
http://www.facebook.com/share.php?u=http://www.ibmpressbooks.com/title/9780132486316
http://twitter.com/?status=RT: download a free sample chapter http://www.ibmpressbooks.com/title/9780132486316
https://plusone.google.com/share?url=http://www.ibmpressbooks.com/title/9780132486316
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ibmpressbooks.com/title/9780132486316
http://www.stumbleupon.com/submit?url=http://www.ibmpressbooks.com/title/9780132486316/Free-Sample-Chapter

IBM Lotus Connections 2.5
Planning and Implementing Social
Software for Your Enterprise
By Stephen Hardison, David Byrd, Gary Wood,

Tim Speed, Michael Martin, Suzanne Livingston,

Jason Moore, and Morten Kristiansen

ISBN: 0-13-700053-7

In IBM Lotus Connections 2.5, a team of IBM

Lotus Connections 2.5 experts thoroughly intro-

duces the newest product and covers every facet

of planning, deploying, and using it success-

fully. The authors cover business and technical

issues and present IBM’s proven, best-practices

methodology for successful implementation. The

authors begin by helping managers and technical

professionals identify opportunities to use social

networking for competitive advantage–and by

explaining how Lotus Connections 2.5 places full-

fledged social networking tools at their fingertips.

IBM Lotus Connections 2.5 carefully describes

each component of the product–including

profiles, activities, blogs, communities, easy social

bookmarking, personal home pages, and more.

Survival Guide for
Lotus Notes and
Domino Administrators
By Mark Elliott

ISBN: 0-13-715331-7

Mark Elliott has created a true encyclopedia of

proven resolutions to common problems and has

streamlined processes for infrastructure support.

Elliott systematically addresses support solutions

for all recent Lotus Notes and Domino

environments.

Survival Guide for Lotus Notes and Domino
Administrators is organized for rapid access

to specific solutions in three key areas: client

setup, technical support, and client software

management. It brings together best practices

for planning deployments, managing upgrades,

addressing issues with mail and calendars, con-

figuring settings based on corporate policies, and

optimizing the entire support delivery process.

Related Books of Interest

Sign up for the monthly IBM Press newsletter at

ibmpressbooks/newsletters

Listen to the author’s podcast at:

ibmpressbooks.com/podcasts

Related Books of Interest

Visit ibmpressbooks.com

for all product information

Lotus Notes
Developer’s Toolbox
Tips for Rapid and Successful
Deployment
By Mark Elliott

ISBN-10: 0-13-221448-2

Lotus Notes Developer’s Toolbox will help you

streamline and improve every phase of Notes

development. Leading IBM Lotus Notes developer

Mark Elliott systematically identifies solutions

for the key challenges Notes developers face,

offering powerful advice drawn from his extensive

enterprise experience. This book presents best

practices and step-by-step case studies for

building the five most common types of Notes

applications: collaboration, calendar, workflow,

reference library, and website.

Web 2.0 and Social
Networking for the Enterprise
Guidelines and Examples for
Implementation and Management
Within Your Organization
By Joey Bernal

ISBN: 0-13-700489-3

This book provides hands-on, start-to-finish

guidance for business and IT decision-makers

who want to drive value from Web 2.0 and social

networking technologies. IBM expert Joey Bernal

systematically identifies business functions and

innovations these technologies can enhance and

presents best-practice patterns for using them in

both internal- and external-facing applications.

Drawing on the immense experience of IBM

and its customers, Bernal addresses both the

business and technical issues enterprises must

manage to succeed.

Listen to the author’s podcast at:

ibmpressbooks.com/podcasts

Related Books of Interest

Sign up for the monthly IBM Press newsletter at
ibmpressbooks/newsletters

DB2 9 for Linux, UNIX, and
Windows
DBA Guide, Reference, and
Exam Prep, 6th Edition
Baklarz, Zikopoulos
ISBN: 0-13-185514-X

The Art of Enterprise
Information Architecture
A Systems-Based Approach for
Unlocking Business Insight
Godinez, Hechler, Koening,
Lockwood, Oberhofer, Schroeck
ISBN: 0-13-703571-3

Enterprise Master
Data Management
An SOA Approach to Managing
Core Information
Dreibelbis, Hechler, Milman,
Oberhofer, van Run, Wolfson
ISBN: 0-13-236625-8

Mainframe Basics for
Security Professionals
Getting Started with RACF
Pomerantz, Vander Weele, Nelson,
Hahn
ISBN: 0-13-173856-9

Understanding DB2 9
Security
Bond, See, Wong, Chan
ISBN: 0-13-134590-7

The Social Factor
Innovate, Ignite, and Win through Mass
Collaboration and Social Networking
By Maria Azua
ISBN: 0-13-701890-8

Business leaders and strategists can drive im-
mense value from social networking “inside the
firewall.” Drawing on her unsurpassed experience
deploying innovative social networking systems
within IBM and for customers, Maria Azua
demonstrates how to establish social networking
communities, and then leverage those communi-
ties to drive extraordinary levels of innovation.
The Social Factor offers specific techniques for
promoting mass collaboration in the enterprise
and strategies to monetize social networking to
generate new business opportunities.
Whatever your industry, The Social Factor will
help you learn how to choose and implement the
right social networking solutions for your unique
challenges...how to avoid false starts and wasted
time...and how to evaluate and make the most
of today’s most promising social technologies—
from wikis and blogs to knowledge clouds.

This page intentionally left blank

Mastering
XPages

This page intentionally left blank

vii

IBM WebSphere

[SUBTITLE]

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

Mastering
XPages:

A Step-by-Step Guide to XPages
Application Development and the
XSP Language

Martin Donnelly, Mark Wallace,

and Tony McGuckin

IBM Press
Pearson plc

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

ibmpressbooks.com

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2011 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer

Cover design: IBM Corporation

Associate Publisher: Dave Dusthimer
Marketing Manager: Stephane Nakib
Executive Editor: Mary Beth Ray
Publicist: Heather Fox
Senior Development Editor: Christopher Cleveland
Managing Editor: Kristy Hart
Designer: Alan Clements
Senior Project Editor: Lori Lyons
Technical Reviewers: Maureen Leland, John Mackey
Copy Editor: Sheri Cain
Indexer: Erika Millen
Senior Compositor: Gloria Schurick
Proofreader: Kathy Ruiz
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com.

For sales outside the U. S., please contact

International Sales
international@pearson.com.

The following terms are trademarks of International Business Machines Corporation in many jurisdictions
worldwide: IBM, Notes, Lotus, Domino, Symphony, Quickr, Sametime, Lotusphere, Rational, WebSphere,
LotusScript, and developerWorks. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml.

Oracle, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

Microsoft, Windows, ActiveX, and Internet Explorer are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

Donnelly, Martin, 1963-
Mastering XPages : a step-by-step guide to XPages : application development and the XSP language /

Martin Donnelly, Mark Wallace, Tony McGuckin.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-13-248631-6 (pbk. : alk. paper)
1. Internet programming. 2. XPages. 3. Application software—Development. 4. Web site development.
I. Wallace, Mark, 1967- II. McGuckin, Tony, 1974- III. Title.
QA76.625.D66 2011
006.7’6—dc22

2010048618

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-248631-6
ISBN-10: 0-13-248631-8

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.

Second Printing: July 2011

http://www.ibm.com/legal/copytrade.shtml

I dedicate this book to the memory of my dear sister Anne,
the brightest and the best.

—Martin

For Dee, Sam, and Becky: I couldn’t have contributed to this book without the
support, encouragement, and unending patience of my wonderful wife.

Thank you, Dee.
—Mark

I want to thank some great people for my involvement in this book.
First, it would not have happened without the encouragement and direction of
my lead architect (and co-author) Martin; thank you for the great opportunity.
Second, I want to thank my development manager, Eamon, and senior technical
architect, Phil, who had to keep things going without a full-time engineer, and

yet both remained upbeat throughout the process.
Finally, I dedicate my contribution to this book to my parents, family, and
especially my wife, Paula, and daughter, Anna-Rose, for putting up with a

part-time husband and dad—I love you both!
—Tony

Contents

Foreword by Philippe Riand xx

Preface xxiv

Part I: Getting Started with XPages 1

Chapter 1 An Introduction to XPages 3
XPages Fundamentals 3
Brand New Technology? 4
A Different Development Paradigm 5
The More Things Change, the More Things Stay the Same 7
New Horizons 7
Conclusion 8

Chapter 2 Getting Everything You Need 9
Downloads, Versions, and Locations 9
Installing Domino Designer 10
Installing Client Fix Packs 11
Client Configuration 11
Quick Tour of Domino Designer 12

Domino Designer Welcome Screen 13
Domino Designer Perspective 14
Creating a New Application 15
Creating an XPage 16
Previewing in the Notes Client 18
Previewing in a Web Browser 18
Adding a Control to an XPage 21

Conclusion 22

Chapter 3 Building Your First XPages Application 23
Laying the Foundations 24
Forms and Views 26
Building an XPages View 31
Completing the CRUD 36
Conclusion 42

Part II: XPages Development: First Principles 43

Chapter 4 Anatomy of an XPage 45
What Exactly Is an XPage? 46
Understanding XSP Tag Markup 47

Getting Started with XML 47
XPages XML Syntax 50
Simple Properties 52
Complex Properties 54
Complex Values 54
Computed Properties 55
Data Binding 59
XPages Tags 60

Data Sources 61
Domino Document 61
Domino View 62
Data Context 63

Controls 64
Editing Controls 64
Command Controls 70
Selection Controls 74
Display Controls 82
File-Handling Controls 84

Containers 87
Panel 87
Table 90
View 91
Data Table 94
Repeat 95
Include Page 99
Tabbed Panel 99
Section 100

XPage Resources 101
Script Library 101
Style Sheet 103
Resource Bundle 104

xii Mastering XPages

Dojo Module 105
Generic Head Resource 106
Metadata Resource 106

Converters 107
Validators 110
Simple Actions 118
Client-Side Scripting 125
HTML Tags 127
Conclusion 128

Chapter 5 XPages and JavaServer Faces 129
What Is JavaServer Faces? 130
JSF Primer 131
How Does XPages Extend JSF? 138

XML-Based Presentation Tier 141
Request Processing Lifecycle 142
User Interface Component Model 143
Standard User-Interface Components 148
Value Binding and Method Binding Expression Evaluation 152
XPages Default Variables 154

Conclusion 156

Chapter 6 Building XPages Business Logic 157
Adding Business Logic 157

Using the xp:eventHandler Tag 160
Simple Actions 167

Change Document Mode 168
Confirm Action 169
Create Response Document 170
Delete Document 171
Delete Selected Documents 172
Execute Client Script 173
Execute Script 173
Modify Field 174
Open Page 175
Publish Component Property 176
Publish View Column 177
Save Data Sources 179
Save Document 180
Set Component Mode 182
Set Value 183
Action Group 184

Contents xiii

Using JavaScript with XPages 186
Server-Side JavaScript 186
Client JavaScript 206

Conclusion 211

Part III: Data Binding 213

Chapter 7 Working with Domino Documents 215
Domino Document Data Source 216

Creating and Editing Documents 219
Controlling URL Parameter Usage 220
Creating Response Documents 220
Executing Form Logic 224
Managing Concurrent Document Updates 227
Multiple Document Data Sources 228
Document Data Source Events 231
Common Data Source Properties 233
Miscellaneous Data Source Properties 234

Working with Domino Documents—Programmatically! 235
Simple Actions 235
JavaScript 236

Rich Documents 238
Conclusion 242

Chapter 8 Working with Domino Views 243
databaseName Property 245
View Data Source Filters 246

categoryFilter Property 246
search, searchMaxDocs Properties 249
parentId Property 251
ignoreRequestParams Property 252
keys, keysExactMatch Properties 253

Other View Content Modifiers 256
startKeys Property 256
expandLevel Property 257

A Page with Two Views 259
requestParamPrefix Property 260

When Is a View Not a View? 261
Go Fetch! Or Maybe Not... 262

loaded, scope Properties 263
postOpenView, queryOpenView Properties 263

Caching View Data 265
Sorting Columns 270
Conclusion 271

xiv Mastering XPages

Chapter 9 Beyond the View Basics 273
Pick a View Control, Any View Control 273
The View Control: Up Close and Personal 276

Column Data Like You’ve Never Seen Before 277
Simple View Panel Make Over 279
Working with Categories 293
View Properties and View Panel Properties 301

Data Table 305
Building a Mini Embedded Profile View using a Data Table 311

Repeat Control 316
A Repeat Control Design Pattern 317
Nested Repeats 318
The Rich Get Richer 320

Some Fun with the Pager 321
Conclusion 324

Part IV: Programmability 325

Chapter 10 Custom Controls 327
Divide and Conquer 328
Getting Started with Custom Controls 329
Using Property Definitions 337

Property Tab 340
Validation Tab 343
Visible Tab 345
Property Definitions Summary 346

Using the compositeData Object 346
Send and You Shall Receive 352

Multiple Instances and Property Groups 355
Custom Control Design Patterns 357

Aggregate Container Pattern 357
Layout Container Pattern 358

Conclusion 365

Chapter 11 Advanced Scripting 367
Application Frameworks 367
AJAX and Partial Refresh 369

Partial Refresh: Out-of-the-Box Style! 369
Partial Refresh: Doing-It-My-Way Style! 376

Event Parameters 384
Dojo Integration 386

dojoTheme and dojoParseOnLoad Properties 387
dojoModule Resource 388
dojoType and dojoAttributes Properties 389
Integrating Dojo Widgets and Extending the Dojo Class Path 390

Contents xv

Working with Traditional Notes/Domino Building Blocks 401
Working with @Functions, @Commands, and Formula Language 402
Working with Agents, In-Memory Documents, and Profile Documents 405

Managed Beans 412
Conclusion 419

Chapter 12 XPages Extensibility 421
How to Create a New User Interface Control 422
Example Component 423
Let’s Get Started 424

Create the Initial Application 424
Add Package Explorer to the Domino Designer Perspective 424
Add a Java Source Code Folder 426

Building a Component 428
Create a UI Component Extension Class 428
Create Tag Specificaton (.xsp-config) for the UI Component Extension 431
Create a Renderer and Register It in the Application Configuration (faces-config.xml) 434
Quick Test Application to Verify Everything Is OK So Far 437

Working with Component Properties 438
Component Properties and Attributes 438
Adding a Property to a Component 439
State Holder: Saving State Between Requests 440
Specifying Simple Properties 440
Inheriting xsp-config Properties 441

Create the Initial xsp-config Definitions 446
Create base.xsp-config 446
Create an Interface to Match the Group Property Definition in base.xsp-config 450
Revisit the Component Properties in Domino Designer 452

Specifying Complex Properties 453
Complete the xsp-config for the UISpinner Component 464
Complete the UI Component Extension, UISpinner 473
Complete the Renderer UISpinnerRenderer 477
Create a Sample Application Using the UISpinner Component 483

Take Your New UI Component Extension for a Test Drive 483
Create a Backing Bean 483
Register the Backing Bean 486
Create the Final Test Application 486
Nice Look and Feel 491
Test to Ensure That It All Works! 491

Where to Go From Here 491
XPages Extensibility API Developers Guide 492
XPages Extension Library 492
IBM developerWorks 492

Conclusion 493

xvi Mastering XPages

Chapter 13 XPages in the Notes Client 495
Think Inside the Box 496
Getting Started with XPages in the Notes Client 498
3, 2, 1...Lift Off 499
Bookmarks 501
Working Offline 503
One of These Things Is Not Like the Other 507
Other Subtle Differences 508
XPages: A Good Notes Citizen 511
Introducing enableModifiedFlag and disableModifiedFlag 513
Keeping Tabs on Your Client Apps 516
Notes Links Versus Domino Links 520
Some Debugging Tips 525
XPages and Composite Applications 528

Making a Component of an XPages Application 529
Is Anyone Out There? Creating a Component that Listens to Your XPages Component 531
Assembling a Composite Application: Aggregating the XPages Discussion

Component and Notes Google Widget 533
Hey, This Is a Two-Way Street! A Component May Receive and Publish Events! 536

Further Adventures with Composite Applications 540

Part V: Application User Experience 541

Chapter 14 XPages Theming 543
It Used to Be Like That...But Not Anymore! 543
Styling with Style! 545

Setting the Style Property Manually 550
Understanding How the Style Property Is Used 551
Computing the Style Property 552

Styling with Class! 552
Getting Something for Nothing! 553
Understanding How the styleClass Property Is Used 559
Computing the styleClass Property 561
Working with Extended styleClass and style Properties 563

Theming on Steroids! 567
What Is a Theme? 567
What Can You Do with a Theme? 568
Understanding Theme Architecture and Inheritance 569
Working with a Theme 576
Theme Resources 587
Resource Paths 597
Theme Properties, themeId, Control Definitions, and Control Properties 606

Conclusion 620

Contents xvii

Chapter 15 Internationalization 621
Using Localization Options 622

Localization with Resource Bundle Files 623
Setting Localization Options 624
Testing a Localized Application 626
Working with Translators 628
Merging XPage Changes 631
Gotchas! 633

Localizing Computed Expressions and JavaScript 636
Adding a Resource Bundle 637
Localizing Computed Expressions 638
Localizing Client-Side JavaScript 639

Localizing Script Libraries 640
Server-Side Script Libraries 640
Client-Side Script Libraries 641

International Enablement 643
Locales in XPages 644
Deprecated Locale Codes 648
Conclusion 650

Part VI: Performance, Scalability, and Security 651

Chapter 16 Application Performance and Scalability 653
Golden Rules 654
Understanding the Request Processing Lifecycle 655

GET-Based Requests and the JSF Lifecycle 656
POST-Based Requests and the JSF Lifecycle 656

Reducing CPU Utilization 658
GET- Versus POST-Based Requests 658
Partial Refresh 663
Partial Execution Mode 665

Reducing Memory Utilization 668
HTTPJVMMaxHeapSize and HTTPJVMMaxHeapSizeSet Parameters 669
xsp.persistence.* Properties 669
dataCache Property 670

Conclusion 672

Chapter 17 Security 673
Notes/Domino Security and XPages 673

Server Layer of Security 674
Application Layer of Security 675
Design Element Layer of Security 677
Document Layer of Security 684

xviii Mastering XPages

Workstation ECL Layer of Security 686
Useful Resources 687

Let’s Get Started 687
Creating the Initial Application 687
Implementing ACLs 689
Sign the XPages with Your Signature 690

Programmability Restrictions 691
Sign or Run Unrestricted Methods and Operations 692
Sign Agents to Run on Behalf of Someone Else 692
Sign Agents or XPages to Run on Behalf of the Invoker 693
Sign Script Libraries to Run on Behalf of Someone Else 693

Restricted Operation 693
XPages Security Checking 695

NSF ClassLoader Bridge 695
XPages Security in the Notes Client 696

Execution Control List (ECL) 697
Active Content Filtering 699
Public Access 702

Setting Public Access for XPages 703
Checking for Public Access in XPages 703

SessionAsSigner 704
Troubleshooting XPages Java Security Exceptions 706
Conclusion 707

Part VII: Appendixes 709

Appendix A XSP Programming Reference 711
XSP Tag Reference 711
XSP Java Classes 712
Notes/Domino Java API Classes 714
XSP JavaScript Pseudo Classes 715

Appendix B XSP Style Class Reference 719
XSP CSS Files 719
XSP Style Classes 720

Appendix C Useful XPages Sites on the Net 727

Index 729

Contents xix

Foreword:
Revolution Through Evolution

I never got a chance to meet the inventors of Notes®, but these guys were true visionaries. Their
concepts and ideas of 20 years ago still feed today’s buzz. They invented a robust “NO SQL” data
store, provided a social platform with collaboration features, and made the deployment and repli-
cation of applications easy...it is certainly no accident that Notes became so popular! Backed by a
strong community of passionate developers dedicated to the platform, it elegantly solves real
problems in the collaboration space by bringing together all the necessary components. As a
developer, it makes you very productive.

Lotus Notes is also a fabulous software adventure and definitely a model for other software
projects. At a time when technology evolves at unprecedented speed, where new standards appear
and deprecate quickly, Lotus Notes adapts by keeping up to date. Over the past 20 plus years,
Notes/Domino® has continually embraced diverse technologies in different domains: HTTP,
XML, JavaScript™, Basic, Java™, POP/IMAP, LDAP, ODBC, just to name a few...this makes it
unique in the software industry. Best of all, this is done while maintaining full compatibility with
the previous releases. This reduces the risk for IT organizations and makes their long-term
investment safer. Applications that were built about two decades ago on top of Windows® 2
(remember?) can be run without modification on the latest release of Notes/Domino, using any
modern 64-bit operating system, including Linux® and MAC-OS! Continuity is the master word
here, paired with innovation.

But, the world evolves. Software platforms in the old days were just proprietary, providing
all the features they required by themselves. The need for integration wasn’t that high. However,
as IT has matured over time, most organizations nowadays rely on heterogeneous sets of software
that have to integrate with each other. Starting with version 8, the Notes client became a revolu-
tionary integration platform. Not only does it run all of your traditional Notes/Domino applica-
tions, but it also integrates a Java web container, provides a composite application framework,
embeds Symphony™, offers connectors to Quickr®, Sametime®, Lotus Connections, and so on.
This was a great accomplishment—kudos to the Notes team.

At the same time, a parallel evolution saw the emergence of a more web-oriented world. An
increasing set of applications, which traditionally required a specific proprietary client, started to
become fully available through just a regular web browser. Google is certainly deeply involved in
this mutation. New frameworks, languages, and libraries were designed to support this new no-
deployment model. So, what about Notes/Domino? How can it be remain relevant in this new,
ever-changing world? Of course, the Domino server includes an HTTP server that goes all the
way back to R4.5. But, although it allows you to do pretty much everything, the cost of develop-
ing a web application, and the amount of required experience, was prohibitive. Moreover, the
development model uses a proprietary page-definition language that is not intuitive for newcom-
ers to the platform. Although not insurmountable, this was certainly a significant barrier to entry.
It became clear that Domino web-application development (including Domino Designer) needed
the same kind of revolution that the Notes client had undergone. True to our core values, however,
this had to really be an evolution, where existing investment could be preserved, while throwing
open the door to the new world. In essence, a revolution through an evolution.

During this time, I was leading a team at IBM® working on a development product called
Lotus Component Designer (LCD). Its goal was to provide a Notes/Domino-like programming
model on top of the Java platform, targeting the Lotus Workplace platform. It included most of
the ingredients that made Notes/Domino a successful application development platform, while at
the same time being based upon standard technologies: Java, JavaServer Faces (JSF), and
Eclipse. Designed from the ground-up to generate top-notch web applications, it included a lot of
new innovations, like the AJAX support, way before JSF 2.0 was even spec’d out. What then
could have been a better fit for Notes/Domino app dev modernization? The asset was solid, the
team existed, and the need was great, so it became the natural candidate for integration into
Domino. An initial integration was achieved in a matter of a few weeks, and this is how the
XPages story started!

When I joined the Notes Domino team four years ago (yes, time is running fast!), my mis-
sion was to make that revolution happen, starting with web applications. Taking over such a mis-
sion was intimidating because Domino has such a fabulous community of developers with
unrivaled experience who obviously know much more about the product than I ever could. In
fact, one of our business partners recently showed me a picture of five key employees and pointed
out that they collectively represent more than 80 years of Notes/Domino development experi-
ence! In addition to this, the Lotus Notes/Domino development team is a well-established one,
with mature processes and its own unique culture and habits. The XPages team was not only new
to this world, but located geographically on the other side of it—in Ireland! The challenge thus
became one of gaining acceptance, both internally and externally. This was a risky bet, because
people might have easily just rejected the XPages initiative and pushed for another solution. But,
we were pleasantly and encouragingly surprised. The first reactions were very positive. There
was definitely room to deliver the innovation that the community so badly needed.

Notes/Domino 8.5 was the first release developed using an agile methodology. As it hap-
pened, that perfectly suited a new technology like XPages. It allowed us to communicate a lot

Foreword xxi

with the community, share design decisions, get advice, and modify our development plan
dynamically. We had been, and still are, listening closely to the community through many and
varied sources like blogs, wikis, forums, and of course, direct communication. We are most defi-
nitely dedicated to putting our customers in a winning situation. Everything we do is toward this
goal: We truly understand that our success is our customers’ success.

In this area, the XPages development team showed an impressive commitment. For
example, we organized not one, but two workshops in our development lab 6 months before
releasing the product! And it paid off: We introduced happy customers on stage at Lotusphere®

2009, a mere 15 days after the official release of the Domino 8.5. Their testimonials were encour-
aging and have not been proved wrong since, as the XPages adoption curve moves ever onward
and upward. Many XPages-based solutions were shown at Lotusphere 2010, and Lotusphere
2011 promises to be another great stage with a lot of already mature solutions waiting to be
announced. The team also wrote numerous articles in the Domino Application Development
wiki, recorded many videos, and has been responsive on the different forums. This is also a major
change where the development team is not isolated in its sterilized lab, but interacting positively
with the broader community. The revitalization of openNTF.org is another example. The number
of its monthly hits shows just how successful it is. Many partners have told me that they always
look for already available reusable components before deciding to develop their own, and open-
NTF is just a fantastic resource in this regard.

So, what’s next? Are we done? Certainly not! We have new challenges coming in, particu-
larly with the next generation of browsers and platforms. We need to evolve XPages to generate
applications that can take advantage of the new client capability. We need XPages to be tightly
integrated with the rest of IBM Collaboration Services portfolio (a.k.a. Lotus portfolio). We need
to support the new devices, such as smartphones and tablet PCs. We want to make sure that
XPages plays a leading role with the next generation of Lotus Software (code name Vulcan). But,
beyond the technology, we also have the challenge of transforming the way we create and deliver
software. We want to make the Notes/Domino technology more open. We want to make the
development process more transparent. We want to get feedback earlier, and we even want the
community to contribute to that effort. We’re all here to make it better, aren’t we? The answer, in
my opinion, is to open source some parts of the platform. OpenNTF is becoming our innovation
lab, delivering technology early, breaking the regular release cycles. It allows us to be responsive
to the community needs and then integrate the components later in the core product. Recently, we
successfully experienced this with the new XPages Extension Library. The feedback we received
was very positive, so we want to continue in this direction. Stay tuned...Notes/Domino is the plat-
form of the future!

Finally, this story wouldn’t have happened without a great XPages and Domino Designer
team. For the quality of the work, the innovation path, the willingness to take on new challenges,
the customer focus...well, for many aspects, this team is seen as exemplary in the broader Lotus
organization. I really feel lucky and proud to be part of it. This book’s three authors are also key
members. Each one of them has worked on different areas of XPages; the gang of writers cannot

xxii Mastering XPages

be better staffed. Martin is the team lead in Ireland, and he designed the Notes client integration
and the data access part. Mark is a core runtime expert, and he has been involved since the early
prototypes. Tony is our applications guy, in charge of the new generation of template applica-
tions. He has also been successful on many customer projects. Finally, helping them is Jim Quill,
our security expert and general XPages evangelist. With this book, you definitely get the best of
the best! I have no doubt that you’ll learn a lot by reading it, whether you’re a beginner or an
XPages hacker.

Enjoy, the story has just begun!

Philippe Riand
XPages Chief Architect

Foreword xxiii

Preface

XPages made its official public debut in Notes/Domino version 8.5, which went on general
release in January 2009. At the annual Lotusphere conference that same month in Orlando,
Florida, XPages was featured directly or indirectly in a raft of presentations and workshops,
including the keynote session itself, as the technology was introduced to the broad application-
development community. Throughout the conference, it was variously described as a new frame-
work for Web 2.0 development, a strategic move to reinvigorate the application-development
experience, a standards-based runtime that would greatly boost productivity for the Domino web
developer...to quote but a few! Fancy claims indeed, but then again, Lotusphere has always been
the stage that heralded the arrival of the “next big things” in the Notes/Domino community.

Fast forward to the present time: It’s fair to say that all these claims (excluding maybe one
or two made much, much later into those Floridian evenings) were prophetic and XPages, as a
technology, is indeed living up to its promise in the real world. Evidence of this is all around us. A
vibrant XPages development community has evolved and thrives. Respected bloggers wax enthu-
siastic about the latest XPages tips and tricks. XPages contributions abound in OpenNTF.org,
while the Notes/Domino Design Partner forum sees a steady flow of questions, comments, and,
of course, requests for new cool features.

A recurring pattern evident in the flow of requests is the call for better documentation.
XPages is a powerful Java runtime with a host of rich and sophisticated features that runs the
entire app dev gamut. In the Notes/Domino 8.5 release, would-be XPages developers were left to
their own devices to get up to speed with the technology. Typical approaches for the resourceful
newbie developer included foraging for XPages programming patterns in the standard Notes Dis-
cussion template (which shipped with an out-of-the-box XPages web interface), scouring the lim-
ited Help documentation, and sharing random enablement materials that had started to appear on
the web. Although all these, along with a sizable dollop of developer ingenuity, often worked
remarkably well for those with large reserves of determination, the value of a single source of
XPages information cannot be understated. This book’s goal is to fill that gap and provide a single
comprehensive guide that enables readers to confidently take on, or actively participate in, a real-
world XPages application-development project.

Approach
This book’s objective is to impart as much practical XPages knowledge as possible in a way that
is easy for the reader to digest. The authors seek to cover all aspects of the XPages development
spectrum and to engage the reader with hands-on problems wherever possible. Most chapters
come with a sample application that provides plentiful exercises and examples aimed at enabling
you to quickly and efficiently solve everyday real-world use cases. These resources are located on
the web at www.ibmpressbooks.com/title/9780132486316, so waste no time in downloading
before getting started!

Tinker, Tailor, Soldier, Sailor?

Our Diverse Reading Audience
Although XPages is a new technology that offers a development model familiar to the average
web developer (and the above-average ones, too!), many traditional Notes/Domino development
skills can also be harnessed to good effect. One challenge in writing this book is that no single
developer profile really defines the reader audience. For example, is the typical reader a web-
application developer coming to the Notes/Domino platform or a Notes/Domino web developer
wanting to learn XPages? In fact, since the release of Notes version 8.5.1, the reader may well be
a Notes client application developer seeking to write new XPages applications for the Notes
client or customize web applications that can now be run offline in that environment. Finally, a
fourth category of reader may be the novice developer, for whom all this stuff is pretty much new!
Which one are you? Or you may indeed be graced with the fine talents of bilocation and can
appear in two of these camps at once!

Anyway, suffice to say that there inevitably will be aspects to several topics that are pecu-
liar to a particular category of audience. Such content will typically be represented in this book as
sidebars or tips in the context of the larger topic. Other cases might merit a dedicated section or
chapter, such as Part IV, “Programmability,” which contains a chapter that deals with all the
details of XPages in the Notes client, while Part VI, “Performance, Scalability, and Security,” has
an entire chapter dedicated to the topic of application security.

Other Conventions
Any programming code, markup, or XSP keywords are illustrated in numbered listings using a
fixed width font.

User-interface elements (menus, links, buttons, and so on) of the Notes client, Domino
Designer, or any sample applications are referenced using a bold font.

Visual representations of the design-time experience or runtime features are typically
captured as screen shots and written as numbered figures, using superimposed callouts where
appropriate.

Preface xxv

www.ibmpressbooks.com/title/9780132486316

How This Book Is Organized
This book is divided into seven parts to separately address the many different aspects of XPages
software development in as logical a manner as possible:

Part I, “Getting Started with XPages”: This part gets you familiar with XPages at a conceptual
level to get you up and running quickly with the technology and get you comfortable with the
overall application development paradigm.

• Chapter 1, “An Introduction to XPages”: Here, you are introduced to the history of
XPages and given some high-level insights into its design principles in order for you to
understand exactly what it is and what it is not. This is all about giving you the right con-
text for XPages by defining the problems it solves, the technologies on which it is based,
and where it might go in the future.

• Chapter 2, “Getting Everything You Need”: This chapter concerns itself with the
practical business of obtaining, installing, and configuring your XPages development
environment and successfully walking you through your first “Hello World” XPage!

• Chapter 3, “Building Your First XPages Application”: This chapter aims to provide a
breadth-first hands-on experience of building a simple web application using the
XPages integrated development environment (a.k.a Domino Designer). This is really
just an introductory practical to get your feet wet and ensure you are comfortable with
the basics of the application development model before diving any deeper.

Part II, “XPages Development: First Principles”: This part is mostly architectural in nature
and aims to give you an appreciation of what’s happening under the XPages hood. This is an
essential prerequisite to some of the more advanced topics, like XPages performance and
scalability.

• Chapter 4, “Anatomy of an XPage”: This chapter examines the XSP markup lan-
guage and gives a simple example of all the standard elements (controls and such) that
can be used in an XPage. It provides a great broad-based view of XPages basics.

• Chapter 5, “XPages and JavaServer Faces”: This chapter looks at JavaServer Faces
(JSF), which is the web-application development framework on which XPages is
based. It looks at some core JSF design points and how XPages leverages and extends
the framework.

• Chapter 6, “Building XPages Business Logic”: This chapter is a primer for XPages
programmability. It introduces the various tools that can be used to implement XPages
business logic so that you will be ready to work with the practical examples that are
coming down the pike.

Part III, “Data Binding”: This part is really about how XPages reads and writes Notes data.
XPages comes with a library of visual controls that are populated at runtime using a process
known as data binding. The mechanics of the data binding process is explored in depth for Notes
views and documents.

xxvi Mastering XPages

• Chapter 7, “Working with Domino Documents”: This chapter focuses on reading
and writing Notes documents via XPages. Advanced use cases are explored and every
design property on the Domino document data source is explained and put through its
paces using practical examples.

• Chapter 8, “Working with Domino Views”: In this chapter, the Domino view data
source is dissected and examined, property by property. Again, practical exercises are
used to drive home the material under discussion

• Chapter 9, “Beyond the View Basics”: Working with Notes/Domino views is a large
subject area, so much so that it demands a second chapter to cover all the details. This
chapter looks at the various container controls that are available in the standard XPages
control library, whose job it is to display view data in different formats and layouts in
order to support a myriad of customer use cases.

Part IV, “Programmability”: This part covers the black art of programming—essentially how
to code your applications to do everything from the most basic user operation to writing your own
controls that implement completely customized behaviors. This part concludes with a look at
XPages in the Notes client and considers cross-platform application development issues.

• Chapter 10, “Custom Controls”: This chapter explains the “mini-XPage” design ele-
ment that is the custom control. It explains how to leverage the custom control in order
to “componentize” your application and then maximize the reuse of your XPages devel-
opment artifacts.

• Chapter 11, “Advanced Scripting”: Advanced scripting is an umbrella for many cool
topics, like AJAX, Dojo, @Functions, agent integration, managed beans, and so forth.
This is a must for anyone looking to add pizzazz to their XPages applications.

• Chapter 12, “XPages Extensibility”: This chapter explains how to use the XPages
extensibility APIs to build and/or consume new controls. This is an amazingly powerful
feature that has only recently become available and is well worth exploring once you
have mastered XPages fundamentals.

• Chapter 13, “XPages in the Notes Client”: XPages in the Notes client initially
explains how you can take your XPages web applications offline and then goes on to
highlight how you can take advantage of powerful features of the client platform itself,
and how to manage applications that run in both environments.

Part V, “Application User Experience”: This part is all about application look and feel. You
learn not just how to make your apps look good and behave well, but how to do so for an interna-
tional audience!

• Chapter 14, “XPages Theming”: This chapter teaches you how to manage the appear-
ance and behavior of your application’s user interface. It provides an in-depth look at
ad-hoc XPages application styling using cascading style sheets, as well as the main fea-
tures of the standard XPages UI themes, and explains how to create your own cus-
tomized themes.

Preface xxvii

• Chapter 15, “Internationalization”: Read this chapter to learn how your XPages
applications can be translated so that they look, feel, and behave as native applications
in any geographical locale.

Part VI, “Performance, Scalability, and Security”: Up to this point this book has concentrated
on the skills and tools you need to know to develop state-of-the-art collaborative applications.
Part VI shifts to deployment and what you need to do to make sure your applications meet cus-
tomer expectations in terms of performance, scalability, and security.

• Chapter 16, “Application Performance and Scalability”: This chapter highlights
various tips and tricks that will enable you to tune your XPages application for optimal
performance and scalability in various deployment scenarios.

• Chapter 17, “Security”: Learn about application security issues and considerations
and see how XPages integrates with the Domino server and Notes client security models.

Part VII, “Appendixes”

• Appendix A, “XSP Programming Reference”: This appendix points to a collection of
definitive reference sources that describe all the details of the XSP tags, Java and
JavaScript classes. It provides examples of how to use these resources to find the infor-
mation you need.

• Appendix B, “XSP Style Class Reference”: This appendix identifies all the standard
XPages CSS files and style classes used to build XPages application user interfaces. It’s
an essential quick reference for Chapter 14.

• Appendix C, “Useful XPages Sites on the Net”: A snapshot of the authors’ favorite
XPages websites at the time of writing. This list of sites should help you find whatever it
is you need to know about XPages that isn’t found in this book.

xxviii Mastering XPages

Acknowledgments

This book was a new and eventful journey for all three authors as none of us had been down the
book-writing road before. At times, the trip became a little more arduous than we had anticipated,
but we received a lot of help from some great people along the way. We first want to thank our
contributing author and colleague in IBM Ireland, Jim Quill, who we press-ganged at the
eleventh hour and cajoled into writing a couple of chapters on the specialized topics of extensibil-
ity and security, respectively. Jim duly delivered, and we could not have met our project deadlines
without him—just goes to show, a friend in need is a friend indeed!

We are happy to say that we are still on speaking terms with our two excellent and dedi-
cated technical reviewers, Maureen Leland and John Mackey. Thanks to you both for keeping us
honest and being positive and insightful at all times.

A sincere thank you to those who helped get this book proposal off the ground—especially
Eamon Muldoon, Pete Janzen, and Philippe Riand, for their encouragement and advice along the
way.

We are indebted to Maire Kehoe who always parachutes in for us to solve thorny problems
at the drop of a hat—where would we be without you! Padraic Edwards and Teresa Monahan
deserve our kudos for helping out on composite application use cases, and to Teresa again for her
CK Editor brain dump. And because all the authors are based in Ireland, you can well imagine
that we took every opportunity to lean on the other members of the XPages runtime team at the
IBM Ireland lab. For that help, we want to collectively thank Brian Gleeson, Brian Bermingham,
Darin Egan, Dave Connolly, Edel Gleeson, Gearóid O’Treasaigh, Lisa Henry, Lorcan McDonald,
Paul Hannan, and Willie Doran.

We want to express our thanks to Robert Perron for some articles and documentation utili-
ties that we are glad to leverage in a couple of places in this book. Thanks also to Thomas Gumz
for some collaborative demo work we did at a dim and distant Lotusphere that is still worthy of
print today! We are privileged to say there is a long list of folks at IBM past and present who have
helped push the XPages cause forward over its eventful course thus far. Thanks to Azadeh Salehi,
Bill Hume, Brian Leonard, Dan O’Connor, Dave Kern, David Taieb, Girish P. Baxi, Graham
O’Keeffe, Ishfak Bhagat, Jaitirth Shirole, Jeff deRienzo, Jeff Eisen, Jim Cooper, John Grosjean,

John Woods, Kathy Howard, Margaret Rora, Matthew Flaherty, Mike Kerrigan, Na Pei, Peter
Rubinstein, Russ Holden, Santosh Kumar, Scott Morris, Simon Butcher, Simon Hewett, Srinivas
Rao, Steve Castledine, Steve Leland, Tom Carriker, Xi Pan Xiao, and Yao Zhang. Apologies to
any IBMers accidentally omitted; let us know and we’ll be sure to include you in the reprints!

To our friends at IBM Press—in particular Mary Beth Ray, Chris Cleveland, Lori Lyon,
and Gloria Schurick—it may be a well-worn cliché, but it truly was a pleasure working with you
guys! And on the IBM side of that relationship, we echo those sentiments to Steven Stansel and
Ellice Uffer.

Finally, a great big THANK YOU, as always, to our customers and business partners, par-
ticularly the early adopters who got behind XPages at the get-go and made it the success that it is
today!

xxx Mastering XPages

About the Authors

The authors of this book have a number of things in common. All three hail from Ireland, work
for the IBM Ireland software lab, and have made significant contributions to the development of
XPages over the past number of years.

Martin Donnelly is a software architect and tech lead for the XPages runtime team in IBM
Ireland and has worked on all three XPages releases from Notes/Domino 8.5 through 8.5.2. Prior
to this, Martin also worked on XFaces for Lotus Component Designer and on JSF tooling for
Rational® Application Developer. In the 1990s while living and working in Massachusetts, he was
a lead developer on Domino Designer. Now once again based in Ireland, Martin lives in Cork
with his wife Aileen, daughters Alison, Aisling, and Maeve, and retired greyhounds Evie and
Chelsea. Outside of work, he confesses to playing soccer on a weekly basis, and salmon angling
during the summer when the opportunity presents itself.

Mark Wallace is a software architect working in the IBM Ireland software lab. In the past, he
worked on the XSP runtime, which was developed for Lotus Component Designer and subse-
quently evolved into the XPages runtime. He has a keen interest in programming models and
improving developer productivity. Mark has worked in Lotus and IBM for more than 15 years on
various products and is currently working on Sametime Unified Telephony. Mark lives in Dublin
with his wife and two children and spends as much time as possible in the Ireland’s sunny south
east enjoying fishing and kayaking with his family.

Tony McGuckin is a senior software engineer in the IBM Ireland software lab. Having studied
software engineering at the University of Ulster, he began his career with IBM in 2006 working in
software product development on the component designer runtime before moving into the XPages
core runtime team. When not directly contributing to the core runtime, Tony is busy with software
research and development for the next generation of application development tooling, and also
engaging directly with IBM customers as an XPages consultant. Tony enjoys spending time with
his wife and daughter, and getting out into the great outdoors for hill walking and the occasional
chance to do some hunting in the surrounding hillsides of his native County Derry.

xxxii Mastering XPages

Contributing Author
Jim Quill is a senior software engineer for the XPages team in IBM Ireland. He is relatively new
to the Notes/Domino world, joining IBM just over two years ago at the tail end of the first XPages
release in Domino 8.5. Previous to IBM, Jim enjoyed more than 13 years at Oracle Ireland.
There, he worked in areas such as product development and database migration technology, and
he was both principal software engineer and technical architect for a number of internal Oracle®

support systems. Jim lives in the coastal village of Malahide, north County Dublin, with his wife
and four children. When not acting as the kids’ taxi, he continues to play competitive basket-
ball...way past his retirement date.

This page intentionally left blank

273

Because the preceding chapter concentrated exclusively on the gory details of data retrieval from
Domino views, it’s only fitting that this chapter focuses on the fine art of presenting view data in
XPages. Once again, a modified version of the Discussion template is used as the sample applica-
tion. In fact, for this chapter, you need two samples, namely Chapter9.nsf and Chapter9a.nsf. You
need to download these resources now from the following website and load them up in Domino
Designer so that you can work through all the examples provided: www.ibmpressbooks.com/
title/9780132486316.

You will see how this standard template uses the View and Repeat controls to best effect
when displaying view data, and extra XPages have been added to show off some new tips and
tricks. You will also learn how to extend and modify the behaviors of the view controls using
JavaScript, Cascading Style Sheets (CSS), and so on. If you work through all the examples as you
read along, you will have consummate expertise on this topic by the end of this chapter!

XPages provides three standard controls for presenting Domino view data, namely the
View, Repeat control and Data Table. You will find all three on the Container Controls section of
the palette in Designer. You have already done some work with these controls, mostly with the
View control, although you have only used the basic properties up until now. You will see here
how to put some of the lesser known properties to good use to solve some more advanced use
cases. Perhaps it is best to start, however, with an explanation of why there are three different
view presentation controls in the first place!

Pick a View Control, Any View Control
When it comes to presenting view data, we all have our individual preferences! For some use
cases, a view with a strictly tabular format where rows and columns crisscross to form a rigidly

C H A P T E R 9

Beyond the View
Basics

www.ibmpressbooks.com/title/9780132486316
www.ibmpressbooks.com/title/9780132486316

274 Chapter 9 Beyond the View Basics

ordered grid layout is what’s required. In other scenarios, a more free-form view layout of sum-
mary information that allows end users to dynamically dive deeper into the underlying data is the
order of the day. In terms of providing off-the-shelf controls to meet these demands, no one-size-
fits-all solution exists. In other words, separate specialized renderers are required to handle what
are wildly different layout requirements, and each renderer has its own unique set of properties
and behaviors that cater to those particular use cases.

Rather than simply describing various alternative view layouts, it is useful for you to see
real-world use cases firsthand. As usual, the sample application can be readily called upon to
demonstrate different view presentation examples. For example, explore the All Documents
view on the main page of the application, and then compare its look and feel to one of the other
views in the main navigator, such as By Tag, By Author, By Most Recent, and so on. Some key
differences should come to your attention immediately. Chief among these is the interesting
capability of the All Documents view to dynamically expand and collapse row content inline.
That is, as you hover over any particular row, you are presented with More and Hide links,
depending on the current state of the row content. If the row is collapsed, clicking the More
option effectively injects an extra row of detail into your view, showing an abstract of the under-
lying document and presenting options to compose a reply or to switch to a view of documents
that contain the same tags. Figure 9.1 summarizes this feature.

Dynamic Row Expansion

Figure 9.1 Sample Discussion application using repeat control to render all documents view

Pick a View Control, Any View Control 275

The other views do not have this capability and instead display content on a strict one-doc-
ument-per-row basis. The data in these views is typically organized according to a specific crite-
rion, say by category, author, or date, and feature the standard document link navigators for some
of the columns in each row. You will no doubt recognize these behaviors as built-in properties of
the View control, and you have already implemented a view sample similar to these in Chapter 3,
“Building Your First XPages Application.” That first sample demonstrated that you could build
simple views using a View control in a matter of minutes. Although it also is possible to build
sophisticated view renderings with the View control (as you’ll soon see), there are some things it
is simply not designed to do—dynamic inline row insertion/deletion being a case in point.

The fancy dynamics shown in Figure 9.1 are achieved using a Repeat control. This con-
tainer control iterates or “repeats” over every row in the view data source to which it is bound.
Any control that is added to the Repeat container (by default it is empty) can be bound to a col-
umn in the backend view. The iterative read cycle that occurs at runtime then ensures that all con-
tained controls display the appropriate column value once for every row in the view. Thus, you
have a totally free-form means of laying out view data, where nothing is predefined but anything
is possible. The presentation content is totally dependent on the controls you choose to add to the
Repeat container. It is not required to be structured within an HTML table for example—some-
thing you are stuck with when using the View control or Data Table controls whether you like it
or not. Also, Repeat controls can be nested within each other, meaning that different data sources
can be navigated as part of one overall view presentation.

All this, of course, means the Repeat control is an incredibly powerful and flexible tool for
displaying view data—that’s the upside! The downside is that you must define all the content and
layout data yourself; in other words, it can be a lot of work depending on what you want to
achieve. The View control, on the other hand, is somewhere toward the other end of the scale—a
View control can be built quickly using easy point-and-click operations, but the end result is more
restrictive than is the case with a Repeat control. Again, depending on what you want to achieve,
the View control may be the correct instrument to use—a simple case of choosing the right tool
for the right job!

To see how the various view controls have been employed in the Discussion template, you
can search the Discussion template for the tags xp:viewPanel, xp:repeat and
xp:dataTable (in Designer, type Ctrl-H and specify the literal tags in the File Search tab, as
shown in the previous chapter). The View control is used in all the aforementioned XPages (By
Tag, By Author, By Most Recent) and in AuthorProfileView.xsp. If a user has registered a pro-
file in the application, the Author Profile custom control is one of three views displayed when
the user’s name is picked from the author cloud. The Repeat control is used for the All Docu-
ments page, the presentation of both the tag and author clouds (as shown in Figure 9.1), and to
build the response document chain displayed when editing a document that is contained in a
hierarchy.

276 Chapter 9 Beyond the View Basics

Interestingly, although perhaps not surprisingly, the search for xp:dataTable results in
no hits—at least this is true in the out-of-the-box template; however, you can find matches in
Chapter9.nsf because a Data Table example has been added for your convenience. The absence
of the xp:dataTable tag from the Discussion template and from most other real-world applica-
tion (at least in this author’s experience) is because it offers neither the convenience of a View
control nor the flexibility of a Repeat control. In essence, it is like a limited version of both con-
trols and, thus, tends to be left out in the cold when it comes to more sophisticated application
development scenarios. It is, however, useful for prototyping and for simple use cases, and we
examine a sample Data Table later in this chapter. First, however, it’s time to take a closer look at
the intricacies of the View control.

The View Control: Up Close and Personal
In this book, the View control is commonly referred to as the View Panel. This reference emanates
from the markup tag used for the View control, i.e. <xp:viewPanel>, and it comes in handy
when its necessary to disambiguate the view control from the backend Domino view that serves
as its data source. In any case, the terms “View control” and “View Panel” can be used inter-
changeably and refer to the visual control that renders the view data.

The View Panel is a rich control with an abundance of properties and subordinate elements,
such as pagers, columns, data sources, converters, and so on. Some of its properties are generic
insofar as they are also shared by other controls in the XPages library to support common features
like accessibility, internationalization, and so forth. For the most part, this chapter concentrates
on the other properties as they are more directly relevant to view presentation, while the generic
properties are addressed separately in other chapters.

In any case, the View Panel properties used in the examples up to now have been few in
number and basic in nature. The upcoming examples start to pull in more and more properties in
order to tweak the look and feel of your views. As usual, you learn these by way of example, but
before you dive in, it is useful to summarize the View Panel features that have already been cov-
ered and provide the necessary reference points should you need to recap. The forthcoming mate-
rial assumes that you are proficient with the topics listed in Table 9.1, although more detailed
information may be provided going forward.

The View Control: Up Close and Personal 277

Column Data Like You’ve Never Seen Before
So, start the next leg of this View Panel journey of discovery by creating a new XPage, say
myView.xsp. Drop a View Panel from the control palette to view and bind it to the All Docu-
ments view when the helper dialog appears. Deselect all but three columns of the backend
view—retain $106, $116, and $120. These are the programmatic names that have been assigned
to the view columns; XPages allows you to use either the column’s programmatic name or the
view column title to identify the column you want to include in the View control. Not all view
columns have titles, however! Click OK to create the View Panel.

When you preview this raw XPage, you see the Date and Topic fields as expected, along
with what can best be described as some gobbledygook wedged in between those columns, as
shown in Figure 9.2.

Table 9.1 viewPanel Features Previously Discussed

Feature Chapter Reference:
Section

Description

viewPanel

Designer: Drag & Drop

Chapter 3: Building an
XPages View

Creating a View control from controls
palette

Working with the view binding dialog

viewColumn

property: displayAs

Chapter 3: Building an
XPages View

Linking View control entries to underlying
Notes/Domino documents

viewColumn

property:
showCheckBox

Chapter 3: Completing
the CRUD

Making view entries selectable for exe-
cutable actions

viewPanel

<xp:pager>

Chapter 4: View Basic description of View control with
pager information

viewPanel

property: facets

Chapter 4: Facets General introduction to facets, including
simple examples using view pagers

viewPanel

Designer: appending
columns

Chapter 8: Caching
View Data

Adding a new column to a View control and
computing its value using server-side
JavaScript

278 Chapter 9 Beyond the View Basics

It is not unreasonable to question what exactly this $116 column represents. The formula
behind the column in the backend view looks like this:

@If(!@IsResponseDoc;@DocDescendants(""; "%"; "%");"")

In the regular Notes client, this column displays the number of descendant documents for all
root level documents. To decipher the code, the @DocDescendants function is only applied when
!@IsResponseDoc evaluates to true, meaning when the current document is not a response docu-
ment, or in other words, for top-level documents only. The ”%” within the parameter strings are
replaced with the actual number of descendant documents at runtime. According to the Help docu-
mentation, @DocDescendants is among a class of @Functions that are restricted in their applica-
bility and cannot be run from web applications. The function is described as returning “special
text,” which is computed for client display only, not actually stored in the view, cannot be converted
to a number, and so on. Other @Functions, such as @DocNumber and @DocChildren, present the
same issues (you can find a more complete list in the Designer help pages). Designer itself attempts
to preclude such columns from selection in the View Panel binding dialog, and the Java API
getColumnValues() method, which is used to populate the View Panel row data, also tries to
“null out” any autogenerated values that are contained in a row. However, these @Functions can be
embedded in conditional logic and thus can be difficult to detect in advance. As a result, you might
occasionally see spurious results like this appearing in views you are working on. So, what to do?

Because you cannot always work with all types of data contained in Domino views, you
might need to create a modified version of a view in order to match your design criteria. Remem-
ber that the root of this problem is that the data defined in such columns is not actually contained

Figure 9.2 Columns from All Documents view displayed in a View Panel

The View Control: Up Close and Personal 279

in the backend view, but it is possible that the underlying documents have fields that hold the
required information or perhaps the information you need can be deduced using one or more
fields. Thus, you could modify the backend view or create a new version that contains the column
values you require based on fetching or computing the information by alternative means.

In the more immediate short term, however, you need to remove the offending column from
the View Panel. This can be done in Designer in a number of different ways. You can highlight the
column in the Outline panel or in the WYSIWYG editor and use the right-mouse Delete menu to
remove the column—you appended a new column back in Chapter 8, “Working with Domino
Views,” in much the same way. Alternatively, you can find the <xp:viewColumn> tag that is
bound to $116 in the source pane and delete the markup directly from there.

Simple View Panel Make Over
Many presentational issues can be taken care of directly at the XPages level without any modifi-
cations to underlying the Domino view! For example, you are not restricted to the column order
defined in the Domino view. You can reorder the columns in a View Panel by simply cutting and
pasting the <xp:viewColumn> tags in the source pane—try this now in myView.xsp. Also, the
date format of what is now or soon to be the second column can be modified in the XPages layer
using a component known as a converter—this is the same component you used in Chapter 4,
“Anatomy of an XPage,” when working with the Date Time Picker examples. To do this, click the
Date ($106) column in the WYSIWYG editor, select the Data property sheet, and change the
Display type from “String” to “Date/Time.” Then, change the Date style from “default” to “full,”
as shown in Figure 9.3.

Figure 9.3 Applying a date converter in the View Panel

280 Chapter 9 Beyond the View Basics

Listing 9.1 shows the markup generated from the cut/paste operation and the addition of
the date converter.

Listing 9.1 viewPanel Markup with Reordered Columns and Alternative Date Formatting

<xp:viewPanel rows=”30” id=”viewPanel1”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

</xp:this.facets>

<xp:this.data>

<xp:dominoView

var=”view1”

viewName=”($All)”>

</xp:dominoView>

</xp:this.data>

<!— Reordered columns so that Topic is first —>

<xp:viewColumn columnName=”$120” id=”viewColumn7”>

<xp:viewColumnHeader value=”Topic” id=”viewColumnHeader7”>

</xp:viewColumnHeader>

</xp:viewColumn>

<xp:viewColumn columnName=”$106” id=”viewColumn1”>

<!— Present full date like “Thursday, August 26, 2010” —>

<xp:this.converter>

<xp:convertDateTime type=”date” dateStyle=”full”>

</xp:convertDateTime>

</xp:this.converter>

<xp:viewColumnHeader value=”Date” id=”viewColumnHeader1”>

</xp:viewColumnHeader>

</xp:viewColumn>

</xp:viewPanel>

Now that you’ve turned the view presentation on its head, you might as well look at its run-
time rendition. All going well, you see a View Panel like the one shown in Figure 9.4.

You’re not done yet, however! Albeit a simple View Panel, it is still possible to dress this
puppy up a little further and add some extra behaviors.

The View Control: Up Close and Personal 281

The World Is Flat???

An obvious limitation of the View Panel shown in Figure 9.4 is that the document hierarchy is not
shown. The Topic column is just a flat list of entries that does not reflect their interrelationships in
any way. To show the various threads in this view, all you need to do is click the Topic column in
Designer, select the Display property sheet, and check the Indent Responses control. Reload the
page after doing this, and you find that all parent documents now have “twistie” controls that can
be used to expand or collapse its own particular part of the document tree. If you don’t like the
standard blue twisties, feel free to add your own! Some extra images have been added as image
resource elements to Chapter9.nsf, so if you want to try this feature out, you can simply assign
minus.gif and plus.gif from the list of image resources in the application as the alternative
twisties, as shown in Figure 9.5, although I’m sure you can come up with more interesting ones
than these! Whatever alternative images are specified in this property sheet would also be applied
to the twistie controls used for expanding and collapsing category rows, if you were working with
a categorized view. Category views are discussed in the section, “Working with Categories.”

Linking the View Panel to its Documents

In Chapter 3, you learned to use the Check box feature shown in Figure 9.5 to enable row selec-
tion by the end user. You also learned to display the contents of the Topic column as links and to
bridge it to myTopic.xsp by explicitly nominating that XPage as pageName property for the
View Panel itself. Select the Show values in this column as links feature for Topic column again
now, but omit nominating myTopic.xsp as the target XPage on this occasion. Preview the page
and click any link—do you know just why this happens to magically work?

Figure 9.4 An alternative XPages view of All Documents

282 Chapter 9 Beyond the View Basics

The clue is in the View Panel’s default link navigation option shown in Figure 9.6. When no
page is explicitly nominated, XPages looks in the form used to create the underlying documents
for a hint as to what XPage it should use. The form in question in this scenario is Main Topic and,
if you open it in Designer and inspect its properties, you see a couple of interesting options, as
highlighted in Figure 9.7.

Custom TwistiesDisplay column content
as HTML link

Figure 9.5 View Column Display Property sheet

XPage To Use When View Entry Is Opened

Figure 9.6 View Panel Basic Property panel

You can basically choose to override the form associated with a document on the web and
on the client by opting to substitute an XPage instead in either or both environments. For the pur-
poses of this chapter only, Main Topic has been updated to use myTopic.xsp as an alternative on
both platforms, and thus, it is resolved as the go-to XPage when a column is clicked in the View
Panel.

The View Control: Up Close and Personal 283

Client Option

Web Option

Figure 9.7 Form Properties Infobox: Display XPage Instead property

TIP Display XPage instead can be used to incrementally phase in XPages application
implementations. If you are migrating an application to XPages, it might be possible to
replace subsets of functionality that have been encapsulated in forms with XPages code,
and then use pull these blocks into your application on a piecemeal basis using this feature.

There was originally just one Display XPage instead property. Since XPages was first
made available on the web before being released on the Notes client, many customers converted
their application’s web implementation to XPages, but still had the original client application in
place. When running the application natively on the client, they did not want to suddenly start
seeing XPages appearing in place of forms! This feature was revamped in 8.5.2 to allow XPages
and non-XPages implementations of an application to run harmoniously on separate platforms.

Although Display XPage instead certainly has its uses, the more common practice in the
app dev community would appear to favor having an explicit XPage pageName navigation set-
ting on the View Panel itself.

There is, in fact, a third strategy that can be employed to resolve what XPage is used when
opening a document, and it is perhaps the simplest of them all! If you give the XPage the same
name as the form used to create the document, it is chosen as a last resort if the other two options
come up blank. This can be a useful approach if you are closely mimicking the original applica-
tion implementation in XPages and if the application is simple enough to support such one-to-one
design element mappings.

284 Chapter 9 Beyond the View Basics

But, what of the remaining features in Figure 9.5? You just learned a second way to handle
the Show values in this column as links option, and the Check box feature was already
explored in Chapter 3. The Display column values checkbox merely serves to hide the column
value retrieved from the view. This is potentially useful if you want to retrieve the column value
but display something else based on what’s actually contained in the column. In my experience,
this property is not widely used as there are other (perhaps easier) ways of computing column
values. We work through some examples of this shortly in the course of this View Panel
makeover. On the other hand, if you simply want to conceal a column, you need to deselect the
Visible checkbox in its property sheet, which sets rendered=”false” in the underlying
<xp:viewColumn> tag.

This just leaves the Icon and Content type in the view column Display panel, so you can
learn now how to further enhance this simple makeover by putting those properties to work.

Decorating Your Columns with Images

Any column in a View Panel can display an image as well as its column value. To add an image to
a view column, you can simply check the Icon control (refer to Figure 9.5 to find the control, if
needed) and type the name of the image resource or use the image browser dialog to locate it. It is
good practice to enter some alternative text in case the image cannot be resolved at runtime and to
facilitate screen readers and so on. The view column properties behind these two Designer
choices are called iconSrc and iconAlt, respectively. You can implement a simple example as
follows:

1. Insert a new column before the first column in the View Panel. You can use the View >
Insert Column main menu when the Topic column is selected.

2. Check the Icon checkbox in the Display property sheet and add /hash.gif as the
nominated image resource (you can also browse for this image resource). This image
has already been added to Chapter9.nsf for your convenience.

3. Add Index as the alternative text.

4. Add indexVar=”rowIndex” to the <xp:viewPanel> tag in the Source pane. You
can also do this via the View Panel’s Data category in the All Properties sheet.

5. Add the following server-side JavaScript snippet to compute the column’s value:

var i:Number = parseInt(rowIndex + 1);

return i.toPrecision(0);

In summary, you added an image to the new column and along with some alternative text.
The indexVar property keeps a count of the rows in the View Panel as it is being populated. The
indexVar property is used here as a simple row number to display in the UI. The JavaScript
applied in step 5 simply increments each row index by 1 (it is a zero-based index) and ensures
that no decimal places are displayed. Finally, to give the new column a title, click the view col-
umn header in the WYSIWYG editor and enter some text, say Row, as the label. Now, you can

The View Control: Up Close and Personal 285

preview or reload the page to see the results (all this has been done for you in myViewExt.xsp, if
you want to look at the final creation), which should closely match Figure 9.8.

Figure 9.8 Computed View Panel column using iconSrc, iconAlt and indexVar properties

This is all well and good except that the icon displayed is static in nature; observe that it is
the same for each row (the hash symbol gif). Although it is a computable property, iconSrc does
not have access to the View Panel var or indexVar properties, so it difficult to do something
dynamic with it, such as select the image resource based on a particular row column value for
example. This might be addressed in a future release.

But fear not, as a dynamic solution can still be provided by using the Content type option
on the same Display panel. To implement an example of applying images based on row content,
work through the following instructions:

1. Append a new column to the end of the View Panel using the View > Append Column
main menu.

2. In the Display panel set the Content type to HTML.

3. In the Source pane, add var=”rowData” to the <xp:viewPanel> tag to gain access to
the current row via server-side JavaScript while the View Panel is being populated.

4. On the Data property sheet, add the following server-side JavaScript snippet to compute
the column’s value property:

var i:number = rowData.getDescendantCount();

if (i < 10) {

return (“<img src=\”/Chapter9.nsf/” + i

+ “.gif\””+”>”);

} else {

return (“”);

}

286 Chapter 9 Beyond the View Basics

5. Move to the Events tab for this column and for the only defined event, onclick, add
another server-side JavaScript snippet:

if (rowData.getDescendantCount() > 0) {

rowData.toggleExpanded();

}

As you can see, the column value is set using server-side JavaScript in step 4. An HTML
image tag is returned with the src value determined by the number of documents in the row’s
document hierarchy, 1 descendant document means “1.gif” is used, 5 descendant documents
means “5.gif” is used, and so on. Because you set the column’s content type to HTML, the image
tag is simply passed through to the browser as is. Moreover, the image is clickable (unlike the
image added via the iconSrc property) and fires an expand/collapse event for any non-leaf
entry, such as when the entry has any responses, thanks to the code you added in step 5.

The column header label should be set to Responses, and the content of the column can be
quickly centered using the Alignment button on the column Font property panel. Reload the
page and see the new runtime behavior for yourself. The rendering of this column is also shown
in Figure 9.9. Note that the expandLevel=1 data source setting discussed in the previous chap-
ter was used here (via a URL parameter) to initially collapse all rows. Some were then expanded
to create a good example.

Figure 9.9 Computed View Panel column using computed pass-through HTML content

The View Control: Up Close and Personal 287

So, this time, the image resource in the Responses column indeed varies depending on the
response count for each row entry. It might not be too evident in the printed screen shot, but the
color of the images darken and increase in pixel size as the numbers increase. Thus, the rows with
more responses get more emphasis in the UI (similar in concept to the tag cloud rendering) on the
basis that they represent busier discussion threads and are, therefore, likely to be of more interest
to forum participants. If the number of response documents exceeds nine, an ellipses image
(n.gif) is shown instead. Add more documents yourself and create deep hierarchies to see how
this View Panel rendering works in practice—interesting all the same to see what can be achieved
by tweaking a few properties and adding some simple lines of JavaScript code!

Some Final Touches

Before completing our sample rendering of the All Documents view, there are some final miscel-
laneous features to apply and some other behaviors to observe. First, when used in native client
mode, the backend All Documents view can be sorted by clicking the Date column. This sorting
facility is not in evidence as yet in the XPages View Panel, so you must learn how to enable it.

The first thing to understand is that it is the backend view itself that performs the sorting. It is
not performed client-side in XPages itself, and any attempt to do so is invariably inefficient and per-
forms poorly as applications scale. Don’t go there—leave the sorting operation to the view itself.

To enable the sort feature in the View Panel, you need to select the required view column
header in the WYSIWYG editor and activate its property sheet. You see a Sort column checkbox
that you need to check. If this is disabled, it means that the column as defined in the backend view
does not have any sorting capability; Designer looks up the column design properties and enables
or disables this option appropriately. Figure 9.10 shows the view column property that defines
sorting capability.

If the column you want to sort in XPages is not defined, as shown in Figure 9.10, you need
to either update the view design or create a new modified copy of the view to work with going
forward. After the backend sort property and the XPages sort property are enabled, the View
Panel displays a sort icon in the header and performs the sort operation when clicked by the user.
Figure 9.11 shows the All Documents view after being resorted via the View Panel (oldest docu-
ments are now first).

TIP A view can lose its sorting capability after certain filters are applied. For example, if
you perform a full-text search on a view, the resulting document collection is not sortable.
In 8.5.2, the View Panel sort icons are removed when it displays the results of a full text
search. In previous releases, the icons remained enabled, thus implying that the result set
was sortable when, in fact, it was not. This is a commonly requested feature, however, and
might be addressed in a future release.

288 Chapter 9 Beyond the View Basics

Column can be sorted by user

Figure 9.10 View Column infobox with sorting capability enabled

Now complete this particular make over by selecting the View Panel and selecting its
Display property sheet. Check the Show title and Show unread marks controls, and change the
number of maximum number of rows from the default of 30 to 10. Figure 9.12 shows the property
sheet with these changes applied.

Clicking Show title places a View Title component into the header of the View Panel. You
can then click this component directly in the WYSIWYG editor and then set its label and other
properties via the component’s property sheet. This results in a <xp:viewTitle> tag being
inserted into the View Panel facets definition; for example:

<xp:viewTitle xp:key=”viewTitle” id=”viewTitle1”

value=”All Documents - Make Over Complete!”>

</xp:viewTitle>

The View Panel also has a title property defined on the <xp:viewPanel> tag. This is
merely exposing the title attribute of the underlying HTML table element that is used to con-
struct the View Panel when rendered at runtime. If you enter a value for this property, it is passed
through to the browser as part of the <table> HTML markup. For a visible view title, you need
to use the Show title property and not this title property.

The View Control: Up Close and Personal 289

Sort Icon

Smaller icon for lesser number

Larger icon for bigger number

Click image to expand/collapse the row entry

Figure 9.11 View Panel with all documents resorted by date in ascending order

Page row count limited to ten rows

Unread icon

View Title

Figure 9.12 View Panel with title, unread marks, and a row count of ten documents

290 Chapter 9 Beyond the View Basics

Secondly, if your unread view entries are not displayed as unread (no unread icon is dis-
played), this is most likely because the Domino server is not maintaining unread marks for the
application—keeping track of read/unread documents is optional. You can ascertain the status of
this feature in Designer via the Application Properties > Advanced property sheet. Look for the
Maintain unread marks checkbox in the top-left corner.

The rows property that controls the maximum number of entries displayed in a view at any
one time (set to 10) is exposed directly in the regular Discussion template UI. For example, the
footer of the All Documents, By Tag, and By Author views conveniently lets the user choose the
number of entries to display, as shown in Figure 9.13.

Listing 9.2 provides the entire View Panel markup, along with comments in case you had
difficulty applying any of the many and varied features discussed in this section. It is also
included in Chapter9.nsf in the myViewExt.xsp XPage.

Listing 9.2 View Panel: Complete Source for Make-Over Exercise

<xp:viewPanel rows=”10” id=”viewPanel1” var=”rowData”

indexVar=”rowIndex” showUnreadMarks=”true”>

<xp:this.facets>

<xp:pager partialRefresh=”true”

Rows property value exposed to user

Figure 9.13 Rows property exposed as user option in view footer

The View Control: Up Close and Personal 291

layout=”Previous Group Next”

xp:key=”headerPager” id=”pager1”>

</xp:pager>

<!— View Panel Title —>

<xp:viewTitle xp:key=”viewTitle” id=”viewTitle1”

value=”All Documents - Made Over!”>

</xp:viewTitle>

</xp:this.facets>

<xp:this.data>

<xp:dominoView var=”view1” viewName=”($All)”>

</xp:dominoView>

</xp:this.data>

<!— Static Column Image # —>

<xp:viewColumn id=”viewColumn3”

iconSrc=”/hash.gif”

iconAlt=”Row Number Symbol”>

<xp:this.facets>

<xp:viewColumnHeader xp:key=”header”

id=”viewColumnHeader3” value=”Row”>

</xp:viewColumnHeader>

</xp:this.facets>

<!— Compute Row Number —>

<xp:this.value><![CDATA[#{javascript:

var i:Number = parseInt(rowIndex + 1);

return i.toPrecision(0);}]]>

</xp:this.value>

</xp:viewColumn>

<!— Reordered columns so that Topic is before Date —>

<!— Use custom twistie images for expand/collapse —>

<xp:viewColumn columnName=”$120” id=”viewColumn7”

indentResponses=”true”

collapsedImage=”/plus.gif”

expandedImage=”/minus.gif”>

<xp:viewColumnHeader value=”Topic”

id=”viewColumnHeader7”>

</xp:viewColumnHeader>

</xp:viewColumn>

<!— Present full date like “Thursday, August 26, 2010” —>

<xp:viewColumn columnName=”$106” id=”viewColumn1”>

<xp:this.converter>

292 Chapter 9 Beyond the View Basics

<xp:convertDateTime type=”date” dateStyle=”full”>

</xp:convertDateTime>

</xp:this.converter>

<xp:viewColumnHeader value=”Date”

id=”viewColumnHeader1”

sortable=”true”>

</xp:viewColumnHeader>

</xp:viewColumn>

<!— Dynamic Column Images – 1.gif thru 9.gif —>

<!— inline CSS to center img —>

<xp:viewColumn id=”viewColumn2”

contentType=”HTML”

style=”text-align:center”>

<xp:this.facets>

<xp:viewColumnHeader xp:key=”header”

id=”viewColumnHeader2” value=”Responses”>

</xp:viewColumnHeader>

</xp:this.facets>

<!— Compute image name based on response count —>

<xp:this.value><![CDATA[#{javascript:

var i:number = rowData.getDescendantCount();

if (i < 9) {

return (“<img class=\”xspImageViewColumn\”
src=\”/Chapter9.nsf/” + i + “.gif\””+”>”);

} else {

return (“<img class=\”xspImageViewColumn\”
src=\”/Chapter9.nsf/n.gif\””+”>”);

}

}]]></xp:this.value>

<!— Do collapse/expand for docs with responses —>

<xp:eventHandler event=”onclick” submit=”true”

refreshMode=”complete” id=”eventHandler1”>

<xp:this.action><![CDATA[#{javascript:

if (rowData.getDescendantCount() > 0) {

rowData.toggleExpanded();

}

}]]></xp:this.action>

</xp:eventHandler>

</xp:viewColumn>

</xp:viewPanel>

The View Control: Up Close and Personal 293

Working with Categories
Just like sorting, categorization is handled by the backend view itself and not by XPages. For a
column to be treated as a category, the column type must be set to Categorized in the view col-
umn properties infobox; refer to the Type radio button option show in Figure 9.10, which allows
columns to be defined as Standard or Categorized.

The View Panel merely presents category rows and columns and renders them so they can
be expanded and collapsed as required. The expansion and contraction of category rows works
the same as it does for indented responses. Note also that the state of both category rows and doc-
ument hierarchies is maintained as you navigate through the view data. For example, as part of
the final make over, you restricted the number of rows presented in the View Panel to ten elements
(remember rows=”10”). This caused more pages to be displayed in the view pager contained in
the header. If you expand and collapse some categories or response hierarchies on any given View
Panel page and then navigate forward and backward via the pager, you find that the display state
of these rows is maintained and then redisplayed on your return exactly as you had left them. This
statefulness is a great built-in feature of XPages and something often lacking in other web appli-
cations...try the same view navigation exercises using the classic Domino web engine.

In any case, categorization becomes more interesting when two or more category columns
are in a view. To provide some working examples of this, a modified form and view were added to
Chapter9.nsf, namely the Main Topic2 form and the subCats view. A small number of docu-
ments with multiple categories have also been created in the sample application so that examples
can be quickly constructed. You do not see these documents in the All Documents view because
the view selection formula on the ($All) view only displays documents created using the Main
Topic form, and thus excludes those created using Main Topic2. Figure 9.14 shows the sample
multicategory documents when the subCats view is previewed in the client.

Figure 9.14 Domino view with subcategories

294 Chapter 9 Beyond the View Basics

Figure 9.15 shows an XPage named subCat1.xsp, which is a default rendering of the
subCats view. By “default rendering,” I mean that a View Panel control was simply dropped on
an XPage and all the columns in the subCats view were accepted for inclusion—nothing more
than that.

If you experiment with the XPages View Panel and the Notes view, you find that the pres-
entation and behavior of both are identical. The category columns are automatically rendered as
action links with twistie icons, both of which serve to expand and collapse the category row.
Apart from this specialized behavior, all the regular column properties described thus far can also
be applied to category columns, they can be reordered within the View Panel so they are not con-
tiguous, and so on.

Although adding two or more categorized columns to a view is one way of implementing
subcategorization, an alternative method seems to be a common practice. That is, instead of hav-
ing multiple categorized columns in the view, which map to fields in the underlying form, the
view has just one category column but it can support multiple categories through the use of a “cat-
egory\subcategory” data-format notation. Thus, if a user enters something like “Government” as
a category value, this is interpreted as a top-level category. However, if “Government\Recycling”
is entered by the user into the Categories field when creating a document, the document is catego-
rized in a “Recycling” subcategory within the top-level “Government” category.

Figure 9.15 View Panel with subcategories

The View Control: Up Close and Personal 295

Observe that the Notes client view indents the new subcategories tucked in under the main
categories. You have little or no control over this particular rendering because it is built-in view
behavior. However, if you repeat the exercise described for Figure 9.15 and create an XPages
View Panel to do a default rendering of this view, you notice a problem (refer to subCatsA.xsp in
Chapter9a.nsf for convenience). As shown in Figure 9.17, XPages recognizes the entries as cat-
egory columns, but the subcategories are not indented. The next section describes how to address
this.

Embedded SubCategories Embedded SubCategories

Figure 9.16 Category field containing hierarchical categories

To provide an example of this, an alternative sample NSF is provided for this chapter,
namely Chapter9a.nsf. Some of the sample documents contained in Chapter9.nsf have been
recategorized in the manner just described (which is why you need a separate database). Figure
9.16 shows an example of a redefined category field as inspected in a Notes infobox and how
these updated documents are displayed in the Notes client.

296 Chapter 9 Beyond the View Basics

Making It Look Like Notes!

Building an XPage to emulate the Notes client rendering can be achieved in the following eight
steps:

1. Create a new XPage called subCatsB.xsp and add a View Panel from the palette.

2. Bind to the By Category view but only include the Topic column.

3. As shown earlier, insert a new column before the Topic column and give it a title of
“Categories” by updating the view column header.

4. In the Display panel set the Content type to HTML.

5. Add var=”rowData” to the <xp:viewPanel> tag to gain access to the current row via
server-side JavaScript while the View Panel is being populated.

6. Add the following server-side JavaScript snippet to compute the column’s value:

if (rowData.isCategory()) {

// Use the standard twistie icons

var src =

“/xsp/.ibmxspres/global/theme/common/images/expand.gif”;

Embedded
SubCategory
Not Indented

Figure 9.17 XPages View Panel default rendering of embedded subcategories

The View Control: Up Close and Personal 297

// Get the value of the Categories column

var colValue = rowData.getColumnValue(“Categories”);

// Return “Not Categorized” for null or undefined data

if (typeof colValue == ‘undefined’ ||

colValue == null) {

colValue = “Not Categorized”;

}

// Invert the twistie depending on row state

if (rowData.isExpanded()) {

src =

“/xsp/.ibmxspres/global/theme/common/images/collapse.gif”;

}

// return the tag including the twistie & value

return “<img src=’” +

src + “‘ alt=’’ class=’xspImageViewColumn’/>” +

colValue + “”;

}

7. Add the following server-side JavaScript snippet to compute the column’s style prop-
erty, i.e. All Properties > Styling > Style > Compute value:

if (rowData.isCategory()) {

// This API tells us if a category column is indented

var indent = rowData.getColumnIndentLevel();

// Insert padding for each indent level

if (indent == null || indent == 0) {

return “padding-left:0px”;

} else {

return “padding-left:10px”;

} // continue if deeper category levels exist ...

};

8. Move to the Events tab for this column and for the only defined event, onclick, add
another server-side JavaScript snippet:

rowData.toggleExpanded();

The subCatsB.xsp XPage has already been created for you in Chapter9a.nsf, so you can
load this or preview your own creation if you have worked through the steps above. In either case
the results you see should match those shown in Figure 9.18.

298 Chapter 9 Beyond the View Basics

The key pieces to the customized category column shown in Figure 9.18 are achieved using
server-side JavaScript. Obviously, the NotesXspViewEntry class exposed via the rowData
object is critical when working on view customizations as it gives full programmatic access to
each view row as it is rendered. This JavaScript class is a pseudo class for the
DominoViewEntry Java class defined in the XPages runtime, which, in turn, wraps the
ViewEntry class defined in Notes Java API. JavaScript pseudo classes such as this one allow you
to access the associated Java class without having to enter the entire package name, and have an
automatic built-in type-ahead facility for method names when used in the JavaScript editor. In
this example, for each row it allows you to

• Check if the row is a category: rowData.isCategory()

• Get the column value: rowData.getColumnValue(“Categories”)

• Check the expand/collapse state of the row: rowData.isExpanded()

• Check for embedded categories: rowData.getColumnIndentLevel()

• Toggle the expand/collapse state of the row: rowData.toggleExpanded()

Indented Embedded SubCategory

Figure 9.18 XPages View Panel displaying inline subcategories

The View Control: Up Close and Personal 299

Appendix A, “XSP Programming Reference,” includes documentation resources that pro-
vide a full outline of the DominoViewEntry XPages class, which NotesXspViewEntry uses
under the covers. It is worthwhile to study this class in more detail to get to know the full set of
tools you have at your disposal when working on view customizations. You can also resolve the
mappings for any JavaScript/Java classes using a handy tool on the Domino Designer wiki:

www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Domino_Object_Map_8.5.2
The other interesting tidbit from this example is that it exposes the internal URLs used to

locate embedded runtime resources like images, style sheets, and so on. The following URL, for
example, points to the standard row expansion twistie that is part of the XPages runtime:

”/xsp/.ibmxspres/global/theme/common/images/expand.gif”

You see URLs just like this one whenever you view the source of a rendered XPage in a
browser, and you can use these URLs as has been done in this example as part of your own cus-
tomizations.

TIP Prior to the Notes/Domino 8.5.2 release, it was not possible to dynamically compute
the column style property, as is done here. This issue has been addressed; however, if you
are using an older version, you can still achieve the same result by computing the
styleClass property. It just means that you must return class names instead of inline
CSS, and you need a style rule defined in a CSS resource for each name returned. A tad
more awkward, but it’s no big deal...although it’s another good reason to move to 8.5.2 if
you have not already upgraded!

Incidentally, a similar technique can be used to render category view columns inline like
this, even when they are managed as separate category columns, i.e. as was the case with the
subCats view used in Chapter9.nsf, shown in Figure 9.14. A subCats2.xsp XPage has been
included in that sample application to illustrate how to reformat the column category display. In
essence, however, it is only the server-side JavaScript code outlined previously in steps 6 and 7
that has been modified. Listing 9.3 shows the revised code that computes the column value and
the style property.

Listing 9.3 Server-Side JavaScript for View Column value and style Properties

<xp:this.value>

<![CDATA[#{javascript:if (rowData.isCategory()) {

// Use the standard twistie icons

var src = “/xsp/.ibmxspres/global/theme/common/images/expand.gif”;

// Look for the deepest subcategory first

var colValue = rowData.getColumnValue(“SubCategories”)

// If not found, keep looking back until back to top level cat

if (colValue == null) {

colValue = rowData.getColumnValue(“Categories”);

www-10.lotus.com/ldd/ddwiki.nsf/dx/XPages_Domino_Object_Map_8.5.2

300 Chapter 9 Beyond the View Basics

}

// Return “Not Categorized” for null or undefined data

if (typeof colValue == ‘undefined’ || colValue == null) {

colValue = “Not Categorized”;

}

// Invert the twistie depending on row state

if (rowData.isExpanded()) {

src = “/xsp/.ibmxspres/global/theme/common/images/collapse.gif”;

}

// return the tag including the twistie & value

return “<img src=’” + src +

“‘ alt=’’ class=’xspImageViewColumn’/>” + colValue +

“”;

}}]]>

</xp:this.value>

<xp:this.style>

<![CDATA[#{javascript:

if (rowData.isCategory()) {

// Start at the deepest subcategory and work back to root

var colValue = rowData.getColumnValue(“SubCategories”);

// Insert padding for 10 pixel padding for 2nd column

if (colValue != null && colValue != ““) {

return “padding-left:10px”;

// Insert more padding if needed back to the top level

} else {

return “padding-left:0px”;

}

}}]]>

</xp:this.style>

As you can see from the code, the principle is exactly the same as previously, but the means
of detecting the category columns has changed. No longer are the column values embedded in the
Category\Subcategory fashion, so the rowData.getColumnIndentLevel()API is of no use
here. Instead, the indentation is determined based on the structure of the backend view—the
deepest subcategory columns are sought first, rewinding to the top level if no value is found. Load
the subCats2.xsp page and compare the results to Figure 9.15.

This tucked-in form of category styling seems popular in the community based on various
Notes app dev forum postings and other customer feedback, so hopefully this section clarified
how to achieve the Notes client look and feel in XPages. It might become a standard View Panel
property in a future release.

The View Control: Up Close and Personal 301

View Properties and View Panel Properties
When working with views, any features to do with data structure and content are defined at the
backend in the view design element itself—you have just seen with this with the sorting and cate-
gorization examples, insofar as these capabilities needed to be enabled in the view. The view
design element also contains properties that are purely related to presentation within the Notes
client or classic web engine and, as such, do not apply to the XPages view controls. For example,
the Type option in Figure 9.10 defines whether a categorization data is maintained for a particu-
lar column in the view, but the twistie options contained in the adjacent tab (see Figure 9.19) only
apply to native Notes rendering and not to XPages.

Notes UI feature

Figure 9.19 View Column Presentation properties

It is important to be able to distinguish the native view rendering features from the XPages
View control presentation properties. In Chapter9.nsf a new version of the ($xpByAuthor)
view, namely ($xpByAuthorExt), has been provided for use in an example that helps clarify this
area. The extended view contains an extra column that totals the byte size of the documents for
each category. These totals are shown in the Notes client for each category only, but can be dis-
played for each individual row entry if so desired. The hide/show nature of this data is determined
using the Hide Detail Rows checkbox shown in Figure 9.20.

302 Chapter 9 Beyond the View Basics

If you toggle the Hide Detail Rows checkbox value and refresh the view data from within
Designer, you see the document byte size displayed for each entry. An agent has also been sup-
plied in the sample application, which prints the column values for each view row entry using the
Java API. The agent (getViewEntryData) details are shown in Listing 9.4.

Listing 9.4 Java Agent to Print View Column Data

import lotus.domino.*;

public class JavaAgent extends AgentBase {

public void NotesMain() {

try {

// Standard agent code to get session & context objects

Session session = getSession();

AgentContext agentContext = session.getAgentContext();

// get the current db and the new ($xpByAuthorExt) view

Database db = session.getCurrentDatabase();

View view = db.getView(“($xpByAuthorExt)”);

// iterate over each view entry and print the Topic & Size

ViewEntryCollection vec = view.getAllEntries();

if (vec != null) {

Request Totals Totals By Category Only

Totals

Figure 9.20 ($xpByAuthorExt) with document size totals for each category

The View Control: Up Close and Personal 303

for (int i = 0; i < vec.getCount(); i++) {

ViewEntry ve = vec.getNthEntry(i);

if (ve != null)

// just get the 3rd & 4th column values

// ViewEntry index is zero-based!

System.out.println(

ve.getColumnValues().get(2)

+ “ “ +

ve.getColumnValues().get(3));

}

}

} catch(Exception e) {

e.printStackTrace();

}

}

}

Listing 9.5 shows some sample output generated when the ($xpByAuthorExt) view is
configured to hide detail rows. To run the agent yourself in Designer, you first launch the Java
debug console (Tools > Show Java Debug Console), right-click getViewEntryData in the
agent view, and select the Run menu. All the println output then appears in the Java console.
As you can see, the detail totals rows are all included in the data returned by the
getColumnValues() API call regardless of Hide Details Rows property setting.

Listing 9.5 Snippet of Java Agent Output

...

if you can rip it, you can recycle it (re: It’s just paper) 573.0

It’s just paper 618.0

Using post-consumer recycled paper 1045.0

who’t this? (re: Meeting Minutes) 629.0

phone number inside (re: Meeting Minutes) 631.0

Difference between clear and colored glass? 927.0

...

Because XPages depends on the Java API to populate its View control, the detail rows
appear in any XPages View control that includes the Size column. The Hide Detail Rows prop-
erty is really just used in the core view rendering code and not honored in the programmability
layer. Given the view customization tips and tricks you have learned thus far, you are now be in a
position to figure out how to emulate Notes Hide Detail Rows view display property in XPages!
All you really need to do is not show the Size column value when the row is not a category. This

304 Chapter 9 Beyond the View Basics

is done for you in hideDetails.xsp page in Chapter9.nsf, which contains a View Panel with four
standard columns (Name, Date, Topic, Size) plus a computed column. The server-side
JavaScript used to compute the column value is trivial, as demonstrated in Listing 9.6.

Listing 9.6 Server-Side JavaScript Snippet to Emulate Hide Detail Rows in a View Panel

<xp:this.value>

<![CDATA[#{javascript:

// Only show the Total column value for category rows

if (rowData.isCategory()) {

return rowData.getColumnValue(“Size”);

}}]]></xp:this.value>

<!— Also include a converter to display whole numbers only —>

<xp:this.converter>

<xp:convertNumber type=”number”

integerOnly=”true”>

</xp:convertNumber>

</xp:this.converter>

The converter just used was added via the same Data property panel used to add the
JavaScript code in Designer. Simply set the Display type to Number and check the Integer only
control to eliminate the decimal points you see printed in the raw data in Listing 9.5. When loaded
or previewed, the hideDetails XPage looks like Figure 9.21.

Detail Row Totals

Totals by Category Only

Figure 9.21 XPage with totals for detail and category-only rows

Data Table 305

The discussion thus far covered all the main View Panel properties and dived into examples
of how to customize View Panels using server-side JavaScript and other tools. The next most log-
ical focus area for the View Panel would be styling. No doubt, as you have examined the View
Panel properties, you noticed a slew of specialized style class properties (rowClass,
columnClass, viewClass, and so on), which can modify its appearance. Rather than do that
here in this chapter, it is covered in the section, “Working with Extended styleClass and Style
Properties,” in Chapter 14, “XPages Theming.” The discussion here instead shifts to the Data
Table container control.

Data Table
The Data Table uses a simple table structure to display content. The table is configured to contain
three row elements, such as a header, a content row, and a footer. The header and footer typically
contain static elements, such as column titles, pagers, or just arbitrary one-off control instances.
The content row usually contain a collection of individual controls that are bound to elements of
a data source, and this row is then rendered repeatedly for each entry in the data source (once for
every row in a view) when the Data Table is invoked as part of a live application.

Unlike a View Panel, however, all the controls contained in the Data Table must be added
and bound manually, and certain other capabilities are simply not available, e.g. categorization.
In essence, it is like a dumbed-down View Panel control, but it can be useful if you need to dis-
play simple nonhierarchical data in a customized fashion. You see an example of a good use case
in this section.

To start with, try to present a regular view using a Data Table to get familiar with its fea-
tures and behaviors. You should create a new XPage, say myDataTable.xsp, and drag-and-drop a
Data Table control from the palette. Compared to the View Panel drag-and-drop experience, you
might be underwhelmed with results. Basically, a shell of a table is created, and it’s pretty much
up to you to populate it with controls and bind these in a meaningful way.

Designer prompts you that a data source needs to be created if one does not already exist on
the page, so for the purposes of this example, you should create a view data source targeting the
xpAllDocuments view. This can be done in a number of ways, such as from the Data property
panel on the XPage itself or using the Define Data Source combo box entry on the Data palette
data source picker. Whatever your preferred route might be, simply pick the aforementioned view
as the data source. Even though you now have a page containing a Data Table and a view data
source, they are not connected and know nothing about each other. You can wire these together
using the main Data Table property panel, as shown in Figure 9.22.

306 Chapter 9 Beyond the View Basics

With the Data Table entry selected in the Outline view, pick the newly created view data
source instance (“viewAll”) using the Data source combo box, and you also need to enter a
Collection name. The collection name, “rowData” in this example, is used as the object to gain
programmatic access to each row entry as it is being rendered—just as it was in the View Panel
examples earlier. Rather than use server-side JavaScript in this case, however, you could just use
simple Expression Language (EL) bindings. First, however, you need some controls to display
the row data, so drag-and-drop a Computed Field from the Core Controls palette to the first cell
in the middle row and then repeat the process for the adjacent table cell. These Computed Field
instances can be selected and bound using EL expressions—or Simple data binding, as it is
described in Designer’s Value property panel and displayed in Figure 9.23. Bind the first field to
the _MainTopicsDate column and the second field to the _Topics column.

The EL data binding markup generated by Designer has the following form. The name of
the column is provided as a key to the row data entry:

#{rowData[‘_MainTopicsDate’]}

TIP You can use EL expressions or server-side JavaScript for data binding. The EL
expression rowData[‘_MainTopicsDate’] produces the same result as rowData.
getColumnValue(“_MainTopicsDate”) in JavaScript. Some column names, however,
are incompatible with the EL expression language and thus cannot be used at all. For
example, many column names in the standard Domino templates begin with a dollar symbol,
such as $126, $150, and so on. An EL expression like rowData[‘$126’] would be
expanded to a Java bean expression like rowData.get$126(), which is illegal in the Java
language. It was precisely for this reason that this example uses the xpAllDocuments view
rather than the ($All) view. The former is essentially the same view as the latter, but with col-
umn names that are EL friendly. In this sense, JavaScript binding can be less problematical
than EL binding, especially if you happen to have no control over the names of the data
source elements.

View Data Source Reference

Row Pointer

Figure 9.22 Connecting a Data Table to a view data source in Designer

Data Table 307

You should also drop two Label controls from the palette directly into the two cells in the
top row of the Data Table and change their values to Date and Topic, respectively. You can also
assign the Data Table a width of 600 pixels for quick aesthetics using the Width and Units con-
trols shown in Figure 9.22. After you complete this step, you are ready to preview or load this
Data Table. The results should be just like the page you see displayed in Figure 9.24.

Computed Field Control Data Field

Figure 9.23 Binding a Computed Field to a view data source element in Designer

Figure 9.24 Data Table displaying data from xpAllDocuments view

308 Chapter 9 Beyond the View Basics

The Data Table could do with a pager to split the rows into manageable chunks. The first
step is to set the rows property of the Data Table to smaller number than its default value of 30
(for example, 10). Interestingly, the pager you have worked with up to now in the View Panel is
not an intrinsic part of that control, but an independent entity that can be used with any of the
view controls. The View Panel just happens to include a pager instance by default. To add a pager
to the Data Table, look for the Pager control in the Core Controls palette and drag it into one of
the footer cells. Then, activate the Pager property panel and attach it to the Data Table by picking
the ID of the Data Table from the Attach to combo box—where Designer kindly enumerates a
list of eligible candidate controls for you! At the same time, turn on partial refresh so that pag-
ing updates are performed using AJAX. The various property panel selections are shown in
Figure 9.25.

AJAX enabled

View Data Source Reference

Canned layout

Figure 9.25 Pager property panel

Because the Pager is capable of working with any view control, you must nominate a target
container. The Partial refresh checkbox selection instructs XPages to update just the targeted
view control via an AJAX request when a pager action is executed. This means that only the view
data in the Data Table is refreshed when the end user navigates from one page to the next, which
is obviously more efficient than refreshing the entire page every time.

The only problem with the pager right now is that it resides in the wrong place. It has been
dropped into the footer cell of a column when it really needs to be in the footer of the Data Table
itself. Unfortunately, the footer of the Data Table is not an identifiable drag-and-drop target in
Designer, so you must go to the Source pane move the markup manually. Simply cut and paste
the entire <xp:pager> tag from its current location so that it is a direct child of the Data Table. It
should also be wrapped in a <xp:this.facets> tag—see the final markup in Listing 9.7.

To best illustrate the effect of the AJAX partial refresh, however, it is worthwhile adding
two more Computed Fields to the XPage. Place the first Computed Field in one of the Data Table

Data Table 309

footer cells and then the second control can be dropped anywhere else on the page as long as it is
outside the Data Table. Then, add the following server-side JavaScript as the computed value for
both fields:

@Now().getMilliseconds();

Domino developers no doubt are familiar with the @Now() function, which returns the cur-
rent data and time. The getMilliseconds() call expresses the time in milliseconds when the
page is loaded. When you load or preview the page, both fields should display the same number.
If you start navigating through the view data using the navigator, you notice that the Computed
Field within the Data Table is updated with the current time milliseconds value while the field
external to the Data Table is not. This demonstrates the efficient behavior of the partial refresh
feature.

Figure 9.26 shows the updated XPage in action. The full markup is done for you in the
dataTable.xsp XPage in Chapter9.nsf and is printed in Listing 9.7.

Navigate to Page 2 Outer Time Unchanged

Inner Time Unchanged

Figure 9.26 Data Table with partial refresh paging enabled

Listing 9.7 XSP Markup for SampleData Table

<?xml version=”1.0” encoding=”UTF-8”?>

<xp:view xmlns:xp=”http://www.ibm.com/xsp/core”>

<!— The data source defined at root level —>

<xp:this.data>

310 Chapter 9 Beyond the View Basics

<xp:dominoView var=”viewAll”

viewName=”xpAllDocuments”></xp:dominoView>

</xp:this.data>

<!— The data table finds the data source using value prop —>

<xp:dataTable id=”dataTable1” rows=”10” var=”rowData”

value=”#{viewAll}” style=”width:600px”>

<xp:column id=”column1”>

<!— column header and footer entries —>

<xp:this.facets>

<xp:label value=”Date” id=”label1”

xp:key=”header”></xp:label>

<xp:label value=”Internal Time Value”

id=”label3” xp:key=”footer”></xp:label>

</xp:this.facets>

<!— Bound to the date field using EL —>

<xp:text escape=”true” id=”computedField1”

value=”#{rowData[‘_MainTopicsDate’]}”>

</xp:text>

</xp:column>

<xp:column id=”column2” style=”width:300px”>

<xp:this.facets>

<!— column header and footer entries —>

<xp:text escape=”true” id=”computedField3”

xp:key=”footer”

value=”#{javascript:@Now().getMilliseconds();}”>

</xp:text>

<xp:label value=”Topic” id=”label2”

xp:key=”header”></xp:label>

</xp:this.facets>

<!— Bound to the Topic field using EL —>

<xp:text escape=”true” id=”computedField2”

value=”#{rowData._Topic}”>

</xp:text>

</xp:column>

<xp:this.facets>

<xp:pager layout=”Previous Group Next” id=”pager1”

for=”dataTable1”

xp:key=”footer”

panelPosition=”left”

partialRefresh=”true”>

Data Table 311

</xp:pager>

</xp:this.facets>

</xp:dataTable>

<!— Table only used for layout alignment —>

<xp:table style=”width:600px;text-align:left”>

<xp:tr><xp:td>

<xp:label value=”External Time Value”

id=”label4”>

</xp:label></xp:td>

<!— external computed field —>

<xp:td style=”width:300px; text-align:left”>

<xp:text escape=”true” id=”computedField4”

value=”#{javascript:@Now().getMilliseconds();}”

style=”text-align:left”></xp:text>

</xp:td>

</xp:tr>

</xp:table>

</xp:view>

Although working with the Data Table may be vaguely interesting, it must occur to you that
what you have just built could be achieved using a View Panel control in a fraction of the time
with just a few point-and-click operations. So, why bother with the Data Panel at all? The answer
is that the Data Panel can be useful when you want to build a small bare bones tabular view with a
highly customized user interface. Perhaps these use cases are not commonplace but they do
occur. The next exercise serves as a good example.

Building a Mini Embedded Profile View using a Data Table
Carry out the following steps, drawing on what you learned in the current section up to this point:

1. Create a new XPage called dtProfile.xsp and add a Data Table from the palette.

2. Create a view data source targeting the xpAuthorProfiles view.

3. Connect the Data Table to the data source and set its Collection name to ”rowData” in
the Data Table property sheet. This should result in a var=”rowData” attribute being
created in the underlying <xp:dataTable> tag.

4. Append two new columns to the Data Table using the right mouse menu.

5. Add a Computed Field to the 1st content cell; that is, first column, middle row.

6. Bind this field to the From column in the data source using JavaScript:

rowData.getColumnValue(“From”)

7. Add a link control for the palette to both the 2nd and 3rd cells in the content row.

312 Chapter 9 Beyond the View Basics

8. For the first link, activate the Link property panel and set the Label and Link type
fields. For the label, enter “email” in the edit box, and then for the latter, add some
server-side JavaScript to compute a URL. This is a mailto URL, created by simply
concatenating a ”mailto:” to the Email column value, as follows:

”mailto:” + rowData.getColumnValue(“Email”)

9. Set the label for the second link to “Download” and compute its type in the same way as
before, this time building a Domino resource image URL like this:

”/” + rowData.getUniversalID() + “/$FILE/” +
rowData.getColumnValue(“FileUpFilename”)

10. Drag-and-drop an image control to the fourth and final content row cell, using the Use an
image placeholder radio button for now so that you can compute the image reference.

11. In the Image property panel, compute the Image source using exactly the same server-
side JavaScript as previously shown.

12. For presentation purposes, select the All > Style cell in the property panel for each Data
Table column and set this CSS rule:

text-align:center; vertical-align:middle

13. In the same way, set the All > Style property for the Data Table itself to this:

width:400px;

You already practiced most of the 13 steps in one way or another when working through
View Panel or Data Table examples, so only a few steps need any further explanation.

Step 6 simply returns the name of the author of the document. This is in Notes canonical
form, so it would be more natural to present the common user name in this column instead. Expe-
rienced Domino developers instinctively know to do this using the @Name @Function, which can
reformat Notes names in a number of ways. Although @Functions and other traditional building
blocks are covered in more detail in Chapter 11, “Advanced Scripting,” in the section, “Working
with @Functions, @Commands, and Formula Language,” it is no harm to start dabbling with
some simple use cases at this stage according as the need arises. To do this, simply wrap the
JavaScript binding command in with an @Name() call:

@Name(“[CN]”, rowData.getColumnValue(“From”));

Step 9 uses JavaScript to build a Domino resource URL. The generic form of this URL is

/UNID/$FILE/filename

where the first part is an ID to identify the document to use, the second part indicates that
the URL represents a file attachment resource, and the third part is the name of the attachment.
This form of URL has been used in classic Domino web development for a long time. Back in
Chapter 3, you learned about special IDs that Notes maintains to manage its databases and
documents. The universal ID (UNID) is a 32-character hexadecimal representation that uniquely

Data Table 313

identifies a document. The profile documents in the Discussion template each contain a single
image (or placeholder image) of the author and the name of this image file can be obtained from
the FileUpFilename column in the xpAuthorProfiles view. Thus, a resource URL can be
dynamically constructed for all registered users and this URL resolves the image and retrieves it
from the profile documents for display in the Data Table. An example of a real live resource URL
is highlighted in the status bar of the browser in Figure 9.27.

You are now ready to preview or load the new XPage. Chapter 9.nsf contains some sample
profile documents, so you see these listed in the Data Table. The actual intention, however, is to
display this Data Table as an embedded view in the My Profile page. To do this, you need to open
the authorProfileForm custom control and copy/paste the markup from dtProfile.xsp to the bot-
tom of the XPage, just before the final </xp:view> tag. Naturally, you do not copy the
<xp:view> tag from dtProfile.xsp but just the Data Table and data source markup—everything
you see in Listing 9.8. Figure 9.27 shows a snapshot of a My Profile page from Chapter9.nsf.

Image link URL Embedded Data
Table for Author Profiles

Figure 9.27 My Profile Page with Embedded Data Table

TIP The next chapter introduces the XPage custom control and discusses all of its fea-
tures in great detail. Suffice to say, at this stage that, it would have been a better design
approach to create dtProfile.xsp as a custom control and drop it into
authorProfileForm.xsp rather than copying and pasting the actual code. If you are already
familiar with custom controls, it is trivial to rework this example accordingly. If not, perhaps
it is worth revising this example to use a custom control after you read Chapter 10.

314 Chapter 9 Beyond the View Basics

Listing 9.8 Data Table Displaying Profile Data

<xp:this.data>

<xp:dominoView var=”view1” viewName=”xpAuthorProfiles”>

</xp:dominoView>

</xp:this.data>

<xp:dataTable id=”dataTable1” rows=”30” value=”#{view1}”

var=”rowData” style=”width:400px”>

<!— style each column like this —>

<xp:column id=”column1”

style=”text-align:center; vertical-align:middle”>

<!— get the common user name —>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value><![CDATA[#{javascript:

@Name(“[CN]”, rowData.getColumnValue(“From”));

}]]></xp:this.value>

</xp:text>

</xp:column>

<xp:column id=”column2”

style=”text-align:center;vertical-align:middle”>

<!— return a mailto link —>

<xp:link escape=”true” text=”e-mail ...” id=”link2”>

<xp:this.value><![CDATA[#{javascript:”mailto:” +

rowData.getColumnValue(“Email”);}]]></xp:this.value>

</xp:link>

</xp:column>

<xp:column id=”column3”

style=”text-align:center; vertical-align:middle”>

<!— return Domino resource URL —>

<xp:link escape=”true” text=”download...” id=”link1”>

<xp:this.value><![CDATA[#{javascript:

“/” + rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.value>

</xp:link>

</xp:column>

<xp:column id=”column4”

style=”text-align:center; vertical-align:middle”>

<!— use the same Domino resource URL for the image —>

<xp:image id=”image2” style=”height:50px;width:50.0px”>

Data Table 315

<xp:this.url><![CDATA[#{javascript:”/” +

rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.url>

</xp:image>

</xp:column>

</xp:dataTable>

Had you used a View Panel for this particular use case, you would have had to undo a lot of
the features it gives you for free, such as pagers, column headers, and so on. You would also have
had to customize the columns to display HTML and then return link and image HTML elements
for three of the four columns. The Data Table actually simplifies the process by allowing you to
drag-and-drop and arbitrary control into any content row cell and then just compute its value.

Another good example of Data Table usage is the File Download control. This out-of-the-
box control is really a Data Table that has been adapted by the XPages runtime to display a simple
table of any attachments contained in a nominated rich text field. Figure 9.28 shows the File
Download control displaying some attachments in the Discussion application—it should be easy
to see how this was built, given what you have just done to implement the embedded profile Data
Table.

That is the Data Table, all done and dusted!

File Download Control

Figure 9.28 Example of the File Download control in the Discussion application

316 Chapter 9 Beyond the View Basics

Repeat Control
The Repeat control is similar to the Data Table. The Repeat control does not have a table struc-
ture, but just like the Data Table, it can contain arbitrary controls that can be bound to elements of
a collection object (like a Domino view or Java array). When the Repeat control is rendered, all
child controls are repeated for each entry in the data source.

In fact, to prove just how similar the two controls are, do a quick exercise that involves
rebuilding the previous Data Table as a Repeat. The steps are

1. In the Designer Navigator, copy and paste the dtProfile.xsp XPage.

2. Rename the new copy from dtProfile_1 to repeatProfile and open it in Designer (the
Designer right-mouse menu has a Rename option).

3. Use the Find/Replace dialog (Ctrl-F) to replace all occurrences of dataTable with
repeat.

4. In the Source pane, delete all the <xp:column ...> and </xp:column> tags from
repeatProfile.xsp.

5. Just before the closing repeat tag, </xp:repeat>, insert a line break using these tags
<xp:br></xp:br>.

6. Move to the WYSIWYG editor and manually insert some spaces between the child con-
trols so they are not touching each other.

Reload or preview the page and presto! Your new page is now working just as the Data
Table page did, although the individual elements do not align as neatly as they would when
placed in a table. If you executed the six steps correctly, your repeatProfile.xsp should contain
the same markup as Listing 9.9.

Listing 9.9 Displaying Profile Data Using a Repeat Control

<!— data source has not changed. —>

<xp:this.data>

<xp:dominoView var=”view1” viewName=”xpAuthorProfiles”>

</xp:dominoView>

</xp:this.data>

<!— dataTable tag changed to repeat —>

<xp:repeat id=”repeat1” rows=”30”

var=”rowData” style=”width:400px” value=”#{view1}”>

<!— removed columns but kept controls exactly as they were —>

<xp:text escape=”true” id=”computedField1”>

<xp:this.value><![CDATA[#{javascript:

@Name(“[CN]”, rowData.getColumnValue(“From”));}]]>

</xp:this.value>

</xp:text>

Repeat Control 317

<!— spaces represented as HTML entities in markup: —>

<xp:link escape=”true” text=”e-mail ...” id=”link1”>

<xp:this.value><![CDATA[#{javascript:”mailto:” +

rowData.getColumnValue(“Email”);}]]></xp:this.value>

</xp:link>

<xp:link escape=”true” text=”download ...” id=”link2”>

<xp:this.value>

<![CDATA[#{javascript:”/” +

rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.value>

</xp:link>

<xp:image id=”image1” style=”height:50px;width:50.0px”>

<xp:this.url>

<![CDATA[#{javascript:”/” +

rowData.getUniversalID() + “/$FILE/” +

rowData.getColumnValue(“FileUpFilename”)}]]>

</xp:this.url>

</xp:image>

<xp:br></xp:br>

</xp:repeat>

This exercise shows that the bulk of the properties are shared across both controls and that
the containment relationships are compatible—otherwise, your page would not build in Designer,
let alone actually work at runtime.

A Repeat Control Design Pattern
Just because the Repeat control is not contained within a table does not mean it cannot use a tab-
ular layout scheme. The All Documents page in the Discussion template provides a great pattern
for Repeat usage. If you go back to Figure 9.1, which illustrates all the fancy features of the
Repeat control, you see the page does have a tabular structure. The top of the view has a set of
Collapse All | Expand All links and a pager—effectively, this is a header. The bottom of the view
has a page size picker on the left side and a pager on the other—effectively, this is a footer. The
data rows are repeated in between the header and footer using a Repeat control and make use of
many other advanced features to generate dynamic content. Figure 9.29 features an outline view
of the relevant parts of the page, tagged with pointers identifying various recognizable land-
marks.

318 Chapter 9 Beyond the View Basics

As you can see, the header and footer are encapsulated as HTML tables. This content is
static, so an HTML table works fine for containment and layout. The middle section, which com-
prises all the data rows, is also contained in a HTML table, although this may not be immediately
obvious. Note that the Repeat has a header facet, which emits an HTML <table ...> tag, and a
footer facet, which closes the table tag with </table>. Again, header and footer facets are not
repeated but just rendered once, so this sets up a middle table for the data rows. A table row is
then repeated for each entry in the data source (xpAllDocuments) and the various table cells are
populated with controls, and then bound, formatted, and scripted as required. The only element to
be iterated over and repeated, therefore, is the HTML table row tags (<tr>), which makes the
entire process efficient but, at the same time, well structured. This Table | Repeat | Table
pattern is a recommended as a best practice for complex views of this nature.

Nested Repeats
Some of the tricks used in the data rows are definitely worth exploring. For example, when it was
stated earlier that the Repeat control can contain arbitrary child controls, this does not exclude
other Repeat control instances. There is a good example in the allDocumentsView custom con-
trol of a nested Repeat being put to smart use. The particular snippet of XSP markup is displayed
in Listing 9.10, with some comments added in bold script.

Header table

Repeat ControlRepeat Control

Header Pager

Header links

Footer tableFooter table

Data Row - Image

Data Row - DateFooter Page Size Control

Data Row - Author

Figure 9.29 Outline structure of the all documents view

Repeat Control 319

Listing 9.10 Nested Repeat Control Bound to a JavaScript Array

<!— Nested Repeat control – note removeRepeat=”true” —>

<xp:repeat id=”repeatTags” rows=”30” var=”tagData”

first=”0” indexVar=”tagIndex” repeatControls=”false”

removeRepeat=”true”

themeId=”Repeat.Tags”>

<!— Repeat is not bound to a View but to a Java array! —>

<xp:this.value><![CDATA[#{javascript:

// Category can be a single string or multi-text item

var obj = rowData.getColumnValue(“_Categories”);

var size = 0;

var array = null;

// must return an array regardless!

if(typeof obj == “string”){

var str = obj.toString();

if(str != null){

array = new Array();

array[0] = str;

size = 1;

}

}else if(typeof obj == “java.util.Vector”){

array = obj.toArray();

size = array.length;

}

return array;}]]>

</xp:this.value>

<!— create a link for each item in the tagData array! —>

<xp:link escape=”true” id=”link2” themeId=”Link.person”

text=”#{javascript:tagData}” value=”/byTag.xsp”>

<!— set the ?categoryFilter param to the array item —>

<xp:this.parameters>

<xp:parameter value=”#{javascript:tagData;}”

name=”categoryFilter”>

</xp:parameter>

</xp:this.parameters>

</xp:link>

<!— only include a comma if multiple array items exist —>

<xp:label value=”,” id=”label5”

themeId=”Text.commaSeparator”>

<xp:this.rendered><![CDATA[#{javascript:

size > 1 && tagIndex < size - 1}]]>

320 Chapter 9 Beyond the View Basics

</xp:this.rendered>

</xp:label>

</xp:repeat>

This nested Repeat control is created on the fly, along with some other sibling controls,
whenever the end-user expands a top level row using the More link. The Repeat control’s value
property does not in fact point to a view data source, as has been the norm up to now, but to a Java
array that contains one or more tags, i.e. tags are the contents of the _Categories multivalue field.
Within this nested Repeat, a Link control is created for each category found in the tag array. The
link text is set to the tag text and the link value (URL) is set to the byTag.xsp XPage plus a
categoryFilter parameter, which is also set to the tag text (for example, /byTag.
xsp?categoryFilter=Government). After all the links are generated, the Repeat removes
itself from the component tree (removeRepeat=”true”), because it is no longer required. Play
with the sample application and see this feature in action. You can probably think of use cases for
your own applications that would be well served using dynamic nested Repeats in this way.

The Rich Get Richer
One little amendment you could make to further enhance the rich nature of the Repeat control
content is to insert the actual rich text into the dynamic row when the More link is clicked. Right
now, it is the plain text stored in the Abstract column of the xpAllDocuments view that is dis-
played, but if you locate that value binding in the custom control (search all DocumentsView.
xsp for "cfAbstract"), you could replace it, as shown in Listing 9.11.

Listing 9.11 Server-Side JavaScript Code to Extract HTML from Rich Text Fields Saved in
MIME Format

// search for “Abstract” and comment out this next line of code

// return rowData.getColumnValue(“Abstract”);

// get the Notes document and body rich text field

var nd:NotesDocument = rowData.getDocument();

var mime = nd.getMIMEEntity(“body”);

// if it is MIME then you can passthrough as HTML

if (mime != null) {

return mime.getContentAsText();

}

// Otherwise just return the plain text

else {

return nd.getItemValueString(“body”);

}

Some Fun with the Pager 321

You need to configure the cfAbstract Computed Field to have a content type of HTML.
This has been done for you in the allDocumentsView custom control, but the code is commented
out. If you would like to see this feature in action, simply enable the code in Designer. Figure
9.30 shows some sample rich content expanded in the Repeated rows.

Obviously, it is not efficient to open documents when building views, although this only
occurs when the user clicks the More link, so the expense is only incurred on request and not for
every repeated item. This example concludes our discussion of the Repeat Control.

Some Fun with the Pager
After all the hard work done in this chapter, you might as well finish on a light note. The common
view pager that you have worked with in various examples is actually a highly configurable con-
trol, even though it has only been used in its default state thus far. The next exercise shows how to
transform the look and feel of your pager.

You should start by revisiting the dataTable.xsp XPage and making a new copy of this, called
dataTableExt.xsp. In the new XPage, activate the Source pane and find the facets tag for the Data

Rich text content “in view”

Dynamic Nested Repeat Tags

Figure 9.30 Expanded Rich Text Content in Repeat Control

322 Chapter 9 Beyond the View Basics

Table—careful not to accidentally pick the facets tag for one of the columns! Copy and paste the
existing <xp:pager> tag that’s already defined in the Data Table facets and then set
xp:key=”header” and panelPosition=”right” on one of them. After completing this task,
the Data Table should have two pagers: one on the right hand side of the header and one on the left
hand side of the footer. Select the header pager in the Outline view and activate the WYSIWYG
editor and Pager property panel.

The first thing you can do is apply different pager styles to the header pager (for example,
Sample 1 through Sample 7), and preview or reload the XPage to see what features are exposed in
the different canned styles. What’s more interesting, however, is to play around with a custom
layout. For this example, select the footer pager in the Outline view and change the Pager style
combo box style to Custom. This causes a new list of controls to be displayed in the Property
panel—select the ones shown in Figure 9.31.

Three child controls: “Lo”, “ooooo”, and “tus” images

Custom Pager

Chosen Pager Elements

Footer Pager

Header Pager

Figure 9.31 Working with a custom pager in Designer

In the Outline view, select each of the newly created three child controls in turn and assign
images to them. The Previous control should be assigned “/Lo.gif”, the Group control (Page
Selector) should be assigned “/oooooo.gif”, and the Next control should be assigned “/tus.gif”.
These image resources have been already added to Chapter9.nsf for your convenience. In fact, a

Some Fun with the Pager 323

dataTableExt.xsp XPage is also included if you do not feel like building this example—it’s been
a long chapter! The updated markup for the Data Table facets tag should now look like Listing
9.12.

Listing 9.12 Custom Pager Definitions

<xp:this.facets>

<xp:pager id=”pager2” for=”dataTable1” xp:key=”header”

panelPosition=”right” partialRefresh=”true”>

</xp:pager>

<xp:pager xp:key=”footer” id=”pager1” for=”dataTable1”

partialRefresh=”true” disableTheme=”true”>

<xp:pagerControl id=”pagerControl1” type=”Previous”

image=”/Lo.gif”>

</xp:pagerControl>

<xp:pagerControl id=”pagerControl3” type=”Group”

image=”/oooooo.gif”>

</xp:pagerControl>

<xp:pagerControl id=”pagerControl2” type=”Next”

image=”/tus.gif”>

</xp:pagerControl>

</xp:pager>

</xp:this.facets>

With this markup in place, preview the page. In Figure 9.32, observe that navigating on
the footer pager updates the header pager state—as you would expect! So, even though the
header and footer pagers no longer bear any visual resemblance to each other, their behaviors are
identical.

TIP A new pager property was introduced in 8.5.2 called alwaysCalculateLast. Calculat-
ing the entry count in large categorized and/or hierarchical views can be expensive
because the code has to navigate each view path to figure out the total count. Thus, the
Last pager control was not always enabled in the Pager due to the cost associated with the
calculation. If having a Last pager option is more important to you that any performance
hits incurred as a result of calculating it, you should set alwaysCalculateLast=”true”
on the Pager control; you can find this property in the basics category of the All Properties
sheet. This means that you always can jump to the end of the view no matter what!

324 Chapter 9 Beyond the View Basics

Conclusion
This chapter extensively covered the three view container controls: the View Panel, Data Table,
and Repeat control. You learned how to apply the lesser-used control properties, when to use one
control over another, and how to customize the look and behavior of all three. Hopefully, this
material will help you build cool, slick, and efficient views that satisfy your own unique use
cases. Go forth and view!

Custom Pager

Figure 9.32 Custom Loooooootus Pager

729

Index

Symbols
#{ character sequence, 57

A
Access Control command

(Application menu), 19
access control lists (ACLs), 19

access levels, 675-676
implementing, 689-690

access control. See security, 675
Access Key Validator, 469
access levels (ACL), 675-676
ACF (Active Content Filtering),

699-702
acl property, 680
ACLs (access control lists), 19

access levels, 675-676
implementing, 689-690

action group simple action,
184-186

action property (Domino
document data source), 218

action property (xp:eventHandler
tag), 166

actions
Cancel, 38
client-side actions, refreshing

with, 162-163

Delete Selected Documents,
40

document actions, 235-236
executing multiple, 184-186
server-side actions, refreshing

with, 160-161
simple actions, 118-125, 167

action group, 184-186
change document mode,

168-169
confirm, 169-170
create response document,

170-171
delete document, 171
delete selected documents,

172
execute client script, 173
execute script, 173-174
modify field, 174-175
open page, 175-176
publish component

property, 176-177
publish view column,

177-178
save data sources, 179-180
save document, 180-182
set component mode,

182-183
set value, 183-184

Submit, 37

Active Content Filtering (ACF),
699-702

Add Bookmarks dialog, 501
Add Simple Action dialog, 39-41
addon link event, 410
agents, 405-412
Aggregate Container pattern,

357-358
aggregating XPages Discussion

component and Notes Google
widget, 533-536

AJAX, partial refresh. See Partial
Refresh option, 369-376

alert() method, 211, 509
allDocuments XPage, 418-419
allDocumentsView control, 418
allowDeletedDocs property

(Domino document data
source), 218, 234

Anonymous users, 690
APIs (application programming

interfaces), JSF API, 137-138
Append Column command

(View menu), 285
Application command (New

menu), 15
application development

and performance, 654-655
creating applications,

5, 24-26

730 Index

CRUD operations,
supporting, 36-42

explained, 23-24
forms, 26-31
views, 26-31

creating, 31-36
XSP markup, 33-34

application frameworks, 367-368
application layer (security),

675-677
Application Level themes,

569-570
Application menu commands,

Access Control, 19
application performance

and application development,
654-655

reducing CPU utilization, 658
GET- versus POST-based

requests, 658-659
immediate property,

661-663
partial execution mode,

665-668
partial refresh, 663-664
readonly property,

660-661
reducing memory utilization,

668-669
dataCache property,

670-672
HTTPJVMMaxHeapSize

parameter, 669
HTTPJVMMaxHeapSize

Set parameter, 669
xsp.persistence.*

properties, 669-670
request processing lifecycle,

655-656
GET-based HTTP

requests, 656-659
POST-based HTTP

requests, 656-659
Application Properties editor,

configuring themes with,
580-583

applications
application frameworks,

367-368
application layer of security,

675-677
composite applications, 528

aggregating XPages
Discussion component
and Notes Google
widget, 533-536

creating components,
529-531

listening components,
531-532

online video about, 540
receiving and publishing

events, 536-539
creating, 687-688
JSF-based applications. See

JSF (JavaServer Faces)
Notes Discussion

banner area, 507-508
bookmarks, 501-503
client versus web,

508-511
disableModified flag,

513-516
enableModified flag,

513-516
launching, 498-500
Save dialog for dirty

documents, 511-513
tab management, 516-519
working offline, 503-506

applicationScope variable, 138,
193-196

Apply Request View phase (JSF
request processing lifecycle),
134

architecture of themes, 569
inheritance levels, 585-587
Platform Level versus

Application Level themes,
569-570

theme configurations
supported by XPages,
570-576

Array class, 201

authentication, 675
AUTHOR access level, 676
Authors field, 685

B
Background tab (Style properties

panel), 545-546
backing beans, 483-486
banner area (Discussion

application), 507-508
base.xsp-config file, creating,

446-449
basic authentication, 675
beans. See backing beans,

483-486
behavioral interfaces, 143-145
bidirectional resources, 605-606
binding data, 306
binding expressions,

136, 152-153
body tag, 49
Bookmark command (Create

menu), 501
bookmarks, 501-503
Boolean Check Box, 469
Boolean class, 201
Boolean Value, 469
browsers, previewing XPage

design elements in, 18-21
bundle resource element,

591-592
business logic

JavaScript. See JavaScript
overview, 157-160
simple actions, 167

action group, 184-186
change document mode,

168-169
confirm, 169-170
create response document,

170-171
delete document, 171
delete selected documents,

172
execute client script, 173
execute script, 173-174
modify field, 174-175

Index 731

open page, 175-176
publish component

property, 176-177
publish view column,

177-178
save data sources, 179-180
save document, 180-182
set component mode,

182-183
set value, 183-184

xp:eventHandler tag
example to display current

date/time, 160
properties, 164-167
refreshing with client-side

JavaScript, 164
refreshing with client-side

simple action, 162-163
refreshing with server-side

JavaScript, 161
refreshing with server-side

simple action, 160-161
buttonNewTopic control, 662
buttons

Cancel, 38
Submit, 37
xp:button tag, 71-72
XSP markup, 38

buttonSave button, 666

C
caching view data, 265-269
CAE (Composite Application

Editor), 533-536
category tag, 468
Cancel buttons, 38
captionStyleClass property, 566
categorized columns, 293-300
category tags, 443
categoryFilter property

(xp:dominoView tag), 246-249
ccTagCloud control, 561,

660-661
CDATA (character data), 55
Change Document Mode

action, 236

change document mode simple
action, 168-169

changing
document mode, 168-169
pass-through text, 191

character data (CDATA), 55
Character Set Type Picker, 469
checkbox groups, 81
checkboxes, 79
checking for Public Access, 703
CKEditor, 238-242
classes

classes available in XPages, 7
Notes/Domino Java API

classes, online resources,
714

online documentation, 492
style classes

advantages of, 553-554
computed values, 561-562
defined, 552
extended styleClass

properties, 563-566
stylingWithClasses

XPage, 554-558
use by browser or client,

559-561
XSP Java classes, online

resources, 712-714
XSP JavaScript pseudo

classes, online resources,
715-716

classloader bridge (NSF), 695
Clean dialog, 624
Clear Private Data button, 525
client fix packs, 11
client IDs, 206-208
client scripts, executing, 173
Client Side Event Editor, 469
Client Side Script Editor, 470
client-side actions, refreshing

with, 162-163
client-side JavaScript

adding client and server logic
to same event, 209-210

control IDs versus client IDs,
206-208

including server data in client
JavaScript, 208-209

localization, 639
XSP client JavaScript library,

210-211
client-side script libraries,

localization, 641-643
client-side scripting, 125-127
clients

client fix packs, installing, 11
client user experience, 8
configuring, 11-12
XPiNC (XPages in the Notes

client), feature scope, 7
ClientSideValidator, 146
columnClasses property, 566
columns (View Panel)

categorized columns,
293-300

custom pager, 321-323
decorating with images,

284-287
displaying column data,

277-279
displaying document

hierarchy, 281
emulating Notes client

rendering, 296-300
publishing, 177-178
reordering, 279-280
sorting, 270, 287, 290-292
View Title components,

288-292
Combo Box, 470
combo boxes, 76-79
command controls

xp:button tag, 71-72
xp:eventHandler tag, 70-71
xp:link tag, 72-73

complex properties (XSP), 54
complex types, 439
complex types, specifying,

453-463
complex values (XSP), 54-55
component mode, setting,

182-183
component tag, 433

732 Index

component tree, scripting,
187-192

component-class tag, 433
component-extension tag, 433
component-family tag, 433
component-type tag, 433
ComponentBindingObject, 462
components. See also specific

components
creating for composite

applications, 529-531
extensions. See UI

component extensions,
creating

JSF standard user-interface
components, 148-151

JSF user interface component
model, 136, 143

listening components,
531-532

Composite Application Editor
(CAE), 533-536

composite applications, 528
aggregating XPages

Discussion component and
Notes Google widget,
533-536

creating components,
529-531

listening components,
531-532

compositeData object, 346-352
compound documents, 49
computed expressions,

localization, 636-639
computed fields, 83-84, 308
computed properties (XSP),

55-59
computed values

control property values, 616
style property, 552
styleClass property, 561-562

computeDocument property
(Domino document data
source), 218

computeWithForm property, 685

computeWithForm property
(Domino document data
source), 218, 225

concurrencyMode property
(Domino document data
source), 218, 227

concurrent document updates,
managing, 227

configuration, variable
resolvers, 140

configuring
clients, 11-12
event parameters, 384-386
localization options, 624-626
Public Access, 703
themes

theme configurations
supported by XPages,
570-576

with Application
Properties editor,
580-583

confirm simple action, 169-170
confirm() method, 211, 509
confirming actions, 169-170
ConstraintValidator, 147
containers

Aggregate Container pattern,
357-358

Layout Container pattern,
358-365

tags. See individual tag name
content modifiers (view)

expandLevel property,
257-259

startKeys property, 256-257
Content Type Picker, 470
content-type element, 589
context global object, 196
context variable, 155
control declaration snippets, 190
control definitions, 613-614
control element

control definitions, 613-614
control properties. See

controls, properties
control IDs, 206-208, 633-634

Control Picker, 470
controls. See also specific

controls
adding to XPages, 21-22
Core Controls, setting

properties on, 616, 619
custom control properties,

635
Custom Controls. See Custom

Controls, 327
data binding, 59-60
explained, 64-65
properties

computing control
property values, 616

control property types,
619-621

explained, 614-616
setting properties on

XPages Core Controls,
616, 619

xp:button tag, 71-72
xp:checkBox tag, 79
xp:checkBoxGroup tag, 81
xp:comboBox tag, 76-79
xp:dataTable tag, 94-95
xp:dataTimeHelper tag, 68-69
xp:eventHandler tag, 70-71
xp:fileDownload tag, 86-87
xp:fileUpload tag, 84-85
xp:image tag, 84
xp:include tag, 99
xp:inputRichText tag, 67
xp:inputText tag, 65-66
xp:label tag, 83
xp:link tag, 72-73
xp:listBox tag, 74-76
xp:panel tag, 87-90
xp:radio tag, 80
xp:radioGroup tag, 81-82
xp:repeat tag, 95-98
xp:section tag, 100
xp:tabbedPanel tag, 99-100
xp:table tag, 90-91
xp:text tag, 83-84
xp:view tag, 91-93

Controls Palette, 17
Converter interface, 145

Index 733

converters, 107-109, 145-146
Cookie variable, 138
Core Controls, setting properties

on, 616
CPU utilization, reducing, 658

GET- versus POST-based
requests, 658-659

immediate property, 661-663
partial execution mode,

665-668
partial refresh, 663-664
readonly property, 660-661

Create Control dialog, 433-434
Create menu commands,

Bookmark, 501
Create New Custom Control

dialog, 329
Create Response Document

action, 236
Create Response Document

dialog, 221
create response document simple

action, 170-171
createViewNavFromCategory()

method, 248
createViewNavFromDescendants

() method, 252
CRUD operations, supporting,

36-42
CSS (Cascading Style Sheets)

files, table of, 719-720
inline styling, 545
online resources, 545
styles

classes. See styles (CSS),
style classes

computed values, 552
extended style properties,

563-566
setting manually, 550-551
setting with Style

properties panel,
545-547

Styling XPage, 548-550
use by browser or client,

551-552
current date/time

displaying, 160

refreshing
with client-side

JavaScript, 164
with client-side simple

action, 162-163
with server-side

JavaScript, 161
with server-side simple

action, 160-161
Custom Controls, 5, 635

compositeData object,
346-352

creating, 329-337
design patterns

Aggregate Container
pattern, 357-358

Layout Container pattern,
358-365

explained, 327-329
Property Definitions

explained, 337-340
Property tab, 340-343
summary, 346
Validation tab, 343-345
Visible tab, 345

replyButton control, 352
multiple instances and

property groups,
355-357

onClick event, 353-355
custom Dojo widgets,

integrating, 393-398
custom pager, 321-323
custom responses, generating

with XPages, 399-401

D
data binding, 59-60, 306
data contexts, 63
Data Source Picker, 470
data source tags (XSP)

xp:dataContext, 63
xp:dominoDocument, 61-62
xp:dominoView, 62-63

data sources
connecting Data Tables to,

305-307

Domino document data
sources, 216

basic data source
markup, 217

events, 231-233
multiple data sources,

228-230
properties, 217, 233-234

filters, 246
categoryFilter property,

246-249
ignoreRequestParams

property, 252
keys property, 253-256
keysExactMatch property,

255-256
parentId property,

251-252
search property, 249-251
searchMaxDocs

property, 251
saving, 179-180

data table control, 94-95
Data Tables, 305

building embedded profile
view with, 311-315

Computed Fields, 308
connecting to data source,

305-307
Pager property panel, 308
sample XSP markup, 309-311

Data tool, 17
database global object, 196
database variable, 155
databaseName property (Domino

document data source),
218, 234

databaseName property
(xp:dominoView tag), 245-246

dataCache property
(xp:dominoView tag), 265-269,
670-672

dataTableStyle property, 566
dataTableStyleClass property,

566
Date class, 201

734 Index

date/time, displaying, 160
with client-side JavaScript,

164
with client-side simple action,

162-163
with server-side JavaScript,

161
with server-side simple

action, 160-161
date/time picker control, 68-69
DateTimeConverter, 146
DateTimeRangeValidator, 147
debugging XPages in Notes

client, 525-528
decode() method, 482
default variables

JSF (JavaServer Faces),
138-139

XPages, 154-156
default-prefix tag, 433
Delete Document action, 236
delete document simple

action, 171
Delete Selected Documents

action, 40
delete selected documents simple

action, 172
Delete Selected Documents

action, 236
deleting documents, 171-172
DEPOSITOR access level, 676
deprecated locale codes, 648-650
description tag, 433, 443
design element layer (security),

677
form access control options,

678-679
view access control options,

679-680
XPage access control,

680-684
Design menu commands, 18-20
design patterns

Aggregate Container pattern,
357-358

Layout Container pattern,
358-365

Repeat control design pattern,
317-318

DESIGNER access level, 675
designer-extension tag, 443
designer-extension tags, 468-469
development

and performance, 654-655
of XPages, xvii, 4-7

dialogs. See specific dialogs
directories

Dojo directory, 599-600
HTML directory, 597-598
XPages Global directory,

598-599
DirectoryUser class, 201-203
dirty documents, saving in Notes

client, 511-513
disableClientSideValidation

property, 117
disableModified flag, 513-516
Discussion application. See

Notes Discussion application,
498

display controls
xp:fileDownload tag, 86-87
xp:fileUpload tag, 84-85
xp:image tag, 84
xp:label tag, 83
xp:text tag, 83-84

Display XPage instead property,
283

display-name tag, 433, 443
@DocDescendants function, 278
document collection for

folders/views, retrieving,
262-264

document hierarchy, displaying,
281

document layer (security),
684-686

document mode, changing,
168-169

document signing, 686
Document Type Definitions

(DTDs), 48
documentation, XPages

classes, 492

documentId property (Domino
document data source), 218

documents, 215
actions, 235-236
controlling URL parameter

usage, 220
creating, 219-220
data sources, 216

basic data source markup,
217

events, 231-233
multiple data sources,

228-230
properties, 217, 233-234

deleting, 171-172
document hierarchy,

displaying, 281
document mode, changing,

168-169
editing, 219-220
executing form logic,

224-227
in-memory documents,

405-412
JavaScript, 236-238
linking View Panel to,

281-284
managing concurrent

document updates, 227
profile documents, 197-198,

405-412
response documents,

170-171, 220-224
rich text, 238-242
saving, 180-182

Dojo directory, 599-600
Dojo integration, 386-387

dojoAttributes property, 389
dojoModule resource,

388-389
dojoParseOnLoad property,

387-388
dojoTheme property, 387-388
dojoType property, 389
extending Dojo class path,

390-391

Index 735

integrating Dojo widgets,
390-391

custom Dojo widgets,
393-398

generating custom
responses with XPages,
399-401

standard Dojo widgets,
391-393

Dojo modules, 105
Dojo Toolkit, 648
dojo.require() statement, 388
dojoAttributes property, 389
dojoModule resource, 388-389
dojoModule resource element,

592
dojoParseOnLoad property,

387-388
dojoTheme property,

387-388, 600
dojoType property, 389
DOM library, 205-206
Domino, 5

documents. See documents
Domino links versus Notes

links, 520-524
history and development,

xiii-xvi
views. See views

Domino Designer, 5
adding Package Explorer to,

424-426
applications

creating, 15, 24-26
CRUD operations,

supporting, 36-42
forms, 26-31

client configuration, 11-12
client fix packs, installing, 11
Controls Palette, 17
Data tool, 17
documents, 61-62
downloading, 9-10
installing, 10-11
library, 197-198
Outline tool, 17
perspective, 14-15

property sheets, 17
views, 26-31, 62-63

creating, 31-36
XSP markup, 33-34

Welcome screen, 13-14
XPage design elements

adding controls to, 21-22
creating, 16-18
previewing, 18-21
tool, 16

XPages Editor, 16
DoubleRangeValidatorEx2, 147
DoubleValue, 470
downloading

Domino Designer, 9-10
files, xp:fileDownload tag,

86-87
DTDs (Document Type

Definitions), 48
_dump() method, 526

E
ECLs (Execution Control Lists),

697-699
edit box control, 65-66
editing documents, 219-220
editing controls, 64-65

xp:dataTimeHelper tag, 68-69
xp:inputRichText tag, 67
xp:inputText tag, 65-66

EDITOR access level, 676
editor tag, 469-472
EL (Expression Language), 136
elements. See specific elements
ELResolver class, 141
embedded profile view, building

with Data Tables, 311-315
embedding Java in JavaScript,

190
empty theme, 583-585
enableModified flag, 513-516
encodeBegin() method, 482
encodeEnd() method, 482
encryption, 686
endsWidth() method, 211

error() method, 211
escape property, 57
event handlers, 70-71, 164-167
event property (xp:eventHandler

tag), 164
eventParametersTable

control, 386
events

adding client and server logic
to same event, 209-210

document data source events,
231-233

event parameters, 384-386
receiving and publishing,

536-539
exceptions, NoAccessSignal, 703
execId property

(xp:eventHandler tag),
142, 164

execMode property
(xp:eventHandler tag),
142, 164

execute script simple action,
173-174

executing client scripts, 173
Execution Control Lists (ECLs),

697-699
expandLevel property

(xp:dominoView tag), 257-259
exporting resource bundle files,

628-629
Expression Language (EL), 136
expressions

computed expressions,
localization, 636-639

formula language
expressions, 404

ExpressionValidator, 147
extended style properties,

563-566
extending Dojo class path,

390-391
extensibility. See UI component

extensions, creating
Extensible Hypertext Markup

Language (XHTML), 48-50

736 Index

F
faces-config tag, 432
faces-config-extension tag, 432
faces-config.xml file, 139, 413
FacesAjaxComponent, 143
FacesAutoForm, 143
FacesComponent, 143
facesContext variable, 138
FacesDataIterator, 144
FacesDataProvider, 144
FacesDojoComponent, 145
FacesDojoComponentDelegate,

145
FacesInputComponent, 144
FacesInputFiltering, 144
FacesNestedDataTable, 144
FacesOutputFiltering, 144
FacesPageIncluder, 144
FacesPageProvider, 144
FacesParentReliantComponent,

144
FacesPropertyProvider, 145
FacesRefreshableComponent,

145
FacesRequiredValidator, 147
FacesRowIndex, 145
FacesSaveBehavior, 145
FacesThemeHandler, 145
facets, 92
Favorite Bookmarks command

(Open menu), 502
field encryption, 686
fields

Computed Fields, adding,
308

modifying, 174-175
file download control, 86-87
File menu commands,

Replication, 504-506
file upload control, 84-85
files. See also specific files

resource bundle files
adding, 637-638
adding strings, 632
changing strings, 631-632
exporting, 628-629
importing, 630

localization within, 623
removing strings, 632-633

XSP CSS (Cascading Style
Sheets) files

style class reference,
720-726

table of, 719-720
filters

view content modifiers
expandLevel property,

257-259
startKeys property,

256-257
view data source filters

categoryFilter property,
246-249

ignoreRequestParams
property, 252

keys property, 253-256
keysExactMatch property,

255-256
parentId property,

251-252
search property, 249-251
searchMaxDocs property,

251
findForm() method, 211
findParentByTag() method, 211
fix packs, 11
folders

compared to views, 261
Java source code folders,

426-427
retrieving document

collection for, 262-264
Font tab (Style properties

panel), 545
form logic, executing, 224-227
formName property (Domino

document data source), 218
forms, 26-31

access control options,
678-679

executing form logic,
224-227

formula language, 404-405
formula language expressions,

404

functions. See specific functions
@Functions, 402-405
@Functions library, 205

G
generating custom responses

with XPages, 399-401
Generic File Picker, 470
generic head resources, 106
GET-based HTTP requests,

656-659
getAttributes() method, 439
getBrowser() method, 601
getBrowserVersion() method,

601
getBrowserVersionNumber()

method, 602
getClientId() method, 192, 197
getColumnIndentLevel()

method, 298
getColumnValue() method, 298,

306, 311-312
getColumnValues() method, 278
getComponent() method, 196,

353-355
getComponentAsString()

method, 189
getComponentsAsString()

method, 189
getDatabasePath() function, 395
getDocument() method, 236
getElementById() method, 211
getFacetsAndChildren() method,

192
getFamily() method, 428
getForm() method, 196
getLabelFor() method, 196
getMilliseconds() method, 309
getParameterDocID() method,

405
getSubmittedValue() function,

539
getUserAgent() method, 602
getVersion() method, 602
getVersionNumber() method,

602
getView() method, 196

Index 737

getViewAsString() method, 189
getViewEntryData agent,

302-303
global objects (JavaScript), 193

@Functions library, 205
context global object, 196
database global object, 196
DOM library, 205-206
Domino library, 197-198
global object maps, 193-196
runtime script library,

198-200
session global object, 196
standard library, 200-201
view global object, 196-197
XSP script library, 201-204

group tag, 443
group-type tag, 443
group-type-ref tag, 443

H
handlers property

(xp:eventHandler tag), 165
hasEntry() method, 602
head tag, 49
Header variable, 138
headerValues variable, 138
Hello World XPage, 187
help

Notes/Domino Java API
classes, 714

XPages websites, 727-728
XSP Java classes, 712-714
XSP JavaScript pseudo

classes, 715-716
XSP tag reference, 711-712

hiding sections, paragraphs, and
layout regions, 685-686

history
of Eclipse, 12-13
of XPages, xvii, 4-5

href element, 589
HTML (Hypertext Markup

Language), 47-48
directory, 597-598
tags (XSP), 127-128

html tag, 49

HTML htmlFilter property,
699-700

htmlFilterIn property, 699
HTTP

GET-based HTTP requests,
656-659

POST-based HTTP requests,
656-659

sample HTTP servlet,
132-133

HTTPJVMMaxHeapSize
parameter, 669

HTTPJVMMaxHeapSizeSet
parameter, 669

Hypertext Markup Language
(HTML), 47-48

I
I18n class, 199
IBM developerWorks, 492
IDs

control IDs, 206-208,
633-634

themeID, 611-613
ignoreRequestParams property

(Domino document data
source), 218-220

ignoreRequestParams property
(xp:dominoView tag), 252

Image File Picker, 470
images

adding to columns, 284-287
xp:image tag, 84

immediate property, 166,
661-663, 667-668

implementing ACLs (access
control lists), access levels,
689-690

importing resource bundle files,
630

in-memory documents, 405-412
in-palette tag, 468
include page control, 99
Indent Responses control, 281
infoboxes, 27
inheritance, themes, 569

inheritance levels, 585-587

Platform Level versus
Application Level themes,
569-570

theme configurations
supported by XPages,
570-576

inheriting xsp-config properties,
441-446

initParam variable, 138
inline styling, 545
Insert Column command (View

menu), 284
installing

client fix packs, 11
Domino Designer, 10-11

Integer Value, 470
interfaces. See specific interfaces
international enablement, built-in

functionality, 643-644
internationalization, 621

international enablement,
built-in functionality,
643-644

localization
computed expressions,

636-639
control IDs, 633-634
custom control properties,

635
deprecated locale codes,

648-650
explained, 622
JavaScript, 636-639
locales in XPages,

644-647
merging XPage changes,

631-633
need for, 621
script libraries, 640-643
setting localization

options, 624-626
testing localized

applications, 627-628
within resource bundle

files, 623
working with translators,

628-630

738 Index

Invoke Application phase (JSF
request processing lifecycle),
135

isCategory() method, 298
isChrome() method, 602
isDirectionLTR() method, 605
isDirectionRTL() method, 605
isExpanded() method, 298
isFireFox() method, 602
isIE() method, 602
isOpera() method, 603
isRunningContext() method, 604
isSafari() method, 603

J
jAgent agent, 408-409
Java

embedding in JavaScript, 190
getViewEntryData agent,

302-303
Notes/Domino Java API

classes, online resources,
714

security exceptions,
troubleshooting, 706-707

source code folders, 426-427
XSP Java classes, online

resources, 712-714
Java Build Path editor, 414
Java Community Process

(JCP), 4
Java Specifications Request

(JSR), 4
JavaScript, 186

adding client and server logic
to same event, 209-210

control IDs versus client IDs,
206-208

documents, 236-238
embedding Java in, 190
global objects, 193

@Functions library, 205
context global object, 196
database global object,

196
DOM library, 205-206
Domino library, 197-198

global object maps,
193-196

runtime script library,
198-200

session global object, 196
standard library, 200-201
view global object,

196-197
XSP script library,

201-204
including server data in client

JavaScript, 208-209
localization, 636-639
refreshing with client-side

JavaScript, 164
refreshing with server-side

JavaScript, 161
scripting component tree,

187-192
XPages object model,

186-187
XSP client JavaScript library,

210-211
XSP JavaScript pseudo

classes, online resources,
715-716

JavaServer Faces. See JSF
JavaServer Pages. See JSP
JCP (Java Community

Process), 4
JSF (JavaServer Faces), 3-4,

130-131
APIs, 137-138
application integration, 137
benefits, 129
binding expressions, 136,

152-153
integration with JSP

(JavaServer Pages), 136
JSF default variables,

138-139
per-request state model, 137
presentation tier, 133,

141-142
rendering model, 137
request processing lifecycle,

134-135, 142
explained, 655-656

GET-based HTTP
requests, 656-659

POST-based HTTP
requests, 656-659

resources, 131
sample HTTP servlet,

132-133
sample JSP with JSF

tags, 133
standard user-interface

components, 148-151
user interface component

model, 136, 143
variable resolvers, 139-141
XPages

behavioral interfaces,
143-145

converters, 145-146
default variables, 154-156
validators, 146-148

JSP (JavaServer Pages), 5
integration with JSF

(JavaServer Faces), 136
sample JSP with JSF tags,

133
JSR (Java Specifications

Request), 4

K-L
keys property (xp:dominoView

tag), 253-256
keysExactMatch property

(xp:dominoView tag), 255-256
keyView, 270

labels, 83
Language Direction Picker, 470
Language Picker, 470
LargeSmallStepImpl.java,

458-461
LargeSmallStepInterface.java,

455
lastSubmit property, 211
launching

Domino Designer
perspective, 14

Notes Discussion, 498-500

Index 739

Layout Container pattern,
358-365

layout regions, hiding, 685-686
LCD (Lotus Component

Designer), xiv, 4
LengthValidatorEx, 147
libraries

@Functions library, 205
DOM library, 205-206
Domino, 197-198
runtime script library,

198-200
script libraries

creating, 101-103
localization, 640-643
xp:script tag, 102-103

standard library, 200-201
ViewUtils script library,

188-189
XPages Extension Library,

492
XSP client JavaScript library,

210-211
XSP script library, 201-204

linking View Panel to documents,
281-284

linkResource resource element,
594

links
Notes links versus Domino

links, 520-524
xp:link tag, 72-73

linkSubject link control, 659
listboxes, 74-76
loaded property, 683
loaded property (Domino

document data source),
218, 234

loaded property (xp:dominoView
tag), 263

loaded property
(xp:eventHandler tag), 165

Locale class, 199-200
locales

deprecated locale codes,
648-650

in XPages, 644-647

localization
computed expressions,

636-639
control IDs, 633-634
custom control properties,

635
deprecated locale codes,

648-650
explained, 622
JavaScript, 636-639
locales in XPages, 644-647
merging XPage changes,

631-633
need for, 621
resource bundle files,

importing/exporting,
628-630

script libraries
client-side script libraries,

641-643
server-side script libraries,

640-641
setting localization options,

624-626
testing localized applications,

627-628
within resource bundle

files, 623
working with translators

exporting resource bundle
files, 628-629

importing resource bundle
files, 630

log() method, 211
LongRangeValidatorEx2, 147
Lotus Component Designer

(LCD), xiv, 4
Lotus Expeditor (XPD), 496
Lotus Notes Template

Development ID file, 689
Lotus Notes. See Notes

M
managed beans, 412-419
managed-bean-class tag, 413
managed-bean-name tag, 413
managed-bean-scope tag, 413

MANAGER access level, 675
managing concurrent document

updates, 227
Margins tab (Style properties

panel), 546
mask characters, 146
MaskConverter, 146
Math class, 201
media element, 589
memory utilization, reducing,

668-669
dataCache property, 670-672
HTTPJVMMaxHeapSize

parameter, 669
HTTPJVMMaxHeapSizeSet

parameter, 669
xsp.persistence.* properties,

669-670
merging XPage changes,

631-633
metaData resource element,

594-597
metadata resources, 106-107
Method Binding Editor, 471
methods. See specific methods
milliSecsParameter, 385-386
MIME Image Type Picker, 471
MinMaxPair interface, 450
MinMaxUIInput, 444-446
modifing fields, 174-175
Modify Field action, 236
modify field simple action,

174-175
ModulusSelfCheckValidator, 148
moreLink link, 417
multiline edit boxes, 66
Multiline Text, 471
multiple actions, executing,

184-186
multiple document data sources,

228-230
multiple views, 259-260
mxpd.data.ViewReadStore

custom widget, 397
mxpd.ui.ViewTree widget,

399-400
mxpd1 theme, 613-614
mxpd2 theme, 614

740 Index

N
namespace-uri tag, 433
namespaces, XML, 49
nanoTimeParameter, 385-386
Native and Custom Control

Custom Visualization Best
Practices’ article, 469

navigate property
(xp:eventHandler tag), 166

nested Repeat controls, 318-320
New Application dialog, 15-16,

424-425, 687-688
New File dialog, 431
New Java Class dialog, 429, 435,

456-457
New Java Interface dialog, 454
New menu commands

Application, 15
Theme, 577
XPage, 16

New NSF Component dialog,
534

New Replica dialog, 504
New Script Library dialog, 102
New Source Folder dialog,

426-427
New Style Sheet dialog, 103
New Theme button, 577
New Theme dialog, 578-579
New XPage dialog, 16, 35,

216-217, 225, 433
NO ACCESS access level, 676
NoAccessSignal exception, 703
Notes, history and development,

xiii-xvi
Notes client, XPages in

composite applications, 528
aggregating XPages

Discussion component
and Notes Google
widget, 533-536

creating components,
529-531

listening components,
531-532

online video about, 540
receiving and publishing

events, 536-539

debugging, 525-528
emulating Notes client

rendering, 296-300
explained, 495-497
Notes Discussion application

banner area, 507-508
bookmarks, 501-503
client versus web,

508-511
disableModified flag,

513-516
enableModified flag,

513-516
launching, 498-500
Save dialog for dirty

documents, 511-513
tab management, 516-519
working offline, 503-506

Notes links versus Domino
links, 520-524

previewing design
elements, 18

security, 696
ACF (Active Content

Filtering), 699-702
Execution Control Lists

(ECLs), 697-699
Notes Discussion application

banner area, 507-508
bookmarks, 501-503
client versus web, 508-511
disableModified flag,

513-516
enableModified flag, 513-516
launching, 498-500
Save dialog for dirty

documents, 511-513
tab management, 516-519
working offline, 503-506

NotesViewEntry class, 715
NotesXspDocument class,

201, 204
NotesXspViewEntry class, 201
NSF classloader bridge, 695
Number class, 201
Number Format Editor, 471
NumberConverter, 146

O
Object class, 201
object model (XPages), 186-187
Object Technology International

(OTI), 12
objects, JavaScript global

objects, 193. See also specific
objects

@Functions library, 205
DOM library, 205-206
Domino library, 197-198
global object maps, 193-196
runtime script library,

198-200
standard library, 200-201
XSP script library, 201-204

offline, working offline, 503-506
onComplete property

(xp:eventHandler tag), 167
onError property

(xp:eventHandler tag), 167
oneuiv2 theme, 605
onStart property

(xp:eventHandler tag), 167
Open menu commands

Favorite Bookmarks, 502
Replication and Sync, 505

Open Page action, 236
open page simple action,

175-176
opening pages, 175-176
OpenNTF, xv, 492
?OpenXPage command, 503
OTI (Object Technology

International), 12
outerStyleClass property,

563-565
Outline tool, 17

P
Package Explorer, adding to

Domino Designer perspective,
424-426

Pager property panel, 308,
321-323

pages, opening, 175-176
panels, 87-90

Index 741

paragraphs, hiding, 685-686
Param variable, 138
parameters, event parameters,

384-386
parameters property

(xp:eventHandler tag), 166
paramValues variable, 138
parentId property (Domino

document data source), 218
parentId property

(xp:dominoView tag), 251-252
parseVersion() method, 603
partial execution mode, 369,

654-668
partial refresh, 663-664

online resources, 369
performing with Partial

Refresh option, 369-376
scripting, 376-377

partialRefreshGet()
function, 377-381

partialRefreshPost()
function, 381-382

Partial Refresh option, 369-376
PartialRefreshField control,

373-375
partialRefreshGet() function,

377-381
partialRefreshGet() method, 211
partialRefreshPost() function,

381-382
partialRefreshPost() method, 211
pass-through text, changing, 191
Password Value, 471
paths, resource paths, 597

bidirectional resources,
605-606

Dojo directory, 599-600
dojoTheme property, 600
HTML directory, 597-598
user agent resources, 600-605
XPages Global directory,

598-599
patterns

Aggregate Container pattern,
357-358

Layout Container pattern,
358-365

Repeat control design pattern,
317-318

per-request state model
(JSF), 137

performance
and application development,

654-655
reducing CPU utilization, 658

GET- versus POST-based
requests, 658-659

immediate property,
661-663

partial execution mode,
665-668

partial refresh, 663-664
readonly property,

660-661
reducing memory utilization,

668-672
request processing lifecycle,

655-659
perspective (Domino Designer),

14-15
Platform Level themes, 569-570
POST-based HTTP requests,

656-659
postNewDocument property

(Domino document data
source), 218, 232-233

postOpenDocument property
(Domino document data
source), 218

postOpenView property
(xp:dominoView tag), 263-264

postSaveDocument property
(Domino document data
source), 218

presentation tier, 133, 141-142
Preview in Browser option, 168
Preview in Notes command

(Design menu), 18
Preview in Web Browser

command (Design menu), 20
PreviewBean class, 415-417
previewHandler XPage, 400
previewing XPage design

elements, 18-21

print() method, 526
print-to-console debugging

example, 526
printing view column data,

302-303
Process Validations phase (JSF

request processing lifecycle),
134

profile data, displaying with
Repeat control, 316-317

profile documents, 197-198,
405-412

Programmability Restrictions,
691-693

prompt() method, 211, 509
properties. See also specific

properties
custom control properties,

635
event handler properties,

164-167
Property Definitions, 337-339

Property tab, 340-343
summary, 346
Validation tab, 343-345
Visible tab, 345

theme properties, 607-611
UI component extension

properties. See UI
component extensions,
creating

View Panel properties,
301-305

view properties, 301-305
XSP

complex properties, 54
complex values, 54-55
computed properties,

55-59
data binding, 59-60
simple properties, 52

Property Definitions, 337-340
Property tab, 340-343
summary, 346
Validation tab, 343-345
Visible tab, 345

property element, 607-610

742 Index

property sheets, 17
Property tab (Property

Definitions), 340-343
property tag, 443
property-class tag, 443
property-extension tag, 443
property-name tag, 443
Public Access, 702-703
publish component property

simple action, 176-177
publish view column simple

action, 177-178
publishEvent() method, 211, 510
publishing

component properties,
176-177

events, 536-539
view columns, 177-178

Q-R
queryNewDocument property

(Domino document data
source), 218

queryOpenDocument property
(Domino document data
source), 219, 231

queryOpenView property
(xp:dominoView tag), 263-264

querySaveDocument property
(Domino document data
source), 219

radio button groups, 81-82
radio buttons, 80
@Random() function, 404
RCP (Rich Client Platform),

12, 497
READER access level, 676
reader access lists, 685
Readers field, 685
readMarksClass property, 566
readonly property, 660-661, 683
reducing

CPU utilization, 658
GET- versus POST-based

requests, 658-659

immediate property,
661-663

partial execution mode,
665-668

partial refresh, 663-664
readonly property,

660-661
memory utilization, 668-670

refresh, partial refresh, 663-664
refreshId property

(xp:eventHandler tag), 166
refreshing

with client-side JavaScript,
164

with client-side simple action,
162-163

with server-side JavaScript,
161

with server-side simple
action, 160-161

refreshMode property
(xp:eventHandler tag), 166

RegExp class, 201
registering backing beans, 486
registerModulePath() function,

396-398
Regular Expression Editor, 471
Release Line Picker, 471
reloadPage() method, 644
removing strings, 632-633
Render Response phase (JSF

request processing lifecycle),
135

render-markup tag, 468
rendered property

(xp:eventHandler tag),
166, 683

renderers, 423
creating, 434-437
UISpinnerRenderer, 477-483

rendering model (JSF), 137
RenderKit-specific client script

handlers, 165
renderkits, 137
reordering columns, 279-280
repeat control, 95-98, 274-276
Repeat control

design pattern, 317-318

displaying profile data with,
316-317

nesting, 318-320
rich text content in, 320-321

replaceItemValue() method, 405
Replication and Sync command

(Open menu), 505
Replication command (File

menu), 504-506
replyButton control, 352

multiple instances and
property groups, 355-357

onClick event, 353-355
request processing lifecycle

(JSF). See JSF (JavaServer
Faces), request processing
lifecycle

requestParamPrefix property
(Domino document data
source), 219, 229-230

requestParamPrefix property
(xp:dominoView tag), 260

requests, 656-659
requestScope, 193-196
requestScope variable, 138
RequiredValidator, 148
resetting Domino Designer

perspective, 14
resource bundle files

adding, 637-638
exporting, 628-629
importing, 630
localization within, 623
strings, 631-633

resource bundles, 104-105
resources

Dojo modules, 105
generic head resources, 106
metadata resources, 106-107
Notes/Domino Java API

classes, 714
resource bundles, 104-105
resource paths, 597

bidirectional resources,
605-606

Dojo directory, 599-600
dojoTheme property, 600
HTML directory, 597-598

Index 743

user agent resources,
600-605

XPages Global directory,
598-599

script libraries
creating, 101-103
xp:script tag, 102-103

security, 687
style sheets

creating, 103-104
xp:styleSheet tag, 104

theme resources. See themes,
resources

XSP. See XSP, resources
Resources XPage, 595-596
response documents, 170-171,

220-224
Restore View phase (JSF request

processing lifecycle), 134
restoreState() method, 440
restricted operation, 693-694
Rich Client Platform (RCP),

12, 497
rich text, 67, 238-242, 320-321
rowClasses property, 566
rowData expression, 306
Run as web user option, 405
runOnServer() method, 412
runtime script library, 198-200
runWithDocumentContext()

method, 406-407, 410-412

S
Save Data Sources action, 236
save data sources simple action,

179-180
Save dialog for dirty documents,

511-513
Save Document action, 236
save document simple action,

180-182
save property (xp:eventHandler

tag), 166
save() method, 197
saveLinksAs property (Domino

document data source),
219, 234

saveState() method, 440
saving

data sources, 179-180
documents, 180-182
state between requests, 440

scope property
Domino document data

source, 219, 234
xp:dominoView tag, 263

script libraries
creating, 101-103
localization, 640-643
xp:script tag, 102-103

script property (xp:eventHandler
tag), 167

script resource element, 592-593
scripting

@Functions, 402-405
agents, 405-412
client-side scripting, 125-127
client scripts, executing, 173
component tree, 187-192
Dojo integration. See Dojo

integration
in-memory documents,

405-412
JavaScript. See JavaScript
managed beans, 412-419
partial refresh scripting, 376

partialRefreshGet()
function, 377-381

partialRefreshPost()
function, 381-382

profile documents, 405-412
runtime script library,

198-200
scripts, executing, 173-174
ViewUtils script library,

188-189
XSP script library, 201-204

search property (xp:dominoView
tag), 249-251

searchMaxDocs property
(xp:dominoView tag), 251

section control, 100
sections, hiding, 685-687
security, 673-674

ACF (Active Content
Filtering), 699-702

ACLs (access control lists),
675-676, 689-690

application layer, 675-677
design element layer, 677

form access control
options, 678-679

view access control
options, 679-680

XPage access control,
680-684

document layer, 684
Authors and Readers

fields, 685
computeWithForm

property, 685
reader access list, 685
sections, paragraphs, and

layout regions, 685-686
Java security exceptions,

troubleshooting, 706-707
Notes client, 696-699
online resources, 687
Programmability

Restrictions, 691-693
Public Access, 702-703
restricted operation, 693-694
server layer, 674-675
sessionAsSigner sessions,

704-705
signatures, 689-691
workstation ECL layer,

686-687
XPages security checking,

695-696
security checking, 695-696
Select Element to Update

dialog, 371
selection controls

xp:checkBox tag, 79
xp:checkBoxGroup tag, 81
xp:comboBox tag, 76-79
xp:listBox tag, 74-76
xp:radio tag, 80
xp:radioGroup tag, 81-82

server data, including in client
JavaScript, 208-209

server layer (security), 674-675
Server Options, 369-371

744 Index

server-side actions, refreshing
with, 160-161

server-side JavaScript
global objects. See global

objects (JavaScript)
scripting component tree,

187-192
XPages object model,

186-187
server-side script libraries,

localization, 640-641
servers

Domino, xiii-xvi, 5
server layer of security,

674-675
servlets, sample HTTP servlet,

132-133
session authentication, 675
session global object, 196
session variable, 155
sessionAsSigner sessions,

704-705
sessionAsSigner variable, 155
sessionAsSignerWithFullAccess

sessions, 704
sessionAsSignerWithFullAccess

variable, 156
sessionScope, 193-196
sessionScope variable, 139
set component mode simple

action, 182-183
set value simple action, 183-184
setLocaleString() method, 644
setRendererType() method, 429
Shape Type Picker, 471
Show View dialog, 424-425
showSection() method, 211
Sign Agents or XPages to Run on

Behalf of the Invoker field, 693
Sign Agents to Run on Behalf of

Someone Else field, 692-693
Sign or Run Unrestricted

Methods and Operations
field, 692

Sign Script Libraries to Run on
Behalf of Someone Else
field, 693

signatures, 689-691

Simple Actions, 39-40,
118-125, 167

simple actions
action group, 184-186
change document mode,

168-169
confirm, 169-170
create response document,

170-171
delete document, 171
delete selected documents,

172
execute client script, 173
execute script, 173-174
modify field, 174-175
open page, 175-176
publish component property,

176-177
publish view column,

177-178
refreshing with, 160-163
save data sources, 179-180
save document, 180-182
set component mode,

182-183
set value, 183-184

simple properties (XSP), 52
sorting columns, 270, 287,

290-292
SpinnerBean

creating, 485
registering, 486
xpSpinnerTest .xsp, 486-491

standard Dojo widgets,
integrating, 391-393

standard library, 200-201
standard user-interface

components (JSF), 148-151
Standard Widget Toolkit

(SWT), 131
Start Configuring Widgets

wizard, 531-532
startKeys property

(xp:dominoView tag), 256-257
startsWith() method, 211
state, saving between requests,

440

stateful runtime environment,
367

StateHolder, 440, 462
stateless runtime environment,

367
String class, 201
String Value, 471
strings

adding, 632
changing, 631-632
removing, 632-633

Style Class Editor, 471
style classes. See styles (CSS),

style classes
Style Editor, 471
Style properties panel, 545-547
style property

computed values, 552
extended style properties,

563-566
setting manually, 550-551
setting with Style properties

panel, 545-546
Styling XPage, 548-550
use by browser or client,

551-552
style sheets, 103-104
styleClass attribute, 472-473
styleClass property

advantages of, 553-554
computed values, 561-562
extended styleClass

properties, 563-566
stylingWithClasses XPage,

554-558
use by browser or client,

559-561
styles (CSS)

computed values, 552
extended style properties,

563-566
inline styling, 545
online resources, 545
setting manually, 550-551
setting with Style properties

panel, 545-547

Index 745

style classes
advantages of, 553-554
computed values, 561-562
defined, 552
extended styleClass

properties, 563-566
stylingWithClasses

XPage, 554-558
table of, 720-726
use by browser or client,

559-561
Styling XPage, 548-550
use by browser or client,

551-552
styleSheet resource element,

593-594
Styling XPage, 548-550
stylingWithClasses XPage,

554-558
Submit buttons, 37
submit property

(xp:eventHandler tag), 166
submitLatency property, 211
supporting CRUD operations,

36-42
SWT (Standard Widget Toolkit),

131

T
tab management in Notes client,

516-519
tabbed panel control, 99-100
table containers, 90-91
tables, Data Tables. See Data

Tables
tag-name tag, 433
tagField input control, 403
tags. See specific tags, 51, 597
testing

localized applications,
627-630

UI component extensions,
437-438, 483

creating backing bean,
483-485

creating final test
application, 486-491

look and feel, 491
registering backing bean,

486
text

pass-through text, changing,
191

rich text in Repeat controls,
320-321

Theme command (New menu),
577

ThemeControl, 145
themeId property, 611-613
themes

architecture and inheritance
inheritance levels,

585-587
Platform Level versus

Application Level
themes, 569-570

theme configurations
supported by XPages,
570-576

benefits of, 568-569
control definitions, 613-614
control properties

computing control
property values, 616

control property types,
619-621

explained, 614-616
setting properties on

XPages Core Controls,
616, 619

creating, 577-580
empty theme, 583-585
explained, 567-568
properties, 607-611
resources

bundle resource element,
591-592

dojoModule resource
element, 592

explained, 587-591
linkResource resource

element, 594
metaData resource

element, 594-597

script resource element,
592-593

styleSheet resource
element, 593-594

setting, 580-583
themeId, 611-613

Time Zone Picker, 471
time/date, displaying, 160

with client-side JavaScript,
164

with client-side simple action,
162-163

with server-side JavaScript,
161

with server-side simple
action, 160-161

TimeZone class, 199-200
toggleExpanded() method, 298
translators, working with,

628-630
trim() method, 211
troubleshooting XPages Java

security exceptions, 706-707

U
UI component extensions,

creating, 421-422
completing implementation,

473-477
extension class, 428-431
initial application, 424
Java source code folder,

426-427
Package Explorer, adding to

Domino Designer
perspective, 424-426

process overview, 422-424
properties, 438, 452

adding to components,
439-440

complex types, 439
inheriting xsp-config

properties, 441-446
specifying complex-type

properties, 453-463

746 Index

specifying simple
properties, 440-441

StateHolder, 440
renderer implementation,

434-437, 477-483
test application, 483
testing, 437-438

creating backing bean,
483-485

creating final test
application, 486-491

look and feel, 491
registering backing bean,

486
XPages Extensibility API

Developers Guide, 492
XPages Extension Library,

492
xsp-config file

base.xsp-config, creating,
446-449

completing, 464-467
creating, 431-432
designer-extension tags,

468-469
editor tag, 469-472
inheriting xsp-config

properties, 441-446
interface, creating,

450-452
styleClass attribute,

472-473
tags, 432-434

UICallback, 149
UIColumnEx, 149
UICommandButton, 149
UICommandEx2, 149
UIComponentBase class, 428
UIComponentTag, 149
UIDataColumn, 149
UIDataEx, 149
UIDataIterator, 149
UIDataPanelBase, 149
UIDateTimeHelper, 149
UIEventHandler, 149
UIFileuploadEx, 149
UIFormEx, 149
UIGraphicEx, 150

UIInclude, 150
UIIncludeComposite, 150
UIInputCheckbox, 150
UIInputEx, 150
UIInputRadio, 150
UIInputRichText, 150
UIInputText, 150
UIMessageEx, 150
UIMessagesEx, 150
UIOutputEx, 150
UIOutputLink, 150
UIOutputText, 150
UIPager, 150
UIPagerControl, 150
UIPanelEx, 150
UIPassThroughTag, 150
UIPassThroughText, 150
UIPlatformEvent, 150
UIRepeat, 150
UIRepeatContainer, 151
UIScriptCollector, 151
UISection, 151
UISelectItemEx, 151
UISelectItemsEx, 151
UISelectListbox, 151
UISelectManyEx, 151
UISelectOneEx, 151
UISpinner component extension,

423-424
initial application, 424
Java source code folder,

426-427
LargeSmallStepImpl.java,

458-461
LargeSmallStepInterface.

java, 455
MinMaxUIInput, 444-446
Package Explorer, adding to

Domino Designer
perspective, 424-426

properties, 438, 452-453
adding to components,

439-440
complex types, 439,

453-463
inheriting xsp-config

properties, 441-446
simple types, 440-441

StateHolder, 440
test application, 483
testing, 437-438

creating backing bean,
483-485

look and feel, 491
registering backing bean,

486
xpSpinnerTest .xsp,

486-491
UISpinner .java, 473-477
UISpinner extension class,

428-431
UISpinnerRenderer, 434-437,

477-483
xsp-config file.

See xsp-config file
uispinner.xsp-config, 451-452,

464-467
UISpinnerRenderer, 434-437,

477-483
UITabbedPanel, 151
UITabPanel, 151
UITypeAhead, 151
UIViewColumn, 151
UIViewColumnHeader, 151
UIViewPager, 151
UIViewPanel, 151
UIViewRootEx2, 151
UIViewTitle, 151
unreadMarksClass property, 566
Update Model Values phase (JSF

request processing lifecycle),
135

updates, managing concurrent
document updates, 227

uploading files, xp:fileUpload
tag, 84-85

URL parameter usage,
controlling, 220

user agent resources, 600-605
user interface component model

(JSF), 136, 143
user-interface development,

543-545
users

Anonymous, 690
client user experience, 8

Index 747

V
validateAllFields property, 210
Validation tab (Property

Definitions), 343-345
Validator interface, 146
validators, 110-118, 146-148
ValueBindingObject, 462
ValueBindingObjectImpl, 462
ValueHolder interface, 483
values, setting, 183-184
var property (Domino document

data source), 219
variable resolvers (JSF), 139-141
variables

JSF (JavaServer Faces)
default variables, 138-139

variable resolvers, 139-141
XPages default variables,

154-156
View Browser Configuration

button, 526
view control, 91-93
view global object, 196-197
view inspector outline, 192
View menu commands

Append Column, 285
Insert Column, 284

View Panel
categorized columns,

293-300
custom pagers, 321-323
decorating columns with

images, 284-287
displaying column data,

277-279
displaying document

hierarchy, 281
emulating Notes client

rendering, 296-300
features, 276-277
linking to documents,

281-284
properties, 301-305
reordering columns, 279-280
sorting columns, 287,

290-292
View Title components,

288-292

View variable, 139
Viewcontrol. See View Panel
ViewReadStore custom widget,

397
views, 26-31, 243-244

access control options,
679-680

caching view data, 265-269
columns, publishing, 177-178
compared to folders, 261
content modifiers, 256-259
creating, 31-36
data source filters. See data

sources, filters
Data Tables. See Data Tables
databaseName property,

245-246
Domino views, 62-63
examples, 273
multiple views, 259-260
properties, 301-305
Repeat control, 274-276

design pattern, 317-318
displaying profile data

with, 316-317
nesting, 318-320
rich text content in,

320-321
retrieving document

collection for, 262-264
sorting columns, 270
View Panel. See View Panel
XSP markup, 33-34

viewScope, 193-196
viewScope variable, 155
viewStyleClass property, 566
ViewTree widget, 399-400
ViewUtils script library, 188-189
Visible tab (Property

Definitions), 345
Vulcan, xv

W
WAS (WebSphere Application

Server), 496
web browsers, previewing XPage

design elements in, 18-21

websites, XPages resources,
727-728

WebSphere Application Server
(WAS), 496

Welcome screen (Domino
Designer), 13-14

widgets, integrating Dojo
widgets, 390

custom Dojo widgets,
393-398

generating custom
responses with XPages,
399-401

standard Dojo widgets,
391-393

wizards, Start Configuring
Widgets, 531-532

working offline, 503-506
workstation ECL layer

(security), 686-687

X
XFaces, 4, 129-130
xhrGet() function, 400
XHTML (Extensible Hypertext

Markup Language), 48-50
XML

comparing
to HTML, 47-48
to XHTML, 48-50

compound documents, 49
namespaces, 49
xmlns attribute, 49
XSP. See XSP

XML User Interface Language
(XUL), 496

xmlns attribute, 49
xp:acl tag, 680-683
xp:aclEntry tag, 681-682
xp:actionGroup tag, 120,

184-186
xp:br tag, 127
xp:button tag, 71-72
xp:changeDocumentMode tag,

118, 168-169
xp:checkBox tag, 79
xp:checkBoxGroup tag, 81

748 Index

xp:comboBox tag, 76-79
xp:confirm tag, 119, 169-170
xp:convertDateTime tag, 107
xp:convertList tag, 107
xp:convertMask tag, 107
xp:convertNumber tag, 107
xp:createResponse tag, 119,

170-171
xp:customConverter tag, 107
xp:customValidator tag, 110
xp:dataContext tag, 63
xp:dataTable tag, 94-95
xp:dataTimeHelper tag, 68-69
xp:deleteDocument tag, 119, 171
xp:deleteSelectedDocuments tag,

119, 172
xp:dojoModule tag, 105,

388-389
xp:dominoDocument tag, 61-62,

216
xp:dominoDocument tag. See

also documents, 216
xp:dominoView tag. See views
xp:eventHandler tag, 70-71

example to display current
date/time, 160

properties, 164-167
refreshing, 160-164

xp:executeClientScript tag, 119,
163, 173

xp:executeScript tag, 119,
173-174

xp:fileDownload tag, 86-87
xp:fileUpload tag, 84-85
xp:handler tag, 126
xp:image tag, 84
xp:include tag, 99
xp:inputRichText tag, 67
xp:inputText tag, 65-66
xp:label tag, 83
xp:link tag, 72-73
xp:listBox tag, 74-76
xp:metaData tag, 106
xp:modifyField tag, 119,

174-175
xp:openPage tag, 119, 175-176
xp:pager tag, 308-311, 321-323

xp:panel tag, 87-90
xp:paragraph tag, 127
xp:publishValue tag, 119,

176-177
xp:publishViewColumn tag, 119,

177-178
xp:radio tag, 80
xp:radioGroup tag, 81-82
xp:repeat tag, 95-98
xp:save tag, 120, 179-180
xp:saveDocument tag, 120,

180-182
xp:script tag, 102-103
xp:scriptBlock tag, 125
xp:section tag, 100
xp:setComponentMode tag, 120,

182-183
xp:setValue tag, 120, 183-184
xp:span tag, 127
xp:styleSheet tag, 104
xp:tabbedPanel tag, 99-100
xp:table tag, 90-91
xp:text tag, 83-84
xp:this.facets tag, 308
xp:validateConstraint tag, 110
xp:validateDateTimeRange

tag, 110
xp:validateDoubleRange

tag, 110
xp:validateExpression tag, 110
xp:validateLength tag, 110
xp:validateLongRange tag, 110
xp:validateModulusSelfCheck

tag, 110
xp:validateRequired tag, 110
xp:view tag, 51, 91-93
xp:viewPanel tag. See View

Panel, 284
XPage command (New menu),

16
XPages

access control, 680-684
design elements, 46-47

adding controls to, 21-22
creating, 16-18
previewing, 18-21
XML. See XML, 47-50
XSP. See XSP

extensibility. See UI
component extensions,
creating

history and development,
xiv-xv

locales in, 644-647
in Notes client. See Notes

client, XPages in
object model, 186-187
security checking, 695-696
website resources, 727-728

XPages application development.
See application development

XPages Design Elements tool, 16
XPages development paradigm,

5-7
XPages Editor, 16
XPages Extensibility API

Developers Guide, 492
XPages Extension Library, 492
XPages Global directory,

598-599
XPages in the Notes client

(XPiNC), 7
XPages Resource Servlet,

accessing resource paths with
bidirectional resources,

605-606
Dojo directory, 599-600
dojoTheme property, 600
HTML directory, 597-598
user agent resources, 600-605
XPages Global directory,

598-599
XPD (Lotus Expeditor), 496
XPiNC (XPages in the Notes

client), feature scope, 7
xpQuickTest, 438
xpSpinnerTest .xsp, 486-491
XSP

CDATA (character data), 55
client-side scripting, 125-127
command control tags, 71-73
complex properties, 54
complex values, 54-55
computed properties, 55-59

Index 749

container tags
xp:dataTable tag, 94-95
xp:include tag, 99
xp:panel tag, 87-90
xp:repeat tag, 95-98
xp:section tag, 100
xp:tabbedPanel tag,

99-100
xp:table tag, 90-91
xp:view tag, 91-93

control tags
explained, 64-65
xp:dataTimeHelper tag,

68-69
xp:inputRichText tag, 67
xp:inputText tag, 65-66

converters, 107-109
CSS (Cascading Style Sheets)

CSS files, 719-720
style class reference,

720-726
data binding, 59-60
data source tags

xp:dataContext tag, 63
xp:dominoDocument tag,

61-62
xp:dominoView tag,

62-63
Data Table markup, 309-311
display control tags

xp:fileDownload tag,
86-87

xp:fileUpload tag, 84-85
xp:image tag, 84
xp:label tag, 83
xp:text tag, 83-84

explained, 50-51
HTML tags, 127-128
markup, 33-34, 38
resources

Dojo modules, 105
generic head resources,

106
metadata resources,

106-107
Notes/Domino Java API

classes, 714
resource bundles, 104-105

script libraries, 101-103
style sheets, 103-104
tag reference guide,

711-712
XSP Java classes, 712-714
XSP JavaScript pseudo

classes, 715-716
selection control tags

xp:checkBox tag, 79
xp:checkBoxGroup

tag, 81
xp:comboBox tag, 76-79
xp:listBox tag, 74-76
xp:radio tag, 80
xp:radioGroup tag, 81-82

simple actions, 118-125
simple properties, 52
tags. See individual tag name
validators, 110-118
XSP client JavaScript library,

210-211
XSP Document Action Picker,

472
XSP Page Picker, 472
XSP script library, 201-204
xsp-config file

completing, 464-467
creating, 431-432
creating base.xsp-config,

446-449
creating interface, 450-452
defined, 422
designer-extension tags,

468-469
editor tag, 469-472
inheriting xsp-config

properties, 441-446
styleClass attribute, 472-473
tags, 432-434

xsp.css file, 720
xsp.persistence.* properties,

669-670
xsp.properties file, 581-583
XSPContext class, 201
xspFF.css file, 720
xspIE.css file, 720
xspIE06.css file, 720
xspIE78.css file, 720

xspIERTL.css file, 720
xspLTR.css file, 720
xspRCP.css file, 720
xspRTL.css file, 720
xspSF.css file, 720
XSPUrl class, 201-203
XSPUserAgent class, 201-203,

601-603
XUL (XML User Interface

Language), 496
XULRunner, 496-497

	Contents
	Foreword
	Preface
	Chapter 9 Beyond the View Basics
	Pick a View Control, Any View Control
	The View Control: Up Close and Personal
	Data Table
	Repeat Control
	Some Fun with the Pager
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X

