

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Copyright © 2011 Michael Hartl

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

The source code in Ruby on Rails 3 Tutorial is released under the MIT License.
ISBN 13: 978-0-13-248802-0
ISBN 10: 0-13-248802-7
First release, October 2010

Editor-in-Chief
Mark Taub

Executive Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Erica Orloff

Indexer
Kathrin Unger

Proofreader
Claire Splan

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Compositor
Glyph International

Contents

Acknowledgments xiii

About this Book xv

About the Author xvii

Chapter 1 From Zero to Deploy 1

1.1 Introduction 3
1.1.1 Comments for Various Readers 4
1.1.2 “Scaling” Rails 7
1.1.3 Conventions in This Book 7

1.2 Up and Running 9
1.2.1 Development Environments 9
1.2.2 Ruby, RubyGems, and Rails 12
1.2.3 The First Application 14
1.2.4 Model-View-Controller (MVC) 15
1.2.5 Script/Server 18

1.3 Version Control with Git 23
1.3.1 Installation and Setup 24
1.3.2 Adding and Committing 26
1.3.3 What Good Does Git Do You? 27
1.3.4 GitHub 28
1.3.5 Branch, Edit, Commit, Merge 30

v

vi Contents

1.4 Deploying 35
1.4.1 Heroku Setup 35
1.4.2 Heroku Deployment, Step One 36
1.4.3 Heroku Deployment, Step Two 36
1.4.4 Heroku Commands 37

1.5 Conclusion 39

Chapter 2 A Demo App 41

2.1 Planning the Application 41
2.1.1 Modeling Users 43
2.1.2 Modeling Microposts 43

2.2 The Users Resource 44
2.2.1 A User Tour 45
2.2.2 MVC in Action 47
2.2.3 Weaknesses of This Users Resource 57

2.3 The Microposts Resource 57
2.3.1 A Micropost Microtour 57
2.3.2 Putting the Micro in Microposts 60
2.3.3 A User has_many Microposts 62
2.3.4 Inheritance Hierarchies 64
2.3.5 Deploying the Demo App 66

2.4 Conclusion 67

Chapter 3 Mostly Static Pages 69

3.1 Static Pages 71
3.1.1 Truly Static Pages 71
3.1.2 Static Pages with Rails 74

3.2 Our First Tests 78
3.2.1 Testing Tools 79
3.2.2 TDD: Red, Green, Refactor 82

3.3 Slightly Dynamic Pages 93
3.3.1 Testing a Title Change 93
3.3.2 Passing Title Tests 96
3.3.3 Instance Variables and Embedded Ruby 98
3.3.4 Eliminating Duplication with Layouts 102

3.4 Conclusion 104
3.5 Exercises 105

Contents vii

Chapter 4 Rails-Flavored Ruby 107

4.1 Motivation 107
4.1.1 A title Helper 107
4.1.2 Cascading Style Sheets 110

4.2 Strings and Methods 112
4.2.1 Comments 113
4.2.2 Strings 113
4.2.3 Objects and Message Passing 116
4.2.4 Method Definitions 120
4.2.5 Back to the title Helper 121

4.3 Other Data Structures 121
4.3.1 Arrays and Ranges 122
4.3.2 Blocks 125
4.3.3 Hashes and Symbols 127
4.3.4 CSS Revisited 130

4.4 Ruby Classes 132
4.4.1 Constructors 132
4.4.2 Class Inheritance 133
4.4.3 Modifying Built-In Classes 137
4.4.4 A Controller Class 138
4.4.5 A User Class 141

4.5 Exercises 143

Chapter 5 Filling in the Layout 145

5.1 Adding Some Structure 145
5.1.1 Site Navigation 146
5.1.2 Custom CSS 151
5.1.3 Partials 159

5.2 Layout Links 163
5.2.1 Integration Tests 163
5.2.2 Rails Routes 166
5.2.3 Named Routes 169

5.3 User Signup: A First Step 171
5.3.1 Users Controller 171
5.3.2 Signup URL 175

5.4 Conclusion 177
5.5 Exercises 178

viii Contents

Chapter 6 Modeling and Viewing Users, Part I 181

6.1 User Model 182
6.1.1 Database Migrations 184
6.1.2 The Model File 188
6.1.3 Creating User Objects 190
6.1.4 Finding User Objects 194
6.1.5 Updating User Objects 196

6.2 User Validations 197
6.2.1 Validating Presence 197
6.2.2 Length Validation 203
6.2.3 Format Validation 205
6.2.4 Uniqueness Validation 209

6.3 Viewing Users 213
6.3.1 Debug and Rails Environments 213
6.3.2 User Model, View, Controller 216
6.3.3 A Users Resource 220

6.4 Conclusion 223
6.5 Exercises 223

Chapter 7 Modeling and Viewing Users, Part II 225

7.1 Insecure Passwords 225
7.1.1 Password Validations 226
7.1.2 A Password Migration 230
7.1.3 An Active Record Callback 232

7.2 Secure Passwords 236
7.2.1 A Secure Password Test 236
7.2.2 Some Secure Password Theory 238
7.2.3 Implementing has_password? 240
7.2.4 An Authenticate Method 243

7.3 Better User Views 247
7.3.1 Testing the User Show Page (With Factories) 248
7.3.2 A Name and a Gravatar 252
7.3.3 A User Sidebar 258

7.4 Conclusion 261
7.4.1 Git Commit 261
7.4.2 Heroku Deploy 262

7.5 Exercises 263

Contents ix

Chapter 8 Sign Up 265

8.1 Signup Form 265
8.1.1 Using form_for 267
8.1.2 The Form HTML 270

8.2 Signup Failure 273
8.2.1 Testing Failure 273
8.2.2 A Working Form 277
8.2.3 Signup Error Messages 281
8.2.4 Filtering Parameter Logging 283

8.3 Signup Success 285
8.3.1 Testing Success 285
8.3.2 The Finished Signup Form 287
8.3.3 The Flash 288
8.3.4 The First Signup 290

8.4 RSpec Integration Tests 292
8.4.1 Webrat 293
8.4.2 Users Signup Failure Should Not Make a New User 294
8.4.3 Users Signup Success Should Make a New User 297

8.5 Conclusion 299
8.6 Exercises 300

Chapter 9 Sign In, Sign Out 303

9.1 Sessions 303
9.1.1 Sessions Controller 304
9.1.2 Signin Form 306

9.2 Signin Failure 310
9.2.1 Reviewing Form Submission 310
9.2.2 Failed Signin (Test and Code) 313

9.3 Signin Success 317
9.3.1 The Completed create Action 318
9.3.2 Remember Me 319
9.3.3 Cookies 326
9.3.4 Current User 327

9.4 Signing Out 334
9.4.1 Destroying Sessions 334
9.4.2 Signin Upon Signup 336
9.4.3 Changing the Layout Links 338
9.4.4 Signin/out Integration Tests 341

x Contents

9.5 Conclusion 343
9.6 Exercises 343

Chapter 10 Updating, Showing, and Deleting Users 345

10.1 Updating Users 345
10.1.1 Edit Form 346
10.1.2 Enabling Edits 352

10.2 Protecting Pages 355
10.2.1 Requiring Signed-In Users 355
10.2.2 Requiring the Right User 359
10.2.3 An Expectation Bonus 361
10.2.4 Friendly Forwarding 362

10.3 Showing Users 364
10.3.1 User Index 365
10.3.2 Sample Users 369
10.3.3 Pagination 371
10.3.4 Partial Refactoring 378

10.4 Destroying Users 379
10.4.1 Administrative Users 380
10.4.2 The destroy Action 384

10.5 Conclusion 387
10.6 Exercises 388

Chapter 11 User Microposts 391

11.1 A Micropost Model 391
11.1.1 The Basic Model 392
11.1.2 User/Micropost Associations 395
11.1.3 Micropost Refinements 399
11.1.4 Micropost Validations 403

11.2 Showing Microposts 405
11.2.1 Augmenting the User Show Page 405
11.2.2 Sample Microposts 412

11.3 Manipulating Microposts 414
11.3.1 Access Control 416
11.3.2 Creating Microposts 419
11.3.3 A Proto-Feed 424

Contents xi

11.3.4 Destroying Microposts 433
11.3.5 Testing the New Home Page 435

11.4 Conclusion 438
11.5 Exercises 438

Chapter 12 Following Users 441

12.1 The Relationship Model 442
12.1.1 A Problem with the Data Model (and a Solution) 443
12.1.2 User/Relationship Associations 449
12.1.3 Validations 453
12.1.4 Following 454
12.1.5 Followers 459

12.2 A Web Interface for Following and Followers 461
12.2.1 Sample Following Data 462
12.2.2 Stats and a Follow Form 463
12.2.3 Following and Followers Pages 472
12.2.4 A Working Follow Button the Standard Way 476
12.2.5 A Working Follow Button with Ajax 480

12.3 The Status Feed 485
12.3.1 Motivation and Strategy 485
12.3.2 A First Feed Implementation 489
12.3.3 Scopes, Subselects, and a Lambda 491
12.3.4 The New Status Feed 496

12.4 Conclusion 497
12.4.1 Extensions to the Sample Application 498
12.4.2 Guide to Further Resources 500

12.5 Exercises 501

Index 503

This page intentionally left blank

CHAPTER 4
Rails-Flavored Ruby

Grounded in examples from Chapter 3, this chapter explores some elements of Ruby
important for Rails. Ruby is a big language, but fortunately the subset needed to be
productive as a Rails developer is relatively small. Moreover, this subset is different from
the usual approaches to learning Ruby, which is why, if your goal is making dynamic
web applications, I recommend learning Rails first, picking up bits of Ruby along the
way. To be a Rails expert, you need to understand Ruby more deeply, and this book
gives you a good foundation for developing that expertise. As noted in Section 1.1.1,
after finishing Rails Tutorial I suggest reading a pure Ruby book such as Beginning Ruby,
The Well-Grounded Rubyist, or The Ruby Way.

This chapter covers a lot of material, and it’s okay not to get it all on the first pass.
I’ll refer back to it frequently in future chapters.

4.1 Motivation
As we saw in the last chapter, it’s possible to develop the skeleton of a Rails application,
and even start testing it, with essentially no knowledge of the underlying Ruby language.
We did this by relying on the generated controller and test code and following the
examples we saw there. This situation can’t last forever, though, and we’ll open this
chapter with a couple of additions to the site that bring us face-to-face with our Ruby
limitations.

4.1.1 A title Helper
When we last saw our new application, we had just updated our mostly static pages to
use Rails layouts to eliminate duplication in our views (Listing 4.1).

107

108 Chapter 4: Rails-Flavored Ruby

Listing 4.1 The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Ruby on Rails Tutorial Sample App | <%= @title %></title>

</head>

<body>

<%= yield %>

</body>

</html>

This layout works well, but there’s one part that could use a little polish. Recall that
the title line

Ruby on Rails Tutorial Sample App | <%= @title %>

relies on the definition of @title in the actions, such as

class PagesController < ApplicationController

def home

@title = "Home"

end

.

.

.

But what if we don’t define an @title variable? It’s a good convention to have a base
title we use on every page, with an optional variable title if we want to be more specific.
We’ve almost achieved that with our current layout, with one wrinkle: As you can see if
you delete the @title assignment in one of the actions, in the absence of an @title

variable the title appears as follows:

Ruby on Rails Tutorial Sample App |

4.1 Motivation 109

In other words, there’s a suitable base title, but there’s also a trailing vertical bar character
| at the end of the title.

One common way to handle this case is to define a helper, which is a function
designed for use in views. Let’s define a title helper that returns a base title, “Ruby
on Rails Tutorial Sample App”, if no @title variable is defined, and adds a vertical bar
followed by the variable title if @title is defined (Listing 4.2).1

Listing 4.2 Defining a title helper.
app/helpers/application helper.rb

module ApplicationHelper

Return a title on a per-page basis.

def title

base_title = "Ruby on Rails Tutorial Sample App"

if @title.nil?

base_title

else

"#{base_title} | #{@title}"

end

end

end

This may look fairly simple to the eyes of an experienced Rails developer, but it’s full of
new Ruby ideas: modules, comments, local variable assignment, booleans, control flow,
string interpolation, and return values. We’ll cover each of these ideas in this chapter.

Now that we have a helper, we can use it to simplify our layout by replacing

<title>Ruby on Rails Tutorial Sample App | <%= @title %></title>

with

<title><%= title %></title>

1. If a helper is specific to a particular controller, you should put it in the corresponding helper file; for
example, helpers for the Pages controller generally go in app/helpers/pages helper.rb. In our case, we
expect the title helper to be used on all the site’s pages, and Rails has a special helper file for this case:
app/helpers/application helper.rb.

110 Chapter 4: Rails-Flavored Ruby

as seen in Listing 4.3. Note in particular the switch from the instance variable @title
to the helper method title (without the @ sign). Using Autotest or spec spec/, you
should verify that the tests from Chapter 3 still pass.

Listing 4.3 The sample application site layout.
app/views/layouts/application.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">

<head>

<title><%= title %></title>

</head>

<body>

<%= yield %>

</body>

</html>

4.1.2 Cascading Style Sheets
There’s a second addition to our site that seems simple but adds several new Ruby
concepts: including style sheets into our site layout. Though this is a book in web
development, not web design, we’ll be using cascading style sheets (CSS) to give the
sample application some minimal styling, and we’ll use the Blueprint CSS framework
as a foundation for that styling.

To get started, download the latest Blueprint CSS. (For simplicity, I’ll assume you
download Blueprint to a Downloads directory, but use whichever directory is most
convenient.) Using either the command line or a graphical tool, copy the Blueprint
CSS directory blueprint into the public/stylesheets directory, a special directory
where Rails keeps stylesheets. On my Mac, the commands looked like this, but your
details may differ:

$ cp -r ˜/Downloads/joshuaclayton-blueprint-css-016c911/blueprint \

> public/stylesheets/

Here cp is the Unix copy command, and the -r flag copies recursively (needed for
copying directories). (As mentioned briefly in Section 3.2.1, the tilde ~ means “home
directory” in Unix.)

4.1 Motivation 111

Once you have the stylesheets in the proper directory, Rails provides a helper for
including them on our pages using Embedded Ruby (Listing 4.4).

Listing 4.4 Adding stylesheets to the sample application layout.
app/views/layouts/application.html.erb

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">

<head>

<title><%= title %></title>

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' %>

<%= stylesheet_link_tag 'blueprint/print', :media => 'print' %>

</head>

<body>

<%= yield %>

</body>

</html>

Let’s focus on the new lines:

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' %>

<%= stylesheet_link_tag 'blueprint/print', :media => 'print' %>

These use the built-in Rails helper stylesheet link tag, which you can read more
about at the Rails API.2 The first stylesheet link tag line includes the stylesheet
blueprint/screen.css for screens (e.g., computer monitors), and the second includes
blueprint/print.css for printing. (The helper automatically appends the .css ex-
tension to the filenames if absent, so I’ve left it off for brevity.) As with the title helper,
to an experienced Rails developer these lines look simple, but there are at least four
new Ruby ideas: built-in Rails methods, method invocation with missing parentheses,
symbols, and hashes. In this chapter, we’ll cover these new ideas as well. (We’ll see the
HTML produced by these stylesheets included in Listing 4.6 of Section 4.3.4.)

By the way, with the new stylesheets the site doesn’t look much different from before,
but it’s a start (Figure 4.1). We’ll build on this foundation starting in Chapter 5.3

2. I’ve linked my favorite Rails API source, RailsBrain. Its API version is currently a little out of date, but it
doesn’t usually matter much. If you think it might matter, you can use the official Rails API, but I prefer the
RailsBrain interface. Incidentally, “API” stands for application programming interface.

3. If you’re impatient, feel free to check out the Blueprint CSS Quickstart tutorial.

112 Chapter 4: Rails-Flavored Ruby

Figure 4.1 The Home page with the new Blueprint stylesheets.

4.2 Strings and Methods
Our principal tool for learning Ruby will be the Rails console, which is a command-line
tool for interacting with Rails applications. The console itself is built on top of interactive
Ruby (irb), and thus has access to the full power of Ruby. (As we’ll see in Section 4.4.4,
the console also has access to the Rails environment.) Start the console at the command
line as follows:

$ script/console

Loading development environment (Rails 2.3.8)

>>

By default, the console starts in a development environment, which is one of three separate
environments defined by Rails (the others are test and production). This distinction won’t
be important in this chapter; we’ll learn more about environments in Section 6.3.1.

4.2 Strings and Methods 113

The console is a great learning tool, and you should feel free to explore—don’t worry,
you (probably) won’t break anything. When using the console, type Ctrl-C if you get
stuck, or Ctrl-D to exit the console altogether.

Throughout the rest of this chapter, you might find it helpful to consult the Ruby
API.4 It’s packed (perhaps even too packed) with information; for example, to learn more
about Ruby strings you can look at the Ruby API entry for the String class.

4.2.1 Comments
Ruby comments start with the pound sign # and extend to the end of the line. Ruby (and
hence Rails) ignores comments, but they are useful for human readers (including, often,
the original author!). In the code

Return a title on a per-page basis.

def title

.

.

.

the first line is a comment indicating the purpose of the subsequent function definition.
You don’t ordinarily include comments in console sessions, but for instructional

purposes I’ll include some comments in what follows, like this:

>> 17 + 42 # Integer addition

=> 59

If you follow along in this section typing or copying-and-pasting commands into your
own console, you can of course omit the comments if you like; the console will ignore
them in any case.

4.2.2 Strings
Strings are probably the most important data structure for web applications, since web
pages ultimately consist of strings of characters sent from the server to the browser. Let’s
get started exploring strings with the console.

4. I’ve linked to RubyBrain, sister site to RailsBrain.

114 Chapter 4: Rails-Flavored Ruby

>> "" # An empty string

=> ""

>> "foo" # A nonempty string

=> "foo"

These are string literals (also, amusingly, called literal strings), created using the double
quote character ". The console prints the result of evaluating each line, which in the case
of a string literal is just the string itself.

We can also concatenate strings with the + operator:

>> "foo" + "bar" # String concatenation

=> "foobar"

Here is the result of evaluating "foo" plus "bar" in the string "foobar".5

Another way to build up strings is via interpolation using the special syntax #{}:6

>> first_name = "Michael" # Variable assignment

=> "Michael"

>> "#{first_name} Hartl" # Variable interpolation

=> "Michael Hartl"

Here we’ve assigned the value "Michael" to the variable first name and then inter-
polated it into the string "#{first name} Hartl". We could also assign both strings a
variable name:

>> first_name = "Michael"

=> "Michael"

>> last_name = "Hartl"

=> "Hartl"

>> first_name + " " + last_name # Concatenation, with a space in between

=> "Michael Hartl"

>> "#{first_name} #{last_name}" # The equivalent interpolation

=> "Michael Hartl"

5. For more on the origins of “foo” and “bar”—and, in particular, the possible non-relation of “foobar” to
“FUBAR”—see the Jargon File entry on “foo”.

6. Programmers familiar with Perl or PHP should compare this to the automatic interpolation of dollar sign
variables in expressions like "foo $bar".

4.2 Strings and Methods 115

Note that the final two expressions are equivalent, but I prefer the interpolated version;
having to add the single space " " seems a bit awkward.

Printing
To print a string, the most commonly used Ruby function is puts (pronounced “put
ess”, for “put string”):

>> puts "foo" # put string

foo

=> nil

The puts method operates as a side-effect: the expression puts "foo" prints the string
to the screen and then returns literally nothing: nil is a special Ruby value for “nothing
at all”. (In what follows, I’ll sometimes suppress the => nil part for simplicity.)

Using puts automatically appends a newline character \n to the output; the related
print method does not:

>> print "foo" # print string (same as puts, but without the newline)

foo=> nil

>> print "foo\n" # Same as puts "foo"

foo

=> nil

Single-Quoted Strings
All the examples so far have used double-quoted strings, but Ruby also supports single-
quoted strings. For many uses, the two types of strings are effectively identical:

>> 'foo' # A single-quoted string

=> "foo"

>> 'foo' + 'bar'

=> "foobar"

There’s an important difference, though; Ruby won’t interpolate into single-quoted
strings

>> '#{foo} bar' # Single-quoted strings don't allow interpolation

=> "\#{foo} bar"

116 Chapter 4: Rails-Flavored Ruby

Note how the console returns values using double-quoted strings, which requires a
backslash to escape characters like #.

If double-quoted strings can do everything that single-quoted strings can do, and
interpolate to boot, what’s the point of single-quoted strings? They are often useful
because they are truly literal, and contain exactly the characters you type. For example,
the “backslash” character is special on most systems, as in the literal newline \n. If you
want a variable to contain a literal backslash, single quotes make it easier:

>> '\n' # A literal backslash n

=> "\\n"

As with the # character in our previous example, Ruby needs to escape the backslash with
an additional backslash; inside double-quoted strings, a literal backslash is represented
with two backslashes.

For a small example like this, there’s not much savings, but if there are lots of things
to escape it can be a real help:

>> 'Newlines (\n) and tabs (\t) both use the backslash character \.'

=> "Newlines (\\n) and tabs (\\t) both use the backslash character \\."

4.2.3 Objects and Message Passing
Everything in Ruby, including strings and even nil, is an object. We’ll see the technical
meaning of this in Section 4.4.2, but I don’t think anyone ever understood objects by
reading the definition in a book; you have to build up your intuition for objects by seeing
lots of examples.

It’s easier to describe what objects do, which is respond to messages. An object like
a string, for example, can respond to the message length, which returns the number of
characters in the string:

>> "foobar".length # Passing the "length" message to a string

=> 6

4.2 Strings and Methods 117

Typically, the messages that get passed to objects are methods, which are functions defined
on those objects.7 Strings also respond to the empty? method:

>> "foobar".empty?

=> false

>> "".empty?

=> true

Note the question mark at the end of the empty? method. This is a Ruby convention
indicating that the return value is boolean: true or false. Booleans are especially useful
for control flow:

>> s = "foobar"

>> if s.empty?

>> "The string is empty"

>> else

>> "The string is nonempty"

>> end

=> "The string is nonempty"

Booleans can also be combined using the && (“and”), || (“or”), and ! (“not”) operators:

>> x = "foo"

=> "foo"

>> y = ""

=> ""

>> puts "Both strings are empty" if x.empty? && y.empty?

=> nil

>> puts "One of the strings is empty" if x.empty? || y.empty?

"One of the strings is empty"

=> nil

>> puts "x is not empty" if !x.empty?

=> "x is not empty"

7. Apologies in advance for switching haphazardly between function and method throughout this chapter; in
Ruby, they’re the same thing: All methods are functions, and all functions are methods, because everything is
an object.

118 Chapter 4: Rails-Flavored Ruby

Since everything in Ruby is an object, it follows that nil is an object, so it, too, can
respond to methods. One example is the to s method that can convert virtually any
object to a string:

>> nil.to_s

""

This certainly appears to be an empty string, as we can verify by chaining the messages
we pass to nil:

>> nil.empty?

NoMethodError: You have a nil object when you didn't expect it!

You might have expected an instance of Array.

The error occurred while evaluating nil.empty?

>> nil.to_s.empty? # Message chaining

true

We see here that the nil object doesn’t itself respond to the empty? method, but
nil.to s does.

There’s a special method for testing for nil-ness, which you might be able to guess:

>> "foo".nil?

=> false

>> "".nil?

=> false

>> nil.nil?

=> true

If you look back at Listing 4.2, you’ll see that the title helper tests to see if @title
is nil using the nil?method. This is a hint that there’s something special about instance
variables (variables with an @ sign), which can best be understood by contrasting them
with ordinary variables. For example, suppose we enter title and @title variables at
the console without defining them first:

>> title # Oops! We haven't defined a title variable.

NameError: undefined local variable or method `title'

>> @title # An instance variable in the console

4.2 Strings and Methods 119

=> nil

>> puts "There is no such instance variable." if @title.nil?

There is no such instance variable.

=> nil

>> "#{@title}" # Interpolating @title when it's nil

""

You can see from this example that Ruby complains if we try to evaluate an undefined
local variable, but issues no such complaint for an instance variable; instead, instance
variables are nil if not defined. This code also explains why the code

Ruby on Rails Tutorial Sample App | <%= @title %>

becomes

Ruby on Rails Tutorial Sample App |

when @title is nil: Embedded Ruby inserts the string corresponding to the given
variable, and the string corresponding to nil is "".

The last example also shows an alternate use of the if keyword: Ruby allows you to
write a statement that is evaluated only if the statement following if is true. There’s a
complementary unless keyword that works the same way:

>> string = "foobar"

>> puts "The string '#{string}' is nonempty." unless string.empty?

The string 'foobar' is nonempty.

=> nil

It’s worth noting that the nil object is special, in that it is the only Ruby object that
is false in a boolean context, apart from false itself:

>> if nil

>> true

>> else

>> false # nil is false

>> end

=> false

120 Chapter 4: Rails-Flavored Ruby

In particular, all other Ruby objects are true, even 0:

>> if 0

>> true # 0 (and everything other than nil and false itself) is true

>> else

>> false

>> end

=> true

4.2.4 Method Definitions
The console allows us to define methods the same way we did with the home action from
Listing 3.5 or the title helper from Listing 4.2. (Defining methods in the console is a bit
cumbersome, and ordinarily you would use a file, but it’s convenient for demonstration
purposes.) For example, let’s define a function string message that takes a single
argument and returns a message based on whether the argument is empty or not:

>> def string_message(string)

>> if string.empty?

>> "It's an empty string!"

>> else

>> "The string is nonempty."

>> end

>> end

=> nil

>> puts string_message("")

It's an empty string!

>> puts string_message("foobar")

The string is nonempty.

Note that Ruby functions have an implicit return, meaning they return the last statement
evaluated—in this case, one of the two message strings, depending on whether the
method’s argument string is empty or not. Ruby also has an explicit return option;
the following function is equivalent to the one above:

>> def string_message(string)

>> return "It's an empty string!" if string.empty?

>> return "The string is nonempty."

>> end

4.3 Other Data Structures 121

The alert reader might notice at this point that the second return here is actually
unnecessary—being the last expression in the function, the string "The string is

nonempty." will be returned regardless of the return keyword, but using return in
both places has a pleasing symmetry to it.

4.2.5 Back to the title Helper
We are now in a position to understand the title helper from Listing 4.2:8

module ApplicationHelper

Return a title on a per-page basis. # Documentation comment

def title # Method definition

base_title = "Ruby on Rails Tutorial Sample App" # Variable assignment

if @title.nil? # Boolean test for nil

base_title # Implicit return

else

"#{base_title} | #{@title}" # String interpolation

end

end

end

These elements—function definition, variable assignment, boolean tests, control
flow, and string interpolation—come together to make a compact helper method for use
in our site layout. The final element is module ApplicationHelper: code in Ruby
modules can be mixed in to Ruby classes. When writing ordinary Ruby, you often write
modules and include them explicitly yourself, but in this case Rails handles the inclusion
automatically for us. The result is that the title method is automatically available in
all our views.

4.3 Other Data Structures
Though web apps are ultimately about strings, actually making those strings requires
using other data structures as well. In this section, we’ll learn about some Ruby data
structures important for writing Rails applications.

8. Well, there will still be one thing left that we don’t understand, which is how Rails ties this all together:
mapping URLs to actions, making the title helper available in views, etc. This is an interesting subject, and
I encourage you to investigate it further, but knowing exactly how Rails works is not necessary to using Rails.
(For a deeper understanding, I recommend The Rails Way by Obie Fernandez.)

122 Chapter 4: Rails-Flavored Ruby

4.3.1 Arrays and Ranges
An array is just a list of elements in a particular order. We haven’t discussed arrays yet
in Rails Tutorial, but understanding them gives a good foundation for understanding
hashes (Section 4.3.3) and for aspects of Rails data modeling (such as the has many

association seen in Section 2.3.3 and covered more in Section 11.1.2).
So far we’ve spent a lot of time understanding strings, and there’s a natural way to

get from string to arrays using the split method:

>> "foo bar baz".split # Split a string into a three-element array

=> ["foo", "bar", "baz"]

The result of this operation is an array of three strings. By default, split divides a string
into an array by splitting on whitespace, but you can split on nearly anything else:

>> "fooxbarxbazx".split('x')

=> ["foo", "bar", "baz"]

As is conventional in most computer languages, Ruby arrays are zero-offset, which
means that the first element in the array has index 0, the second has index 1, and so on:

>> a = [42, 8, 17]

=> [42, 8, 17]

>> a[0] # Ruby uses square brackets for array access.

=> 42

>> a[1]

=> 8

>> a[2]

=> 17

>> a[-1] # Indices can even be negative!

=> 17

We see here that Ruby uses square brackets to access array elements. In addition to this
bracket notation, Ruby offers synonyms for some commonly accessed elements:

>> a # Just a reminder of what 'a' is

=> [42, 8, 17]

>> a.first

4.3 Other Data Structures 123

=> 42

>> a.second

=> 8

>> a.last

=> 17

>> a.last == a[-1] # Comparison using ==

=> true

This last line introduces the equality comparison operator ==, which Ruby shares with
many other languages, along with the associated != (“not equal”), etc.:

>> x = a.length # Like strings, arrays respond to the 'length' method.

=> 3

>> x == 3

=> true

>> x == 1

=> false

>> x != 1

=> true

>> x >= 1

=> true

>> x < 1

=> false

In addition to length (seen in the first line above), arrays respond to a wealth of
other methods:

>> a.sort

=> [8, 17, 42]

>> a.reverse

=> [17, 8, 42]

>> a.shuffle

=> [17, 42, 8]

By the way, the shuffle method is available only on Ruby 1.8.7 or later; if you’re using
1.8.6, you can use

>> a.sort_by { rand }

instead.

124 Chapter 4: Rails-Flavored Ruby

You can also add to arrays with the “push” operator, <<:

>> a << 7 # Pushing 7 onto an array

[42, 8, 17, 7]

>> a << "foo" << "bar" # Chaining array pushes

[42, 8, 17, 7, "foo", "bar"]

This last example shows that you can chain pushes together, and also that, unlike arrays
in many other languages, Ruby arrays can contain a mixture of different types (in this
case, integers and strings).

Before we saw split convert a string to an array. We can also go the other way with
the join method:

>> a

[42, 8, 17, 7, "foo", "bar"]

>> a.join # Join on nothing

=> "428177foobar"

>> a.join(', ') # Join on comma-space

=> "42, 8, 17, 7, foo, bar"

Closely related to arrays are ranges, which can probably most easily be understood
by converting them to arrays using the to a method:

>> 0..9

=> 0..9

>> 0..9.to_a # Oops, call to_a on 9

ArgumentError: bad value for range

>> (0..9).to_a # Use parentheses to call to_a on the range

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Though 0..9 is a valid range, the second expression above shows that we need to add
parentheses to call a method on it.

Ranges are useful for pulling out array elements:

>> a = %w[foo bar baz quux] # Use %w to make a string array

["foo", "bar", "baz", "quux"]

>> a[0..2]

=> ["foo", "bar", "baz"]

4.3 Other Data Structures 125

Ranges also work with characters:

>> ('a'..'e').to_a

=> ["a", "b", "c", "d", "e"]

4.3.2 Blocks
Both arrays and ranges respond to a host of methods that accept blocks, which are
simultaneously one of Ruby’s most powerful and most confusing features:

>> (1..5).each { |i| puts 2 * i }

2

4

6

8

10

=> 1..5

This code calls the each method on the range (1..5) and passes it the block { |i|

puts 2 * i }. The vertical bars around the variable name in |i| are Ruby syntax for
a block variable, and it’s up to the method to know what to do with the block; in this
case, the range’s each method can handle a block with a single local variable, which
we’ve called i, and it just executes the block for each value in the range.

Curly braces are one way to indicate a block, but there is a second way as well:

>> (1..5).each do |i|

?> puts 2 * i

>> end

2

4

6

8

10

=> 1..5

Blocks can be more than one line, and often are. In Rails Tutorial we’ll follow the
common convention of using curly braces only for short one-line blocks and the do..end
syntax for longer one-liners and for multi-line blocks:

126 Chapter 4: Rails-Flavored Ruby

>> (1..5).each do |number|

?> puts 2 * number

>> puts '--'

>> end

2

--

4

--

6

--

8

--

10

--

=> 1..5

Here I’ve used number in place of i just to emphasize that any variable name will do.
Unless you already have a substantial programming background, there is no shortcut

to understanding blocks; you just have to see them a lot, and eventually you’ll get used
to them.9 Luckily, humans are quite good at making generalizations from concrete
examples; here are a few more, including a couple using the map method:

>> 3.times { puts "Betelgeuse!" } # 3.times takes a block with no variables.

"Betelgeuse!"

"Betelgeuse!"

"Betelgeuse!"

=> 3

>> (1..5).map { |i| i**2 } # The ** notation is for 'power'.

=> [1, 4, 9, 16, 25]

>> %w[a b c] # Recall that %w makes string arrays.

=> ["a", "b", "c"]

>> %w[a b c].map { |char| char.upcase }

=> ["A", "B", "C"]

As you can see, the map method returns the result of applying the given block to each
element in the array or range.

9. Programming experts, on the other hand, might benefit from knowing that blocks are closures, which are
one-shot anonymous functions with data attached.

4.3 Other Data Structures 127

By the way, we’re now in a position to understand the line of Ruby I threw into
Section 1.4.4 to generate random subdomains:10

('a'..'z').to_a.shuffle[0..7].join

Let’s build it up step by step:

>> ('a'..'z').to_a # An alphabet array

=> ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o",

"p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]

>> ('a'..'z').to_a.shuffle # Shuffle it!

=> ["c", "g", "l", "k", "h", "z", "s", "i", "n", "d", "y", "u", "t", "j", "q",

"b", "r", "o", "f", "e", "w", "v", "m", "a", "x", "p"]

>> ('a'..'z').to_a.shuffle[0..7] # Pull out the first eight elements.

=> ["f", "w", "i", "a", "h", "p", "c", "x"]

>> ('a'..'z').to_a.shuffle[0..7].join # Join them together to make one string.

=> "mznpybuj"

4.3.3 Hashes and Symbols
Hashes are essentially a generalization of arrays: You can think of hashes as basically like
arrays, but not limited to integer indices. (In fact, some languages, especially Perl, call
hashes associative arrays for this reason.) Instead, hash indices, or keys, can be almost any
object. For example, we can use strings as keys:

>> user = {} # {} is an empty hash

=> {}

>> user["first_name"] = "Michael" # Key "first_name", value "Michael"

=> "Michael"

>> user["last_name"] = "Hartl" # Key "last_name", value "Hartl"

=> "Hartl"

>> user["first_name"] # Element access is like arrays

=> "Michael"

>> user # A literal representation of the hash

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

10. Recall that shuffle isn’t available in Ruby 1.8.6; you have to use sort by { rand } instead.

128 Chapter 4: Rails-Flavored Ruby

Hashes are indicated with curly braces containing key-value pairs; a pair of braces with
no key-value pairs—i.e., {}—is an empty hash. It’s important to note that the curly
braces for hashes have nothing to do with the curly braces for blocks. (Yes, this can
be confusing.) Though hashes resemble arrays, one important difference is that hashes
don’t generally guarantee keeping their elements in a particular order.11 If order matters,
use an array.

Instead of defining hashes one item at a time using square brackets, it’s easy to use
their literal representation:

>> user = { "first_name" => "Michael", "last_name" => "Hartl" }

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

Here I’ve used the usual Ruby convention of putting an extra space at the two ends of
the hash—a convention ignored by the console output. (Don’t ask me why the spaces
are conventional; probably some early influential Ruby programmer liked the look of
the extra spaces, and the convention stuck.)

So far we’ve used strings as hash keys, but in Rails it is much more common to use
symbols instead. Symbols look kind of like strings, but prefixed with a colon instead of
surrounded by quotes. For example, :name is a symbol. You can think of symbols as
basically strings without all the extra baggage:12

>> "name".length

4

>> :name.length

NoMethodError: undefined method `length' for :name:Symbol

>> "foobar".reverse

=> "raboof"

>> :foobar.reverse

NoMethodError: undefined method `reverse' for :foobar:Symbol

Symbols are a special Ruby data type shared with very few other languages, so they may
seem weird at first, but Rails uses them a lot, so you’ll get used to them fast.

11. Apparently Ruby 1.9 guarantees that hashes keep their elements in the same order entered, but it would be
unwise ever to count on a particular ordering.

12. As a result of having less baggage, symbols are easier to compare to each other; strings need to be compared
character by character, while symbols can be compared all in one go. This makes them ideal for use as hash
keys.

4.3 Other Data Structures 129

In terms of symbols as hash keys, we can define a user hash as follows:

>> user = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> user[:name] # Access the value corresponding to :name.

=> "Michael Hartl"

>> user[:password] # Access the value of an undefined key.

=> nil

We see here from the last example that the hash value for an undefined key is simply nil.
Hash values can be virtually anything, even other hashes, as seen in Listing 4.5.

Listing 4.5 Nested hashes

>> params = {} # Define a hash called 'params' (short for 'parameters').

=> {}

>> params[:user] = { :name => "Michael Hartl", :email => "mhartl@example.com" }

=> {:name=>"Michael Hartl", :email=>"mhartl@example.com"}

>> params

=> {:user=>{:name=>"Michael Hartl", :email=>"mhartl@example.com"}}

>> params[:user][:email]

=> "mhartl@example.com"

These sorts of hashes-of-hashes, or nested hashes, are heavily used by Rails, as we’ll see
starting in Section 8.2.

As with arrays and ranges, hashes respond to the eachmethod. For example, consider
a hash named flash with keys for two conditions, :success and :error:

>> flash = { :success => "It worked!", :error => "It failed. :-(" }

=> {:success=>"It worked!", :error=>"It failed. :-("}

>> flash.each do |key, value|

?> puts "Key #{key.inspect} has value #{value.inspect}"

>> end

Key :success has value "It worked!"

Key :error has value "It failed. :-("

Note that, while the each method for arrays takes a block with only one variable, each
for hashes takes two, a key and a value. Thus, the eachmethod for a hash iterates through
the hash one key-value pair at a time.

130 Chapter 4: Rails-Flavored Ruby

The last example uses the useful inspect method, which returns a string with a
literal representation of the object it’s called on:

>> puts flash # Put the flash hash as a string (with ugly results).

successIt worked!errorIt failed. :-(

>> puts flash.inspect # Put the flash hash as a pretty string

{:success=>"It worked!", :error=>"It failed. :-("}

>> puts :name, :name.inspect

name

:name

>> puts "It worked!", "It worked!".inspect

It worked!

"It worked!"

By the way, using inspect to print an object is common enough that there’s a shortcut
for it, the p function:

>> p flash # Same as 'puts flash.inspect'

{:success=>"It worked!", :error=>"It failed. :-("}

4.3.4 CSS Revisited
It’s time now to revisit the lines from Listing 4.4 used in the layout to include the
cascading style sheets:

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' %>

<%= stylesheet_link_tag 'blueprint/print', :media => 'print' %>

We are now nearly in a position to understand this. As mentioned briefly in
Section 4.1.2, Rails defines a special function to include stylesheets, and

stylesheet_link_tag 'blueprint/screen', :media => 'screen'

is a call to this function. But there are two mysteries. First, where are the parentheses?
In Ruby, they are optional; these two lines are equivalent:

4.3 Other Data Structures 131

Parentheses on function calls are optional.

stylesheet_link_tag('blueprint/screen', :media => 'screen')

stylesheet_link_tag 'blueprint/screen', :media => 'screen'

Second, the :media argument sure looks like a hash, but where are the curly braces?
When hashes are the last argument in a function call, the curly braces are optional; these
two lines are equivalent:

Curly braces on final hash arguments are optional.

stylesheet_link_tag 'blueprint/screen', { :media => 'screen' }

stylesheet_link_tag 'blueprint/screen', :media => 'screen'

So, we see now that each of the lines

<%= stylesheet_link_tag 'blueprint/screen', :media => 'screen' %>

<%= stylesheet_link_tag 'blueprint/print', :media => 'print' %>

calls the stylesheet link tag function with two arguments: a string, indicating the
path to the stylesheet, and a hash, indicating the media type (’screen’ for the computer
screen and ’print’ for a printed version). Because of the <%= %> brackets, the results
are inserted into the template by ERb, and if you view the source of the page in your
browser you should see the HTML needed to include a stylesheet (Listing 4.6).13

Listing 4.6 The HTML source produced by the CSS includes

<link href="/stylesheets/blueprint/screen.css" media="screen" rel="stylesheet"

type="text/css" />

<link href="/stylesheets/blueprint/print.css" media="print" rel="stylesheet"

type="text/css" />

13. You may see some funky numbers, like ?1257465942, after the CSS filenames. These are inserted by Rails
to ensure that browsers reload the CSS when it changes on the server.

132 Chapter 4: Rails-Flavored Ruby

4.4 Ruby Classes
We’ve said before that everything in Ruby is an object, and in this section we’ll finally
get to define some of our own. Ruby, like many object-oriented languages, uses classes
to organize methods; these classes are then instantiated to create objects. If you’re new
to object-oriented programming, this may sound like gibberish, so let’s look at some
concrete examples.

4.4.1 Constructors
We’ve seen lots of examples of using classes to instantiate objects, but we have yet to do
so explicitly. For example, we instantiated a string using the double quote characters,
which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes

=> "foobar"

>> s.class

=> String

We see here that strings respond to the method class, and simply return the class they
belong to.

Instead of using a literal constructor, we can use the equivalent named constructor,
which involves calling the new method on the class name:

>> s = String.new("foobar") # A named constructor for a string

=> "foobar"

>> s.class

=> String

>> s == "foobar"

=> true

This is equivalent to the literal constructor, but it’s more explicit about what we’re doing.
Arrays work the same way as strings:

>> a = Array.new([1, 3, 2])

=> [1, 3, 2]

4.4 Ruby Classes 133

Hashes, in contrast, are different. While the array constructor Array.new takes an initial
value for the array, Hash.new takes a default value for the hash, which is the value of the
hash for a nonexistent key:

>> h = Hash.new

=> {}

>> h[:foo] # Try to access the value for the nonexistent key :foo.

=> nil

>> h = Hash.new(0) # Arrange for nonexistent keys to return 0 instead of nil.

=> {}

>> h[:foo]

=> 0

4.4.2 Class Inheritance
When learning about classes, it’s useful to find out the class hierarchy using the super-
class method:

>> s = String.new("foobar")

=> "foobar"

>> s.class # Find the class of s.

=> String

>> s.class.superclass # Find the superclass of String.

=> Object

>> s.class.superclass.superclass # Find the superclass of Object (it's nil!).

=> nil

A diagram of this inheritance hierarchy appears in Figure 4.2. We see here that the
superclass of String is Object, but Object has no superclass. This pattern is true of
every Ruby object: Trace back the class hierarchy far enough and every class in Ruby
ultimately inherits from Object, which has no superclass itself. This is the technical
meaning of “everything in Ruby is an object.”

To understand classes a little more deeply, there’s no substitute for making one of
our own. Let’s make a Word class with a palindrome? method that returns true if the
word is the same spelled forward and backward:

134 Chapter 4: Rails-Flavored Ruby

Object

String

Figure 4.2 The inheritance hierarchy for the String class.

>> class Word

>> def palindrome?(string)

>> string == string.reverse

>> end

>> end

=> nil

We can use it as follows:

>> w = Word.new # Make a new Word object

=> #<Word:0x22d0b20>

>> w.palindrome?("foobar")

=> false

>> w.palindrome?("level")

=> true

4.4 Ruby Classes 135

If this example strikes you as a bit contrived, good; this is by design. It’s odd to
create a new class just to create a method that takes a string as an argument. Since a
word is a string, it’s more natural to have our Word class inherit from String, as seen in
Listing 4.7. (You should exit the console and re-enter it to clear out the old definition
of Word.)

Listing 4.7 Defining a Word class in irb

>> class Word < String # Word inherits from String.

>> # Return true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse # self is the string itself.

>> end

>> end

=> nil

Here Word < String is the Ruby syntax for inheritance (discussed briefly in Section
3.1.2), which ensures that, in addition to the new palindrome? method, words also
have all the same methods as strings:

>> s = Word.new("level") # Make a new Word, initialized with "level".

=> "level"

>> s.palindrome? # Words have the palindrome? method.

=> true

>> s.length # Words also inherit all the normal string methods.

=> 5

Since the Word class inherits from String, we can use the console to see the class
hierarchy explicitly:

>> s.class

=> Word

>> s.class.superclass

=> String

>> s.class.superclass.superclass

=> Object

This hierarchy is illustrated in Figure 4.3.

136 Chapter 4: Rails-Flavored Ruby

Object

Word

String

Figure 4.3 The inheritance hierarchy for the (non-built-in) Word class from Listing 4.7.

4.4 Ruby Classes 137

In Listing 4.7, note that checking that the word is its own reverse involves accessing
the word inside the Word class. Ruby allows us to do this using the self keyword: Inside
the Word class, self is the object itself, which means we can use

self == self.reverse

to check if the word is a palindrome.14

4.4.3 Modifying Built-In Classes
While inheritance is a powerful idea, in the case of palindromes it might be even more
natural to add the palindrome? method to the String class itself, so that (among other
things) we can call palindrome? on a string literal, which we currently can’t do:

>> "level".palindrome?

NoMethodError: undefined method `palindrome?' for "level":String

Somewhat amazingly, Ruby lets you do just this; Ruby classes can be opened and
modified, allowing ordinary mortals such as ourselves to add methods to them:15

>> class String

>> # Return true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse

>> end

>> end

=> nil

>> "deified".palindrome?

=> true

(I don’t know which is cooler: that Ruby lets you add methods to built-in classes, or that
"deified" is a palindrome.)

14. For more on Ruby classes and the self keyword, see the RailsTips post on Class and Instance Variables in
Ruby.

15. For those familiar with JavaScript, this functionality is comparable to using a built-in class prototype object
to augment the class. (Thanks to reader Erik Eldridge for pointing this out.)

138 Chapter 4: Rails-Flavored Ruby

Modifying built-in classes is a powerful technique, but with great power comes
great responsibility, and it’s considered bad form to add methods to built-in classes
without having a really good reason for doing so. Rails does have some good reasons; for
example, in web applications we often want to prevent variables from being blank—e.g.,
a user’s name should be something other than spaces and other whitespace—so Rails
adds a blank? method to Ruby. Since the Rails console automatically includes the Rails
extensions, we can see an example here (this won’t work in plain irb):

>> "".blank?

=> true

>> " ".empty?

=> false

>> " ".blank?

=> true

>> nil.blank?

=> true

We see that a string of spaces is not empty, but it is blank. Note also that nil is blank;
since nil isn’t a string, this is a hint that Rails actually adds blank? to String’s base
class, which (as we saw at the beginning of this section) is Object itself. We’ll see some
other examples of Rails additions to Ruby classes in Section 9.3.3.

4.4.4 A Controller Class
All this talk about classes and inheritance may have triggered a flash of recognition,
because we have seen both before, in the Pages controller (Listing 3.16):

class PagesController < ApplicationController

def home

@title = "Home"

end

def contact

@title = "Contact"

end

def about

@title = "About"

end

end

4.4 Ruby Classes 139

You’re now in a position to appreciate, at least vaguely, what this code means: Pa-
gesController is a class that inherits from ApplicationController, and comes
equipped with home, contact, and about methods, each of which defines the instance
variable @title. Since each Rails console session loads the local Rails environment, we
can even create a controller explicitly and examine its class hierarchy:16

>> controller = PagesController.new

=> #<PagesController:0x22855d0>

>> controller.class

=> PagesController

>> controller.class.superclass

=> ApplicationController

>> controller.class.superclass.superclass

=> ActionController::Base

>> controller.class.superclass.superclass.superclass

=> Object

A diagram of this hierarchy appears in Figure 4.4.
We can even call the controller actions inside the console, which are just methods:

>> controller.home

=> "Home"

This return value of "Home" comes from the assignment @title = "Home" in the home
action.

But wait—actions don’t have return values, at least not ones that matter. The point
of the home action, as we saw in Chapter 3, is to render a web page. And I sure don’t
remember ever calling PagesController.new anywhere. What’s going on?

What’s going on is that Rails is written in Ruby, but Rails isn’t Ruby. Some Rails
classes are used like ordinary Ruby objects, but some are just grist for Rails’ magic mill.
Rails is sui generis, and should be studied and understood separately from Ruby. This is
why, if your principal programming interest is writing web applications, I recommend
learning Rails first, then learning Ruby, then looping back to Rails.

16. You don’t have to know what each class in this hierarchy does. I don’t know what they all do, and I’ve been
programming in Ruby on Rails since 2005. This means either that (a) I’m grossly incompetent or (b) you can
be a skilled Rails developer without knowing all its innards. I hope for both our sakes that it’s the latter. :-)

140 Chapter 4: Rails-Flavored Ruby

PagesController

ApplicationController

Object

ActionController::Base

Figure 4.4 The inheritance hierarchy for the Pages controller.

4.4 Ruby Classes 141

4.4.5 A User Class
We end our tour of Ruby with a complete class of our own, a User class that anticipates
the User model coming up in Chapter 6.

So far we’ve entered class definitions at the console, but this quickly becomes tire-
some; instead, create the file example user.rb in your Rails root directory and fill it
with the contents of Listing 4.8. (Recall from Section 1.1.3 that the Rails root is the
root of your application directory; for example, the Rails root for my sample application
is /Users/mhartl/rails_projects/sample_app.)

Listing 4.8 Code for an example user.
example user.rb

class User

attr_accessor :name, :email

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

def formatted_email

"#{@name} <#{@email}>"

end

end

There’s quite a bit going on here, so let’s take it step by step. The first line,

attr_accessor :name, :email

creates attribute accessors corresponding to a user’s name and email address. This creates
“getter” and “setter” methods that allow us to retrieve (get) and assign (set) @name and
@email instance variables.

The first method, initialize, is special in Ruby: It’s the method called when we
execute User.new. This particular initialize takes one argument, attributes:

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

142 Chapter 4: Rails-Flavored Ruby

Here the attributes variable has a default value equal to the empty hash, so that we can
define a user with no name or email address (recall from Section 4.3.3 that hashes return
nil for nonexistent keys, so attributes[:name] will be nil if there is no :name key,
and similarly for attributes[:email]).

Finally, our class defines a method called formatted email that uses the values of
the assigned @name and @email variables to build up a nicely formatted version of the
user’s email address using string interpolation (Section 4.2.2):

def formatted_email

"#{@name} <#{@email}>"

end

Let’s fire up the console, require the example user code, and take our User class
out for a spin:

>> require 'example_user' # This is how you load the example_user code.

=> ["User"]

>> example = User.new

=> #<User:0x224ceec @email=nil, @name=nil>

>> example.name # nil since attributes[:name] is nil

=> nil

>> example.name = "Example User" # Assign a non-nil name

=> "Example User"

>> example.email = "user@example.com" # and a non-nil email address

=> "user@example.com"

>> example.formatted_email

=> "Example User <user@example.com>"

This code creates an empty example user and then fills in the name and email address
by assigning directly to the corresponding attributes (assignments made possible by the
attr accessor line in Listing 4.8). When we write

example.name = "Example User"

Ruby is setting the @name variable to "Example User" (and similarly for the email

attribute), which we then use in the formatted email method.
Recalling from Section 4.3.4 that we can omit the curly braces for final hash ar-

guments, we can create another user by passing a hash to the initialize method to
create a user with pre-defined attributes:

4.5 Exercises 143

>> user = User.new(:name => "Michael Hartl", :email => "mhartl@example.com")

=> #<User:0x225167c @email="mhartl@example.com", @name="Michael Hartl">

>> user.formatted_email

=> "Michael Hartl <mhartl@example.com>"

We will see starting in Chapter 8 that initializing objects using a hash argument is
common in Rails applications.

4.5 Exercises
1. Using Listing 4.9 as a guide, combine the split, shuffle, and join methods to

write a function that shuffles the letters in a given string.
2. Using Listing 4.10 as a guide, add a shuffle method to the String class.
3. Create three hashes called person1, person2, and person3, with first and

last names under the keys :first and :last. Then create a params hash
so that params[:father] is person1, params[:mother] is person2, and
params[:child] is person3. Verify that, for example, params[:father]

[:first] has the right value.
4. Learn about the Hash method merge.

Listing 4.9 Skeleton for a string shuffle function

>> def string_shuffle(s)

>> s.split('').?.?

>> end

=> nil

>> string_shuffle("foobar")

Listing 4.10 Skeleton for a shuffle method attached to the String class

>> class String

>> def shuffle

>> self.split('').?.?

>> end

>> end

=> nil

>> "foobar".shuffle

This page intentionally left blank

Index

f indicates figure, t indicates table, and b indicates box.

!, 117
#{}, 114
&&, 117
@. See Instance variables
== (equality comparison operator),

123
=∼ (equals-tilde operator), 174
!= (not equal), 123
<<: (push operator), 124, 377
<%= ... %>, 100
[] (array elements), 122
{ } (block variable), 125
“ ” (double quotes), 114
{ } (hash), 127–128
| |, 332b–333b

block variable, 125
boolean combination, 117

@ (instance variables), 54–55, 99
+ operator, 114
!: operator (not), 333
(pound sign), 113
<%= @title %>, 100, 108
/ URL, 164t, 165
<%= yield %>, 102–103

A
a (anchor tag), 97
about action, 82
About page

with embedded Ruby title, 101
full HTML structure, 97

/about URL, 164, 164t
About view, with HTML structure removed,

103–104
about path definition, changing, 163, 168
about URL, 168
Access control, 416–419

authenticate method in Microposts
controller actions, adding, 418

authenticate method in Sessions helper,
moving, 417–418

Microposts controller, tests for, 418
Accessible attributes, 190
ActionController::Base, 65–66, 65f
ActionController::Routing::Routes.draw do

[map], 167
Actions. See also specific actions

Rails, 74
views and, 77

503

504 Index

Actions, user
destroy, 46–47, 54f
edit, 46
new, 46, 48f
show, 46
with updated information, 52f

action=“users,” 273
Active Record, 54, 183
Active record callback, 232–236
ActiveRecord::Base, 64
ActiveRecord::RecordNotFound, 195
add column method, 232, 232f
add index method, 212
admin attribute

boolean, migration to add to users,
381–382, 382f

tests for, 380–381
:admin=> :true, 386
admin user, sample data populator

code with, 383
Advantages, of Ruby on Rails, 3–4
Ajax requests, Relationship controller

responses to
code, 483–484
tests, 481–482

Ajax, working follow button using,
480–485

:alt, 149
alt attribute, 149–150
Anchor tag (a), 97
annotate command, 189–190
annotate-models gem, 189
API, REST, 500
app/, 16t
app/ director, 16
ApplicationController, 65–66,

138–139
ApplicationController class with

inheritance, 66
application.html.erb, 102

app/models/user.rb
User.authenticate method, 246–247
validating email format with regular

expression, 207t, 208f
Array elements ([]), 122
Array.new, 133
Arrays, 122–124

associative, 127
constructors for, 132–133
following, of users, 446–447
joining, 123
length method on, 123
push operator on, 124
ranges on, 124
shuffle method on, 123
split method on, 122
splitting of, 122
strings to, 122

Associations. See also specific associations
micropost, 62–63, 64f
user/micropost, 394–399, 394f, 399t

Associative arrays, 127
@attr, 394

in initialization hash, 199–200
in password validation test, 227–228

@attr hash, in test for signup failure, 275
attr accessible attributes

revisiting, 383–384
in user model, 383

attr accessible, for adding passwords and
password confirmation, 230

attr accessible method
for name and email access, 190
for name and email presence, 203
for name presence, 198
use of, 198
for user microposts, 393–394

attr accessor, 141–142
attr accessor keyword, 184, 228
attr accessor :password, 229

Index 505

Attribute accessors. See also specific types
for name and email, 141–142

attributes, 141–142. See also specific attributes
@attr.merge

to make new user, 200–202
for password validation, 227–228

attr.merge techniques, 228
authenticate method, 313–314, 357

code, 246–247
defining, alternative, 246
exercises, 263–264
Microposts controller actions, adding to, 418
for secure passwords, 243–247
Sessions helper, moving into, 417–418
tests for, 244
writing, 247

Authentication, 225
adding, before filter, 357
first tests for, 356–357
for signed-in user, tests, 359
of users, 237

Authlogic, 181b
Automated testing, 69
.autotest additions

for OS X, 165
for Ubuntu Linux, 166

Autotest installation, 80–82
autotest-fsevent gem, 81
autotest-growl gem, 81–82
Avatar, 255

B
Bates, Rain, 2
Before filter, 357
before filter :authenticate, 357
before(:each), 200
before save callback

to create encrypted password, 233–234
to create encrypted password attribute,

233–234

before save method, 233–234
Behavior-driven development (BDD), 78
belongs to association, 395, 395f, 398,

452
adding to Relationship model, 453
user/relationships, testing, 452

be valid, 202
blank? method, 138

for encrypted password attribute, 233
for name, 199
use of, 199

Blocks, 125–127
Blueprint CSS, 110–111, 112f

downloading, 110
fixing IE idiosyncrasies with, 148
home page with, 111, 112f

blueprint/print.css, 111
blueprint/screen.css, 111
Body, custom.css for, 152–155, 154f
Body section, 73
Books, resource, 501
Booleans, 117
Bracket notation, 122
Branches, Git, 30–31, 30–32

creating new, 74
master, 30

Brand new user model, code for, 189
Browsers, 11, 11f
build method, 404
Built-in classes, modifying, 137–138
Button

follow (See Follow button)
linking to signup page, 176, 177f
signup, 156–157, 157f

C
Callback, active record, 232–236
callback method, 232–233
CanCan, 181b
Capybara, 293

506 Index

Cascading style sheets (CSS), 110–112
Blueprint (See Blueprint CSS)
custom (custom.css), 151–159 (See also

Custom cascading style sheets
(custom.css))

embedded Ruby helper for, 111
revisited, 130–131
stylesheet link tag, 111, 130
for styling user show page, including

sidebar, 260, 261f
:case sensitive, 210
change method, 297
Characters, ranges on, 125
checkout command, 28
Chrome, 11
:class, 149
class << self, 246
Class hierarchy, 133
Class inheritance, 133–137, 134f, 136f
class method, 132, 244–247
Class, user, 141–143

example, code, 141
with inheritance, 64

Class, with inheritance, 49
Classes, 132–143. See also specific classes

built-in classes, modifying, 137–138
class inheritance, 133–137, 134f,

136f
constructors, 132–133
controller, 138–139, 140f
defining, 76–77
HTML elements, assigning to, 149
vs. ids, 149
instantiation of, 132
use of, 76
user, 141–143

Classes, Ruby, 132–143
built-in classes, modifying, 137–138
class inheritance, 133–137, 134f, 136f

constructors, 132–133
controller, 138–139, 140f
user, 141–143

Clearance, 181b–182b
cleartext, 238
click link method, 437
click link :Sign out”, 342
Closures, 126
Code. See also specific topics

generated, 2
:collection, 429, 464
Colors, custom, on home page, 152–155,

154f
Columns, 184. See also specific types

add column method, 232, 232f
created at magic column, 186, 393
create table magic column, 186
magic, 186
remove column method, 232
updated at magic column, 186, 393

Command lines, 9–11, 10f
Commands. See specific applications and

commands
Commenting out validating, to ensure failing

test, 199
Comments, Ruby, 113
commit command, Git, 26–27
Commit, Git, 32–33
Concatenation, of strings, 114
:conditions, 428
config/, 16t
Config directory, 8, 166–167, 166f
config.gem, 249
config.gems method, 372
config/routes.rb for URL mapping, 166
Confirm passwords, 226
Console, 10, 63
Console, Rails, 112–113
Constant, 206

Index 507

Constructors, 132–133
literal, 132
named, 132

contact action, 77
Contact page

with embedded Ruby title, 101
with full HTML structure, 97
generated view for, 77

/contact URL, 164t
Contact view, with HTML structure removed,

103
Container, custom.css for, 152–155
container div, 149
content, 44f
content attribute, 392

accessible, 393–394
content field, 43
Control flow, booleans in, 117
Control, generating user, 172
Controller, 16, 17f. See also specific controllers

definition of, 74
inheritance hierarchies for, 65–66, 65f
making, script for, 75
Rails actions in, 74

Controller action, 48, 55f
Controller class, 138–139, 140f
Controller, users, 171–175, 218–220, 219f

following and followers actions, adding, 464
generating, 171–172
with show action, 218
signup page, testing, 172–173
signup page title, testing, 173–175
title for new user page, setting custom, 175

controller variable, for signing user in, 328–329
Conventions, 7–9
Cookies, 326–327, 326f

in sessions, 304, 320b–321b
signin, 326–327

correct user method, 360

count method, 296, 409
cp, 110
create action, 51. See also specific topics

for Ajax request responses, 482
completed Sessions controller, 318–319
in failed user signup, test for, 275–276
for form submission, 274–275
params hash in, 310–313
RESTful route, 56t, 222t
Sessions controller, 310f
Sessions controller, preliminary version,

310–311
Sessions, with friendly forwarding, 364
signin form, 304
for signup failure (but not success), 278
in signup success, test for, 286
user, with save and redirect, 287

create action, Microposts controller
adding, 418–419
adding to Home page, 422–423
code, 422
tests, 420–421
vs. user analogue, 421
using, 419–424, 419f

Create following relationship, Ruby JavaScript
(RJS), 484

create method, 209
create! method, 209
created at magic column, 186, 393
create table magic column, 186
create table method, 186
Creating app repository at GitHub, 69, 70f
Creating microposts, 419–424, 419f. See also

create action, Microposts controller
form partial for, 423
micropost instance variable in home action,

adding, 424
partial for user info sidebar, 423–424

Creating user objects, 190–194, 191f

508 Index

Cross-site scripting attack, 254
CSS. See Cascading style sheets (CSS)
curl, 86b
Current user, 327–334
current users controller spec code, 247–248
current-user

code, 330
defining assignment to, 330
definition, tempting but less useful,

330–331
finding, with remember token, 331

current user, 328
current-user= method, 330
current user? method, 360
current user helper method, 350
Custom cascading style sheets (custom.css),

148, 151–159
for container, body, and links, 152–155,

154f
for error message styling, 282–283, 282f
for filling in layouts, 154f, 156f–158f
for footer, 161–163
for links, 152–155, 154f
for navigation, 155–156, 156f
for round corners, 158–159, 158f
for signup button, 156–157
for signup button, big, green & clickable,

156–157, 157f
for signup form, 269
for site navigation link, 148
for user index, 368

Custom title, setting, for new user page,
175

Cygwin, 10, 11

D
Data model, 42–43, 43f
Data model, micropost, 393f
Data populator code, with adminuser, 383
Data, sample, adding microposts to, 413

Database. See also specific databases
migrating up, 186–187
SQLite, user row in, 217, 217f
in user model, 183

Database indices, 213b
Database migrations, 21, 23, 45,

184–188
generating user model in, 184–185
migration in, 185–186
rake db:migrate in, 186–187, 187f
self.down method in, 187
self.up method in, 186–187
tables in, 184–185

db/, 16t
db/development.sqlite3, 187, 188f
db:populate, 370
db:push:, 67
Debug and rails environments, 213–216,

214f
Debug information, adding to site layout,

214, 214f
debug method, 213–214
Declaration, 72, 73
def keyword, 76
:default => false, 382
Default Rails files, 15
default scope model, 400–401
DELETE

HTTP, 85b–86b
RESTful route, 56t

Delete links, user, viewable only by admins,
384

Deleting users. See Destroying users
Demo app, 41–68

microposts resource, 57–67 (See also
Microposts resource)

strengths of, 67
users resource, 44–57 (See also Resource,

users)
weaknesses of, 67–68

Index 509

Demo app, planning, 41–43, 42f
data model, 42–43
modeling microposts, 43, 44f
modeling users, 43, 43f

deny access method
for friendly forwarding, 363
for user authentication, 358

Dependent: destroy, 402–403
Deploying Rails, 35–38

Heroku commands, 37–38, 38f
Heroku setup, 35–36
Heroku step one, 36
Heroku step two, 36–37, 37f
value of, 35

describe, 200
destroy action, 51, 194, 384–387, 385f

for Ajax request responses, 482
to delete sessions, 334–336
method chaining in, 387
Microposts, adding, 418–419
Microposts controller, code, 435
Microposts controller, tests, 434–435
putting filter before restricting to admins,

386–387
RESTful route, 56t, 222t
signin form, 304

Destroy following relationship, Ruby JavaScript
(RJS), 484

destroy user, 46–47, 54f
Destroyed microposts

with user destroyed, code, 403
with user destroyed, testing, 402–403

Destroying microposts, 433–435, 433f
Microposts controller destroy action, code,

435
Microposts controller destroy action, tests,

434–435
mockup of proto-feed with delete links, 433f
partial for sowing single micropost, 433–434

Destroying user objects, 194

Destroying users, 379–387
administrative users, 380–384, 382f
destroy action, 384–387, 385f
mockup for, 379, 380f
tests for, 385–386

Development environment, 9–12, 112
debug, 215–216
IDEs, 9
text editors and command lines,

9–11, 10f
Development log, 191

filter password and password confirmation
from log, code, 284

with passwords filtered, 284
with passwords visible, 283–284, 284
tailing, 191, 191f

Devise, 181b
Directory, Rails projects, 14
Directory structure

default Rails, 16t
new Rails project, 14–15, 15f

div tag, 149
error explanation, 295–296, 295f

do keyword, 268
doc/, 16t
Doctype (document type), 73

declaration, 72
do..end, 125–126
Domain logic, 16
Domain-specific language (DSL), 79, 84
Double-quoted strings, 114–115
draw method, 167
Duplication, eliminating with layouts,

102–104
Dynamic pages, slightly, 93–104

eliminating duplication with layouts,
102–104

features, 93
instance variables and embedded Ruby,

98–101

510 Index

Dynamic pages, slightly (continued)
title change, testing, 93–95, 93t
title test, passing, 92f, 96–98, 98f

E
E Text Editor, 10
each method, 125, 129, 205
edit action, 46t

Git, 32
RESTful route, 56t, 222t

edit action, user
incomplete, 348
tests for, 347
user edit view, 348–349

edit form, 346–351
edit action, incomplete user, 348
edit action, user, tests for, 347
hidden input field, 350
HTML, 350
mockup, 346, 346f
settings, editing, 350, 351f
settings link, adding, 349–350, 349f
user edit view, 348–349, 349f

Edit page, 46
correct user before filter to protect, 360
user, 51f

edit user, 46, 46t, 51f, 52f
Editors, text, 9–11, 10f
Edits, enabling, 352–355, 352f
edit user path route, 350
edit user path(@user), 259t
edit user url(@user), 259t
Emacs, 10
email, 43f
Email addresses

duplicate, test for rejection of, 209
uniqueness of, migration for enforcing, 212
uniqueness of, validating, 210
uniqueness of, validating, ignoring

case, 211

email attribute, 43, 43f
making accessible, 190
presence of, test for, 203
presence of, validating, 203

Email format validation
with regular expression, 206–208, 207t,

208f
tests for, 205–206

Email regex, 206–208, 207t, 208f
Embedded Ruby (ERb), 99–101
empty? method, 117, 233, 408
en, 96
Enabling edits, 352–355, 352f
encrypt method, 234, 241, 242
Encrypted password, 228, 230

before save callback in creation of,
233–234

existence of, testing for, 230–231
migration to add column to users table,

212
users table, adding to, 232f

encrypted password attribute, 230
before save callback for creation of,

233–234
nonempty, testing that, 233

encrypted password column, adding to users
table, 231–232, 232f

encrypt password method, 233–236,
323–324

Engine Yard, 35
Engine Yard Cloud, 35
Environment. See specific type
environment.rb, 167
Equality comparison operator (==), 123
Equals-tilde operator (=), 174
ERb, 99–101
Error explanation div, 295–296, 295f
Error messages

500 Internal Server Error, 18–19, 20f, 21f
autotest-fsevent, 0.1.3, 81

Index 511

CSS styling, 282–283, 282f
display in signup form, adding, 281
error installing sqlite3-ruby, 20
failed micropost creation, 62, 62f
home page with form errors, 426f
signup, 281–283, 282f
unrecognized option ‘-v,’ 14
warning: CRLF will be replaced by LF in

.gitignore, 26
errorExplanation, 295–296, 295f
errors.full messages, 281
errors messages method, 282–283, 282f
errors messages object, 281–282
Example user, code, 141
example user.rb, 141
Exception, 195
Expectation error, 277
Expectation, message, 276–277, 277b
expire 20.years.from.now, 321, 326
Explicit return, 120
Extensions, 498–500

follower notifications, 499
messaging, 499
password reminders, 499
replies, 498–499
REST API, 500
RSS feed, 499
search, 500
signup confirmation, 499

F
-f flag, 191
f (form), 268
factories

to simulate user model objects, 249–250
use of, 248
for user show page, testing, 248–252

Factory Girl (gem), 249
to build new users, 276
defining sequence in, 375

including in test environment file, 249
simulating uses with, 374

Failed micropost creation, 62, 62f
Failed signin (test and code), 313–316
Failed user signup, tests, 275–276
Failing test. See also specific topics

commenting out a validating to ensure, 199
Faker gem, 369, 413
False, Ruby objects, 119
feed method, 424–426
@feed items instance variable, 431–432
fill in :user name, 298–299
Filter(ing)

before, 357
adding authenticate before, 357
parameter logging, 283–284

find, 194–195
find by email, 195
find by remember token method, 323,

331–332
Finding user objects, 194–195
Firebug, 11, 11f
Firebug Lite, 11
Firefox, 11, 11f
Firefox HTML Validator, 11
First application, rails command for, 14–15
First signup, success, 290–291, 291f, 292f
First-test development. See TDD (test-driven

development)
First-time repository setup, 24–25
First-time system setup, 24
first user.microposts, 63
Fixnum, 327
fixtures, 248
flash (flash message), 288–290

adding contents of, to site layout, 288–289
adding to user signup, 290
failed signin attempt, 315, 316b, 316f
vs. flash.now, 316b
on successful user signup, test, 289–290

512 Index

Flash dat bow, 316b
flash hash, 129, 288–290
flash[:error], 289

message, 315, 316f
flash.now, 289, 315, 316b
flash[:success], 289–290
Follow button, user profile with, 444f, 471f
Follow button, working, standard way,

476–480, 477f, 479f
Relationships controller action, tests,

477–479
Relationships controller, code, 479–480

Follow button, working, using Ajax, 480–485
advantages, 480
form for following user, 481
form for unfollowing user, 481
implementation, 480
including Prototype JavaScript Library in site

layout, 482–483
Relationship controller responses to Ajax

requests, code, 483–484
Relationship controller responses to Ajax

requests, tests, 481–482
Ruby JavaScript (RJS) to create following

relationship, 484
Ruby JavaScript (RJS) to destroy following

relationship, 484
Follow form

adding to user profile page, 470–471,
471f, 472f

web interface, 468–472
follow! utility method, 456–457, 477–479
followed id, 444, 446, 447f

adding indices on columns for, 447–448
relationship, making accessible, 449

Follower notifications, 499
Follower stats

adding to Home page, 468
adding to user profile page, 470–471,

471f, 472f
partial for displaying, 466–468, 469f

follower id, 444, 447–448
followers action

adding to Users controller, 464
code, 475–476
RESTful route, 465t
test, 473–475

Followers, Relationship model, 459–461,
459f

reverse relationships, implement
user.followers using, 459–460

reverse relationships table, 459, 459f
reverse relationships, testing, 459–460

Followers, show follow used view to render,
476

Following
origin of, 444
show follow used view to render, 476

following action
adding to Users controller, 464
code, 475–476
RESTful route, 465t
test, 473–475

Following and followers pages, 472–476
followings and followers actions, code, 475
followings and followers actions, test,

473–475
mockup, followers, 472, 474f
mockup, following, 472, 473f
show follow view used to render following

and followers, 476
following? boolean method, 455–456
following? method, 456
Following relationship

Ruby JavaScript (RJS) to create, 484
Ruby JavaScript (RJS) to destroy, 484

Following, Relationship model, 454–458
following? and follow! utility methods,

456–457
following utility methods, tests, 456
unfollow! method, code, 458
unfollow! method, test, 457–458

Index 513

User model following association in
has many :through, adding, 455

user.following attribute, test, 454–455
Following table, 444, 447f
Following user form, using Ajax, 481
Following users, 441–497. See also specific topics

exercises, 501–502
Home page with follow stats, 469f
Home page with working status feed, 496f
merging, 497
Relationship model, 442–461
showing current user’s followers, 479f
showing users being followed by current

user, 477f
user profile with follow button, 471f
user profile with unfollow button, 472f
web interface for following and followers,

461–485 (See also Web interface for
following and followers)

Following users, mockups
finding user to follow, 443f
followers page, 474f
Home page with status feed and incremented

following counter, 446f
profile of another user, with follow button,

444f
profile with unfollow button and

incremented followers count, 445f
starting page, 442f
stats partial, 464f
user following page, 473f
user’s Home page with status feed, 486f

Following users, status feed, 485–497
first feed implementation, 489–491
lambda, 495–496
motivation and strategy, 485–489, 486f
new status feed, 496–497, 496f
scopes, 491–494
subselects, 494–495

following! utility method, 455–456
following? utility method, 456–457

following utility methods, tests for, 456
Following/follower relationship, adding to

sample data, 462–463
Following/follower statistics on Home page,

testing, 465–466
Follow/unfollow form, partial for, 468
Footer, site

add CSS for, 161–163
partial, 160–161
partial, layout with, 161, 162f
partial, with links, 170, 171f

footer.html.erb, 160–161
Foreign key, 451
Forgery, thwarting, 273
Form, 267–268

create action for submission of, 274–275
edit, 346–351 (See also edit form)
follow/unfollow, partial for, 468

Form, follow
adding to user profile page, 470–471,

471f, 472f
web interface, 468–472

Form, following user
standard, 470
using Ajax, 481

Form, signin, 306–309
after trying to access protected page,

358–359, 358f
code, 308
create action for, 304
example of, 309f
HTML, 308–309
mockup, 306, 307f

Form, signup, 265–273
constructing, 265–273 (See also Signup

form)
current state of, 265–266, 266f
error message display, adding, 281, 282f
finished, 287
form for helper method for, 267–269
HTML, 270–273, 270f, 272f

514 Index

Form, signup (continued)
mockup of, 267f
new users page, tests for, 266–267
text vs. password fields in, HTML,

272, 272f
user form for, 270f

Form tag, 273
Form, unfollowing user, Ajax, 481
Format validation, 205–208
formatted email method, 142
form for helper, 307–308
form for method, 267–269, 470
form for, @user attribute field fill-in, 280
form for(@user), 348, 351
Friendly forwarding, 362–366

code to implement, 363
integration test for, 362–363
Sessions create action with, 364

from users followed by, 495–496
Functions, 76

G
gedit, 10
gems, 12
gems manifest, 372
generate, 2b
generate command, 185
generate Micropost, 57
generate rspec controller script, 82–83
generate rspec model, 392
generate script, 75
Generated code, 2
GET

HTTP, 85b–86b
RESTful, 56t

get function, in integration tests, 164
Git, 23–35

adding and committing, 26–27
branch, 30–32, 74
commit, 32–33

edit, 32
GitHub, 28–30, 29f–31f
merge, 33–34
push, 34, 35f
value of, 23, 27–28

git add ., 26
git branch, 30–32
git branch command, 31
git checkout -b modify-README, 31, 31f
git checkout command, 28
git checkout, with -b flag, 30
git commit, 26–27, 262
git config, 24
git init, 24
Git, installation and setup, 24–25

first-time repository, 24–25
first-time system, 24
ignore log files, 25

git log, 27
git push, 27
git push heroku, 262
git status, 26
GitHub, 28–30, 29f–31f
.gitignore, 25, 69
GMate plugins, 10
Gravatar

exercises on, 263–264
in user views, 252–258, 256f, 257f

gravatar method, 257
gravatar for method, 255–258

definition of, from gravatar plugin source
code, 258

use of, 255–256, 256f
workings of, 257

Green, 90–92
adding action to page controller in, 90–92,

91f, 92f
definition of, 82

Growl, 81
gVim, 10

Index 515

H
h method, 254–255
h2 tag, 252
Haml, 100
Hansson, David Heinemeier, 2, 3
Hash, user, 129
Hashes, 127–128. See also specific hashes

constructors for, 133
curly braces on, 131
initialization, 192
nested, 129, 312
nil (undefined key), 129

Hash.new, 133
has many, 62–63
has many association (relationship), 395f

functions, 442–443
user/micropoast associations, 395, 395f, 398
user/relationships, implementing, 451–452

has many method, 403
has many :relationships, 446, 447f
has many :through, 443, 447, 455
has password? method, 237

implementing, 240–243
tests for, 237–238
for users, 237
to write authenticate method, 243

have tag method, 93–94, 174, 252–253, 292
have tag(“div.pagination”), 378
Head section, 72, 73
Header, site partial, 160

layout with, 159–160
with links, 170

/help URL, 164t
Heroku, 35–38

commands, 37–38, 38f
interface, 37, 38f
setup, 35–36
step one, 36
step two, 36–37, 37f
subdomains, 38

heroku rename, 37–38, 37f
History, 3
home action, 77, 139

feed instance variable, adding, 429
inside pages controller, 75
micropost instance variable, adding, 424
with paginated feed, 497

Home page
Blueprint CSS, 111, 112f
with custom colors, 152–155, 154f
with embedded Ruby title, 100
with follow stats, 469f
follower stats, adding, 468
following/follower statistics, testing,

465–466
with form errors, error messages, 426f
with form for creating microposts, 419f
with full HTML structure, 96, 98f
generated view for, 77
with link to signup page, 151, 152, 152f
with logo image, but no custom CSS, 151,

152f
microposts, adding, 422–423
with navigation styling, 155–156, 156f
new, testing, 435–437, 436f
proto-feed, micropost (See Proto-feed,

micropost)
raw view of, 75, 76f
route mapping for, 168
status feed, adding, 430–431
with status feed, and incremented

following counter, 446f
with status feed, mockup, 485, 486f
with status feed, user’s, 486f
with status feed, working, 496f

Home view, with HTML structure removed,
103

home.html.erb, 77, 103
href (hypertext reference), 97
HTML escaping, 254–255

516 Index

HTML file with friendly greeting, static page,
72–73, 73f

html escape method, 254–255
HTTP basic operations, 85b–86b
HTTP request method, 51
http://localhost:3000

default page, 18–20, 19f, 20f
default page with SQLite gem, 21–22,

22f
http://localhost:3000/index.html, 71

I
id, 43f

assigning to HTML elements, 149
vs. classes, 149

id attribute, 43, 43f
id column, migration and, 187
id field, 43
IDEs (integrated development

environments), 9
if keyword, alternate use of, 119
if-else, in working signup form, 277–278
image tag helper, 149
img, 149
Implicit return, 120
include? method, 426–427
Index

database, 213
user, 365–369, 369f
users table, add to, 212

:index, 367
index action, 46t, 364

example of, 47–48
Microposts, 418–419
paginating users in, 374
RESTful route, 56t, 222t
simplified user, 53–54
user, 367

Index page, 46, 47f
user, tests, 365–367

Index, user, 365–369, 369f
action, 367
code, 367–368
custom style sheet, 368
fully functional, 369, 369f
fully refactored, 379
layout link, 368
mockup, 364, 365f
with pagination, 373, 375f, 376f
tests, 365–367
view, 56, 367–368

Index view, refactoring
completion, 379
first attempt, 378

Index view, user
code, 367–368
MVC, 56

index.html file, 71, 72f
Information, user, stub view for

showing, 218
Inheritance

class, 133–137, 134f, 136f (See also Class
inheritance)

class with, 49
functionality, 54
Word < String for, 135

Inheritance hierarchies, 64–66, 65f
for controllers, 65–66, 65f
for models, 64–65, 65f
for (non-built-in) word class, 135,

136f
for Pages controller, 139, 140f
for string class, 133, 134f

Initial user spec, 199–200
Initialization hash, 192
initialize method, 141–142
Insecure passwords. See Password(s),

insecure
Inspect element, 11
inspect method, 130

http://localhost:3000/index.html

Index 517

Installation
of Autotest, 80–82
of Git, 24–25
of Rails, 13–14
of Rspec, 79–80
of Ruby, 12
of RubyGems, 12–13
of sqlite3 and libsqlite3-dev, 20

Instance variable nilness, 118–119
Instance variables, 54–56, 99
Instantiated classes, 132
Integer identifier, 43, 43f
integrate views method, 95, 173, 248, 292
Integration tests, 163–166, 164t

in Autotest, 165–166
.autotest additions for OS X, 165
.autotest additions for Ubuntu Linux, 166
for routes, 163–165
for signing in and out, 341–342
for signup link, 175–176

Integration tests, for sign up
RSp, 292–299
users signup failure should not make a new

user, 294–297
users signup success should make a new user,

297–299
Webrat, 293–294

Interface, public, 236
Internet Explorer (IE), fixing idiosyncrasies in,

148
Interpolation, 114
iTerm, 10, 10f

J
JavaScript Library, 481
JavaScript Library, Prototype

including in site layout, 482–483
use of, 481

javascript include tag :defaults, 482–483
join method, 124

K
Kate, 10
Katz, Yehuda, 3
Komodo Edit Sublime Text editor, 10

L
Lambda

for status feed, 495–496
testing for signup failure with, 296–297,

299
Layout, 145–179. See also specific topics

with added structure, 147–148, 147f
cascading style sheets in, 130–131
commit and merge, 177–178
debug information in layout, adding, 214,

214f
for duplication elimination, 102–104
exercises on, 178–179
with footer partial, 161, 162f
Prototype JavaScript Library in, adding,

482–483
sample, 110
sample application, 102–103, 108
with stylesheet and header partials,

159–160
stylesheets in sample application, adding,

111
Layout, adding structure, 145–163

custom CSS, 151–159, 154f, 156f–158f
new branch, making, 146
overview, 145
partials, 159–163, 162f
site navigation, 146–151, 147f, 148f

Layout links, 163–171
about path definition, changing, 163
custom.css for, 152–156, 156f
integration tests, 163–166, 164t (See also

Integration tests)
named routes, 163, 164t, 169–171, 171f
rails routes, 166–169, 166f

518 Index

Layout links (continued)
signed-in users, changing, 339
signin/signout links on, tests for, 338–339
signup status, changing, 338–341, 341f
user index, 368

Layout, partial
for site footer, 160–161
for site header, 160

Layout, user signup, 171–177
signup URL, 175–177, 177f
users controller, 171–175

Length
of microposts, constraining, 61
of name attribute, 204
validation of, 61–62, 62f, 203–205

Length method, on arrays, 123
li (list item tag), 150
lib/, 16t
libsqlite3-dev, installing, 20
:limit option, 412–413
Links

custom.css for, 152–155, 154f
layout (See Layout links)
partial footer with, 170, 171f
partial header with, 170
URL mapping for, 163, 164t

Links, delete
mockup of proto-feed with, 433f
user, viewable only by admins, 384

link to function, filling in second arguments,
169

link to helper, 150–151
link to method, for site footer partials, 160–161
link to named routes, 169–171

about page at /about, 170, 171f
footer partial with links, 170
header partial with links, 169–170

List item (li), 150
List, user, 46, 46t, 47f
Literal constructor, 132

Literal strings, 114
localhost, 18
log, 27
log/, 16t
log/*.log, 25
Logo

downloading and installing, 151
helper for, 340

Lorem.sentence method, 413
ls command, Unix, 28

M
-m flag, 27
MacVim, 10
macvim, 10
Magic columns, 186
Make utility, 23
make relationships method, 462–463
Manipulating microposts, 414–437

access control, 416–419
controllers, 415
creating, 419–424, 419f (See also create

action, Microposts controller; Creating
microposts)

destroying, 433–435, 433f (See also
Destroying microposts)

home page, testing new, 435–437, 436f
Microposts resource, 414–415
Microposts resource routes, 416
proto-feed, 424–432 (See also Proto-feed,

micropost)
RESTful routes, 415, 417t
status feed, 415

map method, 126
map.about, 167
map.resources method, 305–306
map.resources :microposts routing rule,

58, 58t
map.resources :users, added to routes.rb,

273–274

Index 519

map.signup rule, 176
maps.resources, 464
Mass assignment, 190
Master branch, 30
:maximum, 204, 229
:media argument, 130–131
:member, 464
Merb, 3
merge, 200–202
Merge, Git, 33–34
Message expectation, 276–277, 277b
Message passing, 116–120
Messaging, 499
method chaining, 387
:method=> :delete, 384
method=“post,” 273
Methods, 76. See also specific methods

defining, 120–121
definition of, 117
objects and message passing,

116–120
Rails console, 112–113
title helper revisited, 121

Microblog, 41–68. See also Demo app
Micropost class with inheritance, 64
Micropost migration, 392
Micropost model, 391–405

attr accessible method, 393–394
basic model, 392–394, 393f
data model, 393f
micropost refinements, 399–403

(See also Micropost refinements)
micropost validations, 403–405
user/micropost associations, 394–399,

394f, 399t
validations, code, 405
validations, test, 403–404

Micropost refinements, 399–403
default scope, 400–401
dependent: destroy, 402–403

Micropost spec, initial (lightly edited),
394

Micropost validations, 403–405
micropost.association method, 399–400
Microposts. See also Demo app; Micropost

model; specific topics
belongs to user, 63
CSS for, adding, 410–412, 412f
in demo app, 41 (See also Demo app)
length of, constraining, 61
manipulating, 414–437 (See also

Manipulating microposts)
sample data, adding to, 413
showing, 405–414 (See also Showing

microposts)
user has many, 63

Microposts controller, 59–60
Microposts resource, 57–67

associations in, 64f
console in, 63
demo app in, deploying, 66–67
inheritance hierarchies, 64–66, 65f
size of, limiting, 60–62, 62f
user has many microposts, 62–63, 64f

Microposts resource microtour, 57–60
create microposts, 58
microposts controller, 59–60
new microposts, 60, 60f
rails routes, with new rule for microposts,

58
Microposts, user, 391–440. See also specific

topics
exercises on, 438–440
manipulating, 414–437
Micropost model, 391–405
showing, 405–414

MicropostsController class with inheritance,
65f, 66

/microposts/new, 60, 60f
Migrating up, 186–187

520 Index

Migration, 183, 185
database, 184–188 (See also Database

migrations)
password, 230–232, 232f
rolling back, 187–188
for user model to create users table,

185–186
Migration generator, 212
Mockingbird, 145
Mockups, 145
Model(s), 16, 17f, 183. See also Micropost

model; specific models
data, 42–43
inheritance hierarchies for, 64–65, 65f
micropost, 391–405 (See also Micropost

model)
Relationship, 442–461 (See also Relationship

model)
user, 182–197, 216–220 (See also User

model)
Model annotation, 189–190
Model file, 188–190, 188f
Model objects, user, factory to simulate,

249–250
Model, view, controller (MVC), user,

216–220, 217f, 219f
Modeling and viewing users, 181–223. See also

specific topics
data model creation, 181
exercises, 223
roll your own authentication system,

181b–182b
topic branch for, making, 182
user model, 182–197
user show page, 182, 183f
user validations, 197–213

Model-view-controller (MVC), 15–18, 17f,
47–56

controller actions, 51, 56t
controller actions vs. pages, 51

index action, simplified user, 53–54
instance variables, 54–56
rails routes, 48–49
REST architecture in, 51–52, 56t
steps in, 47–48, 55f
user index view, 56
user model for demo app, 54
users controller in schematic form,

49–50
Users controller–User model relationship

in, 53–54
Modifying built-in classes, 137–138
module ApplicationHelper: code, 121
Mongrel web server, 18
Mostly static pages. See Static pages, mostly
Motivation, in following users, status feed,

485–489, 486f
Motivation, in Rails-flavored Ruby,

107–112
cascading style sheets, 110–111, 112f
title helper, 107–110

N
:name, 128
name attribute, 43, 43f

length validation for, adding, 204
making accessible, 190
presence of, validating, 198, 203
in user form inputs, 272–273
in user views, 252–255, 256f
validation of, failing test for, 201

Name length validation test, 204
Named constructor, 132
Named routes, 163, 164t, 169–171, 171f,

176. See also specific routes
Namespaces, 370
Navigation, site, 146–151, 148f

alt and class attributes, 149–150
container div, 149
custom.css for, 155–156, 156f

Index 521

image tag helper, 149
link for custom.css, 148
link to helper, 150–151
site layout with added structure,

147–148, 147f
stylesheets for Internet Explorer,

146–148
ul and li tags, 150

NERD tree project drawer, 11
Nested hash, 129, 312
NetBeans, 9
new action, 46t

adding @user to, 269
RESTful route, 56t, 222t
signin form, 304–305

New application, rails command for,
14–15

New page, 46, 48f
New Rails project, creating, 69
new sessions action and view, tests

for, 305
New user, 46, 46t, 48f
new user? boolean method, 351
New user (signup) page

action for, 173
custom title, setting, 175
test, 266–267

New users, form to sign up, 268–269
Newline, 94
new user path, 259t
new user url, 259t
next method, 375
nil, 115

boolean context, 119
chaining messages passed to, 118
hash value for undefined key, 129
methods on, 118
test for, 118

nil? method, 118
NoMethodError, 235

Not equal (!=), 123
Notifications, follower, 499

O
Object-oriented programming (OOP), 64
Objects, 116–120

definition, 116
functions, 116
nil, 118

Objects, user
creating, 190–194, 191f
destroying, 194
finding, 194–195
updating, 196–197

One-element options hash, 204
Options hash, one-element, 204
Order of user’s microposts, testing, 400–401

P
p (paragraph) tag, 73, 77
Page controller spec

adding action to, 90–92, 91f, 92f
writing failing, 87–89, 90f

/page/home, 76f
Pages

following and followers, 472–476, 473f,
474f (See also Following and followers
pages)

new users, test, 266–267
static, 69–106 (See also Static pages,

mostly)
Pages controller

with added about action, 90–92
adding file to repository, 78
generating, 75–77
home action in, 75
home view in, raw, 75, 76f
inheritance hierarchy for, 139, 140f
with per-page titles, 99
in text editor, 75–77

522 Index

Pages controller spec
code, 84
with failing test for About page, 88–89,

89f
with title test, 94–95

Pages, protecting, 355–364
expectation bonus, 361–362
friendly forwarding, 362–364
requiring right user, 359–361
requiring signed-in users, 355–359, 356f,

358f
PagesController, 76–77, 76f, 138–139
pages controller.rb, 76
/pages/home, 75
Page–URL correspondence, 46, 46f
paginate method, 373–374, 410, 496–497
Paginated feed, home action with, 497
Pagination, 371–373

testing, 373–378, 375f, 376f
will paginate method installation for,

371–373
will paginate method use for, 373–374,

375f, 376f
palindrome? method

checking, 137
in String class, 137
word class from, 133–135

Paperclip, 255
Paragraph tag (p), 73, 77
Parameter logging, filtering, 283–284
params hash

for debugging site layout, 213–215
nested, 312
signin failure, 311–312
for signin form, 309
in signup failure, 278–280, 279f

params[:id], 218–219, 278
params[:session][:email], 309
params[:session][:password], 309

params[:user], 279–280
Partial refactoring, 378–379
Partials, 159–163, 162f. See also specific

partials
for displaying follower stats, 466–468,

469f
for stylesheets and headers, 159–160

Password(s)
confirmation of, user, 226
in development log, filtering, 284
in development log, visible, 283–284
in log, filtering from, 284
presence of, tests for, 227–228

password attribute, 225, 227
validations for, 229

Password(s), encrypted, 228, 230
adding to users table, 232f
before save callback in creation of,

233–234
migration to add column to users table,

212
Password(s), insecure, 225–236

active record callback, 232–236
password migration, 230–232, 232f
password validation, 226–230

Password migration, 230–232, 232f
Password reminders, 499
Password(s), secure, 236–247

authenticate method, 243–247
has password? method, implementing,

240–243
secure password test, 236–238
theory, 238–240

Password validation, 226–230
as accessible attribute, 230
confirm password, 226–227
of password attribute, 228–229
test for, 227–228

password confirmation attribute, 227

Index 523

password confirmation attribute, virtual,
228–229

password confirmation, filtering from log,
284

PasswordReminders resource, 499
PeepCode, 501
Pending spec, 200
Pending User spec, autotest with, 201f
Persistence, 184
Phusion Passenger, 35
Planning demo app, 41–43, 42f

data model, 42–43
modeling microposts, 43, 44f
modeling users, 43, 43f

Pluralization convention, default, 443–444
POST

HTTP, 85b–86b
RESTful, 56t

post method
to create action, 274–275
to create new object, 273

Preparation, 4–5
experienced programmers, new to web

development, 6
experienced Rails programmers, 7
experienced Ruby programmers, 6
experienced web developers new to Rails, 6
inexperienced programmers, designers, 5–6
inexperienced programmers, non-designers,

5
inexperienced Rails programmers, 6–7

Presence, validating, 197–203. See also
validates presence of; specific attributes
and topics

Printing strings, 115
private keyword, 234–235
Profile link

adding, 340–341, 341f
test, 340

Profile page, user
adding follow form and follower stats to,

470–471, 471f, 472f
after successful signin, 317, 317f

protected keyword, 235
Protecting pages, 355–364. See also Pages,

protecting
Proto-feed, micropost, 424–432

(empty) @feed items instance variable in
create action, adding, 431–432

feed instance variable in home action,
adding, 429

home page after creating new micropost,
432f

home page with form errors, 426f
home page with new micropost form,

425f
home page with proto-feed, 431f
home page with proto-feed, mockup, 427f
partial for single feed item, 430
preliminary implementation, 428
(proto-)status feed, tests for, 425–427
status feed in Home page, adding,

430–431, 431f
status feed partial, 429

Prototype JavaScript Library
including in site layout, 482–483
use of, 481

public/, 16t
Public directory, 71, 72f
Public interface, 236
public.index.html, 72f
public/index.html, 71, 72f
Push, Git, 34, 35f
Push operator (<<:), 124, 377
PUT

HTTP, 85b–86b
RESTful, 56t

puts method, 115

524 Index

Q
q, 27

R
-r, 110
RadRails, 9
rails command, 14–15, 41–42
Rails console, 112–113
Rails Machine, 35
Rails root, 8
Rails router, 48, 55f
Rails routes, 48–49, 166–169, 166f

config/routes.rb, 166–167, 166f
for mapping root route, 168–169
with new rule for microposts resources, 58
with rule for users resource, 49
for static pages, 167–168
URL helpers in, 168–169

RailsBrain, 111
Railscasts, 498, 500
Rails.env.development?, 215
Rails-flavored Ruby, 107–143. See also specific

topics
arrays, 122–124
blocks, 125–127
cascading style sheets revisited, 130–131
exercises, 143
hashes, 127–128
method definitions, 120–121
motivation, 107–112 (See also Motivation, in

Rails-flavored Ruby)
objects and message passing, 116–120
other data structures, 121–131
Rails console, 112–113
ranges, 124–125
Ruby classes, 132–143 (See also Classes,

Ruby)
strings, 113–116 (See also Strings)
symbols, 128–130
title helper revisited, 121

rails.vim enhancements, 11
Rainbow attack, 239
Rake, 21, 23b

for populating database with sample users,
370–371, 371f

rake db:migrate, 21, 45, 188
in production, 216
in user model, 187f

rake db:migrate command, 23b
rake db:reset, 252
rake db:rollback, 187
rake spec, 87
Rakefile, 16t
Random subdomain generation, 127
Ranges, 124–125
README, 16t

GitHub, 31f
GitHub, initial, 30

Red, 87–90
definition of, 82
writing failing page controller spec in,

87–89, 89f, 90f
Red, green, refactor cycle, 82–92

Autotest, with Growl, 87
Autotest, with Growl notification, 88f
generating pages controller, 82–84
GET home, running test, 86–87
GET home, writing test, 84–85,

85b–86b
green, 90–92 (See also Green)
overview, 82
red, 87–90 (See also Red)
refactor in, 92

redirect, in user create action, 287
redirect back or method, 364
redirect to @user, 287
Refactor, 82, 92
Refactoring

of code, 69
partial, 378–379

Index 525

Refinements, micropost, 399–403
default scope, 400–401
dependent: destroy, 402–403

regex, 206
Regular expression, 174, 206
Relationship controller responses to Ajax

requests
code, 483–484
tests, 481–482

Relationship creation, testing with save!
method, 450

Relationship model, 442–461
constructing, overview, 442–443
followers, 459–461, 459f
following, 454–458 (See also Following)
problem with data model (and solution),

443–449, 447f–449f
Relationship data model, 449, 449f
user following, naïve implementation of,

444–445, 447f
user following, through intermediate

Relationship model, 447, 448f
user/relationship associations, 449–453

(See also User/relationship
associations)

validations, 453–454
Relationships controller

code, 479–480
tests, 477–479

reload, 196
Remember me, signin, 319–325
remember me! method, 321–322

method, 322–323
tests, 322

remember token attribute, 321b, 324
finding current user by, 331
migration for, 324–325

:remember token key, 326
remove column method, 232
rename, in Heroku, 37–38, 37f

render call
for partial refactoring, 378–379
in show followers, 476, 477f, 479f

render helper, for site layout with partials,
159–160

render method, in controller actions,
277–278

render template function, 165
replace html method, 484
Replies, 498–499
Repository

adding RSpec files to, 80
first-time setup, 24–25
GitHub, 31f

Repository, creating at GitHub
demo app, 42f
static pages app, 69, 70f

Representational state transfer, 220
Request, 16
request object, 363
require, 200
require ‘digest,’ 240
Resource, users, 44–57, 220–222, 222f, 222t

adding to routes file, 220–221, 222f
MVC in action, 47–56 (See also

Model-view-controller (MVC))
named routes in, 259t
purpose of, 44
scaffold command, 44–45
user tour, 45–47, 46t
weaknesses of, 57

Resources, 500–501
books, 501
PeepCode, 501
Railscasts, 500
Scaling Rails, 501
screencasts, Ruby on Rails Tutorial, 500

respond to? method, 230
respond to blocks, 500
response.should be success, 86b

526 Index

REST, 3, 220
REST API, 500
REST architecture, 41, 51–52, 56t
REST resources, created/destroyed, 444–445
RESTful actions, standard, adding resource to

get for Sessions, 305–306, 306t
RESTful resource, sessions as, 304
RESTful routes, 51, 56t

custom rules in, 465t
in Micropost resource, 415, 417t
in users resource, 222, 222t

return keyword, 120–121
Reverse relationships

implementing user.followers using, 459–461
table for, 459, 459f
testing, 459–460

Reverse relationships table, 459, 459f
Root directory, 8
Root route mapping, 168–169
Round corners

custom.css for, 158f
stylesheet rules for, 158–159, 158f

Route(s)
integration test, 165
named, 163, 164t, 169–171, 171f (See also

Named routes)
rails, 48–49, 166–169, 166f (See also Rails

routes)
RESTful, 51, 56t
RESTful, with new rule for microposts, 58
for signup page, 176
for static pages, 167

Route mapping, for home page, 168
Router, Rails, 48, 55f
Routes file, adding users resource to, 220–221,

222f
routes.rb, map.resources :users added to,

273–274
Rows, 184

Rspec
installation of, 79–80
using Webrate with, 294

RSpec integration tests, for sign up, 292–299
users signup failure should not make a new

user, 294–297
users signup success should make a new

user, 297–299
Webrat, 293–294

RSpec, using Webrat with, 294
RSS feed, 499
Rubular regular expression editor, 206–207,

207f
Ruby. See also specific topics

learning, before Ruby on Rails, 4–5
online tutorial on, 5

ruby, 8
Ruby JavaScript (RJS)

to create following relationship, 484
to destroy following relationship, 484

ruby script/generate, 75
ruby script/server, 18
RubyMine, 9

S
Safari, 11
Salt, 239
Salt column migration, to add to users table,

241, 241f
Sample data, adding microposts to, 413
Sample users, 369–371, 371f
Sandbox, starting console in, 190–191
Sass, 100
save method, 192

in building new users, 276
in user create action, 287

save! method, testing relationship creation
with, 450

save without validation method, 323

Index 527

Scaffold code generation, for microposts,
57–58

scaffold command, 44–45
Scaffold generator, 44–45

app generation via, 41
users resource (See Resource, users)

Scaffolding, 1, 2b–3b
Scaling Rails, 7, 501
schema migrations, 21
Scope, 491–494
Screencasts, Ruby on Rails Tutorial, 500
Script, 18
script/, 16t
script/console, 63
script/generate, 185
script/generate scaffold, 57–58
Script/server, 18–23

500 Internal Server Error, 18–19,
20f, 21f

application environment, 18–19, 19f
http://localhost:3000, 18–20,

19f, 20f
Rake database setup, 21
restart, 21–22, 22f
SQLite, 19–20
sqlite3 and libsqlite3-dev

installation, 20
Search, 500
secure one-way hasfing, 236
Secure passwords. See Password(s), secure
secure hash function, 238–240
self keyword, 137

authentication, 245–246
encrypted passwords, 235–236

self.down method, 187
self.encrypted password, 235
self.up method, 186–187
Server, default Rails, 18, 19f
session facility, 363

Sessions, 303–309
adding resource to get standard RESTful

actions for, 305–306, 306t
new session action and view, tests

for, 305
sessions controller, 304–306, 306t
signin form, 306–309, 307f, 309f

/sessions, 306t
Sessions controller, 304–306, 306t
SessionsHelper module, 319–320
/sessions/new, 305, 310, 311f
Settings link, adding, 349–350, 349f
SHA2, 239
Short-circuit evaluation, 333b
should not be valid, 202
should not method, 202
show action, 46t, 218–219, 219f

RESTful route, 56t, 222t
user, 248
users controller with, 218

Show page, 46, 49f
Show page, user

CSS for styling, including sidebar, 260,
261f

getting, with factory and stub, test,
250–251

testing, with factories, 248–252
tests for, 252–253
title for, 254
/users/1 with sidebar, 258–259

Show page, user, augmenting, 405–412
adding CSS for, 410–412, 412f
adding @microposts instance variable to

show action, 410
adding microposts to, 407–409
mockup, 405, 406f
partial for showing single micropost, 410
showing microposts, test, 405–407

show user, 46, 46t, 49f

528 Index

Show view, user
with name and Gravatar, 256–257, 256f,

257f
with user’s name, 255, 256f

show follow view, to render following and
followers, 476

Showing microposts, 405–414
augmenting user show page, 405–412,

412f (See also Show page, user,
augmenting)

sample microposts, 412–414, 414f–416f
Showing users, 364–379

mockup of user index, 364, 365f
pagination, 371–373
pagination, testing, 373–378, 375f, 376f
partial refactoring, 378–379
sample users, 369–371, 371f
stub view for information on, 218
user index, 365–369, 369f (See also Index,

user)
shuffle, 127
shuffle method, 123
Sidebar

user, 258–260, 261f
in user show page /users/1, 258–259

Side-effect, puts method as, 115
Sign in, 303–316

exercises on, 343–344
pending tests for, 318
sessions, 303–309
signin failure, 310–316 (See also Signin

failure)
signin success, 317–334 (See also Signin

success)
signing user in, filling in, test,

328–329
Sign up, 265–301. See also specific topics

exercises, 300–301, 301f
failure, 273–284

form, 265–273
RSpec integration tests, 292–299
success, 285–292

signed in? method, 329–330, 333–334,
339

Signed-up users, also signed in, testing,
336–337

/signin, 306t
Signin failure, 310–316

failed signin, test and code, 313–316
reviewing form submission, 310–313,

310f
Signin form, 306–309

after trying to access protected page,
358–359, 358f

code, 308
example, 309f
HTML, 308–309
mockup, 306, 307f

sign in function, 326, 327–328
complete (but not-yet-working), 321
to stimulate user signin inside tests,

334
tests, 318–319

sign in method, @user, 337
Signin page, adding title for, 306
Signin success, 317–334

completed create action, 318–319
cookies, 326–327, 326f
current user, 327–334
profile page mockup, 317, 317f
remember me, 319–325

/signin URL, 164t
Signing out, 334–342

changing layout links, 338–341, 341f
destroying sessions, 334–336
exercises on, 343–344
signin upon signup, 336–337
signin/out integration tests, 341–342

Index 529

/signout, 306t
sign-out function, 335–336
sign-out method, 336
Signup

failed user, tests for, 275–276
signing in user upon, 337

‘/signup,’ 176
Signup button

custom.css for, 156–157
style sheet rules for, big, green, and

clickable, 156–157, 157f
Signup confirmation, 499
Signup error messages, 281–283, 282f
Signup failure, 273–284

arranging, 294–295, 295f
filtering parameter logging, 283–284
mockup, 273
params hash in, 278–279, 279f
should not make a new user, RSpec

integration test of, 294–297
signup error messages, 281–283, 282f
testing, 296
testing failure, 273–277, 294–296, 295f
testing with lambda, 297
in working form, 277–280, 279f

Signup form, 265–273
adding error message display to, 281, 282f
current state of, 265–266, 266f
finished, 287
form HTML, 272f
form for helper method for, 267–269
HTML for, 270–273, 270f
mockup of, 267f
new users page, tests for, 266–267
text vs. password fields in, HTML, 272, 272f
user form for, 270f

Signup link
integration test, 175–176
user, simple integration test for, 175–176

Signup page
action for, 173
home page with link to, 151, 152
linking button to, 176, 177f
route for, 176
testing, 171–173
title, testing, 173–175

Signup success, 285–292
finished signup form, 287
first signup, 290–291, 291f, 292f
flash, 288–290
mockup, 285, 285f
should make a new user, RSpec integration

test of, 297–299
testing, 285–287, 298–299

Signup URL, 175–177, 177f
/signup URL, 164t
Signup, user, 171–177

adding flash message to, 290
failed, tests for, 275–276
signup URL, 175–177, 177f
successful, test for flash message on,

289–290
users controller, 171–175

signup path, 176
Single user, partial to render, 379
Single-quoted strings, 115–116
Site layout. See Layout
Site navigation, 146–151, 147f, 148f. See also

Navigation, site
Slightly dynamic pages. See Dynamic pages,

slightly
sort by , 127
spec

initial user, 199–200
in name, omitting files with, 5

spec program, 79
spec script?, at command line, 86–87
spec spec/, running test with, 87–88

530 Index

spec.rb, 164
Spike, 82
split method, 122
SQLite database, 187, 188f, 217, 217f
SQLite gem for Ruby, installing, 19–20
SQLite, installing, 19–22
sqlite3, installing, 20–21
Staging area, 26
Static pages, mostly, 69–106

committing and merging, 105
committing changes, 102
create new Rails project, 69–70
exercises, 105–106
merging changes into master branch, 102
pushing code to remote repository, 102
routes for, 167
slightly dynamic pages, 93–104 (See also

Dynamic pages, slightly)
Static pages, mostly, first tests, 78–92

need for, 79
TDD: red, green, refactor, 82–92 (See also

TDD (test-driven development))
tools for, 79–82 (See also Testing tools)
writing of, differences in, 78

Static pages, mostly, making static web pages,
71–78

static pages with Rails, 74–78, 76f
truly static pages, 71–74, 72f, 73f

Stats, web interface, 463–472
follow form and follower stats in user

profile page, adding, 470–471, 471f,
472f

follower stats in Home page, adding, 468
following and followers actions in Users

controller, adding, 464
following/follower statistics on Home page,

testing, 465–466
form for following user, 470
form for unfollowing user, 470
mockup, stats partial, 463–464, 464f

partial for displaying follower stats,
466–468, 469f

partial for follow/unfollow form, 468
RESTful routes, 464

status command, Git, 26
Status feed, 415, 485–497. See also Proto-feed,

micropost
final implementation of

from users followed by, 495–496
first feed implementation, 489–491
lambda, 495–496
mockup, final feed, 485, 486f
motivation and strategy, 485–489, 486f
new status feed, 496–497, 496f
scope, 491–494
subselect, 494–495

store location method, 363
string, 43, 43f
String class

blank? added to, 138
inheritance hierarchy for, 133, 134f
palindrome? added to, 137

String literals, 114
String multiplication, 204
string message method, 120
Strings, 113–116

to arrays, 122
concatenation of, 114
constructors for, 132
double-quoted, 114–115
empty method on, 117
literals, 114
single-quoted, 115–116
variable names in, 114–115

Strings, interpolation in, 144
printing, 115
single-quoted, 115–116

Stub view
about page, 91–92, 91f
showing user information, 218

Index 531

stylesheet link tag, 111
stylesheet link tag method, 130–131
Stylesheets. See also Custom cascading style

sheets (custom.css)
adding to layouts, 111
adding to sample application layout, 111
Internet Explorer, 146–148
site layout with partials for, 159–160

stylesheets.html.erb, 159–160
Subdomains, generating random, 127
Subselects, 494–495
:success, 289
sudo, 13
superclass method, 133, 134f
Symbols, 128–130
System setup, first-time, 24

T
t object, 186
table tag, 258
Table, users

added (encrypted) password attribute, 232,
232f

adding encrypted password column to,
231–232, 232f

adding encrypted password to, 232f
adding index to, 212
adding name and email to, 185–186
adding salt column to, 240–241,

241, 241f
creation of, 184–185, 188f
dropping from database, 187

Tables, 184
tail, 191
Tailing, development log, 191, 191f
taps gem, 67
td (two table data cells), 258
TDD (test-driven development), 2, 5, 78

best applications, 82
failing test, writing, 82–83

interfaces, 236
pages controller spec, generating, 83–84
red, green, refactor cycle, 82–92 (See also

Red, green, refactor cycle)
Terminal, 10
test/, 16t
Testing tools, 79–82. See also specific tools

and topics
installing Autotest, 80–82
installing Rspec, 79–80

Tests (testing). See also specific tests and topics
automated, 69
integration, 163–166, 164t

test sign in function, to stimulate user signin
inside tests, 334

Test::Unit, 79–80
Text editors, 9–11, 10f
TextMate, 94
Textmate, 10, 10f
Thinking Sphinx, 500
3rd Rail, 9
time ago in words helper method, 410, 414,

414f
Timestamp, 186
Title

base, 108
change in, testing, 93–95
setting custom, for new user page, 175
signin page, adding, 306
signup page, testing, 173–174
for user show page, 254

@title, 108, 175
Title helper, 254

defining, 109
development of, 109
need for, 107–109
revisited, 121
simplifying layout with, 109–110
using h to escape the HTML,

254–255

532 Index

Title tag
creating, 72, 73, 74
removing, 74

Title test, 93
passing, 92f, 96–98, 98f
testing title change in, 93–95, 93t

<title><%= @title %></title>, 108
@title variable, 99–100
tmp/, 16t
to a method, 124
toggle! method, 381
Tools. See also specific topics and tools

learning, 12
Topic branch, in Git, 182
to s method, 118
Total Validator, 11
Tour, user, 45–47, 46t
tr (one table row), 258
True, Ruby objects as, 119–120

U
ul (unordered list tag), 150
footer.html.erb, 160–161
spec.rb, 164
stylesheets.html.erb, 159–160

Unfollow button, user profile with, 445f,
472f

unfollow! method
code, 458
test, 457–458

unfollow! utility method, 477–479
Unfollowing user

form for, 470
form for, using Ajax, 481

Uniqueness caveat, 211–213
Uniqueness validation, 209–213
Unix, 8
unless keyword, 119
upcase method, 210

update action, 51
RESTful route, 56t, 222t
user, code, 354–355
user, tests, 352–354

update page, correct user before filter to
protect, 360

update attributes method
assigning email address, with Gravatar,

256–257, 257f
updating user objects, 196–197

updated at magic column, 186, 393
Updating user objects, 196–197
Updating users, 345–355. See also specific

topics
edit form, 346–351
enabling edits, 352–355

URL mapping, for site links, 163, 164t
@user

adding to new action, 269
to create form tag, 273
creation of, 248
superfluous assignments, removing,

361–362
in test forgetting user show page, with

factory and stub, 250–251
User actions. See also specific actions

destroy, 46–47, 54f
edit, 46
new, 46, 48f
show, 46
with updated information, 52f

User association, micropost, tests for,
396–397

User class, 141–143
example, code, 141
with inheritance, 64

User edit page, 51f
User hash, 129
User information, stub view for showing, 218

Index 533

User list, 46, 46t, 47f
User microposts. See Microposts, user
User model, 182–197, 216–217, 217f

added (encrypted) password attribute, 232,
232f

added remember token, 325f
adding following association, with

has many :through, 455
annotated, code, 189–190
brand new, code, 189
creating data structure for users, 182–183
creating user objects, 190–194, 191f
database, 183
demo app, 54
destroying user objects, 194
finding user objects, 194–195
functionality of, testing, 200
generation of, 185
model file in, 188–190, 188f
model in, 183
updating user objects, 196–197

User model, database migrations, 184–188
generating user model in, 184–185
migration in, 185–186
migration in, to create users table,

185–186
rake db:migrate in, 186–187, 187f
self.down method in, 187
self.up method in, 186–187
tables in, 184–185

User model objects, factory to simulate,
249–250

User model, view, controller (MVC), 216–220,
217f, 219f

User objects
creating, 190–194, 191f
destroying, 194
finding, 194–195
updating, 196–197

User show action, 248
User show page. See Show page, user
User show view

with name and Gravatar, 256–257,
256f, 257f

with user’s name, 255, 256f
User signup link, simple integration test for,

175–176
User spec, initial, 199–200
User tour, 45–47, 46t
User validations, 197–213
@user variable, adding to new action,

269
User.all, 47, 195
user.authenticate method, 244, 246–247

code, 246–247
failed signin attempt, code, 315
signin failure, test and code, 313–314
tests for, 244

User.create, 193
user.create! method, 200, 370
User.find, 194–195
User.first, 63, 195
user.followers, 444, 460–461
user.following, 444
user.following attribute, testing, 454–455
user from remember token method, 332
user id attribute, 43, 44f, 392
User/micropost associations, 394f,

395–399, 399t
belongs to, 395, 395f, 398
has many, 395, 395f, 398
methods summary, 399t
micropost belong to user, 398
micropost’s user association, tests for,

396–397
user has many microposts, code, 398
user’s microposts attribute, tests for,

397–398

534 Index

User.new, 191–192
factory user from, 276

User.paginate, 374
user patch, 259
user patch(@user), 259
user path@user, 287
User/relationship associations, 449–453

belongs to, 449
belongs to associations in Relationship

model, adding, 453
foreign key, 451
save!, testing relationship creation with,

450
user.relationships attribute, testing for,

450
user/relationships belongs to association,

testing, 452
user/relationships has many association,

implementing, 451–452
user.relationships attribute, testing

for, 450
user/relationships belongs to association,

testing, 452
user/relationships has many association,

implementing, 451–452
Users. See also specific topics

in demo app, 41
destroying (deleting), 379–387 (See also

Destroying users)
modeling and viewing (See Modeling and

viewing users)
new, form to sign up, 268–269
sample, 369–371, 371f
showing, 364–379 (See also Showing

users)
updating, 345–355 (See also Updating

users)
viewing, 213–222

users, 43, 44f

/users, 46
original, 46t, 47f
RESTful route, 56t, 222t
with second user, 53f

:users, 48
@users, 54
@users = User.all, 54
/users/1, 46, 46t

after adding Users resource, 220, 222f
initial, 220, 221f
page to show, 49f
RESTful route, 56t, 222t

/users/1/edit, 46, 46t, 51f, 52f
RESTful route, 56t, 222t

@user.save, 277, 277b, 280
UsersController class, with inheritance,

65–66, 65f
users/new, 46, 46t, 48f, 295

RESTful route, 56t, 222t
users path, 259t
users path(@user), 259t
users spec.rb, 294
users url, 259t
user url(@user), 259t

V
valid? method, 199, 202
validates confirmation of method, for

passwords, 229
validates length of method

for names, 204
for passwords, 229

validates presence of method
for name, 198, 199
for name and email, 203, 204, 206
for passwords, 229

validates uniqueness of method, 209
for email addresses, 210
for email addresses, ignoring case, 211

Index 535

Validating presence, 197–203
Validations, 60–61

commenting out, to ensure failing
test, 199

email address uniqueness, 210
email address uniqueness, ignoring case,

211
email format with regular expression,

206–208, 207t, 208f
length, 61–62, 62f
micropost, 403–405
name attribute, failing test, 201
name attribute presence, 198
password, 226–230
password attribute, 229
password, tests for, 227–228
Relationship model, 453–454

Validations, user, 197–213
format, 205–208
length, 203–205
presence, 197–203
uniqueness, 209–213

Variables, instance, 54–56, 99
nilness of, 118–119

vendor/, 16t
Version control systems, 23
Version control, with Git, 23–35.

See also Git
Version, of Ruby, 12
vi editor, 10
View, 16, 17f. See also specific types

actions and, 77
Rails, static HTML in, 77–78
user, 217–219, 219f
for user index, 56

view action, 54
Viewing users, 213–222

debug and rails environments, 213–216,
214f

user model, view, controller, 216–220,
217f, 219f

users resource, 220–222, 221f, 222f,
222t

Views, user, better, 247–261
name and Gravatar, 252–258, 256f,

257f
testing user show page (with factories),

248–252
user sidebar, 258–260, 261f

Vim, 10, 11
Vim for Windows, 10
Virtual attribute, 228

W
Web interface for following and followers,

461–485. See also specific topics
follow form, 468–472
following and followers pages, 472–476,

473f, 474f
sample following data, 462–463
stats, 463–468
working follow button, Ajax, 480–485
working follow button, standard way,

476–480, 477f, 479f
Web servers, 18
Webrat, 293–294
Webrat, with Rspec, 294
WEBrick web server, 18
Wideframes, 145
will paginate gem, 371–373
will paginate method, 408

installation of, 371–373
use of, 373–374, 375f, 376f

Windows
“ruby script” for, 75
running Rails in, 8

with method, 314
:within option, 229

536 Index

Word < String, 135
Word class

defining, in irb, 135
inheritance from string of, 135,

136f
inheritance hierarchy for, 135, 136f
in irb, 135
palindrome? method for, 133–135,

137

X
xhr method, 481
xmlns, 96

Y
YAML, 217

Z
Zero-offset arrays, 122

	Contents
	Chapter 4 Rails-Flavored Ruby
	4.1 Motivation
	4.1.1 A title Helper
	4.1.2 Cascading Style Sheets

	4.2 Strings and Methods
	4.2.1 Comments
	4.2.2 Strings
	4.2.3 Objects and Message Passing
	4.2.4 Method Definitions
	4.2.5 Back to the title Helper

	4.3 Other Data Structures
	4.3.1 Arrays and Ranges
	4.3.2 Blocks
	4.3.3 Hashes and Symbols
	4.3.4 CSS Revisited

	4.4 Ruby Classes
	4.4.1 Constructors
	4.4.2 Class Inheritance
	4.4.3 Modifying Built-In Classes
	4.4.4 A Controller Class
	4.4.5 A User Class

	4.5 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

