
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780132761611
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780132761611
https://plusone.google.com/share?url=http://www.informit.com/title/9780132761611
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780132761611
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780132761611/Free-Sample-Chapter

Core HTML5 Canvas

This page intentionally left blank

Core HTML5 Canvas

Graphics, Animation, and Game
Development

David Geary

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark

claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or

implied warranty of any kind and assume no responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in connection with or arising out of the use of the

information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or

special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please

contact:

U.S. Corporate and Government Sales

(800) 382–3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Geary, David M.

 Core HTML5 canvas : graphics, animation, and game development / David

Geary.

 p. cm.

 Includes index.

 ISBN 978-0-13-276161-1 (pbk. : alk. paper)

 1. HTML (Document markup language) 2. Computer games—Programming. 3.

Computer animation. I. Title.

 QA76.76.H94C66 2012

 006.6'6—dc23

 2012006871

Copyright © 2012 David Geary

All rights reserved. Printed in the United States of America. This publication is protected by copyright,

and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a

retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise. To obtain permission to use material from this work, please submit a written

request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New

Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-276161-1

ISBN-10: 0-13-276161-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

Third printing, June 2014

xvPreface ...

xxiiiAcknowledgments ..

xxvAbout the Author ...

1Chapter 1: Essentials ...

1The canvas Element ..1.1
5Canvas Element Size vs. Drawing Surface Size1.1.1
7The Canvas API ...1.1.2
8Canvas Contexts ..1.2
9The 2d Context ..1.2.1

11The WebGL 3d Context ..1.2.1.1
11Saving and Restoring Canvas State ..1.2.2
12Canonical Examples in This Book ..1.3
14Getting Started ..1.4
14Specifications ...1.4.1
15Browsers ...1.4.2
16Consoles and Debuggers ...1.4.3
18Performance ...1.4.4
19Profiles and Timelines ...1.4.4.1
20jsPerf ..1.4.4.2
22Fundamental Drawing Operations ..1.5
26Event Handling ...1.6
26Mouse Events ..1.6.1

26
Translating Mouse Coordinates to Canvas
Coordinates ..

1.6.1.1

31Keyboard Events ...1.6.2
33Touch Events ...1.6.3
33Saving and Restoring the Drawing Surface ..1.7
36Using HTML Elements in a Canvas ...1.8
41Invisible HTML Elements ..1.8.1

Contents

v

46Printing a Canvas ..1.9
51Offscreen Canvases ...1.10
53A Brief Math Primer ...1.11
54Solving Algebraic Equations ...1.11.1
54Trigonometry ...1.11.2
54Angles: Degrees and Radians ..1.11.2.1
55Sine, Cosine, and Tangent ..1.11.2.2
56Vectors ..1.11.3
57Vector Magnitude ..1.11.3.1
58Unit Vectors ..1.11.3.2
59Adding and Subtracting Vectors1.11.3.3
60The Dot Product of Two Vectors1.11.3.4
62Deriving Equations from Units of Measure1.11.4
64Conclusion ...1.12

65Chapter 2: Drawing ...

67The Coordinate System ..2.1
68The Drawing Model ...2.2
70Drawing Rectangles ..2.3
72Colors and Transparency ...2.4
76Gradients and Patterns ...2.5
76Gradients ..2.5.1
76Linear Gradients ..2.5.1.1
78Radial Gradients ..2.5.1.2
79Patterns ...2.5.2
83Shadows ...2.6
85Inset Shadows ..2.6.1
88Paths, Stroking, and Filling ...2.7
93Paths and Subpaths ..2.7.1
94The Nonzero Winding Rule for Filling Paths2.7.1.1
95Cutouts ...2.7.2
98Cutout Shapes ..2.7.2.1

103Lines ..2.8
104Lines and Pixel Boundaries ...2.8.1
105Drawing a Grid ...2.8.2

Contentsvi

107Drawing Axes ..2.8.3
110Rubberband Lines ...2.8.4
117Drawing Dashed Lines ...2.8.5

118
Drawing Dashed Lines by Extending
CanvasRenderingContext2D ..

2.8.6

121Line Caps and Joins ..2.8.7
124Arcs and Circles ..2.9
124The arc() Method ..2.9.1
126Rubberband Circles ..2.9.2
127The arcTo() Method ..2.9.3
130Dials and Gauges ..2.9.4
137Bézier Curves ...2.10
137Quadratic Curves ..2.10.1
141Cubic Curves ...2.10.2
144Polygons ...2.11
147Polygon Objects ...2.11.1
150Advanced Path Manipulation ...2.12
151Dragging Polygons ...2.12.1
158Editing Bézier Curves ...2.12.2
169Scrolling Paths into View ...2.12.3
170Transformations ..2.13
171Translating, Scaling, and Rotating ...2.13.1
173Mirroring ...2.13.1.1
174Custom Transformations ...2.13.2
175Algebraic Equations for Transformations2.13.2.1
176Using transform() and setTransform()2.13.2.2

177
Translating, Rotating, and Scaling with transform()
and setTransform() ..

2.13.2.3

179Shear ..2.13.2.4
181Compositing ..2.14
186The Compositing Controversy ...2.14.1
187The Clipping Region ..2.15
187Erasing with the Clipping Region ..2.15.1
194Telescoping with the Clipping Region2.15.2
198Conclusion ...2.16

viiContents

201Chapter 3: Text ..

202Stroking and Filling Text ...3.1
207Setting Font Properties ...3.2
210Positioning Text ..3.3
210Horizontal and Vertical Positioning ..3.3.1
214Centering Text ...3.3.2
215Measuring Text ...3.3.3
217Labeling Axes ..3.3.4
221Labeling Dials ..3.3.5
223Drawing Text around an Arc ..3.3.6
225Implementing Text Controls ...3.4
225A Text Cursor ..3.4.1
228Erasing ...3.4.1.1
230Blinking ...3.4.1.2
232Editing a Line of Text in a Canvas ..3.4.2
238Paragraphs ...3.4.3
242Creating and Initializing a Paragraph3.4.3.1

242
Positioning the Text Cursor in Response to Mouse
Clicks ...

3.4.3.2

243Inserting Text ...3.4.3.3
244New Lines ...3.4.3.4
245Backspace ..3.4.3.5
252Conclusion ...3.5

253Chapter 4: Images and Video ...

254Drawing Images ..4.1
255Drawing an Image into a Canvas ...4.1.1
257The drawImage() Method ..4.1.2
259Scaling Images ...4.2
260Drawing Images outside Canvas Boundaries4.2.1
266Drawing a Canvas into a Canvas ...4.3
270Offscreen Canvases ...4.4
274Manipulating Images ...4.5
274Accessing Image Data ..4.5.1
279ImageData Objects ..4.5.1.1

Contentsviii

280
Image Data Partial Rendering: putImageData’s Dirty
Rectangle ...

4.5.1.2

283Modifying Image Data ...4.5.2

285
Creating ImageData Objects with
createImageData() ...

4.5.2.1

286The Image Data Array4.5.2.1.1
292Image Data Looping Strategies4.5.2.2
293Filtering Images ...4.5.2.3
295Device Pixels vs. CSS Pixels, Redux4.5.2.4
299Image Processing Web Workers4.5.2.5
302Clipping Images ..4.6
306Animating Images ..4.7
309Animating with an Offscreen Canvas ..4.7.1
312Security ...4.8
313Performance ...4.9

314
drawImage(HTMLImage) vs. drawImage(HTMLCanvas) vs.
putImageData() ...

4.9.1

316
Drawing a Canvas vs. Drawing an Image, into a Canvas;
Scaled vs. Unscaled ...

4.9.2

317Looping over Image Data ..4.9.3

317
Avoid Accessing Object Properties in the Loop: Store
Properties in Local Variables Instead

4.9.3.1

320Loop over Every Pixel, Not over Every Pixel Value ..4.9.3.2

320
Looping Backwards and Bit-Shifting Are Crap
Shoots ..

4.9.3.3

321
Don’t Call getImageData() Repeatedly for Small
Amounts of Data ..

4.9.3.4

321A Magnifying Glass ..4.10
325Using an Offscreen Canvas ...4.10.1
326Accepting Dropped Images from the File System4.10.2
328Video Processing ...4.11
329Video Formats ...4.11.1
330Converting Formats ..4.11.1.1
331Playing Video in a Canvas ...4.11.2
333Processing Videos ...4.11.3
337Conclusion ...4.12

ixContents

339Chapter 5: Animation ..

340The Animation Loop ..5.1

343
The requestAnimationFrame() Method: Letting the Browser
Set the Frame Rate ..

5.1.1

345Firefox ..5.1.1.1
346Chrome ..5.1.1.2
348Internet Explorer ...5.1.2
348A Portable Animation Loop ..5.1.3
358Calculating Frame Rates ..5.2
359Scheduling Tasks at Alternate Frame Rates ..5.3
360Restoring the Background ...5.4
361Clipping ..5.4.1
363Blitting ..5.4.2
364Double Buffering ...5.5
367Time-Based Motion ..5.6
370Scrolling the Background ..5.7
377Parallax ...5.8
383User Gestures ..5.9
385Timed Animations ..5.10
385Stopwatches ...5.10.1
389Animation Timers ...5.10.2
390Animation Best Practices ...5.11
391Conclusion ...5.12

393Chapter 6: Sprites ...

394Sprites Overview ...6.1
398Painters ...6.2
398Stroke and Fill Painters ..6.2.1
404Image Painters ...6.2.2
406Sprite Sheet Painters ...6.2.3
411Sprite Behaviors ..6.3
412Combining Behaviors ...6.3.1
416Timed Behaviors ...6.3.2
417Sprite Animators ...6.4
424A Sprite-Based Animation Loop ...6.5
425Conclusion ...6.6

Contentsx

427Chapter 7: Physics ..

428Gravity ..7.1
428Falling ...7.1.1
432Projectile Trajectories ...7.1.2
445Pendulums ...7.1.3
450Warping Time ..7.2
456Time-Warp Functions ...7.3
458Warping Motion ..7.4
461Linear Motion: No Acceleration ...7.4.1
463Ease In: Gradually Accelerate ...7.4.2
465Ease Out: Gradually Decelerate ..7.4.3
468Ease In, Then Ease Out ...7.4.4
469Elasticity and Bouncing ...7.4.5
473Warping Animation ...7.5
482Conclusion ...7.6

483Chapter 8: Collision Detection ...

483Bounding Areas ..8.1
484Rectangular Bounding Areas ..8.1.1
485Circular Bounding Areas ...8.1.2
488Bouncing Off Walls ...8.2
490Ray Casting ..8.3
494Fine-Tuning ...8.3.1

495
The Separating Axis Theorem (SAT) and Minimum Translation Vector
(MTV) ..

8.4

495Detecting Collisions with the SAT ...8.4.1
500Projection Axes ...8.4.1.1
503Projections ...8.4.1.2
504Shapes and Polygons ..8.4.1.3
511Collisions between Polygons8.4.1.4
516Circles ..8.4.1.5
521Images and Sprites ..8.4.1.6

526
Reacting to Collisions with the Minimum Translation
Vector ..

8.4.2

526The MTV ...8.4.2.1
531Sticking ..8.4.2.2

xiContents

537Bouncing ...8.4.2.3
541Conclusion ...8.5

543Chapter 9: Game Development ..

544A Game Engine ...9.1
545The Game Loop ...9.1.1
551Pause ..9.1.1.1
553Time-Based Motion ...9.1.1.2
554Loading Images ...9.1.2
557Multitrack Sound ..9.1.3
558Keyboard Events ...9.1.4
560High Scores ..9.1.5
561The Game Engine Listing ..9.1.6
572The Ungame ..9.2
573The Ungame’s HTML ...9.2.1
576The Ungame’s Game Loop ..9.2.2
579Loading the Ungame ..9.2.3
581Pausing ...9.2.4
583Auto-Pause ...9.2.4.1
584Key Listeners ...9.2.5
585Game Over and High Scores ...9.2.6
589A Pinball Game ...9.3
590The Game Loop ...9.3.1
593The Ball ...9.3.2
594Gravity and Friction ...9.3.3
595Flipper Motion ..9.3.4
597Handling Keyboard Events ...9.3.5
601Collision Detection ...9.3.6
601SAT Collision Detection ..9.3.6.1
609The Dome ..9.3.6.2
611Flipper Collision Detection ..9.3.6.3
614Conclusion ...9.4

615Chapter 10: Custom Controls ..

617Rounded Rectangles ...10.1
625Progress Bars ...10.2

Contentsxii

631Sliders ...10.3
643An Image Panner ..10.4
655Conclusion ...10.5

657Chapter 11: Mobile ..

659The Mobile Viewport ...11.1
661The viewport Metatag ..11.1.1
666Media Queries ...11.2
666Media Queries and CSS ...11.2.1
668Reacting to Media Changes with JavaScript11.2.2
671Touch Events ...11.3
672Touch Event Objects ...11.3.1
672Touch Lists ...11.3.2
673Touch Objects ..11.3.3
674Supporting Both Touch and Mouse Events11.3.4
675Pinch and Zoom ..11.3.5
677iOS5 ...11.4
678Application Icons and Startup Images11.4.1

679
Media Queries for iOS5 Application Icons and Startup
Images ...

11.4.2

680Fullscreen with No Browser Chrome ..11.4.3
681Application Status Bar ...11.4.4
682A Virtual Keyboard ..11.5
683A Canvas-Based Keyboard Implementation11.5.1
689The Keys ..11.5.1.1
693The Keyboard ...11.5.1.2
701Conclusion ...11.6

703Index ...

xiiiContents

This page intentionally left blank

In the summer of 2001, after 15 years of developing graphical user interfaces and
graphics-intensive applications, I read a best-selling book about implementing
web applications by someone I did not know—Jason Hunter—but whom, unbe-
knownst to me, would soon become a good friend on the No Fluff Just Stuff
(NFJS) tour.

When I finished Jason’s Servlets book,1 I put it in my lap and stared out the win-
dow. After years of Smalltalk, C++, and Java, and after writing a passionate
1622 pages for Graphic Java 2: Swing,2 I thought to myself, am I really going to
implement user interfaces with print statements that generate HTML? Unfortunately,
I was.

From then on, I soldiered on through what I consider the Dark Ages of software
development. I was the second Apache Struts committer and I invented the Struts
Template Library, which ultimately became the popular Tiles project. I spent
more than six years on the JavaServer Faces (JSF) Expert Group, spoke about
server-side Java at more than 120 NFJS symposiums and many other conferences,
and coauthored a book on JSF.3 I got excited about Google Web Toolkit and Ruby
on Rails for a while, but in the end the Dark Ages was mostly concerned with the
dull business of presenting forms to users on the client and processing them on
the server, and I was never again able to capture that passion that I had for
graphics and graphical user interfaces.

In the summer of 2010, with HTML5 beginning its inexorable rise in popularity,
I came across an article about Canvas, and I knew salvation was nigh. I immedi-
ately dropped everything in my professional life and devoted myself fulltime to
write the best Canvas book that I could. From then on, until the book was finalized
in March 2012, I was entirely immersed in Canvas and in this book. It’s by far the
most fun I’ve ever had writing a book.

Canvas gives you all the graphics horsepower you need to implement everything
from word processors to video games. And, although performance varies on
specific platforms, in general, Canvas is fast, most notably on iOS5, which

1. Java Servlet Programming, 2001, by Jason Hunter with William Crawford, published
by O’Reilly.

2. Graphic Java 2, Volume 2, Swing, 1999, by David Geary, published by Prentice Hall.
3. Core JavaServer™ Faces, Third Edition, 2010, by David Geary and Cay Horstmann,

published by Prentice Hall.

Preface

xv

hardware accelerates Canvas in Mobile Safari. Browser vendors have also
done a great job adhering to the specification so that well-written Canvas
applications run unmodified in any HTML5-compliant browser with only minor
incompatibilities.

HTML5 is the Renaissance that comes after the Dark Ages of software develop-
ment, and Canvas is arguably the most exciting aspect of HTML5. In this book I
dive deeply into Canvas and related aspects of HTML5, such as the Animation
Timing specification, to implement real-world applications that run across desktop
browsers and mobile devices.

Reading This Book
I wrote this book so that in the Zen tradition you can read it without reading.

I write each chapter over the course of months, constantly iterating over material
without ever writing a word. During that time I work on outlines, code listings,
screenshots, tables, diagrams, itemized lists, notes, tips, and cautions. Those
things, which I refer to as scaffolding, are the most important aspects of this book.
The words, which I write only at the last possible moment after the scaffolding
is complete, are meant to provide context and illustrate highlights of the surround-
ing scaffolding. Then I iterate over the words, eliminating as many of them as I can.

By focusing on scaffolding and being frugal with words, this book is easy to read
without reading. You can skim the material, concentrating on the screenshots,
code listings, diagrams, tables, and other scaffolding to learn a great deal of what
you need to know on any given topic. Feel free to consider the words as
second-class citizens, and, if you wish, consult them only as necessary.

An Overview of This Book
This book has two parts. The first part, which spans the first four chapters of the
book and is nearly one half of the book, covers the Canvas API, showing you how
to draw shapes and text into a canvas, and draw and manipulate images. The last
seven chapters of the book show you how to use that API to implement animations
and animated sprites, create physics simulations, detect collisions, and develop
video games. The book ends with a chapter on implementing custom controls,
such as progress bars, sliders, and image panners, and a chapter that shows you
how to create Canvas-based mobile applications.

The first chapter—Essentials—introduces the canvas element and shows you how
to use it in web applications. The chapter contains a short section on getting

Prefacexvi

started with HTML5 development in general, briefly covering browsers, consoles,
debuggers, profilers, and timelines. The chapter then shows you how to implement
Canvas essentials: drawing into a canvas, saving and restoring Canvas parameters
and the drawing surface itself, printing a canvas, and an introduction to offscreen
canvases. The chapter concludes with a brief math primer covering basic algebra,
trigonometry, vector mathematics, and deriving equations from units of measure.

The second chapter—Drawing—which is the longest chapter in the book, provides
an in-depth examination of drawing with the Canvas API, showing you how to
draw lines, arcs, curves, circles, rectangles, and arbitrary polygons in a canvas,
and how to fill them with solid colors, gradients, and patterns. The chapter goes
beyond the mere mechanics of drawing, however, by showing you how to imple-
ment useful, real-world examples of drawing with the Canvas API, such as
drawing temporary rubber bands to dynamically create shapes, dragging shapes
within a canvas, implementing a simple retained-mode graphics subsystem that
keeps track of polygons in a canvas so users users can edit them, and using the
clipping region to erase shapes without disturbing the Canvas background
underneath.

The third chapter—Text—shows you how to draw and manipulate text in a canvas.
You will see how to stroke and fill text, set font properties, and position text within
a canvas. The chapter also shows you how to implement your own text controls
in a canvas, complete with blinking text cursors and editable paragraphs.

The fourth chapter—Images and Video—focuses on images, image manipulation,
and video processing. You’ll see how to draw and scale images in a canvas, and
you’ll learn how to manipulate images by accessing the color components of each
pixel. You will also see more uses for the clipping region and how to animate
images. The chapter then addresses security and performance considerations,
before ending with a section on video processing.

The fifth chapter—Animation—shows you how to implement smooth animations
with a method named requestAnimationFrame() that’s defined in a W3C specifi-
cation titled Timing control for script-based animations. You will see how to calculate
an animation’s frame rate and how to schedule other activities, such as
updating an animation’s user interface at alternate frame rates. The chapter shows
you how to restore the background during an animation with three different
strategies and discusses the performance implications of each. The chapter also
illustrates how to implement time-based motion, scroll an animation’s background,
use parallax to create the illusion of 3D, and detect and react to user gestures
during an animation. The chapter concludes with a look at timed animations and
the implementation of a simple animation timer, followed by a discussion of
animation best practices.

xviiPreface

The sixth chapter—Sprites—shows you how to implement sprites (animated ob-
jects) in JavaScript. Sprites have a visual representation, often an image, and you
can move them around in a canvas and cycle through a set of images to animate
them. Sprites are the fundamental building block upon which games are built.

The seventh chapter—Physics—shows you how to simulate physics in your ani-
mations, from modeling falling objects and projectile trajectories to swinging
pendulums. The chapter also shows you how to warp both time and motion in
your animations to simulate real-world movement, such as the acceleration expe-
rienced by a sprinter out of the blocks (ease-in effect) or the deceleration of a
braking automobile (ease-out).

Another essential aspect of most games is collision detection, so the eighth
chapter in the book—Collision Detection—is devoted to the science of detecting
collisions between sprites. The chapter begins with simple collision detection
using bounding boxes and circles, which is easy to implement but not very reliable.
Because simple collision detection is not reliable under many circumstances, much
of this chapter is devoted to the Separating Axis Theorem, which is one of the
best ways to detect collisions between arbitrary polygons in both 2D and 3D;
however, the theorem is not for the mathematically faint of heart, so this chapter
goes to great lengths to present the theorem in layman terms.

The ninth chapter—Game Development—begins with the implementation of a
simple but effective game engine that provides support for everything from
drawing sprites and maintaining high scores to time-based motion and multitrack
sound. The chapter then discusses two games. The first game is a simple Hello
World type of game that illustrates how to use the game engine and provides a
convenient starting point for a game. It also shows you how to implement common
aspects of most games such as asset management, heads-up displays, and a user
interface for high scores. The second game is an industrial-strength pinball game
that draws on much of the previous material in the book and illustrates complex
collision detection in a real-world game.

Many Canvas-based applications require custom controls, so the tenth chapter—
Custom Controls—teaches you how to implement them. The chapter discusses
implementing custom controls in general and then illustrates those techniques
with four custom controls: a rounded rectangle, a progress bar, a slider, and an
image panner.

The final chapter of this book—Mobile—focuses on implementing Canvas-based
mobile applications. You’ll see how to control the size of your application’s
viewport so that your application displays properly on mobile devices, and how
to account for different screen sizes and orientations with CSS3 media queries.

Prefacexviii

You’ll also see how to make your Canvas-based applications indistinguishable

from native applications on iOS5 by making them run fullscreen and fitting them

with desktop icons and startup screens. The chapter concludes with the

implementation of a keyboard for iOS5 applications that do not receive text

through a text field.

Prerequisites
To make effective use of this book you must have more than a passing familiarity

with JavaScript, HTML, and CSS. I assume, for example, that you already know

how to implement objects with JavaScript’s prototypal inheritance, and that you

are well versed in web application development in general.

This book also utilizes some mathematics that you may have learned a long time

ago and forgotten, such as basic algebra and trigonometry, vector math, and

deriving equations from units of measure. At the end of the first chapter you will

find a short primer that covers all those topics.

The Book’s Code
All the code in this book is copyrighted by the author and is available for use

under the license distributed with the code. That license is a modified MIT

license that lets you do anything you want with the code, including using it in

software that you sell; however, you may not use the code to create educational

material, such as books, instructional videos, or presentations. See the license that

comes with the code for more details.

When implementing the examples, I made a conscious decision to keep comments

in code listings to a bare minimum. Instead, I made the code itself as readable as

possible; methods average about five lines of code so they are easy to understand.

I also adhered closely to Douglas Crockford’s recommendations in his excellent

book JavaScript, The Good Parts.
4
 For example, all function-scoped variables are

always declared at the top of the function, variables are declared on a line of their

own, and I always use === and its ilk for equality testing.

Finally, all the code listings in this book are color coded. Function calls are dis-

played in blue, so they stand out from the rest of the listing. As you scan

listings, pay particular attention to the blue function calls; after all, function calls

are the verbs of JavaScript, and those verbs alone reveal most of what you need

to know about the inner workings of any particular example.

4. JavaScript, The Good Parts, 2008, by Douglas Crockford, published by O’Reilly.

xixPreface

The Future of Canvas and This Book
The HTML5 APIs are constantly evolving, and much of that evolution consists
of new features. The Canvas specification is no exception; in fact, this book was
just days from going to the printer when the WHATWG Canvas specification
was updated to include several new features:

• An ellipse() method that creates elliptical paths
• Two methods, getLineDash() and setLineDash(), and an attribute

lineDashOffset used for drawing dashed lines
• An expanded TextMetrics object that lets you determine the exact bounding

box for text
• A Path object
• A CanvasDrawingStyles object
• Extensive support for hit regions

At that time, no browsers supported the new features, so it was not yet possible
to write code to test them.

Prior to the March 26, 2012 update to the specification, you could draw arcs and
circles with Canvas, but there was no explicit provision for drawing ellipses.
Now, in addition to arcs and circles, you can draw ellipses with the new ellipse()
method of the Canvas 2d context. Likewise, the context now explicitly supports
drawing dashed lines.

The TextMetrics object initially only reported one metric: the width of a string.
However, with the March 26, 2012 update to the specification, you can now de-
termine both the width and height of the rectangle taken up by a string in a canvas.
That augmentation of the TextMetrics object will make it much easier, and more
efficient, to implement Canvas-based text controls.

In addition to ellipses and an improved TextMetrics object, the updated specifi-
cation has also added Path and CanvasDrawingStyles methods. Prior to the up-
dated specification, there was no explicit mechanism for storing paths or drawing
styles. Now, not only are there objects that represent those abstractions, but many
of the Canvas 2d context methods have been duplicated to also take a Path object.
For example, you stroke a context’s path by invoking context.stroke(), which
strokes the current path; however, the context now has a method stroke(Path)
and that method strokes the path you send to the method instead of the context’s
current path. When you modify a path with Path methods such as addText(),
you can specify a CanvasDrawingStyle object, which is used by the path, in this
case to add text to the path.

Prefacexx

The updated specification contains extensive support for hit regions. A hit region
is defined by a path, and you can associate an optional mouse cursor and accessi-
bility parameters, such as an Accessible Rich Internet Application (ARIA) role
and a label, with a hit region. A single canvas can have multiple hit regions.
Among other things, hit regions will make it easier and more efficient to implement
collision detection and improve accessiblity.

Finally, both the WHATWG and W3C specifications have included two Canvas
context methods for accessibility, so that applications can draw focus rings around
the current path, letting users navigate with the keyboard in a Canvas. That
functionality was not part of the March 26, 2012 update to the specification, and
in fact, has been in the specification for some time; however, while the book was
being written, no browser vendors supported the feature, so it is not covered in
this book.

As the Canvas specification evolves and browser vendors implement new features,
this book will be updated on a regular basis. In the meantime, you can read about
new Canvas features and preview the coverage of those features in the next edition
of this book, at corehtml5canvas.com.

The Companion Website
This book’s companion website is http://corehtml5canvas.com, where you can
download the book’s code, run featured examples from the book, and find other
HTML5 and Canvas resources.

xxiPreface

http://corehtml5canvas.com

This page intentionally left blank

Writing books is a team sport, and I was lucky to have great teammates for
this book.

I’d like to start by thanking my longtime editor and good friend Greg Doench,
who believed wholeheartedly in this book from the moment I proposed it and who
gave me the latitude to write the book exactly as I wanted. Greg also oversaw the
book from the moment of conception until, and after, it went to print. I couldn’t
ask for more.

I’m also fortunate that Greg comes with a great team of his own. Julie Nahil did
a wonderful job of managing production and keeping everything on track, and
Alina Kirsanova took my raw docbook XML and turned it into the beautiful color
book you hold in your hands. Alina also did a superb job proofreading, weeding
out small errors and inconsistencies.

Once again I was thrilled to have Mary Lou Nohr copy edit this book. Mary Lou
is the only copy editor I’ve had in 15 years of writing books, and she not only
makes each book better than I possibly could, but she continues to teach me the
craft of writing.

Technical reviewers are vital to the success of any technical book, so I actively
recruit reviewers who I think have an appropriate skill set to make significant
contributions. For this book I was fortunate to land an excellent group of reviewers
who helped me mold, shape, and polish the book’s material. First, I’d like to
thank Philip Taylor for being one of the most knowledgeable and thorough re-
viewers that I’ve ever had. Philip, who has implemented nearly 800 Canvas test
cases—see http://philip.html5.org/tests/canvas/suite/tests—sent me pages of
insightful comments for each chapter that only someone who knows the
most intimate Canvas nuances could provide. Philip went way beyond the call
of duty and single-handedly made this a much better book.

Next, I’d like to thank Scott Davis at thirstyhead.com, one of the foremost
experts in HTML5 and mobile web application development. Scott has spoken
at many conferences on HTML5 and mobile development, cofounded the HTML5
Denver Users Group, and taught mobile development to Yahoo! developers. Like
Philip, Scott went way beyond the call of duty by offering excellent suggestions
in many different areas of the book. I’m deeply indebted to Scott for delaying the
publishing of this book for a full three months, while I entirely rewrote nearly a
quarter of the book as the result of his scathing review. That rewrite took this
book to the next level.

Acknowledgments

xxiii

http://philip.html5.org/tests/canvas/suite/tests

Ilmari Heikkinen, of Runfield fame (http://fhtr.org/runfield/runfield), provided
some great insights for the Animation, Sprites, Physics, and Collision Detection
chapters. Ted Neward, Dion Almaer, Ben Galbraith, Pratik Pratel, Doris Chen,
Nate Schutta, and Brian Sam-Bodden also provided great review comments.

I’d also like to thank Mathias Bynens, the creator of jsperf.com, for giving me
permission to use screenshots from that website.

I would like to acknowledge MJKRZAK for the sprite sheet used in the Physics
chapter. That sprite sheet was downloaded from the public domain section of the
People’s Sprites website. I would also like to thank Ilmari Heikkinen for giving
me permission to use his sky image for the parallax example in the Animation
chapter. Some images in Sprites chapter are from the popular open source
Replica Island game.

Finally, I’d like to thank Hiroko, Gaspé, and Tonka for enduring over the past
year and a half while this book utterly consumed my life.

Acknowledgmentsxxiv

http://fhtr.org/runfield/runfield

David Geary is a prominent author, speaker, and consultant, who began imple-
menting graphics-based applications and interfaces with C and Smalltalk in the
1980s. David taught C++ and Object-Oriented Software Development for eight
years at Boeing, and was a software engineer at Sun Microsystems from 1994–1997.
He is the author of eight Java books, including two best-selling books on the Java
component frameworks, Swing and JavaServer Faces (JSF). David’s Graphic
Java 2: Swing is the all-time best-selling Swing book, and Core JavaServer™ Faces,
which David wrote with Cay Horstmann, is the best-selling book on JSF.

David is a passionate and prolific public speaker who has spoken at hundreds of
conferences world-wide. He spoke on the No Fluff Just Stuff tour for six years,
speaking at over 120 symposiums, and he is a three-time JavaOne Rock Star.

In 2011, David and Scott Davis co-founded the HTML5 Denver Meetup
group—www.meetup.com/HTML5-Denver-Users-Group—which had grown
to over 500 members when this book was published in 2012.

David can be found on Twitter (@davidgeary) and at the companion website for
this book, http://corehtml5canvas.com.

xxv

About the Author

www.meetup.com/HTML5-Denver-Users-Group
http://corehtml5canvas.com

This page intentionally left blank

In 1939, Metro-Goldwyn-Mayer Studios released a film that, according to the
American Library of Congress, was destined to become the most watched film
in history. The Wizard of Oz is the story of a young girl named Dorothy and her
dog Toto, who are transported by a violent tornado from Kansas in the central
United States to the magical land of Oz.

The film begins in Kansas and is shot in a bland and dreary black-and-white.
When Dorothy and Toto arrive in the land of Oz however, the film bursts into
vibrant color, and the adventure begins.

For more than a decade, software developers have been implementing bland and
dreary web applications that do little more than present bored-to-death users
with a seemingly unending sequence of banal forms. Finally, HTML5 lets
developers implement exciting desktop-like applications that run in the browser.

In this HTML5 land of Oz, we will use the magical canvas element to do amazing
things in a browser. We will implement image panning, as shown in Figure 1.1;
an interactive magnifying glass; a paint application that runs in any self-
respecting browser and that also runs on an iPad; several animations and
games, including an industrial-strength pinball game; image filters; and many
other web applications that in another era were almost entirely the realm of Flash.

Let’s get started.

1.1 The canvas Element
The canvas element is arguably the single most powerful HTML5 element,
although, as you’ll see shortly, its real power lies in the Canvas context, which

1CHAPTER

Essentials

1

Figure 1.1 Canvas offers a powerful graphics API

you obtain from the canvas element itself. Figure 1.2 shows a simple use of the
canvas element and its associated context.

Figure 1.2 Hello canvas

Chapter 1 Essentials2

The application shown in Figure 1.2 simply displays a string, approximately
centered in the canvas itself. The HTML for that application is shown in
Example 1.1.

The HTML in Example 1.1 uses a canvas element and specifies an identifier for the
element and the element’s width and height. Notice the text in the body of
the canvas element. That text is known as the fallback content, which the browser
displays only if it does not support the canvas element.

Besides those two elements, the HTML in Example 1.1 uses CSS to set the appli-
cation’s background color and some attributes for the canvas element itself. By
default, a canvas element’s background color matches the background color of
its parent element, so the CSS sets the canvas element’s background color to
opaque white to set it apart from the application’s light gray background.

The HTML is straightforward and not very interesting. As is typically the case
for Canvas-based applications, the interesting part of the application is its
JavaScript. The JavaScript code for the application shown in Figure 1.2 is listed
in Example 1.2.

Example 1.1 example.html

<!DOCTYPE html>
<html>

<head>
<title>A Simple Canvas Example</title>

<style>
 body {

background: #dddddd;
}
#canvas {

margin: 10px;
padding: 10px;
background: #ffffff;
border: thin inset #aaaaaa;

}
</style>

</head>

<body>
<canvas id='canvas' width='600' height='300'>

 Canvas not supported
</canvas>

<script src='example.js'></script>
</body>

</html>

31.1 The canvas Element

Example 1.2 example.js

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

context.font = '38pt Arial';
context.fillStyle = 'cornflowerblue';
context.strokeStyle = 'blue';

context.fillText('Hello Canvas', canvas.width/2 - 150,
 canvas.height/2 + 15);

context.strokeText('Hello Canvas', canvas.width/2 - 150,
 canvas.height/2 + 15);

The JavaScript in Example 1.2 employs a recipe that you will use in your
Canvas-based applications:

1. Use document.getElementById() to get a reference to a canvas.
2. Call getContext('2d') on the canvas to get the graphics context (note: the

‘d’ in ‘2d’ must be lowercase).
3. Use the context to draw in the canvas.

After obtaining a reference to the canvas’s context, the JavaScript sets the context’s
font, fillStyle, and strokeStyle attributes and fills and strokes the text that
you see in Figure 1.2. The fillText() method fills the characters of the text using
fillStyle, and strokeText() strokes the outline of the characters with
strokeStyle. The fillStyle and strokeStyle attributes can be a CSS color, a
gradient, or a pattern. We briefly discuss those attributes in Section 1.2.1, “The
2d Context,” on p. 9 and take a more in-depth look at both the attributes and
methods in Chapter 2.

The fillText() and strokeText() methods both take three arguments: the text
and an (x, y) location within the canvas to display the text. The JavaScript shown
in Example 1.2 approximately centers the text with constant values, which is not
a good general solution for centering text in a canvas. In Chapter 3, we will look
at a better way to center text.

CAUTION: The suffix px is not valid for canvas width and height

Although it’s widely permitted by browsers that support Canvas, the px suffix for
the canvas width and height attributes is not technically allowed by the Canvas
specification. The values for those attributes, according to the specification, can
only be non-negative integers.

Chapter 1 Essentials4

NOTE: The default canvas size is 300 × 150 screen pixels

By default, the browser creates canvas elements with a width of 300 pixels and
a height of 150 pixels.You can change the size of a canvas element by specifying
the width and height attributes.

You can also change the size of a canvas element with CSS attributes; however,
as you will see in the next section, changing the width and height of a canvas
element may have unwanted consequences.

1.1.1 Canvas Element Size vs. Drawing Surface Size
The application in the preceding section sets the size of the canvas element by
setting the element’s width and height attributes. You can also use CSS to set the
size of a canvas element, as shown in Example 1.3; however, using CSS to size a
canvas element is not the same as setting the element’s width and height
attributes.

Example 1.3 Setting element size and drawing surface size to different values

<!DOCTYPE html>
<head>

<title>Canvas element size: 600 x 300,
 Canvas drawing surface size: 300 x 150</title>

<style>
 body {

background: #dddddd;
}
#canvas {

margin: 20px;
padding: 20px;
background: #ffffff;
border: thin inset #aaaaaa;
width: 600px;
height: 300px;

}
</style>

</head>

<body>
<canvas id='canvas'>

 Canvas not supported
</canvas>

<script src='example.js'></script>
</body>

</html>

51.1 The canvas Element

The difference between using CSS and setting canvas element attributes lies in
the fact that a canvas actually has two sizes: the size of the element itself and the
size of the element’s drawing surface.

When you set the element’s width and height attributes, you set both the element’s
size and the size of the element’s drawing surface; however, when you use CSS
to size a canvas element, you set only the element’s size and not the drawing
surface.

By default, both the canvas element’s size and the size of its drawing surface is
300 screen pixels wide and 150 screen pixels high. In the listing shown in
Example 1.3, which uses CSS to set the canvas element’s size, the size of the ele-
ment is 600 pixels wide and 300 pixels high, but the size of the drawing surface
remains unchanged at the default value of 300 pixels × 150 pixels.

And here is where things get interesting because when a canvas element’s size
does not match the size of its drawing surface, the browser scales the drawing surface
to fit the element. That effect is illustrated in Figure 1.3.

Figure 1.3 Top: element and coordinate system = 600 × 300; bottom: element = 600 × 300,
coordinate system = 300 × 150

The application shown at the top of Figure 1.3 is the application that we discussed
in the preceding section. It sets the canvas element’s size with the element’s width

Chapter 1 Essentials6

and height attributes, setting both the element’s size and the size of the drawing
surface to 600 pixels × 300 pixels.

The application shown at the bottom of Figure 1.3 is the application whose HTML
is shown in Example 1.3. That application is identical to the application in the
preceding section, except that it uses CSS to size the canvas element (and has a
different title in the window’s title bar).

Because the application shown in the bottom screenshot in Figure 1.3 uses
CSS to size the canvas element and does not set the element’s width or height
attributes, the browser scales the drawing surface from 300 pixels × 150 pixels to
600 pixels × 300 pixels.

CAUTION: The browser may automatically scale your canvas

It’s a good idea to use the canvas element’s width and height attributes to
size the element, instead of using CSS. If you use CSS to size the element
without also specifying the width and height attributes of the canvas element,
the element size will not match the canvas’s drawing surface size, and the
browser will scale the latter to fit the former, most likely resulting in surprising
and unwanted effects.

1.1.2 The Canvas API
The canvas element does not provide much of an API; in fact, that API offers
only two attributes and three methods that are summarized in Table 1.1 and
Table 1.2.

Table 1.1 canvas attributes

DefaultAllowed ValuesTypeDescriptionAttribute

300Any valid
non-negative
integer. You may
add a plus sign or
whitespace at the
beginning, but
technically, you
cannot add a px
suffix.

non-negative
integer

The width of the
canvas’s drawing surface.
By default, the browser
makes the canvas
element the same size as
its drawing surface;
however, if you override
the element size with
CSS, then the browser
will scale the drawing
surface to fit the element.

width

(Continues)

71.1 The canvas Element

Table 1.1 (Continued)

DefaultAllowed ValuesTypeDescriptionAttribute

150Any valid
non-negative
integer. You may
add a plus sign or
whitespace at the
beginning, but
technically, you
cannot add a px
suffix.

non-negative
integer

The height of the
canvas’s drawing
surface. The browser
may scale the drawing
surface to fit the canvas
element size. See the
width attribute for more
information.

height

Table 1.2 canvas methods

DescriptionMethod

Returns the graphics context associated with the canvas. Each
canvas has one context, and each context is associated with
one canvas.

getContext()

Returns a data URL that you can assign to the src property
of an img element. The first argument specifies the type of
image, such as image/jpeg, or image/png; the latter is the
default if you don’t specify the first argument. The second
argument, which must be a double value from 0 to 1.0,
specifies a quality level for JPEG images.

toDataURL(type,
quality)

Creates a Blob that represents a file containing the canvas’s
image. The first argument to the method is a function that
the browser invokes with a reference to the blob. The second
argument specifies the type of image, such as image/png,
which is the default value. The final arguments represent a
quality level from 0.0 to 1.0 inclusive, for JPEG images.
Other arguments will most likely be added to this method in
the future to more carefully control image characteristics.

toBlob(callback,
type, args...)

1.2 Canvas Contexts
The canvas element merely serves as a container for a context. The context pro-
vides all the graphics horsepower. Although this book focuses exclusively on the
2d context, the Canvas specification embraces other types of contexts as well; for
example, a 3d context specification is already well underway. This section looks
at the attributes of the 2d context, with a brief nod to the 3d context.

Chapter 1 Essentials8

1.2.1 The 2d Context
In your JavaScript code, you will find little use for the canvas element itself, other
than occasionally using it to obtain the canvas width or height or a data URL, as
discussed in the preceding section. Additionally, you will use the canvas element
to obtain a reference to the canvas’s context, which provides a capable API for
drawing shapes and text, displaying and manipulating images, etc. Indeed, for the
rest of this book our focus will mainly be on the 2d context.

Table 1.3 lists all of the 2d context attributes. Other than the canvas attribute,
which gives you a reference to the canvas itself, all of the 2d context
attributes pertain to drawing operations.

Table 1.3 CanvasRenderingContext2D attributes

Brief DescriptionAttribute

Refers to the context’s canvas. The most common use of the
canvas attribute is to access the width and height of the
canvas: context.canvas.width and
context.canvas.height, respectively.

canvas

Specifies a color, gradient, or pattern that the context
subsequently uses to fill shapes.

fillStyle

Specifies the font that the context uses when you call
fillText() or strokeText().

font

Is the global alpha setting, which must be a number between
0 (fully transparent), and 1.0 (fully opaque). The browser
multiplies the alpha value of every pixel you draw by the
globalAlpha property, including when you draw images.

globalAlpha

Determines how the browser draws one thing over another.
See Section 2.14 for valid values.

globalComposite-
Operation

Specifies how the browser draws the endpoints of a line.
You can specify one of the following three values: butt,
round, and square. The default value is butt.

lineCap

Determines the width, in screen pixels, of lines that you
draw in a canvas. The value must be a non-negative,
non-infinite double value. The default is 1.0.

lineWidth

Specifies how lines are joined when their endpoints meet.
Valid values are: bevel, round, and miter. The default
value is miter.

lineJoin

(Continues)

91.2 Canvas Contexts

Table 1.3 (Continued)

Brief DescriptionAttribute

Specifies how to draw a miter line join. See Section 2.8.7 for
details about this property.

miterLimit

Determines how the browser spreads out shadow; the
higher the number, the more spread out the shadows. The
shadowBlur value is not a pixel value, but a value used in
a Gaussian blur equation. The value must be a positive,
non-infinite double value. The default value is 0.

shadowBlur

Specifies the color the browser uses to draw shadows. The
value for this property is often specified as partially
transparent to let the background show through.

shadowColor

Specifies the horizontal offset, in screen pixels, for shadows.shadowOffsetX

Specifies the vertical offset, in screen pixels, for shadows.shadowOffsetY

Specifies the style used to stroke paths. This value can be
a color, gradient, or pattern.

strokeStyle

Determines horizontal placement of text that you draw with
fillText() or strokeText().

textAlign

Determines vertical placement of text that you draw with
fillText() or strokeText().

textBaseline

The table gives you an overview of all the 2d context attributes. In Chapter 2, we
examine all those attributes on a case-by-case basis.

NOTE: You can extend the 2d context’s capabilities

The context associated with each canvas is a powerful graphics engine that
supports features such as gradients, image compositing, and animation, but it
does have limitations; for example, the context does not provide a method for
drawing dashed lines. Because JavaScript is a dynamic language, however, you
can add new methods or augment existing methods of the context. See Sec-
tion 2.8.6, “Drawing Dashed Lines by Extending CanvasRenderingContext2D,”
on p. 118 for more information.

Chapter 1 Essentials10

1.2.1.1 The WebGL 3d Context
The Canvas 2d context has a 3d counterpart, known as WebGL, that closely con-
forms to the OpenGL ES 2.0 API. You can find the WebGL specification, which
is maintained by the Khronos Group, at http://www.khronos.org/registry/
webgl/specs/latest/.

At the time this book was written, browser vendors were just beginning to provide
support for WebGL, and there are still some notable platforms, such as iOS4 and
IE10, that do not provide support. Nonetheless, a 3d Canvas context is an exciting
development that will open the door to all sorts of bleeding edge applications.

1.2.2 Saving and Restoring Canvas State
In Section 1.2.1, “The 2d Context,” on p. 9 we discussed all of the attributes of the
Canvas context. You will often set those attributes for drawing operations. Much
of the time you will want to temporarily set those attributes; for example, you may
draw a grid with thin lines in the background and subsequently draw on top of
the grid with thicker lines. In that case you would temporarily set the lineWidth
attribute while you draw the grid.

The Canvas API provides two methods, named save() and restore(), for saving
and restoring all the canvas context’s attributes. You use those methods like this:

function drawGrid(strokeStyle, fillStyle) {
 controlContext.save(); // Save the context on a stack

 controlContext.fillStyle = fillStyle;
 controlContext.strokeStyle = strokeStyle;

// Draw the grid...

 controlContext.restore(); // Restore the context from the stack
}

The save() and restore() methods may not seem like a big deal, but after using
Canvas for any length of time you will find them indispensable. Those two
methods are summarized in Table 1.4.

NOTE: You can nest calls to save() and restore()

The context’s save() method places the current state of the context onto a
stack. The corresponding call to restore() pops the state from the stack and
restores the context’s state accordingly. That means you can nest calls to
save()/restore().

111.2 Canvas Contexts

http://www.khronos.org/registry/webgl/specs/latest/
http://www.khronos.org/registry/webgl/specs/latest/

Table 1.4 CanvasRenderingContext2D state methods

DescriptionMethod

Pushes the current state of the canvas onto a stack of canvas states.
Canvas state includes the current transformation and clipping region
and all attributes of the canvas’s context, including strokeStyle,
fillStyle, globalCompositeOperation, etc.

The canvas state does not include the current path or bitmap. You can
only reset the path by calling beginPath(), and the bitmap is a property
of the canvas, not the context.

Note that although the bitmap is a property of the canvas, you access
the bitmap through the context (via the context’s getImageData()
method).

save()

Pops the top entry off the stack of canvas states. The state that resides
at the top of the stack, after the pop occurs, becomes the current state,
and the browser must set the canvas state accordingly. Therefore, any
changes that you make to the canvas state between save() and
restore() method calls persist only until you invoke the restore()
method.

restore()

NOTE: Saving and restoring the drawing surface

This section shows you how to save and restore context state. It’s also beneficial
to be able to save and restore the drawing surface itself, which we discuss in
Section 1.7, “Saving and Restoring the Drawing Surface,” on p. 33.

1.3 Canonical Examples in This Book
Many of the examples in this book use the following canonical form:

<!-- example.html -->

<!DOCTYPE html>
<html>

<head>
<title>Canonical Canvas used in this book</title>

<style>
 ...

#canvas {
 ...

}
</style>

</head>

Chapter 1 Essentials12

<body>
<canvas id='canvas' width='600' height='300'>

 Canvas not supported
</canvas>

<script src='example.js'></script>
</body>

</html>

// example.js

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d');

// Use the context...

The preceding example has one canvas whose ID is canvas, and it uses one
JavaScript file named example.js. That JavaScript file has two variables, one for
the canvas and another for the canvas’s context. The preceding example uses
document.getElementById() to obtain a reference to the canvas and gets a
reference to the canvas’s context.

Most applications in this book that adhere to the preceding canonical form omit
the HTML listings in the interests of brevity. Likewise, for inline code listings,
meaning listings like the preceding listing that do not have an Example heading,
you will often see the variables canvas and context with no code showing their
initialization.

Finally, again in the interests of brevity, not every example in the book is fully
listed. Often examples in the book build upon one other, and when they do, you
will often see the full listing for the last example and partial listings for the other
related examples.

NOTE: A word about User Agents

The Canvas specification refers to the implementor of the canvas element as a
User Agent, which is often abbreviated to UA. The specification uses that term
instead of the word browser because canvas elements can be implemented by
any piece of software, not just browsers.

This book refers to the implementor of the canvas element as a browser because
the term User Agent, or worse, the abbreviation UA, can be foreign and confusing
to readers.

131.3 Canonical Examples in This Book

NOTE: URLs referenced in this book

In this book you will occasionally find references to URLs for further reading.
Sometimes, if they are readable and not too long, those URLs will be the actual
URLs. For unwieldy URLs, this book refers to shortened URLs that may be difficult
to remember but are easy to type.

1.4 Getting Started
This section gives you a brief overview of your development environment, from
the browsers in which your application will run to the development tools, such
as profilers and timelines, that you will use during development. Feel free to skim
this section and use it as a reference as necessary.

1.4.1 Specifications
Three specifications are pertinent to this book:

• HTML5 Canvas
• Timing control for script-based animations
• HTML5 video and audio

For historical reasons, there are actually two Canvas specifications that are nearly
identical. One of those specifications is maintained by the W3C and can be found
at http://dev.w3.org/html5/spec; the other specification is maintained by the
WHATWG and can be found at http://bit.ly/qXWjOl. Furthermore, whereas
the Canvas context is included in the WHATWG’s specification, the WC3 has a
separate specification for the context, at http://dev.w3.org/html5/2dcontext.

For a long time, people used window.setInterval() or window.setTimeout() for
web-based animations; however, as you will see in Chapter 5, those methods are
not suitable for performance-critical animations. Instead, you should use
window.requestAnimationFrame(), which is defined in a specification of its own
named Timing control for script-based animations. You can find that specification at
http://www.w3.org/TR/animation-timing.

Finally, this book shows you how to incorporate HTML5 video and audio into
your Canvas-based applications. HTML5 video and audio are covered in the
same specification, which you can find at http://www.w3.org/TR/html5/
video.html.

Chapter 1 Essentials14

http://www.w3.org/TR/animation-timing
http://www.w3.org/TR/html5/video.html
http://www.w3.org/TR/html5/video.html
http://dev.w3.org/html5/2dcontext
http://bit.ly/qXWjOl
http://dev.w3.org/html5/spec

1.4.2 Browsers
At the time this book went to press in early 2012, all five major browsers—Chrome,
Internet Explorer, Firefox, Opera, and Safari—provided extensive support for
HTML5 Canvas. Although there are some minor incompatibilities that mostly
stem from different interpretations of the Canvas specification—for example, see
Section 2.14.1, “The Compositing Controversy,” on p. 186, which explains
incompatibilities for compositing—browser vendors have done an admirable
job of both adhering to the specification and providing implementations that
perform well.

Chrome, Firefox, Opera, and Safari have all had HTML5 support for some time.
Microsoft’s Internet Explorer was a bit late to the game and did not provide ex-
tensive support for HTML 5 until IE9. However, Microsoft has done a phenomenal
job with Canvas in IE9 and IE10; in fact, as this book went to press, those
two browsers had the fastest Canvas implementation from among the five major
browsers.

If you are implementing a Canvas-based application and you must support IE6,
IE7, or IE8, you have two choices, depicted in Figure 1.4: explorercanvas, which

Figure 1.4 explorercanvas and Google Chrome Frame for IE6/7/8, from Google

151.4 Getting Started

adds Canvas support to those older versions of Internet Explorer, and Google
Chrome Frame, which replaces the IE engine with the Google Chrome engine.
Both explorercanvas and Google Chrome Frame are from Google.

1.4.3 Consoles and Debuggers
All the major browsers that support HTML5 give you access to a console and a
debugger. In fact, because browser vendors often borrow ideas from each other,
the consoles and debuggers provided by non-WebKit-based browsers—Firefox,
Opera, and IE—are all pretty similar.

Figure 1.5 shows the console and debugger for Safari.

Figure 1.5 The Safari console and debugger

You can write to the console with the console.log() method. Just pass that
method a string, and it will appear in the console. The debugger is standard de-
bugger fare; you can set breakpoints, watch expressions, examine variables and
the call stack, and so on.

A full treatment of the developer tools for various browsers is beyond the scope
of this book. For more information about developer tools for Chrome, take a look

Chapter 1 Essentials16

at the Chrome Developer Tools documentation, shown in Figure 1.6. Similar
documentation is available for other browsers.

Figure 1.6 The Chrome Developer Tools documentation

TIP: Start and stop the profiler programmatically

As you can see from Figure 1.6, you can start profiling in WebKit-based browsers
by clicking the filled circle at the bottom of the profiler window.

Controlling the profiler by clicking buttons, however, is often insufficient; for
example, you may want to start and stop profiling at specific lines of code. In
WebKit-based browsers, you can do that with two methods:console.profile()
and console.profileEnd().You use them like this:

console.profile('Core HTML5 Animation,
erasing the background');

//...

console.profileEnd();

171.4 Getting Started

1.4.4 Performance
Most of the time the applications that you implement with Canvas will perform
admirably; however, if you are implementing animations or games or if you are
implementing Canvas-based applications for mobile devices, you may need to
make performance optimizations.

In this section we briefly look at the tools you have at your disposal for discovering
performance bottlenecks in your code. To illustrate the use of those tools, we refer
to the application shown in Figure 1.7. That animation, which is discussed in
Chapter 5, simultaneously animates three filled circles.

Figure 1.7 An animation from Chapter 5

We discuss three tools:

• Profilers
• Timelines
• jsPerf

Chapter 1 Essentials18

The first two tools in the preceding list are provided by browsers directly or are
offered as add-ons. jsPerf, on the other hand, is a website that lets you create
performance tests and make them public. In the sections that follow we will look
at profiling and timeline tools available in Chrome and Safari, and then we will
take a look at jsPerf.

1.4.4.1 Profiles and Timelines
Profiles and timelines are indispensable for discovering performance bottlenecks
in your code. Figures 1.8 and 1.9 show a timeline and a profile, respectively, for
the animation shown in Figure 1.7.

Figure 1.8 Timelines

Timelines give you a record of significant events that occur in your application,
along with details of those events such as their duration and the area of the win-
dow they affect. In WebKit-based browsers, such as Chrome and Safari, you can
hover the mouse over those events to obtain their associated details, as illustrated
in Figure 1.8.

191.4 Getting Started

Figure 1.9 Profiles

Profilers give you a much more detailed view of how your code performs at the
function level. As you can see in Figure 1.9, profiles show you how many times
each function in your application is called, and how long those functions take.
You can see what percentage of the total execution time is taken up by each
function, and you can also discover exactly how many milliseconds each function
takes, on average, to execute.

1.4.4.2 jsPerf
jsPerf, shown in Figure 1.10, is a website that lets you create and share JavaScript
benchmarks.

You may wonder, for example, what’s the most efficient way to loop through
pixels in an image that you are processing in a canvas. If you click the “test cases”
link, shown at the top of the screenshot in Figure 1.10, jsPerf displays all of the
publicly available test cases, as shown in Figure 1.11.

In fact, not only are there many Canvas-related tests at jsperf.com, there is a test
case that matches the description in the preceding paragraph, which is highlighted
in Figure 1.11. If you click the link for that test case, jsPerf shows you the code
for the test case, as shown in Figure 1.12. You can run the test case yourself, and
your results will be added to the test case. You can also look at the results for all
the different browsers that users have used to run the test case (not shown in
Figure 1.12).

Chapter 1 Essentials20

Figure 1.10 jsperf.com homepage

Figure 1.11 Code for a Canvas test case at jsfperf.com

211.4 Getting Started

Figure 1.12 A test case for looping through image pixels

Now that we’re done with the preliminaries, let’s look at how to draw into a
canvas.

1.5 Fundamental Drawing Operations
In the next chapter we will look closely at drawing in a canvas. For now, however,
to familiarize you with the drawing methods that the Canvas API provides, let’s
begin with the application shown in Figure 1.13, which implements an analog
clock.

The clock application, which is listed in Example 1.4, uses the following drawing
methods from the Canvas API:

• arc()

• beginPath()

• clearRect()

Chapter 1 Essentials22

• fill()

• fillText()

• lineTo()

• moveTo()

• stroke()

Figure 1.13 A clock

Like Adobe Illustrator and Apple’s Cocoa, Canvas lets you draw shapes by creat-
ing invisible paths that you subsequently make visible with calls to stroke(),
which strokes the outline of the path, or fill(), which fills the inside of the path.
You begin a path with the beginPath() method.

The clock application’s drawCircle() method draws the circle representing the
clock face by invoking beginPath() to begin a path, and subsequently invokes
arc() to create a circular path. That path is invisible until the application
invokes stroke(). Likewise, the application’s drawCenter() method draws the
small filled circle at the center of the clock with a combination of beginPath(),
arc(), and fill().

The application’s drawNumerals() method draws the numbers around the face
of the clock with the fillText() method, which draws filled text in the canvas.
Unlike the arc() method, fillText() does not create a path; instead, fillText()
immediately renders text in the canvas.

231.5 Fundamental Drawing Operations

The clock hands are drawn by the application’s drawHand() method, which uses
three methods to draw the lines that represent the clock hands: moveTo(),
lineTo(), and stroke(). The moveTo() method moves the graphics pen to a
specific location in the canvas, lineTo() draws an invisible path to the location
that you specify, and stroke() makes the current path visible.

The application animates the clock with setInterval(), which invokes the appli-
cation’s drawClock() function once every second. The drawClock() function uses
clearRect() to erase the canvas, and then it redraws the clock.

Example 1.4 A basic clock

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 FONT_HEIGHT = 15,
 MARGIN = 35,
 HAND_TRUNCATION = canvas.width/25,
 HOUR_HAND_TRUNCATION = canvas.width/10,
 NUMERAL_SPACING = 20,
 RADIUS = canvas.width/2 - MARGIN,
 HAND_RADIUS = RADIUS + NUMERAL_SPACING;

// Functions..

function drawCircle() {
 context.beginPath();
 context.arc(canvas.width/2, canvas.height/2,
 RADIUS, 0, Math.PI*2, true);
 context.stroke();
}

function drawNumerals() {
var numerals = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

 angle = 0,
 numeralWidth = 0;

 numerals.forEach(function(numeral) {
 angle = Math.PI/6 * (numeral-3);
 numeralWidth = context.measureText(numeral).width;
 context.fillText(numeral,
 canvas.width/2 + Math.cos(angle)*(HAND_RADIUS) -
 numeralWidth/2,
 canvas.height/2 + Math.sin(angle)*(HAND_RADIUS) +
 FONT_HEIGHT/3);

});
}

Chapter 1 Essentials24

function drawCenter() {
 context.beginPath();
 context.arc(canvas.width/2, canvas.height/2, 5, 0, Math.PI*2, true);
 context.fill();
}

function drawHand(loc, isHour) {
var angle = (Math.PI*2) * (loc/60) - Math.PI/2,

 handRadius = isHour ? RADIUS - HAND_TRUNCATION-HOUR_HAND_TRUNCATION
: RADIUS - HAND_TRUNCATION;

 context.moveTo(canvas.width/2, canvas.height/2);
 context.lineTo(canvas.width/2 + Math.cos(angle)*handRadius,
 canvas.height/2 + Math.sin(angle)*handRadius);
 context.stroke();
}

function drawHands() {
var date = new Date,

 hour = date.getHours();

 hour = hour > 12 ? hour - 12 : hour;

drawHand(hour*5 + (date.getMinutes()/60)*5, true);
drawHand(date.getMinutes(), false);
drawHand(date.getSeconds(), false);

}

function drawClock() {
 context.clearRect(0,0,canvas.width,canvas.height);

drawCircle();
drawCenter();
drawHands();
drawNumerals();

}

// Initialization..

context.font = FONT_HEIGHT + 'px Arial';
loop = setInterval(drawClock, 1000);

NOTE: A closer look at paths, stroking, and filling

The clock example in this section gives you an overview of what it’s like to draw
into a canvas. In Chapter 2, we will take a closer look at drawing and manipulating
shapes in a canvas.

251.5 Fundamental Drawing Operations

1.6 Event Handling
HTML5 applications are event driven. You register event listeners with HTML
elements and implement code that responds to those events. Nearly all Canvas-
based applications handle either mouse or touch events—or both—and many
applications also handle various events such as keystrokes and drag and drop.

1.6.1 Mouse Events
Detecting mouse events in a canvas is simple enough: You add an event listener
to the canvas, and the browser invokes that listener when the event occurs. For
example, you can listen to mouse down events, like this:

canvas.onmousedown = function (e) {
// React to the mouse down event

};

Alternatively, you can use the more generic addEventListener() method:

canvas.addEventListener('mousedown', function (e) {
// React to the mouse down event

});

In addition to onmousedown, you can also assign functions to onmousemove,
onmouseup, onmouseover, and onmouseout.

Assigning a function to onmousedown, onmousemove, etc., is a little simpler than
using addEventListener(); however, addEventListener() is necessary when
you need to attach multiple listeners to a single mouse event.

1.6.1.1 Translating Mouse Coordinates to Canvas Coordinates
The mouse coordinates in the event object that the browser passes to your event
listener are window coordinates, instead of being relative to the canvas itself.

Most of the time you need to know where mouse events occur relative to the
canvas, not the window, so you must convert the coordinates. For example,
Figure 1.14 shows a canvas that displays an image known as a sprite sheet. Sprite
sheets are a single image that contains several images for an animation. As an
animation progresses, you display one image at a time from the sprite sheet,
which means that you must know the exact coordinates of each image in the
sprite sheet.

The application shown in Figure 1.14 lets you determine the location of each image
in a sprite sheet by tracking and displaying mouse coordinates. As the user moves

Chapter 1 Essentials26

Figure 1.14 Sprite sheet inspector

the mouse, the application continuously updates the mouse coordinates above the
sprite sheet and the guidelines.

The application adds a mousemove listener to the canvas, and subsequently, when
the browser invokes that listener, the application converts the mouse coordinates
from the window to the canvas, with a windowToCanvas() method, like this:

function windowToCanvas(canvas, x, y) {
var bbox = canvas.getBoundingClientRect();

return { x: (x - bbox.left) * (canvas.width / bbox.width),
 y: (y - bbox.top) * (canvas.height / bbox.height)

};
}

canvas.onmousemove = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

drawBackground();
drawSpritesheet();
drawGuidelines(loc.x, loc.y);
updateReadout(loc.x, loc.y);

};
...

The windowToCanvas() method shown above invokes the canvas’s
getBoundingClientRect() method to obtain the canvas’s bounding box relative
to the window. The windowToCanvas() method then returns an object with x and
y properties that correspond to the mouse location in the canvas.

271.6 Event Handling

Notice that not only does windowToCanvas() subtract the left and top of the can-
vas’s bounding box from the x and y window coordinates, it also scales those
coordinates when the canvas element’s size differs from the size of the drawing
surface. See Section 1.1.1, “Canvas Element Size vs. Drawing Surface Size,” on
p. 5 for an explanation of canvas element size versus canvas drawing surface size.

The HTML for the application shown in Figure 1.14 is listed in Example 1.5, and
the JavaScript is listed in Example 1.6.

Example 1.5 A sprite sheet inspector: HTML

<!DOCTYPE html>
<head>

<title>Sprite sheets</title>

<style>
 body {

background: #dddddd;
}

#canvas {
position: absolute;
left: 0px;
top: 20px;
margin: 20px;
background: #ffffff;
border: thin inset rgba(100,150,230,0.5);
cursor: pointer;

}

#readout {
margin-top: 10px;
margin-left: 15px;
color: blue;

}
</style>

</head>

<body>
<div id='readout'></div>

<canvas id='canvas' width='500' height='250'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Chapter 1 Essentials28

Example 1.6 A sprite sheet inspector: JavaScript

var canvas = document.getElementById('canvas'),
 readout = document.getElementById('readout'),
 context = canvas.getContext('2d'),
 spritesheet = new Image();

// Functions..

function windowToCanvas(canvas, x, y) {
var bbox = canvas.getBoundingClientRect();
return { x: (x - bbox.left) * (canvas.width / bbox.width),

 y: (y - bbox.top) * (canvas.height / bbox.height)
};

}

function drawBackground() {
var VERTICAL_LINE_SPACING = 12,

 i = context.canvas.height;

 context.clearRect(0,0,canvas.width,canvas.height);
 context.strokeStyle = 'lightgray';
 context.lineWidth = 0.5;

while(i > VERTICAL_LINE_SPACING*4) {
 context.beginPath();
 context.moveTo(0, i);
 context.lineTo(context.canvas.width, i);
 context.stroke();
 i -= VERTICAL_LINE_SPACING;

}
}

function drawSpritesheet() {
 context.drawImage(spritesheet, 0, 0);
}

function drawGuidelines(x, y) {
 context.strokeStyle = 'rgba(0,0,230,0.8)';
 context.lineWidth = 0.5;

drawVerticalLine(x);
drawHorizontalLine(y);

}

function updateReadout(x, y) {
 readout.innerHTML = '(' + x.toFixed(0) + ', ' + y.toFixed(0) + ')';
}

(Continues)

291.6 Event Handling

Example 1.6 (Continued)

function drawHorizontalLine (y) {
 context.beginPath();
 context.moveTo(0,y + 0.5);
 context.lineTo(context.canvas.width, y + 0.5);
 context.stroke();
}

function drawVerticalLine (x) {
 context.beginPath();
 context.moveTo(x + 0.5, 0);
 context.lineTo(x + 0.5, context.canvas.height);
 context.stroke();
}

// Event handlers...

canvas.onmousemove = function (e) {
var loc = windowToCanvas(canvas, e.clientX, e.clientY);

drawBackground();
drawSpritesheet();
drawGuidelines(loc.x, loc.y);
updateReadout(loc.x, loc.y);

};

// Initialization...

spritesheet.src = 'running-sprite-sheet.png';
spritesheet.onload = function(e) {

drawSpritesheet();
};

drawBackground();

TIP: x and y vs. clientX and clientY

In pre-HTML5 days, obtaining window coordinates for mouse events from the
event object that the browser passes to your event listeners was a mess. Some
browsers stored those coordinates in x and y, and others stored them in
clientX and clientY. Fortunately, modern browsers that support HTML5 have
finally come to agreement, and they all support clientX and clientY. You
can read more about those event properties at http://www.quirksmode.org/js/
events_mouse.html.

Chapter 1 Essentials30

http://www.quirksmode.org/js/events_mouse.html
http://www.quirksmode.org/js/events_mouse.html

TIP: Tell the browser to butt out . . .

When you listen to mouse events, the browser invokes your listener when the
associated event occurs. After you handle the event, the browser also reacts to
the event. Much of the time when you handle mouse events in a canvas, you
don’t want the browser to handle the event after you’re done with it because
you will end up with unwanted effects, such as the browser selecting other HTML
elements or changing the cursor.

Fortunately, the event object comes with a preventDefault() method that, as
its name suggests, prevents the browser from carrying out its default reaction to
the event. Just invoke that method from your event handler, and the browser will
no longer interfere with your event handling.

NOTE: The Canvas context’s drawImage() method

The example shown in Figure 1.14 uses the 2d context’s drawImage() method
to draw the sprite sheet.That single method lets you copy all or part of an image
stored in one place to another place, and if you wish, you can scale the
image along the way.

The sprite sheet application uses drawImage() in the simplest possible way: The
application draws all of an image, unscaled, that is stored in an Image object,
into the application’s canvas. In Chapter 4 and throughout the rest of this book,
you will see more advanced uses for drawImage().

1.6.2 Keyboard Events
When you press a key in a browser window, the browser generates key events.
Those events are targeted at the HTML element that currently has focus. If no
element has focus, key events bubble up to the window and document objects.

The canvas element is not a focusable element, and therefore in light of the pre-
ceding paragraph, adding key listeners to a canvas is an exercise in futility. Instead,
you will add key listeners to either the document or window objects to detect key
events.

There are three types of key events:

• keydown

• keypress

• keyup

311.6 Event Handling

The keydown and keyup events are low-level events that the browser fires for
nearly every keystroke. Note that some keystrokes, such as command sequences,
may be swallowed by the browser or the operating system; however, most
keystrokes make it through to your keydown and keyup event handlers,
including keys such as Alt, Esc, and so on.

When a keydown event generates a printable character, the browser fires a keypress
event before the inevitable keyup event. If you hold a key that generates a printable
character down for an extended period of time, the browser will fire a sequence
of keypress events between the keydown and keyup events.

Implementing key listeners is similar to implementing mouse listeners. You can
assign a function to the document or window object’s onkeydown, onkeyup, or
onkeypress variables, or you can call addEventListener(), with keydown, keyup,
or keypress for the first argument, and a reference to a function for the second
argument.

Determining which key was pressed can be complicated, for two reasons. First,
there is a huge variety of characters among all the languages of the world. When
you must take into consideration the Latin alphabet, Asian ideographic characters,
and the many languages of India, just to mention a few, supporting them all is
mind boggling.

Second, although browsers and keyboards have been around for a long time, key
codes have never been standardized until DOM Level 3, which few browsers
currently support. In a word, detecting exactly what key or combination of keys
has been pressed is a mess.

However, under most circumstances you can get by with the following two simple
strategies:

• For keydown and keyup events, look at the keyCode property of the event object
that the browser passes to your event listener. In general, for printable char-
acters, those values will be ASCII codes. Notice the in general caveat, however.
Here is a good website that you can consult for interpreting key codes among
different browsers: http://bit.ly/o3b1L2. Event objects for key events also
contain the following boolean properties:

• altKey

• ctrlKey

• metaKey

• shiftKey

Chapter 1 Essentials32

http://bit.ly/o3b1L2

• For keypress events—which browsers fire only for printable
characters—you can reliably get that character like this:

var key = String.fromCharCode(event.which);

In general, unless you are implementing a text control in a canvas, you will handle
mouse events much more often than you handle key events. One other common
use case for key events, however, is handling keystrokes in games. We discuss
that topic in Chapter 9.

1.6.3 Touch Events
With the advent of smart phones and tablet computers, the HTML specification
has added support for touch events. See Chapter 11 for more information about
handling touch events.

1.7 Saving and Restoring the Drawing Surface
In Section 1.2.2, “Saving and Restoring Canvas State,” on p. 11, you saw how to
save and restore a context’s state. Saving and restoring context state lets you make
temporary state changes, which is something you will do frequently.

Another essential feature of the Canvas context is the ability to save and restore
the drawing surface itself. Saving and restoring the drawing surface lets you draw
on the drawing surface temporarily, which is useful for many things, such as
rubber bands, guidewires, or annotations. For example, the application shown
in Figure 1.15 and discussed in Section 2.13.1, “Translating, Scaling, and Rotating,”
on p. 171, lets users interactively create polygons by dragging the mouse.

Figure 1.15 Drawing guidewires

331.7 Saving and Restoring the Drawing Surface

On a mouse down event, the application saves the drawing surface. As the user
subsequently drags the mouse, the application continuously restores the
drawing surface to what it was when the mouse went down and then draws
the polygon and the associated guidewires. When the user releases the mouse, the
application restores the drawing surface one last time and draws a final
representation of the polygon, without guidewires.

The JavaScript from the application shown in Figure 1.15 that pertains to drawing
the guidewires is listed in Example 1.7. See Section 2.11.1, “Polygon Objects,” on
p. 147 for a more complete listing of the application.

NOTE: Image manipulation with getImageData() and putImageData()

The application shown in Figure 1.15 saves and restores the drawing surface
with the context’s getImageData() and putImageData() methods. Like
drawImage(), getImageData() and putImageData() can be used in a
number of different ways; one common use is implementing image filters that
get an image’s data, manipulate it, and put it back into a canvas. You will see
how to implement image filters in Section 4.5.2.3, “Filtering Images,” on p. 293,
among other uses for getImageData() and putImageData().

NOTE: Immediate-mode graphics

Canvas implements what’s known as immediate-mode graphics, meaning that
it immediately draws whatever you specify in the canvas. Then it immediately
forgets what you have just drawn, meaning that canvases do not retain a list of
objects to draw. Some graphics systems, such as SVG, do maintain a list of ob-
jects to draw.Those graphics systems are referred to as retained-mode graphics.

Immediate-mode graphics, because it does not maintain a list of objects to draw,
is more low-level than retained-mode graphics. Immediate-mode graphics is also
more flexible because you draw straight to the screen instead of adjusting objects
that the graphics system draws for you.

Immediate-mode graphics is more suited to applications, such as paint applica-
tions, that do not keep track of what the user has drawn, whereas retained-mode
graphics is more suited to applications, such as drawing applications, that let
you manipulate graphical objects that you create.

In Section 2.11.1, “Polygon Objects,” on p. 147 you will see how to implement
a simple retained-mode graphics system that maintains an array of polygons in
a drawing application, which lets users drag those polygons to reposition them.

Chapter 1 Essentials34

Example 1.7 Drawing guidewires by saving and restoring the drawing surface

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

// Save and restore drawing surface...................................

function saveDrawingSurface() {
 drawingSurfaceImageData = context.getImageData(0, 0,
 canvas.width,
 canvas.height);
}

function restoreDrawingSurface() {
 context.putImageData(drawingSurfaceImageData, 0, 0);
}

// Event handlers...

canvas.onmousedown = function (e) {
 ...

saveDrawingSurface();
 ...
};

canvas.onmousemove = function (e) {
var loc = windowToCanvas(e);

if (dragging) {
restoreDrawingSurface();

 ...

if (guidewires) {
drawGuidewires(mousedown.x, mousedown.y);

}
}

};

canvas.onmouseup = function (e) {
 ...

restoreDrawingSurface();
};

351.7 Saving and Restoring the Drawing Surface

1.8 Using HTML Elements in a Canvas
Canvas is arguably the coolest feature of HTML5, but when you use it to imple-
ment web applications, you will rarely use it alone. Most of the time you will
combine one or more canvases with other HTML controls so that your users can
provide input or otherwise control the application.

To combine other HTML controls with your canvases, you may first be inclined to
embed those controls inside your canvas elements, but that won’t work, because
anything you put in the body of a canvas element is displayed by the browser
only if the browser does not support the canvas element.

Because browsers will display either a canvas element or HTML controls that
you put inside that element, but not both, you must place your controls outside
of your canvas elements.

To make it appear as though HTML controls are inside a canvas, you can use
CSS to place the controls above the canvas. The application shown in Figure 1.16
illustrates that effect.

Figure 1.16 HTML elements above a canvas

Chapter 1 Essentials36

The application shown in Figure 1.16 animates 100 balls and provides a link to
start and stop the animation. That link resides in a DIV element that is partially
transparent and floats above the canvas. We refer to that DIV as a glass pane because
it appears to be a pane of glass floating above the canvas.

The HTML for the application shown in Figure 1.16 is listed in Example 1.8.

Example 1.8 HTML controls in a canvas: HTML

<!DOCTYPE html>
<html>

<head>
<title>Bouncing Balls</title>

<style>
 body {

background: #dddddd;
}

#canvas {
margin-left: 10px;
margin-top: 10px;
background: #ffffff;
border: thin solid #aaaaaa;

}

#glasspane {
position: absolute;
left: 50px;
top: 50px;
padding: 0px 20px 10px 10px;
background: rgba(0, 0, 0, 0.3);
border: thin solid rgba(0, 0, 0, 0.6);
color: #eeeeee;
font-family: Droid Sans, Arial, Helvetica, sans-serif;
font-size: 12px;
cursor: pointer;
-webkit-box-shadow: rgba(0,0,0,0.5) 5px 5px 20px;
-moz-box-shadow: rgba(0,0,0,0.5) 5px 5px 20px;
box-shadow: rgba(0,0,0,0.5) 5px 5px 20px;

}

#glasspane h2 {
font-weight: normal;

}

(Continues)

371.8 Using HTML Elements in a Canvas

Example 1.8 (Continued)

#glasspane .title {
font-size: 2em;
color: rgba(255, 255, 0, 0.8);

}

#glasspane a:hover {
color: yellow;

}

#glasspane a {
text-decoration: none;
color: #cccccc;
font-size: 3.5em;

}

#glasspane p {
margin: 10px;
color: rgba(65, 65, 220, 1.0);
font-size: 12pt;
font-family: Palatino, Arial, Helvetica, sans-serif;

}
</style>

</head>

<body>
<div id='glasspane'>

<h2 class='title'>Bouncing Balls</h2>

<p>One hundred balls bouncing</p>

Start
</div>

<canvas id='canvas' width='750' height='500'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Chapter 1 Essentials38

The HTML shown in Example 1.8 uses CSS absolute positioning to make the glass
pane appear above the canvas, like this:

#canvas {
margin-left: 10px;
margin-top: 10px;
background: #ffffff;
border: thin solid #aaaaaa;

}

#glasspane {
position: absolute;
left: 50px;
top: 50px;

 ...
}

The preceding CSS uses static positioning for the canvas, which is the default for
the position CSS property, whereas it specifies absolute positioning for the glass
pane. The CSS specification states that elements with absolute positioning are
drawn on top of elements with static positioning, which is why the glass pane
appears above the canvas in Figure 1.16.

If you also change the canvas’s positioning to absolute, then the canvas will appear
on top of the glass pane, and you won’t see the glass pane because the canvas’s
background is not transparent. In that case, the glass pane is underneath the
canvas because the canvas element comes after the glass pane’s DIV element. If
you switch the order of those elements, then the glass pane will once again appear
above the canvas.

So, you have two options to position the glass pane above the canvas: Use relative
positioning for the canvas and absolute positioning for the glass pane; or use either
relative or absolute positioning for both elements and declare the glass pane’s
DIV after the canvas element.

A third option is to use either relative or absolute positioning for both elements
and manipulate their z-index CSS property. The browser draws elements with
a higher z-index above elements with a lower z-index.

In addition to placing HTML controls where you want them to appear, you also
need to obtain references to those elements in your JavaScript so that you can
access and manipulate their values.

391.8 Using HTML Elements in a Canvas

The application shown in Figure 1.16 obtains references to the glass pane and the
button that controls the animation and adds event handlers to them, like this:

var context = document.getElementById('canvas').getContext('2d'),
 startButton = document.getElementById('startButton'),
 glasspane = document.getElementById('glasspane'),
 paused = false,
 ...

startButton.onclick = function(e) {
 e.preventDefault();
 paused = ! paused;
 startButton.innerHTML = paused ? 'Start' : 'Stop';
};
...

glasspane.onmousedown = function(e) {
 e.preventDefault();
};

The preceding JavaScript adds an onclick handler to the button that starts or
pauses the animation based on the current state of the application, and adds an
onmousedown event handler to the glass pane to prevent the browser from its
default reaction to that mouse click. The onmousedown handler prevents the
browser from reacting to the event to avoid inadvertent selections.

NOTE: You can implement your own Canvas-based controls

The Canvas specification states that you should prefer built-in HTML controls
rather than implementing controls from scratch with the Canvas API, which in
general is good advice. Implementing controls from scratch with the Canvas
API generally involves a good deal of work, and most of the time it’s wise to avoid
a good deal of work when there’s an easier alternative.

However, in some circumstances it makes sense to implement Canvas-based
controls. In Chapter 10, will see both motivations for implementing your own
Canvas-based controls and ways to do so.

NOTE: Drawing a grid

The application discussed in this section draws a grid underneath the bouncing
balls to emphasize that the floating DIV is indeed floating above the canvas.

In Chapter 2, we discuss how to draw a grid, but for now you can safely forge
ahead without knowing grid drawing details.

Chapter 1 Essentials40

1.8.1 Invisible HTML Elements
In the preceding section you saw how to combine static HTML controls with a
canvas. In this section we explore a more advanced use of HTML controls that
involves dynamically modifying the size of a DIV as the user drags the mouse.

Figure 1.17 shows an application that uses a technique known as rubberbanding
to select a region of a canvas. That canvas initially displays an image, and when
you select a region of that image, the application reacts by zooming into the region
that you selected.

Figure 1.17 Implementing rubber bands with a DIV

First, let’s take a look at the HTML for the application, which is listed in
Example 1.9.

411.8 Using HTML Elements in a Canvas

Example 1.9 Rubber band with a floating DIV

<!DOCTYPE html>
<html>

<head>
<title>Rubber bands with layered elements</title>

<style>
 body {

background: rgba(100, 145, 250, 0.3);
}

#canvas {
margin-left: 20px;
margin-right: 0;
margin-bottom: 20px;
border: thin solid #aaaaaa;
cursor: crosshair;
padding: 0;

}

#controls {
margin: 20px 0px 20px 20px;

}

#rubberbandDiv {
position: absolute;
border: 3px solid blue;
cursor: crosshair;
display: none;

}

</style>
</head>

<body>
<div id='controls'>

<input type='button' id='resetButton' value='Reset'/>
</div>

<div id='rubberbandDiv'></div>

<canvas id='canvas' width='800' height='520'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Chapter 1 Essentials42

The HTML uses a DIV that contains a button. If you click that button, the
application draws the entire image as it is displayed when the application starts.

The application uses a second DIV for the rubber band. That DIV is empty, and its
CSS display attribute is set to none, which makes it initially invisible. When you
start dragging the mouse, the application makes that second DIV visible, which
shows the DIV’s border. As you continue dragging the mouse, the application
continuously resizes the DIV to produce the illusion of a rubber band, as shown
in Figure 1.17.

The JavaScript for the application shown in Figure 1.17 is listed in Example 1.10.

Example 1.10 Rubber bands with a DIV

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 rubberbandDiv = document.getElementById('rubberbandDiv'),
 resetButton = document.getElementById('resetButton'),
 image = new Image(),
 mousedown = {},
 rubberbandRectangle = {},
 dragging = false;

// Functions..

function rubberbandStart(x, y) {
 mousedown.x = x;
 mousedown.y = y;

 rubberbandRectangle.left = mousedown.x;
 rubberbandRectangle.top = mousedown.y;

moveRubberbandDiv();
showRubberbandDiv();

 dragging = true;
}

function rubberbandStretch(x, y) {
 rubberbandRectangle.left = x < mousedown.x ? x : mousedown.x;
 rubberbandRectangle.top = y < mousedown.y ? y : mousedown.y;

 rubberbandRectangle.width = Math.abs(x - mousedown.x),
 rubberbandRectangle.height = Math.abs(y - mousedown.y);

moveRubberbandDiv();
resizeRubberbandDiv();

}

(Continues)

431.8 Using HTML Elements in a Canvas

Example 1.10 (Continued)

function rubberbandEnd() {
var bbox = canvas.getBoundingClientRect();

try {
 context.drawImage(canvas,
 rubberbandRectangle.left - bbox.left,
 rubberbandRectangle.top - bbox.top,
 rubberbandRectangle.width,
 rubberbandRectangle.height,

0, 0, canvas.width, canvas.height);
}
catch (e) {

// Suppress error message when mouse is released
// outside the canvas

}

resetRubberbandRectangle();

 rubberbandDiv.style.width = 0;
 rubberbandDiv.style.height = 0;

hideRubberbandDiv();

 dragging = false;
}

function moveRubberbandDiv() {
 rubberbandDiv.style.top = rubberbandRectangle.top + 'px';
 rubberbandDiv.style.left = rubberbandRectangle.left + 'px';
}

function resizeRubberbandDiv() {
 rubberbandDiv.style.width = rubberbandRectangle.width + 'px';
 rubberbandDiv.style.height = rubberbandRectangle.height + 'px';
}

function showRubberbandDiv() {
 rubberbandDiv.style.display = 'inline';
}

function hideRubberbandDiv() {
 rubberbandDiv.style.display = 'none';
}

function resetRubberbandRectangle() {
 rubberbandRectangle = { top: 0, left: 0, width: 0, height: 0 };
}

Chapter 1 Essentials44

// Event handlers...

canvas.onmousedown = function (e) {
var x = e.clientX,

 y = e.clientY;

 e.preventDefault();
rubberbandStart(x, y);

};

window.onmousemove = function (e) {
var x = e.clientX,

 y = e.clientY;

 e.preventDefault();
if (dragging) {

rubberbandStretch(x, y);
}

};

window.onmouseup = function (e) {
 e.preventDefault();

rubberbandEnd();
};

image.onload = function () {
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

resetButton.onclick = function(e) {
 context.clearRect(0, 0, context.canvas.width,
 context.canvas.height);
 context.drawImage(image, 0, 0, canvas.width, canvas.height);
};

// Initialization...

image.src = 'curved-road.png';

Again, we’re getting ahead of ourselves a little bit by using the drawImage()
method to both draw and zoom in on the image. In Section 4.1, “Drawing Images,”
on p. 254, we will look closely at that method, and we will also see an alternative
way to implement rubber bands that involves manipulating the image’s pixels
to draw the rubber band itself.

For now, however, our focus is on the rubberband DIV and how the code
manipulates that DIV as the user drags the mouse.

451.8 Using HTML Elements in a Canvas

The onmousedown event handler for the canvas invokes the rubberbandStart()
method, which moves the DIV’s upper left-hand corner to the mouse down location
and makes the DIV visible. Because the rubberband DIV’s CSS position attribute
is absolute, the coordinates for the DIV’s upper left-hand corner must be specified
in window coordinates, and not as coordinates relative to the canvas.

If the user is dragging the mouse, the onmousemove event handler invokes
rubberbandStretch(), which moves and resizes the rubberband DIV.

When the user releases the mouse, the onmouseup event handler invokes
rubberbandEnd(), which draws the scaled image and shrinks and hides the
rubberband DIV.

Finally, notice that all three mouse event handlers invoke preventDefault() on
the event object they are passed. As discussed in Section 1.6.1.1, “Translating
Mouse Coordinates to Canvas Coordinates,” on p. 26, that call prevents the
browser from reacting to the mouse events. If you remove those calls to
preventDefault(), the browser will try to select elements on the page, which
produces undesired effects if the user drags the mouse outside of the canvas.

1.9 Printing a Canvas
It’s often convenient to let users of your application access a canvas as an image.
For example, if you implement a paint application, such as the one discussed in
Chapter 2, users will expect to be able to print their paintings.

By default, although every canvas is a bitmap, it is not an HTML img element,
and therefore users cannot, for example, right-click a canvas and save it to disk,
nor can they drag a canvas to their desktop to print later on. The fact that a canvas
is not an image is illustrated by the popup menu shown in Figure 1.18.

Fortunately, the Canvas API provides a method—toDataURL()—that returns a
reference to a data URL for a given canvas. You can subsequently set the src
attribute of an img element equal to that data URL to create an image of your
canvas.

In Section 1.5, “Fundamental Drawing Operations,” on p. 22, you saw how to
implement an analog clock with the Canvas API. Figure 1.19 shows a modified
version of that application that lets you take a snapshot of the clock and display
it as an image, as described above. As you can see from Figure 1.19, when you
right-click on the ensuing image, you can save the image to disk, and because the
clock image shown in the bottom screenshot is an img element, you can also drag
the image to your desktop.

Chapter 1 Essentials46

Figure 1.18 The right-click menu for a canvas

The application shown in Figure 1.19 implements a common use case for printing
a canvas: It provides a control—in this case, the Take snapshot button—that lets
users take a snapshot of the canvas. The application displays that snapshot as an
image, so users can right-click the image and save it to disk. Subsequently, when
the user clicks the Return to Canvas button, the application replaces the image
with the original canvas. Here’s a recipe for that use case:

In your HTML page:

• Add an invisible image to the page, and give the image an id, but no src.
• Use CSS to position and size the image to exactly overlap your canvas.
• Add a control to the page for taking a snapshot.

In your JavaScript:

• Get a reference to the invisible image.
• Get a reference to the snapshot control.
• When the user activates the control to take a snapshot:

1. Invoke toDataURL() to get a data URL.
2. Assign the data URL to the invisible image’s src attribute.
3. Make the image visible and the canvas invisible.

471.9 Printing a Canvas

• When the user activates the control to return to the Canvas:

1. Make the canvas visible and the image invisible.
2. Redraw the canvas as needed.

Let’s see how to translate that recipe to code. Example 1.11 lists the HTML for
the application shown in Figure 1.19, and Example 1.12 lists the application’s
JavaScript.

Figure 1.19 Using toDataURL()

Chapter 1 Essentials48

Example 1.11 Using toDataURL() to print a canvas: HTML

<!DOCTYPE html>
<head>

<title>Clock</title>

<style>
 body {

background: #dddddd;
}

#canvas {
position: absolute;
left: 10px;
top: 1.5em;
margin: 20px;
border: thin solid #aaaaaa;

}

#snapshotImageElement {
position: absolute;
left: 10px;
top: 1.5em;
margin: 20px;
border: thin solid #aaaaaa;

}
</style>

</head>

<body>
<div id='controls'>

<input id='snapshotButton' type='button' value='Take snapshot'/>
</div>

<canvas id='canvas' width='400' height='400'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

491.9 Printing a Canvas

Example 1.12 Using toDataURL() to print a canvas: JavaScript

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 snapshotButton = document.getElementById('snapshotButton'),
 snapshotImageElement =
 document.getElementById('snapshotImageElement'),
 loop;

// Clock drawing functions are omitted from this listing
// in the interests of brevity. See Example 1.4 on p. 24
// for a complete listing of those methods.

// Event handlers...

snapshotButton.onclick = function (e) {
var dataUrl;

if (snapshotButton.value === 'Take snapshot') {
 dataUrl = canvas.toDataURL();

clearInterval(loop);
 snapshotImageElement.src = dataUrl;
 snapshotImageElement.style.display = 'inline';
 canvas.style.display = 'none';
 snapshotButton.value = 'Return to Canvas';

}
else {

 canvas.style.display = 'inline';
 snapshotImageElement.style.display = 'none';
 loop = setInterval(drawClock, 1000);
 snapshotButton.value = 'Take snapshot';

}
};

// Initialization..

context.font = FONT_HEIGHT + 'px Arial';
loop = setInterval(drawClock, 1000);

The application accesses the canvas and img elements and uses CSS absolute po-
sitioning to overlap the two elements. When the user clicks the Take snapshot
button, the application obtains a data URL from the canvas and assigns it to the
src attribute of the image. Then it shows the image, hides the canvas, and sets
the text of the button to Return to Canvas.

When the user clicks the Return to Canvas button, the application hides the image,
displays the canvas, and returns the text of the button to Take snapshot.

Chapter 1 Essentials50

NOTE: Canvas blobs

As this book was being written, the Canvas specification added a toBlob()
method, so you can, among other things, save a canvas as a file.When the book
went to press, no browsers supported that method.

1.10 Offscreen Canvases
Another essential Canvas feature is the ability to create and manipulate offscreen
canvases. For example, you can, in most cases, considerably boost your perfor-
mance by storing backgrounds in one or more offscreen canvases and copying
parts of those offscreen canvases onscreen.

Another use case for offscreen canvases is the clock that we discussed in the
preceding section. Although that application shows you how to implement a
general solution that requires user interaction to switch from canvas to image,
a clock is a better candidate for an application that does that switching behind
the scenes without user intervention.

An updated version of the clock application is shown in Figure 1.20. Once a sec-
ond, the application draws the clock into the offscreen canvas and assigns the

Figure 1.20 Using an offscreen canvas for an image clock

511.10 Offscreen Canvases

canvas’s data URL to the src attribute of an image. The result is an animated
image that reflects the offscreen canvas. See Section 1.9, “Printing a Canvas,” on
p. 46 for more information on canvas data URLs.

The HTML for the application shown in Figure 1.20 is listed in Example 1.13.

Example 1.13 An image clock: HTML

<!DOCTYPE html>
<head>

<title>Image Clock</title>

<style>
 body {

background: #dddddd;
}

#canvas {
display: none;

}

#snapshotImageElement {
position: absolute;
left: 10px;
margin: 20px;
border: thin solid #aaaaaa;

}
</style>

</head>

<body>

<canvas id='canvas' width='400' height='400'>
 Canvas not supported

</canvas>

<script src='example.js'></script>
</body>

</html>

Notice the CSS for the canvas in the HTML—the canvas is invisible because its
display attribute is set to none. That invisibility makes it an offscreen canvas. You
can also programmatically create an offscreen canvas, like this: var offscreen
= document.createElement('canvas');.

The JavaScript pertinent to the offscreen canvas for the application shown in
Figure 1.20 is listed in Example 1.14.

Chapter 1 Essentials52

Example 1.14 The image clock: JavaScript (excerpt)

// Some declarations and functions omitted for brevity.
// See Section 1.9 on p. 46 for a complete listing of
// the clock.

var canvas = document.getElementById('canvas'),
 context = canvas.getContext('2d'),
 ...

// Functions..

function updateClockImage() {
 snapshotImageElement.src = canvas.toDataURL();
}

function drawClock() {
 context.clearRect(0, 0, canvas.width, canvas.height);

 context.save();

 context.fillStyle = 'rgba(255,255,255,0.8)';
 context.fillRect(0, 0, canvas.width, canvas.height);

drawCircle();
drawCenter();
drawHands();

 context.restore();

drawNumerals();

updateClockImage();
}
...

1.11 A Brief Math Primer
To do anything interesting with Canvas, you need a good understanding of basic
mathematics, especially working with algebraic equations, trigonometry, and
vectors. It also helps, for more complex applications like video games, to be able
to derive equations, given units of measure.

Feel free to skim this section if you’re comfortable with basic algebra and
trigonometry and you can make your way to pixels/frame given pixels/second
and milliseconds/frame. Otherwise, spending time in this section will prove
fruitful throughout the rest of this book.

531.11 A Brief Math Primer

Let’s get started with solving algebraic equations and trigonometry, and then
we’ll look at vectors and deriving equations from units of measure.

1.11.1 Solving Algebraic Equations
For any algebraic equation, such as (10x + 5) × 2 = 110, you can do the following,
and the equation will still be true:

• Add any real number to both sides
• Subtract any real number from both sides
• Multiply any real number by both sides
• Divide both sides by any real number
• Multiply or divide one or both sides by 1

For example, for (10x + 5) × 2 = 110, you can solve the equation by dividing both
sides by 2, to get: 10x + 5 = 55; then you can subtract 5 from both sides to get:
10x = 50; and finally, you can solve for x by dividing both sides by 10: x = 5.

The last rule above may seem rather odd. Why would you want to multiply or
divide one or both sides of an equation by 1? In Section 1.11.4, “Deriving Equations
from Units of Measure,” on p. 62, where we derive equations from units of
measure, we will find a good use for that simple rule.

1.11.2 Trigonometry
Even the simplest uses of Canvas require a rudimentary understanding of
trigonometry; for example, in the next chapter you will see how to draw polygons,
which requires an understanding of sine and cosine. Let’s begin with a short
discussion of angles, followed by a look at right triangles.

1.11.2.1 Angles: Degrees and Radians
All the functions in the Canvas API that deal with angles require you to specify
angles in radians. The same is true for the JavaScript functions Math.sin(),
Math.cos(), and Math.tan(). Most people think of angles in terms of degrees, so
you need to know how to convert from degrees to radians.

180 degrees is equal to π radians. To convert from degrees to radians, you can
create an algebraic equation for that relationship, as shown in Equation 1.1.

180 degrees = π radians

Equation 1.1 Degrees and radians

Chapter 1 Essentials54

Solving Equation 1.1 for radians, and then degrees, results in Equations 1.2
and 1.3.

radians = (π / 180) × degrees

Equation 1.2 Degrees to radians

degrees = (180 / π) × radians

Equation 1.3 Radians to degrees

π is roughly equal to 3.14, so, for example, 45 degrees is equal to (3.14 / 180) × 45
radians, which works out to 0.7853.

1.11.2.2 Sine, Cosine, and Tangent
To make effective use of Canvas, you must have a basic understanding of sin,
cos, and tan, so if you’re not already familiar with Figure 1.21, you should commit
it to memory.

Figure 1.21 Sine, cosine, and tangent

You can also think of sine and cosine in terms of the X and Y coordinates of a
circle, as illustrated in Figure 1.22.

Given the radius of a circle and a counterclockwise angle from 0 degrees, you can
calculate the corresponding X and Y coordinates on the circumference of the circle
by multiplying the radius times the cosine of the angle, and multiplying the
radius by the sine of the angle, respectively.

551.11 A Brief Math Primer

Figure 1.22 Radius, x, and y

NOTE: Soak a toe, ah!

One of many ways to remember how to derive sine, cosine, and tangent from a
right triangle: SOHCAHTOA. SOH stands for sine, opposite, hypotenuse; CAH
stands for cosine, adjacent, hypotenuse; and TOA is tangent, opposite, adjacent.

1.11.3 Vectors
The two-dimensional vectors that we use in this book encapsulate two
values: direction and magnitude; they are used to express all sorts of physical
characteristics, such as forces and motion.

In Chapter 8, “Collision Detection,” we make extensive use of vectors, so in this
section we discuss the fundamentals of vector mathematics. If you’re not interested
in implementing collision detection, you can safely skip this section.

Near the end of Chapter 8 we explore how to react to a collision between two
polygons by bouncing one polygon off another, as illustrated in Figure 1.23.

In Figure 1.23, the top polygon is moving toward the bottom polygon, and the
two polygons are about to collide. The top polygon’s incoming velocity and
outgoing velocity are both modeled with vectors. The edge of the bottom

Chapter 1 Essentials56

Figure 1.23 Using vectors to bounce one polygon off another

polygon with which the top polygon is about to collide is also modeled as a vector,
known as a edge vector.

Feel free to skip ahead to Chapter 8 if you can’t wait to find out how to calculate
the outgoing velocity, given the incoming velocity and two points on the edge
of the bottom polygon. If you’re not familiar with basic vector math, however,
you might want to read through this section before moving to Chapter 8.

1.11.3.1 Vector Magnitude
Although two-dimensional vectors model two quantities—magnitude and
direction—it’s often useful to calculate one or the other, given a vector. You can
use the Pythagorean theorem, which you may recall from math class in school
(or alternatively, from the movie the Wizard of Oz), to calculate a vector’s
magnitude, as illustrated in Figure 1.24.

The Pythagorean theorem states that the hypotenuse of any right triangle is equal
to the square root of the squares of the other two sides, which is a lot easier to
understand if you look at Figure 1.24. The corresponding JavaScript looks like this:

var vectorMagnitude = Math.sqrt(Math.pow(vector.x, 2) +
 Math.pow(vector.y, 2));

The preceding snippet of JavaScript shows how to calculate the magnitude of a
vector referenced by a variable named vector.

Now that you know how to calculate a vector’s magnitude, let’s look at how you
can calculate a vector’s other quantity, direction.

571.11 A Brief Math Primer

Figure 1.24 Calculating a vector’s magnitude

1.11.3.2 Unit Vectors
Vector math often requires what’s known as a unit vector. Unit vectors, which
indicate direction only, are illustrated in Figure 1.25.

Figure 1.25 A unit vector

Unit vectors are so named because their magnitude is always 1 unit. To calculate
a unit vector given a vector with an arbitrary magnitude, you need to strip away
the magnitude, leaving behind only the direction. Here’s how you do that in
JavaScript:

var vectorMagnitude = Math.sqrt(Math.pow(vector.x, 2) +
 Math.pow(vector.y, 2)),
 unitVector = new Vector();

 unitVector.x = vector.x / vectorMagnitude;
 unitVector.y = vector.y / vectorMagnitude;

The preceding code listing, given a vector named vector, first calculates the
magnitude of the vector as you saw in the preceding section. The code then creates
a new vector—see Chapter 8 for a listing of a Vector object—and sets that unit

Chapter 1 Essentials58

vector’s X and Y values to the corresponding values of the original vector, divided
by the vector’s magnitude.

Now that you’ve seen how to calculate the two components of any
two-dimensional vector, let’s see how you combine vectors.

1.11.3.3 Adding and Subtracting Vectors
It’s often useful to add or subtract vectors. For example, if you have two forces
acting on a body, you can sum two vectors representing those forces together to
calculate a single force. Likewise, subtracting one positional vector from another
yields the edge between the two vectors.

Figure 1.26 shows how to add vectors, given two vectors named A and B.

Figure 1.26 Adding vectors

Adding vectors is simple: You just add the components of the vector together, as
shown in the following code listing:

var vectorSum = new Vector();

vectorSum.x = vectorOne.x + vectorTwo.x;
vectorSum.y = vectorOne.y + vectorTwo.y;

Subtracting vectors is also simple: you subtract the components of the vector,
as shown in the following code listing:

591.11 A Brief Math Primer

var vectorSubtraction = new Vector();

vectorSubtraction.x = vectorOne.x - vectorTwo.x;
vectorSubtraction.y = vectorOne.y - vectorTwo.y;

Figure 1.27 shows how subtracting one vector from another yields a third

vector whose direction is coincident with the edge between the two vectors.

In Figure 1.27, the vectors A-B and B-A are parallel to each other and are also

parallel to the edge vector between vectors A and B.

Figure 1.27 Subtracting vectors

Now that you know how to add and subtract vectors and, more importantly,

what it means to do that, let’s take a look at one more vector quantity: the dot

product.

1.11.3.4 The Dot Product of Two Vectors
To calculate the dot product of two vectors you multiply the components of each

vector by each other, and sum the values. Here is how you calculate the dot

product for two two-dimensional vectors:

var dotProduct = vectorOne.x * vectorTwo.x + vectorOne.y * vectorTwo.y;

Calculating the dot product between two vectors is easy; however, understanding

what a dot product means is not so intuitive. First, notice that unlike the result

of adding or subtracting two vectors, the dot product is not a vector—it’s what

engineers refer to as a scalar, which means that it’s simply a number. To

understand what that number means, study Figure 1.28.

Chapter 1 Essentials60

Figure 1.28 A positive dot product

The dot product of the two vectors in Figure 1.28 is 528. The significance of that
number, however, is not so much its magnitude but the fact that it’s greater than
zero. That means that the two vectors point in roughly the same direction.

Now look at Figure 1.29, where the dot product of the two vectors is –528. Because
that value is less than zero, we can surmise that the two vectors point in roughly
different directions.

Figure 1.29 A negative dot product

611.11 A Brief Math Primer

The ability to determine whether or not two vectors point in roughly the same
direction can be critical to how you react to collisions between objects. If a moving
object collides with a stationary object and you want the moving object to
bounce off the stationary object, you need to make sure that the moving
object bounces away from the stationary object, and not toward the station-
ary object’s center. Using the dot product of two vectors, you can do exactly that,
as you’ll see in Chapter 8.

That’s pretty much all you need to know about vectors to implement collision
detection, so let’s move on to the last section in this brief math primer and see
how to derive the equations from units of measure.

1.11.4 Deriving Equations from Units of Measure
As you will see in Chapter 5, motion in an animation should be time based, because
the rate at which an object moves should not change with an animation’s frame
rate. Time-based motion is especially important for multiplayer games; after all,
you don’t want a game to progress more quickly for players with more powerful
computers.

To implement time-based motion, we specify velocity in this book in terms of
pixels per second. To calculate how many pixels to move an object for the current
animation frame, therefore, we have two pieces of information: the object’s veloc-
ity in pixels per second, and the current frame rate of the animation in milliseconds
per frame. What we need to calculate is the number of pixels per frame to move any
given object. To do that, we must derive an equation that has pixels per frame on
the left side of the equation, and pixels per second (the object’s velocity) and
milliseconds per frame (the current frame rate) on the right of the equation, as
shown in Equation 1.4.

Y pixels
×

X ms
≠

pixels

secondframeframe

Equation 1.4 Deriving an equation for time-based motion, part I

In this inequality, X represents the animation’s frame rate in milliseconds/frame,
and Y is the object’s velocity in pixels/second. As that inequality suggests, how-
ever, you cannot just multiply milliseconds/frame times pixels/second, because
you end up with a nonsensical milliseconds-pixels/frame-seconds. So what
do you do?

Recall the last rule we discussed in Section 1.11.1, “Solving Algebraic Equations,”
on p. 54 for solving algebraic equations: You can multiply or divide one or both
sides of an equation by 1. Because of that rule, and because one second is equal

Chapter 1 Essentials62

to 1000 ms, and therefore 1 second / 1000 ms is equal to 1, we can multiply the
right side of the equation by that fraction, as shown in Equation 1.5.

Y pixels
×

1 second
×

X ms
=

pixels

second1000 msframeframe

Equation 1.5 Deriving an equation for time-based motion, part 2

And now we are ready to move in for the kill because when you multiply two
fractions together, a unit of measure in the numerator of one fraction cancels out the
same unit of measure in the denominator of the other fraction. In our case, we cancel
units of measure as shown in Equation 1.6.

Y pixels
×

1 second/
×

X ms/
=

pixels

second/1000 ms/frameframe

Equation 1.6 Deriving an equation for time-based motion, part 3

Canceling those units of measure results in Equation 1.7.

Y pixels
×

X
=

pixels

1000frameframe

Equation 1.7 Deriving an equation for time-based motion, part 4

Carrying out the multiplication results in the simplified equation, shown in
Equation 1.8.

X × Y
=

pixels

1000frame

X = frame rate in ms/frame

Y = velocity in pixels/second

Equation 1.8 Deriving an equation for time-based motion, part 5

Whenever you derive an equation, you should plug some simple numbers into
your equation to see if the equation makes sense. In this case, if an object is
moving at 100 pixels per second, and the frame rate is 500 ms per frame, you can
easily figure out, without any equations at all, that the object should move 50 pixels
in that 1/2 second.

631.11 A Brief Math Primer

Plugging those numbers into Equation 1.8 results in 500 × 100 / 1000, which
equals 50, so it appears that we have a valid equation for any velocity and any
frame rate.

In general, to derive an equation from variables with known units of measure,
follow these steps:

1. Start with an inequality, where the result is on the left, and the other variables
are on the right.

2. Given the units of measure on both sides of the equation, multiply the right
side of the equation by one or more fractions, each equal to 1, whose units
of measure cancel out the units of measure on the right side of the equation
to yield the units of measure on the left side of the equation.

3. Cancel out the units of measure on the right side of the equation.
4. Multiply the fractions on the right side of the equation.
5. Plug simple values whose result you can easily verify into the equation to

make sure the equation yields the expected value.

1.12 Conclusion
This chapter introduced you to the canvas element and its associated 2d context,
and illustrated some essential features of that context, such as the difference
between canvas element size and the size of the canvas’s drawing surface.

From there we had a quick overview of your development environment, including
browsers, consoles and debuggers, and performance tools.

Then we looked at the essentials of using a canvas, including fundamental
drawing operations, event handling, saving and restoring the drawing surface,
using HTML elements with a canvas, printing canvases, and using offscreen
canvases. You will see the use of those essential features many times throughout
this book, and you will use them yourself as you write Canvas-based applications.

Finally, we ended this chapter with a brief math primer, which you can consult
as needed as you read the rest of the book.

In the next chapter we take a deep-dive into drawing in a canvas. In that chapter
you will learn about the Canvas drawing API, and you’ll see how to put that API
to good use by implementing most of the features of a capable paint application.

Chapter 1 Essentials64

This page intentionally left blank

Numbers
3d

Canvas context, 11
simulating with parallax, 377–378

3D Monster Maze game, 359

A
acceleration. See ease in
add() method (Vector), 501–502
addChangeListener() method (Slider),

636, 642
addCirclePath() function (cutouts

example), 99–103
addColorStop() method

(CanvasGradient), 77–79
addEventListener() method (window), 26,

32, 671
addKeyListener() method

of Game object, 544, 558–560, 598–601
of Keyboard object, 700

addLine() method (Paragraph), 239, 242
addOuterRectanglePath() function

(cutouts example), 99–103
addRectanglePath() function (cutouts

example), 99–103
addSprite() method (Game), 544
addTrianglePath() function (cutouts

example), 99–103
Adobe Illustrator, 23

bézier curves in, 137
paths in, 89

advance() method (SpriteSheetPainter),
407

air resistance, 461
algebraic equations, 54, 175–176
Alt key, 32, 672
altKey browser attribute, 32, 672
Android

home screen icons on, 677
layout viewport on, 661

angles, 54–55

animate() function, 195, 332, 353–354, 360,
410

locking up browser with, 341
time parameter of, 348, 350

animate() method (Game), 550–551
animation frames

dropping, 368
ending, 544–546, 550
number of pixels to move objects for.

See time-based motion
starting, 544–546, 550

animation loop, 340–357, 416
implementing, 544
portable. See

requestNextAnimationFrame()
sprite-based, 424

animation timers, 389–390, 429
for warping time, 595
starting, 416

animations, 14, 306–312, 339–391
allocating memory during, 390–391
best practices for, 390–391
callback for, 421–423
completion percentage of, 454
Flash-based, 339
linear vs. nonlinear, 423
performance of, 18–22, 366, 390–391, 404
period of, 421
separating updating and drawing in,

390
time-based, 345
timed, 385–390
warping, 473–482

AnimationTimer object, 389–390, 450–456
getElapsedTime() method, 386, 389,

451, 454–455, 464, 475
isOver() method, 389–390
isRunning() method, 386
makeBounce() method, 457
makeEaseIn() method, 456–457
makeEaseInOut() method, 457

703

Index

AnimationTimer object (cont.)
makeEaseOut() method, 457
makeElastic() method, 457
makeLinear() method, 457
reset() method, 386

Animator.js library, 394
anti-aliasing, 107
appendTo() method

for custom controls, 616–617
of Keyboard object, 700
of Slider object, 619, 624–625, 628

Apple, 329–330
Apple’s Cocoa graphics system, 23

bézier curves in, 137
paths in, 89

apple-mobile-web-app-status-bar-style
metatag, 681

apple-touch-icon-precomposed link, 678
applications

desktop vs. mobile, 657–659, 671
fullscreen mode of, 677, 680–681
home screen icon of, 677–680
native, 677
splash screen of, 677–680
status bar of, 681–682

applyFrictionAndGravity() method
(Pinball), 594–595

arc() method (Canvas context), 22–23,
91–92, 95–103, 124–125, 130, 136, 361

optional argument of, 127
arcs, 124–136

direction of, 99–100, 124, 127
drawing, 91–92
for text placement, 223–225

arcTo() method (Canvas context), 127–130
ArrayBuffer object, 291
aspect-ratio media feature, 667
audio. See sound
auto-pause, 583–584
axes, 495–525

direction of, 503

B
background, 360–364

blitting from offscreen, 360–361,
363–364, 367, 390

canvas for, 574

clipping to damaged areas, 360–364, 390
color of, 3
erasing, 360–361, 364–367
painting, 546, 592
redrawing, 360–361
restoring, 71, 322
scrolling, 265, 370–377, 577–579
scrollBackground() function,

577–579
Backspace key, 232, 237–241, 245–251
backspace() method (Paragraph),

239–241, 245–251
ballMover object, 593–594
execute() method, 594

ballWillHitLedge() function (bounding
areas example), 485

beginPath() method (Canvas context), 12,
22–23, 91–94, 100, 103, 110, 125, 136,
361

behaviors, 394–395, 411–417
combining, 412–415
execute() method, 394, 411–417, 431,

459, 473, 475, 594
timed, 416–417

Bespin text editor, 252
bézier curves, 137–143

cubic, 141–143
cursorInControlPoint() function, 162
cursorInEndPoint() function, 162
drawing, 158–159
editing, 158–169
for rounded corners, 138–139
quadratic, 137–141

Bézier, Pierre, 137
bezierCurveTo() method (Canvas

context), 141–143
bit-shifting, 317, 320
blinkCursor() function (blinking cursor

example), 230–231, 243
blitting, 360–361, 363–364, 367, 390
blushing (in animations), 450
bomb exploding application, 417–423
bounce() function (pinball game), 539, 604,

609
bouncing, 459, 469, 471–472, 537–541

after collisions between objects, 606
and velocity, 609

Index704

handleEdgeCollisions() function,
488–489

off stationary objects, 62, 488–489
bounding areas, 483–488

accuracy of, 494
ballWillHitLedge() function, 485
circular, 485–488
rectangular, 484–485

bounding volumes, 483
brieflyShowTryAgainImage() method

(Pinball), 592
browsers, 13, 15–16

backfilling functionality into, 350
clamping in, 342, 583
composition operations in, 85, 186–187
custom controls in, 615
desktop, 660
domains in, 313
double buffering in, 366–367, 390–391
executing JavaScript in, 299–301, 340
fallback content for, 3
FileSystem API support in, 326
font string values in, 210
garbage collecting in, 391
ignoring content outside canvas in, 265
image loading in, 256
line height in, 208, 210
locking up with animate(), 341
maximum width of text in, 205
mobile, 659–666
no scrolling into view in, 169
px units in, 4
reacting to events in, 31, 111
scaling canvas in, 6–8
scrolling in, 675
setting frame rate in, 343–348
shadows in, 85
sound formats in, 557–558
SVG support in, 74
touch events in, 672
video formats in, 329–330
WebKit-based, 16–17, 19, 85
web-safe fonts in, 209
window coordinates in, 26, 30–31, 46,

111, 673
window focus of, 583
z-index of elements in, 39

bucket game, 485–487, 490–494
isBallInBucket() method, 486–487,

493–494

C
CAD (computer-aided design systems),

150
call() method (Function), 551
cancelRequestAnimationFrame() method

(window), 344–345
canPlay...() methods (Game), 557–558
canPlaySound() method (Game), 544
canvas element (HTML), 1–8

background color of, 3
dir attribute, 211
drawing:

into canvas, 253, 258, 266–270,
314–317, 325–326

into itself, 266, 270, 274, 316–317, 322,
324–325

outside boundaries of, 260–266,
370–377

erasing, 24
getContext() method, 4, 8
hardware acceleration for, 659
inappropriate uses of, 266
offscreen, 51–53, 266, 270–274, 302,

325–326, 628
and performance, 274
blitting from, 360–361, 363–364, 367,

390
created programmatically, 52
for double buffering, 365
invisibility of, 52

onscreen, 628
opacity of, 646, 650
playing video in, 331–333
printing, 46–51
saving, 51
scaling, 270–272, 316–317, 324–325
size of, 4–8, 28

changing, 646, 650, 668–670
default, 5–6, 67, 272
in CSS, 5–7

state of, 12
using HTML elements in, 36–46
width and height attributes, 7

705Index

Canvas context, 9–11
arc() method, 22–23, 91–92, 95–103,

124–125, 127, 130, 136, 361
arcTo() method, 127–130
beginPath() method, 12, 22–23, 91–94,

100, 103, 110, 125, 136, 361
bezierCurveTo() method, 141–143
canvas attribute, 9
clearRect() method, 22, 24, 70–71, 188
clip() method, 87, 187–197, 302
closePath() method, 91–92, 511
createImageData() method, 254,

285–286
createLinearGradient() method, 76–79
createPattern() method, 80–83
createRadialGradient() method, 78–79
drawImage() method, 253–258, 266, 270,

276, 282, 312–315, 322–324, 328, 332,
407

extending, 10, 118–120, 129
fill() method, 23, 77, 91–92, 94–95, 148,

398
fillRect() method, 88
fillStyle attribute, 4, 9, 12, 72–75,

91–92, 136
fillText() method, 4, 9–10, 23, 88, 201,

210–211, 215, 222, 237, 266
font attribute, 9
getImageData() method, 12, 34,

228–230, 253, 274–301, 306, 309, 313,
317, 321–322

globalAlpha attribute, 9, 69, 75, 256, 282,
306–312

globalCompositeOperation attribute,
9, 12, 181–187, 282

isPointInPath() method, 151
lineCap attribute, 9, 121, 123
lineJoin attribute, 9, 70–72, 122–123
lineTo() method, 23–24, 99, 103–104,

110, 144
lineWidth attribute, 9, 11, 71–72, 91,

103–104, 123
measureText() method, 201, 216–217,

227–228, 237
miterLimit attribute, 10, 72, 122–124
moveTo() method, 23–24, 99, 103–104,

110, 118–119, 125, 144

putImageData() method, 34, 229, 253,
274–301, 314, 322

quadraticCurveTo() method, 138–141
rect() function, 91–94, 99–100, 361
restore() method, 11–12, 85, 136, 185,

194, 197
rotate() method, 172–175, 225
roundedRect() extension function,

128–129
save() method, 11–12, 85, 136, 185, 194,

197, 361
scale() method, 172–175
scrollPathIntoView() method,

169–170
setClip() method, 324–325
setTransform() method, 174–181
shadowBlur attribute, 10, 83–85, 88
shadowColor attribute, 10, 83–85, 88
shadowOffsetX and shadowOffsetY

attributes, 10, 83–88
stroke() method, 23–24, 91–94, 103, 110,

148, 398, 603
strokeRect() method, 88, 170
strokeStyle attribute, 4, 10, 12, 72–75,

91–92, 136
strokeText() method, 4, 9–10, 88,

201–207, 210, 215, 237
textAlign attribute, 10, 136, 201–202,

210–215, 220–221
textBaseline attribute, 10, 136, 201–202,

210–215, 220–221
toBlob() method, 8, 51
toDataURL() method, 8, 46–51, 313
transform() method, 174–181
translate() method, 170–175, 225

Canvas specification. See HTML5 Canvas
specification

CanvasGradient object, 77–79
addColorStop() method, 77–79

CanvasPattern object, 81
CanvasRenderingContext2D object. See

Canvas context
captureCanvasPixels() function (rubber

bands example), 285
captureRubberbandPixels() function

(rubber bands example), 276,
280–281

Index706

caret, 233, 239
cell phones

performance of, 280
touch events in, 67

changedTouches browser attribute,
672

checkboxes, 137
checkMTVAxisDirection() function

(pinball game), 608
Chrome browser, 15

composition operations in, 186–187
cross-domain images in, 313
documentation for, 17
FileSystem API support in, 326
looping backwards in, 320
maximum width of text in, 205
requestAnimationFrame() in, 344,

346–348
time bug in, 348, 350
timelines in, 19
video formats in, 329

circles, 124–136
axes for, 516
colliding with polygons, 516–521
drawing, 92
MTV for, 530
rubberband, 126–127

circular text, 223–225
drawCircularText() function, 224

clamping, 342
clearHighScores() method (Game), 544,

560–561
clearInterval() method (window), 231
clearRect() method (Canvas context), 22,

24, 70–71, 188
clearScreen() method (Game), 550
clientX and clientY browser attributes,

30, 673
clip() method (Canvas context), 87,

187–197, 302, 361
clipping region, 187–197

and drawing images, 256, 302
applying filters with, 302
compositing shadows into, 69
default size of, 71, 187
draw() method, 362–363
drawDiscBackground() function, 363

erasing with, 187–194
for background areas, 360–364, 390
setting, 322, 324
telescoping with, 194–197

clobbering, 121
clock application, 22–25, 398–404
drawCenter() function, 23
drawCircle() function, 23
drawClock() function, 24
drawNumerals() function, 23
making snapshots of, 46–51
using offscreen canvases for, 51–53

closePath() method (Canvas context),
91–92, 511

collidesWith() method (Shape), 504–508,
518–520, 529–530, 532, 604

collision detection, 56, 483–541, 546, 592,
601–614

a posteriori, 485–488, 601, 610
a priori, 485, 488
and clamping, 583
and velocity, 461
between ball and:

flippers, 604, 611–614
triangles, 609–611

detectCollisions() function, 512,
532

displacement vector for, 594
separation after, 488, 526–541, 609
techniques:

bounding areas, 483–485
circular bounding areas, 485–488
ray casting, 490–494
SAT, 495–541

color media feature, 667
color picker application, 631–643
color wheel, 75
color-index media feature, 667
colors, 72–75

changing at edges, 296
CSS strings for, 74
inverting, 293
lookup table for, 667
names for, 74

Command design pattern (sprites), 394,
412

Commodore Amiga computer, 393

707Index

compositing, 181–187
and shadows, 85
controversy of, 186–187
global vs. local, 187
operations for, 69, 181–187, 256

console object, 16
log() method, 16
profile() function, 17
profileEnd() function, 17

contenteditable attribute (HTML5), 252
contexts, 8–12

2d. See Canvas context
3d, 11

controls
checkboxes, 137
custom. See custom controls
input element, 252, 615
textarea element, 252

coordinate system
canvas vs. window, 26, 30–31, 46, 111,

674–675
origin of, 67, 170
rotating, 171–173, 176
scaling, 173–176
transforming, 67–68, 170–181
translating, 26–31, 171–175, 222
windowToCanvas() function, 27–28,

111, 195, 674–675
copyCanvasPixels() function (rubber

bands example), 285–286
COREHTML5 object, 615–616, 624, 689
cos() method (Math), 54, 445–446
cosine, 55–56, 445
createCanvas() method

(RoundedRectangle), 617
createDOMElement() method (custom

controls), 617
createDomePolygons() method (Pinball),

609–611
createImageData() method (Canvas

context), 254, 285–286
createLinearGradient() method (Canvas

context), 76–79
createPath() method (Shape), 148, 172,

511
createPattern() method (Canvas

context), 80–83

createPolygonPath() function (polygon
example), 147

createRadialGradient() method (Canvas
context), 78–79

CRTs (cathode ray tubes), 75
CSS (Cascading Style Sheets)

absolute positioning in, 39, 46, 50
changing canvas size with, 668
color strings in, 74, 77, 88
font strings in, 207, 210
pixels in, 279–283, 295–299
selecting with media queries, 666–668
shadows in, 390
tweening in, 458

Ctrl key, 237, 672
ctrlKey browser attribute, 32, 672
cursor, 225–231
blinkCursor() function, 230–231
blinking, 230–231
erasing, 228–230
moving, 242–243
positioning, 215–216, 232–237

cursorInControlPoint() function (bézier
curves example), 162

cursorInEndPoint() function (bézier
curves example), 162

custom controls, 40, 615–655, 693–700
appending to HTML elements,

616–617
composite, 626
draw() method, 616
erase() method, 617
floating, 181
for text, 225–252
image panner, 643–655
positioning with CSS, 36
progress bars, 579, 625–630
rounded rectangles, 617–625
sliders, 631–643
virtual keyboard, 682–700

Cut the Rope game, 427
cutouts, 95–103, 136
addCirclePath() function, 99–103
addOuterRectanglePath() function,

99–103
addRectanglePath() function, 99–103
addTrianglePath() function, 99–103

Index708

D
dashed lines, 10, 117–121
dashedLineTo() function, 118–120
drawDashedLine() function, 118

de Casteljau, Paul, 137
debuggers, 16

and double buffering, 366
deceleration. See ease out
degrees, 54–55
depth perception, 377
detectCollisions() function (collision

detection), 512, 532, 592, 604
detectFlipperCollision() function

(pinball game), 604, 611–614
device-aspect-ratio media feature, 667
device-height

content attribute (viewport), 665
media feature, 667

devices
grid-based, 668
mobile. See mobile devices
orientation of, 666–670

and layout viewport, 663–664
pixels in, 279–283, 295–299, 668

device-width
content attribute (viewport), 664–665
media feature, 667, 679–680

dials
annotating polygons with, 171
drawDial() function, 131
drawing, 130–136
labeling, 221–223

didThrow() function (user gestures
example), 384

dir attribute (canvas), 211
dirty rectangles, 280–283
display context attribute, 52
DIV element (HTML), 37–46
document object
getElementById() method, 4, 13

DOM Level 3, 32
domElement browser property, 616–617
dot product, 60–62, 501, 608
dotProduct() method (Vector), 501–502
double buffering, 364–367, 390–391
Drag and Drop API, 326

drawArrow() function (mirroring example),
139, 173

drawCenter() function (clock application),
23

drawCircle() function (clock application),
23

drawCircularText() function (circular
text example), 224–225

drawClock() function (clock application),
24

drawCollisionShapes() method (Game),
603

drawConnectors() function (sunglasses
example), 302

drawDashedLine() function (dashed lines
example), 118

drawDial() function (dials example), 131
drawDiscBackground() function (clipping

animations example), 363
drawGrid() function (grid drawing

example), 105–107
drawImage() method (Canvas context), 31,

45, 253–258, 266, 270, 312–315, 328
and global settings, 282
and origin-clean flag, 312
five-argument version of, 257–258, 332
nine-argument version of, 257–258, 276,

322–324, 407
drawing, 22–25, 65–199

immediate vs. retained, 34, 147
outside canvas boundaries, 260–266,

370–377
scaling context during development for,

173
separated from updating, 390
temporarily, 228
using rubber bands for, 65

drawing surface
saving/restoring, 12, 33–35, 115, 228
size of, 5–8, 28

default, 6–8
in CSS, 5–7

drawLenses() function (sunglasses
example), 302

drawMagnifyingGlass() function
(magnifying glass example), 322–324

709Index

drawNumerals() function (clock
application), 23

drawRubberbandShape() function (rubber
bands example), 116, 126–127, 147–148

drawScaled() function (watermarks
example), 272–274

drawText() function (text positioning
example), 185, 212–214

drawWatermark() function (watermarks
example), 266–270

drawWire() function (sunglasses example),
302

drifting clouds, 370–377
dropping frames, 368

E
ease in, 451, 456–458, 463–465, 595
ease in/out, 458, 468–469
ease out, 458, 465–467, 595
edge detection, 296
edge() method (Vector), 502
elapsed time, 386, 433, 452
elastic motion, 469, 471
electromagnetic force, 428
em square, 211, 214
embossing filter, 295–299
emboss() function, 296–298

enablePrivilege() function
(PrivilegeManager), 313

endAnimate() method (Game), 544–546, 550,
553, 590, 592

endless loops, 340
Enter key, 238, 241, 244–245
eraseMagnifyingGlass() function

(magnifying glass example), 322
erasing

entire background, 360–361, 364–367
paragraphs, 244
text, 228–230, 239, 245–251
with clipping region, 187–194

Esc key, 32
event handlers, 26–33
onchange, 202, 619, 636, 650
onclick, 40, 353, 423, 627
onkeydown, 31–32, 241
onkeypress, 31–33, 237, 241
onkeyup, 31–32

onload, 256
onmessage, 301–302
onmousedown, 26, 40, 46, 111–115, 151,

195, 241
onmousemove, 26–27, 46, 115, 151, 162,

171, 185, 194, 280, 322, 642
onmouseout, 26
onmouseover, 26
onmouseup, 26, 46, 642
preventDefault() function, 31, 46, 111,

675
execute() method (behavior), 394,

411–417, 431, 459, 473, 475, 594
explorercanvas, 15–16
explosionAnimator sprite animator, 423

F
fallback content, 3
falling, 427–431, 436
FileSystem API, 326–328
fill() method (Canvas context), 23, 77,

91–92, 94–95, 148, 398
fillColor context attribute, 226
filling, 88–103

and shadows, 84
text, 201–207
with gradients/patterns, 75, 205–207

fillKnob() method (Slider), 642
fillRect() method (Canvas context), 88
fillStyle context attribute, 4, 9, 12, 72–75,

91–92, 136
fillText() method (Canvas context), 4,

9–10, 23, 88, 201, 210–211, 215, 222,
237, 266

optional argument of, 204–205
filters, 293–295

black-and-white, 293–295
embossing, 295–299
negative, 293–294
sunglasses, 299–301

fireChangeEvent() method (Slider), 642
Firefox, 15

clamping in, 342
composition operations in, 186–187
console and debugger for, 16
cross-domain images in, 313
frame rate bug in, 346, 350

Index710

looping backwards in, 320
maximum width of text in, 205
requestAnimationFrame() in, 344–346,

350
shadows in, 85
video formats in, 329–330

fireKeyEvent() method (Keyboard), 700
Flash, 328, 339

tweening in, 458
flippers (pinball game), 595–597
Flyweight design pattern (sprites), 394,

404
font context attribute, 4, 9, 201, 207–210,

226
font-family context attribute, 208–209
fonts

em square of, 211, 214
height of, 228
properties of, 207–210
web-safe, 209

font-size context attribute, 208
font-style context attribute, 207–208
font-variant context attribute, 207–208
font-weight context attribute, 207–208
fps() method (Game), 544
frame rate, 544

calculating, 358–359
clamping, 583
for tasks, 359–360
setting, 343–348, 544
updating, 546, 550

friction, 432, 461, 592, 594–595
fuseBurningAnimator sprite animator, 423

G
Game object, 544–572
addKeyListener() method, 544,

558–560, 598–601
addSprite() method, 544
animate() method, 550–551
canPlay...() methods, 557–558
canPlaySound() method, 544
clearHighScore() method, 544, 560–561
clearScreen() method, 550
drawCollisionShapes() method, 603
endAnimate() method, 544–546, 550,

553, 590, 592

fps() method, 544
getHighScore() method, 544, 560–561
getImage() method, 554
getSprite() method, 544
loadImages() method, 554–557
paintOverSprites() and

paintUnderSprites() methods,
544–546, 550, 576–577, 590–592

paintSprites() method, 550
pixelsPerFrame() method, 544, 553, 594
playSound() method, 544, 557–558
queueImage() method, 554–557
setHighScore() method, 544, 560–561
start() method, 544, 550–551
startAnimate() method, 544–546, 550,

553, 590–592, 594, 604
tick() method, 550
togglePaused() method, 544, 546,

551–553, 582, 600
updateFrameRate() method, 550
updateSprites() method, 550

game engine, 544–572
adding sprites to, 544
full listing of, 561–572

game loop, 544
Game Over toast, 585–589
game time, 544

setting, 544, 546
updating, 550

games, 543–614
3D Monster Maze, 359
auto-pause in, 583–584
Bucket, 432–444, 485–487, 490–494
Cut the Rope, 427
heads-up display in, 433, 436–437,

585–589
multiplayer, 62, 367
naming, 545
Pac-Man, 495
pausing, 544–546, 551–553
performance of, 18–22, 404
Pinball, 589–614
Replica Island, 394
scoreboard in, 433, 436–437, 585–589
Sonic the Hedgehog, 427
starting, 550, 554
Ungame, 572–589

711Index

Gaussian blur, 10, 88
getAxes() method (Shape), 504–511, 516
getBoundingClientRect() method

(window), 27
getContext() method (Canvas), 4, 8
getElapsedTime() method

(AnimationTimer), 386, 389, 451,
454–455, 464, 475

getElementById() method (document), 4,
13

getHeight() method
of TextCursor object, 226
of TextLine object, 233

getHighScores() method (Game), 544,
560–561

getImage() method (Game), 554
getImageData() method (Canvas context),

12, 34, 228–230, 253, 274–301, 306, 309,
322

and origin-clean flag, 313
calling repeatedly, 317, 321
slowness of, 280

getMagnitude() method (Vector), 501–502
getPoints() method (Polygon), 148
getPolygonPointClosestToCircle()

function (polygon example), 519
getPolygonPoints() function (polygon

example), 147
getSprite() method (Game), 544
getWidth() method (TextLine), 216, 233
glass pane, 37–40
globalAlpha context attribute, 9, 69, 75,

256
and putImageData(), 282
fading images with, 306–312

globalCompositeOperation context
attribute, 9, 12, 181–187

and putImageData(), 282
Google, 16, 328–329
Google Chrome Frame, 15–16
GPS positioning, 659
gradients, 76–79

and performance, 391
color stops in, 77–79
for stroke or fill, 75, 205–207
linear, 76–78, 205
radial, 78–79

graph axes
drawing, 107–110
labeling, 217–220

gravity, 427–450, 592, 594–595
and nonlinear systems, 445–450
applied to vertical velocity, 433
constant of, 428, 431

grid, 11
drawGrid() function, 105–107
drawing, 40, 105–107

grid media feature, 668
guidewires

annotating polygons with, 171
drawing, 433
temporary drawing surface for, 33–35
turning on/off, 162

gyroscopes, 659

H
H.264 video format, 329
handleEdgeCollisions() function

(bouncing off walls example), 488–489
hardware acceleration, 659
heads-up display, 433, 436–437, 585–589
height

content attribute (viewport), 665
context attribute, 4–8
media feature, 667

hideKeyboard() function (keyboard
example), 689

high scores, 436–437, 545, 560–561, 585–589
HSL (hue/saturation/lightness), 74–75
hsl() color definition (CSS), 74
HSLA (hue/saturation/lightness/alpha),

74
hsla() color definition (CSS), 74
HTML elements

appending custom controls to, 616–617
canvas. See canvas element
DIV, 37–46
img, 8, 46, 50
input, 252, 615
invisible, 41–46
meta, 661–666, 681
output, 266
source, 329
span, 279

Index712

standard controls in, 615
textarea, 252
using in canvas, 36–46
video, 329, 331–333

HTML5 Canvas specification, 14
best practices of, 252
constantly evolving, 121
drawing unloaded images in, 256
glyph rendering in, 237
immediate-mode graphics of, 34, 147
no explicit support for animation in, 339
rectangles with zero width or height in,

276
text width in, 217
uses for canvas element in, 266
vs. native applications, 659, 677

HTML5 video and audio specification, 14
HTMLCanvasElement object, 258
HTMLImageElement object, 258
HTMLVideoElement object, 258, 329

I
icons

floating, 181
selected, 83

identifiedTouch() method (TouchList),
672

identifier browser attribute, 673
image data

accessing, 274–283
arrays of, 286–291, 295
blank, 254
looping over, 292, 317–320
modifying, 283–285, 301–302
partial rendering, 280–283
updating, 276

image painters, 398, 404–406, 594
image loading policy of, 406

image panner application, 643–655
ImageData object, 254, 280–283

creating, 285–286
ImagePainter object
draw() method, 406

images, 253–327
animating, 306–312
centering, 260–266
clipping, 302–306

colliding, 521–525
cross-domain, 312–313
dragging from desktop, 326–328
drawing, 69, 253–258, 314–317
fading, 306–312
filtering, 293–295, 306–312
loading, 255–256, 406, 554–557, 579–581

failed, 554
manipulating, 274–301

and performance, 298–301
scaling, 258–265, 316–317
security risks of, 312–313
startup. See applications, splash screens

of
zooming into, 41–46

img element (HTML), 8, 46, 50
initial-scale content attribute

(viewport), 665–666
input element (HTML), 252, 615
insert() method

of Paragraph object, 239, 241, 243–244
of TextLine object, 233

Internet Explorer
console and debugger for, 16
HTML5 support in, 15
maximum width of text in, 205
older versions of, 15–16
requestAnimationFrame() in, 344, 348
video formats in, 329
WebGL support in, 11

invisible ink, 92
iOS4, no WebGL support in, 11
iOS5, 677–682

fullscreen mode on, 677, 680–681
hardware acceleration for Canvas in,

659
home screen icons on, 677–680
splash screens on, 677–680
status bars on, 681–682
title bar on, 657

iPad
device orientation on, 667–670
home screen icons on, 680–681
layout viewport on, 661–663, 666
looping backwards on, 320
title bar on, 657
virtual keyboard on, 682–700

713Index

iPhone, 663
isBallInBucket() method (bucket game),

486–487, 493–494
isOver() method (AnimationTimer),

389–390
isPointInPath() method (Canvas

context), 151
isPointInside() method (Paragraph), 238
isRunning() method (AnimationTimer),

386

J
JavaScript

benchmarks in, 20–22
call() method, 551
changing canvas size with, 668–670
executed on main thread, 299–301, 340
key codes in, 560
loops in:

backward, 317, 320
endless, 340

opague objects in, 81
self variable, 551
self-executing functions in, 349
this variable, 550–551

JPEG image format, 8
JSON (JavaScript Object Notation), 560
jsPerf, 19–22, 317–319

K
Key object, 689–692
key codes, 32
key events, 31–33, 237, 544, 558–560,

597–601
firing, 700
keydown, 31–32, 241
keypress, 31–33, 237, 241
keyup, 31–32
throttling, 600

key listeners, 234–237, 584, 598–601
adding, 558–560, 700

Keyboard object, 689, 693–700
addKeyListener() method, 700
appendTo() method, 700
draw() method, 690, 700
fireKeyEvent() method, 700
mouseDownOrTouchStart() method, 700

resize() method, 700
keyboard, virtual. See virtual keyboard
keyCode browser property, 32
Khronos Group, 11

L
length property (TouchList), 672–673
lighting effect, 642
lineCap context attribute, 9, 121, 123
line-height context attribute, 208, 210
lineJoin context attribute, 9, 70–72,

122–123
lines, 103–123

dashed, 10, 117–121
endpoints of, 9, 121
joins of, 122–124
width of, 9, 11, 104–105

lineTo() method (Canvas context), 23–24,
99, 103–104, 110, 144

lineWidth context attribute, 9, 11, 71–72,
91, 103–104, 123

loadImages() method (Game), 554–557
lob behavior, 433
local storage, 545, 560–561
local variables, 317–320
log() method (console), 16

M
Mac OS X, 657
magnifying glass application, 253–254,

321–328
drag and drop in, 326–328
drawMagnifyingGlass() function,

322–324
eraseMagnifyingGlass() function, 322
home screen icon of, 678
orientation of, 668–670
pinch and zoom in, 675–677
splash screen of, 679
throwing in, 383–385
using offscreen canvas in, 270, 325–326

makeBounce() method (AnimationTimer),
457

makeEaseIn() method (AnimationTimer),
456–457

makeEaseInOut(), makeEaseOut() methods
(AnimationTimer), 457

Index714

makeElastic() method (AnimationTimer),

457

makeLinear() method (AnimationTimer),

457

matchMedia() method (window), 669

Math object

cos() function, 54, 445–446

sin() function, 54, 446

tan() function, 54

mathematics, 53–64

algebraic equations, 54, 175–176

angles, degrees, radians, 54–55

Pythagorean theorem, 57, 487

scalars, 60

trigonometry, 54–56, 145, 176, 221–223,

445, 468

vectors, 56–62

max-device-width. See device-width
maximum-scale content attribute

(viewport), 665–666

measureText() method (Canvas context),

201, 216–217, 227–228, 237

media features, 667–668

media queries, 666–670

changing canvas size with, 668

for icons and splash screens, 679–680

@media CSS annotation, 666–668

meta element (HTML), 661–666, 681

Meta key, 237, 672

metaKey browser attribute, 32, 672

metaprogramming, 121

min-device-width. See device-width
minimum-scale content attribute

(viewport), 665

minimumTranslationVector() method

(Shape), 527–529

mirroring, 173

drawArrow() function, 139, 173

miterLimit context attribute, 10, 72,

122–124

mobile devices, 657–701

battery life of, 583

performance of, 18–22

pinch and zoom in, 675–677

scrolling into view in, 170

touch events in, 67

monitors, 668

refresh rate of, 367

monkey patching, 121

monochrome media feature, 668

motion

bouncing, 459, 469, 471–472

ease in, 451, 456–458, 463–465, 595

ease in/out, 458, 468–469

ease out, 458, 465–467, 595

elastic, 459, 469, 471

harmonic, 427

linear, 453, 458, 461–463

nonlinear, 427, 445, 458–473, 595–597

running in place, 411–417

time-based, 62–64, 350, 358–359,

367–370, 390–391, 416–417

warping, 458–473

mouse events, 26–31, 671

mousedown, 26, 40, 46, 111–115, 151, 195,

241, 642, 694

mousemove, 26–27, 46, 115, 151, 162, 171,

185, 194, 280, 322, 642

mouseout, 26

mouseover, 26

mouseup, 26, 46, 642

supporting together with touch events,

674–675, 684, 694

translating to canvas coordinates, 26,

30–31, 46, 111, 195, 674–675

mouseDownOrTouchStart() method

(Keyboard), 700

move() method (Shape), 148, 150

moveCursor() method

of Paragraph object, 242–243

of TextCursor object, 228

moveCursorCloseTo() method

(Paragraph), 238, 241, 243

moveTo() method (Canvas context), 23–24,

99, 103–104, 110, 125, 144

position last passed to, 118–119

Mozilla, 329

mozRequestAnimationFrame() method

(window), 344–346, 350

MPEG-4 video format, 329

msCancelAnimationFrame() method

(window), 344, 348

715Index

msRequestAnimationFrame() method
(window), 344, 348

MTV (minimum translation vector),
526–541

sticking with, 531–537

N
namespaces, 616, 689
native applications, 659
newline() method (Paragraph), 239–241,

244–245
Newtonian mechanics, 461
nextVideoFrame() function (video

processing example), 333
Nokia, 329–330
nonlinear systems, 445–473
nonzero winding rule, 94–95
normal() method (Vector), 502–503
normalize() method (Vector), 502
nuclear force, 428

O
Ogg Theora video format, 329–330
onkeydown() method (window), 241
onkeypress() method (window), 237, 241
onmousedown() method (window), 241
ontouchstart browser property, 671
OpenGL ES 2.0 API, 11
Opera, 15
arc() method in, 127
composition operations in, 186–187
console and debugger for, 16
shadows in, 85
video formats in, 329

orientation media feature, 667, 679–680
origin-clean flag (Canvas), 312–313
output element (HTML), 266

P
Pac-Man game, 495
pageX and pageY browser attributes, 673
paint application, 65–67

eraser in, 86
hideKeyboard() function, 689
home screen icon of, 678
icons in, 83, 179–181

rubber bands in, 110–116
showKeyboard() function, 689
virtual keyboard for, 682–700

paint() method (Sprite), 394–398, 404
paintOverSprites() method (Game),

544–546, 550, 576–577, 590
paintSprites() method (Game), 550
paintUnderSprites() method (Game),

544–546, 550, 576–577, 590–592
Paragraph object, 238–252
addLine() method, 239, 242
backspace() method, 239–241, 245–251
insert() method, 239, 241, 243–244
isPointInside() method, 238
moveCursor() method, 242–243
moveCursorCloseTo() method, 238, 241,

243
newline() method, 239–241, 244–245

paragraphs, 238–252
creating, 242
erasing, 244
inserting text into, 243–244

parallax, 377–382, 579
draw() method, 379

patent issues, 329–330
paths, 88–103

arc, 89
circular, 23
closed, 89, 91–92, 511
current, 93, 256
direction of, 92, 99–100
drawing, 91
filling, 84, 94–95
manipulating, 150–170
open, 89, 91–92
rectangular, 89
resetting, 12
scrolling into view, 169–170
self-intersecting, 94–95
stroking, 10, 84
subpaths of, 92–94

patterns, 79–83
creating, 81
for stroke or fill, 75, 205–207
repeating, 80–83

Paused toast, 600

Index716

pendulums, 427
nonlinear motion of, 445–450
weight of, 445

percentComplete browser property, 628
performance, 18–22, 313–321, 390–391

and double buffering, 366
and getImageData(), 280
and gradients, 391
and image manipulations, 298–301
and number of objects, 404
and offscreen canvases, 274
and shadows, 88, 390–391
bottlenecks of, 20–22
for drawing canvas into itself vs. from

offscreen canvas, 326
monitoring, 390–391

perpendicular() method (Vector),
502–503

physics, 427–482
pinball game, 589–614
bounce() function, 609
collision detection for, 601–614
detectCollisions() function, 592,

604
flipper motion in, 595–597
game loop of, 590–593
key events for, 597–601
pausing, 600
separate() function, 609
See also game engine

Pinball object
applyFrictionAndGravity() method,

594–595
bounce() function, 604
brieflyShowTryAgainImage() method,

592
checkMTVAxisDirection() function, 608
createDomePolygons() method, 609–611
detectFlipperCollision() function,

604, 611–614
updateLeftFlipper() method, 592
updateRightFlipper() method, 592

pinch and zoom, 675–677
pixels

boundaries of, 104–105
capturing, 280–283

clearing, 71
CSS vs. device, 279–283, 295–299
density of, 668
edge detection for, 296
looping over, 317, 320
manipulating, 253, 274–301
modifying transparency of, 283–285
scaling, 325
to move, per animation frame. See

time-based motion
pixelsPerFrame() method (Game), 544,

553, 594
playSound() method (Game), 544,

557–558
polyfill method. See

requestNextAnimationFrame()
Polygon object, 147–150

arrays of, 151–157
createPath() method, 511
getPoints() method, 148
move() method, 150

polygons, 144–150
closed paths for, 511
colliding, 601–609
polygonCollidesWithCircle()

function, 519
polygonsCollide() function, 500
with circles, 516–521
with polygons, 56, 495, 500, 504–516,

526
concave vs. convex, 495
createPolygonPath() function, 147
dragging, 34, 151–157
drawing, 33–35, 144–147
getPolygonPoints() function, 147
manipulating, 147–150
rotating, 151, 171–172

polymorphism, 350
Porter-Duff operators, 181
power curves, 464–465, 467
preventDefault() function (Event), 31,

46, 111, 675
PrivilegeManager object
enablePrivilege() function, 313

profile() function (console), 17
profileEnd() function (console), 17

717Index

profilers, 20–22, 390–391
starting/stopping, 17

progress bars, 579, 625–630
Progressbar object
draw() method, 628

projectile trajectories, 427, 432–444
applying gravity to, 433
vs. falling, 436

Projection object
project() function, 504–511
prototype() method, 504

projections, 495–525
overlapping, 503–504, 527
separation on, 527

putImageData() method (Canvas context),
34, 229, 253, 274–301, 314, 322

and global settings, 282
seven-argument version of, 280–283

putSunglassesOn() function (sunglasses
example), 301

px units, 4, 7–8
Pythagorean theorem, 57, 487, 501

Q
quadraticCurveTo() method (Canvas

context), 138–141
queueImage() method (Game), 554–557

R
radians, 54–55
radioactive decay, 428
ray casting, 490–494, 601, 604, 611–614

accuracy of, 494
intersection of lines for, 492

rect() method (Canvas context), 91–94,
99–100, 361

rectangles
direction of, 99–100
drawing, 91
rounded, 71–72, 128, 138–139, 390,

617–625
appending to HTML elements, 624
resizing, 624

with square corners, 70
with zero width or height, 276

Replica Island game, 394

requestAnimationFrame() method
(window), 14, 342–345, 348, 360, 390,
437, 544, 583

browser-specific implementations of,
344–348

requestNextAnimationFrame() method
(window), 331–333, 349–357, 388, 404,
421, 437, 532, 544, 546, 550–551, 626

reset() method (AnimationTimer), 386
resize() method

for custom controls, 617
of Keyboard object, 700
of RoundedRectangle object, 624–625

resolution media feature, 668
restore() method (Canvas context),

11–12, 85, 136, 185, 194, 197
restoreRubberbandPixels() function

(rubber bands example), 280–281
RGB (red/green/blue), 74–75
rgb() color definition (CSS), 74
RGBA (red/green/blue/alpha), 74
rgba() color definition (CSS), 74
rotate() method (Canvas context),

172–175, 225
rotating

after translating, 225
coordinate system, 171–173, 176
polygons, 151, 171–172
text, 177–179

roundedRect() function (rounded
rectangles example), 128–129

RoundedRectangle object
draw() method, 625
resize() method, 624–625

rubber bands, 110–116
bounding box of, 275
captureCanvasPixels() function, 285
captureRubberbandPixels() function,

276, 280–281
circular, 126–127
copyCanvasPixels() function, 285–286
drawRubberbandShape() function, 116,

126–127, 147–148
erasing, 115
for interactive drawing, 65
modifying transparency with, 283–285

Index718

restoreRubberbandPixels() function,
280–281

rubberbandEnd() function, 46, 276
rubberbandStart() function, 46
rubberbandStretch() function, 46, 276
selecting with, 274–283
temporary drawing surface for, 33
zooming with, 41–46

S
Safari, 15

composition operations in, 186–187
console and debugger for, 16
layout viewport on, 666
looping backwards in, 320
maximum width of text in, 205
timelines in, 19
video formats in, 329

SAT (separating axis theorem), 495–541,
601–609

for circles, 516–521
for images and sprites, 521–525
for polygons, 504–516
not for small fast objects, 611
pseudocode for, 499–500
using MTV for, 526–541

save() method (Canvas context), 11–12,
85, 136, 185, 194, 197, 361

scalars, 60
scale() method (Canvas context), 172–175
scaling

canvas, 270–272, 316–317
coordinate system, 173–176
during development, 173
images, 258–265
text, 177–179
video frames, 331

scan media feature, 668
screen

clearing, 544, 546, 550, 579
height of, 667
width of, 659, 666–667

screenX and screenY browser attributes,
673

scrollBackground() method (background
scrolling example), 577–579

scrollPathIntoView() method (Canvas
context), 169–170

security, 312–313
SECURITY_ERR exception, 313
self variable (JavaScript), 551
separate() function (separating colliding

shapes example), 530–531, 609
separationOnAxes() method (Shape),

504–508, 527
setClip() method (Canvas context),

324–325
setHighScore() method (Game), 544,

560–561
setInterval() method (window), 14, 24,

306, 341–343, 390
setTimeout() method (window), 14,

341–343, 349–350, 390, 551, 579
clamping, 342

setTransform() method (Canvas context),
174–181

shadowBlur context attribute, 10, 83–85, 88
shadowColor context attribute, 10, 83–85,

88
undefined, 85

shadowOffsetX and shadowOffsetY context
attributes, 10, 83–88

shadows, 83–88
and performance, 88, 390–391
applying to text, 202
color of, 10
enabling, 69, 185
partially transparent colors for, 85
settings for, 69, 256
spreading out, 10
turning on/off, 85
with negative offset, 85–87

Shape
collidesWith() method, 504–508,

518–520, 529–530, 532, 604
createPath() method, 148, 172
getAxes() method, 504–511, 516
minimumTranslationVector() method,

527–529
move() method, 148
separationOnAxes() method, 504–508,

527

719Index

shear, 179–181
Shift key, 672, 694
shiftKey browser attribute, 32, 672
showKeyboard() function (keyboard

example), 689
sin() method (Math), 54, 446
Sinclair ZX81 computer, 359
sine, 55–56, 468
Slider object, 634, 636
addChangeListener() method, 636, 642
appendTo() method, 619, 624–625, 628
fireChangeEvent() method, 642

sliders, 173, 325, 631–643
fillKnob() method, 642

smart phones, 33
social network, 312
Sonic the Hedgehog game, 427
sound

formats of, 557–558
multitrack, 544, 557–558

source element (HTML), 329
span element (HTML), 279
springs, 427
Sprite object, 394–397
paint() method, 394–398, 404
properties of, 395
update() method, 394, 411, 416–417,

553
sprite sheets, 26–30

painters for, 398, 406–410, 476
SpriteAnimator object, 419–423
start() method, 419–421

sprites, 393–425, 431
adding to game engine, 544
animating, 417–423
colliding, 521–525
creating, 397, 594
painters for, 394–395, 397–410, 419, 421

advancing, 407, 410
decoupling from, 394

painting, 394, 424
under/over, 544–546, 550, 576,

577
updating, 424, 544–546, 550

SpriteSheetPainter object
advance() method, 407

src HTML attribute, 8, 46

start() method
of Game object, 544, 550–551
of SpriteAnimator object, 419–421
of Stopwatch object, 385

startAnimate() method (Game), 544–546,
550, 553, 590–592, 594, 604

stick() function (sticking with MTV
example), 532–537

sticking, 531–537
Stopwatch object
start() method, 385
stop() method, 385

stopwatches, 385–388
Strategy design pattern (sprites), 394, 398
stroke and fill painters, 398–404
stroke() method (Canvas context), 23–24,

91–94, 103, 110, 148, 398, 603
strokeRect() method (Canvas context),

88
simplifying by translating the origin,

170
strokeStyle context attribute, 4, 10, 12,

72–75, 91–92, 136
strokeText() method (Canvas context),

4, 9–10, 88, 201–207, 210, 215, 237
optional argument of, 204–205

stroking, 88–103
and shadows, 84
text, 201–207
with gradients/patterns, 75, 205–207

subtract() method (Vector), 501–502
sunglasses application, 299–306
drawConnectors() function, 302
drawLenses() function, 302
drawWire() function, 302
putSunglassesOn() function, 301

SVG (Scalable Vector Graphics)
color names in, 74
list of objects in, 34
paths in, 89

swing behavior, 445–446

T
tablet computers, 33

performance of, 280
touch events in, 67

tan() method (Math), 54

Index720

tangent, 55–56
target browser attribute, 673
target-densityDpi content attribute

(viewport), 665
targetTouches browser attribute, 672
telescoping animation, 194–197
Texas Instruments 9918(A) video display

processor, 393
text, 201–252

applying shadows to, 202
centering, 3–4, 214–215
drawing around arc, 223–225
editing, 232–237, 252
erasing, 239, 245–251
filling, 84, 201–207
font properties of, 201, 207–210
inserting, 239, 243–244
maximum width of, 204–205
measuring, 201, 215–216, 227–228
new lines in, 244–245
paragraphs of, 238–252
positioning, 136, 201, 210–225
drawText() function, 212–214

rotating, 177–179
scaling, 177–179, 205
stroking, 84, 201–207

textAlign context attribute, 10, 136,
201–202, 210–215, 220–221

textarea element (HTML), 252
textBaseline context attribute, 10, 136,

201–202, 210–215, 220–221
TextCursor object, 225–231
erase() method, 228–230
getHeight() method, 226
moveCursor() method, 228

TextLine object, 232–238, 242
draw() method, 233
erase() method, 233, 237, 244
getHeight() method, 233
getWidth() method, 216, 233
insert() method, 233

TextMetrics object, 216–217
this variable (JavaScript), 550–551
tick() method (Game), 550
time

elapsed, 386, 433, 452
warping, 390, 427, 450–456, 595

time-based motion, 62–64, 350, 358–359,
367–370, 390–391, 416–417, 544, 553,
594

timelines, 19, 390–391
Timing control for script-based animations

specification, 14, 344
toasts, 573

Game Over, 585–589
Paused, 600
Try Again, 592

toBlob() method (Canvas context), 8, 51
toDataURL() method (Canvas context), 8,

46–51
and origin-clean flag, 313

togglePaused() method (Game), 544, 546,
551–553, 582–583, 600

touch events, 33, 67, 671–677
supporting together with mouse events,

674–675, 684, 694
touchcancel, 671–672
touchend, 671–672
touchmove, 671–672, 675
touchstart, 671–672, 675, 694

touch objects, 673
touches browser attribute, 672
TouchList object, 672
identifiedTouch() method, 672
length property, 672

transform() method (Canvas context),
174–181

translate() method (Canvas context),
170–175, 225, 372

translating
before rotating, 225
coordinate system, 171–175

translucent overlays, 625
transparency, 9, 72–75
trigonometry, 54–56, 145, 445, 468

for positioning circular text, 221–223
for rotating, 176

Try Again toast, 592
tty terminals, 668
TypedArray object, 291

U
UA (User Agents), 13
Uint8ClampedArray object, 291

721Index

ungame, 572–589
game loop of, 576–579
loading, 579–581
pausing, 581–584
See also game engine

units of measure, 62–64, 431
update() method (Sprite), 350, 394, 411,

416–417, 553
updateFrameRate() method (Game), 550
updateLeftFlipper() method (Pinball),

592
updateRightFlipper() method (Pinball),

592
updateSprites() method (Game), 550
user gestures, 383–385
didThrow() function, 384

user-scalable content attribute
(viewport), 665

V
Vector object
add() method, 501–502
dotProduct() method, 501–502
edge() method, 502
getMagnitude() method, 501–502
normal() method, 502–503
normalize() method, 502
perpendicular() method, 502–503
subtract() method, 501–502

vectors, 56–62
adding, 59–60
direction of, 58–59
displacement, 594, 604
dot product of, 60–62, 501, 608
edge, 57, 60, 500
edge normal, 500
magnitude of, 57, 501–503
multiplicating, 501
normalized. See vectors, unit
perpendicular, 503
reflecting, 537–541
subtracting, 59–60, 501
unit, 58–59, 503, 530, 606

velocity
and air resistance, 461
and collisions, 461, 530

and current frame rate, 62
and friction, 461, 595
clamping, 609
constant vs. nonlinear, 463–469
for bouncing, 537–541, 609
initial, 436
limiting, for small objects, 487
vertical, 428–432, 595

applying gravity to, 433
video element (HTML), 328–329

invisible, 331–333
videos, 328–337

formats of, 329–330
frames of, 328–337

drawing into canvas, 253, 258, 328
scaling, 331

playing in canvas, 331–333
processing, 333–337
nextVideoFrame() function, 333

viewport metatag, 661–666
device-height attribute, 665
device-width attribute, 664–665
height attribute, 665
initial-scale attribute, 665–666
maximum-scale attribute, 665–666
minimum-scale attribute, 665
target-densityDpi attribute, 665
user-scalable attribute, 665
width attribute, 665

viewports
draggable, 644
height of, 667
layout, 661

set to device-width, 664
mobile, 659–666
scaling, 661–666
visible, 661
width of, 667

hardcoded, 663
virtual keyboard, 682–700
hideKeyboard() function, 689
resizing, 684–685, 700
showKeyboard() function, 689
translucent, 685, 694
visibility of, 689

VP8 video format, 329

Index722

W
W3C (World Wide Web Consortium), 14

warping

animation, 473–482

motion, 458–473

time, 390, 427, 450–456, 595

with functions, 454–458

watermarks, 266–274

drawScaled() function, 272–274

drawWatermark() function, 266–270

web browsers. See browsers

web workers, 299–301

WebGL 3d context, 11

webkitCancelAnimationFrame() method

(window), 344, 347

webkitRequestAnimationFrame() method

(window), 344, 346–348, 350

WebM video format, 329

WHATWG (Web Hypertext Application

Technology Working Group), 14, 252

while loop (JavaScript), 340

width
content attribute (viewport), 665

context attribute, 4–7

media feature, 667

window object

cancelRequestAnimationFrame()
method, 344–345

clearInterval() method, 231

getBoundingClientRect() method, 27

matchMedia() method, 669

mozRequestAnimationFrame() method,

344–346, 350

msCancelAnimationFrame() method,

344, 348

msRequestAnimationFrame() method,

344, 348

onkeydown() method, 241

onkeypress() method, 237, 241

onmousedown() method, 241

requestAnimationFrame() method, 14,

342–348, 360, 390, 437, 544, 583

requestNextAnimationFrame() method,

331–333, 349–357, 388, 404, 421, 437,

532, 544, 546, 550–551, 626

setInterval() method, 14, 24, 306,

341–343, 390

setTimeout() method, 14, 341–343,

349–350, 390, 551, 579

webkitCancelAnimationFrame()
method, 344, 347

webkitRequestAnimationFrame()
method, 344, 346–348, 350

windowToCanvas() function (translating

coordinates example), 27–28, 111, 195,

674–675

Worker object

onmessage() method, 301–302

X
x browser attribute, 30

Y
y browser attribute, 30

YouTube, 328

Z
z-index property (CSS), 39

zooming in, with rubber bands, 41–46

723Index

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Essentials
	1.1 The canvas Element
	1.1.1 Canvas Element Size vs. Drawing Surface Size
	1.1.2 The Canvas API

	1.2 Canvas Contexts
	1.2.1 The 2d Context
	1.2.2 Saving and Restoring Canvas State

	1.3 Canonical Examples in This Book
	1.4 Getting Started
	1.4.1 Specifications
	1.4.2 Browsers
	1.4.3 Consoles and Debuggers
	1.4.4 Performance

	1.5 Fundamental Drawing Operations
	1.6 Event Handling
	1.6.1 Mouse Events
	1.6.2 Keyboard Events
	1.6.3 Touch Events

	1.7 Saving and Restoring the Drawing Surface
	1.8 Using HTML Elements in a Canvas
	1.8.1 Invisible HTML Elements

	1.9 Printing a Canvas
	1.10 Offscreen Canvases
	1.11 A Brief Math Primer
	1.11.1 Solving Algebraic Equations
	1.11.2 Trigonometry
	1.11.3 Vectors
	1.11.4 Deriving Equations from Units of Measure

	1.12 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

