

Mastering XPages
A Step-by-Step Guide to XPages
Application Development and the
XSP Language
By Martin Donnelly, Mark Wallace,

and Tony McGuckin

ISBN: 0-13-248631-8

The first complete, practical guide to XPages

development—direct from members of the

XPages development team at IBM Lotus.

Martin Donnelly, Mark Wallace, and Tony

McGuckin have written the definitive program-

mer’s guide to utilizing this breakthrough

technology. Packed with tips, tricks, and best

practices from IBM’s own XPages developers,

Mastering XPages brings together all the

information developers need to become

experts—whether you’re experienced with

Notes/Domino development or not. The authors

start from the very beginning, helping developers

steadily build your expertise through practical

code examples and clear, complete explanations.

Readers will work through scores of real-world

XPages examples, learning cutting-edge XPages

and XSP language skills and gaining deep

insight into the entire development process.

Drawing on their own experience working directly

with XPages users and customers, the authors

illuminate both the technology and how it can be

applied to solving real business problems.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks/newsletters

XPages Portable
Command Guide
A Compact Resource to
XPages Application Development and
the XSP Language
By Martin Donnelly, Maire Kehoe, Tony McGuckin,

and Dan O’Connor

ISBN: 0-13-294305-0

Now, there’s a perfect portable XPages quick

reference for every working developer. Straight

from the experts at IBM, XPages Portable
Command Guide offers fast access to work-

ing code, tested solutions, expert tips, and

example-driven best practices. Drawing on their

unsurpassed experience as IBM XPages lead

developers and customer consultants, the authors

explore many lesser known facets of the XPages

runtime, illuminating these capabilities with

dozens of examples that solve specific XPages

development problems. Using their easy-to-adapt

code examples, you can develop XPages solu-

tions with outstanding performance, scalability,

flexibility, efficiency, reliability, and value.

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Web 2.0 and Social
Networking for the Enterprise
Guidelines and Examples for
Implementation and Management
Within Your Organization
By Joey Bernal

ISBN: 0-13-700489-3

Survival Guide for
Lotus Notes and
Domino Administrators
By Mark Elliott

ISBN: 0-13-715331-7

Mark Elliott has created a true encyclopedia of

proven resolutions to common problems and has

streamlined processes for infrastructure support.

Elliott systematically addresses support solutions

for all recent Lotus Notes and Domino

environments.

IBM Lotus Connections 2.5
Planning and Implementing Social
Software for Your Enterprise
By Stephen Hardison, David M. Byrd, Gary Wood,

Tim Speed, Michael Martin, Suzanne Livingston,

Jason Moore, and Morten Kristiansen

ISBN: 0-13-700053-7

In IBM Lotus Connections 2.5, a team of IBM

Lotus Connections 2.5 experts thoroughly intro-

duces the newest product and covers every facet

of planning, deploying, and using it success-

fully. The authors cover business and technical

issues and present IBM’s proven, best-practices

methodology for successful implementation. The

authors begin by helping managers and technical

professionals identify opportunities to use social

networking for competitive advantage–and by

explaining how Lotus Connections 2.5 places full-

fledged social networking tools at their fingertips.

IBM Lotus Connections 2.5 carefully describes

each component of the product–including

profiles, activities, blogs, communities, easy social

bookmarking, personal home pages, and more.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks/newsletters

DB2 9 for Linux, UNIX, and
Windows
DBA Guide, Reference, and
Exam Prep, 6th Edition
Baklarz, Zikopoulos
ISBN: 0-13-185514-X

The Art of Enterprise
Information Architecture
A Systems-Based Approach for
Unlocking Business Insight
Godinez, Hechler, Koening,
Lockwood, Oberhofer, Schroeck
ISBN: 0-13-703571-3

Enterprise Master
Data Management
An SOA Approach to Managing
Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN: 0-13-236625-8

Mainframe Basics for
Security Professionals
Getting Started with RACF
Pomerantz, Vander Weele, Nelson,
Hahn
ISBN: 0-13-173856-9

Lotus Notes
Developer’s Toolbox
Elliott
ISBN: 0-13-221448-2

The Social Factor
Innovate, Ignite, and Win through Mass
Collaboration and Social Networking
By Maria Azua
ISBN: 0-13-701890-8

Business leaders and strategists can drive im-
mense value from social networking “inside the
firewall.” Drawing on her unsurpassed experience
deploying innovative social networking systems
within IBM and for customers, Maria Azua
demonstrates how to establish social networking
communities, and then leverage those communi-
ties to drive extraordinary levels of innovation.
The Social Factor offers specific techniques for
promoting mass collaboration in the enterprise
and strategies to monetize social networking to
generate new business opportunities.

Whatever your industry, The Social Factor will
help you learn how to choose and implement the
right social networking solutions for your unique
challenges...how to avoid false starts and wasted
time...and how to evaluate and make the most
of today’s most promising social technologies—
from wikis and blogs to knowledge clouds.

Listen to the author’s podcast at:
ibmpressbooks.com/podcasts

This page intentionally left blank

XPages Extension
Library

This page intentionally left blank

IBM WebSphere

[SUBTITLE]

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

XPages Extension
Library

A Step-by-Step Guide to the Next
Generation of XPages Components

Paul Hannan, Declan Sciolla-Lynch, Jeremy Hodge,
Paul Withers, and Tim Tripcony

IBM Press
Pearson plc

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
the use of the information or programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer
Cover design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Stephane Nakib
Acquisitions Editor: Mary Beth Ray
Publicist: Heather Fox
Development Editor: Eleanor Bru
Editorial Assistant: Vanessa Evans
Technical Editors: Brian Benz, Chris Toohey
Managing Editor: Kristy Hart
Cover Designer: Alan Clements
Project Editor: Jovana Shirley
Copy Editor: Gill Editorial Services
Indexer: Lisa Stumpf
Compositor: Gloria Schurick
Proofreader: Mike Henry
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, the IBM Press logo, Notes, Domino,
Lotusphere, Lotus, Rational, WebSphere, Quickr, developerWorks, Passport Advantage, iNotes, DB2,
Sametime, LotusLive, IBM SmartCloud, and LotusScript. A current list of IBM trademarks is available on
the web at “copyright and trademark information” as www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates. Windows and Microsoft are trademarks of Microsoft Corporation in the United States, other
countries, or both. Other company, product, or service names may be trademarks or service marks of
others.

The Library of Congress cataloging-in-publication data is on file.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13-290181-9

ISBN-10: 0-13-290181-1

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing May 2012

www.ibm.com/legal/copytrade.shtml

To Katie and Alec, my family—Paul H.
To my wonderful wife, Terri, for all her support—Declan

To the IBM Lotus XPages team for giving us all this
Open Source ExtLib goodness—Jeremy

To Mandy, my wife—Paul W.
To Paul Hannan: This book was your vision, and it owes its existence to your

persistence, diligence, and enthusiasm.—Tim

xi

Contents

Foreword xv

Preface xix

Acknowledgments xxv

About the Authors xxvii

Contributing Authors xxix

Part I: The Extension Library, Installation, Deployment,
and an Application Tour

Chapter 1 The Next Generation of XPages Controls 3
So How Did We Get Here? 4
Then Came Domino R.8.5.2, and the Extensibility Door Opened 4

OpenNTF and the Controls Too Good Not to Release 5
To Extensibility and Beyond 5
What Makes an XPages Control Next Generation? 5
What Is the XPages Extension Library? 6

Making Domino Application Development Easier, Faster, and Better 8
What Are the Most Important Controls and Why? 8
XPages Learning Shortcuts 9
Bells and Whistles: Welcome to the Future 10

Get Social 10
Upwardly Mobile 11
Relational Data 11
RESTful Web Services 12

Doing It Yourself with Java 12
Conclusion 12

Chapter 2 Installation and Deployment of the XPages
Extension Library 13

Downloading the ExtLib 13
Installing the ExtLib via the Upgrade Pack 17
Deploying ExtLib to Developers in Designer 18

Uninstalling the Extension Library from Designer 27

Server Deployment 28
Automatic Server Deployment in Domino 8.5.3 28
Automatic Server Deployment in Domino 8.5.2 34
Manually Deploying Libraries to a Server 38

Deploying the Extension Library to End Users 40
Widget Catalog Setup 41
Creating a Widget Configuration 42
Provisioning the Extension Library Widget to Other Users 50

Conclusion 52

Chapter 3 TeamRoom Template Tour 53
Where to Get the TeamRoom Template and How to Get Started 54
The TeamRoom Template and Why It Was a Good Candidate for Modernization 55
TeamRoom Redesign Brief and Features 56

Application Layout 56
Recent Activities: The Home Page 59
All Documents 60
The Document Form 61
Calendar 63
Members 64
Mobile 66

Lessons Learned and Best Practices 67
Conclusion 68

Part II: The Basics: The Application’s Infrastructure

Chapter 4 Forms, Dynamic Content, and More! 71
Form Layout Components 71

Form Table (xe:formTable, xe:formRow, xe:formColumn) 71
Forum Post (xe:forumPost) 78

Dynamic Content 80
In Place Form Control (xe:inPlaceForm) 80
Dynamic Content (xe:dynamicContent) 83
Switch (xe:switchFacet) 88

Miscellaneous Controls 89
Multi-Image (xe:multiImage) 89
List Container (xe:list) 91
Keep Session Alive (xe:keepSessionAlive) 92

Conclusion 93

xii Contents

Chapter 5 Dojo Made Easy 95
What Is Dojo? 95
Default Dojo Libraries Using Dojo Modules in XPages 96

Simple Dojo Example: dijit.form.ValidationTextBox 99
Dojo Example for Slider 100
Dojo Themes 102

Dojo Modules and Dojo in the Extension Library 103
Benefits and Differences of Dojo Extension Library Components 104

Dojo Extensions to the Edit Box Control 104
Dojo Text Box (xe:djTextBox) 104
Dojo Validation Text Box (xe:djValidationTextBox) 106
Dojo Number Text Box, Dojo Currency Text Box (xe:djNumberTextBox and

xe:djCurrencyTextBox) 113
Dojo Number Spinner (xe:djNumberSpinner) 115
Dojo Date Text Box and Dojo Time Text Box (xe:djDateTextBox and

xe:djTimeTextBox) 116
Dojo Extensions to the Multiline Edit Box Control 119
Dojo Extensions to the Select Control 120

Dojo Combo Box and Dojo Filtering Select (xe:djComboBox and
xe:djFilteringSelect) 120

Dojo Check Box and Dojo Radio Button 126
Dojo Extensions to Buttons 126

Dojo Toggle Button Control 128
Composite Dojo Extensions 130

Sliders 131
Dojo Link Select (xe:djLinkSelect) 135
Dojo Image Select 137

Dojo Effects Simple Actions 140
Dojo Fade and Wipe Effects 140
Dojo Slide To Effect 142
Dojo Animation 143

Conclusion 147

Chapter 6 Pop-Ups: Tooltips, Dialogs, and Pickers 149
Tooltip (xe:tooltip) 149
Dialogs 153

Dialog (xe:dialog) 153
Tooltip Dialog (xe:tooltipDialog) 160

Value Picker (xe:valuePicker) 162
Dojo Name Text Box and Dojo List Text Box (xe:djextNameTextBox and
xe:djextListTextBox) 164
Name Picker (xe:namePicker) 165

Validating a Picker 167
Conclusion 170

Contents xiii

Chapter 7 Views 171
Dynamic View Panel (xe:dynamicViewPanel) 171
Data Grid 175

REST Service 176
Dojo Data Grid Control (xe:djxDataGrid) 179
Dojo Data Grid Contents 182
InViewEditing 184
View Events 186

iNotes ListView (xe:listView) 187
Dynamic ListView 188
ListView Column 192

iNotes Calendar (xe:calendarView) 194
Calendar Views in the Notes Client 194
REST Service: calendarJsonLegacyService 196
REST Service: Notes Calendar Store 197
Notes Calendar Control 200
View Events 203

Data View (xe:dataView) 206
Pagers 207
PagerSaveState (xe:pagerSaveState) /View State Beans 212
Columns 214
Multiple Columns 219

Forum View 220
Conclusion 221

Chapter 8 Outlines and Navigation 223
The Dojo Layout Controls 223

The Content Pane 223
The Border Container and Border Pane 225
Accordion Container and Accordion Pane 229
The Tab Container and the Tab Pane 231
The Stack Container and the Stack Pane 238

Understanding the Tree Node Concept 239
Standard Node Types 239
The Advanced Node Types 242

Using the Navigator Controls 247
The Navigator Control 247
The Bread Crumbs Control (xe:breadCrumbs) 249
The List of Links Control (xe:linkList) 250
The Sort Links Control (xe:sortLinks) 251
The Link Container Controls 251
The Pop-up Menu Control (xe:popupMenu) 252
The Toolbar Control (xe:toolbar) 254

xiv Contents

The Outline Control (xe:outline) 255
The Accordion Control (xe:accordion) 256
The Tag Cloud Control (xe:tagCloud) 257
The Widget Container Control (xe:widgetContainer) 260

Conclusion 261

Chapter 9 The Application’s Layout 263
History of OneUI 263
Easy OneUI Development with the Application Layout Control 264

Legal 267
Navigation Path 268
The Footer 269
The Placebar 270
Search Bar 271
The Banner 272
The Title Bar 273
Product Logo 273
Mast Header and Footer 273

The Layout Control Tooling in Designer 274
Using the Application Layout Within a Custom Control 276
Conclusion 280

Part III: Bell and Whistles: Mobile, REST, RDBMS, and Social

Chapter 10 XPages Goes Mobile 283
In the Beginning… 283
The XPages Mobile Controls the Extension Library 284

The Basics of the XPages Mobile Controls 284
The Single Page Application Control<xe:singlePageApp> 286
The Mobile Page Control<xe:appPage> 288
The Page Heading Control<xe:djxmHeading> 288
Rounded List (xe:djxmRoundRectList) 289
Static Line Item (xe:djxmLineItem) 291
Mobile Switch (xe:djxmSwitch) 292
Tab Bar (xe:tabBar) 295
Tab Bar Button (xe:tabBarButton) 298

The XPages Mobile Theme 298
Hello Mobile World Tutorial 300

1. Enable the App for the Extension Library and Mobile 300
2. Create a New XPage and Mobile Application 301
3. Add a View Document Collection to the Mobile Page 302
4. Display More Rows 304
5. Opening a Document from the Data View 306
6. Editing and Saving Document Changes 311

Contents xv

Deep Dive into the Controls in the Extension Library, with Examples of Their Use 315
Outline Control 315
Hash Tags 318
Form Table Control (xe:formTable) 318
Dynamic Content Control 320
Data View Control 321
More Link 322
Filter Data 323
Multiple Controls 324
Move to Mobile Page Action 325
Heading (xe:djxmheading) 325
Large Content 326
Using Dojo to Modify Controls 327

XPages Mobile Phone Application Gotchas 327
The Differences Between Web App and Mobile App Layout 327
What Stays the Same? 330
What Has Changed? 330

Conclusion 333

Chapter 11 REST Services 335
REST Services in the XPages Extension Library 336
XPages REST Service Control (xe:restService) 338

Standard Attributes for REST Service Control 338
Standard Attributes for Each Service Type 340

Hello REST World 1: Using the pathInfo Property 340
Example of an XPage that Uses the REST Service Control 340

Hello REST World 2: Computed Column to Join Data 341
Example of a REST Service Control with a Computed Column 341

Hello REST World 3: REST Service in a Data Grid 342
Example of Binding a Grid to a REST Service Control 342

Domino REST Service from XPages Samples 343
Data Service 344
Data Services—Contacts and All Types 345
Dojo Grid Using JSON Rest Data Services 345
Dojo NotesPeek 347

Consuming Service Data with Other Controls 348
iNotes List View 348
iNotes Calendar 349

Calling a Remote Service from Domino 351
JSON-RPC Service 351

Consuming Service Data from External Applications 353
OpenSocial Gadgets 353

xvi Contents

Accessing Data Services from Domino as a Built-In Service 356
Enabling the Service on the Domino Server 357

Domino Data Services 360
Database JSON Collection Service 360
View JSON Collection Service 361
View JSON Service 362
View Design JSON Service 366
Document Collection JSON Service 367
Document JSON Service 368

Developing Custom REST Services 375
Conclusion 375

Chapter 12 XPages Gets Relational 377
Accessing Relational Data Through JDBC 377

Installing a JDBC Driver 379
Creating a Connection to the RDBMS 406

Using Relational Datasources on an XPage 410
Working with the xe:jdbcQuery Datasource 413
Working with the xe:jdbcRowSet Datasource 414
Properties Common to Both the xe:jdbcQuery and xe:jdbcRowSet Datasources 415
JDBC Datasources and Concurrency 415

Server-Side JavaScript JDBC API for XPages and Debugging 417
Java JDBC API for XPages 425
Conclusion 428

Chapter 13 Get Social 429
Going Social 429
Get Started 430

Setup 431
OAuth 431

OAuth Dance 431
OAuth Token Store Template 434
Configure Applications to Use OAuth 439

REST API Calls and Endpoints 439
Endpoint Configuration 440
Access Endpoints 446
REST API Calls 447
Utilities for Parsing 449

REST Datasources 450
The Connections Datasource (xe:connectionsData) 452
File Service Data (xe:fileServiceData) Datasource 452
Activity Stream Data (xe:activityStreamData) 454

Contents xvii

Proxies 455
Domino Proxy 455
ExtLib Proxies 457

User Profiles and Identities 457
User and People Beans 458
Extensions to User and People Beans 459
Enablement of Extensions 462
Caching of User Information 464
User Identities 465

User Interface Controls 467
Files Controls for Dropbox, LotusLive, and Connections 467
Sametime Controls 471
Connections Controls 474
Facebook Controls 478

IBM Social Business Toolkit 482
Conclusion 485

Part IV: Getting Under the Covers with Java

Chapter 14 Java Development in XPages 489
Benefits of Java Development 489
Referencing Native Java in Server-Side JavaScript 490
Using Java That Others Have Written 491
Setting Up Domino Designer to Create Java Classes 499
Introduction to Java Beans 506
Managed Beans 508
The User and People Bean 509
Conclusion 512

Appendix A Resources 513
Other Resources 514

Index 515

xviii Contents

xix

Foreword

XPages is a truly groundbreaking technology. Its initial release in 2009 revolutionized web appli-
cation development on Notes®/Domino® and brought new life and vibrancy to the developer com-
munity. As a runtime framework built on top of standards-based technologies and open source
libraries, it greatly simplified the art of web development for the existing community and
removed barriers to entry for non-Domino developers. Suddenly, it was a breeze to create a web
page that pulled data from a Domino view or extracted a set of fields from a Notes document. The
process of weaving these pages together to form compelling web applications became a no-
brainer. In a nutshell, the advent of XPages meant that cranking out a half-decent Domino web
application was easy and fast.

The good news is that after the 2009 revolution, XPages evolution continued apace. Within
just nine months of XPages’ official debut, we shipped a new release in Notes/Domino 8.5.1,
which included lots of new features and, most notably, support for the Notes Client. This meant
that users could take XPages web applications offline and run them locally in Notes! While we
were working hard to push out more XPages technology, its adoption continued to grow. By
Lotusphere® 2010, we were getting invaluable customer feedback on real-world XPages applica-
tion development—the good, the bad, and the ugly. (It was mostly good!) A key theme emerged
from the community at this time, one that really resonated with us. The message was simple: Yes,
it was indeed easy and fast to write XPages web applications, but developing truly sleek and pro-
fessional applications remained difficult and required expertise that was often beyond the core
skill set of the typical Domino developer. Solving this would be our next big challenge.

One means of enabling the community to write better applications was through technical
empowerment. Opening the XPages application programming interfaces (APIs) would allow
developers to add their own XPages components to the framework and consume assets from other
third parties. Thus, for Notes/Domino 8.5.2, we released the first public XPages APIs and

integrated the OSGi framework into the Domino server. As a means of illustrating how to use the
APIs, we decided to provide a set of sample artifacts. The thinking was that if customers learned
from these samples to build their own controls and shared them with each other across the com-
munity, developing top-drawer web applications would be easier to achieve. This led to the cre-
ation of a new XPages extension project, initially named Porus.

According to Plato, Porus was the personification of plenty, so this new library was
intended to provide an abundance of new capabilities. True to its name, Porus quickly grew and
soon boasted a large set of new controls, datasources, and other XPages assets. In fact, it was so
effective that we wanted to build our next generation of XPages application templates on top of it,
and that’s where we ran into a problem: The library was simply too big to fit into the next
Notes/Domino maintenance release. Moreover, we didn’t want to wait for the next release.
We wanted our customers to benefit from all the bountiful goodies of Porus as quickly as
possible, and that meant being able to install it on top of the latest Notes/Domino release (8.5.2).
What to do?

With the benefit of 20-20 hindsight, perhaps moving our internal Porus library to a public
open source model out on OpenNTF.org was the obvious next move, but this was not so clear cut
at the time. You must bear in mind that none of the core XPages runtime or Notes/Domino plat-
form code is available as open source, so going down this road would be a new departure for us.
The advantages of an open source model, however, were appealing. First, we could share our
library with the development community more or less immediately and then update it when
needed. This would allow us to deliver before the next Notes/Domino maintenance release and be
independent of its constraints. It would also allow us to provide all the benefits of our Extension
Library (ExtLib) while they are their most relevant to the community. The IT industry evolves at
a rapid pace, so what’s new and cool today can be old hat tomorrow; the timeliness of technology
delivery can be a crucial factor in its success or failure. Being at the bleeding edge requires an
agile delivery model, and we recognized that our traditional model simply could not adapt and
respond quickly enough to the rapidly mutating demands of the market.

Of course, we had firsthand experience of the dynamic nature of open source systems by
virtue of the fact that XPages depends on such components. The Dojo JavaScript library, which is
at the core of XPages, is a perfect example. It typically provides two major releases per year, plus
some maintenance updates. Not only do these releases constantly add new features and fixes, they
target the latest browsers available in the market. With the most popular browsers piling through
major release after major release in quick-fire succession and auto-updating themselves on end-
user desktops, the Dojo project is well adapted to what is required to stay relevant in the modern
IT world. The Notes/Domino product release cycle, on the other hand, is a heavyweight process.
The last months in our release cycles are spent solidifying the products, with no new features
being added, to minimize quality risks. On the one hand, this process helps to produce high-
quality software, but on the other, it doesn’t keep pace with the overall evolution rate of the
modern industry.

xx Foreword

Quite apart from speed and agility, however, is the critical element of transparency.
Twenty-first century developers no longer want black boxes of code that they can use blindly.
They expect to go further: They want to understand what the code does and how it works. They
want to be able to debug it, to extend it. They want to share with a community. If you don’t pro-
vide these capabilities, developers will find a way to get access to your code anyway. By nature,
script languages are delivered in source form (if sometimes obfuscated), and even compiled lan-
guages such as Java™ or C# can be easily introspected.

September 1, 2010 was a landmark date for XPages, because it was when the XPages
ExtLib was introduced as an open source project on OpenNTF.org. The response was amazing.
The community latched on to this project from the get-go and ran with it. Today it proudly stands
well clear of the field as the most active project on OpenNTF, with more than 26,000 downloads.

Despite the XPages ExtLib’s runaway adoption success, other issues arose. Soon it became
clear that although the open source model gave us many benefits, it was by no means perfect.
Open source projects are often started by developers who put a greater emphasis on the code
itself, leaving other pieces, such as documentation, test, accessibility, and support, behind. This is
generally not acceptable for enterprise software intended for production. In fact, installing open
source software in production environments is prevented by policy in many organizations. Per-
haps even more significant is the fact that open source projects generally rely heavily on a small
set of core developers. Open source repositories, like SourceForge and GitHub, are full of static
projects that individuals started in their spare time and then left behind as the founders moved on
to new pastures. For these projects to be successful, organizations that are prepared to stand
behind the projects must endorse them. Without this endorsement, the use of open source soft-
ware inevitably carries a certain amount of risk.

At this juncture, it was natural to wonder if we had gone full circle. To give customers the
latest and greatest cutting-edge technology, we had to put a greater emphasis on code develop-
ment. The open source model helped us achieve this. To give customers a system that IBM® fully
supports and endorses, we needed to reinvest in all the aforementioned elements that we had sac-
rificed along the way for speed of innovation. Was it impossible to have both? We thought long
and hard on this problem to come up with alternative distribution models that could satisfy the
largest spectrum of users, from the early adopters to the more risk-averse conservative con-
sumers. Our strategy can be summarized in three practices:

• We continue to deliver source code as early and frequently as possible to OpenNTF.org.
Early adopters can continue to consume these offerings, which are supported not by
IBM but by the ExtLib community. Thus, answers to questions and fixes to problems
can be delivered promptly.

• Periodically, we package a subset of the ExtLib functionality available on OpenNTF.org
and include this in an Upgrade Pack (UP) for Notes/Domino. Such UPs are fully sup-
ported by IBM and install on top of the latest shipping version of the Notes/Domino
platform.

Foreword xxi

• The latest UP, plus any important subsequent features or fixes from OpenNTF, is always
rolled into the next release of the product. Thus, between Notes/Domino release cycles,
there is the potential for multiple UPs.

This three-tiered model has numerous advantages. It allows us to continue to get real feed-
back from the early adopters—the consumers of the OpenNTF project. By the time the code actu-
ally makes the official UP, or later into the core product, it has already been used in many
projects, making it robust as we fix and deliver the open source project on a frequent basis. Also,
regardless of the distribution mode, the source code is always provided. On December 14, 2011,
we delivered on this proposed model by shipping our first UP: Notes/Domino 8.5.3 UP1. There
are more to come!

In a long-standing software organization, like Notes/Domino, UP was a real revolution—
2009 all over again! It was the first time IBM Collaboration Solutions (aka Lotus®) had delivered
significant pieces of software in this way. It was a huge challenge, but we successfully achieved it
because of the high level of commitment of the XPages team, the help of the broader
Notes/Domino application development teams, and, most importantly, the great support of the
community. Thanks to all of you, the Upgrade Pack has been a tremendous success.

Speaking of success, the release of the first XPages book, Mastering XPages, at Lotusphere
2011 exceeded our initial expectations. Despite having shipped three times the normal stock lev-
els to the Lotusphere bookstore, because of the high number of online preorders, the book was
completely sold out by Tuesday morning. That had never happened before. Coincidentally, this
was also the first Lotusphere that discussed the ExtLib. So with the buzz of Mastering XPages in
full flow, we floated the idea of another book, dedicated to the ExtLib. This proposal was a little
different. By this time we were surfing the social wave; given the open source model on which the
project rested, we wanted to get the community involved. Later that same Tuesday, the idea of a
new ExtLib book was tweeted, proposing that a different author write each chapter. This social
technique worked well. We rapidly got a list of volunteers from the community, which demon-
strated both the great commitment of our community as well as the power of social media today.
As a result, we ended up with a team of great experts, la crème de la crème, contributing to
this book.

You’ll note as you leaf through the chapters that the XPages ExtLib is moving to Social. We
added numerous social-oriented features, which are certainly going to evolve rapidly over time.
Take advantage of them, add social capabilities to your applications, and connect them to the
world. There are fantastic opportunities opening up in this space. At the time Mastering XPages
was published in 2011, we claimed we were at the beginning of a great XPages odyssey. Without
a doubt, the success of the ExtLib has proven this. But we’re not done; the story relentlessly con-
tinues. Further adventures in Social and Mobile will be our major themes going forward, and the
XPages ExtLib will continue to be at the core of our innovation.

Enjoy the ExtLib as much as we do!

—Philippe Riand and Martin Donnelly, XPages Architects

xxii Foreword

xxiii

Preface

Lotusphere 2011 was memorable in a lot of ways. It was another rip-roaring success for XPages
as it continues to gain traction, make converts out of once-skeptics, and project a vision of what
application development is going to look like in the years to come. The same event was also
notable for the publication of the first real technical book on this technology, Mastering XPages
by Martin Donnelly, Mark Wallace, and Tony McGuckin. Its approach was to document XPages
in a way that hadn’t been done before. It created a fantastic stir at Lotusphere 2011 that has rever-
berated throughout the coming year. Lotusphere, similar to other events, brings like-minded
people together to meet face to face and talk. It was at Lotusphere 2011 that a group of XPagers
(anyone who develops XPages applications) was talking about how wonderful the Mastering
XPages book was and expressing how they couldn’t wait until the next XPages book was written.
This started the ball rolling.

We all have ideas. Some of these ideas never see the light of day, which is not necessarily a
bad thing. Other ideas don’t go away. The idea for another XPages book began to snowball. By
the end of Lotusphere week, more than a few of us nearly swore in blood that we would write this
book. And so we did.

The initial target for publication of this book was Lotusphere 2012. When we started to
write this book in June 2011, that target was realistic. But as the long summer progressed, those
busy bees in the XPages development team were deep into a process of reshaping the XPages
ExtLib so IBM would fully support it. Add on the new support for relational databases and the
new features to support social application development released to OpenNTF in the latter half of
the year; the authors were effectively writing about a moving target. Each moving target stops
occasionally to catch its breath.

A milestone was developing with the release of the Lotus Notes Domino 8.5.3 Upgrade
Pack (UP) in December 2011. It was a significant release, because it was the first of its type in the

20-year history of Lotus Notes Domino. New features were being released to the market between
major releases of the core project, which brought forth the fully IBM-supported version of the
XPages Extension Library (ExtLib). What better event to base a book around?

This Book’s Approach
The main desire for this book is to collate the knowledge of the XPages ExtLib and to communi-
cate that knowledge to you, the reader. We seek to do this in a progressive way, starting with the
basics and finishing with the more technical areas. And it’s these advanced areas that we believe
will take XPages application development to new heights.

Most chapters, apart from Chapter 13, “Get Social,” use one or two applications for refer-
ence: the XPages ExtLib Demo application (XPagesExt.nsf) and the TeamRoom XL template
(teamrm8xl.ntf). At the time of writing, both of these applications contain examples for 100% of
the controls and components available from the XPages ExtLib. In these examples, we will take
you through how to use these controls, describe what the various properties are for, and in some
cases recommend how you can take advantage of such controls.

This book targets the December 2011 releases of the XPages ExtLib, be it in the form of the
Lotus Notes Domino 8.5.3 UP 1 release or the release to the OpenNTF project. The feature set
encapsulated in these releases represents a high point in the story of the technology. But this is
not to say that this story is complete—far from it. There may be another book in the offing that
will tell the story of how this technology will reach its next high point. Only time will tell.

We recommend that before picking up this book, you become familiar with XPages. One
excellent shortcut for this is reading the Mastering XPages book, which will give you a firm
grounding before you step into the XPages ExtLib. However, you don’t have to be an expert in
XPages. A basic knowledge of XPages is all you need to take advantage of the ExtLib and build
better, more efficient applications more quickly.

Some Conventions
This book employs a few conventions of note that will make reading smooth.

User-interface elements, such as menus, buttons, links, file paths, folders, sample XPages,
and Custom Control and so on in Domino Designer or in applications, are styled in the text as
bold, for example, “Go to the Download/Releases section.” Attributes and their options that are
selectable from the All Properties view in Designer are also in bold.

Code, be it programming script, markup, or XSP keywords in the text, is typically styled in
mono font size. For example, “Developers who have used the Dojo dialog in the past will know
that it is opened via Client-Side JavaScript using the show() function and closed using the
hide() function.”

Also, in code, the XPages XML markup examples that typically form the listings through-
out the book have split multiple attributes to a new line. This makes it easier to read the markup.

Those experienced with reading XPages markup will recognize the default prefix used for
the core controls namespace: xp, as in xp:viewPanel or xp:button. They will also recognize

xxiv Preface

that Custom Controls have their own prefix: xc as in xc:layout from the Discussion XL tem-
plate. The XPages ExtLib namespace has its own prefix, xe, which is used for the more than 150
ExtLib controls; for example, xe:dataView.

How This Book Is Organized
This book is divided into four parts, each a progression for you to navigate through various levels
of XPages ExtLib knowledge.

Part I, “The Extension Library, Installation, Deployment, and an Application Tour”:
This part is aimed at getting you started with the XPages ExtLib. It explains what it is and how
you install and deploy it, and it demonstrates in a production-ready application how and why it
is used.

• Chapter 1, “The Next Generation of XPages Controls”: This chapter introduces
you to the XPages ExtLib, explains why the controls and components contained
within will take XPages application development to the next level, and describes some
of the areas that are likely to help grow the XPages technology even further.

• Chapter 2, “Installation and Deployment of the XPages Extension Library”:
This chapter describes the various ways to install and deploy versions of the ExtLib,
be it IBM Lotus Notes Domino R8.5.2 or R8.5.3, or server, Domino Designer, or
Notes Client.

• Chapter 3, “TeamRoom Template Tour”: The purpose of this chapter is twofold.
First, it is to gently introduce you to the XPages ExtLib. Second, it is to demonstrate
how an existing template was modernized with this exciting new technology with fea-
tures that are built entirely using the ExtLib in a production-ready application.

Part II, “The Basics: The Applications Infrastructure”: This is the part of the book
where each of more than 150 controls in the XPages ExtLib is described. These six chapters are
laid out in a way that a typical Domino application developer might expect; start with a form, and
then move on to views and to the overall navigation and layout. That is not to say that you have to
read these chapters in that sequence to get a full understanding of the controls. An XPages app
developer typically starts with the application layout and navigation before moving on to view
and form controls. The sequence in how you read them is up to you. Each chapter can be taken in
a standalone fashion.

• Chapter 4, “Forms, Dynamic Content, and More!”: This chapter, along with
Chapters 5 and 6, describes those controls that are typically used in the form of an
XPage. With the use of Form Layout, Post, and Dynamic Content and Switch con-
trols, you can quickly take advantage of these prebuilt and preformatted components
to deploy complex layouts and design patterns.

Preface xxv

• Chapter 5, “Dojo Made Easy”: Whether you are familiar with Dojo or not, this
chapter is aimed at how you can take advantage of this toolkit, which has been encap-
sulated into the Dojo controls for the XPages ExtLib. Without the ExtLib, configuring
Dojo components can be tricky. The controls in the ExtLib make it easier.

• Chapter 6, “Pop-Ups: Tooltips, Dialogs, and Pickers”: The ExtLib contributes
tooltips for displaying additional content, dialogs for displaying or managing content,
and pickers for facilitating selection of values. The XPages ExtLib makes this easier
for developers, overcoming some of the challenges of integrating Dojo and XPages.
This chapter describes all this.

• Chapter 7, “Views”: Before the ExtLib, there were three available core container
controls for displaying a collection of documents: the View Panel, the Data Table, and
the Repeat Control. The ExtLib provides some new controls to help you take the dis-
play of a data collection to new levels. This chapter describes each one of these new
view controls.

• Chapter 8, “Outlines and Navigation”: For the end user to be able to switch
between the different views in the application, you need to create an application lay-
out and navigation. This chapter covers both the Dojo layout controls and navigation
controls that have been added to the XPages ExtLib.

• Chapter 9, “The Application’s Layout”: In this chapter, you learn use of the Appli-
cation Layout control, which helps you meet the challenge of creating an effective
application interface that is not only pleasing, but intuitive and consistent, allowing
users to predict what behaviors will produce the desired effect. All this is despite the
difficulties presented when developing applications with the browser as your target
platform.

Part III, “Bell and Whistles: Mobile, REST, RDBMS, and Social”: In this part of the
book, the big four deliverables to the XPages ExtLib in 2011 are described. If Part II of this book
marks a step up in developing XPages applications, this part marks another. The next four chap-
ters effectively describe the direction application development will progress in the coming years.
Each of these chapters stands alone.

• Chapter 10, “XPages Goes Mobile”: Mobile is the technology of the age. Owning a
mobile device is no longer a luxury but a necessity. This fact is becoming increasingly
important in business, as desktops and laptops are being superseded by tablets and
smartphones. This transition has many challenges, ranging from the user interface
(UI) design to security. XPages and the ExtLib are in place to meet these mobile chal-
lenges. This chapter shows how to meet and overcome these obstacles.

xxvi Preface

• Chapter 11, “REST Services”: REpresentational State Transfer (REST) is important
to the new Web 2.0 programming model. New technologies like OpenSocial and
Android are embracing REST services to allow remote clients access to Server-Side
data. The XPages ExtLib has RESTful services in place, so a whole range of exciting
data-handling options open for the XPages developer.

• Chapter 12, “XPages Gets Relational”: This chapter reviews concepts behind inte-
grating relational data and the new relational database components that the ExtLib
provides, including JDBC, the Connection Pool and Connection Manager, the data-
sources, and the Java and Server-Side JavaScript (SSJS) APIs included to integrate
relational data into an XPages application.

• Chapter 13, “Get Social”: Social and social business are the buzzwords of the age.
This chapter uses a definition of social applications in the context of XPages, custom
application development, and IBM Lotus Domino/IBM XWork Server. It describes
the new requirements, maps them to technologies, and shows how the ExtLib helps
implement these new requirements.

Preface xxvii

Part IV, “Getting Under the Covers with Java”: Gaining a fuller understanding of
XPages Extensibility can be achieved with a little knowledge of Java. In this part of the book, the
aim is to help you round out this knowledge and enable you to get the most out of the ExtLib.

• Chapter 14, “Java Development in XPages”: With the addition of XPages to IBM
Lotus Notes Domino, the capacity for inclusion of Java in applications has never been
easier or more powerful. This chapter provides a glimpse into some of the many ways
Java can take your applications to the next level, as well as a few ways that you can
get even more use out of some of the XPages ExtLib controls already described in
previous chapters.

NOTE: At the time we were writing this manuscript, we were using the product called
LotusLive™. This product has since been renamed IBM SmartCloud™ for Social
Business.

This page intentionally left blank

xxix

Acknowledgments

Books aren’t produced by one person. If they were, there would be very few of them. It takes a
team of people to get a book to its rightful place on the shelf. That’s stating the obvious, we know,
but it’s to make the point that we would like to thank a whole ream of people who have helped us
get this book out the door.

First, we would like to thank the contributing authors for helping out on the book. Without
Niklas Heidloff, Stephen Auriemma, Lorcan McDonald, and Simon McLoughlin, we wouldn’t
be where we are.

A sincere expression of gratitude has to go to the technical reviewers, Brian Benz and Chris
Toohey. You guys rock! Your patience, insight, and expertise were a great help to us. Thanks for
sticking with us through our adventure.

Thanks for all the leadership help of the Notes Domino Application Development team,
especially Eamon Muldoon, Martin Donnelly, Philippe Riand, Pete Janzen, and Maureen Leland
for supporting this book from the beginning to the end.

Still at IBM, we would like to thank the following people, who helped put the XPages
ExtLib on the map: Andrejus Chaliapinas, Brian Gleeson, Darin Egan, Dan O’Connor, Dave
Delay, Edel Gleeson, Elizabeth Sawyer, Graham O’Keeffe, Greg Grunwald, Jim Cooper, Jim
Quill, Joseph J Veilleux, Kathy Howard, Kevin Smith, Lisa Henry, Maire Kehoe, Mark Vincen-
zes, Michael Blout, Mike Kerrigan, Padraic Edwards, Peter Rubinstein, Rama Annavajhala,
Robert Harwood, Robert Perron, Teresa Monahan, Tony McGuckin, and Vin Manduca.

Going back to the beginning, we would like to thank Philippe Riand (yes, him again)
for lighting the fire with that Twitter post (https://twitter.com/#!/philriand/status/
32730855042457601) at Lotusphere 2011. This tweet reverberated, and the XPages community
and the wider Lotus Community responded. It is safe to say that without this community, the idea
for the book would never have gotten off the ground, so a great big thank-you to all. There aren’t

https://twitter.com/#!/philriand/status/32730855042457601
https://twitter.com/#!/philriand/status/32730855042457601

enough pages available to thank everyone in the community, but we would like to mention Bruce
Elgort, Darren Duke, David Leedy, John Foldager, John Roling, Matt White, Michael Bourak,
Michael Falstrup, Nathan T. Freeman, Per Henrik Lausten, Phil Randolph, René Winkelmeyer,
Tim Clark, Tim Malone, and Ulrich Krause for the help and inspiration in achieving liftoff and
flight.

Still in the community, we would like to thank all those who have participated in the ExtLib
project through OpenNTF who have been the early adopters of this technology. Without your
feedback, this project likely wouldn’t have gotten off the runway.

Finally, we would like to thank Mary Beth Ray, Chris Cleveland, Ellie Bru, Vanessa Evans,
Jovana Shirley, Lori Lyons, Steven Stansel, Ellice Uffer, and Karen Gill at IBM Press and
Pearson Education for being such wonderful partners in this project.

xxx Acknowledgments

xxxi

About the Authors

This book has many authors, all from the XPages community.
Paul Hannan is a senior software engineer in the IBM Ireland software lab in Dublin and a

member of the XPages runtime team. He has worked on XPages since it was known as XFaces in
Lotus Component Designer. Previous to this, he worked on JSF tooling for Rational® Application
Developer, and before that on Notes Domino 6 back to Notes 3.3x and Lotus ScreenCam. A
native of County Sligo, Paul now lives in Dublin with his wife Katie and son Alec. A recent con-
vert (dragged kicking and screaming) to opera (not the web browser), Paul also enjoys thinking
about stuff, taking pictures, commanding the remote control, and playing with his son and
his Lego.

Declan Sciolla-Lynch was born in Dublin, Ireland and now lives in Pittsburgh, Pennsylva-
nia. Declan has been working with IBM Lotus Notes/Domino for more than 15 years. He wrote
one of the first XPages learning resources on his blog and is widely considered one of the com-
munity’s XPages gurus. Declan has spoken at Lotusphere on a number of occasions and has con-
tributed popular projects to OpenNTF, the community’s open source hub. He is also an IBM
Champion. He and his wife have three dogs and three cats and go to Disney theme parks when-
ever they get a chance.

Jeremy Hodge, from southern Michigan, is a software architect with ZetaOne Solutions
Group and has more than 15 years’ experience in the software design industry. He has designed
and implemented applications in the vertical market application, custom application, Software as
a Service (SaaS), and off-the-shelf product spaces in many platforms and languages, including
IBM Lotus Notes/Domino, C/C++/Objective-C, Java, Object Pascal, and others. He has served as
the subject matter expert for courses with IBM Lotus Education, including those on XPages
applications. He blogs on XPages at XPagesBlog.com and his personal blog at hodgebloge.com.

Paul Withers is senior Domino developer and team leader at Intec Systems Ltd, an IBM
Premier Business partner in the UK. He is an IBM Champion for collaboration solutions and the
cohost of The XCast XPages podcast. Paul has presented at Lotusphere and various Lotus User
Groups across Europe. He has written blogs, wiki articles, and a NotesIn9 episode. He has
authored reusable XPages controls and an application, XPages Help Application, on OpenNTF.
Outside of work, Paul is a Reading FC supporter and netball umpire in the England Netball
National Premier League.

Tim Tripcony leads the Transformer ExtLib development team at GBS, creating XPage
components and other JSF artifacts that extend the native capabilities of the Domino platform. He
maintains a popular technical blog, Tip of the Iceberg (TimTripcony.com), offering tips on
cutting-edge Domino development techniques. He frequently speaks at user group meetings and
technical conferences, including Lotusphere. Tim is a globally recognized expert on advanced
XPage and JSF development and has been designated an IBM Champion.

xxxii About the Authors

xxxiii

Contributing
Authors

Niklas Heidloff is a software architect working for the software group in IBM. He is focused on
invigorating the application development community and promoting XPages as IBM’s web and
mobile application development platform for collaborative and social applications. In this role,
he is the technical committee chair and a director of the Board of Directors of the open source site
OpenNTF.org. Previously, Niklas was responsible for other application development areas in the
IBM Lotus Domino space, including composite applications. Before this, he worked on IBM
Lotus Notes, IBM WebSphere® Process Choreographer, and IBM Workplace Client Technology.
In 1999, he joined IBM as part of the Lotus Workflow team. Niklas studied at the university
in Paderborn, Germany, and has a degree in Business Computing (Diplom
Wirtschaftsinformatiker).

Stephen Auriemma is an advisory software engineer currently working in the IBM Little-
ton software lab on an XPages and Domino Access (REST). Stephen has a master’s degree in
computer science from Boston University. In the past, he worked as a developer on various
projects, including Composite Applications for Notes 8.0, the open source project on Apache
called Xalan for IBM Research, and Domino Offline Services for Lotus. Stephen started his
career with IBM in 1996, providing development technical support for Notes programmability.
He lives in Chelmsford, Massachusetts, with his wife and two daughters, Jessica and Amanda.

Simon McLoughlin is a graduate software developer in the IBM Ireland software lab in
Dublin working for the XPages mobile team. A graduate of the Institute of Technology, Tallaght,
he was responsible for reworking and adding the mobile front end to the Discussion and Team-
Room templates delivered with the XPages ExtLib. In college, he studied computer science. In
his last year there, he joined with IBM on a research project; the result was a smartphone push
alert system to alert native iPhone/Android users that a server undergoing a long run test was run-
ning low on resources or approaching some critical state. This project finished in the top 3 for the

Irish software awards for the student category of most commercially viable/innovative. Living in
Dublin, Simon enjoys experimenting with new mobile technology and suffers greatly from an
addiction to computer games.

Lorcan McDonald is a senior software engineer on the XPages team in the Dublin office
of the IBM Ireland software lab. He is the tech lead on the XPages Mobile controls project and
has worked on the Domino platform for three years, split between the XPages Runtime team and
Quickr® Domino. Before coming to IBM, Lorcan worked on financial web applications for the
credit card and trading industries. Born and raised in Sligo, he has been living in Dublin for more
than a decade. He never stops thinking about computing problems. He has been known to per-
form and record music as 7800 beats, presumably via some sort of web interface.

xxxiv Contributing Authors

95

C H A P T E R 5

Dojo Made Easy

Ever since IBM Lotus Domino Release 8.5.0, the Dojo toolkit has been IBM’s JavaScript frame-
work of choice. It comes preinstalled with the Domino server and is intrinsically linked with the
XPages runtime. Much of the standard XPages functionality extends the standard Dojo toolkit.
Developers have been integrating Dojo with XPages since its introduction into Domino, taking
advantage of the prebuilt code libraries to enhance their XPages applications. Subsequent
releases have specifically targeted making it easier to combine XPages and Dojo. To this end, the
Extension Library Dojo controls are designed to make it easier still to implement some of the
more frequently used modules, whether for novice developers or seasoned developers making
extensive use of the Dojo modules and attributes available.

Developers already familiar with Dojo might want to jump to the section “Dojo Modules and
Dojo in the Extension Library.” For those who have never or rarely used Dojo, the following sec-
tions will give some background and walk through a couple of examples of Dojo modules in
XPages.

What Is Dojo?
Dojo is an open source JavaScript framework, a free collection of cross-browser-compatible
functions and widgets, first released in 2006. Each JavaScript file is an object with various attrib-
utes and functions, referred to as a Dojo module. For example, dijit.form.TextBox is a Dojo
module that converts an HTML input tag to a Dojo-styled text box. Modules can also extend
other Dojo modules, so dijit.form.ValidationTextBox and dijit.form.Number-

TextBox both extend dijit.form.TextBox. This allows developers to add functionality by
creating their own extensions without needing to modify the preinstalled files. One of the
strengths of these Dojo modules is that they are specifically designed to support developers in
addressing accessibility requirements.

All the XPages Client-Side JavaScript functionality can be found in script libraries in the
Dojo root folders; most either extend or mimic standard Dojo modules. For example, any partial
refresh calls dojo.xhrGet() or dojo.xhrPost(), the standard Dojo AJAX requests to the
server. The XPages DateTimeHelper extends a number of Dojo modules, including
dijit.form.Button, dojo.date, and dijit._widget. Client-Side validation also mimics
the format of Dojo functions. Consequently, the core Dojo libraries are loaded in an XPage by
default, so even a blank XPage in which you are not explicitly including Client-Side JavaScript
libraries will include the following Dojo JavaScript libraries, as shown in Figure 5.1:

/xsp/.ibmxspres/dojoroot-1.6.1/dojo/dojo.js
/xsp/.ibmxspres/.mini/dojo/.en-gb/@Iq.js (for English)

96 Chapter 5 Dojo Made Easy

Figure 5.1 Dojo libraries loaded.

Default Dojo Libraries Using Dojo Modules in XPages
Before Domino 8.5.2, incorporating Dojo modules into XPages was challenging because many
controls did not have a dojoType attribute. The only way to implement Dojo on an EditBox, for
example, was to apply it programmatically. So in addition to the core control client side,

JavaScript was required to trigger on load. Listing 5.1 demonstrates this programmatic imple-
mentation of the dijit.form.ValidationTextBox. Lines 1 to 4 show the core Edit Box con-
trol. Line 6 then begins an Output Script control, triggering XSP.addOnLoad() in line 16. The
addOnLoad() calls a function that generates a new dijit.form.ValidationTextBox on
line 9 adding various attributes. Line 13 adds the parameter to the new function, which applies the
Dojo module to the Edit Box control.

Listing 5.1 Programmatic Implementation of dijit.form.ValidationTextBox

1 <xp:inputText

2 id=”response”

3 value=”#{ansDoc.response}”>

4 </xp:inputText>

5

6 <xp:scriptBlock

7 id=”scriptBlock1”>

8 <xp:this.value><![CDATA[var convertInput = function() {

9 new dijit.form.ValidationTextBox(

10 {name:”#{id:response}”,

11 required: true,

12 promptMessage: “Please complete the field”},

13 XSP.getElementById(“#{id:response}”)

14);

15 };

16 XSP.addOnLoad(convertInput);

17]]></xp:this.value>

18 </xp:scriptBlock>

There is no reason you cannot use programmatic conversion of a core control to a Dojo
module, if applicable. But with Domino 8.5.2, it became possible to declaratively convert the
control thanks to the addition of the dojoType attribute to a variety of core controls. So for the
Edit Box control, for example, in Domino 8.5.2 a Dojo panel was added and dojoType and
dojoAttributes properties appeared on the All Properties panel, as shown in Figure 5.2. Not only
is this easier to implement, but text strings entered as Dojo attribute values are picked up if local-
ization is required and turned on for an application.

Default Dojo Libraries Using Dojo Modules in XPages 97

Figure 5.2 Dojo panel on Edit Box control.

Before digging into the Extension Library, let’s review several examples of implementing
Dojo in XPages. Any developer who has used Dojo modules in XPages is aware of the steps
required, ingrained quite probably by forgetting one of the steps at one time or another. The first
critical step is to set dojoParseOnLoad and dojoTheme attributes to “true”, as shown in lines
4 and 5 of Listing 5.2. The former tells the browser that after loading it needs to convert all con-
tent with a dojoType property; the latter tells the browser to load the relevant theme for styling all
Dojo widgets (or dijits). The final step is to add as resources on the XPage any Dojo modules ref-
erenced on the page in a dojoType property.

Listing 5.2 dojoParseOnLoad and dojoTheme

1 <?xml version=”1.0” encoding=”UTF-8”?>

2 <xp:view

3 xmlns:xp=”http://www.ibm.com/xsp/core”

4 dojoParseOnLoad=”true”

5 dojoTheme=”true”>

6

7 </xp:view>

98 Chapter 5 Dojo Made Easy

Of course, you can perform all this on either an XPage or a Custom Control, but for sim-
plicity, the reference will only be made to XPages. To provide a more appropriate comparison
with the Extension Library controls, the examples in the sections that follow focus on declarative
implementations of Dojo modules.

Simple Dojo Example: dijit.form.ValidationTextBox
The Dojo modules applied to an Edit Box are among the simplest implementations of Dojo. The
dijit.form.ValidationTextBox is a simple extension to the Edit Box, which adds Client-
Side validation with a styling consistent with other dijits to offer immediate validation and a
prompt message. It has a number of Dojo attributes, some of which you can see in Listing 5.3.
Figure 5.3 shows the resulting output. There is a host of printed and online documentation of
Dojo (for examples, see the Dojo Toolkit website http://dojotoolkit.org/reference-
guide/index.html). This book will not seek to exhaustively reproduce a glossary of the Dojo
attributes and what they do.

Listing 5.3 dijit.form.ValidationTextBox

<xp:this.resources>

<xp:dojoModule

name=”dijit.form.ValidationTextBox”>

</xp:dojoModule>

</xp:this.resources>

<xp:inputText

id=”inputText1”

value=”#{viewScope.validationBox}”

dojoType=”dijit.form.ValidationTextBox”>

<xp:this.dojoAttributes>

<xp:dojoAttribute

name=”required”

value=”true”>

</xp:dojoAttribute>

<xp:dojoAttribute

name=”promptMessage”

value=”Please complete this field”>

</xp:dojoAttribute>

</xp:this.dojoAttributes>

</xp:inputText>

Default Dojo Libraries Using Dojo Modules in XPages 99

http://dojotoolkit.org/referenceguide/index.html
http://dojotoolkit.org/referenceguide/index.html

Figure 5.3 dijit.form.ValidationTextBox.

Defining Dojo modules and attributes is made a little challenging because there is no type-
ahead or other context-sensitive help to advise on the Dojo modules available for use. There is
also no validation of the correct naming conventions for the modules or validation of additional
resources that need to be included. But this is to provide developers with the flexibility to take
advantage of new releases of Dojo at the earliest opportunity and develop their own Dojo mod-
ules. For developers who are comfortable with the attributes available, this is not a problem; how-
ever, novice developers might find the size of the Dojo toolkit daunting.

Dojo Example for Slider
Some dijits are more involved than just setting a Dojo type and attributes to a Core control.
A good example of this is the slider. There are actually two types of sliders: dijit.form.
HorizontalSlider and dijit.form.VerticalSlider. The implementations are similar,
so we shall just cover the HorizontalSlider.

As with dijit.form.ValidationTextBox, the slider is an input control, so you need to
store the value in an Edit Box control (or, in most implementations, a Hidden Input control).
However, you cannot directly attach the slider to the Edit Box. Instead, you apply the Dojo
styling to a div and add an onchange event to pass the value to the Edit Box. Although the XPages
Div control has dojoType and dojoAttributes properties, it does not have an onchange event, so
it is easier to use an HTML div.

Further code is required to apply labels to the horizontal slider. You must apply an addi-
tional Dojo module to an HTML ordered list, dijit.form.HorizontalRuleLabels. Listing
5.4 shows the combination of XPage and HTML markup used to create a horizontal slider, which
allows the user to select a value (in multiples of 10) within a range of 0 and 100, showing labels at
increments of 20. The code required is rather extensive for a simple slider. Figure 5.4 shows the
resulting output.

100 Chapter 5 Dojo Made Easy

Listing 5.4 dijit.form.HorizontalSlider

<xp:this.resources>

<xp:dojoModule

name=”dijit.form.HorizontalSlider”>

</xp:dojoModule>

<xp:dojoModule

name=”dijit.form.HorizontalRuleLabels”> </xp:dojoModule>

</xp:this.resources>

<div

id=”horizontalSlider”

dojoType=”dijit.form.HorizontalSlider”

value=”50”

minimum=”0”

maximum=”100”

discreteValues=”11” style=”width:500px”

showButtons=”false”

onChange=”dojo.byId(‘#{id:horizontalHolder}’).value =
dijit.byId(‘horizontalSlider’).value”>

<ol

dojoType=”dijit.form.HorizontalRuleLabels”

container=”bottomDecoration”>

0

20

40

60

80

100

</div>

<xp:inputText

id=”horizontalHolder”

value=”#{viewScope.horizontalSlider}”

defaultValue=”50”>

</xp:inputText>

Default Dojo Libraries Using Dojo Modules in XPages 101

Figure 5.4 dijit.form.HorizontalSlider.

Dojo Themes
All the dijits are styled according to a theme. The theme is defined on the XPages tab in the
Application Properties, accessed from designer, using the Application Theme dialog list, as in
Figure 5.5. The OneUI and Server Default themes use tundra by default. If the property Use run-
time optimized JavaScript and CSS resources at the bottom of this tab is checked, a single
aggregated stylesheet is delivered to the browser. This includes the following stylesheet:

/xsp/.ibmxspres/dojoroot-1.6.1/dijit/themes/tundra/tundra.css
In addition, the tundra theme is applied to the body tag, so the output HTML is <body

class=”xsp lotusui tundra”>.

102 Chapter 5 Dojo Made Easy

Figure 5.5 XPages tab of Application Properties in Domino Designer.

Dojo provides three other themes: nihilo, soria and, since Dojo 1.5.0, claro. Implementing
these themes is just a matter of including the relevant stylesheets and applying the style to the
body tag. The former is straightforward in XPages, the latter a little more involved. Within an
XPage, you are limited on the attributes you can manipulate. However, via a custom theme, you
can apply the Dojo theme to the body tag and reference the relevant stylesheets. If an application

is not currently using a theme, just create a new Theme design element, found under the
Resources category in the Application pane.

You can insert the code in Listing 5.5 between the theme tags. Lines 1 through 5 include the
Dojo-themed stylesheet. Lines 8 through 14 apply the Dojo theme to the ViewRoot control,
which becomes the body tag when the web page is loaded. Note in particular the inclusion in
lines 2 and 8 of dojoTheme=”true”. By adding this, the logic checks whether the developer has
set dojoTheme to “true” on the XPage or CustomControl. If the developer has set dojoTheme
to “true”, the stylesheet is loaded and the class is applied. If not, the stylesheet is not loaded and
the class is not applied. To use soria or claro, just replace the three instances of nihilo with the
relevant theme name.

Listing 5.5 Applying a Dojo Theme

1 <!— Include Dojo stylesheet —>

2 <resource dojoTheme=”true”>

3 <content-type>text/css</content-type>

4 <href>/.ibmxspres/dojoroot/dijit/themes/nihilo/nihilo.css</href>

5 </resource>

6

7 <!— Add style to body element —>

8 <control dojoTheme=”true”>

9 <name>ViewRoot</name>

10 <property mode=”concat”>

11 <name>styleClass</name>

12 <value>nihilo</value>

13 </property>

14 </control>

Dojo Modules and Dojo in the Extension Library
As the examples in the preceding sections demonstrate, some Dojo modules are easy to imple-
ment into XPages, but others are more convoluted. Even for a confident developer already accus-
tomed to using dijits in applications, it could get annoying to have to keep adding dojoTypes and
dojoAttributes to all core controls, which was one of the driving forces behind implementing the
Dojo controls in the Extension Library. Using native controls offered several other benefits:

• Easier to implement drag-and-drop functionality

• Promoting some of the more common Dojo modules available for use within XPages

• Validating and manipulating values

• Limiting the number of controls that need to be dropped onto the XPage or Custom
Control

Dojo Modules and Dojo in the Extension Library 103

That is not to say that the Extension Library precludes the need to implement Dojo manu-
ally within XPages. It does not, nor is it intended to. Some Dojo modules, such as the
dojox.image.Lightbox control, are not available in the Extension Library controls. Equally,
there might be instances in which developers have created their own Dojo extensions that they
still intend to use but do not have the skills or are not ready to componentize.

Benefits and Differences of Dojo Extension Library Components
By componentizing the Dojo modules as extended controls, the Extension Library offers several
benefits. Performance is one aspect. Another is that if a Dojo control from the Extension Library
is used, dojoParseOnLoad or dojoTheme does not need to be set and the relevant Dojo mod-
ule(s) does not need to be added to an XPage. Whether accustomed or not to adding the gamut of
dojo attributes to Dojo controls, the extended controls also avoid the need to remember (and
indeed avoid mistyping!) dojo attributes. This also means that it is quicker to implement the
extended controls than just setting a Dojo type and attributes, whether dragging and dropping and
using the “pretty panels” or typing directly into the Source pane. And for developers who are
integrating with Java beans, controls also allow options for integration with backend Java classes,
whether with valueChangeListeners or for controlling return types of, for example, the Dojo
Number Text Box or Dojo Number Spinner.

However, for dijits to use a Dojo theme other than tundra, the code outlined in Listing 5.5
for a Theme design element is still required to apply the relevant Dojo theme to the body tag.
There is nothing within the Extension Library to short-circuit that requirement.

In the examples that follow, properties of the Extension Library are hard-coded, for ease of
explanation. But remember that, as with any other property in XPages, the value of all the proper-
ties of the Extension Library controls can be programmatically calculated, either using on page
load or dynamically.

Without further ado, let’s start looking at the Dojo form controls from the Extension
Library that add to the form controls we covered in the previous chapter. Other Dojo controls are
covered in subsequent chapters. For example, the Dojo Data Grid control is covered in Chapter 7,
“Views.”

Dojo Extensions to the Edit Box Control
Many controls extend the Edit Box control, whether for storing text values, number values, or
date/time values. These controls are not used in the TeamRoom database, so we will review the
Extension Library demo database, which is available from OpenNTF. Specifically, we will
review the Core_DojoFormControls.xsp XPage.

Dojo Text Box (xe:djTextBox)
The Dojo Text Box control is an excellent example of a control that appears to be simple but can
provide functionality not available in the core Edit Box control. In most implementations, all that
is required is to drag and drop it onto the XPage or custom control.

104 Chapter 5 Dojo Made Easy

When you look at the properties available and compare them to the core Edit Box control,
some differences become apparent. Table 5.1 describes the main properties that are standard
across the Dojo widgets.

Table 5.1 Dojo Widget Properties

Property Description

alt Holds alternate text if the browser cannot display the control; uncommon
for form controls.

waiRole Defines the WAI-ARIA role for the control. For more information on
WAI-ARIA, see http://www.w3.org/WAI/.

waiState Defines the WAI-ARIA state of the control. For more information on
WAI-ARIA, see http://www.w3.org/WAI/.

trim Removes leading or trailing spaces, but not duplicate spaces within the
field’s value.

dragRestriction If true, prevents the field from being draggable.

intermediateChanges If true, triggers the onChange event for each value change.

tooltip For most controls, such as Dojo Text Box, the title property is used to add
hover text. Some controls, such as the Dojo Tab Pane, use the title property
for the tab label. For those controls, this tooltip property is used instead to
add hover text.

Table 5.2 describes the properties specific for the Dojo Text Box controls. On the All Prop-
erties panel of the Dojo Text Box, the data category contains the same properties as the Edit Box
(xp:inputText) control. But a smaller subset of properties is listed under the basics category.
Some of the options, including autocomplete, password, htmlFilterIn, and htmlFilter—
visible on an Edit Box control—are not available for this control. Note that some properties like
readonly and maxlength are camel case for the Dojo controls and become readOnly and
maxLength on the Dojo Text Box control.

Table 5.2 xe:djTextBox Properties

Property Description

lowercase If true, the field’s value is converted to lowercase when the user exits the field.

propercase If true, the field’s value is converted to propercase when the user exits the field.

uppercase If true, the field’s value is converted to uppercase when the user exits the field.

Dojo Extensions to the Edit Box Control 105

http://www.w3.org/WAI/
http://www.w3.org/WAI/

The Dojo Text Box also offers some additional properties. Some properties, such as alt,
tabIndex, title, waiRole, and waiState, are standard for the Dojo extended controls, always
appearing under the accessibility category. WAI might be unfamiliar to some Domino developers
who are not used to web development. WAI is an initiative by the World Wide Web Consortium
(W3C) to ensure that websites follow accessibility guidelines. This has been extended for appli-
cations by Web Accessibility Initiative—Accessible Rich Internet Applications (WAI-ARIA),
which differentiates applications from static web pages. It is not yet standard, but it is good prac-
tice. A full taxonomy of roles (http://www.w3.org/WAI/PF/GUI/roleTaxonomy-20060508.html)
and states (http://www.w3.org/WAI/PF/adaptable/StatesAndProperties-20051106.html) is avail-
able on the W3C site. The good news is that even if you do not define the waiRole and waiState
properties on the Dojo extended controls, default roles and states are added. But, if required, the
properties are exposed to allow you to override the defaults.

Other properties are exposed that offer additional functionality over the Edit Box control or
even the standard TextBox control in the Dojo toolkit. In the basics category, the maxLength
property enables developers to ensure that users are restricted to a certain number of characters.
This is triggered on key press, so rather than alerting users after they have left the field, the user
physically cannot type more characters than you allow. However, bear in mind that if the field
should include punctuation, decimal separators, and so on, each counts as one character. You can
use the trim property to remove any leading or trailing spaces. It does not remove duplicate
spaces within the string.

The dojo category is expanded from the Edit Box control with some additional Dojo prop-
erties: dragRestriction, intermediateChanges, and tooltip. These properties are standard for
the Dojo widgets and may not be appropriate for all controls. For example, the tooltip property is
used only for controls such as the Dojo Tab Pane, where the title property has a different function
than applying hover text. The format category provides boolean properties lowercase, upper-
case, and propercase to force case conversion. The formatting takes effect as soon as the user
exits the field.

Some of the differences in the events category between the Edit Box control and the Dojo
Text Box control are just minor. Properties like onfocus, onblur, onchange, and onclick become
onFocus, onBlur, onChange, and onClick. It’s not a major difference, and indeed there is no
difference in implementation. But there are a few additions. The mousing events are supple-
mented by onMouseEnter and onMouseLeave, ostensibly no different from onMouseOver and
onMouseOut. A simple alert statement will show that the onMouseOver event is triggered
before the onMouseEnter event. Likewise, onMouseOut is triggered before onMouseLeave.

Dojo Validation Text Box (xe:djValidationTextBox)
There are no prizes for guessing that the Dojo Validation Text Box control is similar to the Dojo
Text Box control, except that it adds validation. All the properties we outlined on the Dojo Text
Box control are available, including those for dynamically setting the value to lowercase, upper-
case, or propercase and trimming the value.

106 Chapter 5 Dojo Made Easy

http://www.w3.org/WAI/PF/GUI/roleTaxonomy-20060508.html
http://www.w3.org/WAI/PF/adaptable/StatesAndProperties-20051106.html

However, the Dojo Validation Text Box is not, by default, mandatory. Initially, this sounds
incomprehensible. What’s the point of the Dojo Validation Text Box if it’s not validated? But if
we investigate a little further, we will come across the promptMessage property. This enables
the developer to add a message for the user. At runtime, this is delivered to the user by default as
a tooltip, as in Figure 5.6.

Dojo Extensions to the Edit Box Control 107

Figure 5.6 Dojo Validation Text Box promptMessage.

Basic validation is managed in the same way as for any other input control: by using the
required property. But validation for the traditional Edit Box control is handled on the client or
the server, as determined by the developer in the Application Properties or the administrator in
the Server Settings. In the Dojo Validation Text Box, validation is always handled Client-Side,
even if client validation is switched off in the Application Properties. That is because the
Dojo Validation Text Box is a Dojo control, and Dojo validation runs Client-Side (because Dojo
is a set of Client-Side JavaScript libraries). So as soon as the user tabs out of the field, the
validation is triggered and the field is highlighted, as in Figure 5.7. As with the dijit.
form.ValidationTextBox Dojo module, an error message in the invalidMessage property
has no effect if the control just has the required property set to "true" but no other validation
applied.

Figure 5.7 Dojo Validation Text Box error message.

But the Dojo Validation Text Box doesn’t just validate that a value has been entered. In the
dojo-widget category, the regExp property takes as its value a regular expression, a standard web
development validation notation that is designed to be agnostic of programming language. The
regExpGen property can generate a regular expression using Client-Side JavaScript. Rather than
researching and typing a regular expression, Dojo provides some prebuilt objects for validating
standard regular expressions, such as dojo.regexp.realNumber and dojo.regexp.ipAddress.
These can be found in files like dojo.number and dojox.validate, all of which extend dojo.regexp,
the object that defines the function to validate against regular expressions. For example, Listing
5.6 takes the ipAddress function in dojox.validate.regexp.js, amending it only to expect no
parameters. As a function in the regExpGen property, this code will validate that the user enters
a valid IP address, without the need to work out or type in the relevant regular expression. As with
traditional XPages validation, there is a default, but developers can also provide their own mes-
sage, using the invalidMessage property.

Listing 5.6 Validating an IP Address

<xe:djValidationTextBox

value=”#{sessionScope.djValidationTextBox1}”

invalidMessage=”Please enter a valid ip address”>

<xe:this.regExpGen><![CDATA[// summary: Builds an RE that matches an
IP address

108 Chapter 5 Dojo Made Easy

//

// description:

// Supports five formats for IPv4: dotted decimal, dotted hex, dotted
octal, decimal, and hexadecimal.

// Supports two formats for Ipv6.

//

// flags An object. All flags are boolean with default = true.

// flags.allowDottedDecimal Example, 207.142.131.235. No zero
padding.

// flags.allowDottedHex Example, 0x18.0x11.0x9b.0x28. Case
insensitive. Zero padding allowed.

// flags.allowDottedOctal Example, 0030.0021.0233.0050. Zero
padding allowed.

// flags.allowDecimal Example, 3482223595. A decimal number between
0-4294967295.

// flags.allowHex Example, 0xCF8E83EB. Hexadecimal number between
0x0-0xFFFFFFFF.

// Case insensitive. Zero padding allowed.

// flags.allowIPv6 IPv6 address written as eight groups of four
hexadecimal digits.

// FIXME: ipv6 can be written multiple ways IIRC

// flags.allowHybrid IPv6 address written as six groups of four
hexadecimal digits

// followed by the usual four dotted decimal digit notation of
IPv4. x:x:x:x:x:x:d.d.d.d

// assign default values to missing parameters

flags = {};

if(typeof flags.allowDottedDecimal != “boolean”){
flags.allowDottedDecimal = true; }

if(typeof flags.allowDottedHex != “boolean”){ flags.allowDottedHex =
true; }

if(typeof flags.allowDottedOctal != “boolean”){ flags.allowDottedOctal
= true; }

if(typeof flags.allowDecimal != “boolean”){ flags.allowDecimal = true;
}

if(typeof flags.allowHex != “boolean”){ flags.allowHex = true; }

if(typeof flags.allowIPv6 != “boolean”){ flags.allowIPv6 = true; }

if(typeof flags.allowHybrid != “boolean”){ flags.allowHybrid = true; }

// decimal-dotted IP address RE.

var dottedDecimalRE =

// Each number is between 0-255. Zero padding is not allowed.

Dojo Extensions to the Edit Box Control 109

Listing 5.6 (Continued)

“((\\d|[1-9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])\\.){3}(\\d|[1-
9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])”;

// dotted hex IP address RE. Each number is between 0x0-0xff. Zero
padding is allowed, e.g. 0x00.

var dottedHexRE = “(0[xX]0*[\\da-fA-F]?[\\da-fA-F]\\.){3}0[xX]0*[\\da-
fA-F]?[\\da-fA-F]”;

// dotted octal IP address RE. Each number is between 0000-0377.

// Zero padding is allowed, but each number must have at least four
characters.

var dottedOctalRE = “(0+[0-3][0-7][0-7]\\.){3}0+[0-3][0-7][0-7]”;

// decimal IP address RE. A decimal number between 0-4294967295.

var decimalRE = “(0|[1-9]\\d{0,8}|[1-3]\\d{9}|4[01]\\d{8}|42[0-
8]\\d{7}|429[0-3]\\d{6}|” +

“4294[0-8]\\d{5}|42949[0-5]\\d{4}|429496[0-
6]\\d{3}|4294967[01]\\d{2}|42949672[0-8]\\d|429496729[0-5])”;

// hexadecimal IP address RE.

// A hexadecimal number between 0x0-0xFFFFFFFF. Case insensitive. Zero
padding is allowed.

var hexRE = “0[xX]0*[\\da-fA-F]{1,8}”;

// IPv6 address RE.

// The format is written as eight groups of four hexadecimal digits,
x:x:x:x:x:x:x:x,

// where x is between 0000-ffff. Zero padding is optional. Case
insensitive.

var ipv6RE = “([\\da-fA-F]{1,4}\\:){7}[\\da-fA-F]{1,4}”;

// IPv6/IPv4 Hybrid address RE.

// The format is written as six groups of four hexadecimal digits,

// followed by the 4 dotted decimal IPv4 format. x:x:x:x:x:x:d.d.d.d

var hybridRE = “([\\da-fA-F]{1,4}\\:){6}” +

“((\\d|[1-9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])\\.){3}(\\d|[1-
9]\\d|1\\d\\d|2[0-4]\\d|25[0-5])”;

// Build IP Address RE

var a = [];

if(flags.allowDottedDecimal){ a.push(dottedDecimalRE); }

110 Chapter 5 Dojo Made Easy

if(flags.allowDottedHex){ a.push(dottedHexRE); }

if(flags.allowDottedOctal){ a.push(dottedOctalRE); }

if(flags.allowDecimal){ a.push(decimalRE); }

if(flags.allowHex){ a.push(hexRE); }

if(flags.allowIPv6){ a.push(ipv6RE); }

if(flags.allowHybrid){ a.push(hybridRE); }

var ipAddressRE = “”;

if(a.length > 0){

ipAddressRE = “(“ + a.join(“|”) + “)”;

}

return ipAddressRE; // String]]></xe:this.regExpGen>

</xe:djValidationTextBox>

Alternatively, if developers already have a prexisting Client-Side JavaScript function to
validate the value entered, the validatorExt property in the dojo-widget category provides an
extension point to call the function. The beauty of this is that developers only need to enter a
Client-Side JavaScript object that is a function; the XPage runs the validation in all the events that
are appropriate. This speeds up development and minimizes the effort of refactoring.

By default, your validation triggers only when the user has finished editing the field. To
trigger validation or other events with each key press, you can set intermediateChanges to true.
(By default, it is false.)

On top of all this, the validator and validators properties still exist for core XPages valida-
tion. Overall, the Dojo Validation Text Box provides an extremely flexible mechanism for vali-
dating the control while maintaining the Dojo look and feel.

Two additional formatting properties are available: displayMessageExt and tooltipPosition.
The tooltipPosition property defines the position relative to the field in which any tooltip mes-
sages will appear. With the displayMessageExt property, a developer can write a Client-Side
JavaScript function to override the appearance of the prompts and validation error messages.

Dojo Extensions to the Edit Box Control 111

WHAT ARE REGULAR EXPRESSIONS?
For those who are not familiar with the notation, there are websites that can provide stan-
dard regular expressions and help you build and test your own. A good starting point is
http://www.regular-expressions.info. The zipcode field is a good example of a regular
expression in action. \d{5} means the field must consist of five characters, all of which are
digits. Regular expressions can be simple, as in this example, or extremely complex.The UK
postcode is a good example of a particularly complex regular expression, where specific
combinations of letters and numbers are allowed:

(GIR 0AA)|(((A[BL]|B[ABDHLNRSTX]?|C[ABFHMORTVW]|D[ADEGHLNTY]
|E[HNX]?|F[KY]|G[LUY]?|H[ADGPRSUX]|I[GMPV]|JE|K[ATWY]
|L[ADELNSU]?|M[EKL]?|N[EGNPRW]?|O[LX]|P[AEHLOR]|R[GHM]|S[AEGKL
MNOPRSTY]?|T[ADFNQRSW]|UB|W[ADFNRSV]|YO|ZE)[1-
9]?[0-9]|((E|N|NW|SE|SW|W)1|EC[1-4]|WC[12])[A-HJKMNPR-
Y]|(SW|W)([2-9]|[1-9][0-9])|EC[1-9][0-9]) [0-9][ABD-
HJLNP-UW-Z]{2})

If you have a specific format of entry, there’s usually a regular expression to validate it.

Table 5.3 summarizes the additional properties of the Dojo Validation Text Box, extending
those already covered under the Dojo Text Box.

Table 5.3 xe:djValidationTextBox Properties

Property Description

promptMessage Enables developers to add a field hint to users when they enter the field.

invalidMessage Enables a developer to add an error message if any field validation fails. The
message will not appear if the only validation applied is required=“true”.

validatorExt Holds a Client-Side JavaScript function to extend validation.

regExp Holds a regular expression with which to validate the value the user entered.

regExpGen Holds Client-Side JavaScript, which returns a regular expression with which
to validate the value the user entered.

displayMessageExt Holds Client-Side JavaScript to customize the display of Dojo prompt or
validation messages.

tooltipPosition The position relative to the field with which to display any prompt or
validation messages.

112 Chapter 5 Dojo Made Easy

http://www.regular-expressions.info

Dojo Number Text Box, Dojo Currency Text Box (xe:djNumberTextBox and
xe:djCurrencyTextBox)
The Dojo Number Text Box and Dojo Currency Text Box controls extend the Dojo Validation
Text Box still further in relation to validating numeric values. All the validation methods we have
covered are already available, although the required property is virtually redundant, because a
blank value is translated to 0 on save. But the power of the Dojo Number Text Box lies in the
xe:djNumberConstraints extension. It is a complex property comprising a variety of child
properties, as can be seen in Figure 5.8. The significant property, as shown, is type. This deter-
mines the output format from the control, but because of an issue with Dojo, scientific is not yet
supported. Similarly, the value currency and the related properties currency and symbol are
only applicable for the Dojo Currency Text Box.

Dojo Extensions to the Edit Box Control 113

Figure 5.8 xe:djNumberConstraints.

The main strength of the xe:djNumberConstraints extension, whose properties are
shown in Table 5.4, is enforcing appropriate data entry by the user. Percentages can be messy to
enforce, handling the percentage sign if users do or do not enter it, manipulating the value for
subsequent calculations, and so on. Setting type to percent gets around this by ensuring the user

enters a number followed by the percentage sign, such as “50%”, which the control then converts
to the decimal value “0.5”. Likewise, specifying a pattern or places can translate the value entered
by the user into an expected format, such as with a certain number of leading zeros or decimal
places. With use of min and max, the entered value can be validated against a range, with an
appropriate message defined in the rangeMessage property, specific for these controls. See
Figure 5.9.

Table 5.4 xe:djNumberConstraints Properties

Property Description

currency Defines the relevant currency symbol to be applied to the field. The value should be a
three-character ISO 4217 currency code, such as GBP. This property relates only to the
Dojo Currency Text Box.

fractional Defines whether to include the fractional portion, for Dojo Currency Text Box only.

locale The locale to be applied to determine formatting rules for the field’s value, one of the
extraLocale values loaded in the Dojo config.

max Defines the maximum value allowed for the field.

min Defines the minimum value allowed for the field.

pattern Defines the formatting rule for the field’s value, to override any locale-specific formatting.

places The number of digits to force entry of after the decimal place.

strict Defines the degree of tolerance allowed to user input; it is false by default. This is more
applicable to date/time constraints.

symbol Defines the currency symbol to be applied to the field, overriding the default currency
symbol for the ISO 4217 currency code defined in the currency property. This property
relates only to the Dojo Currency Text Box.

type Defines the type applied to the field: decimal, scientific (not supported), percent, currency
(Dojo Currency Text Box only).

114 Chapter 5 Dojo Made Easy

Dojo Extensions to the Edit Box Control 115

Figure 5.9 Dojo Number Text Box, Dojo Number Spinner, and Dojo Currency Text Box.

The Dojo Number Text Box has one further property that is of particular benefit if the
entered value is passed to a managed bean or another Java object. This is the javaType property.
Anyone who has worked with managed beans will be aware that the value is sometimes handled
as a java.util.Long, sometimes as a java.util.Double, but never consistently. It all depends on the
value the user enters, which can be annoying. The javaType property enables developers to over-
ride the type of the value passed to your underlying Java object and ensure it is always an int,
always a double, always a float, and so on. Table 5.5 summarizes these additional properties
available for the Dojo Number Text Box and Dojo Currency Text Box.

Table 5.5 xe:djNumberTextBox and xe:djCurrencyTextBox Properties

Property Description

javaType Defines the Java number type of the Server-Side value; by default, it is double.

rangeMessage Defines the validation message to show if the value entered is outside the minimum
and maximum bounds.

Dojo Number Spinner (xe:djNumberSpinner)
The Dojo Number Spinner allows the user to either type in a number or scroll up and down
through the range with the keyboard or the buttons provided on the right edge of the control. This
control is an implementation of dijit.form.NumberSpinner and an extension of the Dojo
Number Text Box with all the properties applicable to that control (so currency-related properties
of the xe:djNumberConstraints extension are not applicable). The control provides two
properties for managing the incremental steps of the spinner: smallDelta and largeDelta. By
default, the implicit increments are 1 and 10 respectively, but this can be overridden as required.
The smallDelta increment is used when the user clicks the buttons provided or uses the cursor up

and down keys. To take advantage of the largeDelta increment, users need to click the Page Up
or Page Down keys.

If you hold down one of the buttons or keys, the increments are repeated after half a second
and subsequently applied quicker and quicker. The defaultTimeout property, expecting an inte-
ger in milliseconds, determines how long the user needs to hold down the key before the incre-
ment is repeated; by default, it is 500 milliseconds. You configure the degree to which the
increments are sped up using the timeoutChangeRate property. Because this is 0.9, the incre-
ments are applied progressively quicker the longer the key or button is held down, until the maxi-
mum speed is reached. If you set it at 1.0, the increments are always applied at the same time
interval, never increasing. A value of greater than 1.0 has no effect.

Table 5.6 summarizes the properties of the Dojo Number Spinner control.

Table 5.6 xe:djNumberSpinner Properties

Property Description

defaultTimeout Allows the developer to control the number of milliseconds the user needs
to hold down the key before it becomes typematic, or auto-incrementing.

timeoutChangeRate Defines how much quicker each typematic event occurs.

largeDelta Defines the increment when the Page Up and Page Down buttons are pressed.

smallDelta Defines the increment when the cursor Up and Down buttons are pressed.

Dojo Date Text Box and Dojo Time Text Box (xe:djDateTextBox and
xe:djTimeTextBox)
The Dojo Date Text Box and Dojo Time Text Box controls extend the Dojo Validation Text Box
control. However, like the Dojo Number Text Box, Dojo Currency Text Box, and Dojo Number
Spinner, they have their own constraints complex property. For the Dojo Date Text Box
and Dojo Time Text Box, the constraints complex property implements the xe:djDateTime-
Constraints extension, as detailed in Table 5.7 and illustrated in Figure 5.10.

116 Chapter 5 Dojo Made Easy

Table 5.7 xe:djDateTimeConstraints Properties

Property Description

am Allows the developer to override the “am” abbreviation for A.M. times. This is
only applicable to the Dojo Time Text Box and only where timePattern is spec-
ified and uses the AM/PM portion (for example, timePattern is “h:mm a”).

clickableIncrement Defines the clickable increment of the Time Picker and is applicable only to the
Dojo Time Text Box. The value is entered in the format Thh:mm:ss.

datePattern Defines the date pattern and overrides any setting in the formatLength
property. Date patterns are in accordance with Unicode Technical Standard 35
Date Format Patterns, such as dd-MM-yy.

formatLength Defines the date or time format. Available options are long, short, medium,
and full.

locale The locale to be applied to determine formatting rules for the field’s value, one
of the extraLocale values loaded in the Dojo config.

pm Allows the developer to override the “pm” abbreviation for P.M. times. This is
only applicable to the Dojo Time Text Box and only where timePattern is spec-
ified and uses the AM/PM portion (for example, timePattern is “h:mm a”).

selector Defines the selector, either date or time.

strict Defines the degree of tolerance allowed to user input; it is false by default.

timePattern Defines the time pattern and overrides any setting in the formatLength prop-
erty. Time patterns are in accordance with Unicode Technical Standard 35 Date
Format Patterns, such as hh:mm a.

visibleIncrement Defines the visible increment of the Time Picker and is applicable only to the
Dojo Time Text Box. The value is entered in format Thh:mm:ss.

visibleRange Defines the visible range of the Time Picker and is applicable only to the Dojo
Time Text Box. The value is entered in the format Thh:mm:ss.

The main one for the Dojo Date Text Box is the datePattern property, which allows devel-
opers to define the format of the date presented to the user in the Dojo Date Text Box. For
example, dd-MM-yyyy overrides the locale format to show 16th June 2011 as 16-06-2011, and dd
MMM yyyy shows as 16 Jun 2011. Alternatively, the formatLength property can be used to
choose one of four predefined date or time formats. If both are used, the datePattern property
takes precedence.

Dojo Extensions to the Edit Box Control 117

Figure 5.10 xe:djDateTimeConstraints.

The Dojo Time Text Box control also uses the xe:djDateTimeConstraints property. But
unlike the Dojo Date Text Box, properties are surfaced to allow the developer to manage the dis-
play of the control. To control how many hours are shown, you can define the visibleRange prop-
erty. The visibleIncrement property defines the labels presented to the user, and the
clickableIncrement property defines the increment for each value the user can select. You define
each property using the format THH:mm:ss, so a visibleIncrement of 30 minutes is T00:30:00,
as in Figure 5.11. With datePattern for the Dojo Date Text Box, the timePattern property
defines the format for the times displayed to the user and presented in the field. Therefore, a for-
mat of h:mm presents, for example, 9:00, 9:30, and so on.

118 Chapter 5 Dojo Made Easy

Figure 5.11 Time Picker.

Dojo Extensions to the Multiline Edit Box Control
There are two Dojo controls in the Extension Library that extend the Multiline Edit Box: the Dojo
Text Area (xe:djTextarea) and the Dojo Simple Text Area (xe:djSimpleTextarea). One
of the advantages of these controls is that they also have some of the string manipulation proper-
ties familiar from the Dojo extensions that are based on the Edit Box controls. So trim, proper-
case, lowercase, and uppercase are implemented, which makes it easy to manipulate the content
as soon as the user leaves the field. There is no built-in Dojo functionality to validate the Dojo
Text Area control, but you can utilize all the core XPages validation techniques.

One of the strengths of XPages is that you can present and edit a collection of documents in
the same web page. However, the challenge for a developer is that, unless the user is editing a
small document such as a Comments document, the editable form can take up a large amount of
real estate. If that includes the Multiline Edit Box as well, it takes up even more real estate when
rows and cols properties are defined. But the beauty of the Dojo Text Area control is that it is
auto-expanding. This means it takes up less screen real estate while still expanding as much as is
required to show the user all the content. The Dojo Simple Text Area control, however, is fixed
size. Of course, size attributes can be computed using Server-Side JavaScript, just as they can for
any other XPages properties.

Dojo Extensions to the Multiline Edit Box Control 119

As with the Multiline Edit Box, you can define the width of the field using the rows prop-
erty or using CSS to specify the width. Of course, because the Dojo Text Area is auto-expanding,
the rows property has no effect for that control, only for the Dojo Simple Text Area control.

Table 5.8 details two additional properties of the Dojo Text Area and Dojo Simple
Text Area.

Table 5.8 xe:djTextArea and xe:djSimpleTextArea Properties

Property Description

rows Defines the number of rows the text area will show. This property is applicable only to the
Dojo Simple Text Area control.

cols Defines the number of columns the text area will show.

Dojo Extensions to the Select Control
As with the other input controls, the Dojo modules for selecting values have been included in the
Extension Library. Besides the Dojo Radio Button (xe:djRadioButton) and Dojo Check Box
(xe:djCheckBox) controls, there are two Dojo versions of the core Combo Box control: the
Dojo Combo Box (xe:djComboBox) and Dojo Filtering Select (xe:djFilteringSelect).

The core Combo Box control is good for ensuring that users select from a restricted list of
options, but it does not allow type-ahead. The Edit Box control offers this kind of type-ahead
functionality, but it does not force the user to select one of the options provided. The benefit of the
Dojo Combo Box and Dojo Filtering Select controls in the Extension Library is that they com-
bine the type-ahead and restrict the user to just the options available. The sole difference between
the two is that the Dojo Combo Box control holds a list only of values, whereas the Dojo Filtering
Select control holds a list of label/value pairs.

Dojo Combo Box and Dojo Filtering Select (xe:djComboBox and
xe:djFilteringSelect)
Developers who are more familior with dojo.data stores such as the ItemFileReadStore can take
advantage of the store property and reference a JavaScript store. This is just a JSON object
returning a collection of items that could be returned by an XAgent or some other API to return a
JSON object. However, if the source data has been provided by a third party, it might not return a
name attribute for the Dojo Combo Box to search. In this situation, the searchAttr property can
be used to specify a different attribute in the JSON object on which to search. By default, any
search, whether against defined items or against a dojo.data store, is case insensitive, but you can
enforce case sensitivity by setting the ignoreCase property to true.

By default, whether querying a coded list of options or a dojo.data store, a starts with
query will be performed. That is, the only results returned will be those that start with the letter or
letters. Sometimes developers might prefer to query the store differently; Dojo provides this
functionality. There are three expressions to be used for starts with searches, contains searches,

120 Chapter 5 Dojo Made Easy

and exact match searches. However, the expressions use the phrase “${”, which has a specific
meaning to the XSP Command Manager, so the easiest method of entering the expressions is
using Server-Side JavaScript. The three variants are included in Listing 5.7, Listing 5.8, and
Listing 5.9.

Listing 5.7 Contains Search Expression

<xe:djComboBox

id=”djComboBox2”

value=”#{sessionScope.djComboBox1}”

tooltipPosition=”before”

title=”This is a comboBox” pageSize=”2”>

<xe:this.queryExpr><![CDATA[${javascript:”*$\{0}*”}]]></xe:this.queryEx
pr>

<xp:selectItem

itemLabel=”Ford”

itemValue=”ford”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Toyota”

itemValue=”toyota”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Renault”

itemValue=”renault”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Mercedes”

itemValue=”mercedes”>

</xp:selectItem>

</xe:djComboBox>

Listing 5.8 Exact Match Search Expression

<xe:djComboBox

id=”djComboBox2”

value=”#{sessionScope.djComboBox1}”

tooltipPosition=”before”

title=”This is a comboBox”

pageSize=”2”>

Dojo Extensions to the Select Control 121

Listing 5.8 (Continued)

<xe:this.queryExpr><![CDATA[${javascript:”$\{0}”}]]></xe:this.queryExpr
>

<xp:selectItem

itemLabel=”Ford”

itemValue=”ford”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Toyota”

itemValue=”toyota”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Renault”

itemValue=”renault”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Mercedes”

itemValue=”mercedes”>

</xp:selectItem>

</xe:djComboBox>

Listing 5.9 Starts with Search Expression

<xe:djComboBox

id=”djComboBox2”

value=”#{sessionScope.djComboBox1}”

tooltipPosition=”before”

title=”This is a comboBox” pageSize=”2”>

<xe:this.queryExpr><![CDATA[${javascript:”*$\{0}”}]]></xe:this.queryExp
r>

<xp:selectItem

itemLabel=”Ford”

itemValue=”ford”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Toyota”

itemValue=”toyota”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Renault”

122 Chapter 5 Dojo Made Easy

itemValue=”renault”>

</xp:selectItem>

<xp:selectItem

itemLabel=”Mercedes”

itemValue=”mercedes”>

</xp:selectItem>

</xe:djComboBox>

To ease selection, a number of properties are available. The pageSize property allows you
to define some entries that the drop-down box should show. If the query returns more entries, a
link is added to allow the user to page down and page up through the available options, as shown
in Figure 5.12 and Figure 5.13. This property doesn’t enhance performance by minimizing the
number of options delivered to the browser, but you can use it to enhance presentation. As with
the Dojo Number Spinner control, it is also possible to manage the response to the selection. In
this case, the searchDelay property allows you to set the number of milliseconds delay before
matching results are returned.

Dojo Extensions to the Select Control 123

Figure 5.12 More choices on Dojo Combo Box.

Figure 5.13 Previous choices on Dojo Combo Box.

Because the Dojo Filtering Select uses label/value pairs and the Dojo Combo Box uses just
a list of values, Dojo Filtering Select takes advantage of two additional properties and an event to
handle the labels displayed. The first is labelType. By default, the labels are treated as plain text,
but by setting this property to html, the labels are treated as HTML. The second is labelAttr,
applicable for developers using a datastore. As with the searchAttr property, you can use this
with a Dojo datastore to tell the Dojo Filtering Select to display labels from the store based on an
attribute other than name. This does not affect the attribute from the store that is used to search on
as the user types. To do that, you need to define the searchAttr property as well. An additional
event is available on the Dojo Filtering Select called labelFunc. This triggers on selection of a
valid entry and can trigger either Client-Side or Server-Side JavaScript.

Chapter 11, “REST Services,” covers REST services and other data integration, so at this
point only a brief example of this functionality is shown in Listing 5.10. Lines 1 to 22 cover the
REST service. Note that the jsId defined for the service in line 3 is allocated to the djFiltering-
Select in line 26. In line 27, the FilteringSelect shows a list of U.S. states using the labelAttr
property, but searches on the two-character abbreviation using the searchAttr property. The
results are limited to 10 per page using the pageSize property in line 29.

Listing 5.10 Dojo Filtering Select Using DataStore

1 <xe:restService

2 id=”restService1”

3 jsId=”stateStore”>

4 <xe:this.service>

5 <xe:viewItemFileService

6 viewName=”AllStates”

7 defaultColumns=”true”

8 dojoType=”dojo.data.ItemFileReadStore”

9 count=”400”>

10 <xe:this.columns>

11 <xe:restViewColumn

12 columnName=”Name”

13 name=”Name”>

14 </xe:restViewColumn>

15 <xe:restViewColumn

124 Chapter 5 Dojo Made Easy

16 columnName=”Key”

17 name=”Key”>

18 </xe:restViewColumn>

19 </xe:this.columns>

20 </xe:viewItemFileService>

21 </xe:this.service>

22 </xe:restService>

23 <xe:djFilteringSelect

24 id=”djComboBox3”

25 value=”#{sessionScope.djComboBox2}”

26 store=”stateStore”

27 labelAttr=”Name”

28 searchAttr=”Key”

29 pageSize=”10”>

30 </xe:djFilteringSelect>

Table 5.9 details the noteworthy properties of the Dojo Combo Box and Dojo Filtering
Select.

Table 5.9 xe:djComboBox and xe:djFilteringSelect Properties

Property Description

hasArrow Defines whether a drop-down arrow appears beside the field, to show selections.

ignoreCase Defines whether the search of the store is case-sensitive.

queryExpr Defines a query for the way the store is searched, as a “starts with”, “contains”, or
“exact match”. For terminology, see Listing 5.7, Listing 5.8, and Listing 5.9.

searchAttr Defines the attribute in the Dojo datastore to search on; by default, it is name.

searchDelay Defines the number of milliseconds to delay before beginning the search.

pageSize Allows the developer to specify the number of entries to show on each page of the
search results.

store Allows the developer to define a Dojo datastore from which to take the options for
the Dojo Combo Box or Dojo Filtering Select.

labelAttr Defines the attribute in the Dojo datastore from which to retrieve the label. If no
property is defined, the attribute in the searchAttr property is used. This property is
available only for the Dojo Filtering Select.

labelFunc Defines an event handler to be called when the label changes, returning the label to be
displayed. This property is available only for the Dojo Filtering Select.

labelType Defines whether the label is plain text or HTML. This property is available only for
the Dojo Filtering Select.

Dojo Extensions to the Select Control 125

Dojo Check Box and Dojo Radio Button
The primary intention of the Dojo Check Box and Dojo Radio Button controls is to style the con-
trols appropriate for other Dojo controls. Both controls support the same functionality as the core
control versions, so you can assign them to a group with custom values defined. The main differ-
ence with the Radio Button Group or Check Box Group is that the core controls for groups dis-
play their options in a table within a fieldset. The Dojo Check Box and Dojo Radio Button
controls display options inline. In addition to this standard functionality and similarity to the
other Dojo controls, the Dojo Check Box and Dojo Radio Button are enabled for accessibility.
So the title property and the WAI-related properties can be defined, as can any of the other Dojo
controls.

Dojo Extensions to Buttons
There are two Dojo Extensions to Buttons: the Dojo Button control and the Dojo Toggle Button
control. Like the Dojo Check Box and Dojo Radio Button controls, the Dojo Button is not appre-
ciably different from the core control version. Again, the main differences are the Dojo styling
and the inclusion of properties for accessibility, the same ones covered earlier. Just like the core
Button control, the Dojo Button control can have a label, show an icon, or both. The label prop-
erty allows the developer to control the text to show, but the showLabel property can suppress the
label from appearing. However, showing an icon is not merely a case of selecting an image. CSS
handles the icon, with the relevant class defined as a string in the iconClass property. Dojo has
some built-in icons for various editing functions, defined in the <dojoroot>\dijit\themes folder
and shown in Listing 5.11. Line 4 shows the Dojo theme classes dijitEditorIcon and
dijitEditorIconCut applied to the button. The former loads a sprite (a collection of images,
held in a single file to minimize calls to the server), and the latter positions the sprite to show a
specific image—in this case, the Cut icon. Line 15 applies an icon to a second button, this time
using a CSS class. Listing 5.12 shows the stylesheet that loads an image from the icons folder on
the server. Note that because this is a stylesheet, it is loaded using the HTTP server, not the XSP
Command Manager, so standard Domino web URL syntax applies rather than /.ibmxspres/….
You can see the buttons produced in Figure 5.14. If multiple images from the icons folder are to
be included in the application, using a sprite would be the recommended approach.

Listing 5.11 Dojo Button Icons

1 <xe:djButton

2 id=”djButton2”

3 label=”Execute Client Code”

4 iconClass=”dijitEditorIcon dijitEditorIconCut”>

126 Chapter 5 Dojo Made Easy

5 <xp:eventHandler

6 event=”onClick”

7 submit=”false”>

8 <xp:this.script><![CDATA[alert(“You clicked me,
#{javascript:@UserName()}!”)]]></xp:this.script>

9 </xp:eventHandler>

10 </xe:djButton>

11 <xe:djButton

12 id=”djButton3”

13 showLabel=”false”

14 label=”Increase Value on Server”

15 iconClass=”testIcon”>

16 <xp:eventHandler

17 event=”onClick”

18 submit=”true”

19 refreshMode=”partial”

20 refreshId=”computedField19”>

21 <xp:this.action><![CDATA[#{javascript:if
(sessionScope.djButton4) {

22 sessionScope.djButton4+=1

23 } else {

24 sessionScope.djButton4 = 1

25 }}]]></xp:this.action>

26 </xp:eventHandler>

27 </xe:djButton>

Listing 5.12 testIcon Class

.testIcon {

background-image: url(/icons/actn010.gif); /* editor icons sprite
image */

background-repeat: no-repeat;

width: 18px;

height: 18px;

text-align: center;

}

Dojo Extensions to Buttons 127

Figure 5.14 Dojo buttons.

Dojo Toggle Button Control
The Dojo Toggle Button is a control that is new to developers who are not familiar with Dojo.
The control is similar to the Dojo Check Box control but is styled like the Button control. Like the
Dojo Check Box, it can be bound to a datasource, with a value set when the button is unclicked
and a different value set when the button is clicked. From inspecting the source HTML produced
for the Dojo Toggle Button control, it becomes apparent that the Dojo Toggle Button consists of a
button with a dojoType and a hidden input field, as shown in Figure 5.15—a similar technique to
the way developers have built the kind of functionality the Dojo Toggle Button provides. Not sur-
prisingly, when the user clicks the Dojo Toggle Button, a value is set into the hidden field. The
toggle effect runs Client-Side, although Server-Side events can also be triggered. The hidden
field has the same ID as the button, except that it is suffixed with _field. The value of the hidden
field is not the checkedValue or uncheckedValue properties, but an empty string if unchecked or
on if checked.

128 Chapter 5 Dojo Made Easy

Figure 5.15 Dojo Button HTML.

By default, as with the Dojo Check Box, the values are false when unclicked and true when
clicked. But you can override these values by defining the checkedValue and uncheckedValue
properties, the property names highlighting that this is an extension of the Dojo Check Box con-
trol. The only downside is that the styling of the toggle button does not change depending on
whether the button is clicked or unclicked. But with the understanding of the HTML produced
by the control, it is a simple matter to add that functionality as in Listing 5.13. Lines 8 to 20
add an onChange xp:eventHandler to the control. Note that this has to be defined as an
xp:eventHandler rather than the default xe:eventHandler, which does not exist. Line 11
loads the Client-Side ID of the button into a variable. Line 12 gets the button itself using
dojo.byId() because of the classneeds setting, not a dojoAttribute. Lines 13 and 14 get the
field and test whether the value is on. Lines 15 and 17 then set the class of the button.

Listing 5.13 Styling the ToggleButton Control

1 <xe:djToggleButton

2 id=”djToggleButton1”

3 title=”Toggle Button”

4 value=”#{sessionScope.djButton3}”

Dojo Extensions to Buttons 129

Listing 5.13 (Continued)

5 label=”Toggle Button”

6 checkedValue=”Checked...”

7 uncheckedValue=”Not Checked...”>

8 <xp:eventHandler

9 event=”onChange”

10 submit=”false”>

11 <xe:this.script><![CDATA[var id=”#{id:djToggleButton1}”;

12 var btn=dojo.byId(id);

13 var field = dojo.byId(id+”_field”);

14 if (field.value == “on”) {

15 btn.setAttribute(“class”,”btnRed”);

16 } else {

17 btn.setAttribute(“class”,”btnGreen”);

18 }

19]]></xe:this.script>

20 </xp:eventHandler>

21 </xe:djToggleButton>

Listing 5.14 shows the CSS for the classes.

Listing 5.14 btnRed and btnGreen Classes

.btnRed {

color: rgb(255,0,0);

}

.btnGreen {

color: rgb(0,255,0);

}

Composite Dojo Extensions
Some extension controls are available under the Dojo category that do not fit into the previous
categories. Rather than extending core controls available, these controls add new functionality
not previously available as controls in XPages.

As Listing 5.3 shows, the dijit.form.HorizontalSlider requires multiple HTML
elements. In the same way, some of the Dojo controls are more complex. Sliders comprise mul-
tiple components for their implementation, whereas the Dojo Link Select and Dojo Image Select
controls have complex properties to define the values.

130 Chapter 5 Dojo Made Easy

Sliders
The beginning of this chapter covered adding a slider with traditional Dojo. The code was cov-
ered in Listing 5.4, where the slider comprised a div with an ordered list of labels and an
onchange event passing the value to a hidden field via Client-Side JavaScript. The sliders in the
Extension Library remove the necessity to use a div with an onChange event to store the value.
Rather, the sliders themselves are bound directly to the field.

There are two types of sliders, the Dojo Horizontal Slider (xe:djHorizontalSlider)
and the Dojo Vertical Slider (xe:djVerticalSlider), as Figure 5.16 shows. Although the
properties for both are identical and shown in Table 5.10, you need to choose the relevant slider at
development time.

Table 5.10 xe:djHorizontalSlider and xe:djVerticalSlider Properties

Property Description

clickSelect Defines whether the user can change the value by clicking on a position on the bar
in addition to dragging the slider.

discreteValues Defines the number of discrete values between the minimum and maximum values.

maximum Defines the maximum value for the slider.

minimum Defines the minimum value for the slider.

pageIncrement Defines the number of increments applied to the slider when the user clicks the
Page Up or Page Down button.

showButtons Defines whether buttons are shown to move the slider.

slideDuration Defines the number of milliseconds it takes to move the slider from 0% to 100%; it
is 1000 milliseconds by default.

The values of the slider are controlled by four properties: defaultValue defines the initial
starting value (if the field the control is bound to does not already have a value), whereas mini-
mum and maximum define the bounds of the slider, and discreteValues defines the number of
steps between the minimum and maximum. By default, whenever the user clicks on a part of the
slider, that value is selected, and this is controlled by the clickSelect property. If set to false,
this functionality is suppressed. Also, by default, there are buttons on either end of the slider for
moving the current position. Again, these can be suppressed by setting the showButtons property
to false.

Composite Dojo Extensions 131

Figure 5.16 Sliders.

Besides clicking on a position of the slider or using the buttons, you can use keyboard
shortcuts to control the movement, like you did for the spinner controls. All four cursor keys can
be used for both sliders: left (←) and down (↓) moving in one direction, right (→) and up (↑)
moving in the other direction. Although the cursor keys can be used to increment in small
amounts, Page Up and Page Down increment in larger amounts. The smaller increment is always
one step on the slider, but the developer can override the larger increment—by default 2 steps—
using the pageIncrement property. Furthermore, because the speed of increment could be con-
trolled for the spinners, it can also be controlled for the sliders, by means of the slideDuration
property. This is a value in milliseconds that the slider will take to move from one end of the
slider to the other; by default, it is one second.

As with the traditional Dojo implementation, you can add labels. This comprises two fur-
ther controls: the Dojo Slider Rule (xe:djSliderRule) for the markers and the Dojo Slider
Rule Labels (xe:djSliderRuleLabels) for the actual labels. For both controls, two proper-
ties determine how many and where the rules appear: count and container. The container pro-
vides a ComboBox list of options, with all four options available regardless: topDecoration,
leftDecoration, bottomDecoration, and rightDecoration. Obviously, you must
choose the relevant container for the relevant slider; rightDecoration and leftDecoration
are not applicable for the Dojo Horizontal Slider.

132 Chapter 5 Dojo Made Easy

You can map styling to CSS classes for both controls. You can style the markers by using
the ruleStyle property on the Dojo Slider Rule, whereas you can style the labels by using the
labelStyle property on the Dojo Slider Rule Labels.

You can set a number of additional properties for the Dojo Slider Rule Labels. The mini-
mum and maximum properties set the top and bottom level for the labels, and numericMargin
can define how many labels to omit at either end of the label list. So setting the value to 1 omits
0% and 100% from a default Dojo Slider Rule Labels control. As this suggests, the default labels
are percentages, running from 0% to 100%. But you can override this in two ways. You can pass
an array of labels into the labels property or use the labelList property, as shown in Listing 5.15.
This method is recommended over tags because it supports localization.

Listing 5.15 Dojo Horizontal Slider

<xe:djHorizontalSlider

id=”djHorizontalSlider2”

value=”#{sessionScope.djSlider1}”

maximum=”100”

minimum=”0”

style=”margin: 5px;width:200px; height: 20px;”

discreteValues=”10”

pageIncrement=”3”>

<xp:this.converter>

<xp:convertNumber

integerOnly=”true”>

</xp:convertNumber>

</xp:this.converter>

<xe:djSliderRuleLabels

id=”djSliderRuleLabels2”

container=”topDecoration”

style=”height:10px;font-size:75%;color:gray;”

count=”6”

numericMargin=”1”>

</xe:djSliderRuleLabels>

<xe:djSliderRule

id=”djSliderRule5”

container=”topDecoration”

style=”height:5px;” count=”6”>

</xe:djSliderRule>

<xe:djSliderRule

id=”djSliderRule6”

style=”height:5px;”

count=”5”

container=”bottomDecoration”>

Composite Dojo Extensions 133

Listing 5.15 (Continued)

</xe:djSliderRule>

<xe:djSliderRuleLabels

id=”djSliderRuleLabels5”

container=”bottomDecoration”

style=”height:10px;font-size:75%;color:gray;”>
<xe:this.labelsList>

<xe:djSliderRuleLabel

label=”green tea”>

</xe:djSliderRuleLabel>

<xe:djSliderRuleLabel

label=”coffee”>

</xe:djSliderRuleLabel>

<xe:djSliderRuleLabel

label=”red bull”>

</xe:djSliderRuleLabel>

</xe:this.labelsList> </xe:djSliderRuleLabels>

</xe:djHorizontalSlider>

Table 5.11 shows the properties for the Dojo Slider Rule and Dojo Slider Rule Labels.

Table 5.11 xe:djSliderRule and xe:djSliderRuleLabels Properties

Property Description

count Defines how many markers or labels should appear.

labels Allows the developer to write a Client-Side JavaScript expression to define the
labels. This property is available only for the Dojo Slider Rule Labels.

labelsList Allows the developer to define a localizable set of labels. This property is avail-
able only for the Dojo Slider Rule Labels.

maximum Defines the maximum position for the labels. This property is available only for
the Dojo Slider Rule Labels.

minimum Defines the minimum position for the labels. This property is available only for
the Dojo Slider Rule Labels.

numericMargin Defines the number of labels to omit from either end of the label list. This
property is available only for the Dojo Slider Rule Labels.

container Defines where in relation to the slider line the markers or labels should appear.

ruleStyle Defines the styling for the markers.

labelStyle Defines the styling for the labels and is available only for Dojo Slider Rule
Labels.

134 Chapter 5 Dojo Made Easy

Dojo Link Select (xe:djLinkSelect)
The Dojo Link Select control allows developers to group link options so that when one link is
selected, the others are deselected. You can see this in action with the filter area of the All Docu-
ments page on the TeamRoom database. Here, for example, selecting All by Date not only selects
that entry but deselects the default All link. Unlike the traditional link functionality, you can bind
the Link Select to a field or scoped variable. In addition, you can trigger a wealth of events from
the Link Select.

Despite having properties multipleTrim and multipleSeparator, the control allows only
one value to be selected at any one time. You can define the available options in a number of
ways. The All Documents page (allDocumentsFilter.xsp custom control) uses selectItem con-
trols, but you can also use a selectItems control. As with the ComboBox and FilteringSelect con-
trols covered earlier, there is currently no mechanism to add an xp:selectItem or
xp:selectItems control from the palette. So you can use the core ComboBox or ListBox con-
trol to define the values; then you can cut and paste the code across from the core control to the
Dojo control.

Alternatively, there are three dataProviders available. Those who are comfortable with Java
may choose to use the beanValuePicker. The other options are the simpleValuePicker and the
dominoViewValuePicker. The simpleValuePicker allows a developer to define a list of options as
a string of label value pairs. The label values themselves are defined in the valueList property.
You can define the separator between the label and the value using the labelSeparator property,
and you can define the separator between values using the valueListSeparator property. The
dominoViewValuePicker allows you to select the options from a view, by defining the database-
Name and viewName properties. The labelColumn property defines the column from which the
values will be picked. The value set when the label is clicked is pulled from the first column in the
view. So Listing 5.16 shows a Dojo Link Select where the options are pulled from the AllStates
view, showing the Names column. Figure 5.17 shows the resulting output. As you can see, the
onChange event refreshes the computed field with the value whenever you select a new link.

Listing 5.16 Link Select Control with dominoViewValuePicker

<xe:djextLinkSelect

id=”djextLinkSelect2”

defaultValue=”MA”

value=”#{viewScope.link3}”>

<xe:this.dataProvider>

<xe:dominoViewValuePicker

viewName=”AllStates”

labelColumn=”Name”>

</xe:dominoViewValuePicker>

</xe:this.dataProvider>

<xp:eventHandler

Composite Dojo Extensions 135

Listing 5.16 (Continued)

event=”onChange”

submit=”true”

refreshMode=”partial”

refreshId=”computedField3”>

</xp:eventHandler>

</xe:djextLinkSelect>

136 Chapter 5 Dojo Made Easy

Figure 5.17 Link Select with dominoViewValuePicker.

Table 5.12 shows the pertinent properties for the Dojo Link Select control.

Table 5.12 xe:djLinkSelect Properties

Property Description

dataProvider Provides the options for the Dojo Link Select as an xe:simpleValue-
Picker, xe:dominoViewValuePicker, or xe:beanValuePicker.

firstItemStyle Defines styling for the first link.

firstItemStyleClass Defines the class to be applied to the first link.

itemStyle Defines styling for the intermediate links.

itemStyleClass Defines the class to be applied to the intermediate links.

lastItemStyle Defines styling for the last link.

lastItemStyleClass Defines the class to be applied to the last link.

Dojo Image Select
The Dojo Image Select control is similar to the Link Select in that it provides a group of links, or
in this case images, only one of which can be selected. Again, it is bound to a field or scoped vari-
able, with a default value that can be set. The images are defined using selectImage child controls
of the imageValues property. Each selectImage has image and selectedImage properties, to
define the images that appear when the link is deselected or selected. The selectedValue property
defines the value that will be set when the image is clicked. In addition, properties are available
for styling each image, both in its deselected state and its selected state. The example on the
Core_FormControl.xsp XPage in the Extension Library Demo database, reproduced in Listing
5.17 and shown in Figure 5.18, shows buttons appropriate for a Calendar View control, although,
as will be shown in Chapter 7, a slightly different method is used for the calendar view in the
TeamRoom database.

Listing 5.17 Dojo Image Select for Calendar Picker

<xe:djextImageSelect

id=”djextImageSelect1”

title=”Select a value default is two days”

value=”#{viewScope.image1}”

defaultValue=”T”>

<xe:this.imageValues>

<xe:selectImage

selectedValue=”D”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/1_Day_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/1_Day_deselected_24.gif”

Composite Dojo Extensions 137

Listing 5.17 (Continued)

imageAlt=”One Day”>

</xe:selectImage>

<xe:selectImage

selectedValue=”T”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/2_Days_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/2_Days_deselected_24.gif”

imageAlt=”Two Days”>

</xe:selectImage>

<xe:selectImage

selectedValue=”F”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/1_Work_Week_selected_
24.gif”

image=”/.ibmxspres/.extlib/icons/calendar/1_Work_Week_deselected_24.gif”

imageAlt=”One Work Week”>

</xe:selectImage>

<xe:selectImage

selectedValue=”W”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/1_Week_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/1_Week_deselected_24.gif”

imageAlt=”One Week”>

</xe:selectImage>

<xe:selectImage

selectedValue=”2”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/2_Weeks_selected_24.
gif”

image=”/.ibmxspres/.extlib/icons/calendar/2_Weeks_deselected_24.gif”

imageAlt=”Two Weeks”>

</xe:selectImage>

<xe:selectImage

selectedValue=”M”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/Month_selected_24.
gif”

138 Chapter 5 Dojo Made Easy

image=”/.ibmxspres/.extlib/icons/calendar/Month_deselected_24.gif”

imageAlt=”One Month”>

</xe:selectImage>

<xe:selectImage

selectedValue=”Y”

selectedImage=”/.ibmxspres/.extlib/icons/calendar/All_Entries_selected_
24.gif”

image=”/.ibmxspres/.extlib/icons/calendar/All_Entries_deselected_24.gif
”

imageAlt=”All Entries”>

</xe:selectImage>

</xe:this.imageValues>

<xp:eventHandler

event=”onClick”

submit=”true”

refreshMode=”partial”

refreshId=”computedField3”>

</xp:eventHandler>

</xe:djextImageSelect>

Composite Dojo Extensions 139

Figure 5.18 Dojo Link Select for Calendar Picker.

Table 5.13 details the additional properties available for the Dojo Image Select control.

Table 5.13 xe:djImageSelect Properties

Property Description

image Defines the image shown when this image is not selected.

imageAlt Defines the alt text to appear when the user hovers over the image.

selectedImage Defines the image shown when this image is selected.

selectedStyle Defines styling to be applied when this image is selected.

selectedStyleClass Defines the class to be applied when this image is selected.

selectedValue Defines the value to pass when this image is selected.

style Defines styling to be applied when this image is not selected.

styleClass Defines the class to be applied when this image is not selected.

Dojo Effects Simple Actions
The inclusion of Dojo within the Extension Library extends beyond controls for storing user-
entered content. Some commonly used Dojo effects have also been added, implemented as
Simple Actions. So you can easily add them to buttons, links, or anything else that has an event.
These simple actions add animations to a form, to enhance the user experience.

So, for example, you can use a Dojo effect to fade in or wipe in helper text beside a field
when the user clicks into it, and fade out or wipe out when the user exits the field. And because all
the Dojo effects run Client-Side, there is no performance hit of round-tripping to the server.

Dojo Fade and Wipe Effects
The fade or wipe effects—either in or out—have additional properties that can be set. The node
property is the component to be faded/wiped, a Server-Side component ID, as can be seen from
Figure 5.19. The var property, as elsewhere, is a variable name the function uses to play the Dojo
effect. You cannot reference it elsewhere on the XPage via Client-Side JavaScript, because it is
scoped only to the eventHandler.

140 Chapter 5 Dojo Made Easy

Figure 5.19 Dojo Fade In Effect.

The duration property defines how long in milliseconds the effect takes to run, whereas
the easing property takes a function that will handle how the effect runs, such as accelerating the
rate with which the node fades in. You can write this function from scratch, as on the Core_
DojoEffects.xsp XPages Extension Library Demo database, or as a predefined function, such as
those in the dojo.fx.easing object (see Listing 5.18).

Listing 5.18 Dojo Fade Out with dojo.fx.easing

<xp:this.resources>

<xp:dojoModule

name=”dojo.fx.easing”>

</xp:dojoModule>

</xp:this.resources>

<xp:button

value=”Fade Out - Duration 2s”

id=”button3”>

<xp:eventHandler

event=”onclick”

submit=”false”>

Dojo Effects Simple Actions 141

Listing 5.18 (Continued)

<xp:this.script>

<xe:dojoFadeOut

node=”effect1”

duration=”200”

easing=”dojo.fx.easing.expoInOut”>

</xe:dojoFadeOut>

</xp:this.script>

</xp:eventHandler>

Table 5.14 shows the main properties for the Dojo Fade and Wipe simple actions.

Table 5.14 xe:dojoFadeIn, xe:dojoFadeOut, xe:dojofxWipeIn, and
xe:dojofxWipeOut Properties

Property Description

duration Defines the duration the animation should take.

easing Requires a Client-Side JavaScript function to define the rate of acceleration of the
animation.

node Defines the node to which the animation should be applied.

var Defines a variable name under which the animation runs.

Dojo Slide To Effect
The slide effect has all the properties of the fade and wipe effects but also two additional proper-
ties, top and left, for defining how far relative to the top and left of the screen the relevant node
should be slid. You can set all the properties available with a specific value or calculate them via
Server-Side JavaScript. The slide effect in Listing 5.19 shows how or why to use the attributes
property: namely, to enable the developer to set any of the effects via Client-Side JavaScript.
Why not just type dojo.coords(_id).t directly into the top property? First, because _id has
a specific meaning to the XSP Command Manager, so it throws an error. Second, because the top
property must be a number, not a string. So you must use the attributes property to pass the func-
tion, which sets top to the node’s current top property, to the browser. This function also shows
how to retrieve a node’s current position to slide a node relative to that current position.

142 Chapter 5 Dojo Made Easy

Listing 5.19 Slide Effect with attributes Property

<xp:button

value=”Slide left”

id=”button8”>

<xp:eventHandler

event=”onclick”

submit=”false”>

<xp:this.script>

<xe:dojofxSlideTo

node=”effect1”

left=”0”>

<xp:this.attributes>

<xp:parameter

name=”top”

value=”dojo.coords(_id).t”>

</xp:parameter>

</xp:this.attributes>

</xe:dojofxSlideTo>

</xp:this.script>

</xp:eventHandler>

</xp:button>

Table 5.15 shows the significant properties of the Dojo Slide To Effect.

Table 5.15 xe:dojofxSlideTo Properties

Property Description

left Defines how far relative to the left of the screen the node should be slid.

top Defines how far relative to the top of the screen the node should be slid.

Dojo Animation
The Dojo animation effect implements the dojo.animateProperty object within a simple action.
The effect has all the properties already covered in the other Dojo effect simple actions. In addi-
tion, there are some specific properties. You can use the delay property to add a delay in millisec-
onds before the effect should start. You can use the rate property to change the number of frames
per second at which the animation runs; by default, it is 100 frames per second, which is rather
quick. The value of the rate property is a number in milliseconds, so to change it to 5 frames per

Dojo Effects Simple Actions 143

second, the value would be 200 (200 × 5 = 1000 milliseconds = 1 second). You can use the
repeat property to repeat the animation a certain number of times. But the most important prop-
erty is the properties property, allowing one or more xe:dojoAnimationProps objects to be
added. These handle what animation runs and its varying settings.

Table 5.16 shows the main properties for the Dojo animation effect.

Table 5.16 xe:dojoDojoAnimateProperty Properties

Property Description

delay Defines the delay before the animation begins.

duration Defines the duration of the animation.

easing Requires a Client-Side JavaScript function to define the rate of acceleration of the
animation.

node Defines the node to which the animation should be applied.

properties Defines the animation properties.

rate Defines the rate per second, taking a value in milliseconds.

repeat Defines the number of times the animation should repeat.

var Defines a variable name under which the animation runs.

In addition to the loaded property, the xe:dojoAnimationProps object has four proper-
ties shown in Table 5.17. The Extension Library demo database has an example of this on the
Core_DojoEffects.xsp XPage, for increasing the size of a box, shown in Listing 5.20. Line 9 sets
the animation to run on the bluebox component. Lines 14 and 15 define the starting and ending
width and height of the box.

Table 5.17 xe:dojoDojoAnimationProps Properties

Property Description

end Defines the ending value of the attribute this animation applies to.

name Defines the attribute this animation applies to, such as “width” or “height”.

start Defines the starting value for the attribute this animation applies to.

unit Defines the unit for the values in start and end.

144 Chapter 5 Dojo Made Easy

Listing 5.20 Core_DojoEffect.xsp Dojo Animation Simple Action

1 <xp:button

2 value=”Grow the box”

3 id=”button5”>

4 <xp:eventHandler

5 event=”onclick”

6 submit=”false”>

7 <xp:this.script>

8 <xe:dojoAnimateProperty

9 node=”bluebox”

10 duration=”3000”>

11 <xp:this.properties>

12 <xe:dojoAnimationProps

13 name=”width”

14 start=”200”

15 end=”400”>

16 </xe:dojoAnimationProps>

17 <xe:dojoAnimationProps

18 name=”height”

19 start=”200”

20 end=”400”>

21 </xe:dojoAnimationProps>

22 </xp:this.properties>

23 </xe:dojoAnimateProperty>

24 </xp:this.script>

25 </xp:eventHandler>

26 </xp:button>

Earlier in this chapter, code was provided to style the ToggleButton control. At this point, it
is appropriate to revisit that code, shown in Listing 5.13. Listing 5.21 shows alternate code for the
ToggleButton using a Dojo animation simple action, with the output shown in Figure 5.20. To
revisit the functionality, the animation should change the font color of the ToggleButton, alternat-
ing between red and green. However, the properties of the xe:dojoAnimationProps object
can only accept literal values or Server-Side JavaScript returning a literal value. It is not possible
to add Client-Side JavaScript code to ensure the end color alternates. As a result, you must use the
attributes property to compute the properties object in Client-Side JavaScript, in lines 16 to 29.
Line 18 creates the color object (the name property of an xe:dojoAnimationProps object).
Line 19 sets the start attribute of the color object, although _id.style.color is not set when
the page is loaded. Lines 20 to 26 set the end attribute to a function that sets the color to red if it is
initially green, otherwise red.

Dojo Effects Simple Actions 145

Listing 5.21 Using Dojo Animation Simple Action to Style the ToggleButton

1 <xe:djToggleButton

2 id=”djToggleButton2”

3 value=”#{sessionScope.djButton3}”

4 label=”Toggle Button”

5 checkedValue=”Checked...”

6 uncheckedValue=”Not Checked...”

7 style=”color:rgb(255,0,0)”>

8 <xp:eventHandler

9 event=”onclick”

10 submit=”false”>

11 <xp:this.script>

12 <xe:dojoAnimateProperty

13 node=”djToggleButton2”

14 duration=”500”>

15 <xe:this.attributes>

16 <xp:parameter

17 name=”properties”>

18 <xp:this.value><![CDATA[{“color”:

19 {“start”:_id.style.color,

20 “end”:function() {

21 if (_id.style.color==”rgb(0, 255, 0)”) {

22 return “rgb(255,0,0)”;

23 } else {

24 return “rgb(0,255,0)”;

25 }

26 }

27}

28}]]></xp:this.value>

29 </xp:parameter>

30 </xe:this.attributes>

31 </xe:dojoAnimateProperty>

32 </xp:this.script>

33 </xp:eventHandler>

34 </xe:djToggleButton>

146 Chapter 5 Dojo Made Easy

Figure 5.20 Dojo Fade In Effect.

Conclusion
This chapter covered many of the Dojo controls provided by the Extension Library to add to the
content controls covered in the previous chapter. These Dojo controls offer little additional func-
tionality to the traditional Dojo controls, but they do make it easier to implement the controls and
minimize the risk of mistyping or misremembering Dojo attributes.

Conclusion 147

This page intentionally left blank

515

Index

A
access endpoints, 446-447
accessing

data services (from Domino
as a built-in service), 356

enabling services on
Domino servers,
357-359

relational data through
JDBC, 377-378

creating connections to
the RDBMS, 406-407,
409-410

installing JDBC
drivers, 379

Accordion Container, 229-231
properties, 230

Accordion control, 256-257
Accordion Pane, 229-231
actionFacet, Heading

control, 314

Activity Stream Data data
source, 454-455

adding
JDBC data sources to

XPages, 411
parameters to SQL

statements, 412
addOnLoad(), 97
advanced node types

beanTreeNode, 245
dominoViewEntriesTree-

Node, 247
dominoViewListTree

Node, 246
pageTreeNode, 242-245
repeatTreeNode, 245

All Documents, TeamRoom
template, 60

anchoring Package
Explorer, 493

AnonymousEndpointBean, 441

Apache POI, 491
SSJS, 498

APIs (application
programming interfaces), 377

appendSQLType(), 426
application development, 9
Application Layout, 9-10

TeamRoom template, 57-58
Application Layout control

within a Custom Control,
276-280

OneUI development,
264-266

banner property, 272
footer property, 269
legal property, 267-268
mastFooter property, 273
mastHeader

property, 273
navigation path, 268
placebar property,

270-271

516 Index

productLogo
property, 273

searchBar property,
271-272

titleBar property, 273
application programming

interfaces (APIs), 377
applications, configuring for

OAuth, 439
automatic server deployment

Domino 8.5.2, 34-38
Domino 8.5.3, 28, 30-34

B
back buttons, setting, 332
back title, setting, 333
banner property, OneUI

development with
Application Layout
control, 272

barType, 298
basicContainerNode, 240-241
BasicEndpointBean, 442-445
basicLeafNode, 239-240
beanTreeNode, 245
Border Container, 225-229

properties, 228
Border Pane, 225-229

properties, 229
Bread Crumbs control, 249
breadcrumbs, 332
Build Path, 497

C
cacheRefreshInterval

property, 259
caching user information,

464-465
Calendar Picker, Dojo Link

Select, 139
calendarJsonLegacyService,

196-197
calendarView, TeamRoom

template, 63
callbacks, xe:forumPost

component, 78
calling remote service

(Domino), 351
JSON RPC Service,

351-353
category column, Data View,

215-217
category row, 216
client-side JavaScript

closing dialogs, 155
opening dialogs, 154
opening Tooltip dialog, 161

closing
dialogs

client-Side
JavaScript, 155

SSJS, 157
Tooltip dialog, SSJS, 162

columns, Data View, 214-215
category column, 215-217
detail, 219
extra column, 218
icon column, 218
multiple columns, 219
summary column, 218

com.ibm.xsp.etlib.util.JdbcUtil-
class, 427

com.ibm.xsp.extlib.sbt.services.
client.endpoints.Anonymous-
EndpointBean, 439

com.ibm.xsp.extlib.sbt.services.
client.endpoints.Basic-
EndpointBean, 440

com.ibm.xsp.extlib.sbt.services.
client.endpoints.Facebook-
Endpoint, 439

com.ibm.xsp.extlib.sbt.services.
client.endpointsOAuth-
EndpointBean, 439

com.ibm.xsp.extlibx.sbt,
430, 467

Combo Box control, 120
communities VCard, 477-478
computed columns, REST

Service control, 341
computed items, Document

JSON Service, 373
concurrency, JDBC data

sources, 415-417
configuring applications for

OAuth, 439
connection files, creating,

406-409
Connection Manager, 416
connection pools, 410
connections

connection pools, 410
creating to RDBMS, 406

creating connection files,
406-409

creating connections
and the connection
pool, 410

Index 517

Connections
xe:fileServiceData, 453
XPagesSBT.NSF, 468-470

connections controls, 474
communities VCard,

477-478
profiles VCard, 474, 477

Connections Data Source, 452
consuming

service data, OpenSocial
Gadgets, 353, 356

serviced data
iNotes Calendar,

349-351
iNotes List View, 348

containers, mobile apps, 309
Content Pane, 223-224

properties, 225
content types, REST API

calls, 449
contents, Dojo Data Grid,

182-184
contentType=

”xs:st.livename,” 471
controls

Application Layout. See
Application Layout

Data View, 9
Dojo layout controls, 223

Accordion Container,
229-231

Accordion Pane,
229-231

Border Container,
225-229

Border Pane, 225-229
Content Pane, 223-224
Stack Container, 238

Stack Pane, 238
Tab Container, 231-237
Tab Pane, 231-237

Dynamic Content, 9
Dynamic View, 9
KeepSessionAlive, 8
navigator controls, 247

Accordion control,
256-257

Bread Crumbs
control, 249

Link Container
control, 251

List of Links
control, 250

Navigator control,
247-248

Outline control, 255-256
Pop-up Menu control,

252-254
Sort Links control, 251
Tag Cloud control,

257-259
Toolbar control, 254
Widget Container

control, 260
REST Service control. See

REST Service control
createTab methods, 234
CRUD operations, REST

services, 336
current page, setting, 333
Custom Control, Application

Layout within, 276-280
Custom Controls, 4
custom controls, mobile apps

versus web apps, 328
Custom Database Servlet, 375

custom REST services,
developing, 375

Custom Wink Servlet, 375
Custom XPages REST Service

Control Extension, 375

D
Data Service, Domino REST

services, 344
data services, accessing

(Domino as a built-in
service), 356

enabling services on
Domino servers, 357-359

Data Services—Contacts and
All Types pages, Domino
REST services, 345

Data View, 9, 206, 321-322
columns, 214-215

category column,
215-217

detail, 219
extra column, 218
icon column, 218
summary column, 218

mobile apps, 309
multiple columns, 219
opening documents,

306-311
pagers, 207-210
PagerSaverState/View State

Beans, 212-213
properties, 206

Database JSON Collection
Service, 360

518 Index

database URLs,
specifying, 409

DatabaseHelper class, 427
databases, enabling services for

(Domino), 358
DB2 drivers, 405
DB2DriverProvider, 397
debugging xe:dumpObject, 425
defaultTabContent, 236
delete, Document JSON

Service, 373
Deployable Plug-Ins and

Fragments Wizard, 401
deploying

ExtLib
to developers in

Designer, 18-27
to end users, 40
to end users (creating

widget configuration),
42-50

to end users
(provisioning the
ExtLib widget to other
users), 50-52

to end users (widget
catalog setup), 41

OSGi plugins, 33
Designer

deploying ExtLib to
developers, 18-27

Layout control, 274-275
uninstalling ExtLib, 27-28

detail, Data View, 219
developers, deploying ExtLib

to in Designer, 18-27

developing custom Rest
services, 375

Dialog control, 153-159
dialogs, 153

closing
client-side

JavaScript, 155
SSJS, 157

embedded dialogs, 158
opening

client-side
JavaScript, 154

SSJS, 156
properties, 159-160
Tooltip Dialog control,

160-161
dijit.form.Horizontal

Slider, 101
dijit.form.ValidationTextBox,

97-100
Document Collection JSON

Service, 367-368
Document Form, TeamRoom

template, 61
Document JSON Service,

368-374
documents, opening from Data

View, 306-311
Dojo, 95-96

modifying controls, mobile
apps, 327

Dojo Animation, 143-145
Dojo Animation Property, 144
Dojo Button, 126-128
Dojo Check Box, 126
Dojo Combo Box, 120-125

properties, 125
Dojo Content Pane, 223-224

properties, 225
Dojo Currency Text Box,

113-115
properties, 115

Dojo Data Grid, 175, 179-181
contents, 182-184
InViewEditing, 184-186
properties, 181-182
REST Service control,

176-178, 342
view events, 186-187

Dojo Data Grid Column, 182
properties, 185

Dojo Data Grid Row, 182
Dojo Date Text Box, 116-118
Dojo effects Simple

Actions, 140
Dojo Animation, 143-145
Dojo Fade and Wipe effects,

140-142
Dojo Slide to Effect,

142-143
Dojo extensions, 130

Dojo Image Select, 137, 140
Dojo Link Select, 135-136
Edit Box control, 104

Dojo Currency Text Box,
113-115

Dojo Date Text Box,
116-118

Dojo Number Spinner,
115-116

Dojo Number Text Box,
113-115

Index 519

Dojo Text Box, 104-106
Dojo Time Text Box,

116-118
Multiline Edit Box, 119-120
Select control, 120

Dojo Check Box, 126
Dojo Combo Box,

120-125
Dojo Filtering Select,

120-125
Dojo Radio Button, 126

sliders, 131-134
Dojo Extensions to Buttons,

126-128
Dojo Toggle Button,

128-130
Dojo Fade, 140-142
Dojo Fade In, 142, 147
Dojo Fade Out, 142
Dojo Filtering Select, 120-125

properties, 125
Dojo fx Wipe In, 142
Dojo fx Wipe Out, 142
Dojo Grid Using JSON Rest

Data Services, 345-346
Dojo Horizontal Slider,

131-133
properties, 131

Dojo Image Select, 137, 140
properties, 140

Dojo layout controls, 223
Accordion Container,

229-231
Accordion Pane, 229-231
Border Container, 225-229

Border Pane, 225-229
Content Pane, 223-224
Stack Container, 238
Stack Pane, 238
Tab Container, 231-237
Tab Pane, 231-237

Dojo libraries, 96-99
sliders, 100-102

Dojo Link Select, 135-136
properties, 137

Dojo List Text Box, 164-165
Dojo modules

dijit.form.Validation
TextBox, 99-100

ExtLib, 103-104
benefits and differences

of, 104
Dojo Name Text Box, 164-165
Dojo NotesPeek, 347
Dojo Number Spinner, 115-116

properties, 116
Dojo Number Text Box,

113-115
properties, 115

Dojo Radio Button, 126
Dojo Simple Text Area,

properties, 120
Dojo Slide to Effect, 142-143

properties, 143
Dojo Slider Rule,

properties, 134
Dojo Slider Rule Labels,

properties, 134
Dojo Text Area, properties, 120

Dojo Text Box control,
104-106

properties, 105
Dojo themes, 102-103
Dojo Time Text Box, 116-118
Dojo Toggle Button, 128-130
Dojo Validation Text Box,

106-112
properties, 112

Dojo Vertical Slider, 131
properties, 131

Dojo widget properties, 105
Dojo Wipe, 140-142
dojo.fx.easing, 141
dojoAttributes, 97
dojoParseOnLoad, 98
dojoTheme, 98
dojoType, 97
Domino, remote service, 351

JSON RPC Service,
351-353

Domino 8.5.2, automatic server
deployment (ExtLib), 34-38

Domino 8.5.3, automatic server
deployment (ExtLib), 28-34

Domino Data Services, 360
Database JSON Collection

Service, 360
Document Collection JSON

Service, 367-368
Document JSON Service,

368-374
View Design JSON Service,

366-367
View JSON Collection

Service, 361-362

520 Index

View JSON Service,
362-366

Domino Designer, creating
Java classes, 499-505

Domino documents, mobile
apps versus web apps, 331

Domino proxy, 455-457
Domino REST services, 343

Data Service, 344
Data Services—Contacts

and All Types pages, 345
Dojo Grid Using JSON Rest

Data Services, 345-346
Dojo NotesPeek, 347

Domino servers, enabling
services, 357-359

for view and
documents, 359

dominoViewEntriesTree-
Node, 247

dominoViewListTreeNode, 246
downloading ExtLib, 13-17
Dropbox

xe:fileServiceData, 453
XPagesSBT.NSF, 467-468

Dynamic Content, 9, 80,
83-85, 88

properties, 84
Switch, 88-89
TeamRoom template, 61
xe:inPlaceForm, 80-83

Dynamic Content control,
320-321

dynamic ListView, 188, 191

Dynamic View, 9
Dynamic View Panel, 171-174

properties, 175

E
El, accessing user Bean, 509
Eclipse 3.5 Galileo IDE, 381
Edit Box control, Dojo

extensions, 104
Dojo Currency Text Box,

113-115
Dojo Date Text Box,

116-118
Dojo Number Spinner,

115-116
Dojo Number Text Box,

113-115
Dojo Text Box, 104-106
Dojo Time Text box,

116-118
editability, Dojo Data Grid,

184-186
editing document changes,

311-315
embedded dialogs, 158
end users, deploying

ExtLib to, 40
creating widget

configuration, 42-50
provisioning Extlib widget,

50-52
widget catalog setup, 41

endpoints
access endpoints, 446-447
configurations

AnonymousEndpoint
Bean, 441

BasicEndpointBean,
442-445

FacebookEndpoint, 441
OAuthEndpointBean,

440-441
REST API calls, 439

events, mobile apps versus web
apps, 330

extenion point, 392
extensibility, 5
extensions, 392

enablement of, 462-464
to user and people beans,

459-462
external applications,

consuming service data
(OpenSocial Gadgets),
353, 356

ExtLib (XPages Extension
Library), 7, 13

deploying to developers in
Designer, 18-27

deploying to end users, 40
creating widget

configuration, 42-50
provisioning ExtLib

widget to other users,
50-52

widget catalog setup, 41

Index 521

Dojo modules, 103-104
benefits and

differences, 104
downloading, 13-17
installing via Upgrade

Pack, 17
manually deploying to

servers, 38-40
mobile apps

Data View, 321-322
Dynamic Content

control, 320-321
filtering data, 323
Form Table control,

318-320
hash tags, 318
Heading, 325-326
large content, 326-327
modifying controls with

Dojo, 327
More link, 322-323
Move To mobile page

action, 325
multiple controls,

324-325
Outline control, 315-318

REST services, 336-338
server deployment

automatic server
deployment in Domino
8.5.2, 34-38

automatic server
deployment in Domino
8.5.3, 28-34

uninstalling from Designer,
27-28

ExtLib Demo app, running in
Notes Client, 27

ExtLib proxies, 457
ExtLib widget, provisioning to

other users, 50-52
ExtLibx, 7
extra column, Data View, 218

F
Facebook controls, 478-481
FacebookEndpoint, 441
Fielding, Roy, 335
file controls, 467
File Service Data Data Source,

452-454
file uploads, 332
filtering data, 323
footer links, 269
footer property, OneUI

development with
Application Layout
control, 269

Form Column, properties, 73
Form Layout Column, 71
Form Layout Components, 71

Form Table, 71-77
Forum Post, 78-80

Form Layout Row, 71
Form Row, 77

properties, 73
Form Table, 71-77, 318-320

properties, 72
Forum Post, 78-80
Forum View, 220

G
get

Database JSON Collection
Service, 360

Document Collection JSON
Service, 368

Document JSON Service,
368

View Design JSON Service,
366

View JSON Collection
Service, 361

getSQL, 426

H
hash tags, 318
Heading, mobile apps, 325-326
Heading control,

actionFacet, 314
Hello Mobile World

tutorial, 300
adding a view document

collection to the mobile
page, 302-304

creating new XPages and
mobile apps, 301-302

displaying rows, 304-305
editing and saving

document changes,
311-315

enable apps for ExtLib and
mobile, 300

opening documents from
Data View, 306-311

522 Index

Hello REST World 1, pathInfo
property (REST Service
control), 340-341

Hello REST World 2,
computed column to join data
(REST Service control), 341

Hello REST World 3, REST
Service in a Data Grid, 342

history
of OneUI, 263-264
of XPages, xv-xvii , 4

homeMembersView.xsp,
TeamRoom template, 59

homeTeamRoomPurpose.xsp,
TeamRoom template, 59

HSSF (Horrible Spreadsheet
Format), 492

HTTP methods, mapped to
CRUD operations, 336

I
IBM Social Business Toolkit,

482-484
icon column, Data View, 218
identities, 457, 465-466
ignoreRequestParams, standard

attributes for REST Service
control, 340

iNotes Calendar, 194, 349-351
Notes Calendar control,

200-202
Notes Client, 194-195
REST service, 196-197

Notes Calendar Store,
197-199

view events, 203-205

iNotes ListView, 187, 348
dynamic ListView, 188, 191
ListView Column, 192-193
properties, 191-192

installing
ExtLib, via Upgrade

Pack, 17
JDBC drivers, 379

into jvm/lib/ext folder
on the Domino
Server, 380

in NSF, 380
via an OSGi plugin,

381-391, 393-394,
396-406

InViewEditing, Dojo Data
Grid, 184-186

io, standard attributes for REST
Service control, 339

IP addresses, validating, 108

J
JAR (Java Archive format), 491
Java, 12

benefits of development,
489-490

referencing in SSJS,
490-491

using Java written by others,
491-498

Java Archive (JAR) format, 491
Java Beans, 506-508
Java classes, creating with

Domino Designer, 499-505
Java Database Connectivity

(JDBC), 377

Java JDBC API for XPages,
425-427

Java Virtual Machine
(JVM), 378

JavaScript, mobile apps versus
web apps, 330

JDBC (Java Database
Connectivity), 377

accessing relational data,
377-378

creating connections to
RDBMS, 406-410

installing JDBC
drivers, 379

JDBC APIs
@JdbcDelete(connection:

any, table:string,
where:string,
params:Array) : int, 419

@JdbcExecuteQuery(conne
ction:any, sql:string,
params:Array) :
java.sql.ResultSet, 420

SSJS, 417
debugging with

xe:dumpObject, 425
@JdbcDelete(connection

:any, table:string,
where:string) : int, 419

@JdbcExecuteQuery
(connection:any,
sql:string) :
java.sql.ResultSet, 420

@JdbcGetConnection
(data:string), 417-419

@JdbcInsert(connection:
any, table:string,
values:any) : int,
421-423

Index 523

@JdbcUpdate
(connection:any,
table:string,
values:any) : int, 424

@JdbcUpdate
(connection:any,
table:string, values:any,
where:string) : int, 424

@JdbcUpdate
(connection:any,
table:string, values:any,
where:string,
params:Array) :
int, 424

JDBC data sources
adding to XPages, 411-412
concurrency, 415-417

JDBC drivers, installing, 379
into jvm/lib/ext folder on

the Domino Server, 380
in NSF, 380
via OSGi plugin, 381-391,

393-394, 396-406
@JdbcDbColumn(connection:

any, table:string,
column:string), 418

@JdbcDelete(connection:any,
table:string, where:string) :
int, 419

@JdbcDelete(connection:any,
table:string, where:string,
params:Array) : int, 419

@JdbcExecuteQuery
(connection:any, sql:string) :
java.sql.ResultSet, 420

@JdbcExecuteQuery
(connection:any, sql:string,
params:Array) :
java.sql.ResultSet, 420

@JdbcGetConnection(data:
string), 417-419

@JdbcInsert(connection:any,
table:string, values:any) : int,
421-423

@JdbcInsert(connection:any,
table:string, values:any):
int, 423

@JdbcUpdate(connection:any,
table:string, values:any) :
int, 424

@JdbcUpdate(connection:any,
table:string, values:any,
where:string) : int, 424

@JdbcUpdate(connection:any,
table:string, values:any,
where:string, params:Array) :
int, 424

JSON, utilities for parsing,
449-450

JSON RPC Service, 351-353
JVM (Java Virtual

Machine), 378
jvm/lib/ext folder, installing

JDBC drivers, 380

K
Keep Session Alive

components, 92-93
KeepSessionAlive control, 8

L
large content, mobile apps,

326-327
layout, mobile apps versus web

apps, 327-330

Layout control, Designer,
274-275

legal property, OneUI
development with
Application Layout control,
267-268

Link Container control, 251
link tags, mobile apps versus

web apps, 328
linkMetaSeparator

property, 259
List Container component,

91-92
List of Links control, 250
listings

The Abstract People Data
Provider Extended, 460

Accessing Java Classes
Using SSJS, 490

Accessing the User Bean
Using EL, 509

Accessing the User Bean
Using SSJS, 509

Action Buttons in a
Header, 314

Action Facet for a Heading
Control, The, 289

appendSQLType() Methods
to Build a SQL Statement
Using a StringBuilder, 426

Application Layout
Facets, 277

The Applications faces-
config.xml, 437

Applying a Dojo
Theme, 103

Available Method for
Setting Scope and
Size, 464

524 Index

Available Methods for
Infratructure Calls, 465

Basic Navigator Control
with Nodes, 239

Basic Tooltip, 150
basicContainerNode

Example, A, 241
BasicLogin XPage

Markup, 444
Breadcrumbs Control

Sample from the Demo
App, 250

btnRed and btnGreen
Classes, 130

Button Icon and Icon
Position Properties, 298

Button with Change
Dynamic Action, 319

calendarJsonLegacy
Service, 196

Category Filtering
Example, 323

categoryRow Facet on
home.xsp, 215

Closing a Dialog (client-
side JavaScript), 155

Closing a Dialog
(SSJS), 157

Closing the Tooltip Dialog
(SSJS), 162

Code Snippet from the
Home XPage in the
TeamRoom Using the
People Bean, 512

Complex Tooltip, 151
Computing the href Action

to Open a Document from
a View Row, 309

The Configured Application
Layout Control in
layout.xsp, 57

Connection Sample with
dojoType Set, 478

Connections Profiles VCard
Sample, 476

Contains Search
Expression, 121

Core_DojoEffect.xsp Dojo
animation Simple
Action, 145

Create a New Document
Example Using JSON in a
POST Request, 372

createTab Methods, 234
Custom Button Styling for

Mobile Applications, 299
Custom Validator for Picker

Validation, 168
Data Service Response,

361, 364, 367-368
Data Service Response for a

document with an
Attachment, 369

Data Service Response for
the request with a
Computed Item Called
Shortname, 374

Data View with Add Rows
Simple Action, 304

dateRangeActions, 202
Default Tab Bar with

Buttons, 295
defaultTabContent, 236
Definition of a JDBC

Connection File, 407
demo.IdentityProvider.

java, 466

dijit.form.Horizontal
Slider, 101

dijit.form.ValidationTextBo
x, 99

Dojo Button icons, 126
Dojo Data Grid Part One:

Dojo Data Grid
Control, 180

Dojo Data Grid Part Two:
Dojo Data Grid Columns
and Formatter, 183

Dojo Fade Out with
dojo.fx.easing, 141

Dojo Filtering Select Using
Data Store, 124

Dojo Horizontal Slider, 133
Dojo Image Select for

Calendar Picker, 137
dojoParseOnLoad and

dojoTheme, 98
Dropbox OAuth Example

XPage, A, 446
Dynamic Content Control

Example, 61
Dynamic Content

Example, 320
Edit and Save Tab Bar

Buttons, 311
Enabling an Option with a

Mobile Switch
Control, 293

Exact Match Search
Expression, 121

Example of the xe:list and
xe:listInline Controls, 251

Expand Level Example, 322
Facebook Client Control

Sample from
FacebookPlugins.xsp, 479

Index 525

Facebook Login Button
Configuration
Sample, 480

faces-config.xml
Configuration for the
FacebookEndpoint, 441

faces-config.xml Example
for BasicEndpoint
Bean, 442

faces-config.xml Example
for the
AnonymousEndpoint
Bean, 441

File Service Data
Control Example for
Connections, 453

File Service Data for
Dropbox Example, 453

File Service Data for
LotusLive, 453

Files Extracted from the
ExtLib Download, 15

Footer Links in the ExtLib
Demo App, 269

Form Table Control, 318
A fragment.xml Sample for

the Person Data
Provider, 459

getSQL, 426
IBM Connections Data

Source Sample, 452
JavaScript for a Computed

Item Value, 374
@JdbcDbColumn(connecti

on:any, table:string,
column:string), 418

@JdbcDbColumn(connecti
on:any, table:string,
column:string,
where:string), 419

@JdbcDbColumn(connecti
on:any, table:string,
column:string,
where:string,
orderBy:String):
Array, 419

@JdbcDelete(connection:
any, table:string, where:
string):int, 420

@JdbcDelete(connection:
any, table:string,
where:string): int, 420

@JdbcExecuteQuery(conne
ction:any, sql:
string):java.sql.
ResultSet, 420

@JdbcExecuteQuery
(connection:any, sql:
string, params: string):
java.sql.ResultSet, 421

@JdbcGetConnection(data
string), 418

@JdbcInsert(connection:an
y, table:string, values:any):
int, 422-423

@JdbcUpdate(connection:
any, table:string,
values:sany, where:string,
params:string): int, 424

JSON-RPC Example,
352-353

Link Select Control with
dominoView
ValuePicker, 135

List of Links Sample from
the ExtLib Demo
App, 250

Login Dialog Sample for
Sametime Client, 472

Login Sample from
SametimeLive
Name.xsp, 472

LotusLive Subscribed ID
Sample, 459

A Mobile Page
Heading, 326

Mobile Pages Containing
Custom Controls, 328

More Links Example, 322
Move To Example, 325
Multiple Controls, 324
Name Picker with

dominoNABName
Provider, 166

Navigator Control Using the
onItemClick Event, 249

Notes Calendar
Control, 200

Notes Calendar Store, 200
The OAuth Token Store’s

faces-config.xml, 439
OAuthEndPointBean in the

faces-config.xml File, 440
The oneuiApplication

Markup in the Layout
Customer Control, 266

onNewEntry Event, 204
onRowClick and

onRowDblClick
Events, 186

onStyleRow event, 187

526 Index

Opening a Dialog (Client-
Side JavaScript), 154

Opening a Document in
Another Mobile Page, 310

Opening Documents from a
Data View in Another
Mobile Page, 307

Opening the Tooltip
Dialog (client-side
JavaScript), 161

OpenSocial Gadget
Example, 354

Outline Control with
Various Navigators,
315, 326

Pager Save State and
viewStateBean
Binding, 213

Pager Sizes Control
Code, 209

pageTreeNode Example
with the Selection
Property, A, 243

Picker Validation, 168
popupMenu Control Bound

to a Button, 252
Programmatic

Implementation of
dijit.form.Validation
TextBox, 97

Properties in xsp.properties
for Changing Values, 464

The PUT Request to
Change the Content-Type
Header, 371

PwdStore Sample faces-
config.xml, 443

A repeatTreeNode
Example, 245

Restoring the
viewStateBean, 213

Right Navigation Button
Example, 329

Rightcolumn Facet in
Action in the
TeamRoom, 280

Rounded List Container for
Data Input, 289

Sample Data Source
Connection to Lotus
Greenhouse, 455

Sample faces-config.xml
Deploying a Managed
Bean, A, 509

Sample nodeBean, 246
Sample of the

dominoViewEntries
TreeNode, 247

Sample Source of XMl with
Features Highlighted, 47

Sample Toolbar
Control, 255

Saving Dojo Data Grid
Edits, 185

SearchBar Markup from the
TeamRoom Layout, 271

Server Console ouput the
NSF-Based Plugins
deployment, 33

Setting the Back Page with
JavaScript, 332

Simple basicLeafNode
Examples, 240

Simple Connection Pool
Optional Parameters and
Default Values, 408

A Simple xe:formTable with
a Form Row and a Footer
Facet, 73

A Simple xe:formTable with
Two Columns, 75

The Single Page
Application Control
Contained Within the
View Tag, 287

Slide Effect with Attributes
Property, 143

Starts with Search
Expression, 122

Static Line Item
Example, 291

Styling the ToggleButton
Control, 129

The Tab Bar as a Segmented
Control, 296

Tag Cloud Sample from the
Demo App, 259

Tags Value Picker, 163
The TeamRoom Tag

Cloud, 258
TeamroomiNotesListView.

xsp, 189
TeamroomViews.xsp, 172
testIcon Class, 127
Use of the mastHeader and

mastFooter, 273
The User Bean in Action in

the Layout Custom
Control of the
TeamRoom, 511

A userTreeNode
Example, 242

Using Apache POI in
SSJS, 498

Using Dojo Animation
Simple Action to Style the
ToggleButton, 146

Using Facets in the Layout
Custom Control, 279

Index 527

Using the SSJS
importPackage
Directive, 491

Using the xe:dumpObject
with a JDBC Data
Source, 425

Validating an IP
Address, 108

ViewJSON Service
Example, 346

viewJsonLegacy
Service, 198

viewJsonService Rest
Service Control, 176

XML Sample, 450
XPage Markup of a REST

Service Control with a
Computed Column, 342

XPage Markup of an XPage
That Uses the REST
Service Control, 341

XPage Markup of Dojo
Data Grid Bound to
the REST Service
Control, 343

XPage Markup of iNotes
List Calendar Bound to a
REST Service
Control, 349

An XPage with a Dynamic
Content Control, 85

An XPage with a Multi-
Image Component, 90

An XPage with a Switch
Control, 88

An XPage with an
inPlaceForm
Component, 82

An XPage with the xe:list
Component, 91

XPages Markup of a
heading Tag Inside a
Mobile Application, 303

XPages markup of a
Heading Tag Inside a
Mobile Application
Tag, 301

ListView Column, 192-193
properties, 193-194

loginTreeNode, 242
Lotus Notes Domino R.8.5.2, 4
Lotus Notes Domino R8.5.0, 4
LotusLive

xe:fileServiceData, 453
XPagesSBT.NSF, 470

LotusScript, 489

M
Managed Beans, 508
manually deploying libraries to

servers, 38-40
Mastering XPages, xviii
mastFooter property, OneUI

development with
Application Layout
control, 273

mastHeader property, OneUI
development with
Application Layout
control, 273

maxTagLimit property, 258

menus, mobile apps versus
menu apps, 328

mobile, TeamRoom
template, 66

mobile applications
Hello World tutorial, 300

adding a view document
collection to the mobile
page, 302-304

creating new XPages and
mobile apps, 301-302

displaying rows,
304-305

editing and saving
document changes,
311-315

enable apps for ExtLib
and mobile, 300

opening documents from
Data View, 306-311

themes, 298-300
mobile apps

containers, 309
Data View, 309
ExtLib

Data View, 321-322
Dynamic Content

control, 320-321
filtering data, 323
Form Table control,

318-320
hash tags, 318
Heading, 325-326
large content, 326-327

528 Index

modifying controls with
Dojo, 327

More link, 322-323
Move To mobile page

action, 325
multiple controls,

324-325
Outline control, 315-318

versus web apps, 332
layout, 327-330

mobile control palette, 285
mobile controls, basics of,

284-286
mobile devices, 283-284
Mobile Page control, 287-288
Mobile Switch, 292, 294
mobility, 11
modernization, TeamRoom

template, 55-56
modifying controls with

Dojo, 327
More link, 322-323
Move To mobile page

action, 325
multi-image component, 89-91
multiColumnCount,

TeamRoom template, 65
Multiline Edit Box, 119-120
multiple columns, Data

View, 219
multiple controls, 324-325

N
Name Picker, 165-167

properties, 170
naming, perspective, 494

narrow mode, 192
navigation buttons, setting, 329
navigation path property,

OneUI development with
Application Layout
control, 268

Navigator control, 247-248
navigator controls, 247

Accordion control, 256-257
Bread Crumbs control, 249
Link Container control, 251
List of Links control, 250
Navigator control, 247-248
Outline control, 255-256
Pop-up Menu control,

252-254
Sort Links control, 251
Tag Cloud control, 257-259
Toolbar control, 254
Widget Container

control, 260
New Java Class Wizard, 395
next generation, 5-6
nodeBean, 246
Notes Calendar control,

200-202
Notes Calendar Store, Calendar

view, 197-199
Notes Client

iNotes Calendar, 194-195
running ExtLib Demo

app, 27
NSF (Notes Storage

Facility), 377
installing JDBC drivers, 380

O
OAuth, 431

configuring applications
for, 439

Token Store template,
434-438

OAuth dance, 431, 433-434
OAuth Token Store template,

434-438
social applications, 430

OAuthEndpointBean, 440-441
OneUI

development with
Application Layout
control, 264-266

banner property, 272
footer property, 269
legal property, 267-268
mastFooter property, 273
mastHeader

property, 273
navigation path, 268
placebar property,

270-271
productLogo

property, 273
searchBar property,

271-272
titleBar property, 273

history of, 263-264
onNewEntry event, 204
onRowClick event, 186
onRowDblClick event, 186
onStyleRow event, 187
OOXML

(OpenOfficeXML), 491

Index 529

opening
dialogs

client-side
JavaScript, 154

SSJS, 156
documents from Data View,

306-311
Tooltip dialog, client-side

JavaScript, 161
OpenNTF, 5
OpenNTF Alliance, 5
OpenSocial Gadgets, 353, 356
OSGi plugins

deploying, 33
installing JDBC drivers,

381-391, 393-394,
396-406

Outline control, 255-256,
315-318

P–Q
Package Explorer, 495

anchoring, 493
Page Heading control, 288
Pager, 277
Pager Add Rows,

properties, 211
Pager Detail, properties, 209
Pager Expand, properties, 208
Pager Save State,

properties, 212
Pager Sizes, 209

properties, 210
pagers, Data View, 207-210

PagerSaveState, Data View,
212-213

pageTreeNode, 242-245
parameters, adding to SQL

statements, 412
parsing utilities, 449-450
patch, 366

Document JSON
Service, 372

pathInfo, standard attributes for
REST Service control, 339

pathInfo property, REST
Service control, 340-341

peopleBean, 458, 509-511
extensions, 459, 462

perspective, naming and
saving, 494

pickers, validating, 167-170
placebar property, OneUI

development with
Application Layout control,
270-271

Plug-In Project Wizard, 382
Plugins, social

applications, 430
Pop-up Menu control, 252-254
Porus, xvi
Post, 366

Document JSON
Service, 372

preventDojoStore, standard
attributes for REST Service
control, 340

productLogo property, OneUI
development with
Application Layout
control, 273

profiles VCard, 474, 477
properties

Accordion Container, 230
banner, 272
Border Container, 228
Border Pane, 229
cacheRefreshInterval, 259
Content Pane, 225
Data View, 206
dialogs, 159-160
djDateTimeConstraints, 117
Dojo Animation

Property, 144
Dojo Combo Box, 125
Dojo Currency Text

Box, 115
Dojo Data Grid, 181-182
Dojo Data Grid

Column, 185
Dojo Fade In, 142
Dojo Fade Out, 142
Dojo Filtering Select, 125
Dojo fx Wipe In, 142
Dojo fx Wipe Out, 142
Dojo Horizontal Slider, 131
Dojo Image Select, 140
Dojo Link Select, 137
Dojo Number Spinner, 116
Dojo Number Text Box, 115
Dojo Simple Text Area, 120
Dojo Slide to Effect, 143
Dojo Slider Rule, 134
Dojo Slider Rule

Labels, 134
Dojo Text Area, 120
Dojo Text Box, 105

530 Index

Dojo Validation
Text Box, 112

Dojo Vertical Slider, 131
Dojo widgets, 105
Dynamic Content, 84
Dynamic View Panel, 175
footer, 269
Form Column, 73
Form Row, 73
Form Table, 72
iNotes ListView, 191-192
legal, 267-268
linkMetaSeparator, 259
ListView Column, 193-194
mastFooter, 273
mastHeader, 273
maxTagLimit, 258
Name Picker, 170
navigation path, 268
Pager Add Rows, 211
Pager Detail, 209
Pager Expand, 208
Pager Save State, 212
Pager Sizes, 210
placebar, 270-271
productLogo, 273
searchBar, 271-272
sortTags, 258
Tab Container, 237
titleBar, 273
tooltipDialog, 159-160
Value Picker, 164
viewJsonService, 179
xe:calendarView, 205
xe:djNumber

Constraint, 114

xe:dojoDojoAnimation
Props, 144

xe:jdbcQuery, 415
xe:jdbcRowSet, 415
xe:viewCategoryColumn,

217-218
xe:viewExtraColumn,

217-218
xe:viewIconColumn, 218
xe:viewSummaryColumn,

217-218
proxies, 455

Domino proxy, 455-457
ExtLib proxies, 457

put
Document JSON

Service, 371
View JSON Service, 365

R
RDBMS (Relation Database

Management Systems),
377, 426

Recent Activities, TeamRoom
template, 59

Redesign, TeamRoom
template, 56

referencing native Java in
SSJS, 490-491

regular expressions, 112
Relation Database

Management Systems
(RDBMS), 377, 426

creating connections to, 406
files, 406-410

relational data, 11

accessing through JDBC,
377-378

creating connections to
RDBMS, 406-410

installing JDBC
drivers, 379

relational data sources, using
on XPages, 410

adding JDBC data sources,
411-412

specifying the SQL
statement, 412-413

xe:JDBC data sources and
concurrency, 415-417

xe:jdbcQuery data source,
413-414

xe:jdbcRowSet data
source, 414

remote service (Domino),
calling, 351

JSON RPC Service,
351-353

renderers, 332
repeat lists, mobile apps versus

web apps, 330
repeatTreeNode, 245
REST (Representational State

Transfer), 12, 335
REST API calls, 447-448

content types, 449
endpoints, 439
methods, 448
parameter format, 448
service documentation, 447

REST data sources, 450-451
Activity Stream Data data

source, 454-455
Connections Data

Source, 452

Index 531

File Service Data Data
Source, 452-454

REST Service control, 338
computed columns, 341
Dojo Data Grid, 342
pathInfo property, 340-341
standard attributes

for each service
type, 340

ignoreRequestParams,
340

io, 339
pathInfo, 339
preventDojoStore, 340
service, 338

REST services, 335
CRUD operations, 336
developing custom

services, 375
Dojo DataGrid, 176, 178
Domino, 343

Data Service, 344
Data Services—Contacts

and All Types
pages, 345

Dojo Grid Using JSON
Rest Dat Services,
345-346

Dojo NotesPeek, 347
ExtLib, 336-338
iNotes Calendar, 196-197

Notes Calendar Store,
197-199

RESTful web services, 12
restoring viewStateBean, 213
rich text, mobile apps versus

web apps, 331

right navigation button,
setting, 329

Rounded List, 289-290

S
Sametime Client control, 471
sametime controls, 471-472
Sametime Widget control, 471
saving

document changes, 311-315
perspective, 494

searchBar property, OneUI
development with
Application Layout control,
271-272

segmentedControl,
Tab Bar, 297

Select control, 120
Dojo Check Box, 126
Dojo Combo Box, 120-125
Dojo Filtering Select,

120-125
Dojo Radio Button, 126

separatorTreeNode, 242
server deployment

ExtLib
automatic server

deployment in Domino
8.5.2, 34-38

automatic server
deployment in Domino
8.5.3, 28, 30-34

manually deploying
libraries to servers, 38-40

service, standard attributes for
REST Service control, 338

service data, consuming
iNotes Calendar, 349-351
iNotes List View, 348
OpenSocial Gadgets,

353, 356
service documentation, REST

API calls, 447
serviceType property, 452
Single Page Application control,

286-287
sliders, 131-134

Dojo libraries, 100, 102
smart phones, 284
social applications, 429-430

OAuth Token Store
template, 430

plugins, 430
setup, 431
social enabler sample

database, 430
social business, 11
social enabler sample database,

social applications, 430
software development, 11
Sort Links control, 251
sortTags property, 258
SQL statements

adding parameters to, 412
specifying, 412-413

sqlTable property, 412
src*.zip files, 15
SSJS (Server-Side JavaScript)

accessing user Bean, 509
Apache POI, 498
closing dialogs, 157
closing Tooltip dialog, 162
JDBC APIs, 417

532 Index

debugging with
xe:dumpObject, 425

@JdbcExecuteQuery
(connection:any,
sql:string) :
java.sql.ResultSet, 420

@JdbcInsert(connection:
any, table:string,
values:any) : int,
421-423

@JdbcDelete(connection
:any, table:string,
where:string): int, 419

@JdbcDelete(connection
:any, table:string,
where:string,
params:Array) :
int, 419

@JdbcExecuteQuery-
(connection:any,
sql:string,
params:Array) :
java.sql.ResultSet, 420

@JdbcGetConnection-
(data:string), 417-419

@JdbcUpdate-
(connection:any,
table:string,
values:any) : int, 424

@JdbcUpdate-
(connection:any,
table:string, values:any,
where:string) : int, 424

@JdbcUpdate-
(connection:any,
table:string, values:any,
where:string,
params:Array) :
int, 424

opening dialogs, 156
referencing native Java,

490-491
Stack Container, 238
Stack Pane, 238
standard attributes, REST

Service control
for each service type, 340
ignoreRequestParams, 340
io, 339
pathInfo, 339
preventDojoStore, 340
service, 338

standard node types
basicContainerNode,

240-241
basicLeafNode, 239-240
loginTreeNode, 242
separatorTreeNode, 242
userTreeNode, 242

Static Line Item, 291-292
summary column, Data

View, 218
Switch, 88-89

T
Tab Bar, 295-297
Tab Bar button, 298
Tab Container, 231-237

properties, 237
Tab Pane, 231-237
table devices, rich text, 331
tables, mobile apps versus web

apps, 328
Tag Cloud control, 58, 257-259
tag clouds, mobile apps versus

web apps, 328

TeamRoom template, 53-55
All Documents, 60
Application Layout, 57-58
calendarView, 63
Document Form, 61
Dynamic Content, 61
homeMembersView.xsp, 59
homeTeamRoom

Purpose.xsp, 59
mobile, 66
modernization, 55-56
multiColumnCount, 65
Recent Activities, 59
redesign, 56
Value Picker, 64
Web 2.0 style features, 63

TeamroomiNotesList
View.xsp, 189

TeamroomViews.xsp, 172
templates, TeamRoom

template, 54-55
All Documents, 60
Application Layout, 57-58
calendarView, 63
Document Form, 61
Dynamic Content, 61
homeMembersView.xsp, 59
homeTeamRoom

Purpose.xsp, 59
mobile, 66
modernization, 55-56
multiColumnCount, 65
Recent Activities, 59
redesign, 56
Value Picker, 64
Web 2.0 style features, 63

Index 533

themes
Dojo, 102-103
mobile applications,

298-300
time picker, 119
titleBar property, OneUI

development with
Application Layout
control, 273

Toolbar control, 254
Tooltip Dialog control, 153,

160-161
Tooltip dialog control

closing SSJS, 162
opening client-side

JavaScript, 161
tooltipDialog properties,

159-160
tooltips, 149-153
tree node concept, 239

advanced node types
beanTreeNode, 245
dominoViewEntriesTree

Node, 247
dominoViewListTree-

Node, 246
pageTreeNode, 242,

244-245
repeatTreeNode, 245

standard node types
basicContainerNode,

240-241
basicLeafNode, 239-240
loginTreeNode, 242
separatorTreeNode, 242
userTreeNode, 242

U
uninstalling ExtLib from

Designer, 27-28
UP1 (Upgrade Pack 1), 377
Upgrade Pack, installing

ExtLib, 17
Upgrade Pack 1 (UP1), 377
URLs (uniform resource

locators), 439
database URLs,

specifying, 409
user Bean, 511
user identities, 465-466
user information, caching,

464-465
user interface controls, 467

connections controls, 474
communities VCard,

477-478
profiles VCard, 474, 477

Facebook controls, 478-481
file controls, 467
sametime controls, 471-472

user profiles, 457
caching of user information,

464-465
extensions

enablement of, 462-464
to user and people beans,

459, 462
peopleBean, 458

userBean, 458
extensions, 459, 462

userTreeNode, 242
utilities for parsing, 449-450

V
validating

IP addresses, 108
pickers, 167-170

Value Picker, 162-163
TeamRoom template, 64

View Design JSON Service,
366-367

view events
Dojo Data Grid, 186-187
iNotes Calendar, 203-205

View JSON Collection Service,
361-362

View JSON Service, 362-366
View State Beans, Data View,

212-213
viewJsonLegacyService, 198
viewJsonService REST

service, 176
views

Data View, 206
columns, 214-217
columns, category

column, 215
columns, detail, 219
columns, extra

column, 218
columns, icon

column, 218
columns, summary

column, 218
multiple columns, 219
pagers, 207-208, 210
PagerSaveState/View

State Beans, 212-213
properties, 206

534 Index

Dojo DataGrid, 175
Dojo Data Grid contents,

182-184
Dojo Data Grid control,

179-181
InViewEditing, 184-186
REST service, 176-178
view events, 186-187

Dynamic View Panel,
171-174

properties, 175
Forum View, 220
iNotes Calendar, 194

Notes Calendar control,
200-202

Notes Client, 194-195
REST service, 196-197
REST service: Notes

Calendar Store,
197-199

view events, 203-205
iNotes ListView, 187

dynamic ListView,
188, 191

ListView Column,
192-193

viewStateBean, restoring, 213

W
Web 2.0 style features,

TeamRoom template, 63
web apps versus mobile

apps, 332
layout, 327-330

WEB-INF folder, 495-496
widget catalog, deploying

ExtLib to end users, 41
widget configuration,

deploying ExtLib to end
users, 42-50

Widget Container control, 260
wizards

Deployable Plug-Ins and
Fragments Wizard, 401

New Java Class Wizard,
395

Plug-In Project wizard, 382

X–Y–Z
xe:accordion, 256-257
xe:activityStreamData,

454-455
xe:addRows, 304
xe:applicationConfigura-

tion, 266
xe:applicationLayout

within a Custom Control,
276-280

OneUI development,
264-266

banner property, 272
footer property, 269
legal property, 267-268
mastFooter property, 273
mastHeader

property, 273
navigation path, 268
placebar property,

270-271
productLogo

property, 273

searchBar property,
271-272

titleBar property, 273
xe:appPage, 288
xe:appSearchBar, 271
xe:basicContainerNode,

240-241
xe:basicLeafNode, 239-240
xe:beanTreeNode, 245
xe:beanValuePicker, 137
xe:breadCrumbs, 249-250
xe:calendarView, 63, 194,

349-351
Notes Calendar control,

200-202
Notes Client, 194-195
properties, 205
REST service, 196-197

Notes Calendar Store,
197-200

view events, 203-205
xe:changeDynamicContent

Action, 87
xe:connectionsData, 452
xe:dataView, 9, 59, 206,

321-322
columns, 214-215

category column,
215-217

detail, 219
extra column, 218
icon column, 218
summary column, 218

mobile apps, 309
multiple columns, 219

Index 535

opening documents,
306-311

pagers, 207-210
PagerSaverState/View State

Beans, 212-213
properties, 206-207

xe:dialog, 153-159
xe:dialogButtonBar, 158
xe:djAccordionContainer,

229-231
properties, 230

xe:djAccordionPane, 231
xe:djBorderContainer, 225-229

properties, 228
xe:djBorderPane, 225-229

properties, 229
xe:djButton, 126-128
xe:djCheckBox, 126
xe:djComboBox, 120-125

properties, 125
xe:djContentPane, 223-224

properties, 225
xe:djCurrencyTextBox,

113-115
properties, 115

xe:djDateTextBox, 116-118
xe:djDateTimeConstraints,

properties, 117
xe:djextListTextBox, 164-165
xe:djextImageSelect, 137, 140

properties, 140
xe:djextLinkSelect, 135-136

properties, 137
xe:djextNameTextBox,

164-165
xe:djFilteringSelect, 120-125

properties, 125

xe:djHorizontalSlider,
131-133

properties, 131
xe:djNumberConstraints, 113

properties, 114
xe:djNumberSpinner, 115-116

properties, 116
xe:djNumberTextBox, 113-115

properties, 115
xe:djRadioButton, 126
xe:djSimpleTextarea, 119-120

properties, 120
xe:djSliderRule, 132-134

properties, 134
xe:djSliderRuleLabels,

132-134
properties, 134

xe:djStackContainer, 238
xe:djStackPane, 238
xe:djTabContainer, 231-237

properties, 237
xe:djTabPane, 231-237
xe:djTextarea, 119-120

properties, 120
xe:djTextBox, 104-106

properties, 105
xe:djTimeTextBox, 116-118
xe:djToggleButton, 128-130
xe:djValidationTextBox,

106-112
properties, 112

xe:djVerticalSlider, 131
properties, 131

xe:djxDataGrid, 175, 179-181
contents, 182-184
InViewEditing, 184-186
properties, 181-182

REST Service control,
176-178, 342

view events, 186-187
xe:djxDataGridColumn, 182

properties, 185
xe:djxDataGridRow, 182
xe:djxmHeading, 288-289,

325-326
xe:djxmLineItem, 291-292
xe:djxmRoundRectList,

289-290
xe:djxmSwitch, 292-295
xe:dojoDojoAnimate

Property, 145
properties, 144

xe:dojoDojoAnimationProps,
145

properties, 144
xe:dojoFadeIn, properties, 142
xe:dojoFadeOut,

properties, 142
xe:dojofxSlideTo,

properties, 143
xe:dojofxWipeIn,

properties, 142
xe:dojofxWipeOut,

properties, 142
xe:dominoNABName-

Picker, 166
xe:dominoViewCloud-

Data, 258
xe:dominoViewEntriesTree

Node, 247, 309
xe:dominoViewListTree-

Node, 246
xe:dominoViewName-

Picker, 170

536 Index

xe:dominoViewValue-
Picker, 164

xe:dumpObject,
debugging, 425

xe:dynamicContent, 60-61,
83-85, 88, 320-321

xe:dynamicViewPanel,
171-174

properties, 175
xe:fileServiceData, 452-454
xe:formColumn, 71

properties, 73
xe:formRow, 71, 77

properties, 73
xe:formTable, 61, 71-77,

318-320
properties, 72

xe:forumPost, 78-80
xe:forumView, 220
xe:iconEntry, 90
xe:inPlaceForm, 80-83
xe:jsonRpcService, 351-353
xe:jdbcConnection

Manager, 416
xe:jdbcQuery, 410

properties, 415
xe:jdbcQuery data source,

413-414
xe:jdbcRowSet, 410

properties, 415
xe:jdbcRowSet data

source, 414
xe:keepSessionAlive, 92-93
xe:linksList, 250
xe:list, 91-92, 251-252
xe:listInline, 251-252

xe:listView, 187, 348
dynamic ListView, 188, 191
properties, 191-192

xe:listViewColumn, 192-193
properties, 193

xe:loginTreeNode, 242
xe:moveTo, 325
xe:multiImage, 89-91
xe:namePicker, 165-167

properties, 170
xe:namePickerAggregator, 170
xe:navigator, 239, 247-249
xe:notesCalendarStore,

197-200
xe:oneuiApplication, 266
xe:outline, 255-256, 315-318
xe:pagerAddRow, 210-211
xe:pagerDetail, 209
xe:pagerExpand, 208
xe:pagerSaveState, 60, 212-214
xe:pagerSize, 209-210
xe:pageTreeNode, 242-245
xe:pickerValidator, 168
xe:popupMenu, 252-254
xe:remoteMethod, 352
xe:remoteMethodArg, 352
xe:repeatTreeNode, 245
xe:restService, 64, 176-179,

338-343
xe:restViewColumn, 341
xe:sametimeClient, 471
xe:sametimeWidget, 471
xe:selectImage, 137
xe:separatorTreeNode, 242
xe:simpleValuePicker, 164
xe:singlePageApp, 286-287
xe:sortLinks, 251

xe:switchFacet, 88-89
xe:tabBar, 295-297
xe:tabBarButton, 298
xe:tagCloud, 58, 257-259
xe:toolbar, 254-255
xe:tooltip, 150-153
xe:tooltipDialog, 160-161

properties, 159
xe:userTreeNode, 242
xe:valuePicker, 64, 162-163

properties, 164
xe:viewCategoryColumn,

properties, 217-218
xe:viewExtraColumn,

properties, 217-218
xe:viewIconColumn,

properties, 218
xe:viewItemFileService, 124
xe:viewJsonLegacy-

Service, 198
xe:viewJsonService,

properties, 179
xe:viewSummaryColumn,

properties, 217-218
xe:widgetContainer, 59,

260-261
XPages

adding JDBC data
sources to, 411

history of, xv-xvii, 4
Java JDBC API, 425-427
relational data sources, 410

adding JDBC data
sources, 411-412

JDBC data sources and
concurrency, 415-417

specifying the SQL
statement, 412-413

Index 537

xe:jdbcQuery data
source, 413-414

xe:jdbcRowSet data
source, 414

XPages Extension Library
(ExtLib), 3-7, 13

deploying to developers in
Designer, 18-27

deploying to end users, 40
creating widget

configuration, 42-50
provisioning ExtLib

widget to other users,
50-52

widget catalog setup, 41
Dojo modules, 103-104

benefits and differences,
104

downloading, 13-17
installing via Upgrade

Pack, 17
making app development

easier, faster, and better, 8
manually deploying to

servers, 38-40
mobile apps

Data View, 321-322
Dynamic Content

control, 320-321
filtering data, 323
Form Table control,

318-320
hash tags, 318
Heading, 325-326
large content, 326-327
modifying controls with

Dojo, 327
More link, 322-323

Move To mobile page
action, 325

multiple controls,
324-325

Outline control, 315-318
REST services, 336-338
server deployment

automatic server
deployment in Domino
8.5.2, 34-38

automatic server
deployment in Domino
8.5.3, 28-34

uninstalling from Designer,
27-28

XPages mobile apps, 284
XPagesSBT.NSF, 467

Connections, 468, 470
Dropbox, 467-468
LotusLive, 470

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Contributing Authors
	Chapter 5 Dojo Made Easy
	What Is Dojo?
	Default Dojo Libraries Using Dojo Modules in XPages
	Dojo Modules and Dojo in the Extension Library
	Dojo Extensions to the Edit Box Control
	Dojo Extensions to the Multiline Edit Box Control
	Dojo Extensions to the Select Control
	Dojo Extensions to Buttons
	Composite Dojo Extensions
	Dojo Effects Simple Actions
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

