

INTRODUCTION TO WIRELESS SYSTEMS

BRUCE A. BLACK • PHILIP S. DIPIAZZA • BRUCE A. FERGUSON
DAVID R. VOLTMER • FREDERICK C. BERRY

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382-3419 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales international@pearsoned.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is available through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

- · Go to www.informit.com/onlineedition
- · Complete the brief registration form
- Enter the coupon code 2PGD-TAFF-EDYT-TQF5-HMDH

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-service@safaribooksonline.com.

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data

Introduction to wireless systems / Bruce A. Black ... [et al.].

Includes bibliographical references and index.

ISBN 0-13-244789-4 (hardcover : alk. paper)

Wireless communication systems. I. Black, Bruce A.

TK5103.2.I62 2008

621.384-dc22

2008005897

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc. Rights and Contracts Department 501 Boylston Street, Suite 900 Boston, MA 02116 Fax: (617) 671-3447

0-13-244789-4

ISBN-13: 978-0-13-244789-8

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

First printing, May 2008

ISBN-10:

Preface

This text is intended to provide a senior undergraduate student in electrical or computer engineering with a systems-engineering perspective on the design and analysis of a wireless communication system. The focus of the text is on cellular telephone systems, as these systems are familiar to students; rich enough to encompass a variety of propagation issues, modulation techniques, and access schemes; and narrow enough to be treated meaningfully in a text that supports a single course. The presentation is limited to what cellular systems engineers call the "air interface" and what network engineers call the "physical layer."

The presentation is unique in a number of ways. First, it is aimed at undergraduate students, whereas most other textbooks written about wireless systems are intended for students either at the graduate level or at the community college level. In particular, the presentation combines a clear narrative with examples showing how theoretical principles are applied in system design. The text is based on ten years' experience in teaching wireless systems to electrical and computer engineering seniors. The lessons learned from their questions and responses have guided its development. The text not only presents the basic theory but also develops a coherent, integrated view of cellular systems that will motivate the undergraduate student to stay engaged and learn more.

Second, the text is written from a systems-engineering perspective. In this context a "system" comprises many parts, whose properties can be traded off against one another to provide the best possible service at an acceptable cost. A system with the complexity of a cellular network can be designed and implemented only by a team of component specialists whose skills complement one another. Top-level design is the responsibility of systems engineers who can translate market requirements into technical specifications, who can identify and resolve performance trade-off issues, and who can set subsystem requirements that "flow down" to the subsystem designers. The text introduces students to the concept that specialists from a wide range of engineering disciplines come together to develop a complex system. Theory and contemporary practice are developed in the context of a problem-solving discipline in which a divide-and-conquer approach is used to allocate top-level functional system requirements to lower-level subsystems. Standard analysis results are developed and presented to students in a way that shows how a systems engineer can use these results as a starting point in designing an optimized system. Thus an overlying systems-engineering theme ties together a wide variety of technical principles and analytical techniques.

This text comprises eight chapters. An introductory chapter sets out the systems-engineering story. Chapters 2 and 3 introduce the air interface by considering how to provide enough power over a wide enough area to support reliable communication. Chapter 2 introduces the free-space range equation and thermal noise. On completing this chapter, students should be

xiv Preface

aware of the dependence of received power on range and of the role of noise in determining how much power is enough for quality reception. Chapter 3 introduces the terrestrial channel and its impairments, including the effects of shadowing and multipath reception. Next, Chapter 4 introduces the principle of frequency reuse and the resulting cellular system structure. The goal of this chapter is to show how a communication system can be extended to provide service over a virtually unlimited area to a virtually unlimited number of subscribers.

Once a power link is established, information must be encoded to propagate effectively over that link. Chapter 5 introduces modulation. The emphasis is on digital techniques common to cellular systems. Of particular interest are frequency efficiency, power efficiency and bit error rate, bandwidth, and adjacent-channel interference. Chapter 5 also introduces spread-spectrum modulation, emphasizing the ability of spread-spectrum systems to provide robust communication in the presence of narrowband interference and frequency-selective fading.

On completion of Chapter 5, students will have an appreciation of the factors involved in designing a point-to-point data link between a single transmitter and a single receiver. Chapter 6 introduces methods for multiple access, including FDMA, TDMA, and an introduction to CDMA. The ability of spread-spectrum systems to support multiple users over a single channel is emphasized.

Wireless systems carry information from a wide variety of sources, from speech to music to video to short text messages to Internet pages. When digitized, information from various sources produces data streams with differing properties. Further, subscribers apply different criteria to assessing the quality of different kinds of received information. Chapter 7 distinguishes streaming from bursty information streams. As second- and subsequent-generation cellular systems are highly dependent on effective use of speech compression, examples are given showing traditional digitization of speech and a brief introduction to linear predictive coding. Chapter 7 concludes with presentations of convolutional coding for error control and the Viterbi decoding algorithm. The systems-engineering story is pulled together in Chapter 8.

This text has been written to support a one-term senior elective course. It is assumed that students taking the course will have completed conventional courses in signals and systems and an introduction to communication systems. The signals and systems background should include a thorough introduction to the Fourier transform. It is also assumed that readers of the text will have completed an introductory course in probability, including coverage of probability density functions, expectations, and exposure to several conventional probability distributions. The material included in this text should be more than sufficient to support a one-semester course. At Rose-Hulman Institute of Technology the book is used to support a one-quarter course that includes four instructional meetings per week for ten weeks. The course covers all of Chapter 2, selections from Chapter 3, all of Chapter 4, and most of Chapter 5. The CDMA material from Chapter 6 is included as time permits.

Introduction

Overview

On the night of April 14, 1912, the RMS *Titanic*, en route from Southampton, England, to New York, struck an iceberg and sank in the North Atlantic. Over fifteen hundred lives were lost when the ship went down, but fortunately for the more than seven hundred passengers and crew who were able to find accommodation in the ship's lifeboats, the *Titanic* was equipped with a wireless system. The *Titanic*'s wireless included a 5 kW rotary spark transmitter built by the Marconi Wireless Company. Distress calls were heard by a number of ships at sea, including the *Carpathia* that arrived on the scene of the disaster several hours later, in time to rescue the survivors.

The wireless traffic between the *Carpathia* and shore stations in North America was widely monitored. News was passed to the press even before the fate of the *Titanic*'s passengers was known. The widespread publicity given to this disaster galvanized public interest and propelled wireless communication into the forefront of attention. The age of wireless communication might be said to have begun with the sinking of the *Titanic*.

As social beings, humans have a fundamental need to communicate. As we grow and learn, so do our communication needs evolve. Dramatic advancements over the past century have made several facts about our evolving communication needs rather apparent: (1) The information that needs to be communicated varies widely; (2) the types and amount of information that needs to be communicated continuously change, typically toward higher complexity; and (3) current technology rarely meets communication demands, so technology evolves. These facts, along with a healthy worldwide economy, produced the wireless revolution in the late twentieth century. Wireless communication is here to stay, and the design principles used to create wireless technology differ enough from those used to create wired communication systems that a separate treatment is necessary.

In this text the process of designing a wireless communication system is presented from the perspective of a systems engineer. Two main goals of the text follow immediately: (1) to present the concepts and design processes involved in creating wireless communication systems, and (2) to introduce the process of systems engineering and the role of a systems engineer to provide an

1

organizing framework under which to introduce the wireless system concepts. In the industrial world, the design process flows in an organized manner from problem definition, through conceptual and detailed design, to actual deployment. In this text, information from first principles to advanced topics is presented in a fashion compatible with systems-engineering design processes, which are required to manage the development of complex systems.

In Chapter 1 the problem of moving information wirelessly from any point A to any point B is introduced. In every engineering endeavor it is important to have a clear understanding of the problem to be solved before beginning, and so the system and its requirements are defined. The role of a systems engineer and the methods of systems engineering are introduced as the perspective for conducting our study and design.

Chapter 2 presents the most fundamental element of our wireless system, the radio link that connects points A and B. This chapter addresses two issues: how radio waves propagate in space, and how much power must be provided at point B to ensure a desirable quality of communication service. This chapter focuses on propagation in free space and the development of the **range equation**, a mathematical model familiar to both radio and radar engineers. We introduce the antenna as a system element and the antenna design engineer as a member of the design team. To answer the question of how much power is enough, we develop models and analysis tools for thermal noise and describe how thermal noise limits performance. Signal-to-noise ratio (SNR) is introduced as a measure of system performance. Finally, the concept of link budget, a fundamental tool for radio frequency (RF) systems engineering, is presented and supported with examples.

Chapter 3 focuses on signal propagation in the real world. Obstacles in the signal path and indeed the very presence of the Earth itself modify a signal as it travels between endpoints. Various terrestrial propagation models are presented and discussed. These models provide methods for predicting how a signal will propagate in various types of environments. The phenomena associated with shadow fading, Rayleigh fading, and multipath propagation are described as well as the effects of relative motion of a receiver and of objects in the environment. Statistical methods are developed that allow engineers to create robust designs in an unstable and changing environment. Receiver design and channel modeling are added to the list of design functions that a systems engineer must understand to competently interact with team members who specialize in these design disciplines.

Given a basic understanding of methods to ensure that an adequate signal can be conveyed between two endpoints, we discuss the concepts and complexities involved in allowing many users in a large area to share a common system. Geographic diversity and frequency reuse are discussed and used as the basis for developing the "cellular" concept in Chapter 4. The cellular concept is the fundamental basis for designing and deploying most wireless communication systems that must provide service for many users over a large geographic area. The chapter describes how engineers using cellular engineering techniques plan for growth in user capacity and coverage area. Traffic engineering and the use of the Erlang formula as tools for predicting and designing a system for user capacity are demonstrated. At this stage of the design, system-level concerns are well above the device or subsystem level.

Overview 3

In Chapter 5 we describe the methods used to convey information over the wireless link. The process for conveying information using a radio signal, called modulation, is described from a trade-off perspective. The characteristics of several digital modulation schemes are developed and their attributes are compared. The key design parameters of data throughput, error rate, bandwidth, and spectral efficiency are contrasted in the context of optimizing a system design. Also in this chapter we introduce spread-spectrum signaling. Spread spectrum is a modulation technique that broadens the bandwidth of the transmitted signal in a manner unrelated to the information to be transmitted. Spread-spectrum techniques are very effective in making signals resilient in the presence of interference and frequency-selective fading. Our study of spread-spectrum techniques continues in Chapter 6, as these techniques provide an important basis for multiple-access communications.

The first five chapters provide all of the fundamental elements of system design for providing radio coverage to many users over a large area and for designing the components that support the conveying of information at a given quality of service (QoS) across a wireless link between individual users. Chapter 6 introduces various methods that allow many users to access the system and to simultaneously use the resources it provides. In this chapter we introduce the classical methods of frequency-division and time-division multiple access, as well as spread-spectrum-based code-division multiple access which allows independent users to share the same bandwidth at the same time. In providing a multiple-access capability, a systems engineer unifies a variety of system-level design activities to make the system accessible to a varying number of users.

People wish to communicate different types of information, and the information they want to communicate comes from a variety of sources. Chapter 7 discusses several of the types and sources of information commonly communicated in contemporary wireless systems. The required QoS that is to be provided to a system's users must be accounted for in nearly every aspect of a system design. Users' perceptions of what constitutes good quality vary for different types and sources of information and always depend on how well a signal representing the information is preserved in the communication process. Chapter 7 discusses some of the fundamental relationships between the perceptual measures of QoS and specific system design parameters. Understanding these relationships allows a systems engineer to design for predictable QoS at minimum cost. As modern wireless systems are designed to carry information in digital form, a major part of this chapter is about efficient digitization of speech. We discuss two general categories of speech "coding": waveform coding and source coding. As an example of the waveform coding technique we examine traditional pulse code modulation (PCM). Our example of source coding is linear predictive coding (LPC). This latter technique has been extremely successful in providing high-quality, low-bit rate digitization of voice signals for cellular telephone applications. Following the discussion of speech coding, the chapter concludes with an example of coding for error control. Convolutional coding is used for this purpose in all of the digital cellular telephone systems. We introduce the coding method and the widely used Viterbi decoding algorithm.

Chapter 8 wraps up the presentation with a review of the lessons developed in the preceding chapters. This is followed by an overview of the generations of cellular telephone systems and a look into the future at the way wireless systems are evolving to provide an increasing array of

services at ever-higher quality. As wireless systems evolve, they tend to become more complicated. Thus the role of the systems engineer in managing the design process and in understanding the myriad of design trade-offs and interactions becomes ever more important.

System Description

What Is a Wireless System?

In the most general sense, a wireless system is any collection of elements (or subsystems) that operate interdependently and use unguided electromagnetic-wave propagation to perform some specified function(s). Some examples of systems that fit this definition are

- Systems that convey information between two or more locations, such as personal communication systems (PCS), police and fire department radio systems, commercial broadcast systems, satellite broadcast systems, telemetry and remote monitoring systems
- Systems that sense the environment and/or objects in the environment, including radar
 systems that may be used for detecting the presence of objects in some region or volume
 of the environment and measuring their relative motion and/or position, systems for
 sensing or measuring atmospheric conditions, and systems for mapping the surface of the
 Earth or planets
- Systems that aid in navigation or determine the location of an object on the Earth or in space

Each of these systems contains at least one transmitting antenna and at least one receiving antenna. In the abstract, an antenna may be thought of as any device that converts a guided signal, such as a signal in an electrical circuit or transmission line, into an unguided signal propagating in space, or vice versa. We note in passing that some systems do not need to transmit and receive simultaneously. For example, the WiFi local area network computer interface uses a single antenna that is switched between transmitter and receiver. Specifically, a pulse of energy is transmitted, after which the antenna is switched to a receiver to detect the response from the network access point.

As the examples show, some systems may be used to convey information, whereas others may be used to extract information about the environment based on how the transmitted signal is modified as it traverses the path between transmitting and receiving antennas. In either case, the physical and electromagnetic environment in the neighborhood of the path may significantly modify the signal. We define a **channel** as the physical and electromagnetic environment surrounding and connecting the endpoints of the transmission path, that is, surrounding and connecting the system's transmitter and receiver. A channel may consist of wires, waveguide and coaxial cable, fiber, the Earth's atmosphere and surface, free space, and so on. When a wireless system is used to convey information between endpoints, the environment often corrupts the signal in an

System Description 5

unpredictable¹ way and impairs the system's ability to extract the transmitted information accurately at a receiving end. Therein lies a major difference between wired and wireless systems. To provide a little further insight, we compare some of these differences.

The signal environment or channel characteristics of a single-link wired system are rather benign.

- At any instant of time, the path between endpoints is well known and many of its degrading effects upon a signal can be measured and compensated for.
- Signal dropout (signal loss), momentary or otherwise, is very rare.
- Random effects such as "thermal noise" and "interference" are fairly predictable and controllable and therefore less likely to corrupt the signal to the extent of unintelligibility.
- The signal environment does not change or changes very slowly with time.
- The endpoints do not move.

In contrast, the signal environment of a wireless system is hostile.

- The direction of the signal cannot be completely controlled, and the path between endpoints is not unique.
- The path between endpoints is time-varying.
- Signal dropouts are frequent.
- Noise and interference levels are often difficult to predict and time-varying.
- Objects in the path between and surrounding the endpoints affect the signal level and its content.
- Variations in the signal environment change with geographic location, seasons, and weather.
- For mobile systems, as in cellular and PCS systems, at least one of the endpoints may be moving at an unknown and sometimes significant speed.

As an everyday example, the differences between wired and wireless systems may be compared to the difference between carrying on a conversation with someone in the environment of your living room versus conversing in the environment of a busy airport runway. The same principles of communication theory apply to the design of both wired and wireless communication systems. In addition to those specific functions associated with the unguided propagation of signals, however, the most profound differences between the implementations of wired and wireless communication systems relate to overcoming the signal impairments introduced by a changing wireless channel and, for mobile systems, compensating for the possible motion of the endpoints.

^{1.} The term *unpredictable* is used in the sense that the signal cannot be perfectly determined at any point in space. As we will see, however, we can infer a great deal about a signal using statistical modeling. These models are a fundamental basis for system design.

6 Chapter 1 • Introduction

In addition to providing the fundamental basis for the design of wireless communication systems, the principles of communication theory, RF engineering, and propagation in realworld environments also apply to a host of other applications. As examples, these principles apply to a multitude of radar applications, including object or target detection, location and ranging, speed/velocity measurement, terrain mapping, weather monitoring, and navigation. In fact, many of the techniques used to develop modern personal communication systems were originally developed and proved for radar applications. In contrast to wireless communication systems that convey information between endpoints, radar systems analyze the way transmitted signals are reflected and modified by the presence of objects or variations along the signal path to extract information about the objects or the environment that the signal traverses. As a simple example, consider that a narrow pulsed-RF signal is transmitted in a given direction. Objects within the transmission path reflect some fraction of the signal incident upon them. If a receiver colocated with the transmitter detects an approximate replica of the transmitted signal sometime after the transmitted signal is sent, it is reasonable to assume that an object is located in the direction of transmission and the distance to the object is proportional to the time delay between transmitted and received signals. If no signal is detected within a specified period of time, it is assumed that there are no reflecting objects in the path of the signal, over a given range.

Clearly our general definition of a wireless system fits a vast range of seemingly unrelated applications. It is profoundly important, however, to recognize that all of these applications are founded on a common set of enabling principles and technologies encompassing communication theory, RF engineering, and RF propagation. Although the focus of this text is personal communication systems, the principles and techniques to be presented provide a strong foundation for study of other wireless system applications.

General Architecture, Basic Concepts, and Terminology

At a high level, every communication system is described by a common block diagram. In this section we present a basic functional description of each of the blocks to introduce some of the terminology of wireless systems and to help motivate later discussion of each of the functions.

We begin by considering the general block diagram of a wireless system for a generic application as shown in Figure 1.1. Many of the blocks and their functions apply to both wired and wireless communication systems. Note, however, that the blocks contained within the dashed outline are fundamental and necessary to wireless systems. With the exception of the antennas, all of the remaining blocks may also be found in wired system applications.

The box labeled "Information Source" includes all functions necessary to produce an electrical signal that adequately represents the actual information to be communicated between end users. The term **end user** refers to a person or device that is the source or recipient (sink) of the information to be communicated. The term **endpoint** refers to the location of the transmitters and receivers in the communication path. End users may or may not be colocated with the endpoints. The functions of the Information Source box might include

System Description 7

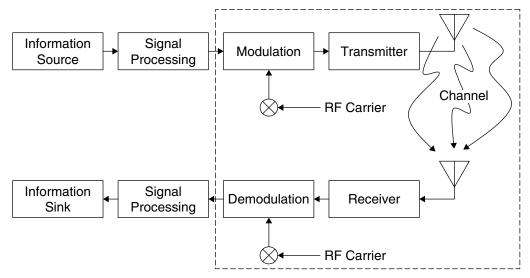


Figure 1.1 A Wireless System

- Creation of an analog waveform representing speech derived from a microphone, or creation of a digital bit stream resulting from sampling of an analog waveform
- Formatting digital information such as data, text, sampled audio, images, video, and so forth

The signals from information sources are typically bandlimited; that is, they contain frequencies from DC (or near DC) to some nominal cutoff frequency. They are termed **baseband signals**.

The box labeled "Signal Processing" encompasses all operations necessary to convert information signals into waveforms designed to maximize system performance. Signals may be processed to increase capacity, throughput, intelligibility, and accuracy and to provide other auxiliary functions. In modern wireless systems, many of the signal-processing functions are aimed at improving signal reception by mitigating the corrupting effects of the transmission medium or environment. Signal-processing functions on the transmitting end may include

- Converting analog signals to digital signals of a specific type
- Shaping signals to minimize the corrupting effects of the environment or transmission medium
- Compressing and coding signals to remove redundancies and improve throughput
- Coding signals to aid in the detection and correction of errors caused by the environment
- Encryption of signals for privacy
- Multiplexing information from several sources to fully utilize the channel bandwidth
- Adding information that simplifies or enhances access and control for the endpoints or end users

Signal processing may also include digital modulation, a technique used to spread the signal spectrum by coding one or more bits into a substantially longer bit stream. We will say more about digital spread spectrum and its benefits in a later chapter.

Signal processing, especially digital signal processing (DSP), has dramatically enabled rapid advances in the state of the art of communications in general and wireless personal communications in particular. The majority of topics to be covered in this text, as in any text on modern communications, will focus on some aspect of signal processing.

The efficient radiation of an electrical signal as an electromagnetic wave requires that the physical size of the antenna be comparable in size to the wavelength of the signal. This is also true for the reception of such an electromagnetic wave. This physical limitation renders the radiation of baseband signals impractical. As an example, consider the size requirement for radiating a 10 kHz signal. Recall from basic physics that the wavelength of a signal is related to its frequency by

$$\lambda = c/f, \tag{1.1}$$

where c is the speed of light in free space, 3×10^8 m/s. The wavelength of a 10 kHz signal is about 98,000 feet. If a typical quarter-wavelength (λ /4) antenna were used, it would be 24,600 feet or 4.7 miles in length. In contrast, λ /4 antennas in the cellular (900 MHz) or PCS (2 GHz) bands are 3.3 inches and 1.5 inches long, respectively. For this reason, practical wireless systems employ high-frequency or radio frequency sinusoidal signals called **carriers** to transport (or carry) information between endpoints.

The laws and regulations of the countries in which the systems are to be deployed govern and constrain the radiation of electromagnetic waves. Various frequency bands are allocated by law for specific applications; for example, there are AM, FM, and TV broadcast bands; public safety bands; airport communication, radar, traffic control, and maritime applications bands; and others. Furthermore, the laws may regulate transmitted power, transmitted spectrum and spectrum characteristics, modulation method, geographic location, tower height, and so on. Figure 1.2 shows some of the spectrum allocations in the ultra-high-frequency (UHF) band from 300 MHz to 3 GHz. A detailed chart of spectrum allocations in the United States is available from the National Telecommunications and Information Administration (NTIA).² In the United States, the Federal Communications Commission (FCC) is the agency entrusted with the responsibility for administering the use of the radio spectrum, granting licenses, and working with government and private industry to develop fair and equitable regulatory rules and standards.

Information signals are imposed upon a carrier signal by modulating (varying) its amplitude, frequency, and/or phase in direct relation to the variations of the information signal. At the receiving end, an information signal is extracted from the carrier by a process of demodulation. The boxes labeled "Modulation" and "Demodulation" refer to any of a wide range of techniques

National Telecommunications and Information Administration. Source: www.ntia.doc.gov/osm-home/allochrt.html, accessed August 8, 2006.

System Description 9

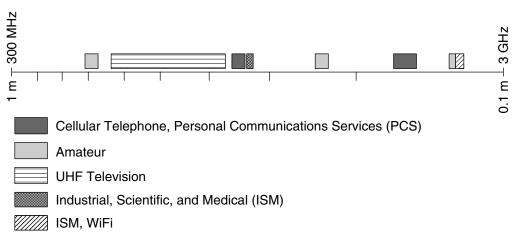


Figure 1.2 Some Spectrum Allocations in the UHF Band (January 2008)

that may be used to impose/extract an information signal upon/from a carrier. As we will discuss later, the choice of modulation scheme is strongly influenced by a number of factors, including available frequency spectrum, spectrum rules and regulations, required throughput, channel characteristics, and QoS requirements. In the context of a wireless system (or a "broadband" wired system that employs coaxial cable, waveguide, or fiber as a transmission medium), a modulator translates the spectrum of a baseband signal to a bandpass spectrum centered about some high "radio" frequency appropriate for the intended application and consistent with spectrum regulations.

Many wired systems (for example, "plain old telephone service" [POTS]) use transmission media that allow the system to operate effectively at baseband. For such systems, a modulator translates an information signal into waveforms (sometimes called line codes) that are optimized for the given transmission medium and application. For example, a line code may convert a binary bit stream (1s and 0s) into a bipolar or multilevel voltage waveform, or it may convert a bit stream to positive and negative voltage transitions.

For wireless systems, a transmitter is essentially an RF power amplifier and appropriate bandpass filter. A transmitter drives a transmitting antenna (often through a coaxial cable or waveguide) and ensures that the modulated RF signal is radiated at a power level, and within a bandwidth, specific to the application and applicable regulations. Wired systems, on the other hand, often use transmitters termed **line drivers** that ensure that transmitted signals have sufficient energy to overcome the line losses in the path to the receiving end.

The power intercepted and absorbed by a receiving antenna is usually much lower than the transmitted power. For example, when a cellular base station transmits with a power of one watt, the received signal two miles away may be only a few tenths of a nanowatt. In fact, a receiver may be located so far from the transmitter that the signal level is comparable to system noise. **System noise** is a random signal that arises from a number of sources such as galactic radiation,

10 Chapter 1 • Introduction

engine ignitions, and the very devices used to amplify a received signal. In particular, we will discuss **thermal noise**, which is a random signal arising from the thermal agitation of electrons in the receiving antenna and its downstream interconnections and circuitry. The difference between transmitted and received power is inversely related to the distance (raised to some power) between the transmitting and receiving antennas and is termed **path loss**.

A receiver is essentially an amplifier designed to optimally reproduce the transmitted signal and remove the carrier. As such, a receiver is matched to the characteristics of the transmitted signal. Receivers usually employ high-gain, low-loss front-end amplifiers that are designed to minimize the level of thermal noise that they will pass to downstream functional blocks.

Signal processing on the receiving end seeks to restore the signal originating at the source. It converts the signal from the receiver into the form required for the endpoint recipient, that is, the Information Sink. In modern digital communication systems, signal processing at the receiving end is aimed at the reliable detection of bits. This may include error detection and correction, depending on the coding used to transmit the original signal, and also may include digital demodulation of a spread-spectrum signal.

Historical Perspective

A hundred years ago, a radio "system" was a transmitter, a receiver, and a path that could be successfully traversed by the miracle of radio waves. Even then there were broader issues to resolve—trade-offs that could be made between one element of the configuration and another. A more powerful transmitter or a more sensitive receiver; a higher mast or a directive antenna—these were some of the potential design improvements that could extend the range of the system when needed. Which of these to adopt became an important question, affecting cost and having performance implications in other dimensions. Was the power demand excessive? Was range being limited by circuit noise within the receiver or by external environmental noise? Was it limited by a physical obstruction over which one might radiate?

Radio had evolved from the design of general-purpose transmitters and receivers to a variety of "systems" with specific applications. Broadcast systems created the wildly popular phenomena of radio and television entertainment, by creating a way to deliver that entertainment inexpensively to a mass market. The trade-offs shifted again; base transmitters could be extremely powerful and expensive, sited on tall buildings or hills, using tall masts and elaborate gain antennas, but the millions of home receivers had to be low-cost consumer products.

"Propagation engineers" now had a more difficult problem; rather than designing a single path from one radio to another, they were concerned with an "area of coverage" in which signal quality was likely (but not guaranteed) to be acceptable. Moreover, the demand for channels required channels to be reused in nearby areas, so that interference needed to be predicted and controlled in the service areas of systems. Probability and statistics had joined the sciences that contributed to system design.

The first mobile telephone systems emerged in the 1940s, quickly became popular, and introduced a number of new trade-offs. The mobile equipment, carried in the trunks of cars and

Historical Perspective 11

powered from the car battery, needed to be smaller and lower in power (as well as cheaper) than the base station equipment; but coverage areas needed to be large, since cars would need to operate throughout large urban areas. A single high-powered base station could serve an entire urban area of more than a thousand square miles, but the lower-powered return paths from the vehicles could not, and satellite base station receivers became necessary. The higher cost of the (relatively few) satellite base stations could now be traded off for the (smaller) savings in power in the more numerous mobile units. This trade-off of expensive base equipment against more numerous mobile radios is characteristic of such systems.

In the major urban areas, a mobile telephone system would now consist of several radio channels, serving several hundred customers. This aggregation of radios and customers led to the incorporation of telephone traffic-handling probabilities into mobile system design—designers would now calculate the probability that an idle channel would be available. Because of the shortage of channels, however, service was very poor before the days of cellular systems. In the 1950s mobile operators who set up calls were replaced by equipment to automatically select idle channels, allowing the dialing of telephone calls in both directions. Signaling had been added to voice communication on radio channels, together with the first steps toward complex logic.

As early as the 1940s, when the first crude mobile telephone systems were going into service, AT&T had begun to propose a new concept in mobile radio system design. Rather than using a single high-powered base station to cover an entire urban area, they proposed to create a service area from a grid of smaller coverage areas, called "cells." This had several important advantages. It allowed both base and mobile radios to operate at lower power, which would reduce radio costs. It also allowed larger service areas, since additional small coverage areas could always be added around the periphery to expand the system. Most importantly, although nearby cells required different channels to prevent interference, farther cells could reuse the same channels. In this way each channel could handle tens or even hundreds of calls in the same urban area, overcoming the limitations on capacity that were a result of spectrum shortages. These new systems would require a few hundred channels to get started, however, and the needs of the broadcasters were more persuasive in that period.

In 1968 the FCC finally opened the inquiry that ultimately led to cellular systems in the 1980s. For the advantages they provided, however, these systems demanded a new level of complexity. This time, the major complexity was not in the radio design, which saw few radical changes. With the introduction of small cells, calls could cross many cells, requiring mobile locating, channel switching during calls, and the simultaneous switching of wireline connections from one cell to another. Mobiles had to identify systems and find the channels on which calls could be received or originated, which required the introduction of microcomputers in mobile radios and made the technology of telephone switching machines an important element of radio system design. Moreover, with the introduction of so many disciplines in the design of a single system, and a variety of new trade-offs to be made, it was no longer practical for the many engineers to mediate these trade-offs, and the practice of systems engineering became a new and important discipline.

12 Chapter 1 • Introduction

The introduction of cellular systems also marked the continuation of a long-term trend, in which spectrum shortages drove system designs to higher and higher frequencies. Frequencies such as 900 MHz (and later, 2 GHz) were used for such applications for the first time, and it became necessary to understand the propagation characteristics at these frequencies in real-world environments. Moreover, the old methods of the propagation engineer, in which terrain elevations were plotted to determine coverage, were no longer practical for hundreds of cells in a single system, and statistical coverage methods were developed to assure an acceptable quality of coverage. This trend has reversed once again more recently, as computers have allowed detailed terrain studies to be carried out for many cells.

Even as the first analog systems such as the Advanced Mobile Phone Service (AMPS) were being deployed in the early 1980s, efforts were under way to provide significant performance and capacity enhancements enabled by digital communications, advancements in digital signal-processing technology, and speech encoding. The Global System for Mobile Communications (GSM) was a cooperative effort of European countries to define an evolutionary system that provided increased capacity (or equivalently improved spectral efficiency), improved the quality of service, and allowed seamless roaming and coverage across the continent, and eventually around the world. The GSM standard was the first to encompass both the radio elements and the interconnection of serving areas to provide a holistic approach to ubiquitous service. As the first commercial digital cellular system, GSM demonstrated the power of digital signal processing in providing spectrally efficient, high-quality communications. GSM systems began deployment in the early 1990s.

By the mid-nineties, digital spread-spectrum systems were being introduced in North America under standard IS-95. Introduced by Qualcomm, Inc., a U.S.-based company, this system allows all cells to use the same frequency. Each channel is distinguished not by a distinct frequency or time slot but by a spreading code. The fundamental basis for this system is a technique called code-division multiple access (CDMA), a technique that has become the universal architecture for third-generation systems and beyond. CDMA systems have provided another technological leap in complexity, bringing additional enhancements to capacity, information bandwidth, quality of service, and variety of services that can be provided.

Each generation of wireless systems builds upon the technological advances of the prior generation. For each step in this evolution, the classical tools of the engineer remain, but they are honed and reshaped by each subsequent generation. The importance of system design and the role of systems engineering have grown substantially with each new technological generation. The continuing demand for new services and increased capacity, interacting with ongoing technological advancement, leads to new opportunities for system design, new problems to solve, and even the development of new engineering disciplines.

Systems Engineering and the Role of the Systems Engineer

Wireless communications, and communications in general, are specializations in the discipline of systems engineering. Our approach to the study of wireless communications from the perspective of a systems engineer is therefore a study in a specialized field of systems engineering. It is fitting, then, that we begin our study by discussing systems engineering at a general level.

Some type of system supports nearly every aspect of our daily life. Systems help us to travel anywhere on the Earth (and beyond), create memos, solve complex problems, store and retrieve vast arrays of information, cook our food, heat and light our homes, entertain ourselves and our friends, and of course communicate with each other. There is no universally accepted standard definition of a "system," but the purposes of this discussion are served by the working definition: A **system** is any collection of elements or subsystems that operate interdependently to perform some specified function or functions.

An automobile, an airplane, a personal computer, a home, a television or radio, an ordinary telephone, and a microwave oven are all common examples of systems. But at a lower level, an automobile engine or transmission, an airplane's hydraulic system, a computer chip or microprocessor, a home air-conditioning or heating unit, or the video circuitry of a television or audio circuitry of a radio are also systems by definition. Depending on the context of discussion, a system may often be referred to as a subsystem, since it may perform only a few of the intended or auxiliary functions of the overall system of which it is a part. For example, an automobile is a system that conveys passengers and/or objects to arbitrary geographic locations. Its subsystems are the engine, transmission, braking system, steering system, chassis, dashboard, and so on, all of which are necessary for an automobile to perform the functions we have come to expect. Likewise, an engine is a collection of other subsystems such as the ignition system, fuel system, and emission control system. At some level the terms *system* and *subsystem* become less relevant. For example, a passive circuit may be considered a system, but considering resistors, capacitors, and inductors as subsystems has little relevance. In such instances we may choose to use the term *component* or *element*.

In the previous sections we introduced a simplified block diagram for a generic wireless system. Each block may be considered a subsystem of the overall system. Furthermore, each block performs some direct or auxiliary function needed to meet the general requirements of the system application. Regardless of the intended wireless application, the designs of the various blocks and their functions are founded on principles derived from distinct specialty areas. To identify a few of these specialty areas:

- Antennas and electromagnetic wave propagation
- Microwave circuit theory and techniques
- Signals, systems, and signal processing
- Noise and random processes
- Statistical nature of the environment and its effects on a propagating signal
- Communication theory
- Traffic theory
- Switching and networking theory

Depending on complexity and scale, the design and development of a system usually require knowledge and professional expertise in a number of distinctly different disciplines. For example, the development of large-scale wireless systems, such as personal communication systems or advanced radar systems, requires the participation of specialists in such diverse disciplines as

- · Antenna design
- RF propagation and radio environment modeling
- · Microwave circuit design
- · Transmitter design
- Low-noise amplifier (LNA) design
- Modulator/demodulator (modem) design
- Digital circuit/system design
- Signal processing
- · Real-time, non-real-time, and embedded software development
- Power systems and power management
- Switching, networking, and transmission
- · Mechanical structures and packaging
- · Human factors engineering
- · Manufacturing engineering
- · Reliability and quality engineering
- · And, last but not least, systems engineering

Successful development companies usually have processes (sequences of well-defined steps and procedures) and information systems that allow development teams to work and communicate effectively; track progress; manage schedule, budget, and other resources; control changes; and maintain and improve product quality. Highly successful companies also review their processes, constantly seeking ways to reduce development costs and schedule time while improving product quality, customer satisfaction, and cost competitiveness. In fact, process engineering and improvement is an important area of specialization. A strong and continuously improving development process is often vital to a company's ability to compete in a given market.

Development processes may vary among companies, but they all possess common phases of particular emphasis, for example,

- Product/system definition
- Design/development
- · Integration and system test
- · Manufacture
- Product life-cycle management

The specific activities in each phase may vary significantly, and many of the phases may, and often do, run concurrently.

One of the most important factors contributing to the successful development of a system is a complete, well-directed, and stable product definition. The product definition, sometimes called

"functional product requirements" (FPR), is usually developed by a marketing or market research organization in concert with members of the technical development community, especially systems engineering. In addition to specifying the required attributes of the system from a customer perspective, an FPR also defines all the information necessary to ensure a viable financial return for the investors, including cost to manufacture the product, time to market, development budget, projected manufacturing ramp-up and life-cycle volumes, key competitive attributes, and so forth.

The design and development phase of any system usually begins with a system design. It is one of the most important products of a systems-engineering effort. A system design consists of all the requirements, specifications, algorithms, and parameters that a development team uses to design and develop the hardware and software necessary to implement and manufacture a product in accordance with an agreed-upon product definition. System-level documentation may include

- System-level requirements—a high-level technical document that translates the needs
 expressed from a customer perspective into technical constraints on system functions,
 performance, testing, and manufacture
- System architecture—a specification that defines all of the parameters and subsystem
 functions necessary to ensure interoperability among subsystems and meet system
 requirements, including distribution of system-level functions among the subsystems,
 definition of subsystem interfaces, and specification of system-level controls
- Supporting analyses—appropriate documentation of all analyses, simulations, experimentation, trade-off studies, and so on, that support the choice of key technical parameters and predict and/or verify system-level performance

As it relates to a system design, the responsibilities of a systems engineer are to

- Translate customer-level functional requirements into technical specifications at a system level
- Develop a system architecture and determine specific parameters to ensure that the system will meet the desired level of functionality and performance within specified constraints
- Perform trade-off analyses among the system elements to ensure that the implementation requirements can be met within the specified constraints and technology limitations
- Develop and negotiate specific requirements for each of the subsystems based on analysis, modeling, experimentation, and simulation

These functions are the focus of this text and are the basis for many other functions that systems engineers perform. These other functions might include

- Interacting with potential customers
- Developing human-interface specifications

- Developing plans, methods, and criteria for system integration and verification
- Interfacing with government and legal entities
- · Specifying deployment, maintenance, and operations procedures
- Competitive analysis
- · Supporting regulatory and standards development

Depending on the complexity of the system being developed, a team of systems engineers, each of whom has a particular area of expertise, may be required to fully perform all of the systems-engineering functions of a development.

Problem Statement

This text develops the major systems aspects of personal communication systems while demonstrating the application of relevant theory and principles and introducing students to some of the real-world aspects of the wireless systems-engineering profession. It is fitting, therefore, that the subject matter be presented in the context of a solution to a general systems-engineering problem. To be specific, we seek to design a wireless telecommunication system that will

- Support the communication of information of various types, including speech, text, data, images, and video, in urban, suburban, and rural environments and with quality approximating that of wired communications
- · Be capable of expanding in geographic coverage
- Allow for virtually limitless growth in the number of users
- Support endpoints that are not geographically fixed and, in fact, may be moving at vehicular speeds

Many of the attributes of this system, as stated previously, were in fact the major objectives underlying the development of the very first cellular mobile telephone systems. Our discussions of principles and concepts are presented as motivation for solving this systems-engineering problem in particular. In view of the continued advances in digital technologies and the directions of modern communication systems, our emphasis will be on digital wireless communications, although many of the principles apply to both analog and digital systems.

Since the advent of the first mobile phone systems, the meanings of some commonly used terms have become blurred by marketing and advertising efforts to provide some level of distinction between early first and later generations of systems. Specifically, the terms *cellular* and *PCS* are often used to identify the cellular frequency (850 MHz) or personal communication systems (or services) (1.9 GHz) frequency bands. The term *cellular*, however, originally referred to the technology underlying nearly all of the systems that may be classified as personal communication systems. We will endeavor to ensure that the meaning is always clear in context; however, it is important to recognize that most modern systems are capable of operating in either band.

1×EV-DO (1× evolution for data only) Rev. 0. See	Active neighbor list, 404
DO (data only) standard.	Active set, 404
1×EV-DV (1× evolution for data and voice). See	Adaptive DPCM, 371
DV (data and voice) standard.	Additive white Gaussian noise (AWGN), 204
1G (first generation), 399–400	Adequate received signal level, 133
1-persistent CSMA, 330–331	Adjacent-channel interference, 171–173, 296
$1 \times RTT$ ($1 \times radio transmission technology), 421–426$	Advanced Mobile Phone Service (AMPS), 12, 297
2G (second generation), 400–405	Air interface. See RF links.
2.5G (second generation)	A-law compression, 367
CNIR (carrier-to-noise-and-interference ratio),	Aliasing, 235, 358
407	Allocating frequency bands. See Spectrum allocation.
EDGE (Enhanced Data for Global Evolution),	Allocation, 64
410–411	All-zero path, 388
GPRS (General Packet Radio Service), 408–410	Aloha protocol
HSCSD (High-Speed Circuit-Switched Data),	backoff procedure, 327
407–408	efficiency, estimating, 327–328
puncturing, 408	overview, 326
RACH (reverse access channel), 409	slotted Aloha, 328–330
2B1Q line code, 207	AM broadcasting
3G (third generation)	adjacent-channel interference, 296
overview, 405–407	AMPS (Advanced Mobile Phone Service), 297
OVSF (orthogonal variable spreading factor), 413	channel spacing, 298–299
PPSDN (public packet-switched data network),	clear channels, 296
411–412	cochannel interference, 296
W-CDMA (Wideband Code-Division Multiple	duplexers, 300
Access), 411–414	efficiency, 298–299
3GPP (Third Generation Partnership Project), 406	frequency-division duplexing, 299–300
3GPP2 (Third Generation Partnership Project 2),	frequency-division multiplexing, 296–297
406	full-duplex, 299–300
8-ary phase-shift keying (8PSK), 279, 410	grouping channels, 297
8PSK (8-ary phase-shift keying), 279, 410	groups, 297
16-QAM modulation, 279	half-duplex, 299–300
64-QAM modulation, 279	jumbo groups, 297
	mastergroups, 297
A	overview, 296
\mathbf{A}	signal distance, 296
A priori probabilities, 209	single full-duplex, 300
Access channels, 291	SIR (signal-to-interference ratio),298–299
Access network (AN), 427	spectral shaping, 298–299
Access terminal (AT), 427–431	supergroups, 297
ACK (acknowledgment), 417	for telephone networks, 296–298

Amplifiers	increasing power, 28
designing, 65–66	maximum range, example, 33–34
LNA (low-noise amplifier), 56–57	reciprocity, 28
power spectrum, 49	ground reflections, 79–86
source of thermal noise, 44–45	half-wave dipole. See Dipole.
AMPS (Advanced Mobile Phone Service), 12, 297	height, propagation modeling, 79–86
AN (access network), 427	isotropic, 20–22
Analog filters, 171	maximum range, example, 33–34. <i>See also</i>
Analog signals, converting to digital. See PCM	Range equation.
(pulse code modulation).	optimizing systems, 66
Angle-modulated signals, 254	path loss, 10. <i>See also</i> Range equation.
ANSI (American National Standards Institute),	path-loss exponent, 32
401	power factors
ANSI/TIA/EIA-136, 401	beamwidth, 25–27
Antennas	distance between receiver and transmitter.
adaptable, 438–439	21–22
beamwidth	effective aperture, 21–22
azimuth plane, 25	gain, 26–27
definition, 25	radiation patterns
effective aperture, relation to, 26–27	azimuth plane, 25
elevation plane, 25	bandwidth planes, 25
first null-to-null, 26	beamwidth, 25–27
and gain, 26–27	dipole antennas, 24–25
half-power, 26	-
physical dimensions, 25–26	elevation plane, 25
planes, 25	far-field radiation region, 22
definition, 4	Fraunhofer region, 22
dipole, 24–25	main beam, 22–23
directional, sectoring, 175–179	main lobe, 22–23
dish, 26	plot of, 24
diversity gain, 439	power pattern, 22
effective aperture. See also Range equation.	side lobes, 22–23
beamwidth, relation to, 26–27	range, calculating, 28–34
	range equation, 28–34
calculating, example, 27–28	receiver sensitivity, 30
gain, relation to, 27	receiving, 19
power factors, 21–22	size, relation to efficiency, 8
efficiency, and physical dimensions, 19	spatially multiplexing, 439
EIRP (effective isotropic radiated power), 29,	system loss, 31
65–66. See also ERP (effective radiated	transmitting, 19
power).	Antialiasing filter, 358
ERP (effective radiated power), 66. See also	ARQ (automatic repeat request),
EIRP (effective isotropic radiated power).	376–377
gain. See also Range equation.	AT (access terminal), 427–431
and beamwidth, 26–27	Autocorrelation, 217–220
calculating, example, 28	Available gain, 47–49
definition, 26	Average call duration, 189
effective aperture, relation to, 27	Average holding time, 189

Average power, 37–41	NRZ (non-return-to-zero) line code,
AWGN (additive white Gaussian noise), 204	205–206
Azimuth plane, 25	optimum threshold value, 210
	a priori probabilities, 209
B	probability of error, 208–211
Backoff procedure, 327	probability of error, and received power, 223–226
Bandlimited sources, 6–7	pulse detection, 207–212
Bandpass filter (BPF), 237	receiver performance, 222-226
Bandwidth	RZ (return-to-zero) line code, 206
carrier-based signaling	samplers, 208
aliasing, 235	SNR (signal-to-noise ratio), 223–226
definition, 229	symbol period, 205
frequency-domain effect, 231	threshold comparators, 208
minimum, calculating, 231–233	waterfall curves, 223–226
Nyquist bandwidth, 233–235	Wiener-Khinchine theorem,
Nyquist equivalent spectrum, 232–235	217–218
raised-cosine pulses, 234	Baseband signals, 7
rolloff parameter, 234	Beamwidth
sampling theorems, 235	and antenna physical dimensions,
carrier-based signaling modulation,	25–26
229–235	azimuth plane, 25
definition, 229	definition, 25
frequency-domain effect, 231	effective aperture, relation to, 26–27
minimum, calculating, 231	elevation plane, 25
Nyquist bandwidth, 233–235	first null-to-null, 26
Nyquist equivalent spectrum,	and gain, 26–27
232–235	half-power, 26
sharing. See Multiple user channels.	planes, 25
Bandwidth planes, 25	BER (bit error rate), 61-62, 208, 351
Base station (BS), 153–155	BFSK (binary frequency-shift keying),
Baseband signaling. See also Carrier-based	254–261
signaling; Spread-spectrum signaling.	BLER (block error rate), 416
2B1Q line code, 207	Blocked calls, 188, 453
architecture, 204–207	Blocked calls cleared model, 190-191,
autocorrelation, 217-220	453
BER (bit error rate), 208	Blocked calls delayed model, 190-191,
block diagram, 205	453
convolution, 209, 219	Blocking probability, 460–461
correlation, 216–220	Boundary coverage, 133
correlation receiver, 220–222	BPF (bandpass filter), 237
correlators, 216-220, 222	BPSK (binary phase-shift keying), 236-239
decision statistic, 208	Brick wall filter, 171
filters, 208	BS (base station), 153–155
lag, 216–220	Burst error, 402
line code, 205	Burstiness, 351
Manchester code, 206	Bursting vs. streaming, 354–355
matched filters, 212-215, 222	Butterworth filter, 50

C	DQPSK (differential quadrature phase-shift
Call arrival model, 454–455	keying), 289
Call response, 292–294	frequency sensitivity, 255–256
Calls	FSK (frequency-shift keying), 254–261
average duration, 189	Gaussian filters, 262–264
average holding time, 189	GFSK (Gaussian frequency-shift keying),
blocked, 188, 453	262–264
blocked calls cleared model, 190-191, 453	GMSK (Gaussian minimum-shift keying),
blocked calls delayed model, 190-191, 453	267
initiating, 292–293	in-phase components, 238–239
Carried load, 190	instantaneous frequency, 254-255
Carried traffic intensity, 190	keying, 229
Carrier frequency	linear, 229
path loss predictions, 101	modulated carrier architecture,
propagation modeling. See Hata model.	227–228
Carrier-based signaling. See also Baseband	modulation index, 256-257
signaling; Spread-spectrum signaling.	MSK (minimum-shift keying), 264–267
bandwidth	noncoherent systems, 238
aliasing, 235	nonlinear, 229
definition, 229	OQPSK (offset quadrature phase-shift
frequency-domain effect, 231	keying), 251–254
minimum, calculating, 231–233	orthogonal signals, 260–261
Nyquist bandwidth, 233–235	overview, 226–227
Nyquist equivalent spectrum, 232–235	peak frequency deviation, 256–257
raised-cosine pulses, 234	phase-locked receivers, 238
rolloff parameter, 234	principles, 229–235
sampling theorems, 235	PSK (phase-shift keying), 229, 244
basic blocks, 227–228	QAM (quadrature amplitude modulation),
block diagram, 228	279
channels, 227	
modulation	QPSK (quadrature phase-shift keying), 243–251
8PSK (8-ary phase-shift keying), 279	
16-QAM, 279	quadrature components, 238–239
64-QAM, 279	raised-cosine pulse, 237
angle-modulated signals, 254	root-raised-cosine pulse, 237
bandwidth, 229–235	spectral efficiency, 237
BFSK (binary frequency-shift keying),	receiver architecture, 227–228
254–261	recovering information, 227
BPSK (binary phase-shift keying),	transmitter architecture, 227–228
236–239	Carriers, 8, 19
Carson's rule, 257	Carrier-sense multiple access (CSMA), 330–335
coherent systems, 238	Carrier-sense multiple access with collision
continuous-phase FSK, 254–256	detection (CSMA/CD), 335 Carrier-to-interference ratio (CIR), 407,
definition, 226	415–416
DPSK (differential binary phase-shift	Carrier-to-noise-and-interference ratio (CNIR),
keying), 239–243	407
NO 11115 1, 207 2 10	IV/

Carson's rule, 257	separation distance, calculating,
CDM (code-division multiplexing), 415	161–163
CDMA (code-division multiple access)	square grid, 158–160
collisions, 308–311	triangular grid, 158–160
DSSS (direct-sequence spread spectrum)	Cells
Hadamard matrices, 317	clusters
multiple users, 315–316	definition, 163
nearly orthogonal spreading codes. See PN	minimum size, calculating, 165-166, 169
(pseudonoise) spreading codes.	minimum size, limitations, 167
orthogonal spreading codes, 316–318	number of, determining, 165–166
overview, 311–315	reuse distance, 163–164
PN (pseudonoise) spreading codes,	size, trade-offs, 173–175
318–325	contiguous. See Clusters.
SNIR (signal-to-noise-and-interference	definition, 153
ratio), 320–322	radius
Walsh functions, 317	reducing, 181–183
FHSS (frequency-hopping spread spectrum),	trade-offs, 173–175
307–311	splitting, 179–183
handoffs, 186–187	Cellular concept, history of, 11–12
history of, 12	Cellular digital packet data, 335
hits, 308–311	Central office, 187
maximum subscribers, 311, 323–234	CEPT (Conference of European Postal and
overview, 306–307	Telecommunications Administrations), 400
reuse factor, 401	CFR (Code of Federal Regulations), 150
spread-spectrum modulation, 306–307	Channel quality indicator (CQI), 416
cdma2000 system	Channel sets, 155–156
history of cellular systems, 289	Channels
standards. See RTT (radio transmission	access methods
technology).	access channels, 291
cdmaOne system, 289, 402–405	call initiation, 292–293
CDVCC (coded digital verification color code),	call response, 292–294
303	code division. See CDMA (code-division
Cell layout	multiple access).
available channels, calculating, 163	control channels, 291
cell splitting, 179–183	frequency division. See FDMA (frequency-
circular regions, 157	division multiple access).
clusters of cells	overview, 290–294
definition, 163	paging channels, 291
minimum size, calculating, 165–166,169	reverse control channels, 291
minimum size, limitations, 167	sync channels, 291
number of, determining, 165–166	time division. See TDMA (time-division
reuse distance, 163–164	multiple access).
size, trade-offs, 173–175	available
contiguous cells. See Clusters.	calculating, 152, 163
hexagonal grid, 158–160	and number of subscribers, 152–153
most efficient pattern, 158	carrier-based signaling, 227
reuse distance, 163–164	cellular system, diagram, 291

Channels (Continued)	ARQ (automatic repeat request),
definition, 4, 19, 291	376–377
dividing by	checksums, 376
code. See CDMA (code-division multiple	convolutional codes. See also Forward error
access).	correction.
frequency. See FDMA (frequency-division	all-zero path, 388
multiple access).	constraint length, 378
time. See TDMA (time-division multiple	decoding, 380–383
access).	definition, 377
dynamic assignment, 185	encoding, 378–379
grouping, 297	Hamming distance, 381, 388
jumbo groups, 297	maximum likelihood rule, 382–383
mastergroups, 297	minimum free distance, 388
multiple user access. <i>See</i> Multiple user channels.	path metrics, 382
organizing into groups. See Channel sets.	performance, 387–389
partitioning, 173	trellis diagrams, 379–380
selection, history of, 11	Viterbi algorithm, 383–387
spacing, AM broadcasting, 298–299	forward error correction, 376–377. See also
supergroups, 297	Convolutional codes.
Checksums, 376	
Chips, spread-spectrum signaling, 271	parity check, 376
CIR (carrier-to-interference ratio), 407,	triple redundancy, 377
415–416	Coding scheme (CS), 409
Circular cell regions, 157	Coherence bandwidth, 101, 115–120
Clear channels, 296	Coherence time, 101, 121
Clusters of cells	Coherent systems, 238
definition, 163	Collision probability
minimum size, calculating, 165–166,	calculating, 328–330
169	reducing. See CSMA (carrier-sense multiple
minimum size, limitations, 167	access).
number of, determining, 165–166	Collisions, CDMA, 308–311
-	Compandors, 366
reuse distance, 163–164	Components, 13
size, trade-offs, 173–175	Compression
CNIR (carrier-to-noise-and-interference ratio), 407 Cochannel interference	A-law, 367
	codecs, 368
AM broadcasting, 296	compandors, 368
cluster size, effect on, 167	compression/expansion, 364–366
definition, 153	compressors, 364
predicting, 167–171	expanders, 364
Code of Federal Regulations (CFR), 150	images, 350
Codecs, 366	μ-law, 367
Coded digital verification color code (CDVCC),	quantization, 364–366
303	Compressors, 364
Code-division multiple access (CDMA). See	Conference of European Postal and
CDMA (code-division multiple access).	Telecommunications Administrations
Code-division multiplexing (CDM), 415	(CEPT), 400
Coding for error correction	Connection layers 398

Constraint length, 378	designing, 173–175
Contention-based methods	separation distance (geographic),
1-persistent CSMA, 330–331	156
Aloha protocol, 326–328	CQI (channel quality indicator),
backoff procedure, 327	416
collision probability, calculating,	CRC (cyclic redundancy check), 402
328–330	CS (coding scheme), 409
CSMA (carrier-sense multiple access),	CSMA (carrier-sense multiple access),
330–335	330–335
nonpersistent CSMA, 330–331	CSMA/CD (carrier-sense multiple access with
overview, 325–326	collision detection), 335
packets, 326	Cumulative probability distribution function,
packet-switching, 326	107–108
p-persistent CSMA, 331	10, 100
PRMA (packet-reservation multiple access),	D
331	D
random numbers, 327	D-AMPS (Digital Advanced Mobile Phone
slotted Aloha, 328–330	Service), 401
streaming vs. bursting, 325–326	Data
Contiguous cells. See Clusters.	BER (bit error rate), 351
Continuous-phase FSK, 254–256	burstiness, 351
Control channels, 291	delays, 352
Convolution, 209, 219	QoS (quality of service), 353–354
Convolutional codes	source characteristics, 351
all-zero path, 388	subscriber requirements, 351–352
constraint length, 378	throughput, 351
decoding, 380–383	Data and voice (DV) standard, 425–426
definition, 377	Data only (DO) standard
encoding, 378–379	Rev. 0, 425–432
Hamming distance, 381, 388	Rev. A, 441
maximum likelihood rule, 382–383	Data rate (DR), 414
minimum free distance, 388	Data rate control (DRC), 427–432
path metrics, 382	Data transmission
performance, 387–389	BER (bit error rate), 351
trellis diagrams, 379–380	burstiness, 351
Viterbi algorithm, 383–387	delays, 352
Correction for	source characteristics, 351
antenna height, 92–93	subscriber requirements, 351–352
errors. See Coding for error correction.	throughput, 351
terrain, 93–95	Datagrams, 354
Correlation, 216–220	Data-sense multiple access, 335
Correlation receiver, 220–222	dBm (dB relative to 1 mW), 31–33
Correlators, 216–220, 222	dBW (dB relative to 1 W), 31
Coverage area	DCCH (dedicated control channel), 422–423
adequate received signal level, 133	Decision levels, 359–361
boundary coverage, 133	Decision statistic, 208
calculating, 134–137	Delay budget, speech sources, 347
definition, 133	Delay jitter, 347, 350–351

Delays	Digital Advanced Mobile Phone Service
data transmission, 352	(D-AMPS), 401
speech sources, 347–348	Digital signal processing (DSP), 8
video conferencing, 350–351	Digital signaling. See Baseband signaling; Carrier-
Delta modulation, 369–371	based signaling; Spread-spectrum
Demodulation, 7–9. See also Modulation.	signaling.
Designing systems	Digital signals, converting from analog.
cell radius	See PCM (pulse code modulation).
reducing, 181–183	Digital traffic channel (DTC), 303
trade-offs, 173–175	Digitizing speech. See also PCM (pulse code
cell splitting, 179–183	modulation).
cluster size, 173–175	formants, 371
directional antennas, 175–179	LPC (linear predictive coder), 373–376
dynamic channel assignment, 185	model of human voice, 371–373
FDM (frequency-division multiplexing), 151	overview, 355–356
FDMA (frequency-division multiple access), 151	source coding. See LPC (linear predictive coder);
frequency band allocation. See Spectrum	Vocoders.
allocation.	vocoders, 371–376
geographic coverage, 173–175	VSELPC (vector-sum excited linear predictive
GOS (grade of service), 187–194	coder), 375
handoffs	waveform coding. See PCM (pulse code
CDMA (code-division multiple access),	modulation).
186–187	Dipole antennas, 24–25
mobile assisted, 186	Directional antennas, 175–179
overview, 185–187	Direct-sequence spread spectrum (DSSS). See
process description, 186–187	DSSS (direct-sequence spread spectrum). Dish antennas, 26
purpose of, 185	Distortion, aliasing, 235, 358
MSC (mobile switching center), 184	Diversity gain, 404
MTSO (mobile telephone switching office), 184	DO (data only) standard
PSTN (public switched telephone network), 184	Rev. 0, 425–432
for QoS (quality of service). See Optimizing	Rev. A, 441
systems.	Documentation, system-level, 15
requirements assessment, 150-153	Doppler spread, 121–123
sectoring, 175–179, 193–194	Downlink, 66–70
subscriber density, 173–175	DPCM (differential PCM)
system architecture, 150–153	adaptive, 371
trade-offs, 173–175	delta modulation, 369–371
traffic engineering, 187–194	performance, 371
trunking, 187–194	sampling, 367–369
Development processes, 14–15	slope overload noise, 370
DFT (discrete Fourier transform), 428	vs. LPC (linear predictive coder),
Differential binary phase-shift keying (DPSK),	374
239–243	DPSK (differential binary phase-shift keying),
Differential PCM (DPCM). See DPCM	239–243
(differential PCM).	DQPSK (differential quadrature phase-shift
Differential quadrature phase-shift keying	keying), 289
(DOPSK) 289	DR (data rate) 414

DRC (data rate control), 427–432	Environmental factors, common characteristics, 5
DSP (digital signal processing), 8	Equalization, 118
DSSS (direct-sequence spread spectrum)	Erlang, A. K., 189, 461
Hadamard matrices, 317	Erlang B formula, 460–465
multiple users, 315–316	Erlang B table, 465–475
narrowband interference, 275-278	Erlang formula, 189
orthogonal spreading codes, 316–318	erlangs, 189, 461
overview, 311–315	ERP (effective radiated power), 66
PN (pseudonoise) spreading codes,	Error correction. See Coding for error correction.
318–325	Error function, 98
spread-spectrum signaling, 271-278	ETACS (European Total Access Communications
Walsh functions, 317	System), 399
DTC (digital traffic channel), 303	ETSI (European Telecommunications Standards
DTMF (dual-tone multiple frequency),	Institute), 400
303	Expanders, 364
Duplexers, 300	Exponential probability distribution, 112
DV (data and voice) standard, 425–426	
Dynamic channel assignment, 185	\mathbf{F}
Dynamic range, 347, 364	
speech sources, 347	FACCH (fast associated control channel), 303
E	Fade margin, 100
	Fading
ECSD (Enhanced Circuit Switched Data), 410	link budget, 137–139
EDGE (Enhanced Data for Global Evolution), 410–	propagation modeling
411	coherence bandwidth, 101, 115–120
Effective aperture, antennas	coherence time, 101
beamwidth, relation to, 26–27	equalization, 118
calculating, example, 27–28	fast, 127–128, 131–132
gain, relation to, 27	flat, 104, 118
power factors, 21–22	frequency changes, 104
Effective input-noise temperature	frequency-selective, 104, 118
calculating, example, 58–61	large-scale, 100
calculating output-noise power spectrum, 57	log-normal, 100
definition, 51	macro-scale, 100
vs. noise figure, 54–55	macroscopic, 100
EGPRS (Enhanced General Packet Radio Service),	micro-scale, 100–106
410	microscopic, 100
8-ary phase-shift keying (8PSK), 279, 410	multipath propagation, 100
8PSK (8-ary phase-shift keying), 279, 410	1 1 1 0
EIRP (effective isotropic radiated power),	Rayleigh fading, 101
29, 65–66	RMS (root mean square) delay spread, 101,
Elements, 13	118–120
Elevation plane, 25	slow, 127–128, 131–132
Empirical models, 86–95	small-scale, 100
End users. See Subscribers.	two-ray model, stationary receiver,
Endpoints, 6	102–106
Engineering systems. See Designing systems.	Far-field radiation region, 22

- A II - 405 400 404 400	T
Fast fading, 127–128, 131–132	Frames, TDMA, 301
Fast frequency hoppers, 269	Fraunhofer region, 22
FCC (Federal Communications Commission)	Free-space loss. See Path loss.
communications regulations, 150	Frequency
creation date, 150	fading, 104
definition, 8	modulation, 255–256
history of cellular systems, 11	relation to wavelength, 8
spectrum allocation, 179	reuse ratio
Web site, 296	cluster size, 174–175
FCH (fundamental channel), 421	definition, 155
FDD (frequency-division duplex), 299–300,	SIR (signal-to-interference ratio), 169
400	sensitivity, 255–256
FDM (frequency-division multiplexing), 151, 296–	Frequency bands
297	allocating. See Spectrum allocation.
FDMA (frequency-division multiple access), 151,	laws and regulations, 150
295	Frequency modulation (FM), 348
FEC (forward error correction), 402, 407–409	Frequency-division duplex (FDD), 299–300, 400
FFT (fast Fourier transform), 438	Frequency-division multiple access (FDMA), 151,
FHSS (frequency-hopping spread spectrum), 268–	295
270, 307–311	
Filters	Frequency-division multiplexing (FDM), 151,
analog, 171	296–297
antialiasing, 358	Frequency-hopping spread spectrum (FHSS), 268–
baseband pulse detection, 208	270, 307–311
baseband signaling, 208	Frequency-selective fading, 104, 118
BPF (bandpass filter), 237	FSK (frequency-shift keying), 254–261
	Full-duplex, 299–300
brick wall, 171	Full-scale range quantizer, 361
Butterworth, 50	Function tables, 446–451
Gaussian, 262–264	Functional product requirements (FPR), 15
interference, 171–173	Fundamental channel (FCH), 421
LPF (lowpass filter), 237	Future Public Land Mobile Telecommunications
matched, 212–215, 222	System (FPLMTS), 405
selective bandpass filter, 171	
Fingers, 404	G
First generation (1G), 399–400	
First null-to-null, 26	Gain, antennas
Flat fading, 104, 118	and beamwidth, 26–27
Flicker, video, 350	calculating, example, 28
FM (frequency modulation), 348	definition, 26
Formants, 371	effective aperture, relation to, 27
Forward error correction, 376–377	increasing power, 28
Forward error correction (FEC), 402,	maximum range, example, 33–34
407–409	reciprocity, 28
Forward link, 417, 421	Gaussian filters, 262–264
FPLMTS (Future Public Land Mobile	Gaussian frequency-shift keying (GFSK),
Telecommunications System), 405	262–264
FPR (functional product requirements), 15	Gaussian minimum-shift keying (GMSK),
Frame preamble, 301	267

General Packet Radio Service (GPRS),	carried load, 190
408–410	carried traffic intensity, 190
Generational descriptions. See also History of	central office, 187
cellular systems.	definition, 188–189
1G (first generation), 399–400	offered load, 189
2G (second generation), 400–405	offered traffic intensity, 189
2.5G (second generation)	Poisson model, 190
CNIR (carrier-to-noise-and-interference	sectoring, 193–194
ratio), 407	subscriber calling habits, 189
EDGE (Enhanced Data for Global	throughput, 190
Evolution), 410–411	traffic engineering, 453–454
GPRS (General Packet Radio Service),	trunking, 187–194
408–410	trunking efficiency, 192–194
HSCSD (High-Speed Circuit-Switched	trunking theory, 188
Data), 407–408	trunks, 188
puncturing, 408	GPRS (General Packet Radio Service),
RACH (reverse access channel), 409	408–410
3G (third generation). See also HSPA (High-	Ground reflections, 79–86
Speed Packet Access).	Groups
overview, 405–407	AM broadcasting channels, 297
OVSF (orthogonal variable spreading	cells. See Clusters.
factor), 413	channel sets, 155–156
PPSDN (public packet-switched data	jumbo groups, 297
network), 411–412	mastergroups, 297
	supergroups, 297
W-CDMA (Wideband Code-Division	GSM (Global System for Mobile Communications
Multiple Access), 411–414	history of, 12, 289–290
3GPP (Third Generation Partnership Project),	overview, 304–305
406	GSM (Groupe Spéciale Mobile), 400
3GPP2 (Third Generation Partnership Project 2), 406	Guard interval, 301–302
4G (fourth generation). See OFDM (orthogonal	TT
frequency-division multiplexing).	Н
Geographic coverage. See Coverage area.	Hadamard matrices, 317
Geographic location of subscribers, 156	Half-duplex, 299–300, 306
GFSK (Gaussian frequency-shift keying),	Half-power beamwidth, 26
262–264	Half-wave dipole antenna. See Dipole antennas.
GMSK (Gaussian minimum-shift keying),	Hamming distance, 381, 388
267	Handoffs
GMSK modulation, 289–290	CDMA (code-division multiple access),
Gold codes, 413	186–187
GOS (grade of service). See also QoS (quality of	definition, 153
service).	hard, 404
average call duration, 189	mobile assisted, 186
average holding time, 189	overview, 185–187
blocked calls, 188	process description, 186-187
blocked calls cleared model, 190-191	purpose of, 185
blocked calls delayed model, 190-191	soft, 404

Handovers, See Handoffs. Morse code, 226 Hard handoffs, 404 multiple user channels, 289-290 H-ARQ (hybrid automatic repeat request), 417, 430 NA-TDMA (North American Time-Division Hata model Multiple Access), 401 link budget, 137-139 QPSK modulation, 289-290 path loss predictions, 87-90, 95, 98-100 Qualcomm, Inc., 12, 289-290, 401 HDR (high data rate), 425 radio, 226 Hertz, Heinrich, 226 roaming automation, 400 Hexagonal grid, 158-160 spectrum shortages, 12 Hidden stations, 335 spread-spectrum techniques, 12, 401 High-Speed Circuit-Switched Data (HSCSD), telegraphy, 226 407-408 UMTS (Universal Mobile Telecommunications High-Speed Downlink Packet Access (HSDPA), System), 289 USDC (U.S. Digital Cellular) system, High-Speed Packet Access (HSPA). See HSPA 289-290 (High-Speed Packet Access). W-CDMA (Wideband Code-Division Multiple High-Speed Uplink Packet Access (HSUPA), 414, Access), 289 418-419 Hits. See Collisions. History of cellular systems. See also Generational HLR (home location register), 441 descriptions. Hold time model, 456 access methods, 289-290 Hopping away from interference, 270 AMPS (Advanced Mobile Phone Service), 12 HSCSD (High-Speed Circuit-Switched Data), automatic channel selection, 11 407-408 CDMA (code-division multiple access), HSDPA (High-Speed Downlink Packet Access), 12 cdma2000 system, 289 HSPA (High-Speed Packet Access). See also RTT cdmaOne system, 289, 402-405 (radio transmission technology). cellular concept, 11-12 BLER (block error rate), 416 CEPT (Conference of European Postal and CQI (channel quality indicator), 416 Telecommunications Administrations), 400 forward link, 417 D-AMPS (Digital Advanced Mobile Phone H-ARQ (hybrid automatic repeat request), Service), 401 417 ETACS (European Total Access HSDPA (High-Speed Downlink Packet Access), Communications System), 399 414 ETSI (European Telecommunications Standards HSUPA (High-Speed Uplink Packet Access), Institute), 400 414, 418-419 evolution of radio, 10 PER (packet error rate), 416 FDD (frequency-division duplex), protocol enhancements, 415 400 RoTT (rise-over-thermal threshold), 418 GMSK modulation, 289-290 scheduler, 417 GSM (Global System for Mobile Communications), 12, 289-290 UEs (user elements), 416 HSUPA (High-Speed Uplink Packet Access), 414, GSM (Groupe Spéciale Mobile), 400 418-419 IMTS (Improved Mobile Telephone Service), Human voice, model of, 371-373 152 IS-95, 289 Hybrid automatic repeat request (H-ARQ), mobile telephones, 10-11

417, 430

I	SIR (signal-to-interference ratio), 155, 169
IDFT (inverse discrete Fourier transform),	SNIR (signal-to-noise-and-interference ratio), 154
428	Interference reduction factor. See Frequency,
IF (intermediate frequency), 56	reuse ratio.
IFFT (inverse fast Fourier transform), 438	Interference-limited systems, 153–154
Images	Interlaced scanning, 350
QoS (quality of service), 353	Interleaved scanning, 350
source characteristics, 349	Intermediate frequency (IF), 56
subscriber requirements, 349	Inverse discrete Fourier transform (IDFT), 428
IMT-2000 (International Mobile	Inverse fast Fourier transform (IFFT), 438
Telecommunications 2000), 405	IR (incremental redundancy), 410
IMTS (Improved Mobile Telephone Service), 152	IS (interim standard), 400
Incremental redundancy (IR), 410	IS-95 standard, 12, 289
Information sinks. See Sinks.	IS-95A standard, 401
Information sources. <i>See</i> Sources of information.	IS-95B standard, 401
In-phase components, 238–239	ISDN (Integrated Services Digital Network),
Input-noise temperature. See Effective input-noise	207, 355
temperature.	ISI (intersymbol interference), 433
Instantaneous frequency, 254–255	Isotropic antennas, 20–22
Integrated Services Digital Network (ISDN), 207,	Isotropic radiation, 20–22
355	ITU (International Telecommunication Union), 405
Interference. See also Noise.	
adjacent-channel, 295–296	J
AM broadcasting, 296, 298–299	
FDMA (frequency-division multiple access), 295	Johnson, J. B., 38
hopping away from, 270	Johnson noise, 38–39
spreading. See Spread-spectrum signaling.	Joint probability density function, 107
Interference prediction	Jumbo groups, 297
adjacent-channel interference, 171–173	
analog filters, 171	K
brick wall filter, 171	Keying
channel partitioning, 173	8PSK (8-ary phase-shift keying), 279
channel sets, 155–156	BFSK (binary frequency-shift keying), 254–261
cochannel interference, 167–171	BPSK (binary phase-shift keying),
customer density management, 156	236–239
filters, 171–173	definition, 229
frequency reuse ratio	DPSK (differential binary phase-shift keying),
cluster size, 174–175	239–243
definition, 155	DQPSK (differential quadrature phase-shift
SIR (signal-to-interference ratio), 169	keying), 289
geographic location of subscribers, 156	FSK (frequency-shift keying), 254–261
interference-limited systems, 154	GFSK (Gaussian frequency-shift keying),
noise-limited systems, 154	262–264
power control, 173	GMSK (Gaussian minimum-shift keying), 267
selective bandpass filter, 171	MSK (minimum-shift keying), 264–267
separation distance (geographic), 156	OQPSK (offset quadrature phase-shift keying),
sharp cutoff filters, 171	251–254

L Lag, 216-220 Large-scale fading, 100 Large-scale fading, 100 Laws and regulations, 8, 150. See also Standards. Layers, 397-398 Lee model, 90-95 LEO (low Earth orbit), 405 Line croivers, 9 Linear modulation, 229 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137-139 Hata model, 137-139 path loss, 137-139 path loss, 137-139 radio links, 66-70 Links. See RF links. LNA (low-noise amplifier), 56-57 Log-normal fading, 100 Lossy transmission lines, 57-58 LPC (linear predictive coder) output of, 374 vs DPCM (differential PCM), 374 vSELPC (vector-sum excited linear predictive coder), 375 LTE (long-term evolution), 440 Lumped-element analysis, 19 Maximum likelihood rule, 382-383 Maxwell's equations, 18-19 MCS (modulation and coding scheme), 410 Mean-square quantization noise, 363 Median signal attenuation, calculating, 87 Micro-scale fading, 100 Midriser quantizer, 360-361 MilMO (multiple input multiple output), 438 Minimum -shift keying (MSK), 264-267 µ-law compression, 367 Mobile telephones witching center (MSC), 184 Mobile telephones, history of, 10-11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulation ace also Demodulation. in block diagrams, 7-9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229-235 BFSK (binary frequency-shift keying), 254-261 BPSK (binary phase-shift keying), 236-239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254-256 definition, 226	Keying (<i>Continued</i>) PSK (phase-shift keying), 229, 244	Manchester code, 206 Marconi, Guglielmo, 226
Lag, 216–220 Large-scale fading, 100 Large-scale fading, 100 Laws and regulations, 8, 150. See also Standards. Layers, 397–398 Lee model, 90–95 Lie Olow Earth orbit), 405 Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 voverview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC (medium access control), 397–398 MaCDonald, V. H., 159 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Maxwall's equations, 18–19 MCS (modulation and coding scheme), 410 Mean-square quantization, calculating, 87 Median signal attenuation, calculating, 87 Median signal attenuation, calculating, 87 Micro-scale fading, 100 Midriser quantizer, 360–361 Midfread quantizer, 360–361 Midfread quantizer, 360–361 Midro-scale fading, 100 Midriser quantizer, 360–361 Midroscopic fading, 100 Midroscopic fading, 100 Midroscopic fading, 100 Mobile elephones switching office (MTSO), 184 M	QPSK (quadrature phase-shift keying), 243–251 Kirchhoff's laws, 19	Matched filters, 212–215, 222
Large-scale fading, 100 Laws and regulations, 8, 150. See also Standards. Layers, 397–398 Lee model, 90–95 LEO (low Earth orbit), 405 Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Mean-square quantization noise, 363 Median signal attenuation, calculating, 87 Microscopic fading, 100 Midriser quantizer, 360–361 MiMO (multiple input multiple output), 438 Minimum free distance, 388 Minimum-shift keying (MSK), 264–267 µ-law compression, 367 Mobile exitching center (MSC), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary phase-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	L	Maxwell's equations, 18–19
Larges-scale fading, 100 Laws and regulations, 8, 150. See also Standards. Layers, 397–398 Lee model, 90–95 Line Olive Earth orbit), 405 Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Log-normal fading, 100 Log-normal shadowing, 95–100 Log-norma	Lag, 216–220	
Lawrs and regulations, 8, 150. See also Standards. Layers, 397–398 Lee model, 90–95 LEO (low Earth orbit), 405 Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 Hata model, 137–139 Hata model, 137–139 radio links, 66–70 Links, See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Logsy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 vs. DPCM (differential PCM), 374 vs. DP	Large-scale fading, 100	
Layers, 397–398 Lee model, 90–95 LEO (low Earth orbit), 405 Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 vs. DPCM (differential PCM), 374 vSELPC (vector-sum excited linear predictive coder), 375 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Microscopic fading, 100 Midriser quantizer, 360–361 Midmod (multiple input multiple output), 438 Minimum free distance, 388 Minimum-shift keying (MSK), 264–267 µ-law compression, 367 Mobile switching center (MSC), 184 Mobile telephone switching office (MTSO), 184 Mobile telephone switching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary phase-shift keying), 254–261 BPSK (binary frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	Laws and regulations, 8, 150. See also Standards.	
Lee model, 90–95 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 Hata model, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Midriser quantizer, 360–361 Midread quantizer, 360–361 MIMO (multiple input multiple output), 438 Minimum free distance, 388 Minimum-shift keying (MSK), 264–267 µ-law compression, 367 Mobile switching center (MSC), 184 Mobile telephone switching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary phase-shift keying), 254–261 BPSK (binary phase-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	Layers, 397–398	
LEO (low Earth orbit), 405 Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 path loss, 137–139 path loss, 137–139 Lines. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 vs. DPCM (differential PCM), 374 vSELPC (vector-sum excited linear predictive coder), 375 LTF (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 MidmO (multiple input multiple output), 438 Minimum rse distance, 388 Minimum free distance, 367 Mobile telephones witching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279	Lee model, 90–95	
Line codes, 205 Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 path loss, 137–139 path loss, 137–139 path loss, 187–139 path loss, 187–139 path loss, 187–139 path loss, 197–139 path loss, 197–139 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Losy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 MIMO (multiple input multiple output), 438 Minimum free distance, 388 Minimum shift keying (MSK), 264–267 pu-law compression, 367 Mobile telephones witching office (MTSO), 184 Mobile telephone switching office (MTSO), 10-11 Mobile unit (MU), 196 Mobile assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary phase-shift ke	LEO (low Earth orbit), 405	•
Line drivers, 9 Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Minimum free distance, 388 Minimum-shift keying (MSK), 264–267 µ-law compression, 367 Mobile switching center (MSC), 184 Mobile telephones witching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GMSK (Gaussian minimum-shift keying),	Line codes, 205	-
Linear modulation, 229 Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 vs. DPCM (differential PCM), 374 vSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Minimum-shift keying (MSK), 264–267 µ-law compression, 367 Mobile eunit (MU), 196 Mobile-assited handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GMSK (Gaussian minimum-shift keying),	Line drivers, 9	
Linear predictive coder (LPC). See LPC (linear predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 path loss, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 vs. DPCM (differential PCM), 374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Mobile eswitching center (MSC), 184 Mobile telephone switching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary phase-shift keying), 254–261 BPSK (binary phase-shift keying), 254–261 BPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying), 262–264	Linear modulation, 229	
predictive coder). Link budget fading, 137–139 Hata model, 137–139 path loss, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Mobile eswitching center (MSC), 184 Mobile telephones witching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 262–264 GMSK (Gaussian frequency-shift keying),	Linear predictive coder (LPC). See LPC (linear	
Link budget fading, 137–139 Hata model, 137–139 Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-sv transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lompass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Mobile telephone switching office (MTSO), 184 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GMSK (Gaussian minimum-shift keying),	predictive coder).	
fading, 137–139 Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LTE (long-term evolution), 440 Lumped-element analysis, 19 Mobile telephones, history of, 10–11 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian minimum-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	Link budget	
Hata model, 137–139 path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lompass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Mobile unit (MU), 196 Mobile-assisted handoffs, 186 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GMSK (Gaussian minimum-shift keying),	•	
path loss, 137–139 radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lomy-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Modulated carrier architecture, 227–228 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		•
radio links, 66–70 Links. See RF links. LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Modulation. See also Demodulation. in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GMSK (Gaussian minimum-shift keying),	path loss, 137–139	
LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Machana Madowing, 95–100 Agrae (diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 64-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	radio links, 66–70	
LNA (low-noise amplifier), 56–57 Log-normal fading, 100 Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 in block diagrams, 7–9 carrier-based signaling 8PSK, 279 16-QAM, 279 44-QAM, 279 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GMSK (Gaussian minimum-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	Links. See RF links.	Modulation. See also Demodulation.
Log-normal shadowing, 95–100 Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 MSPSK, 279 16-QAM, 279 64-QAM, 27 64-QAM, 27 64-QAM, 27 64-QAM, 27 64-	LNA (low-noise amplifier), 56–57	
Lossy transmission lines, 57–58 LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Main beam, 22–23 Main beam, 22–23 MacDonald, V. Macroscopic fading, 100 Main beam, 22–23 MacDonald, 100 Macroscopic fading, 100 Macrosc	Log-normal fading, 100	carrier-based signaling
LPC (linear predictive coder) output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Mach differential brand phase for predictive specific part of the product of	Log-normal shadowing, 95–100	8PSK, 279
output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 mangle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 254–261 BPSK (binary phase-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	Lossy transmission lines, 57–58	16-QAM, 279
output of, 374 overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 angle-modulated signals, 254 bandwidth, 229–235 BFSK (binary frequency-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	LPC (linear predictive coder)	64-QAM, 279
overview, 373–374 vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 bandwidth, 229–235 BFSK (binary frequency-shift keying), 236–239 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	output of, 374	
vs. DPCM (differential PCM), 374 VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Main beam, 22–23 MacPodick (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	overview, 373–374	
VSELPC (vector-sum excited linear predictive coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Main beam, 22–23 Macy odiversity and the seminary predictive coders are supported by the seminary phase shift keying), 254–261 Gaussian filters, 262–264 Macy odiversity, 404 Macroscopic fading, 100 Main beam, 22–23 Macy odiversity and the seminary phase-shift keying), 254–261 Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	vs. DPCM (differential PCM), 374	
coder), 375 LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 May Description of the specific plane in the serior of the specific plane in the		
LPF (lowpass filter), 237 LTE (long-term evolution), 440 Lumped-element analysis, 19 M MAC (medium access control), 397–398 MacDonald, V. H., 159 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Carson's rule, 257 coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		
LTE (long-term evolution), 440 Lumped-element analysis, 19 Coherent systems, 238 continuous-phase FSK, 254–256 definition, 226 M DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 MAC-ID, 427–432 FSK (frequency-shift keying), 254–261 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 GFSK (Gaussian frequency-shift keying), 262–264 Main beam, 22–23 GMSK (Gaussian minimum-shift keying),		
Continuous-phase FSK, 254–256 definition, 226 M DPSK (differential binary phase-shift keying), 239–243 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Macroscopic fading, 100 Main beam, 22–23 Continuous-phase FSK, 254–256 definition, 226 FSK (differential binary phase-shift keying), 239–243 Frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		
MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Macroscopic fading, 100 Main beam, 22–23 definition, 226 DPSK (differential binary phase-shift keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	Lumped-element analysis, 19	
MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 DPSK (differential binary phase-shift keying), 239–243 keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		
MAC (medium access control), 397–398 MacDonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Keying), 239–243 frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),	M	
MacDonald, V. H., 159 MacPonald, V. H., 159 MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Frequency sensitivity, 255–256 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		
MAC-ID, 427–432 Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 FSK (frequency-shift keying), 254–261 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		· · ·
Macro diversity, 404 Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 Gaussian filters, 262–264 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		* *
Macro-scale fading, 100 Macroscopic fading, 100 Main beam, 22–23 GFSK (Gaussian frequency-shift keying), 262–264 GMSK (Gaussian minimum-shift keying),		
Macroscopic fading, 100 Main beam, 22–23 GMSK (Gaussian minimum-shift keying),		
Main beam, 22–23 GMSK (Gaussian minimum-shift keying),	<u> </u>	
	· -	
		· · · · · · · · · · · · · · · · · · ·

in-phase components, 238–239	joint probability density function, 107
instantaneous frequency, 254–255	probability density function, 108
keying, 229	probability distribution function, 108
linear, 229	Rayleigh density function, 109–113
modulated carrier architecture, 227-228	Rayleigh fading, 106–113
modulation index, 256–257	region of integration, 109
MSK (minimum-shift keying), 264–267	Ricean probability distribution, 113–114
noncoherent systems, 238	Multiple input multiple output (MIMO), 438
nonlinear, 229	Multiple user channels. <i>See also</i> Subscriber density.
OQPSK (offset quadrature phase-shift	AM band. See AM broadcasting.
keying), 251–254	cellular digital packet data, 335
orthogonal signals, 260–261	code division. See CSMA (carrier-sense multiple
overview, 226–227	access).
peak frequency deviation, 256–257	contention-based methods
phase-locked receivers, 238	1-persistent CSMA, 330–331
principles, 229–235	Aloha protocol, 326–328
PSK (phase-shift keying), 229, 244	backoff procedure, 327
QAM (quadrature amplitude modulation), 279	collision probability, calculating,
QPSK (quadrature phase-shift keying),	328–330
243–251	collision probability, reducing.
quadrature components, 238–239	See CSMA (carrier-sense multiple access).
raised-cosine pulse, 237	CSMA (carrier-sense multiple access),
root-raised-cosine pulse, 237	330–335
signal constellation, 238–239	nonpersistent CSMA, 330-331
spectral efficiency, 237	overview, 325–326
converting analog to digital. See PCM (pulse	packets, 326
code modulation).	packet-switching, 326
DQPSK (differential quadrature phase-shift	p-persistent CSMA, 331
keying), 289	PRMA (packet-reservation multiple
Modulation and coding scheme (MCS), 410	access), 331
Modulation index, 256–257	random numbers, 327
Modulator, 9	slotted Aloha, 328–330
Morse, Samuel B., 226	streaming vs. bursting, 325–326
Morse code, 226	CSMA/CD (carrier-sense multiple access with
MSC (mobile switching center), 184	collision detection), 335
MSK (minimum-shift keying), 264–267	data-sense multiple access, 335
MTSO (mobile telephone switching office), 184	frequency division. See FDMA (frequency-
MU (mobile unit), 196	division multiple access).
Multipath propagation	hidden stations, 335
fading, 100–106	history of, 289–290
propagation modeling, 100–102	multiplexing vs. multiple-access, 288
statistical models	spread-spectrum-based code-division. See
coherence bandwidth, 115–120	CDMA (code-division multiple access).
cumulative probability distribution	throughput, calculating, 334–335
function, 107–108	time division. See TDMA (time-division
exponential probability distribution, 112	multiple access).

Multiplexing vs. multiple-access, 288	0
Music	OFDM (orthogonal frequency-division
QoS (quality of service), 353	multiplexing)
source characteristics, 348	4G standards, 441–442
subscriber requirements, 348–349	4G system proposals, 440–441
	adaptable antennas, 438–439
N	antenna systems, 438–439
NACK (negative acknowledgment), 410	definition, 437
Narrowband interference	diversity gain antennas, 439
DSSS (direct-sequence spread spectrum), 275–	increasing data rates, 433–437
278	MIMO (multiple input multiple output),
FHSS (frequency-hopping spread spectrum),	438
269–270	OFDMA (orthogonal frequency-division
NA-TDMA (North American Time-Division	multiple access), 437
Multiple Access), 401	overview, 432–433
Noise. See also Interference.	spatially multiplexing antennas, 439
bandwidth, 49–50	trade-offs, 437–438
definition, 34	OFDMA (orthogonal frequency-division multiple
floor, 35	access), 437
relation to signal. See SNR (signal-to-noise ratio).	Offered load, 189, 460–461
system, 9	Offered traffic intensity, 189
temperature, 45–46	Offset quadrature phase-shift keying (OQPSK),
from thermal motion of electrons. See Thermal	251–254
noise.	Okumura model, 87
Noise factor. See Noise figure.	$1 \times \text{EV-DO}$ ($1 \times \text{evolution}$ for data only) Rev. 0. See
Noise figure	DO (data only) standard.
calculating, example, 58-61	$1 \times \text{EV-DV}$ (1× evolution for data and voice). See
overview, 50–54	DV (data and voice) standard.
vs. effective input-noise temperature,	1G (first generation), 399–400
54–55	1-persistent CSMA, 330–331
Noise-limited systems, 152, 154	$1 \times RTT$ ($1 \times radio transmission technology),$
Noncoherent systems, 238	421–426
Nonlinear modulation, 229	Operating frequency, specifying, 64
Nonlinear quantization, 364–367	Optimizing systems
Nonpersistent CSMA, 330–331	allocation, 64
Nonuniform quantization, 364	amplifier design, 65–66
Normal distribution, 443–446	antennas, 66
Normalized power. See Average power.	BER (bit error rate), 61–62
NRZ (non-return-to-zero) line code, 205–206	design considerations, 64–66
NTIA (National Telecommunications and	link budget, example, 66–70
Information Administration), 8	operating frequency, specifying, 64
NTSC (National Television System Committee),	QoS (quality of service), subscriber perceptions,
349	61–62
Null-to-null frequency interval, 105–106	range equation, 63–66
Null-to-null time interval, 127	receiver sensitivity, 62–63
Nyquist bandwidth, 233–235	requirement flowdown, 64
Nyquist equivalent spectrum, 232–235	SNR (signal-to-noise ratio), 62

system-level design, 61–62	range of loss, 96–100
top-level design, 63–66	rural environment, 88
OQPSK (offset quadrature phase-shift keying),	shadowing losses, 96–100
251–254	suburban environment, 88
Orthogonal	transmitter distance, 96–100
definition, 317	urban environments, 88, 101
frequency division. See OFDM (orthogonal	Path metrics, 382
frequency-division multiplexing).	Path-loss exponent, 32, 79
signals, 260–261	PCM (pulse code modulation)
spreading codes	aliasing, 358
overview, 316–318	antialiasing filter, 358
OVSF (orthogonal variable spreading	coding, 361
factor), 413	decision levels, 359–361
PN (pseudonoise), 318–325	distortion, 358
Orthogonal frequency-division multiple access	DPCM (differential PCM)
(OFDMA), 437	adaptive, 371
Orthogonal frequency-division multiplexing	delta modulation, 369–371
(OFDM). See OFDM (orthogonal	performance, 371
frequency-division multiplexing).	sampling, 367–369
Orthogonal variable spreading factor (OVSF), 413	slope overload noise, 370
OVSF (orthogonal variable spreading factor), 413	vs. LPC (linear predictive coder), 374
	overview, 356
P	performance, 362–364
PA (power amplifier), 65	quantization
Pacific Digital Cellular System (PDC), 406	A-law compression, 367
Packet error rate (PER), 416	codecs, 366
Packet-reservation multiple access (PRMA), 331	compandors, 366
Packets, 326	compression/expansion, 364–366
Packet-switched data network (PSDN), 398	compressors, 364
Packet-switching, 326	dynamic range, 364
Paging channels, 291	error, 362–364
Parity check, 376	expanders, 364
Partitioning channels, 173	full-scale range quantizer, 361
Passive systems, source of thermal noise, 39–44	intervals, 359–361
Path loss	levels, 359–361
definition, 10	mean-square quantization noise, 363
link budget, 137–139	midriser quantizer, 360-361
propagation modeling	midtread quantizer, 360-361
carrier frequency, 101	μ-law compression, 367
correction for antenna height, 92–93	nonlinear, 364–367
correction for terrain, 93–95	nonuniform, 364
error function, 98	overview, 359–361
fade margin, 100	SQNR (signal-to-quantization-noise ratio)
Hata model, 87-90, 95, 98-100	362–364
Lee model, 90–95	sampling, 356–359
probability density function, 96-100	PCS (personal communication services), 4, 16

PDC (Pacific Digital Cellular System), 406	suburban environments, 88
Peak frequency deviation, 256–257	urban environments, 88, 101. See also
PER (packet error rate), 416	Hata model.
Perceptual measures of quality. See Subscriber	small-scale fading, 100
requirements.	Propagation of radio waves
Phase-locked receivers, 238	Maxwell's equations, 18–19
Phase-shift keying (PSK), 229, 244	physical circuits, effects of, 19
Physical layers, 397–398	range equation, 20
Plane wave incident, 79–80	in the real world. See Fading; Path loss;
Planning systems. See Designing systems.	Propagation modeling.
PN (pseudorandom number), 268	
PN (pseudonoise) sequences, 402	in space, 18–20
PN (pseudonoise) spreading codes, 318–325. See	Protocol stack, 398 PSDN (packet switched data network) 308
also Orthogonal, spreading codes.	PSDN (packet-switched data network), 398
Poisson model, 190	Pseudonoise (PN) sequences, 402
POTS (plain old telephone service), 9	Pseudonoise (PN) spreading codes, 318–325. See
Power, measuring radiated	also Orthogonal, spreading codes.
EIRP (effective isotropic radiated power), 29,	Pseudorandom number (PN), 268
65–66	PSK (phase-shift keying), 229, 244 PSTN (public switched telephone network), 184
ERP (effective radiated power), 66	
Power factors, antennas	Pulse code modulation (PCM). See PCM (pulse
beamwidth, 25–27	code modulation).
distance between receiver and transmitter, 21–22	Pulse detection, 207–212
effective aperture, 21–22	Puncturing, 408
gain, 26–27	
Power spectrum	Q
amplifiers, 49	QAM (quadrature amplitude modulation),
noise, calculating, 36–38, 41–43, 46	279
<i>p</i> -persistent CSMA, 331	QoS (quality of service). See also GOS (grade of
PPSDN (public packet-switched data network),	service).
411–412	common parameters, 352
Preamble interval, 301–302	data, 353–354
PRMA (packet-reservation multiple access), 331	designing for. See Optimizing systems.
Probability density function, 96–100,	images, 353
108	for information sources, 353–354
Probability distribution function, 108	music, 353
Probability of error	perceptual measures. See Subscriber
digital signal performance, 208–211	requirements.
<i>a priori</i> probabilities, 209	speech, 353
and received power, 223–226	subscriber requirements, 61–62
Propagation modeling	toll quality speech communication, 167
carrier frequency. See Hata model;	user expectations, 344–345
Lee model.	video, 353
large-scale fading, 100	QPSK (quadrature phase-shift keying),
macroscopic fading, 100	243–251
microscopic fading, 100	QPSK modulation, 289–290
path loss prediction	Quadrature components, 238–239
rural environments, 88	Qualcomm, Inc., 12, 289–290, 401

Quantization	RAKE receivers, 404
A-law compression, 367	Random numbers, collision prevention, 327
codecs, 366	Range
compandors, 366	antennas, calculating, 28-34
compression/expansion, 364–366	mobile unit to base station, 66-70
compressors, 364	Range equation
dynamic range, 364	alternate forms, 30
error, 362–364	EIRP (effective isotropic radiated power),
expanders, 364	29
full-scale range quantizer, 361	example, 29
intervals, 359–361	Friis transmission form, 30
levels, 359–361	optimizing systems, 63-66
mean-square quantization noise, 363	overview, 28–34
midriser quantizer, 360–361	propagation in free space, 20
midtread quantizer, 360–361	variables, 63–66
μ-law compression, 367	Range of loss, 96–100
nonlinear, 364–367	Raster images, 349
nonuniform, 364	Rate control, 429
overview, 359–361	Rate set (RS), 422
SQNR (signal-to-quantization-noise ratio),	Rayleigh density function, 109–113
362–364	Rayleigh fading, 101, 106–113
Quantization error, 362–364	RC (radio configuration), 412
Quantization intervals, 359–361	R-DCCH (reverse dedicated control channel)
Quantization levels, 359–361	424
	Received power, and probability of error, 223–226
R	Receiver (Rx). See Rx (receiver).
RAB (reverse activity bit), 430	Receiving antennas, 19
RACH (reverse access channel), 409	Reciprocity, antenna gain, 28
Radiation patterns, antennas	Recovering information, 227
azimuth plane, 25	Region of integration, 109
bandwidth planes, 25	Regulations. See Laws and regulations.
beamwidth, 25–27	Requirement flowdown, 64
beamwidth, physical dimensions, 25-26	Requirements assessment, 150–153
dipole antennas, 24–25	Resistors, source of thermal noise,
elevation plane, 25	35–40
far-field radiation region, 22	Return-to-zero (RZ) line code, 206
Fraunhofer region, 22	Reudink curves, 137
main beam, 22–23	Reuse distance, 163–164
main lobe, 22–23	Reverse access channel (RACH), 409
plot of, 24	Reverse activity bit (RAB), 430
power pattern, 22	Reverse control channels, 291
side lobes, 22–23	Reverse dedicated control channel
Radio, history of, 10, 226	(R-DCCH), 424
Radio configuration (RC), 412	Reverse link configurations, 424
Radio transmission technology (RTT). See RTT	Reverse power control subchannel
(radio transmission technology).	(R-PCSCH), 423
Raised-cosine pulses, 234, 237	Reverse supplementary channel (R-SCH), 42

RF links	reverse link configurations, 424
definition, 17	R-FCH (reverse fundamental channel),
designing. See Optimizing systems.	424
interference. See Noise.	R-PCSCH (reverse power control subchannel),
power transmission. See Antennas.	423
range, calculating. See Range equation.	R-SCH (reverse supplementary channel),
R-FCH (reverse fundamental channel), 424	424
Rice, S. O., 113	SCCH (supplemental code channel),
Ricean probability distribution, 113–114	421
Rise-over-thermal threshold (RoTT),	SCH (supplementary channel), 421–422
418	transition probability, 431
	- ·
RMS (root mean square)	Rural environments, path loss, 88
calculating, 38	Rx (receiver)
delay spread, 101, 118–120	definition, 10
Roaming automation, 400	performance, 222–226
Rolloff parameter, 234	sensitivity, 30, 62–63
Root mean square (RMS)	thermal noise analysis. See Thermal noise.
calculating, 38	RZ (return-to-zero) line code, 206
delay spread, 101, 118–120	
Root-raised-cosine pulse, 237	S
RoTT (rise-over-thermal threshold),	
418	SACCH (slow associated control channel),
R-PCSCH (reverse power control subchannel), 423	303–305
RS (rate set), 422	Samplers, 208
R-SCH (reverse supplementary channel),	Sampling, 356–359, 367–369
424	Sampling theorems, 235
RTT (radio transmission technology). See also	Scalable OFDM (SOFDM), 437
HSPA (High-Speed Packet Access).	SCCH (supplemental code channel),
$1 \times \text{EV-DO}$ (1× evolution for data only) Rev. 0.	421
See DO (data only) standard.	SCH (supplementary channel), 421–422
$1 \times \text{EV-DO}$ (1× evolution for data optimized)	Scheduler, 417
Rev. A, 441	SDMA (space-division multiple access),
$1 \times \text{EV-DV}$ (1× evolution for data and voice).	439
See DV (data and voice) standard.	Second generation (2G), 400–405
$1 \times RTT$ ($1 \times radio transmission technology),$	Second generation (2.5G)
421–426	CNIR (carrier-to-noise-and-interference ratio),
DO (data only) standard, 425-432	407
DV (data and voice standard),	EDGE (Enhanced Data for Global Evolution),
425–426	410–411
FCH (fundamental channel), 421	GPRS (General Packet Radio Service),
forward link configurations, 421	408–410
H-ARQ (hybrid automatic repeat request), 430	HSCSD (High-Speed Circuit-Switched Data),
MAC index. See MAC-ID.	407–408
MAC-ID, 427–432	puncturing, 408
overview, 420–421	RACH (reverse access channel),
rate control, 429	409
R-DCCH (reverse dedicated control channel),	Sectoring, 175–179, 193–194
424	Selective bandpass filter, 171

Sensitivity, 34	source characteristics, 351
Separation distance (AM channels),	subscriber requirements, 351–352
298–299	throughput, 351
Separation distance (geographic), 156,	datagrams, 354
161–163	error correction. See Coding for error correction.
SF (spreading factor), 267	images
Shadowing losses, 96–100	QoS (quality of service), 353
Shannon, Claude, 227	source characteristics, 349
Sharing bandwidth. See Multiple user channels.	subscriber requirements, 349
Sharp cutoff filters, 171	music
Side lobes, 22–23	QoS (quality of service), 353
Signaling. See Baseband signaling; Carrier-based	source characteristics, 348
signaling; Spread-spectrum signaling.	subscriber requirements, 348–349
Signal-processing functions, 7	QoS (quality of service)
Signal-to-quantization-noise ratio (SQNR),	common parameters, 352
362–364	for information sources, 353–354
Single full-duplex, 300	
Sinks, 6–7	perceptual measures. See Subscriber
SIR (signal-to-interference ratio), 155, 169,	requirements.
298–299	streaming vs. bursting, 354–355
16-QAM modulation, 279	video
64-QAM modulation, 279	QoS (quality of service), 353
Slope overload noise, 370	source characteristics, 350
Slotted Aloha, 328–330	subscriber requirements, 350–351
Slow associated control channel (SACCH),	Sources of information, speech
303–305	delay budget, 347
Slow fading, 127–128, 131–132	delay jitter, 347
Slow frequency hoppers, 269	delays, 347–348
Small-scale fading, 100	digitizing. See also PCM (pulse code
Snell's law, 79–80	modulation).
SNIR (signal-to-noise-and-interference ratio),	formants, 371
154	LPC (linear predictive coder), 373–376
SNR (signal-to-noise ratio)	model of human voice, 371–373
optimizing systems, 62–63	overview, 355–356
speech sources, 347	source coding. See LPC (linear predictive
waterfall curves, 223–226	coder); Vocoders.
SOFDM (scalable OFDM), 437	vocoders, 371–376
Soft handoffs, 404	VSELPC (vector-sum excited linear
Source coding. See LPC (linear predictive coder);	predictive coder), 375
Vocoders.	waveform coding. See PCM (pulse code
Sources of information	modulation).
in block diagrams, 6–7	dynamic range, 347
data	QoS (quality of service), 353
BER (bit error rate), 351	SNR (signal-to-noise ratio), 347
burstiness, 351	source characteristics, 347
delays, 352	streaming signals, 347
QoS (quality of service), 353–354	subscriber requirements, 347-348

Space-division multiple access (SDMA),	Spreading interference. See Spread-spectrum
439	signaling.
Spectral efficiency	Spread-spectrum modulation, 306–307
BFSK (binary frequency-shift keying),	Spread-spectrum signaling. See also Baseband
258	signaling; Carrier-based signaling; CDMA
cost of, 279	(code-division multiple access).
definition, 237	chips, 271
FSK (frequency-shift keying), 257	DSSS (direct-sequence spread spectrum),
increasing, 279	271–278
QPSK (quadrature phase-shift keying), 2	fast hoppers, 269
43–245	FHSS (frequency-hopping spread spectrum),
Spectral shaping, 298–299	268–270
Spectrum allocation. See also Traffic engineering.	hopping away from interference,
available channels, and number of subscribers,	270
152–153	narrowband interference, 269–270,
cochannel interference, 153. See also	275–278
Interference prediction.	necessary conditions, 267
distinct channels available, 152	overview, 267–268
example, 151	SF (spreading factor), 267
FDM (frequency-division multiplexing), 151	slow hoppers, 269
FDMA (frequency-division multiple access),	spreading interference, 276
151	Spread-spectrum techniques, 12, 401
interference-limited systems, 153	Spread-spectrum-based code-division. See
laws and regulations, 150–151	CDMA (code-division multiple access).
noise-limited systems, 152	SQNR (signal-to-quantization-noise ratio),
NTIA chart of, 8	362–364
Spectrum shortages, history of, 12	Square grid, 158–160
Speech	Standards. See also Laws and regulations; RTT
delay budget, 347	(radio transmission technology).
delay jitter, 347	ANSI (American National Standards Institute),
delays, 347–348	401
digitizing	ANSI/TIA/EIA-136, 401
formants, 371	cdma2000. See RTT (radio transmission
LPC (linear predictive coder),	technology).
373–376	D-AMPS (Digital Advanced Mobile Phone
model of human voice, 371–373	Service), 401
overview, 355–356	GPRS (General Packet Radio Service), 408–410
vocoders, 371–376	GSM (Global System for Mobile
VSELPC (vector-sum excited linear	Communications), 12
	HSPA, 414
predictive coder), 375	HSUPA, 414
dynamic range, 347	IS-95, 12
QoS (quality of service), 353	IS-95A, 401
SNR (signal-to-noise ratio), 347	IS-95B, 401
source characteristics, 347	ITU (International Telecommunication Union),
streaming signals, 347	405
subscriber requirements, 347–348	NA-TDMA (North American Time-Division
Spreading factor (SF), 267	Multiple Access), 401

TIA/IS-41 Interim, 400	T
TIA/IS-54, 401	TC (turbo coder), 413
USDC (U.S. Digital Cellular), 401	TDM (time-division multiplexing),
Statistical model, moving receiver, 129–132	415–416
Streaming signals	TDM time interval (TTI), 416–417, 420
speech sources, 347	TDMA (time-division multiple access)
vs. bursting, 325–326, 354–355	efficiency, 301
Subscriber density. See also Multiple user	frame preamble, 301
channels.	frames, 301
cell radius, effects of, 173–175 growth. See Cells, splitting; Sectoring.	GSM (Global System for Mobile
	Communications), 304–305
managing, 156 Subscriber requirements. <i>See also</i> GOS (grade of	guard interval, 301–302
service); QoS (quality of service).	maximum subscribers, 300
data, 351–352	overview, 300–302
designing for, 61–62	preamble interval, 301–302
images, 349	sync interval, 301–302
music, 348–349	time-division duplexing, 305–306
speech sources, 347–348	USDC (U.S. Digital Cellular), 302–304 Telecommunications Industry Association (TIA)
video, 350–351	400
Subscribers	Telegraphy, history of cellular systems, 226
calling habits, 189	Television, NTSC scans, 349
end users, definition, 6	Thermal noise. See also Noise.
maximum, CDMA, 311, 323–234	average power, 37–41
maximum, TDMA, 300	definition, 34
Subsystems, 13	Johnson noise, 38–39
Suburban environments, path loss, 88	mobile telephone receiver, example, 58–60
Supergroups, 297	noise floor, 35
Supplemental code channel (SCCH), 421	output-noise power spectrum
Supplementary channel (SCH), 421–422	average power, 44–45
Switch state, 453–454	calculating, 42, 56–57
Switch state probabilities, 457–460	LNA (low-noise amplifier), 56–57
Symbol period, 205	power spectrum, 36–38
Sync channels, 291	sources of
Sync interval, 301–302	amplifiers, 44–45
System architecture, 150–153. See also Designing	passive systems, 39–44
systems.	resistors, 35–40
System loss, 31	RMS (root mean square), calculating, 38
System noise, 9. See also Noise.	typical values, 60
System-level design, 61–62	white noise
Systems, definition, 13	available power, 46
Systems engineers	definition, 36
applicable disciplines, 14	noise temperature, 45–46
development processes, 14–15	power spectrum, 36–37
responsibilities, 15	Thermal noise, two-ports
role of, 12–15	available gain, 47–49
system documentation, 15	Butterworth filter, 50

Thermal noise, two-ports (Continued)	blocked calls, 188, 453
cascade of, 54–57	blocked calls cleared model, 190-191, 453
definition, 47	blocked calls delayed model, 190-191, 453
effective input-noise temperature	blocking probability, 460–461
calculating, example, 58-61	call arrival model, 454–455
calculating output-noise power spectrum,	carried load, 190
57	carried traffic intensity, 190
definition, 51	definition, 188–189
vs. noise figure, 54–55	Erlang B formula, 460–465
LNA (low-noise amplifier), 56–57	Erlang B table, 465–475
lossy transmission lines, 57–58	GOS (grade of service), 189, 453–454
noise bandwidth, 49–50	hold time model, 456
noise figure	offered load, 189, 460–461
calculating, example, 58–61	offered traffic intensity, 189
overview, 50–54	Poisson model, 190
vs. effective input-noise temperature, 54–55	state of the switch, 453–454
Third generation (3G)	subscriber calling habits, 189
overview, 405–407	switch state probabilities, 457–460
OVSF (orthogonal variable spreading factor), 413	throughput, 190
PPSDN (public packet-switched data network),	trunking efficiency, 192–194
411–412	trunking theory, 188
W-CDMA (Wideband Code-Division Multiple	trunks, 188
Access), 411–414	Transducers, 19. See also Antennas.
Third Generation Partnership Project (3GPP), 406	Transferring calls. See Handoffs.
Third Generation Partnership Project 2 (3GPP2),	Transition probability, 431
406	Transmitter (Tx). See Tx (transmitter).
Threshold comparators, 208	Transmitter distance, path loss, 96–100
Throughput	Transmitting antennas, 19 Trellis diagrams, 379–380
calculating, 334–335	Triangular grid, 158–160
data transmission, 351	Triple redundancy, 377
definition, 190	Trunking, 187–194
TIA (Telecommunications Industry Association),	Trunking efficiency, 192–194
400	Trunking theory, 188
TIA/IS-54 standard, 400	Trunks, 188
Time dispersive channels, 118	TTI (TDM time interval), 416–417, 420
Time-division duplexing, 305–306	TTL (transistor-transistor logic), 205
Time-division multiple access (TDMA). See	Turbo coder (TC), 413
TDMA (time-division multiple access).	Turbo coders, 413
Time-division multiplexing (TDM), 415–416	2G (second generation), 400–405
Time-varying channels, 121	2.5G (second generation)
Titanic, wireless system, 1	CNIR (carrier-to-noise-and-interference ratio),
Toll quality speech communication, 167	407
Top-level design, 63–66	EDGE (Enhanced Data for Global Evolution),
Trade-offs, 173–175	410–411
Traffic engineering	GPRS (General Packet Radio Service), 408-410
average call duration, 189	HSCSD (High-Speed Circuit-Switched Data),
average holding time, 189	407–408

puncturing, 408 RACH (reverse access channel), 409 2B1Q line code, 207 Two-ports. See Thermal noise, two-ports. Two-ray model, 102–106, 121–129 Tx (transmitter) definition, 9 line drivers, 9 signal-processing functions, 7 wired systems, 9 wireless systems, 9	Video conferencing, 350–351 Viterbi, A. J., 383 Viterbi algorithm, 383–387 VLR (visitor location register), 441 Vocoders DPCM vs. LPC, 374 formants, 371 LPC (linear predictive coder), 373–376 model of human voice, 371–373 VSELPC (vector-sum excited linear predictive coder), 375 VoIP (voice over IP), 415, 431
U	VSELPC (vector-sum excited linear predictive
UEs (user elements), 416 UHF (ultra-high frequency), 8 UMB (Ultra-Mobile Broadband), 440–441 UMTS (Universal Mobile Telecommunications System), 289, 406 UMTS Release 5. See HSDPA (High-Speed Downlink Packet Access). UMTS Release 99, 414 Unlicensed radio services, 150 Uplink, 66–70 Urban environments, path loss predictions, 88, 101. See also Hata model. U.S. Digital Cellular (USDC) standard. See USDC (U.S. Digital Cellular) standard. USDC (U.S. Digital Cellular) standard	W Walsh functions, 317, 402–403 Waterfall curves, 223–226 Waveform coding. See PCM (pulse code modulation). Wavelength, relation to frequency, 8 W-CDMA (Wideband Code-Division Multiple Access), 289, 406, 411–414 White noise available power, 46 definition, 36
2G (second generation) systems, 401 history of, 289–290 overview, 302–304 Users. <i>See</i> Subscribers. UTRA (Universal Terrestrial Radio Access), 406	noise temperature, 45–46 power spectrum, 36–37 Wiener-Khinchine theorem, 217–218 WiFi (Wireless Fidelity), 25 WiMAX (Worldwide Interoperability for Microwave Access), 440 Wired systems
V VBR (variable bit rate), 403 Video QoS (quality of service), 353 source characteristics, 350 subscriber requirements, 350–351	transmitters, 9 vs. wireless, 5 Wireless systems definition, 4 overview, 4–6 vs. wired systems, 5