholders, prototyping, 19A

placeInInventory: method, 350A-351A

placing objects, tile maps, 192A

Player class, 343A-344A

initialization, 344A
inventory, 350A-352A
updating, 344A-346A
updating player’s location, 346A-350A

players, 11A

playing

music
iPhones, 252A
SoundManager, 264A-265A

sound effects, 252A-253A,
276A-279A

playlists

managing, 271A-272A
starting, 270A
tracks, removing, 272A

playNextTrack: method, 271A

point sprites, 238A

Portal class, 339A

positioning, color values, ES1Renderer,
67A-68A

prefixes, 173A-174A

char id, parsing, 175A-176A
common, parsing, 174A

processing

taps, 294A-295A
touch events, 289A-290A

touchesBegan phase, 290A-292A
touchesEnded phase, 294A
touchesMoved phase, 292A-294A

projects

creating with Xcode, 39A-42A
running, 42A-43A

@property, 46A

prototyping, with placeholders, 19A

pruning collisions, 358A-359A

Q
quads, rendering, 98A-101A

R
releaseAllTextures, 118A

releasing, textures with TextureManager,
118A

removePlaylistNamed: method, 272A

removing

music, SoundManager, 264A
tracks from playlists, 272A

render arrays, ParticleEmitter class,
237A-238A

render method, 63A-66A, 329A

render queue, adding images to,
ImageRenderManager, 120A-123A

renderbuffer, ES1Renderer, 60A-66A

rendering, 97A-98A

animation,Animation class,
160A-161A

EnergyObject class, 333A

408A particles

images
Image class, 130A-133A
ImageRenderManager, 123A-126A

justified text, 178A-180A
layers, 218A-219A
OpenGL ES interfaces, 301A-303A
particles, ParticleEmitter class,

244A-246A
quads, 98A-101A
to screens, OpenGL, 70A-72A
text, 176A-178A

deallocation, 181A
width and height, 180A-181A

renderLayer:mapx:mapy:width:height:
useBlending: method, 218A

renderScene method, 303A, 369A-370A

retrieving

sprites
with PackedSpriteSheet class,

149A-150A
SpriteSheet class, 146A-147A

textures,TextureManager, 117A-118A
rotation, animation, 161A

rotationPoint, animation, 161A

running, projects, 42A-43A

S
saveGameState, 372A-373A

saveHighScores method, 381A

saveSettings method, 375A

saving, 371A

game entities, 352A-355A
game objects, 352A-355A
game settings, 375A-376A
game state, 371A-373A
high scores, 377A-381A

scores, adding to high score list, 379A-380A

screens, rendering to screens, OpenGL,
70A-72A

setListenerPosition method, 281A

setters, 134A

setting parameters, binding with texture
parameters, 113A-114A

Shark, 36A

showing, UIKit interfaces, 320A-322A

singletons, creating, 89A

sizing, images, in Texture2D, 109A-111A

Smith, Matthew, 3A

sortHighScores method, 380A

Sound, music management, 262A-263A

sound

handling interruptions, 281A-283A
iPhones, 250A

audio sessions, 250A-251A
creating sound effects, 254A-256A
playing music, 252A
playing sound effects, 252A-253A
stereo versus mono, 256A

projects, 249A
sound effects

creating, 254A-256A
listener positions, 281A
loading, 274A-276A
managing, 273A
playing, 252A-253A, 276A-279A
stopping, 279A-280A

sound manager classes, 256A-257A

MyOpenALSupport, 256A-257A
SoundManager, 257A

controlling music, 265A-266A
fading music, 266A-268A
initialization, 258A-262A
loading music, 263A-264A
managing playlists, 271A-272A
music management, 262A-263A
music playlists, 268A-271A
playing music, 264A-265A
removing music, 264A

409Asound manager classes

soundLibrary dictionary, 258A

SoundManager, 257A

controlling music, 265A-266A
fading music, 266A-268A
initialization, 258A-262A
loading music, 263A-264A
managing playlists, 271A-272A
music playlists, 268A-271A
playing music, 264A-265A
removing music, 264A

SoundManagerAVAudioPlayer, 257A

special considerations, for iPhone games,
4A-5A

speed, update speed, 74A

speedOfMovement, 347A

sprite sheets, 16A-18A, 137A-138A

bitmap fonts, creating, 167A-170A
complex sprite sheets, 139A-141A
simple sprite sheets, 138A-139A
Zwoptex, 141A-142A

sprites, 14A-15A

creating, 15A
retrieving

with PackedSpriteSheet class,
149A-150A

with SpriteSheet class, 146A-147A
SpriteSheet class, 142A

initialization, 143A-146A
sprites, retrieving, 146A-147A

startAnimation, 56A-57A

starting playlists, 270A

states, animation, 155A

stereo versus mono, sound on iPhones,
256A

stopping

particle emitters, 246A-247A
sound effects, 279A-280A

storylines, 5A

structures

IVA (Interleaved Vertex Arrays),
106A-107A

ParticleEmitter class, 233A-234A
sub-images, creating with Image class,

129A-130A

T
taps, processing, 294A-295A

TBXML, 204A

TBXMLParticleAdditions class, 231A-233A

technology

Cocoa Touch, 27A
Objective-C, 26A
OpenAL, 30A-31A
OpenGL ES, 27A-29A

terminology, 13A

AI (artificial intelligence), 23A
animation, 18A-19A
bitmap fonts, 19A-20A
collision detection, 22A-23A
game loops, 24A-26A
particle systems, 21A-22A
sprite sheets, 16A-18A
sprites, 14A-15A
time maps, 20A-21A

testing, beta testing, 390A-391A

feedback, 392A
multiple device types, 391A

text

justified text, rendering, 178A-180A
rendering, 176A-178A

deallocation, 181A
width and height, 180A-181A

texture coordinates, texture mapping,
101A-103A

410A soundLibrary dictionary

texture mapping, 101A

texture coordinates, 101A-103A
texture names, generating in Texture2D,

112A-113A

texture parameters, binding with setting
parameters, 113A-114A

Texture2D, 107A, 108A

binding texture and setting parame-
ters, 113A-114A

generating texture names, 112A-113A
images

generating data, 111A-112A
loading, 108A-109A
sizing, 109A-111A

initialization, 108A
loading image data into OpenGL tex-

ture, 114A-116A
TexturedColoredQuad, 200A

TextureManager, 116A-117A

initialization, 117A
textures

releasing, 118A
retrieving and creating, 117A-118A

textures

releasing with TextureManager, 118A
retrieving and creating, with

TextureManager, 117A-118A
texturesToRender array, 122A

textureWithFileName:filter: method,
117A-118A

tile configuration file, 193A

layer elements, 194A-195A
map element, 193A
object group element, 195A-196A
tileset element, 193A-194A

tile images, adding to layers, 199A-200A

tile information, getting, 220A

tile map classes, 196A

Layer class, 196A-197A
adding tile images to layers,

199A-200A
adding tiles to layers, 198A-199A
getting and setting tile information,

201A-202A
initialization, 197A-198A

TiledMap class, 204A-205A
initialization, 205A-207A

TileSet class, 202A
getting tile set information,

203A-208A
initialization, 202A-203A

tile maps, 183A, 184A-188A, 370A

creating, 189A
drawing maps, 192A
map layers, 191A
new tile sets, 190A-191A
object layers, 191A-192A

drawing maps, 192A
game objects and, 334A-337A
layers, 188A-189A
placing objects, 192A
projects, 183A-184A
rendering layers, 218A-219A
tile information, getting, 220A

tile palette, Tiled, 188A

tile set elements, parsing, 209A-212A

tile sets, creating, 190A-191A

Tiled, 37A, 187A

tile palette, 188A
tiled configuration file, 193A

layer elements, 194A-195A
map elements, 193A
object group element, 195A-196A
tileset element, 193A-194A

Tiled map editor, game objects, 334A

411ATiled map editor, game objects

Tiled Qt, 186A

TiledMap class

tile map classes, 204A-205A
initialization, 205A-207A

XML parsing, 204A
TileID, 199A

tileImageAt: method, 201A

tileLocation, 327A

tiles, adding to layers, 198A-199A

TileSet class, tile map classes, 202A

getting tile set information,
203A-208A

initialization, 202A-203A
tileset element, 193A-194A

TileSetID:Identifies, 199A

time, 7A

time maps, 20A-21A

time-based collision detection, versus frame-
based, 359A-360A

time-based fixed interval game loops,
77A-78A

timing

collision detection, 74A-75A
game loops, 73A-74A

tools, 31A-32A

iPhone SDK, 32A
Hiero, 36A-37A
Instruments, 35A
Interface Builder, 32A-33A
iPhone Simulator, 34A-35A
Shark, 36A
Tiled, 37A
Xcode, 32A

touch events, 287A-289A

processing, 289A-290A
touchesBegan phase, 290A-292A
touchesEnded phase, 294A
touchesMoved phase, 292A-294A

taps, processing, 294A-295A
touches, 285A

OpenGL ES interfaces, 304A-308A
tracking between phases, 292A

touchesBegan phase, 290A-292A

touchesEnded: method, 304A

touchesEnded phase, 294A

touchesMoved phase, 292A-294A

tracking touches, between phases, 292A

tracks, removing from playlists, 272A

transformation, 67A

transformations, applying to models,
69A-70A

transitions, OpenGL ES interfaces, 308A

translating, 370A

types, animation, 155A

U
UDID, 390A

UIAccelerometerDelegate, 88A

UIApplication, 43A

UIInterfaceOrientationIsLandscape
macro, 319A

UIKit interfaces, 312A

creating, 312A-315A
showing/hiding, 320A-322A
wiring up interfaces, 315A-318A

UIKit orientation, 318A-320A

UISlider controls, 314A

UISlider track, 314A-315A

UITouch objects, 288A

UIView, 55A

412A Tiled Qt

update speed, 74A

updateLocationWithDelta: method,
348A-349A

updates, animation, Animation class,
158A-160A

updateWithDelta: method, 303A, 332A,
344A-345A

updateWithDelta:scene: method, 341A-342A

updating

EnergyObject class, 332A-333A
particles, ParticleEmitter class,

239A-243A
Player class, 344A-346A

user input, 287A

accelerometer events, 296A-298A
projects, 285A-286A
taps, 294A-295A
touch events, 287A-289A

processing, 289A-290A
userDefaultsSet, 377A

V
vertex arrays, 104A

vertical synchronization, 52A

view ports, configuring, 85A-86A

413AZwoptex

Viewport function, 85A

visualizing boundaries, 306A-308A

vsync, 52A

W
weapons, 10A

width, text, 180A-181A

wiring up interfaces, UIKit interfaces,
315A-318A

X
Xcode, 32A

projects, creating, 39A-42A
XML parsing, TiledMap class, 204A

Y-Z
Zwoptex, 17A, 138A, 140A-141A

sprite sheets, 141A-142A

This page intentionally left blank

Learning Cocos2D

Praise for Learning Cocos2D

“If you’re looking to create an iPhone or iPad game, Learning Cocos2D should
be the first book on your shopping list. Rod and Ray do a phenomenal
job of taking you through the entire process from concept to app, clearly
explaining both how to do each step as well as why you’re dong it.”
—Jeff LaMarche, Principal, MartianCraft, LLC, and coauthor of Beginning iPhone
Development (Apress, 2009)

“This book provides an excellent introduction to iOS 2D game develop-
ment. Beyond that, the book also provides one of the best introductions to
Box2D available. I am truly impressed with the detail and depth of Box2D
coverage.”
—Erin Catto, creator of Box2D

“Warning: reading this book will make you need to write a game! Learning
Cocos2D is a great fast-forward into writing the next hit game for iOS—
definitely a must for the aspiring indie iOS game developer (regardless of
experience level)! Thanks, Rod and Ray, for letting me skip the learning
curve; you’ve really saved my bacon!”
—Eric Hayes, Principle Engineer, Brewmium LLC (and Indie iOS Developer)

“Learning Cocos2D is an outstanding read, and I highly recommend it to any
iOS developer wanting to get into game development with Cocos2D. This
book gave me the knowledge and confidence I needed to write an iOS game
without having to be a math and OpenGL whiz.”
—Kirby Turner, White Peak Software, Inc.

“Learning Cocos2D is both an entertaining and informative book; it covers
everything you need to know about creating games using Cocos2D.”
—Fahim Farook, RookSoft (rooksoft.co.nz)

“This is the premiere book on Cocos2D! After reading this book you will
have a firm grasp of the framework, and you will be able to create a few
different types of games. Rod and Ray get you quickly up to speed with
the basics in the first group of chapters. The later chapters cover the more
advanced features, such as parallax scrolling, CocosDenshion, Box2D,
Chipmunk, particle systems, and Apple Game Center. The authors’ writing
style is descriptive, concise, and fun to read. This book is a must have!”
—Nick Waynik, iOS Developer

Learning Cocos2D

A Hands-On Guide to Building iOS
Games with Cocos2D, Box2D,

and Chipmunk

Rod Strougo

Ray Wenderlich

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Strougo, Rod, 1976-
 Learning Cocos2D : a hands-on guide to building iOS games with
Cocos2D, Box2D, and Chipmunk / Rod Strougo, Ray Wenderlich.
 p. cm.
 Includes index.
 ISBN-13: 978-0-321-73562-1 (pbk. : alk. paper)
 ISBN-10: 0-321-73562-5 (pbk. : alk. paper)
1. iPhone (Smartphone)—Programming. 2. iPad (Computer)—Programming.
3. Computer games—Programming. I. Wenderlich, Ray, 1980- II. Title.
 QA76.8.I64S87 2011
 794.8’1526—dc23
 2011014419

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-73562-1
ISBN-10: 0-321-73562-5
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Chuck Toporek

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Carol Lallier

Indexer
Jack Lewis

Proofreader
Lori Newhouse

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

❖

Dedicated to my wife, Agata.
—Rod

Dedicated to my wife, Vicki.
—Ray

❖

Preface

So you want to be a game developer?
Developing games for the iPhone or iPad can be a lot of fun. It is one of the few

things we can do to feel like a kid again. Everyone, it seems, has an idea for a game,
and what better platform to develop for than the iPhone and iPad?

What stops most people from actually developing a game, though, is that game devel-
opment covers a wide swath of computer science skills—graphics, audio, networking—
and at times it can seem like you are drinking from a fire hose. When you are first
getting started, becoming comfortable with Objective-C can seem like a huge task,
especially if you start to look at things like OpenGL ES, OpenAL, and other lower-
level APIs for your game.

Writing a game for the iPhone and iPad does not have to be that difficult—and it
isn’t. To help simplify the task of building 2D games, look no further than Cocos2D.

You no longer have to deal with low-level OpenGL programming APIs to make
games for the iPhone, and you don’t need to be a math or physics expert. There’s a
much faster and easier way—use a free and popular open source game programming
framework called Cocos2D. Cocos2D is extremely fun and easy to use, and with it
you can skip the low-level details and focus on what makes your game different and
special!

This book teaches you how to use Cocos2D to make your own games, taking you
step by step through the process of making an actual game that’s on the App Store
right now! The game you build in this book is called Space Viking and is the story of a
kick-ass Viking transported to an alien planet. In the process of making the game, you
get hands-on experience with all of the most important elements in Cocos2D and see
how everything fits together to make a complete game.

Download the Game!
You can download Space Vikings from the App Store: http://itunes.apple.com/us/app/
space-vikings/id400657526mt=8. The game is free, so go ahead and download it, start
playing around with it, and see if you’re good enough to get all of the achievements!

Think of this book as an epic-length tutorial, showing you how you can make a
real game with Cocos2D from the bottom up. You’ll be coding along with the book,
and we explain things step by step. By the time you’ve finished reading and working

http://itunes.apple.com/us/app/space-vikings/id400657526mt=8
http://itunes.apple.com/us/app/space-vikings/id400657526mt=8

Prefaceviii

through this book, you’ll have made a complete game. Best of all, you’ll have the con-
fidence and knowledge it takes to make your own.

Each chapter describes in detail a specific component within the game along with
the technology required to support it, be it a tile map editor or some effect we’re cre-
ating with Cocos2D, Box2D, or Chipmunk. Once an introduction to the functional-
ity and technology is complete, the chapter provides details on how the component
has been implemented within Space Viking. This combination of theory and real-world
implementation helps to fill the void left by other game-development books.

What Is Cocos2D?
Cocos2D (www.cocos2d-iphone.org) is an open source Objective-C framework for mak-
ing 2D games for the iOS and Mac OS X, which includes developing for the iPhone,
iPod touch, the iPad, and the Mac. Cocos2D can either be included as a library to
your project in Xcode or automatically added when you create a new game using the
included Cocos2D templates.

Cocos2D uses OpenGL ES for graphics rendering, giving you all of the speed and
performance of the graphics processor (GPU) on your device. Cocos2D includes a host
of other features and capabilities, which you’ll learn more about as you work through
the tutorial in this book.

Cocos2D started life as a Python framework for doing 2D games. In late 2008, it
was ported to the iPhone and rewritten in Objective-C. There are now additional
ports of Cocos2D to Ruby, Java (Android), and even Mono (C#/.NET).

Note
Cocos2D has an active and vibrant community of contributors and supporters. The
Cocos2D forums (www.cocos2d-iphone.org/forum) are very active and an excellent
resource for learning and troubleshooting as well as keeping up to date on the latest
developments of Cocos2D.

Why You Should Use Cocos2D
Cocos2D lets you focus on your core game instead of on low-level APIs. The App
Store marketplace is very f luid and evolves rapidly. Prototyping and developing your
game quickly is crucial for success in the App Store, and Cocos2D is the best tool for
helping you quickly develop your game without getting bogged down trying to learn
OpenGL ES or OpenAL.

Cocos2D also includes a host of utility classes such as the TextureCache, which
automatically caches your graphics, providing for faster and smoother gameplay.
TextureCache operates in the background and is one of the many functions of
Cocos2D that you don’t even have to know how to use; it functions transparently to

www.cocos2d-iphone.org
www.cocos2d-iphone.org/forum

Preface ix

you. Other useful utilities include font rendering, sprite sheets, a robust sound system,
and many more.

Cocos2D is a great prototyping tool. You can quickly make a game in as little as
an hour (or however long it takes you to read Chapter 2). You are reading this book
because you want to make games for the iPhone and iPad, and using Cocos2D is the
quickest way to get there—bar none.

Cocos2D Key Features
Still unsure if Cocos2D is right for you? Well, check out some of these amazing fea-
tures of Cocos2D that can make developing your next game a lot easier.

Actions
Actions are one of the most powerful features in Cocos2D. Actions allow you to
move, scale, and manipulate sprites and other objects with ease. As an example, to
smoothly move a space cargo ship across the screen 400 pixels to the right in 5 sec-
onds, all the code you need is:

CCAction *moveAction = [CCMoveBy actionWithDuration:5.0f

 position:CGPointMake(400.0f,0.0f)];

[spaceCargoShipSprite runAction:moveAction];

That’s it; just two lines of code! Figure P.1 illustrates the moveAction on the space
cargo ship.

Figure P.1 Illustrating the effect of the moveAction on the Space
Cargo Ship sprite

There are many kinds of built-in actions in Cocos2D: rotate, scale, jump, blink,
fade, tint, animation, and more. You can also chain actions together and call custom
callbacks for neat effects with very little code.

Built-In Font Support
Cocos2D makes it very easy to deal with text, which is important for games in menu
systems, score displays, debugging, and more. Cocos2D includes support for embedded
TrueType fonts and also a fast bitmap font-rendering system, so you can display text to
the screen with just a few lines of code.

Prefacex

An Extensive Effects Library
Cocos2D includes a powerful particle system that makes it easy to add cool effects such
as smoke, fire, rain, and snow to your games. Also, Cocos2D includes built-in effects,
such as f lip and fading, to transition between screens in your game.

Great for TileMap Games
Cocos2D includes built-in support for tile-mapped games, which is great when you
have a large game world made up of small reusable images. Cocos2D also makes it
easy to move the camera around to implement scrolling backgrounds or levels. Finally,
there is support for parallax scrolling, which gives your game the illusion of 3D depth
and perspective.

Audio/Sound Support
The sound engine included with Cocos2D allows for easy use of the power of OpenAL
without having to dive into the lower level APIs. With Cocos2D’s sound engine, you
can play background music or sound effects with just a single line of code!

Two Powerful Physics Engines
Also bundled with Cocos2D are two powerful physics engines, Box2D and Chipmunk,
both of which are fantastic for games. You can add a whole new level of realism to
your games and create entire new gameplay types by using game physics—without
having to be a math guru.

Important Concepts
Before we get started, it’s important to make sure you’re familiar with some important
concepts about Cocos2D and game programming in general.

Sprite
You will see the term sprite used often in game development. A sprite is an image
that can be moved independently of other images on the screen. A sprite could be
the player character, an enemy, or a larger image used in the background. In practice,
sprites are made from your PNG or PVRTC image files. Once loaded in memory, a
sprite is converted into a texture used by the iPhone GPU to render onscreen.

Singleton
A singleton is a special kind of Objective-C class, which can have only one instance. An
example of this is an iPhone app’s Application Delegate class, or the Director class in
Cocos2D. When you call a singleton instance in your code, you always get back the
one instance of this class, regardless of which class called it.

Preface xi

OpenGL ES
OpenGL ES is a mobile version (ES stands for Embedded Systems) of the Open Graph-
ics Language (OpenGL). It is the closest you can get on the iPhone or iPad to sending
zeros and ones to the GPU. OpenGL ES is the fastest way to render graphics on the
iPhone or iPad, and due to its origin, it is a low-level API. If you are new to game
development, OpenGL ES can have a steep learning curve, but luckily you don’t need
to know OpenGL ES to use Cocos2D.

The two versions of OpenGL ES supported on the iPhone and iPad are 1.1 and 2.0.
There are plans in the Cocos2D roadmap to support OpenGL ES 2.0, although cur-
rently only version 1.1 is supported.

Languages and Screen Resolutions
Cocos2D is written in Objective-C, the same language as Cocoa Touch and the
majority of the Apple iOS APIs. In Objective-C it is important to understand some
basic memory-management techniques, as it is a good foundation for you to become
an efficient game developer on the iOS platform. Cocos2D supports all of the native
resolutions on the iOS devices, from the original iPhone to the iPad to the retina dis-
play on the iPhone 4.

2D versus 3D
You first learn to walk before you can run. The same is true for game development;
you have to learn how to make 2D games before diving into the deeper concepts of
3D games. There are some 3D effects and transitions in Cocos2D, such as a 3D wave
effect and an orbit camera move; however, most of the functionality is geared toward
2D games and graphics.

Cocos2D is designed for 2D games (hence the 2D in the name), as are the tutorials
and examples in this book. If you want to make 3D games, you should look into dif-
ferent frameworks, such as Unity, the Unreal Engine, or direct OpenGL.

The Game behind the Book: Space Viking
This book takes you through the process of creating a full-featured Cocos2D-based
game for the iPhone and iPad. The game you build in this book is called Space Viking.
If you want to try Space Viking now, you can download a free version of the game
from the App Store (http://itunes.apple.com/us/app/id400657526) and install it on your
iPhone, iPod touch, or iPad.

Of course, if you are more patient, you can build the game yourself and load it
onto your device after working through the chapters in this book. There is no greater
learning experience than having the ability to test a game as you’re building it. Not
only can you learn how to build a game, but you can also go back and tweak the code
a bit to change things around to see what sort of effect something has on the game-
play. Good things come to those who wait.

http://itunes.apple.com/us/app/id400657526

Prefacexii

This book teaches you how to use all of the features and capabilities of Cocos2D,
but more important, how to apply them to a real game. By the time you are done, you
will have the knowledge and experience needed to get your own game in the App
Store. The concepts you learn from building Space Viking apply to a variety of games
from action to puzzle.

Space Viking’s Story
Every game starts in the depths of your imagination, with a character and storyline
that gets transformed into a game. This is the story of Space Viking.

In the future, the descendants of Earth are forced into colonizing planets outside
our own solar system. In order to create hospitable environments, huge interplanetary
machines extract giant chunks of ice from Northern Europe and Greenland and send
it across the galaxy to these planets. Unbeknown to the scientists, one of these chunks
contains Ole the Viking, who eons ago fell into an icy river on his way home from
defeating barbarian tribes. Encased in an icy tomb for centuries, Ole awakens thou-
sands of years later—and light years from home—after being warmed by an alien sun,
as shown in Figure P.2.

Figure P.2 Ole awakens on the alien planet

You get to play as Ole the Viking and battle the aliens on this strange world in
hopes of finding a way to return Ole to his native land and time.

You control Ole’s movement to the right and left by using the thumb joystick on
the left side of the screen. On the right side are buttons for jumping and attacking. Ole
starts out with only his fists. In later levels Ole finds his trusty mallet, and you use the
accelerometer to control him in the physics levels.

Space Viking is an action and adventure game, with the emphasis on action. The goal
was to create a real game from the ground up so you could learn not only Cocos2D
but also how to use it in a real full-featured game. The idea for the game came from

Preface xiii

concept art that Eric Stevens, a graphic artist and fellow game devotee, developed ear-
lier when we were discussing game ideas to make next.

Space Viking consists of a number of levels, each of which demonstrates a specific
area of Cocos2D or gameplay type. For example, the first level is a side-scrolling beat
’em up, and the fourth level is a mine cart racing level that shows off the game physics
found in Box2D and Chipmunk. Our hope is that you can reuse parts of Space Viking
to make your own game once you’ve finished this book! That’s right: you can freely
reuse the code in this book to build your own game.

Organization of This Book
The goal of this book is to teach you about game development using Cocos2D as you
build Space Viking (and learn more about the quest and story of Ole the Viking). You
start with a simple level and some basic game mechanics and work your way up to
creating levels with physics and particle systems and finally to a complete game by the
end of the book.

First you learn the basics of Cocos2D and build a small level with basic running
and jumping movements for Ole. Part II shows you how to add animations, actions,
effects, and even text to Space Viking. Part III takes the game further, adding more
levels and scenes, sounds, and scrolling to the gameplay. In Part IV realism is brought
into the game with the Box2D and Chipmunk physics engines. Finally in Part V, you
learn how to add a particle system, add high scores, connect to social networks, and
debug and optimize Space Viking to round out some best practices for the games you
will build in the future.

There are 17 chapters and one appendix in the book, each dealing with a specific
area of creating Space Viking.

n Part I: Getting Started with Cocos2D

Learn how to get Cocos2D installed and start using it to create Space Viking.
Learn how to add animations and movements to Ole and his enemies.
n Chapter 1: Hello, Cocos2D

This chapter covers how to install Cocos2D framework and templates in
Xcode and some companion tools that make developing games easier. These
tools are freely available and facilitate the creation of the elements used by
Cocos2D.

n Chapter 2: Hello, Space Viking

Here you create the basic Space Viking game, which you build upon through-
out the book. You start out with just a basic Cocos2D template and add the
hero (Ole the Viking) to the scene. In the second part of this chapter, you add
the methods to handle the touch inputs, including moving Ole around and
making him jump.

Prefacexiv

n Chapter 3: Introduction to Cocos2D Animations and Actions

In this chapter, you learn how to make the game look much more realistic by
adding animations to Ole as he moves around the scene.

n Chapter 4: Simple Collision Detection and the First Enemy

In this chapter, you learn how to implement simple collision detection and
add the first enemy to your Space Viking game, so Ole can start to fight his
way off the planet!

n Part II: More Enemies and More Fun

Learn how to create more complex enemies for Ole to battle and in the process
learn about Cocos2D actions and effects. Finish up with a live, onscreen debug-
ging system using Cocos2D text capabilities.
n Chapter 5: More Actions, Effects, and Cocos2D Scheduler

Actions are a key concept in Cocos2D—they are an easy way to move objects
around, make them grow or disappear, and much more. In this chapter, you
put them in practice by adding power-ups and weapons to the level, and you
learn some other important Cocos2D capabilities, such as effects and the
scheduler.

n Chapter 6: Text, Fonts, and the Written Word

Most games have text in them at some point, and Space Viking is no exception.
In this chapter, you learn how to add text to your games using the different
methods available in Cocos2D.

n Part III: From Level to Game

Learn how to expand the Space Viking level into a full game by adding menus,
sound, and scrolling.
n Chapter 7: Main Menu, Level Completed, and Credits Scenes

Almost all games have more than one screen (or “scene,” as it’s called in
Cocos2D); there’s usually a main menu, main game scene, level completed,
and credits scene at the very least. In this chapter, you learn how to create
multiple scenes by implementing them in Space Viking!

n Chapter 8: Pump Up the Volume!

Adding sound effects and music to a game can make a huge difference.
Cocos2D makes it really easy with the CocosDenshion sound engine, so in
this chapter you give it a try!

n Chapter 9: When the World Gets Bigger: Adding Scrolling

A lot of games have a bigger world than can fit on one screen, so the world
needs to scroll as the player moves through it. This can be tricky to get right,
so this chapter shows you how by converting the beat-’em-up into a side-
scroller, using Cocos2D tile maps for improved performance.

Preface xv

n Part IV: Physics Engines

With the Box2D and Chipmunk physics engines that come with Cocos2D, you
can add some amazing effects to your games, such as gravity, realistic collisions,
and even ragdoll effects! In these chapters you get a chance to add some physics-
based levels to Space Viking, from simple to advanced!
n Chapter 10: Basic Game Physics: Adding Realism with Box2D

Just as Cocos2D makes it easy to make games for the iPhone without know-
ing low-level OpenGL details, Box2D makes it easy to add physics to your
game objects without having to be a math expert. In this chapter, you learn
how to get started with Box2D by making a fun puzzle game where objects
move according to gravity.

n Chapter 11: Intermediate Game Physics: Modeling, Racing, and
Leaping

This chapter shows you some of the really neat stuff you can do with Box2D
by making the start of a side-scrolling cart-racing game. In the process, you
learn how to model arbitrary shapes, add joints to restrict movement of phys-
ics bodies, and much more!

n Chapter 12: Advanced Game Physics: Even Better than the Real
Thing

In this chapter, you make the cart-racing level even more amazing by adding
spikes to dodge and an epic boss fight at the end. You learn more about joints,
how to detect collisions, and how to add enemy logic as well.

n Chapter 13: The Chipmunk Physics Engine (No Alvin Required)

The second physics engine that comes with Cocos2D, called Chipmunk, is
similar to Box2D. This chapter shows you how to use Chipmunk, compares it
to Box2D, and gives you hands-on practice by making a Metroid-style escape
level.

n Part V: Particle Systems, Game Center, and Performance

Learn how to quickly create and add particle systems to your games, how to
integrate with Apple’s Game Center for online leaderboards and achievements,
and some performance tips and tricks to keep your game running fast.
n Chapter 14: Particle Systems: Creating Fire, Snow, Ice, and More

Using Cocos2D’s particle system, you can add some amazing special effects to
your game—extremely easily! In this chapter, you learn how to use particle
systems to add some special effects to Space Viking, such as ship exhaust.

n Chapter 15: Achievements and Leaderboards with Game Center

With Apple’s Game Center, you can easily add achievements and leaderboards
to your games, which makes things more fun for players and also might help
you sell more copies! This chapter covers how to set things up in Space Viking,
step by step.

Prefacexvi

n Chapter 16: Performance Optimizations

In this chapter, you learn how to tackle some of the most common chal-
lenges and issues you will face in optimizing and getting the most out of your
Cocos2D game. You get hands-on experience debugging the most common
performance issues and applying solutions.

n Chapter 17: Conclusion

This final chapter recaps what you learned and describes where you can go
next: into 3D, using Cocos2D on other platforms such as Android, and more
advanced game-development topics.

n Appendix: Principal Classes of Cocos2D

The Appendix provides an overview of the main classes you will be using and
interacting with in Cocos2D.

By the time you’ve finished reading this book, you’ll have practical experience
making an awesome game from scratch! You can then take the concepts you’ve learned
(and even some of the code!) and use it to turn your own game into a reality.

Audience for This Book
The audience for this book includes developers who are put off by game-making
because they anticipate a long and complex learning curve. Many developers want to
write games but don’t know where to start with game development or the Cocos2D
framework. This book is a hands-on guide, which takes you from the very beginning of
using Cocos2D to applying the advanced physics concepts in Box2D and Chipmunk.

This book is targeted to developers interested in creating games for iOS devices,
including the iPhone, iPad, and iPod touch. The book assumes a basic understanding
of Objective-C, Cocoa Touch, and the Xcode tools. You are not expected to know
any lower-level APIs (Core Audio, OpenGL ES, etc.), as these are used internally by
Cocos2D.

Who This Book Is For
If you are already developing applications for the iPhone of other platform but want to
make a move from utility applications to games, then this book is for you. It builds on
the development knowledge you already have and leads you into game development by
describing the terminology, technology, and tools required as well as providing real-
world implementation examples.

Who This Book Isn’t For
If you already have a grasp of the workf low required to create a game or you have a
firm game idea that you know will require OpenGL ES for 3D graphics, then this is
not the book for you.

Preface xvii

It is expected that before you read this book you are already familiar with
Objective-C, C, Xcode, and Interface Builder. While the implementations described
in this book have been kept as simple as possible, and the use of C is limited, a firm
foundation in these languages is required.

The following books can help provide you with the grounding you need to work
through this book:

n Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-
Wesley, 2008)

n Learning Objective-C 2.0 by Robert Clair (Addison-Wesley, 2011)
n Programming in Objective-C 2.0 by Stephen G. Kochan (Addison-Wesley, 2009)
n Cocoa Design Patterns by Erik M. Buck and Donald A. Yacktman (Addison-

Wesley, 2009)
n The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley,

2010)
n Core Animation: Simplified Animation Techniques for Mac and iPhone Development by

Marcus Zarra and Matt Long (Addison-Wesley, 2010)
n iPhone Programming: The Big Nerd Ranch Guide by Aaron Hillegass and Joe

Conway (Big Nerd Ranch, Inc., 2010)
n Learning iOS Game Programming: A Hands-On Guide to Building Your First iPhone

Game by Michael Daley (Addison-Wesley, 2011)

These books, along with other resources you’ll find on the web, will help you learn
more about how to program for the Mac and iPhone, giving you a deeper knowledge
about the Objective-C language and the Cocoa frameworks.

Source Code, Tutorial Videos, and Forums
Access to information is not limited only to the book. The complete, fully commented
source code for Space Viking is also included, along with video tutorials (available at
http://cocos2Dbook.com) that take you visually through the concepts of each chapter.

There is plenty of code to review throughout the book, along with exercises for
you to try out, so it is assumed you have access to the Apple developer tools such as
Xcode and the iPhone SDK. Both of these can be downloaded from the Apple iPhone
Dev Center: http://developer.apple.com/iphone.

If you want to work with your fellow students as you work through the book, feel
free to check out the book’s forums at http://cocos2dbook.com/forums/.

http://cocos2Dbook.com
http://developer.apple.com/iphone
http://cocos2dbook.com/forums/

This page intentionally left blank

Acknowledgments

This book would not have been possible without the hard work, support, and kindness
of the following people:

n First of all, thanks to our editor, Chuck Toporek, and his assistant, Olivia
Basegio. Chuck patiently helped and encouraged us during the entire process
(even though we are both first-time authors!) and has managed all of the work
it takes to convert a simple Word document into the actual book you’re holding
today. Olivia was extremely helpful through the entire process of keeping every-
one coordinated and the tech reviews coming in. Thanks again to both of you in
making this book a reality!

n Another person at Addison-Wesley whom we want to thank is Chuti Prasertsith,
who designed the cover for the book.

n A huge thanks to the lead developer and coordinator of Cocos2D, Ricardo
Quesada (also known as Riq), along with the other Cocos2D contributors,
such as Steve Oldmeadow and many others. Without Riq and his team’s hard
work and dedication to making Cocos2D into the amazing framework and
community that it is today, this book just wouldn’t exist. Also, we believe that
Cocos2D has made a huge positive difference in many people’s lives by enabling
them to accomplish a lifelong dream—to make their own games. Riq maintains
Cocos2D as his full-time job, so if you’d like to make a donation to thank him
for his hard work, you can do so at www.cocos2d-iphone.org/store. Riq also sells
source code for his game Sapus Tongue and a great physics editor called Level-
SVG. You can find out more about both at www.sapusmedia.com.

n Also, thank you to Erin Catto (the lead developer of Box2D) and Scott Lembcke
(the lead developer of Chipmunk) for their work on their amazing physics librar-
ies. Similarly to Riq’s work on Cocos2D, Erin’s and Scott’s work has enabled
countless programmers to create cool physics-based games quickly and easily.
Erin and Scott are extremely dedicated to supporting their libraries and commu-
nity, and even kindly donated their time in reviewing the physics chapters of this
book. If you’d like to donate to Erin or Scott for their hard work on their librar-
ies, you can do so by following the links at www.box2d.org and http://code.google.
com/p/chipmunk-physics.

n A big thanks to Steve Oldmeadow, the lead developer of CocosDenshion, the
sound engine behind Cocos2D. Steve provided assistance and time in reviewing

www.cocos2d-iphone.org/store
www.box2d.org
http://code.google.com/p/chipmunk-physics
http://code.google.com/p/chipmunk-physics
www.sapusmedia.com

Acknowledgmentsxx

the chapter on audio. Steve’s work has allowed many game developers to quickly
and easily add music and sound effects to their games.

n Eric Stevens is an American fine artist who moonlights as a game illustrator.
Years of good times and bad music contributed to the initial concept of Space
Viking. Eric worked closely with us to bring Ole and everything you see in
Space Viking to life. Eric maintains an illustration site at http://imagedesk.org, and
you can see his paintings at several galleries in the Southwest and at http://
ericstevensart.com.

n Mike Weiser is the musician who made the rocking soundtrack and sound effects
for Space Viking. We think the music made a huge difference in Space Viking and
really set the tone we were hoping for. A special thanks to Andrew Peplinski for
the Viking grunts and Rulon Brown for conducting the choir that you hear in
the beginning of the game. Mike has made music for lots of popular iOS games,
and you can check him out at www.mikeweisermusic.com.

n A huge thanks to our technical reviewers: Farim Farook, Marc Hebert, Mark
Hurley, Mike Leonardi, and Nick Waynik. These guys did a great job catching
all of our boneheaded mistakes and giving us some great advice on how to make
each chapter the best it could be. Thank you so much, guys!

Each of us also has some personal “thank yous” to make.

From Rod Strougo
I thank my wife and family for being ever patient while I was working on this book.
There were countless evenings when I was hidden away in my office writing, editing,
coding. Without Agata’s support and understanding, there is no way this book could
exist. Our older son, Alexander, was two and a half during the writing of this book,
and he helped beta test Space Viking, while Anton was born as I was finishing the last
chapters. Thank you for all the encouragement, love, and support, Agata.

I would also like to thank Ray for stepping in and writing the Box2D, Chipmunk,
and Game Center chapters. Ray did a fantastic job on in-depth coverage of Box2D
and Chipmunk, while adding some fun levels to Space Viking.

From Ray Wenderlich
First of all, a huge thank you to my wife and best friend, Vicki Wenderlich, for her
constant support, encouragement, and advice throughout this entire process. Without
her, I wouldn’t be making iOS apps today, and they definitely wouldn’t look as good!
Also, thank you to my amazing family. You believed in me through the ups and
downs of being an indie iOS developer and supported me the entire way. Thank you
so much!

www.mikeweisermusic.com
http://imagedesk.org
http://ericstevensart.com
http://ericstevensart.com

Acknowledgments xxi

Finally, I thank all of the readers and supporters of my iOS tutorial blog at www.
raywenderlich.com. Without your interest, encouragement, and support, I wouldn’t
have been as motivated to keep writing all the tutorials and might have never had the
opportunity to write this book. Thank you so much for making this possible, and I
hope you enjoy this book!

www.raywenderlich.com
www.raywenderlich.com

This page intentionally left blank

About the Authors

Rod Strougo is the founder and lead developer of the studio Prop Group at
www.prop.gr. Rod’s journey in physics and games started way back with an Apple][,
writing games in Basic. From the early passion in games, Rod’s career moved to enter-
prise software development, spending 10 years writing software for IBM and recently
for a large telecom company. These days Rod enjoys helping others get started on their
paths to making games. Originally from Rio de Janeiro, Brazil, Rod lives in Atlanta,
Georgia, with his wife and sons.

Ray Wenderlich is an iPhone developer and gamer and the founder of Razeware,
LLC. Ray is passionate about both making apps and teaching others the techniques to
make them. He has written a bunch of tutorials about iOS development, available at
www.raywenderlich.com.

www.prop.gr
www.raywenderlich.com

This page intentionally left blank

4
Simple Collision Detection and

the First Enemy

In the previous chapter you learned the basics of Cocos2D animations and actions. You also
started building a f lexible framework for Space Viking. In this chapter you go further and create
the first enemy for Ole to do battle with. In the process you learn how to implement a simple sys-
tem for collision detection and the artificial intelligence brain of the enemies in Space Viking.

There is a significant amount of code necessary in this chapter to drive the behavior of Ole and
the RadarDish. Take your time understanding how these classes work, as they are the foundation
and models for the rest of the classes in Space Viking.

Ready to defeat the aliens?

Creating the Radar Dish and Viking Classes
From just a CCSprite to a fully animated character, Ole the Viking takes the plunge
from simple to advanced from here on out. In this section you create the RadarDish
and Viking classes to encapsulate the logic needed by each, including all of the ani-
mations. The RadarDish class is worth a close look, as all of the enemy characters in
Space Viking are modeled after it.

Creating the RadarDish Class
In this first scene, there is a suspicious radar dish on the right side of the screen. It
scans for foreign creatures such as Ole. Ole needs to find a way to destroy the radar
dish before it alerts the enemy robots of his presence. Fortunately, Ole knows two
ways to deal with such problems: his left and right fists. Create the new RadarDish
class in Xcode by following these steps:

1. In Xcode, right-click on the EnemyObjects group.

2. Select New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

Chapter 4 Simple Collision Detection and the First Enemy84B

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter RadarDish for the filename and click Finish.

Open the RadarDish.h header file and change the contents to match the code in
Listing 4.1.

Listing 4.1 RadarDish.h header file

// RadarDish.h

// SpaceViking

//

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

@interface RadarDish : GameCharacter {

CCAnimation *tiltingAnim;

CCAnimation *transmittingAnim;

CCAnimation *takingAHitAnim;

CCAnimation *blowingUpAnim;

GameCharacter *vikingCharacter;

}

@property (nonatomic, retain) CCAnimation *tiltingAnim;

@property (nonatomic, retain) CCAnimation *transmittingAnim;

@property (nonatomic, retain) CCAnimation *takingAHitAnim;

@property (nonatomic, retain) CCAnimation *blowingUpAnim;

@end

Looking at Listing 4.1 you can see that the RadarDish class inherits from the
GameCharacter class and that it defines four CCAnimation instance variables. There
is also an instance variable to hold a pointer back to the Viking character.

Why the vikingCharacter Variable Is of Type GameCharacter and Not of Type
Viking Class
If you look carefully at Listing 4.1, you will notice that the vikingCharacter
instance variable is of type GameCharacter and not of type Viking. This is
because the RadarDish class needs access only to the methods defined in
GameCharacter and not to the full Viking class.

Having an instance variable of type GameCharacter here allows for the
RadarDish class to not have to know anything further about the Viking object
except that it is a GameCharacter. You are free to add features to the Viking
class without fear that it will break any functionality in RadarDish. If you were to
change the main character in a future version of Space Viking, the code would still

Creating the Radar Dish and Viking Classes 85B

function fine, since that new main character class too would, presumably, be derived
from the GameCharacter class.

Listings 4.2, 4.3, and 4.4 show the contents of the RadarDish.m implementation file.
The changeState and updateStateWithDelta time methods are crucial to under-
stand, as they are the most basic versions of what you will find in all of the characters
in Space Viking. While reading this code, keep in mind that the RadarDish is a simple
enemy that never moves or attacks the Viking. The RadarDish does take damage
from the Viking, eventually blowing up by moving to a dead state. Listing 4.2 covers
the top portion of the RadarDish.m implementation file, including the changeState
method. Open the RadarDish.m implementation file and replace the code so that it
matches the contents in Listings 4.2, 4.3, and 4.4.

Listing 4.2 RadarDish.m implementation file (top portion)

// RadarDish.m

// SpaceViking

#import "RadarDish.h"

@implementation RadarDish

@synthesize tiltingAnim;

@synthesize transmittingAnim;

@synthesize takingAHitAnim;

@synthesize blowingUpAnim;

- (void) dealloc{

 [tiltingAnim release];

 [transmittingAnim release];

 [takingAHitAnim release];

 [blowingUpAnim release];

 [super dealloc];

}

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

 [self setCharacterState:newState];

switch (newState) {

case kStateSpawning:

CCLOG(@"RadarDish->Starting the Spawning Animation");

 action = [CCAnimate actionWithAnimation:tiltingAnim

restoreOriginalFrame:NO];

break;

Chapter 4 Simple Collision Detection and the First Enemy86B

case kStateIdle:

CCLOG(@"RadarDish->Changing State to Idle");

 action = [CCAnimate actionWithAnimation:transmittingAnim

restoreOriginalFrame:NO];

break;

case kStateTakingDamage:

CCLOG(@"RadarDish->Changing State to TakingDamage");

characterHealth =

characterHealth - [vikingCharacter getWeaponDamage];

if (characterHealth <= 0.0f) {

 [self changeState:kStateDead];

 } else {

 action = [CCAnimate actionWithAnimation:takingAHitAnim

restoreOriginalFrame:NO];

 }

break;

case kStateDead:

CCLOG(@"RadarDish->Changing State to Dead");

 action = [CCAnimate actionWithAnimation:blowingUpAnim

restoreOriginalFrame:NO];

break;

default:

CCLOG(@"Unhandled state %d in RadarDish", newState);

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

The changeState method is called when the RadarDish needs to transition
between states. In the beginning of this chapter you were introduced to state
machines, and the changeState method is what allows for transitions to different
states in the miniscule “brain” of the RadarDish. The RadarDish brain can exist in
one of four states: spawning, idle, taking damage, or dead. In the listings that follow,
you will see that the RadarDish is initialized in the spawning state when it is created,
and then through the updateStateWithDeltaTime method it will move through
the four states.

When the updateStateWithDeltaTime determines that the RadarDish needs to
change its state, the changeState method is called. Looking at Listing 4.2, you can
recap what the switch state is doing as follows:

Creating the Radar Dish and Viking Classes 87B

n Spawning (kStateSpawning)

Starts up the RadarDish with the tilting animation, which is the dish moving
up and down.

n Idle (kStateIdle)

Runs the transmitting animation, which is the RadarDish blinking.
n Taking Damage (kStateTakingDamage)

Runs the taking damage animation, showing a hit to the RadarDish. The
RadarDish health is reduced according to the type of weapon being used
against it.

n Dead (kStateDead)

The RadarDish plays a death animation of it blowing up. This state occurs once
the RadarDish health is at or below zero.

The next section of the RadarDish implementation file is covered in Listing 4.3,
showing the updateStateWithDeltaTime method.

Listing 4.3 RadarDish.m implementation file (middle portion)

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if (characterState == kStateDead)

return; // 1

 vikingCharacter =

 (GameCharacter*)[[self parent]

 getChildByTag:kVikingSpriteTagValue]; // 2

 CGRect vikingBoudingBox =

 [vikingCharacter adjustedBoundingBox]; // 3

 CharacterStates vikingState = [vikingCharacter

 characterState]; // 4

// Calculate if the Viking is attacking and nearby

if ((vikingState == kStateAttacking) &&

 (CGRectIntersectsRect([self adjustedBoundingBox],
vikingBoudingBox))) { // 5

if (characterState != kStateTakingDamage) {

// If RadarDish is NOT already taking Damage

 [self changeState:kStateTakingDamage];

return;

 }

 }

Chapter 4 Simple Collision Detection and the First Enemy88B

if (([self numberOfRunningActions] == 0) &&

 (characterState != kStateDead)) {

 CCLOG(@"Going to Idle");

 [self changeState:kStateIdle]; // 6

return;

 }

}

Now let’s examine the numbered lines of the code:

1. Checks if the RadarDish is already dead. If it is, this method is short-circuited
and returned. If the RadarDish is dead, there is nothing to update.

2. Gets the Viking character object from the RadarDish parent. All of Space
Viking’s objects are children of the scene SpriteBatchNode, referred to here
as the parent. The Viking in particular was added to the SpriteBatchNode
with a particular tag, referred to by the constant kVikingSpriteTagValue.
By obtaining a reference to the Viking object, the RadarDish can determine
if the Viking is nearby and attacking the RadarDish. (Listing 4.3 contains the
code that sets up the kVikingSpriteTagValue constant.)

3. Gets the Viking character’s adjusted bounding box.

4. Gets the Viking character’s state.

5. Determines if the Viking is nearby and attacking. If the adjusted bounding
boxes for the Viking and the RadarDish overlap, and the Viking is in his
attack phase, the RadarDish can be certain that the Viking is attacking it. The
call to changeState:kStateTakingDamage will alter the RadarDish anima-
tion to ref lect the attack and reduce the RadarDish character’s health.

6. Resets the transmission animation on the RadarDish. If the RadarDish is not
currently playing an animation, and it is not dead, it is reset to idle so that the
transmission animation can restart.

The last part of the RadarDish.m implementation file is the longest but least com-
plicated. There is an initAnimations method, which sets up all of the RadarDish
animations, and an init method that initializes the RadarDish and sets up the
starting values for the instance variables. Add the contents of Listing 4.4 to your
RadarDish.m implementation file.

Listing 4.4 RadarDish.m implementation file (bottom portion)

-(void)initAnimations {

 [self setTiltingAnim:

 [self loadPlistForAnimationWithName:@"tiltingAnim"

andClassName:NSStringFromClass([self class])]];

Creating the Radar Dish and Viking Classes 89B

 [self setTransmittingAnim:

 [self loadPlistForAnimationWithName:@"transmittingAnim"

andClassName:NSStringFromClass([self class])]];

 [self setTakingAHitAnim:

 [self loadPlistForAnimationWithName:@"takingAHitAnim"

andClassName:NSStringFromClass([self class])]];

 [self setBlowingUpAnim:

 [self loadPlistForAnimationWithName:@"blowingUpAnim"

 andClassName:NSStringFromClass([self class])]];

}

-(id) init {

if((self=[super init])) {

CCLOG(@"### RadarDish initialized");

 [self initAnimations]; // 1

 characterHealth = 100.0f; // 2

 gameObjectType = kEnemyTypeRadarDish; // 3

 [self changeState:kStateSpawning]; // 4

 }

return self;

}

@end

The initAnimations method calls the loadPlistForAnimationWithName
method you declared in the GameObject class. The name of the animation to load
is passed along with the class name. Note the convenience method NSStringFrom-
Class is used to get an NSString from the class name, in this case RadarDish. The
class name is used to find the correct plist file for the object, since the plist files have a
name corresponding to the class. The following occurs in the init method:

1. Calls the initAnimations method, which sets up all of the animations for
the RadarDish. The frame’s coordinates and textures were already loaded and
cached by Cocos2D when the texture atlas files (scene1atlas.png and scene1atlas.
plist) were loaded by the GameplayLayer class.

2. Sets the initial health of the RadarDish to a value of 100.

3. Sets the RadarDish to be a Game Object of type kEnemyTypeRadarDish.

4. Initializes the state of the RadarDish to spawning. Looking back at Listing 4.2,
you can see that this starts the tilting animation, which is followed by the trans-
mitting animation when the RadarDish moves from spawning to an idle state.

There is a little more work left before you can have this chapter’s game running
on your device. You need to add the Viking class and make some changes to the
GameplayLayer class. It is important to understand how the updateStateWith-
DeltaTime and the changeState methods in RadarDish control the state of the

Chapter 4 Simple Collision Detection and the First Enemy90B

AI brain. These same two methods are used to drive the brain of all of the other game
characters, including Ole the Viking.

Creating the Viking Class
In the previous chapter, Ole the Viking was nothing more than a CCSprite. In this
chapter you pull him out into his own class complete with animations and a state
machine to transition him through his various states. If the Viking class code starts to
look daunting, refer back to the RadarDish class: the Viking is simply a game charac-
ter like the RadarDish, albeit with more functionality. Create the new Viking class
in Xcode by:

1. In Xcode, right-click on the GameObjects group.

2. Select Add > New File, choose the Cocoa Touch category under iOS and
Objective-C class as the file type, and click Next.

3. For the Subclass field, enter GameCharacter and click Next.

4. Enter Viking for the filename and click Save.

Open the Viking.h header file and change the contents to match the code in
Listing 4.5.

Listing 4.5 Viking.h header file

// Viking.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "GameCharacter.h"

#import "SneakyButton.h"

#import "SneakyJoystick.h"

typedef enum {

 kLeftHook,

 kRightHook

} LastPunchType;

@interface Viking : GameCharacter {

LastPunchType myLastPunch;

BOOL isCarryingMallet;

CCSpriteFrame *standingFrame;

 // Standing, breathing, and walking

CCAnimation *breathingAnim;

CCAnimation *breathingMalletAnim;

CCAnimation *walkingAnim;

CCAnimation *walkingMalletAnim;

Creating the Viking Class 91B

 // Crouching, standing up, and Jumping

CCAnimation *crouchingAnim;

CCAnimation *crouchingMalletAnim;

CCAnimation *standingUpAnim;

CCAnimation *standingUpMalletAnim;

CCAnimation *jumpingAnim;

CCAnimation *jumpingMalletAnim;

CCAnimation *afterJumpingAnim;

CCAnimation *afterJumpingMalletAnim;

 // Punching

CCAnimation *rightPunchAnim;

CCAnimation *leftPunchAnim;

CCAnimation *malletPunchAnim;

 // Taking Damage and Death

CCAnimation *phaserShockAnim;

CCAnimation *deathAnim;

SneakyJoystick *joystick;

SneakyButton *jumpButton ;

SneakyButton *attackButton;

float millisecondsStayingIdle;

}

// Standing, Breathing, Walking

@property (nonatomic, retain) CCAnimation *breathingAnim;

@property (nonatomic, retain) CCAnimation *breathingMalletAnim;

@property (nonatomic, retain) CCAnimation *walkingAnim;

@property (nonatomic, retain) CCAnimation *walkingMalletAnim;

// Crouching, Standing Up, Jumping

@property (nonatomic, retain) CCAnimation *crouchingAnim;

@property (nonatomic, retain) CCAnimation *crouchingMalletAnim;

@property (nonatomic, retain) CCAnimation *standingUpAnim;

@property (nonatomic, retain) CCAnimation *standingUpMalletAnim;

@property (nonatomic, retain) CCAnimation *jumpingAnim;

@property (nonatomic, retain) CCAnimation *jumpingMalletAnim;

@property (nonatomic, retain) CCAnimation *afterJumpingAnim;

@property (nonatomic, retain) CCAnimation *afterJumpingMalletAnim;

// Punching

@property (nonatomic, retain) CCAnimation *rightPunchAnim;

@property (nonatomic, retain) CCAnimation *leftPunchAnim;

@property (nonatomic, retain) CCAnimation *malletPunchAnim;

Chapter 4 Simple Collision Detection and the First Enemy92B

// Taking Damage and Death

@property (nonatomic, retain) CCAnimation *phaserShockAnim;

@property (nonatomic, retain) CCAnimation *deathAnim;

@property (nonatomic,assign) SneakyJoystick *joystick;

@property (nonatomic,assign) SneakyButton *jumpButton;

@property (nonatomic,assign) SneakyButton *attackButton;

@end

Listing 4.5 shows the large number of animations that are possible with the Viking
character as well as instance variables to point to the onscreen joystick and button
controls.

The key items to note are the typedef enumerator for the left and right
punches, an instance variable to store what the last punch thrown was, and a float
to keep track of how long the player has been idle. The code for the Viking imple-
mentation file is a bit on the lengthy side, hence it is broken up into four Listings, 4.6
through 4.9. Open the Viking.m implementation file and replace the code so that it
matches the contents in Listings 4.6, 4.7, 4.8, and 4.9.

Listing 4.6 Viking.m implementation file (part 1 of 4)

// Viking.m

// SpaceViking

#import "Viking.h"

@implementation Viking

@synthesize joystick;

@synthesize jumpButton ;

@synthesize attackButton;

// Standing, Breathing, Walking

@synthesize breathingAnim;

@synthesize breathingMalletAnim;

@synthesize walkingAnim;

@synthesize walkingMalletAnim;

// Crouching, Standing Up, Jumping

@synthesize crouchingAnim;

@synthesize crouchingMalletAnim;

@synthesize standingUpAnim;

@synthesize standingUpMalletAnim;

@synthesize jumpingAnim;

@synthesize jumpingMalletAnim;

@synthesize afterJumpingAnim;

@synthesize afterJumpingMalletAnim;

// Punching

@synthesize rightPunchAnim;

Creating the Viking Class 93B

@synthesize leftPunchAnim;

@synthesize malletPunchAnim;

// Taking Damage and Death

@synthesize phaserShockAnim;

@synthesize deathAnim;

- (void) dealloc {

joystick = nil;

jumpButton = nil;

attackButton = nil;

 [breathingAnim release];

 [breathingMalletAnim release];

 [walkingAnim release];

 [walkingMalletAnim release];

 [crouchingAnim release];

 [crouchingMalletAnim release];

 [standingUpAnim release];

 [standingUpMalletAnim release];

 [jumpingAnim release];

 [jumpingMalletAnim release];

 [afterJumpingAnim release];

 [afterJumpingMalletAnim release];

 [rightPunchAnim release];

 [leftPunchAnim release];

 [malletPunchAnim release];

 [phaserShockAnim release];

 [deathAnim release];

 [super dealloc];

}

-(BOOL)isCarryingWeapon {

return isCarryingMallet;

}

-(int)getWeaponDamage {

if (isCarryingMallet) {

return kVikingMalletDamage;

 }

return kVikingFistDamage;

}

-(void)applyJoystick:(SneakyJoystick *)aJoystick forTimeDelta:(float)
deltaTime

{

 CGPoint scaledVelocity = ccpMult(aJoystick.velocity, 128.0f);

 CGPoint oldPosition = [self position];

 CGPoint newPosition =

Chapter 4 Simple Collision Detection and the First Enemy94B

 ccp(oldPosition.x +

 scaledVelocity.x * deltaTime,

 oldPosition.y); // 1

 [self setPosition:newPosition]; // 2

if (oldPosition.x > newPosition.x) {

self.flipX = YES; // 3

 } else {

self.flipX = NO;

 }

}

-(void)checkAndClampSpritePosition {

if (self.characterState != kStateJumping) {

if ([self position].y > 110.0f)

 [self setPosition:ccp([self position].x,110.0f)];

 }

 [super checkAndClampSpritePosition];

}

At the beginning of the Viking.m implementation file is the dealloc method. Far
wiser Objective-C developers than this author have commented on the benefits of
having your dealloc method up top and near your synthesize statements. The idea
behind this move is to make sure you are deallocating any and all instance variables,
therefore avoiding one of the main causes of memory leaks in Objective-C code.

Following the dealloc method, you have the isCarryingWeapon method, but
since it is self-explanatory, move on to the applyJoystick method. This method is
similar to the one back in Chapter 2, “Hello, Space Viking,” Listing 2.10, but it has
been modified to deal only with Ole’s movement and removes the handling for the
jump or attack buttons. The first change to applyJoystick is the creation of the
oldPosition variable to track the Viking’s position before it is moved. Looking at
the applyJoystick method in Listing 4.6, take a note of the following key lines:

1. Sets the new position based on the velocity of the joystick, but only in the
x-axis. The y position stays constant, making it so Ole only walks to the left or
right, and not up or down.

2. Moves the Viking to the new position.

3. Compares the old position with the new position, f lipping the Viking horizon-
tally if needed. If you look closely at the Viking images, he is facing to the right
by default. If this method determines that the old position is to the right of the
new position, Ole is moving to the left, and his pixels have to be f lipped hori-
zontally. If you don’t f lip Ole horizontally, he will look like he is trying to do
the moonwalk when you move him to the left. It is a cool effect but not useful
for your Viking.

Creating the Viking Class 95B

Cocos2D has two built-in functions you will make use of frequently: flipX and
flipY. These functions f lip the pixels of a texture along the x- or y-axis, allowing
you to display a mirror image of your graphics without having to have left- and right-
facing copies of each image for each character. Figure 4.1 shows the effect of flipX
on the Viking texture. This is a really handy feature to have, since it helps reduce the
size of your application, and it keeps you from having to create images for every pos-
sible state.

Figure 4.1 Effects of the flipX function on the Viking texture or graphic

The next section of the Viking.m implementation file covers the changeState
method. As you learned with the RadarDish class, the changeState method is used
to transition the character from one state to another and to start the appropriate ani-
mations for each state. Copy the contents of Listing 4.7 into your Viking.m class.

Listing 4.7 Viking.m implementation file (part 2 of 4)

#pragma mark -

-(void)changeState:(CharacterStates)newState {

 [self stopAllActions];

id action = nil;

id movementAction = nil;

 CGPoint newPosition;

 [self setCharacterState:newState];

switch (newState) {

case kStateIdle:

if (isCarryingMallet) {

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_mallet_1.png"]];

 } else {

 [self setDisplayFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]];

 }

break;

Chapter 4 Simple Collision Detection and the First Enemy96B

case kStateWalking:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:walkingMalletAnim

restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:walkingAnim

restoreOriginalFrame:NO];

 }

break;

case kStateCrouching:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:crouchingMalletAnim

 restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:crouchingAnim

restoreOriginalFrame:NO];

 }

break;

case kStateStandingUp:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:standingUpMalletAnim

restoreOriginalFrame:NO];

 } else {

 action =

 [CCAnimate actionWithAnimation:standingUpAnim

restoreOriginalFrame:NO];

 }

break;

case kStateBreathing:

if (isCarryingMallet) {

 action =

 [CCAnimate actionWithAnimation:breathingMalletAnim

restoreOriginalFrame:YES];

 } else {

 action =

 [CCAnimate actionWithAnimation:breathingAnim

restoreOriginalFrame:YES];

 }

break;

Creating the Viking Class 97B

 case kStateJumping:

newPosition = ccp(screenSize.width * 0.2f, 0.0f);

if ([self flipX] == YES) {

 newPosition = ccp(newPosition.x * -1.0f, 0.0f);

 }

 movementAction = [CCJumpBy actionWithDuration:0.5f

position:newPosition

 height:160.0f

 jumps:1];

if (isCarryingMallet) {

// Viking Jumping animation with the Mallet

 action = [CCSequence actions:

 [CCAnimate

actionWithAnimation:crouchingMalletAnim

restoreOriginalFrame:NO],

 [CCSpawn actions:

 [CCAnimate

actionWithAnimation:jumpingMalletAnim

restoreOriginalFrame:YES],

 movementAction,

nil],

 [CCAnimate

actionWithAnimation:afterJumpingMalletAnim

 restoreOriginalFrame:NO],

nil];

 } else {

// Viking Jumping animation without the Mallet

 action = [CCSequence actions:

 [CCAnimate

actionWithAnimation:crouchingAnim

restoreOriginalFrame:NO],

 [CCSpawn actions:

 [CCAnimate

actionWithAnimation:jumpingAnim

restoreOriginalFrame:YES],

 movementAction,

nil],

 [CCAnimate

actionWithAnimation:afterJumpingAnim

restoreOriginalFrame:NO],

nil];

 }

break;

case kStateAttacking:

if (isCarryingMallet == YES) {

Chapter 4 Simple Collision Detection and the First Enemy98B

 action = [CCAnimate

actionWithAnimation:malletPunchAnim

restoreOriginalFrame:YES];

 } else {

if (kLeftHook == myLastPunch) {

// Execute a right hook

myLastPunch = kRightHook;

 action = [CCAnimate

actionWithAnimation:rightPunchAnim

restoreOriginalFrame:NO];

 } else {

// Execute a left hook

myLastPunch = kLeftHook;

 action = [CCAnimate

actionWithAnimation:leftPunchAnim

restoreOriginalFrame:NO];

 }

 }

break;

case kStateTakingDamage:

self.characterHealth = self.characterHealth - 10.0f;

 action = [CCAnimate

actionWithAnimation:phaserShockAnim

restoreOriginalFrame:YES];

break;

case kStateDead:

 action = [CCAnimate

actionWithAnimation:deathAnim

restoreOriginalFrame:NO];

break;

default:

break;

 }

if (action != nil) {

 [self runAction:action];

 }

}

The first part of the changeState method stops any running actions, including
animations. Any running actions would be a part of a previous state of the Viking
and would no longer be valid. Following the first line, the Viking state is set to the
new state value, and a switch statement is used to carry out the animations for the
new state. A few items are important to note:

Creating the Viking Class 99B

1. Method variables cannot be declared inside a switch statement, as they would
be out of scope as soon as the code exited the switch statement. Your id
action variable is declared above the switch statement but initialized inside
the switch branches.

2. Most of the states have two animations: one for the Viking with the Mallet
and one without. The isCarryingMallet Boolean instance variable is key in
determining which animation to play.

3. An action in Cocos2D can be made up of other actions in that it can be a com-
pound action. The switch branch taken when the Viking state is kState-
Jumping has a compound action made up of CCSequence, CCAnimate,
CCSpawn, and CCJumpBy actions. The CCJumpBy action provides the parabolic
movement for Ole the Viking, while the CCAnimate actions play the crouching,
jumping, and landing animations. The CCSpawn action allows for more than one
action to be started at the same time, in this case the CCJumpBy and CCAnimate
animation action of Ole jumping. The CCSequence action ties it all together by
making Ole crouch down, then jump, and finally land on his feet in sequence.

4. Taking a closer look at the kStateTakingDamage switch branch, you can see
that after the animation completes, Ole reverts back to the frame that was display-
ing before the animation started. In this state transition, the CCAnimate action
has the restoreOriginalFrame set to YES. The end effect of restore-
OriginalFrame is that Ole will animate receiving a hit, and then return to
looking as he did before the hit took place.

The first line of Listing 4.7 might be rather odd-looking: #pragma mark. The
pragma mark serves as a formatting guide to Xcode and is not seen by the compiler.
After the words #pragma mark you can place any text you would like displayed in
the Xcode pulldown for this file. If you have just a hyphen (-), Xcode will create a
separate section for that portion of the file. Using pragma mark can make your code
easier to navigate. Figure 4.2 shows the effects of the pragma mark statements in the
completed Viking.m file.

Figure 4.2 The effect of the pragma mark statements in the Xcode
pulldown menus

Chapter 4 Simple Collision Detection and the First Enemy100B

The next section of the Viking.m file covers the updateStateWithDeltaTime
and the adjustedBoundingBox methods. Copy the contents of Listing 4.8 into your
Viking.m file immediately following the changeState method.

Listing 4.8 Viking.m implementation file (part 3 of 4)

#pragma mark -

-(void)updateStateWithDeltaTime:(ccTime)deltaTime
andListOfGameObjects:(CCArray*)listOfGameObjects {

if (self.characterState == kStateDead)

return; // Nothing to do if the Viking is dead

if ((self.characterState == kStateTakingDamage) &&

 ([self numberOfRunningActions] > 0))

return; // Currently playing the taking damage animation

// Check for collisions

// Change this to keep the object count from querying it each time

CGRect myBoundingBox = [self adjustedBoundingBox];

for (GameCharacter *character in listOfGameObjects) {

// This is Ole the Viking himself

 // No need to check collision with one's self

if ([character tag] == kVikingSpriteTagValue)

continue;

CGRect characterBox = [character adjustedBoundingBox];

if (CGRectIntersectsRect(myBoundingBox, characterBox)) {

// Remove the PhaserBullet from the scene

if ([character gameObjectType] == kEnemyTypePhaser) {

 [self changeState:kStateTakingDamage];

 [character changeState:kStateDead];

 } else if ([character gameObjectType] ==

kPowerUpTypeMallet) {

// Update the frame to indicate Viking is

 // carrying the mallet

isCarryingMallet = YES;

 [self changeState:kStateIdle];

// Remove the Mallet from the scene

 [character changeState:kStateDead];

 } else if ([character gameObjectType] ==

kPowerUpTypeHealth) {

 [self setCharacterHealth:100.0f];

// Remove the health power-up from the scene

 [character changeState:kStateDead];

 }

 }

 }

Creating the Viking Class 101B

 [self checkAndClampSpritePosition];

if ((self.characterState == kStateIdle) ||

 (self.characterState == kStateWalking) ||

 (self.characterState == kStateCrouching) ||

 (self.characterState == kStateStandingUp) ||

 (self.characterState == kStateBreathing)) {

if (jumpButton.active) {

 [self changeState:kStateJumping];

 } else if (attackButton.active) {

 [self changeState:kStateAttacking];

 } else if ((joystick.velocity.x == 0.0f) &&

 (joystick.velocity.y == 0.0f)) {

if (self.characterState == kStateCrouching)

 [self changeState:kStateStandingUp];

 } else if (joystick.velocity.y < -0.45f) {

if (self.characterState != kStateCrouching)

 [self changeState:kStateCrouching];

 } else if (joystick.velocity.x != 0.0f) { // dpad moving

if (self.characterState != kStateWalking)

 [self changeState:kStateWalking];

 [self applyJoystick:joystick

forTimeDelta:deltaTime];

 }

 }

if ([self numberOfRunningActions] == 0) {

// Not playing an animation

if (self.characterHealth <= 0.0f) {

 [self changeState:kStateDead];

 } else if (self.characterState == kStateIdle) {

millisecondsStayingIdle = millisecondsStayingIdle +

 deltaTime;

if (millisecondsStayingIdle > kVikingIdleTimer) {

 [self changeState:kStateBreathing];

 }

 } else if ((self.characterState != kStateCrouching) &&

 (self.characterState != kStateIdle)){

millisecondsStayingIdle = 0.0f;

 [self changeState:kStateIdle];

 }

 }

}

#pragma mark -

-(CGRect)adjustedBoundingBox {

// Adjust the bouding box to the size of the sprite

// without the transparent space

Chapter 4 Simple Collision Detection and the First Enemy102B

CGRect vikingBoundingBox = [self boundingBox];

float xOffset;

float xCropAmount = vikingBoundingBox.size.width * 0.5482f;

float yCropAmount = vikingBoundingBox.size.height * 0.095f;

if ([self flipX] == NO) {

// Viking is facing to the rigth, back is on the left

 xOffset = vikingBoundingBox.size.width * 0.1566f;

 } else {

// Viking is facing to the left; back is facing right

 xOffset = vikingBoundingBox.size.width * 0.4217f;

 }

 vikingBoundingBox =

CGRectMake(vikingBoundingBox.origin.x + xOffset,

 vikingBoundingBox.origin.y,

 vikingBoundingBox.size.width - xCropAmount,

 vikingBoundingBox.size.height - yCropAmount);

if (characterState == kStateCrouching) {

// Shrink the bounding box to 56% of height

// 88 pixels on top on iPad

 vikingBoundingBox = CGRectMake(vikingBoundingBox.origin.x,

 vikingBoundingBox.origin.y,

 vikingBoundingBox.size.width,

 vikingBoundingBox.size.height * 0.56f);

 }

return vikingBoundingBox;

}

In the same manner as the RadarDish updateStateWithDeltaMethod worked,
this method also returns immediately if the Viking is dead. There is no need to
update a dead Viking because he won’t be going anywhere.

If the Viking is in the middle of playing, the taking damage animation is played.
This method again short-circuits and returns. The taking damage animation is block-
ing in that the player cannot do anything else while Ole the Viking is being shocked.

If the Viking is not taking damage or is dead, then the next step is to check what
objects are coming in contact with the Viking. If there are objects in contact with the
Viking, he checks to see if they are:

n Phaser: Changes the Viking state to taking damage.
n Mallet power-up: Gives Ole the Viking the mallet, a fearsome weapon.
n Health power-up: Ole’s health is restored back to 100.

After checking for contacts, often called collisions, a quick call is made to the
checkAndClampSpritePosition method to ensure that the Viking sprite stays
within the boundaries of the screen.

Creating the Viking Class 103B

The next if statement block checks the state of the joystick, jump, and attack but-
tons and changes the state of the Viking to ref lect which controls are being pressed.
The if statement executes only if the Viking is not currently carrying out a blocking
animation, such as jumping.

Lastly the Viking class reaches a section of the updateStateWithDeltaTime
method that handles what happens when there are no animations currently running.
Cocos2D has a convenience method on CCNodes that reports back the number of
actions running against a particular CCNode object. If you recall from the beginning
of this chapter, all animations have to be run by a CCAnimate action. Once the ani-
mation for a state completes, the numberOfRunningActions will return zero for the
Viking, and this block of code will reset the Viking’s state.

If the health is zero or less, the Viking will move into the dead state. Otherwise, if
Viking is idle, a counter is incremented indicating how many seconds the player has
been idle. Once that counter reaches a set limit, the Viking will play a heavy breath-
ing animation. Finally, if the Viking is not already idle or crouching, he will move
back into the idle state.

Note
The breathing animation is just a little bonus move to try to get the player to focus back
on the game. If the joystick has been idle for more than 3 seconds, the Viking will let
out a few deep breaths as if to say “Come on! I have aliens to fight here, let’s get going!”

After the updateStateWithDeltaTime method, there is the adjustedBounding-
Box method you declared inside the GameObject class. In Chapter 3, “Introduction
to Cocos2D Animations and Actions,” Figure 3.6 illustrated the transparent space in
the Viking texture between the actual Viking and the edges of the image/texture.
This method compensates for the transparent pixels by returning an adjusted bound-
ing box that does not include the transparent pixels. The flipX parameter is used to
determine which side the Viking is facing, as fewer pixels are trimmed off the back of
the Viking image than the front.

The last part of the Viking.m implementation file sets up the animations inside the
initAnimations method and the instance variables inside the init method. Once
more, copy the contents of Listing 4.9 into your Viking.m implementation file immedi-
ately following the end of the adjustedBoundingBox method.

Listing 4.9 Viking.m implementation file (part 4 of 4)

#pragma mark -

-(void)initAnimations {

 [self setBreathingAnim:[self loadPlistForAnimationWithName:
@"breathingAnim" andClassName:NSStringFromClass([self class])]];

 [self setBreathingMalletAnim:[self loadPlistForAnimationWithName:
@"breathingMalletAnim" andClassName:NSStringFromClass([self class])]];

Chapter 4 Simple Collision Detection and the First Enemy104B

 [self setWalkingAnim:[self loadPlistForAnimationWithName:
@"walkingAnim" andClassName:NSStringFromClass([self class])]];

 [self setWalkingMalletAnim:[self loadPlistForAnimationWithName:
@"walkingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setCrouchingAnim:[self loadPlistForAnimationWithName:
@"crouchingAnim" andClassName:NSStringFromClass([self class])]];

 [self setCrouchingMalletAnim:[self loadPlistForAnimationWithName:
@"crouchingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setStandingUpAnim:[self loadPlistForAnimationWithName:
@"standingUpAnim" andClassName:NSStringFromClass([self class])]];

 [self setStandingUpMalletAnim:[self loadPlistForAnimationWithName:
@"standingUpMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setJumpingAnim:[self loadPlistForAnimationWithName:
@"jumpingAnim" andClassName:NSStringFromClass([self class])]];

 [self setJumpingMalletAnim:[self loadPlistForAnimationWithName:
@"jumpingMalletAnim" andClassName:NSStringFromClass([self class])]];

 [self setAfterJumpingAnim:[self loadPlistForAnimationWithName:
@"afterJumpingAnim" andClassName:NSStringFromClass([self class])]];

 [self setAfterJumpingMalletAnim:[self loadPlistForAnimationWithName:
@"afterJumpingMalletAnim" andClassName:NSStringFromClass([self class])]];

// Punches

 [self setRightPunchAnim:[self loadPlistForAnimationWithName:
@"rightPunchAnim" andClassName:NSStringFromClass([self class])]];

 [self setLeftPunchAnim:[self loadPlistForAnimationWithName:
@"leftPunchAnim" andClassName:NSStringFromClass([self class])]];

 [self setMalletPunchAnim:[self loadPlistForAnimationWithName:
@"malletPunchAnim" andClassName:NSStringFromClass([self class])]];

// Taking Damage and Death

 [self setPhaserShockAnim:[self loadPlistForAnimationWithName:
@"phaserShockAnim" andClassName:NSStringFromClass([self class])]];

 [self setDeathAnim:[self loadPlistForAnimationWithName:
@"vikingDeathAnim" andClassName:NSStringFromClass([self class])]];

}

Final Steps 105B

#pragma mark -

-(id) init {

if((self=[super init])) {

joystick = nil;

jumpButton = nil;

attackButton = nil;

 self.gameObjectType = kVikingType;

myLastPunch = kRightHook;

millisecondsStayingIdle = 0.0f;

isCarryingMallet = NO;

 [self initAnimations];

 }

return self;

}

@end

The initAnimation method, while quite long, is very basic in that it only initial-
izes all of the Viking animations based on the display frames already loaded from the
scene1atlas.plist file in the GameplayLayer class. The init method sets up the instance
variables to their starting values.

Final Steps
The final step for this chapter is to make some changes to the GameplayLayer class
so it loads the RadarDish and Viking onto the layer. Once these changes are made
to the GameplayLayer files, you will have a working and playable version of Space
Viking in your hands.

The GameplayLayer Class
The GameplayLayer class has a few changes to the header file. There is an additional
import for the CommonProtocols.h file and the vikingSprite has been removed;
instead there is a CCSpriteBatchNode called sceneSpriteBatchNode. Move your
GameplayLayer.h and GameplayLayer.m files into the Layers Group folder in Xcode and
ensure that your GameplayLayer.h header file has the same contents as Listing 4.10.

Listing 4.10 GameplayLayer.h header file

// GameplayLayer.h

// SpaceViking

#import <Foundation/Foundation.h>

#import "cocos2d.h"

#import "SneakyJoystick.h"

Chapter 4 Simple Collision Detection and the First Enemy106B

#import "SneakyButton.h"

#import "SneakyButtonSkinnedBase.h"

#import "SneakyJoystickSkinnedBase.h"

#import "Constants.h"

#import "CommonProtocols.h"

#import "RadarDish.h"

#import "Viking.h"

@interface GameplayLayer : CCLayer <GameplayLayerDelegate> {

CCSprite *vikingSprite;

SneakyJoystick *leftJoystick;

SneakyButton *jumpButton;

SneakyButton *attackButton;

 CCSpriteBatchNode *sceneSpriteBatchNode;

}

@end

The initJoystickAndButtons method of GameplayLayer stays the same as
in Chapter 3. The rest of the GameplayLayer class requires changes to use the new
CCSpriteBatchNode instance. Listings 4.11, 4.12, 4.13, and 4.14 cover the code for
GameplayLayer.m. Replace the code in your GameplayLayer.m implementation file with
the code in the next four listings.

Listing 4.11 GameplayLayer.m implementation file (part 1 of 4)

// GameplayLayer.m

// SpaceViking

#import "GameplayLayer.h"

@implementation GameplayLayer

- (void) dealloc {

 [leftJoystick release];

 [jumpButton release];

 [attackButton release];

 [super dealloc];

}

-(void)initJoystickAndButtons {

CGSize screenSize = [CCDirector sharedDirector].winSize; // 1

 // 2

CGRect joystickBaseDimensions = CGRectMake(0, 0, 128.0f, 128.0f);

CGRect jumpButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

CGRect attackButtonDimensions = CGRectMake(0, 0, 64.0f, 64.0f);

 // 3

CGPoint joystickBasePosition;

Final Steps 107B

CGPoint jumpButtonPosition;

CGPoint attackButtonPosition;

 // 4

if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 // The device is an iPad running iPhone 3.2 or later.

CCLOG(@"Positioning Joystick and Buttons for iPad");

 joystickBasePosition = ccp(screenSize.width*0.0625f,

 screenSize.height*0.052f);

 jumpButtonPosition = ccp(screenSize.width*0.946f,

 screenSize.height*0.052f);

 attackButtonPosition = ccp(screenSize.width*0.947f,

 screenSize.height*0.169f);

 } else {

 // The device is an iPhone or iPod touch.

CCLOG(@"Positioning Joystick and Buttons for iPhone");

 joystickBasePosition = ccp(screenSize.width*0.07f,

 screenSize.height*0.11f);

 jumpButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.11f);

 attackButtonPosition = ccp(screenSize.width*0.93f,

 screenSize.height*0.35f);

 }

SneakyJoystickSkinnedBase *joystickBase =

 [[[SneakyJoystickSkinnedBase alloc] init] autorelease];

 joystickBase.position = joystickBasePosition;

 joystickBase.backgroundSprite =

 [CCSprite spriteWithFile:@"dpadDown.png"];

 joystickBase.thumbSprite =

 [CCSprite spriteWithFile:@"joystickDown.png"];

 joystickBase.joystick = [[SneakyJoystick alloc]

initWithRect:joystickBaseDimensions];

leftJoystick = [joystickBase.joystick retain];

 [self addChild:joystickBase];

SneakyButtonSkinnedBase *jumpButtonBase =

 [[[SneakyButtonSkinnedBase alloc] init] autorelease];

 jumpButtonBase.position = jumpButtonPosition;

 jumpButtonBase.defaultSprite =

 [CCSprite spriteWithFile:@"jumpUp.png"];

 jumpButtonBase.activatedSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

Chapter 4 Simple Collision Detection and the First Enemy108B

 jumpButtonBase.pressSprite =

 [CCSprite spriteWithFile:@"jumpDown.png"];

 jumpButtonBase.button = [[SneakyButton alloc]

initWithRect:jumpButtonDimensions];

jumpButton = [jumpButtonBase.button retain];

jumpButton.isToggleable = NO;

 [self addChild:jumpButtonBase];

SneakyButtonSkinnedBase *attackButtonBase = [[[SneakyButtonSkinnedBase
alloc] init] autorelease];

 attackButtonBase.position = attackButtonPosition;

 attackButtonBase.defaultSprite = [CCSprite spriteWithFile:
@"handUp.png"];

 attackButtonBase.activatedSprite = [CCSprite
spriteWithFile:@"handDown.png"];

 attackButtonBase.pressSprite = [CCSprite spriteWithFile:
@"handDown.png"];

 attackButtonBase.button = [[SneakyButton alloc] initWithRect:
attackButtonDimensions];

attackButton = [attackButtonBase.button retain];

attackButton.isToggleable = NO;

 [self addChild:attackButtonBase];

}

The initJoystick method remains unchanged from previous chapters. The
directional pad (DPad) as well as the jump and attack buttons are set up and added to
the GameplayLayer. The high z values ensure that the joystick controls appear on
top of all the other graphical elements in the GameplayLayer.

Listing 4.12 GameplayLayer.m implementation file (part 2 of 4)

#pragma mark –

#pragma mark Update Method

-(void) update:(ccTime)deltaTime {

CCArray *listOfGameObjects =

 [sceneSpriteBatchNode children]; // 1

for (GameCharacter *tempChar in listOfGameObjects) { // 2

 [tempChar updateStateWithDeltaTime:deltaTime andListOfGameObjects:
 listOfGameObjects]; // 3

 }

}

The update method is the run loop for the entire GameplayLayer. The
CCSpriteBatchNode object contains a list of all of the CCSprites for which it will
handle the rendering, batching their OpenGL ES draw calls. The update method
does the following:

Final Steps 109B

1. Gets the list of all of the children CCSprites rendered by the CCSpriteBatch-
Node. In Space Viking this is a list of all of the GameCharacters, including the
Viking and his enemies.

2. Iterates through each of the Game Characters, calls their updateStateWith-
DeltaTime method, and passes a pointer to the list of all Game Characters. If
you look back at the updateStateWithDeltaTime code in Viking.m, you can
see the list of Game Characters used to check for power-ups and phaser blasts.
Power-ups and aliens with phaser beams are covered in the next chapter.

3. Calls the updateStateWithDeltaTime method on each of the Game
Characters. This call allows for all of the characters to update their individual
states to determine if they are colliding with any other objects in the game.

The next section of code in GameplayLayer.m (Listing 4.13) contains the methods
for creating the enemies and a placeholder for creating the phaser blast.

Listing 4.13 GameplayLayer.m implementation file (part 3 of 4)

#pragma mark -

-(void)createObjectOfType:(GameObjectType)objectType

 withHealth:(int)initialHealth

 atLocation:(CGPoint)spawnLocation

 withZValue:(int)ZValue {

if (objectType == kEnemyTypeRadarDish) {

CCLOG(@"Creating the Radar Enemy");

RadarDish *radarDish = [[RadarDish alloc] initWithSpriteFrameName:
@"radar_1.png"];

 [radarDish setCharacterHealth:initialHealth];

 [radarDish setPosition:spawnLocation];

 [sceneSpriteBatchNode addChild:radarDish

z:ZValue

tag:kRadarDishTagValue];

 [radarDish release];

 }

}

-(void)createPhaserWithDirection:(PhaserDirection)phaserDirection
andPosition:(CGPoint)spawnPosition {

CCLOG(@"Placeholder for Chapter 5, see below");

return;

}

The createObjectOfType method sets up the RadarDish object using the
CCSpriteBatchNode and adds it to the layer. This method is expanded upon in

Chapter 4 Simple Collision Detection and the First Enemy110B

Chapter 5, “More Actions, Effects, and Cocos2D Scheduler,” to include the other
enemies in the Space Viking world.

The last code listing for GameplayLayer.m covers the init method. Copy the con-
tents of Listing 4.14 into your GameplayLayer.m file.

Listing 4.14 GameplayLayer.m implementation file (part 4 of 4)

-(id)init {

self = [super init];

if (self != nil) {

CGSize screenSize = [CCDirector sharedDirector].winSize;

// enable touches

self.isTouchEnabled = YES;

srandom(time(NULL)); // Seeds the random number generator

 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

addSpriteFramesWithFile:@"scene1atlas.plist"]; // 1

sceneSpriteBatchNode =

 [CCSpriteBatchNode batchNodeWithFile:@"scene1atlas.png"]; // 2

 } else {

 [[CCSpriteFrameCache sharedSpriteFrameCache]

 addSpriteFramesWithFile:@"scene1atlasiPhone.plist"]; // 1

 sceneSpriteBatchNode =

 [CCSpriteBatchNode

batchNodeWithFile:@"scene1atlasiPhone.png"]; // 2

 }

 [self addChild:sceneSpriteBatchNode z:0]; // 3

 [self initJoystickAndButtons]; // 4

Viking *viking = [[Viking alloc]

initWithSpriteFrame:[[CCSpriteFrameCache

sharedSpriteFrameCache]

spriteFrameByName:@"sv_anim_1.png"]]; // 5

 [viking setJoystick:leftJoystick];

 [viking setJumpButton:jumpButton];

 [viking setAttackButton:attackButton];

 [viking setPosition:ccp(screenSize.width * 0.35f,

 screenSize.height * 0.14f)];

 [viking setCharacterHealth:100];

 [sceneSpriteBatchNode

addChild:viking

 z:kVikingSpriteZValue

tag:kVikingSpriteTagValue]; // 6

Final Steps 111B

 [self createObjectOfType:kEnemyTypeRadarDish

withHealth:100

 atLocation:ccp(screenSize.width * 0.878f,

 screenSize.height * 0.13f)

withZValue:10]; // 7

 [self scheduleUpdate]; // 8

 }

return self;

}

@end

Some key lines have been added since Chapter 2; they support the use of the
CCSpriteBatchNode class and texture atlas:

1. Adds all of the frame dimensions specified in scene1atlas.plist to the Cocos2D
Sprite Frame Cache. This will allow any CCSprite to be created by referencing
one of the frames/images in the texture atlas. This line is also key in loading up
the animations, since they reference spriteFrames loaded by the CCSprite-
FrameCache here.

2. Initializes the CCSpriteBatchNode with the texture atlas image. The image
scene1atlas.png becomes the master texture used by all of the CCSprites under
the CCSpriteBatchNode. In Space Viking these are all of the GameObjects in
the game, from the Viking to the Mallet power-up and the enemies.

3. Adds the CCSpriteBatchNode to the layer so it and all of its children (the
GameObjects) are rendered onscreen.

4. Initializes the Joystick DPad and buttons.

5. Creates the Viking character using the already cached sprite frame of the
Viking standing.

6. Adds the Viking to the CCSpriteBatchNode. The CCSpriteBatchNode
does all of the rendering for the GameObjects. Therefore, the objects have
to be added to the CCSpriteBatchNode and not to the layer. It is important
to remember that the objects drawn from the texture atlas are added to the
CCSpriteBatchNode and only the CCSpriteBatchNode is added to the
CCLayer.

7. Adds the RadarDish to the CCSpriteBatchNode. The RadarDish health is
set to 100 and the location as 87% of the screen width to the right (900 pixels
from the left of the screen on the iPad) and 13% of the screen height (100 pixels
from the bottom).

The percentages are used instead of hard point values so that the same game will
work on the iPhone, iPhone 4, and iPad. Although the screen width and height

Chapter 4 Simple Collision Detection and the First Enemy112B

ratios between the iPhones and iPad are a little different, they are close enough
to work for the placement of objects in Space Viking.

8. Sets up a scheduler call that will fire the update method in GameplayLayer.m on
every frame.

Now that you have added code to handle the RadarDish, the Viking, and the
texture atlas, it is time to test out Space Viking. If you select Run from Xcode, you
should see the Space Viking game in the iPad Simulator, as shown in Figure 4.3.

Figure 4.3 Space Viking with the RadarDish in place

Summary
If you made it through, great work—you’ve gotten a simple Cocos2D game working,
and you’ve learned a lot in the process! You learned about texture atlases, actions, and
animations. You utilized the texture atlas you created in the previous chapter to ren-
der all of the GameObjects in Space Viking. You created the enemy RadarDish and
gave Ole the power to go over there and destroy it to bits. In the process you learned
how to implement a simple state machine brain (AI) for the RadarDish and for the
Viking. You have also set up the groundwork for Space Viking to have multiple ene-
mies onscreen at once, each with its own AI state machines. The CCArray of objects
you pass in GameplayLayer to each character on the updateStateWithDeltaTime

Challenges 113B

call will allow for the enemy objects to send messages to each other and even coordi-
nate attacks against the Viking.

Since you just wrote so much code, you might want to take a few moments
to examine the code in more detail and make sure you understand how it all fits
together. It’s important to make sure you understand how things work so far, since
you’ll be building more on top of what you’ve built here in the rest of the chapters.

In the next chapter, you will dive deeper into Cocos2D actions, learn to use some
of the built-in effects, and add more enemies to Space Viking. When you are ready,
turn the page and learn how to add a mean alien robot that shoots phaser beams.

Challenges
1. Try changing the RadarDish animation delay on the takingAHitAnim to

1.0f seconds instead of 0.2f in the RadarDish.plist file. What happens when you
click Run and Ole attacks the RadarDish?

2. How would you add another instance of the RadarDish on the left side of the
screen facing in the opposite direction?

Hint
You can use the CCFlipX action to flip the RadarDish pixels horizontally.

3. How would you detect when the RadarDish object is destroyed and alert the
player that the level is complete?

Hint
You can extract the RadarDish object from the sceneSpriteBatchNode by using
the unique tag assigned to the RadarDish.

This page intentionally left blank

Index

Symbols and Numbers
? (Ternary operator), 134B–135B
3D

extensions to Cocos2D, 567B
z values in, 33B

A
AABB (axis-aligned bounding boxes)

avoiding object overlap, 77B
searching for objects in Box2D world,

305B–307B
Accelerometer

cart movement example, 355B–358B
commenting out, 319B
enabling support for, 302B–303B
implementing movement in Box2D, 281B
implementing movement in Chipmunk,

451B, 454B–455B
Accounts

iOS Developer Program account,
497B–498B

iPhone Developer account, 20B
Sandbox accounts, 514B

Achievements
adding to iTunes Connect, 515B–517B
displaying within apps, 534B–536B
GameState class and, 519B–521B
helper function for sending achievement

data, 524B–530B
helper functions for loading/saving

achievement data, 522B–524B
how they work, 517B–518B
implementing, 518B
overview of, 515B
using GameState and GCHelper classes

in Space Viking, 530B–534B

Action layer, getting started with Chipmunk,
423B–425B

Actions. See also Animation (CCAnimation)
CCMoves and CCScale actions in Space

Cargo ship, 123B
compound, 99B
effects packaged as, 145B
GameplayLayer class and, 127B
numberOfRunningActions method,

135B
overview of, 66B–67B
space cargo ship and, 125B

addChild method, CCParallaxNode,
251B–252B

addEnemy method, 143B–144B
addScrollingBackground method,

245B
addScrollingBackgroundWithParallax

method, 250B–252B
addScrollingBackground-

withTileMapInsideParallax

method, 272B–275B
adjustedBoundingBox method

enemy robot, 137B
Ole the Viking, 100B–103B

adjustLayer method, 245B–247B
AI (artif icial intelligence)

design basics, 65B
game logic and, 63B

Anchor points
for Game Start banner, 153B–154B
overview of, 153B
for rotation and other effects, 154B

Android, Coscos2D-Android, 567B
Angular impulses, Box2D

controlling f lipping of cart, 368B–369B
overview of, 368B

Index572B

Animation (CCAnimate)
actions and, 66B
approaches to animation, 57B
creating actions, 58B
delays between frames and frame list, 61B

Animation (CCAnimation)
actions and, 66B–67B
animating sprites generally, 57B–60B
animating sprites rendered by

CCSpriteBatchNode, 60B–61B
caching, 62B
delays between frames and frame list, 61B
frame rate in, 61B
overview of, 57B
storing animation data in plist f iles, 61B,

67B–69B
Animation, generally

adding background animation that inter-
acts with game, 122B

of breathing, 103B
changeState method for starting,

95B–98B
helper methods for, 411B
initiating for RadarDish class, 88B–89B
initiating for Viking class, 103B–105B
of Ole the Viking in Chipmunk,

469B–473B
repeating, 67B, 120B

App ID, creating, 498B–501B
App Store, 497B
Application Delegate (AppDelegate)

ApplicationDidFinishLaunching

method, 14B–15B
commanding director to run game scene,

34B–35B
in HelloWorld app, 15B–18B

ApplicationDidFinishLaunching

method, AppDelegate class, 14B–15B
applyJoystick method, Viking class, 94B
Apps

creating App ID, 498B–501B
displaying achievements in, 534B–536B
enabling support in Game Center,

505B–506B
registering in iTunes Connect,

501B–505B
Arbiters, collision events and, 446B

ARCH_OPTIMAL_PARTICLE_SYSTEM,
482B

artificial intelligence (AI)
design basics, 65B
game logic and, 63B

Assignment operator, combining if state-
ment with, 134B–135B

Attack buttons, added to GameplayLayer
class, 108B

Attack phase, RadarDish class and Viking
class and, 88B

Attack state, enemy robot and, 132B–133B
Audio

adding audio files, 198B
additions to game manager header and

implementation files, 204B–205B
audio constants, 198B–201B
CocosDenshion sound engine, 197B–198B
getting list of sound effects, 208B–211B
initAudioAsync method, 206B–207B
initializing audio manager (CDAudio-

Manager), 207B–208B
loading asynchronously, 203B–204B
loading sound effects, 211B–213B
loading synchronously, 201B–203B
loading/unloading audio files, 214B–215B
music added to GameplayLayer, 228B
music added to MainMenu, 228B–229B
music and sound effects in Chipmunk,

473B–474B
playbackgroundTrack, stopSound-

Effect, and playSoundEffect
methods, 213B–214B

setting up audio engine, 205B–206B
SimpleAudioEngine, 229B–230B
sounds added to EnemyRobot,

219B–222B
sounds added to game objects, 215B–216B
sounds added to Ole the Viking,

222B–228B
sounds added to RadarDish, 216B–217B
sounds added to SpaceCargoShip,

217B–219B
Audio constants, 198B–201B
Audio engines

setting up, 205B–206B
SimpleAudioEngine, 229B–230B

Index 573B

Audio files
adding to Space Viking project, 198B
loading/unloading, 214B–215B

Authentication
notification of changes to authentication

status, 508B–514B
of players in Game Center, 507B–508B

AVAudioPlay, audio framework for iOS
devices, 197B

Axis-aligned bounding boxes (AABB)
avoiding object overlap, 77B
searching for objects in Box2D world,

305B–307B

B
Background color, Particle Designer controls,

487B
Background layer

adding background music in Chipmunk,
473B–474B

adding in Chipmunk, 474B–476B
addScrollingBackground method,

245B
connecting background and game layers

to a scene, 31B–32B
creating for Space Viking project, 26B–29B
creating wave action in, 146B–148B
splitting into static and scrolling layers,

237B–239B
Background threads

adding audio asynchronously in, 201B
managing, 204B

begin events, collision-related events in
Chipmunk, 445B, 448B–449B

Bind calls, OpenGL ES, 45B, 48B
Bit depth, performance tips and, 551B
Bitmapped fonts, 155B, 179B
Bodies, Box2D

createBodyAtLocation method, 338B
creating, 292B–295B
creating drill sensor for Digger Robot,

401B–402B
creating for Ole and connecting with

joints, 376B
creating ground body in PuzzleLayer,

299B–302B

creating multiple bodies and joints,
378B–380B

decorating, 313B–320B
good and bad ways for placing, 379B–380B
setLinearVelocity method, 415B

Bodies, Chipmunk
adding, 420B
adding box to Chipmunk space,

431B–433B
constraints acting on, 457B–458B
creating revolving platform, 459B–460B
directly setting velocity, 444B

Bottlenecks, finding, 557B–558B
Bounding boxes

for avoiding object overlap, 77B
EyesightBoundingBox method, for

enemy robot, 129B
Box2D

bodies. See bodies, Box2D
Chipmunk compared with, 420B–421B
source code, 18B
template, 7B

Box2D, advanced physics
adding dangerous methods to Digger,

405B–411B
bridges in, 386B–389B
creating cinematic fight sequence,

411B–416B
creating multiple bodies and joints,

378B–380B
joints in, 376B
Ole leaping with ragdoll effect, 381B–386B
overview of, 375B
pitting Ole against Digger in fight,

396B–405B
prismatic joints, 378B
restricting revolute joints, 376B–377B
spike obstacle in, 390B–394B
summary and challenges, 417B
variable and fixed rate timestamps in,

394B–396B
Box2D, basic physics

adding files to project, 284B–288B
creating ground body in PuzzleLayer,

299B–302B
creating new scene in PuzzleLayer,

282B–284B

Index574B

Box2D, basic physics (continued)
creating objects, 292B–295B
creating world, 289B–292B
debug drawing, 295B–296B
decorating using sprites, 313B–320B
dragging objects, 304B–309B
getting started with, 279B–281B
interaction and decoration in, 302B–304B
mass, density, friction, and restitution in,

309B–313B
overview of, 279B
puzzle game example, 320B–324B
ramping up puzzle game, 324B–332B
units in, 288B–289B
viewing PuzzleLayer, 296B–298B

Box2D, intermediate physics
adding resource files, 334B–335B
adding wheels to cart using revolute

joints, 352B–355B
controlling f lipping of cart, 368B–369B
creating cart scene for, 335B–346B
creating custom shapes, 346B–348B
forces and impulses, 368B
getting started with, 334B
making cart jump, 369B–373B
making cart move using accelerometer,

355B–358B
making cart scene scrollable, 358B–368B
overview of, 333B
responsive direction switching,

373B–374B
Vertex Helper, 348B–352B

Box2DSprite class, subclasses for Digger
Robot, 398B

Bridges, creating in Box2D, 386B–389B
Build (z-B), testing build of Space Viking,

33B
Buttons

adding to Space Viking, 36B–40B
connecting button controls to Ole the

Viking, 245B

C
C++, Box2D written in, 280B, 420B
C language, Chipmunk written in, 420B

Caching
animations, 62B, 411B
textures, 17B

Callback functions, collision detection and,
446B

Cargo ship. See Space cargo ship
Cart

adding wheels using revolute joints,
352B–355B

controlling f lipping, 368B–369B
creating cart scene, 335B–346B
creating custom shapes, 346B–348B
header and implementation files,

337B–338B
making cart jump, 369B–373B
making cart scene scrollable, 358B–368B
moving using accelerometer, 355B–358B

categoryBits, setting object categories,
381B–382B

CCAnimate. See Animation (CCAnimate)
CCAnimation. See Animation

(CCAnimation)
CCAnimationCache, 62B, 411B
CCCallFunc action, 132B–133B
CCDirector. See Director (CCDirector)
CCFollow action, 249B
CCJumpBy action, 66B
CCLabel class. See Labels (CCLabel)
CCLabelIBMFont class

overview of, 155B
using, 159B

CCLabelTTF class
adding Game Start banner, 152B–153B
anchor points for Game Start banner,

153B–154B
fonts, 155B
overview of, 151B

CCLayer class. See Layers (CCLayer)
CCLOG macro, for NSLOG method, 41B
CCMenu class. See also Menus, 179B
CCMenuAtlasFont, 179B
CCMenuItemFont, 180B
CCMenuItemImage, 180B
CCMenuItemLabel, 180B
CCMenuItemSprite, 180B
CCMenuItemToggle, 180B

Index 575B

CCMoves action, 123B
CCNode class. See Nodes (CCNode)
ccp macro, shortcut to CGPointMake

method, 20B
CCParallaxNode

addChild method, 251B–252B
adding TileMap to, 272B–275B
addScrollingBackgroundWith-

Parallax method, 250B–251B
CCParticleSystemPoint, 481B–482B
CCParticleSystemQuad, 482B
CCRepeat, 120B
CCRepeatForever, 67B, 120B
CCScale action, 123B
CCScenes. See Scenes (CCScenes)
CCSequence, 67B
CCSpawn, 67B
CCSprite (Sprites). See Sprites (CCSprite)
CCSpriteBatchNode

animating sprites rendered by, 60B–61B
GameplayLayer class and, 111B
performance benefits of, 255B, 545B–550B
testing use in game layer, 52B–53B
using texture atlases and, 44B–45B

CCSpriteFrame, 60B
CCSpriteSheet, 134B–135B
CCTMXTiledMap, 271B
ccTouchBegan method, 304B–308B, 344B
ccTouchEnded method, 344B
ccTouchesBegan method, 262B
ccTouchMoved method, 308B–309B, 344B
CCWaves action, creating wave action in

background, 146B–148B
CDAudioManager, initializing, 207B–208B
CGSize, 232B–233B
changeState method

enemy robot, 129B–133B
Ole the Viking, 95B–98B
radar dish, 85B–86B

Characters. See Game characters
(GameCharacter)

checkAndClampSpritePosition method
ensuring enemy robot remains within

screen boundaries, 134B
ensuring Viking sprite remains within

screen boundaries, 102B
gameCharacter class and, 233B–234B

Chipmunk
adding backgrounds, 474B–476B
adding music and sound effects,

473B–474B
adding sprites, 438B–444B
adding to Xcode project, 426B–429B
adding win/lose conditions, 476B–477B
animating Ole, 469B–473B
Box2D compared with, 420B–421B
collision detection in, 445B–450B
constraints in, 455B–458B
creating a scene, 430B–438B
following Ole, 467B–468B
getting started with, 421B–426B
implementing velocity of sprite, 444B
initializing, 429B–430B
laying out platforms, 468B–469B
movement and jumping, 450B–455B
overview of, 419B–420B
pivot, spring, and normal platforms in,

460B–466B
revolving platform in, 458B–460B
summary and challenges, 477B
surface velocity for ground movement,

445B
template, 7B
viewing source code, 18B

Cinematic fight sequence, creating,
411B–416B

Classes
converting objects into, 63B
creating for Space Viking project,

24B–26B
creating GameCharacter class, 80B–82B
creating GameObject class, 74B–80B
of game objects, 64B–65B
grouping as organization technique, 70B
importing joystick class for Space Viking,

35B–36B
loose coupling, 117B–118B
principal classes in Cocos2D, 569B–570B

Cocos2D-Android, 567B
Cocos2D Application template, 7B, 284B
Cocos2D Box2D Application template, 284B
Cocos2D Director. See Director

(CCDirector)
Cocos2D-JavaScript, 568B

Index576B

Cocos2D-X, 567B–568B
CocosDenshion

importing SimpleAudioEngine, 205B
initializing audio manager (CDAudio-

Manager), 207B–208B
loading audio asynchronously,

203B–204B
loading sound effects, 211B–213B
sound engine, 197B–198B
viewing source code, 18B

Collision filters, Box2D, 381B–382B
Collisions

checking for, 102B
comparing Box2D with Chipmunk, 421B
detecting in Chipmunk, 445B–450B
Digger Robot and, 408B
optimizing collision detection in Chip-

munk, 431B
Common protocols. See Protocols
Compression formats, 43B
Constants

audio, 198B–201B
for static values used in more than one

class, 71B–72B
Constraints, in Chipmunk

compared with joints, 420B–421B
creating pivot platforms and, 462B
creating spring platforms and, 463B–464B
steps in use of, 456B–458B
types of, 455B–456B

ControlLayer, connecting joystick and but-
ton controls to Viking, 245B

Coordinate systems, converting UIKIT to/
from OpenGL ES, 29B

cpArbiter, collision events and, 446B
cpPolyShapeNew, 448B
CPRevolvePlatform, subclass for revolving

platform, 458B–460B
CPSprite (Sprites). See Sprites (CPSprite)
CPU utilization, Time Profiler capturing

data related to, 558B–560B
CPViking, animating Ole in Chipmunk,

469B–473B
createBodyAtLocation method, Box2D,

338B
createCartAtLocation method, Box2D,

344B

createCloud method, platformScroll-
ingLayer class, 257B–258B

createGround method, carts, 344B
createObjectType method, adding objects

to gameplayLayer class, 141B–142B
createPhaserWithDirection method,

142B–143B
createStaticBackground method, in

platformScrollingLayer, 257B
createVikingAndPlatform method, in

platformScrollingLayer,
261B–262B

createWheelWithSprite, 354B
Credits

scene types and, 170B
setting up menus, 190B

Ctrl-z-D (Jump to Definition), for viewing
source code, 18B–19B

Cut-scene
creating group for, 252B–253B
creating scrolling layer in, 254B–262B

D
Damage taking state

(kStateTakingDamage)
Digger Robot and, 407B–408B
for enemy robot, 133B
spike obstacle and, 391B–392B
taking a hit and being restored to previ-

ous state, 99B
Damped rotary spring

constraints in Chipmunk, 457B
creating pivot platform, 462B

Damped spring
constraints in Chipmunk, 457B
creating spring platform, 463B

Database, loading/saving achievement data to
GCDatabase, 522B–524B

Dead state (kStateDead)
for enemy robot, 133B
health at zero level, 103B
state transition in RadarDish class, 87B

dealloc method, Viking class, 94B
Debug draw

in Box2D, 295B–296B
in Chipmunk, 434B–436B

Index 577B

Debugging, creating debug label, 160B–165B
Decoration, Box2D, 302B–304B
#define statement

setting object categories, 382B
setting up audio filenames as, 199B–200B

Delegate classes, 118B
deltaTime, scheduler and, 145B
density property

for cart wheels, 354B
for fixtures, 309B–313B

Design basics
artif icial intelligence and, 65B
caching and, 62B
classes of game objects, 64B–65B
object-orientation in, 63B
overview of, 62B–63B

Devices, older
fixing slow performance, 53B–54B
power-of-two support, 46B

Digger robot
adding dangerous methods to, 405B–411B
creating cinematic fight sequence,

411B–416B
pitting Ole against, 396B–405B

Direction switching, in Box2D, 373B–374B
Directional pad (DPad)

added to GameplayLayer class, 108B
initializing, 111B

Director (CCDirector)
running loops and rendering graphics,

16B–18B
running scenes, 11B, 34B–35B
types of, 569B

Directory, adding Chipmunk files to Xcode
project, 426B–429B

Distance joints
in Box2D, 304B
Chipmunk damped spring compared

with, 457B
Chipmunk pin joint compared with, 456B

Downloading Cocos2D, 4B–5B
DPad (directional pad)

added to GameplayLayer class, 108B
initializing, 111B

Dragging objects, in Box2D, 304B–309B
Drill sensors, creating for Digger Robot,

401B–402B

dropCargo method, space cargo ship, 125B
dropWithLowPerformanceItemWithID

method, reusing sprites and,
553B–554B

Dynamic bodies, Box2D, 293B

E
EAGLView, rendering game with, 16B
Effects, 145B–149B

anchor points for, 154B
comparing Box2D with Chipmunk, 421B
creating wave action in background,

146B–148B
packaged as actions, 145B
returning sprites and objects to nonaltered

state, 149B
running EffectsTest, 148B
screen shake, 467B–468B
subtypes of, 146B

Elasticity, setting for ground in Chipmunk
space, 433B

Emitters
adding engine exhaust to space cargo

ship, 490B–494B
Particle Designer controls for,

487B–488B
in particle systems, 481B

enableLimit, restricting revolute joints
and, 377B

Enemy characters
Digger Robot. See Enemy robot
enemy robot. See Enemy robot
methods for creating in GameplayLayer

class, 109B
RadarDish class. See RadarDish class

Enemy robot
adding as long as radar dish is not dead,

143B–144B
adding sounds to, 219B–222B
animating, 58B–59B
changeState method and, 129B–133B
checking if Viking is attacking, 135B
header file, 126B–127B
implementation file, 127B–137B
overview of, 125B
setting up to update debug label, 160B–163B

Index578B

Enemy robot (continued)
steps in creation of, 126B
teleport graphic for, 132B
texture atlases and robot size, 61B
updateStateWithDeltaTime method

for, 133B–135B
Engine exhaust effect, adding to space cargo

ship, 490B–494B
EyesightBoundingBox method, for enemy

robot, 129B

F
FBO (frame buffer object), 145B–146B
Fight sequence, creating, 411B–416B
Files

Add New File dialog, 26B
adding Box2D files to project, 334B–335B
adding Chipmunk files to project,

426B–429B
audio files, 198B, 214B–215B
constants file for static values used in

more than one class, 71B–72B
format for fonts, 155B
formats for images, 43B
GLES-Render files, 295B–296B
header. See Header files
implementation. See Implementation files
PNG files, 43B, 270B
property list. See plist f iles
TMX files, 270B–271B

Fixed rate timestamps
game loops and, 434B
improving main loop and, 394B–396B

Fixtures
of Box2D bodies, 292B–294B
compared with Chipmunk shapes, 420B
creating drill sensor for Digger Robot,

401B–402B
properties, 309B–313B

flipX/flipY functions
for mirroring graphic views, 95B
reversing images, 552B

fnt file format, 155B
Fonts

adding for menus, 181B–182B
CCLabelIBMFont class, 155B, 159B

CCLabelTTF class, 155B
CCMenuAtlasFont, 179B
CCMenuItemFont, 180B
Hiero Font Builder Tool, 156B–159B

Forces, Box2D, 368B
FPS (Frames Per Second), managing frame

rate in animation, 16B, 61B
Frame buffer object (FBO), 145B–146B
friction property

fixtures, 309B–313B
setting for cart wheels, 354B
setting for ground, 433B

G
Game Center

achievements. See Achievements
authenticating players, 507B–508B
checking availability of, 506B–507B
creating App ID, 498B–501B
enabling support for apps, 505B–506B
leaderboards. See Leaderboards
notification of changes to authentication

status, 508B–514B
obtaining iOS Developer Program

account, 497B–498B
overview of, 495B–497B
reasons for using, 497B
registering apps in iTunes Connect,

501B–505B
sending scores to, 538B
summary and challenges, 543B

Game characters (GameCharacter)
checkAndClampSpritePosition

method, 233B–234B
in class hierarchy, 64B
creating, 80B–82B
enemy robot inheriting from,

126B–127B
RadarDish class inheriting from,

84B–85B
Viking class inheriting from, 90B

Game layers. See Layers (CCLayer)
Game logic, behind game objects, 63B
Game manager (GameManager)

adding last level completed property to,
532B–534B

Index 579B

adding support to GameplayLayer class
for, 190B–192B

additions for audio to header and imple-
mentation files, 204B–205B

changing level width, 234B–235B
connecting to Chipmunk scene with,

425B–426B
creating, 172B–179B
getDimensionsOfCurrentScene

method, 232B–233B
getting list of sound effects, 208B–211B
header file, 172B–173B
implementation file, 174B–177B
initAudioAsync method, 206B–207B
initializing audio manager (CDAudio-

Manager), 207B–208B
IntroLayer class and, 193B
LevelCompleteLayer class and,

194B–195B
loading audio asynchronously,

203B–204B
loading sound effects, 211B–213B
loading/unloading audio files, 214B–215B
overview of, 170B–172B
playbackgroundTrack, stopSound-

Effect, and playSoundEffect
methods, 213B–214B

running new cart scene, 345B
setting up audio engine, 205B–206B
SpaceVikingAppDelegate supporting,

192B–193B
switching to win/lose conditions,

476B–477B
Game objects (GameObject). See also

Objects
adding sound to game objects, 215B–216B
in class hierarchy, 64B–65B
creating, 74B–80B
Mallet class inheriting from, 119B

Game physics. See Physics engines
Game Start banner

adding, 152B–153B
anchor points for, 153B–154B

GameControlLayer, as subclass of CCLayer,
239B–242B

GameManager class. See Game manager
(GameManager)

Gameplay scenes, 170B
GameplayLayer class

adding music to, 228B
adding support for game manager,

190B–192B
addScrollingBackgroundWith-

Parallax method, 250B–252B
associating debug label with, 163B–165B
header file, 105B–106B
implementation file, 106B–111B,

138B–140B
importing updates for Viking, 141B–144B
loadAudio method, 201B–203B
overview of, 105B

GameplayScrollingLayer class
adjustLayer method, 245B–247B
connecting joystick and button controls to

Viking, 245B
subclass of CCLayer, 243B–245B
update method, 247B–248B

GameState class
adding to Space Viking project,

530B–534B
creating to track user achievements,

519B–521B
GCDatabase, loading/saving achievement

data to, 522B–524B
GCHelper. See also Helper methods

adding to Space Viking project,
530B–534B

creating helper class for Game Center,
508B–510B

implementing leaderboards, 539B–540B
keeping track of player authentication

status, 511B–512B
modifying for sending achievements,

524B–530B
GetWorldPoint helper method,

379B–380B
GKScore object, creating, 538B
GLES-Render files, 295B–296B
Glyph Designer, creating font texture atlas,

156B
GPU, checking performance of, 560B–563B
Gravity property

initializing in Chipmunk space, 431B
Particle Designer controlling, 488B

Index580B

Groove joint
constraints in Chipmunk, 456B
creating spring platforms and, 463B–464B

Ground
creating for Chipmunk space, 432B–433B
detecting collisions with, 445B–450B
setting collision type for, 447B–448B
surface velocity, 445B

GroundLayer, of TileMap, 269B
groupIndex f ield, 382B
Groups

creating for scenes, 236B
organizing classes by, 70B
organizing scenes, 180B–181B

H
Header files

additions for audio to, 204B–205B
cart, 337B–338B
enemy robot, 126B–127B
game manager, 172B–173B
GameplayLayer class, 105B–106B
health, 121B
Main Menu, 182B–183B
mallet, 118B
Ole the Viking, 90B–92B
phaser, 138B
PlatformScene, 263B–264B
PlatformScrollingLayer, 254B–255B
radar dish, 84B
space cargo ship, 123B

Health (Health class)
in class hierarchy, 65B
enemy robot, 134B
moving into dead state, 103B
power-up, 120B–122B
restoring Ole's health, 102B

HelloWorld apps
adding movement to cargo ship, 10B–11B
adding space cargo ship to app, 9B–10B
adding to iPhone or iPad, 20B–21B
applicationDidFinishLaunching

method in, 14B–15B
building, 7B–9B
Director's role in running game loop and

rendering graphics, 16B–18B

Hello, Box2D, 289B–292B
initializing UIWindow, 15B–16B
inspecting Cocos2D templates, 6B–7B
scenes and nodes in application template,

11B–14B
Helper methods

for creating animations, 411B
for loading/saving achievement data,

522B–524B
overview of, 19B–20B
for sending achievement data, 524B–530B

Hiero Font Builder Tool, 156B–159B

I
Idle state (kStateIdle)

for enemy robot, 132B
for radar dish, 87B

if statement, combining with assignment
operator, 134B–135B

Images
adding for menus, 181B–182B
adding to Space Viking project, 24B–26B
advantages of texture atlases for, 47B
loading image files, 43B
performance tips and, 551B

Implementation files
additions to for audio, 204B–205B
enemy robot, 127B–137B
game manager (GameManager),

174B–177B
GameplayLayer class, 106B–111B
gameplayLayer class, 138B–140B
health, 121B
@interface declaration in, 256B
mallet, 119B–120B
phaser, 138B–140B
PlatformScene, 263B–264B
radar dish, 85B–89B
space cargo ship, 123B–125B

Implementation files, Viking class
changeState method for animation,

95B–98B
dealloc method, 94B
effect of pragma mark statements in

Xcode pulldown menus, 99B
f lipping graphic views, 95B

Index 581B

initAnimations method, 103B–105B
joystick methods, 94B–95B
updateStateWithDeltaTime and

adjustedBoundingBox methods,
100B–103B

Importing updates, for Space Viking project,
141B–144B

Impulses
Box2D, 368B
controlling f lipping of cart, 368B–369B
making cart jump, 369B–373B
for responsive direction switching,

373B–374B
Infinite scrolling

creating group for cut-scene, 252B–253B
creating platform scene, 263B–265B
creating scrolling layer in cut-scene,

254B–262B
creating texture atlas for cloud images,

254B
overview of, 252B–253B

Inheritance, class hierarchy and, 64B–65B
init method

for Chipmunk, 429B–430B
in game layer of Space Viking, 41B–42B
for HelloWorld app, 13B
for PerformanceTestGame, 546B–549B
of platformScrollingLayer,

255B–256B
initAnimations method

Mallet class, 120B
RadarDish class, 88B–89B
Viking class, 103B–105B

InitAudioAsync method, GameManager
class, 206B–207B

initJoystick method, 108B
InitWithScene4UILayer method, carts,

344B
Installing Cocos2D templates, 5B–6B
Instance variables

adding to CPViking, 450B–451B
for sprite positions, 43B

Instruments tool
for checking GPU, 560B–563B
for finding bottlenecks, 557B–558B

Interaction, in Box2D, 302B–304B

@interface declaration, inside implementa-
tion files, 256B

Intro class, setting up menus, 190B
IntroLayer class, images displayed before

game play, 193B
iOS

audio framework for, 197B
fonts available in, 155B
Game Center app, 495B

iOS Developer Program account,
497B–498B

iPad
adding HelloWorld app to, 20B–21B
power-of-two support on older devices,

46B
running performance test game on, 546B,

550B
running Space Viking on iPad Simulator,

144B–145B
simulator in Particle Designer,

485B–486B
iPhone

adding HelloWorld app to, 20B–21B
fixing slow performance on older devices,

53B–54B
power-of-two support on older devices,

46B
simulator in Particle Designer, 485B–486B

iPhone Developer account, 20B
iPhone Developer Portal, 497B
iPod, power-of-two support on older

devices, 46B
isCarryingWeapon method, Viking class,

94B
iTunes Connect

adding achievements to, 515B–517B
registering apps in, 497B, 501B–505B
setting up leaderboards in, 536B–538B

J
JavaScript, Coscos2D-JavaScript, 568B
Joints

adding wheels using revolute joints,
352B–355B

breaking Ole's body into pieces, 376B

Index582B

Joints (continued)
compared with Chipmunk constraints,

420B–421B
creating multiple bodies and joints,

378B–380B
dragging objects in Box2D, 304B
motor settings for revolute joint, 385B
prismatic, 378B
restricting revolute joints, 376B–377B

Joysticks
adding, 36B–40B
applying joystick movement, 40B–44B
connecting to Space Viking, 245B
importing joystick class, 35B–36B
initializing, 111B
initJoystick method, 108B
Viking class methods, 94B–95B

JPEG files, 43B
Jump buttons, adding GameplayLayer class,

108B
Jump to Definition (Ctrl-z-D), for viewing

source code, 18B–19B
Jumping, in Chipmunk

implementing, 450B–455B
by setting velocity, 444B

K
Kinematic bodies, Box2D, 293B
kStateDead. See Dead state (kStateDead)
kStateIdle (idle state)

for enemy robot, 132B
for radar dish, 87B

kStateSpawning (Spawning state)
for enemy robot, 132B
for radar dish, 87B

kStateTaking Damage (Taking damage
state), 87B

kStateTakingDamage. See Damage taking
state (kStateTakingDamage)

L
Labels (CCLabel)

adding to scenes, 13B–14B
CCLabelIBMFont class, 155B, 159B
CCLabelTTF class, 151B–155B
in layers, 12B

Layers (CCLayer)
adding, 29B–31B
allocating sprites when layer is initialized,

552B
connecting background and game layers

to a scene, 31B–32B
creating background layer, 26B–29B
GameControlLayer as subclass of,

239B–242B
GameplayScrollingLayer as subclass

of, 243B–245B
principal classes in Cocos2D, 570B
Scene4UILayer as subclass of, 335B
scenes as container for, 12B, 33B
z values and, 33B

Leaderboards
displaying, 540B–542B
how they work, 538B
implementing, 539B–540B
overview of, 536B
setting up in iTunes Connect, 536B–538B

LevelComplete class
scene types and, 170B
setting up menus, 190B

LevelCompleteLayer class
achievements and, 530B–534B
displaying leaderboards, 540B–542B
scenes and, 194B–195B

Levels
accounting for level width when scrolling,

233B–234B
creating in Chipmunk, 432B–433B
creating with LevelSVG tool, 380B
getting dimension of current level,

232B–233B
LevelSVG tool, 380B
Linear impulses, Box2D

making cart jump, 369B–373B
overview of, 368B

LinkTypes, URLs and, 172B
loadAudio method, GameplayLayer class,

201B–203B
Loops

Director running, 16B–18B
update loop, 279B–280B, 394B–396B
variable and fixed rate timestamps and,

394B–396B, 434B
Loosely coupled classes, 117B–118B

Index 583B

lowerAngle method, restricting revolute
joints, 377B

M
Mac OS X

Cocos2D native support for, 568B
downloading particle system to, 485B

Macros, 20B
Main Menu (MainMenu)

adding music to, 228B–229B
creating, 182B–190B
header file for, 182B–183B
MainMenuLayer class, 183B–190B
scene types and, 169B

Mallet (Mallet class)
dropping from space cargo ship, 125B
powering up, 102B, 118B–120B

Manager. See Game manager
(GameManager)

mass property, fixtures, 309B–313B
Mekanimo tool, for working with bodies, 380B
Member variables, for body part sprites,

380B–381B
Memory

benefits of texture atlases, 48B
managing memory footprint, 17B
textures and, 45B–47B

Menus
adding images and fonts for, 181B–182B
in addition to Main Menu, 190B
classes in, 179B–180B
Main Menu. See Main Menu

(MainMenu)
Options Menu, 170B

Meters, converting points to, 420B–421B, 430B
Methods, declaring in Objective-C, 117B
Metroid-style platform. See Platforms, in

Chipmunk
Motors

in Chipmunk, 456B
settings for revolute joint, 385B

Mouse joint
dragging objects in Box2D, 304B–309B
supporting in Chipmunk, 436B–437B

Movement
adding movement to cargo ship, 10B–11B
adding to Space Viking project, 35B

implementing in Chipmunk, 450B–455B
jumping, 444B
surface velocity, 445B

Music. See also Audio
adding in Chipmunk, 473B–474B
adding to GameplayLayer, 228B

N
New Group (Option-z-N), 70B
Nodes (CCNode)

in application templates, 11B–14B
in Cocos2D hierarchy, 12B
principal classes in Cocos2D, 570B
tags, 71B–72B

Normal platform, creating in Chipmunk,
464B–466B

NSCoding protocol, loading/saving achieve-
ment data to GCDatabase,
522B–524B

NSDictionary objects, storing animation
settings in, 67B

NSOperationQueues

adding audio asynchronously in back-
ground thread, 201B

managing background threads, 204B
NSTimer, scheduler compared with, 145B
numberOfRunningActions, 135B

O
Object-Oriented Programming (Coad and Nic-

ola), 63B
Objective-C framework

protocols in, 117B
Objects. See also Game objects (GameObject)

adding sound to, 215B–216B
converting into classes, 63B
creating Box2D, 292B–295B
creating C++, 280B
creating game objects, 74B–80B
GameObject in class hierarchy, 64B–65B
GKScore object, 538B
Mallet class inheriting from Game-

Object class, 119B
plist f iles and, 67B
positioning using anchor points, 153B
positioning using point system, 82B

Index584B

Objects. (continued)
returning to nonaltered state after effects,

146B–148B
update method added to, 443B
use in design, 63B

Obstacles, creating spikes in Box2D,
390B–394B

Offsets, restricting prismatic joints,
379B–380B

Ole the Viking. See also Viking class
adding sounds to, 222B–228B
adding subclass for, 440B–443B
adjustedBoundingBox method,

100B–103B
animating in Chipmunk, 469B–473B
breaking body into pieces using joints,

376B
changeState method, 95B–98B
connecting button controls to, 245B
creating cinematic fight sequence,

411B–416B
following in Chipmunk, 467B–468B
Header files, 90B–92B
leaping with ragdoll effect, 381B–386B
pitting against Digger in fight, 396B–405B
restoring health of, 102B

OpenAL audio framework, for iOS devices,
197B

OpenGL Driver Instrument, for checking
GPU, 560B–563B

OpenGL ES
benefits of batching bind calls, 45B
converting UIKIT to OpenGL ES coor-

dinate system, 29B
EAGLView and, 16B
FBO (frame buffer object), 145B–146B
references for, 567B

Option-z-N (New Group), 70B
Options Menu

scene types and, 170B
setting up menus, 190B

OptionsLayer, displaying achievements
within apps, 534B–536B

Organizing source code
constants file for static values used in

more than one class, 71B–72B

grouping classes, 70B
protocols in implementation of class

methods, 72B–74B

P
Parallax scrolling

adding background to cart layer,
364B–368B

defined, 231B
overview of, 250B–252B

ParallaxBackgrounds folder, importing,
235B–236B

Particle Designer
application in cinematic fight sequence,

413B
controls, 487B–488B
creating particle system, 489B–490B
downloading to Mac, 485B
engine exhaust effect, 490B–494B
features of, 486B–488B
toolbar, 486B

Particle systems
creating, 489B–490B
engine exhaust added to space cargo ship,

490B–494B
running built-in system, 482B–483B
snow effect, 483B–485B
summary and challenges, 494B
terminology related to, 481B–482B
tour of Particle Designer, 486B–488B

Particles
controls for, 487B–488B
defined, 481B

Performance optimization
bottlenecks and, 557B–558B
capturing CPU utilization data,

558B–560B
CCSprite vs. CCSpriteBatchNode,

545B–550B
checking GPU, 560B–563B
on older devices, 53B–54B
overview of, 545B
profiling tool for, 554B–557B
reusing sprites, 552B–554B
running performance test game, 550B

Index 585B

summary and challenges, 563B
textures and texture atlases and,

551B–552B
PerformanceTestGame

adding profiling tool to, 554B–557B
capturing CPU utilization data,

558B–560B
checking GPU, 560B–563B
init method, 546B–549B
opening and running on iPad,

545B–546B
reusing sprites, 552B–554B
running, 550B
update method for, 549B–550B

Phaser (Phaser class)
adding phaser bullet, 137B–141B
createPhaserWithDirection method,

142B–143B
header file, 138B
implementation file, 138B–140B
placeholder for creating phaser blast, 109B
protocols for creating in GameplayLayer

class, 127B
shootPhaser method, 129B, 132B–133B
taking damage from, 102B

Physics Editor, 380B
Physics engines

advanced. See Box2D, advanced physics
basic. See Box2D, basic physics
Chipmunk. See Chipmunk
intermediate. See Box2D, intermediate

physics
Pin joint, constraints in Chipmunk, 456B
Pivot joint

constraints in Chipmunk, 455B
creating pivot platform, 462B

Pixels, in object positioning, 82B
Platforms, in Chipmunk

laying out, 468B–469B
normal platform, 464B–466B
pivot platform, 460B–462B
revolving platform, 458B–460B
spring platform, 463B–464B

PlatformScene

header and implementation files,
263B–264B

playScene method, 264B

PlatformScrollingLayer

ccTouchesBegan method, 262B
createCloud method, 257B–258B
createStaticBackground method,

257B
createVikingAndPlatform method,

261B–262B
declarations and init method,

255B–256B
header file, 254B–255B
resetCloudWithNode method,

258B–261B
playbackgroundTrack method, audio,

213B–214B
playScene method, platform scene, 264B
playSoundEffect method, audio,

213B–214B
plist f iles

phaser bullet effect, 137B
sound effects in, 198B–201B
storing animation data in, 61B, 67B–69B

PNG files
file formats for images, 43B
using in TileMap, 270B

Point-to-meter (PTM) ratio, 420B–421B, 430B
Pointers, C++, 281B
Points

converting to meters, 420B–421B, 430B
in object positioning, 82B

postSolve events, collision events in Chip-
munk, 445B

Power-of-two, textures and, 45B–47B
Power-up objects

Health class, 120B–122B
Mallet class, 118B–120B
overview of, 118B
protocols for creating in GameplayLayer

class, 127B
Pragma mark statements, in Xcode pulldown

menus, 99B
preSolve events, collision events in Chip-

munk, 445B, 448B–449B
Prismatic joints

Chipmunk groove joint compared with,
456B

offsets for restricting, 379B
overview of, 378B

Index586B

Profiling
capturing CPU utilization data,

558B–560B
finding bottlenecks, 557B–558B
for performance optimization,

554B–557B
Project setup

background and game layers connected to
a scene, 31B–32B

background layer created, 26B–29B
CCSpriteBatchNode in, 52B–53B
classes for, 24B–26B
creating new project, 23B–24B
director running game scene, 34B–35B
fixing slow performance on older devices,

53B–54B
game layer added, 29B–31B
game scene for, 32B–33B
joystick class imported for, 35B–36B
joystick movement in, 40B–44B
joysticks and buttons added, 36B–40B
movement added, 35B
summary and challenges, 54B–55B
texture atlas added to scene, 48B–51B

Property list f iles. See plist f iles
Protocols

common protocol class, 72B–74B
in implementation of class methods,

72B–74B
in Objective-C, 117B
use with enemy robot, 127B

PTM (point-to-meter) ratio, 420B–421B,
430B

Puzzle game example, in Box2D,
320B–324B

PuzzleLayer

box created for, 293B
createBoxAtLocation method,

294B–295B
debug drawing, 295B–296B
decorating bodies using sprites,

313B–320B
dragging objects in Box2D, 304B–309B
ground body created for, 299B–302B
interaction and decoration in, 302B–304B
mass, density, friction, and restitution

properties, 309B–313B

puzzle game example, 320B–324B
scene created for, 282B–284B
viewing on screen, 296B–298B
world created for, 290B–292B

PVR TC
compression format, 43B
performance tips for textures, 551B

Q
Queries, searching for objects in Box2D

world, 305B–307B

R
RadarDish class

adding sounds to, 216B–217B
changeState method, 86B
in class hierarchy, 64B
header file, 84B
implementation file, 85B–89B
inheriting from GameCharacter class,

84B–85B
initAnimations method, 88B–89B
plist f iles for, 68B–69B
steps in creation of, 83B–84B
updateStateWithDeltaTime method,

86B
Ragdoll effect

adding action to Ole, 376B
leaping effect and, 381B–386B

resetCloudWithNode method, platform-
ScrollingLayer, 258B–261B

Responsive direction switching, Box2D,
373B–374B

restitution property, fixtures, 309B–313B
Revolute joints

in Box2D, 304B
for bridge, 386B–389B
for cart wheels, 352B–355B
Chipmunk pivot joint compared with,

455B
for Digger Robot wheels, 400B
motor settings for, 385B
restricting, 376B–377B

Revolving platform, creating in Chipmunk,
458B–460B

Index 587B

Rigid body physics simulation, 292B
Robots

Digger Robot. See Digger Robot
enemy robot. See Enemy robot

RockBoulderLayer, of TileMap, 270B
RockColumnsLayer, of TileMap, 269B
RootViewController, for device orienta-

tion, 53B–54B
Rotary limit joint

constraints in Chipmunk, 456B
creating pivot platform, 462B

Rotation, anchor points for, 154B
Running state, Digger Robot, 407B

S
Sandbox accounts, in Game Center, 514B
Scaling images, performance tips and, 551B
Scenes (CCScenes)

ActionLayer of Scene4B, 339B–343B
adding images and fonts, 181B–182B
additional menu types, 190B
in application template, 11B–14B
background and game layers connected

to, 31B–32B
basic Box2D scene, 335B–346B
basic Chipmunk scene, 429B–438B
CCScenes as principal class in Cocos2D,

570B
changing SpaceVikingAppDelegate to

support game manager, 192B–193B
classes in menu system, 179B–180B
creating for Space Viking, 32B–33B
creating new Chipmunk scene,

421B–425B
creating new scene (PuzzleLayer),

282B–284B
creating second game scene, 236B–242B
director running game scene, 34B–35B
game manager connected to Chipmunk

scene, 425B–426B
game manager for switching between,

170B–172B
GameplayLayer class and, 190B–192B
group for cut-scene, 253B
group for scene2B, 236B
IntroLayer class and, 193B

LevelCompleteLayer class, 194B–195B
Main Menu, 182B–190B
organizing, 180B–181B
texture atlases for, 48B–51B
types of, 169B–170B
UILayer of Scene4B, 335B–336B

SceneTypes, 172B
Scheduler, for timed events and call, 145B
Scores, sending to Game Center, 538B
Screen shake effect, 467B–468B
Scrolling. See also Tile maps

accounting for level width, 233B–234B
background, 271B–272B
common problems in, 234B–235B
creating scrolling layer, 242B–249B
in cut-scene, 254B–262B
getting dimension of current level,

232B–233B
to infinity, 252B–253B
new scene for, 236B–242B
overview of, 231B
parallax layers and, 250B–252B
in platform scene, 263B–265B

ScrollingCloudsBackground folder, 254B
ScrollingCloudsTextureAtlases folder, 254B
Selection techniques, three-finger swipe,

27B
separate events, collision events in Chip-

munk, 445B, 448B–449B
SetLinearVelocity function, for Box2D

bodies, 415B
setupDebugDraw method, cart, 344B
setupWorld method, cart, 344B
Shapes, Chipmunk

adding, 420B
box shaped added, 431B–433B
converting dynamic shape into static plat-

form, 447B–448B
Shapes, custom shapes with Box2D,

346B–348B
ShootPhaser method, 129B
Simple motor, constraints in Chipmunk,

456B
SimpleAudioEngine, in CocosDenshion,

197B, 229B–230B
Singletons, for game manager, 195B
SneakyInput joystick project, 35B–36B

Index588B

Snow effect, creating with particle system,
483B–485B

Social gaming network. See Game Center
Sound effects. See also Audio

adding in Chipmunk, 473B–474B
getting list of, 208B–211B
loading, 211B–213B
in plist f iles, 198B

Sounds folder, 198B
Source code

availability of, 18B–20B
constants file and, 71B–72B
grouping classes and, 70B
protocols in implementation of class

methods, 72B–74B
Space cargo ship (SpaceCargoShip class)

adding sounds to, 217B–219B
in class hierarchy, 64B
creating, 122B
engine exhaust effect for, 490B–494B
header file, 123B
implementation file, 123B–125B

Space Viking
basic setup. See Project setup

Spaces, Chipmunk
box added to, 431B–432B
creating, 429B–431B
creating a physics world, 420B
creating the level and ground, 432B–433B

SpaceVikingAppDelegate, 192B–193B
Spawning state (kStateSpawning)

for enemy robot, 132B
for radar dish, 87B

Spikes, creating obstacles in Box2D,
390B–394B

Spring platform, creating in Chipmunk,
462B–463B

Sprite Frame Cache, 111B
SpriteBatchNode, 88B
Sprites (CCSprite)

allocating during layer initialization, 552B
animating sprites rendered by CCSprite-

BatchNode, 60B–61B
basic animation, 57B–60B
batching (CCSpriteBatchNode),

44B–45B

Box2D bodies, 380B–381B
CCSprite as principal classes in

Cocos2D, 570B
CCSprite vs. CCSpriteBatchNode,

545B–550B
containing within screen boundaries,

102B
decorating bodies, 313B–320B
in layers, 12B
listed in CCSpriteBatchNode object,

108B
returning to nonaltered state after effects,

146B–148B
reusing, 552B–554B
Sprite Frame Cache, 111B

Sprites (CPSprite)
adding, 438B
defining body and shape for, 438B–440B
implementing velocity of, 444B
subclass for Ole, 440B–443B
subclass for revolving platform,

458B–460B
startFire method, 415B
State transitions. See also Animation

Ole the Viking, 471B–473B
radar dish, 86B–87B
spike obstacle and, 392B–393B
Viking class and, 95B–98B
visual effects and, 410B

Static bodies, Box2D, 293B
StaticBackgroundLayer, splitting back-

ground into static and scrolling layers,
237B–239B

stopSoundEffect method, audio,
213B–214B

Surface velocity, for ground movement in
Chipmunk, 445B

switch statement
method variables not declared in, 99B
state transitions and, 98B

T
Taking damage state. See Damage taking

state (kStateTakingDamage)
Teleport graphic, for enemy robot, 132B

Index 589B

Templates
inspecting, 6B–7B
installing, 5B–6B
SpaceViking based on, 23B–24B
working of scenes and nodes in applica-

tion template, 11B–14B
Ternary operator (?), combining if state-

ment with assignment operator,
134B–135B

Text. See also Labels (CCLabel)
adding Game Start banner, 152B–153B
anchor points for Game Start banner,

153B–154B
CCLabelIBMFont class, 155B, 159B
CCLabelTTF class, 151B
creating debug label, 160B–165B
font texture atlas for, 156B–159B
fonts, 155B

Texture atlases
CCSpriteBatchNode initialized with

image from, 111B
for cloud images, 254B
combining textures into, 44B
downloading tiles texture atlas, 266B
for fonts, 156B–159B
overview of, 44B–45B
performance optimization and,

551B–552B
reasons for using, 48B
for Space Viking Scene 1B, 48B–51B
steps in use of, 53B
technical details of, 45B–47B

Texture padding, 45B–47B
TexturePacker

creating texture atlas for Space Viking
Scene 1B, 49B–51B

texture atlas software, 47B
trial version, 380B

Textures
caching, 17B
combining into texture atlases, 43B
f lushing unused, 552B
loading images into RAM and, 43B
performance optimization and,

551B–552B

Tile maps. See also Scrolling
adding to ParalaxNode, 272B–275B
compressed TiledMap class, 271B–272B
creating, 267B–268B
defined, 232B
installing Tiled tool on Mac,

266B–267B
overview of, 265B–266B
three-layered, 268B–270B

Tiled tool
creating three-layered tile map,

268B–270B
creating TileMap for iPad, 267B–268B
Installing on Mac, 266B–267B

Tiles
defined, 231B
of repeating images, 265B–266B

TileSets, 232B
Time Profiler, for capturing CPU utilization

data, 558B–560B
TMX files, 270B–271B
Touch-handling code, helper methods for,

436B–437B
typedef enumerator

getting list of sound effects, 210B–211B
for left and right punches, 92B

U
UIFont class, 155B
UIKit, converting to OpenGL ES coordinate

system, 29B
UILayer, in Chipmunk, 421B–423B
UIViewController, for device orientation,

53B–54B
UIWindow, initialization of, 15B–16B
Units

Box2D, 288B–289B
converting points to meters in Chipmunk,

430B
Unity3D, 567B
Update functions, scheduler and, 145B
update loop

Box2D, 279B–280B
improving main loop, 394B–396B

Index590B

update method
adding to game objects, 443B
cart methods, 344B
in game layer of Space Viking, 41B–42B
GameplayScrollingLayer, 247B–248B
for PerformanceTestGame, 549B–550B

updateStateWithDeltaTime method
animating Ole, 471B–473B
for Chipmunk sprite, 452B–454B
Digger Robot and, 406B
enemy robot and, 133B–137B
radar dish and, 85B–86B
Viking class, 100B–103B

upperAngle, restricting revolute joints, 377B
URLs, 172B
Utilities, 19B–20B

V
Variable rate timestamps, 394B–396B
Variables, method variables not declared in

switch statement, 99B
Vectors, for direction and magnitude, 291B
Velocity

of ground movement in Chipmunk, 445B
of sprite in Chipmunk, 444B

Vertex Helper
creating vertices for Digger Robot,

399B–401B
creating vertices with, 348B–352B
making cart scene scrollable, 359B–362B

Vertices
for Box2D shapes, 347B–348B
creating shapes with arbitrary vertices,

448B
for Digger Robot, 399B–401B
making cart scene scrollable, 359B–362B
Vertex Helper and, 348B–352B

View controller
displaying achievements, 534B–536B
displaying leaderboards, 540B–542B

Viking class. See also Ole the Viking
adding sounds to, 222B–228B
applying joystick movement to, 40B–44B
changeState method for animations in,

95B–98B

checking to see if attacking enemy robot,
135B

in class hierarchy, 64B
dealloc method, 94B
effect of pragma mark statements in

Xcode pulldown menus, 99B
f lipping graphic views, 95B
header file, 90B–92B
initAnimations method, 103B–105B
joystick methods, 94B–95B
pitting Digger against Ole, 396B–405B
referencing from SpriteBatchNode,

88B
retrieving from CCSpriteSheet,

134B–135B
subclass for in Chipmunk, 440B–443B
updateStateWithDeltaTime and

adjustedBoundingBox methods,
100B–103B

in Xcode, 90B
Visual effects, state transitions and, 410B

W
Walking state

Digger Robot, 407B–408B
enemy robot, 132B

Wheels
adding to cart, 352B–355B
creating for Digger Robot, 399B–400B

Win/lose conditions, adding in Chipmunk,
476B–477B

World, Box2D
Chipmunk space compared with, 430B
creating, 289B–292B
searching for objects in, 305B–307B

X
Xcode

Add New File dialog, 26B
build management for iOS devices,

20B–21B
Chipmunk files added to Xcode project,

426B–429B
classes as organization technique in, 70B

Index 591B

HelloWorld app, 7B–9B
inspecting Cocos2D templates, 6B–7B
Instruments tool, 557B–558B
location of Cocos2D templates in,

23B–24B
pragma mark statements in pull down

menus, 99B

RadarDish class created with, 83B–84B
texture atlases added to, 51B

Z
z values, in 3D engines, 33B
Zwoptex, 47B–49

	Table of Contents
	LEARNING IOS GAME PROGRAMMING
	6 Sprite Sheets
	Introduction to Sprite Sheets
	Simple Sprite Sheet
	Complex Sprite Sheets

	Using Zwoptex
	The SpriteSheet Class
	Initialization
	Retrieving Sprites

	PackedSpriteSheet Class
	Initialization
	Parsing the Control File
	Retrieving a Sprite

	Summary
	Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

	LEARNING COCOS2D
	4 Simple Collision Detection and the First Enemy
	Creating the Radar Dish and Viking Classes
	Creating the Viking Class
	Final Steps
	Summary
	Challenges

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

