

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw
Library of Congress Cataloging-in-Publication Data

Harmon, James Earl.
Using the Dojo Javascript library to build Ajax applications / James Earl Harmon.

p. cm.
Includes index.
ISBN 0-13-235804-2 (pbk. : alk. paper) 1. Ajax (Web site development technology)

2. Java (Computer program language) I. Title.
TK5105.8885.A52H37 2008
006.7’8—dc22

2008021544
Copyright © 2009 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-132-35804-0
ISBN-10: 0-132-35804-2
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing June 2008

Associate Publisher
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Chelsey Marti

Copy Editor
Language Logistics

Indexer
Lisa Stumpf

Proofreader
Kathy Ruiz

Technical Reviewer
Eric Foster-Johnson

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Senior Compositor
Gloria Schurick

This Book Is Safari Enabled
The Safari®Enabled icon on the cover of your favorite technology book means the book is available through
Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find
code samples, download chapters, and access technical information whenever and wherever you need it.
To gain 45-day Safari Enabled access to this book:
n Go to http://www.informit.com/onlineedition
n Complete the brief registration form
n Enter the coupon code JBKT-NKCJ-BJ2U-RSIN-7TC8

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

www.informit.com/aw
http://www.informit.com/onlineedition

Foreword

If there is one lesson to be learned from the Dojo Toolkit, it is “Be careful what you
wish for!”When we first started Dojo, we had the modest goal of creating a JavaScript
toolkit that would be useful and would prevent expert JavaScript developers from having
to reinvent the wheel.With the buzz and excitement that would soon follow with the
emergence of the term Ajax, we quickly found ourselves as the creators of a toolkit used
by thousands and thousands of developers and millions of users in a very short time.

In the case of any project or company that grows much faster than expected, there are
growing pains along the way. It has taken Dojo nearly 18 months to address and solve
most of the issues caused by its rapid success: performance, comprehension, ease of use,
and documentation. Open source projects are notoriously bad at both marketing and
documentation, and Dojo was initially no exception to the rule.With each release from
Dojo 0.9 to 1.1 and beyond, documentation and API viewing tools have improved sig-
nificantly and are now something we’re proud to have rather than being a blemish to the
project.

Above and beyond source code documentation, demos, and great examples is the
need for great books.When learning something new, the most difficult things to learn
are usually the questions you don’t know how to ask.The vernacular and philosophy of
Dojo is very powerful and efficient but often leaves developers new to Dojo not know-
ing where to get started. Dojo in particular and Ajax in general also have the learning
curve of basically needing to understand a wide range of technologies, from server-side
programming languages to JavaScript, CSS, HTML, and the DOM, plus the browser
quirks and inconsistencies across each.Toolkits such as Dojo go to great lengths to rescue
developers from the most common and egregious of these issues, but developers creating
something new will inevitably run into trouble along the way.

There are numerous opportunities for developers and users of Dojo to solve their
problems and get up to speed, from reading this book to online community support, and
the commercial support provided by companies such as SitePen.

Dojo has thrived and succeeded because of its transparent and open development
process.All code is licensed under the AFL and BSD, licenses which are focused on
adoption rather than control.

Contributions have been received from hundreds of individuals and from companies
such as AOL, Google, IBM, Nexaweb, Renkoo, SitePen, Sun,WaveMaker, and many
more.We have a strict but low-barrier contribution policy that requires all source code
contributions to be made through a Contributor License Agreement, ensuring that usage
of Dojo will not cause legal or IP headaches now or in the future.

And we innovate and experiment more than any other toolkit, introducing features in
DojoX that are far ahead of other toolkits.

I first met James Harmon at a conference when he was giving a talk about Dojo.The
great thing about James’ approach was that he did an amazing job of simplifying the
message.Alex Russell and I have a tendency to beat people over the head with every
feature and every possibility, whereas James was able to distill complex topics down to
easy-to-follow concepts that help people quickly get up to speed with Dojo.

This book takes the same simple approach of clearly explaining how to create web
applications and web sites with Dojo in a manner that should make it easy, even for
developers who are not JavaScript experts, to quickly get up to speed and become
effective with the Dojo Toolkit.

Dylan Schiemann
CEO, SitePen
Cofounder, Dojo Toolkit

2
Using Dojo for Client-side

Validation

To err is human…

—Alexander Pope (1688–1744)

We all make mistakes, so input forms must anticipate that users will inadvertently
enter bad data. Identifying and correcting these mistakes is an important job of an
HTML form, and this chapter describes Dojo features that allow you to easily add vali-
dation.

2.1 Validating Form Fields
Validating input data on web pages is usually a function performed by the server.The
web page allows the user to enter data, and when the Submit button is pressed, the
browser wraps up the data into an HTTP request and sends it to the server.The server
checks each data field to make sure it is valid, and if any problems are found, a new form
along with error messages is sent back to the browser.Wouldn’t it be much more useful
if problems could be detected in the browser before a server request is made? This
approach would provide two primary advantages. It would lighten the load on the serv-
er, and, more importantly, it would notify the user of a problem with a data field almost
immediately after he or she entered the bad data.This supports the truism that errors are
cheapest to fix the closer the detection is to the original creation of the error. For exam-
ple, if there is a problem with a zip code field and the user is notified just after he enters
the bad zip code, then he is still thinking about zip code and can easily make the correc-
tion. If the user isn’t notified until the server response comes back, he’s already stopped

thinking about zip code—his mind has moved on to other concerns.This problem of
context switching is especially difficult when the server returns errors for many different
fields.

How can we drive validation closer to the entry of the data? There are two primary
techniques available.The first technique involves trying to prevent the error from being
entered at all. For example, if the form requires the user to enter a field that must con-
tain a numeric value of a certain length, we can use the size attribute available in
HTML to specify the maximum amount of characters the user can enter. So the user is
prevented by the browser from entering more characters than are allowed. Following is
an example from our form for the zip code field.

<label for="zipCode">Zip Code: </label>

<input type="text" id="zipCode" name="zipCode" size="10" />

This initial validation markup gives us more optimism than is deserved.We might be
hoping for many other attributes to provide some kind of client-side validation.
Unfortunately, the size attribute is basically the extent of HTML-based validation tech-
niques.There are no markup tags or attributes for minimum size or for data type. Nor is
there a way in HTML to designate that a field is required.

That brings us to the second type of validation available to us in the browser.We can
use JavaScript. Given the power of JavaScript, the sky is the limit in terms of types of
validations we can perform.We can trigger a JavaScript function to run after the user
enters a field, and that function can check to see if data is entered, check for a minimum
or maximum length, or even perform sophisticated pattern matching using regular
expressions.

Problem solved, correct? Not quite.The problem with depending on JavaScript as our
validation technique is that we have to write lots of code to implement the checks.
JavaScript code is required to perform the validation. Other JavaScript code tells the vali-
dation when to run.And even more JavaScript code is needed to display the error mes-
sages back to the user. Code, code, and more code. Suddenly, this approach doesn’t seem
as desirable anymore.

But this is where Dojo can come to the rescue. In this part of the tutorial, we explore
how Dojo can help us with validation by combining the two techniques we’ve dis-
cussed. In other words, we’ll be able to turn on validation by using simple HTML
markup, but we’ll let Dojo provide the complex JavaScript code automatically. Let’s get
started.

2.2 Tutorial Step 2—Adding Client-side
Validation
In this step of the tutorial, we use Dojo to provide basic client-side validations.We look
at a number of useful techniques within the context of making real enhancements to our
form. One by one, we examine the fields that these techniques are appropriate for.

26 Chapter 2 Using Dojo for Client-side Validation

2.2.1 Validate the First Name Field
Let’s look at the “First Name” field first.What are the validations that we need to apply?
The data on this form feeds into our billing system, so the customer’s name is very
important—the field must be required.Are there any other validations? Not only do we
want to get the data, but also we’d like it to be in a consistent format. Possibly the data
should be stored in all capital letters. Or maybe we want to ensure that the data is not in
all capitals. Let’s choose the latter—but we’ll still want to make sure that at least the first
letter is capitalized.As in many of the issues related to validation, things are more com-
plicated then they might first appear. For example, are we allowing enough room to
enter long names? Will single-word names such as “Bono” be allowed? For our purposes,
we’ll keep it simple.

We turn on validation by using special attribute values in the HTML markup for
these fields.The following code will add validation to the fields.

<label for="firstName">First Name: </label>

<input type="text" id="firstName" name="firstName"

dojoType="dijit.form.ValidationTextBox"

required="true"

propercase="true"

promptMessage="Enter first name."

invalidMessage="First name is required."

trim="true"

/>

The code is formatted to be more readable by using line breaks.To summarize what has
happened:All we’ve done is add some new attributes to the <input> tag for the field.
Each of the new attributes affects the validation in some way.

Notice the following line of code from the preceding example:

dojoType="dijit.form.ValidationTextBox"

This attribute is not a standard HTML <input> tag attribute. Depending on which
editor you are using to modify the file, it may even be highlighted as an error.The
dojoType attribute is only meaningful to the Dojo parser, which was referenced in step
1. Remember the code we needed to include the parser? It is shown here:

dojo.require("dojo.parser");

The parser reads through the HTML and looks for any tag that contains dojoType as
one of its attributes.Then the magic happens.The parser replaces the element with the
Dojo widget specified by dojoType. In this case, the widget
dijit.form.ValidationTextBox is substituted for the Document Object Model
(DOM) element created from the <input> tag.

272.2 Tutorial Step 2—Adding Client-side Validation

How does Dojo know what to replace the tag with? That is determined by the spe-
cific widget. Each widget behaves a little differently. HTML markup and JavaScript code
is associated with the widget in its definition, and that is how Dojo knows what to
replace the original element with—which brings us to the missing piece of the puzzle.
We need to tell Dojo to include the code for the widget by specifying the widget in
JavaScript.To do that, we include the following JavaScript code after the link to Dojo
and after the reference to the Dojo parser.

dojo.require("dijit.form.ValidationTextBox");

Notice that the name of the widget specified as the value for the dojoType attribute
is the same as the argument for the dojo.require call.This is the linkage that allows
Dojo to associate the HTML markup with the JavaScript code for that widget.

To emphasize this process, let’s review the HTML markup specified in the original
page and then compare it to the HTML markup after the parser runs.To see the original
markup, we merely have to view the source of the file form.html. Seeing the new
markup is a bit harder.The browser converts the original HTML into a DOM tree rep-
resenting the various tags.The Dojo parser modifies the DOM elements using
JavaScript, but the original source for the page is untouched.We need some tool that
will convert the DOM (the browser’s internal representation of the page) back into
HTML for our review.The Firefox browser provides a DOM Inspector to do just that.
An excellent add-on to Firefox, called Firebug, also allows the DOM to be inspected.
Firebug also provides a number of excellent tools for developing web pages such as its
DOM inspection capabilities we can use to inspect the DOM after the Dojo parser has
run—so we can see exactly what it does. But before we see how the DOM changes, let’s
first review the original <input> tag for the first name field.

<input

type="text"

id="firstName"

size="20"

dojoType="dijit.form.ValidationTextBox"

required="true"

propercase="true"

promptMessage="Enter first name."

invalidMessage="First name is required."

trim="true"

/>

The code has been reformatted to make it more readable by adding some line breaks.
The attributes from dojoType through trim are not valid HTML attributes.They are
meaningful only to the Dojo parser and drive some features of the Dojo widget they
pertain to. Now let’s see what the HTML looks like after the parser runs.

28 Chapter 2 Using Dojo for Client-side Validation

<input

type="text"

tabindex="0"

maxlength="999999"

size="20"

class="dijitInputField dijitInputFieldValidationError dijitFormWidget"

name="firstName"

id="firstName"

autocomplete="off"

style=""

value=""

disabled="false"

widgetid="firstName"

dojoattachevent="onfocus,onkeyup,onkeypress:_onKeyPress"

dojoattachpoint="textbox,focusNode"

invalid="true"

valuenow=""

/>

The preceding code has also been reformatted for readability, adding line breaks and
changing the order of the attributes a little. Notice that a number of valid HTML attrib-
utes have been added to the <input> DOM element such as tabindex, class, auto-
complete, and disabled.And additionally, a number of Dojo-only attributes have been
added such as widgetid, dojoattachevent, dojoattachpoint, invalid, and val-
uenow.We look at these in more detail in Part II,“Dojo Widgets,” but for now it’s
enough just to point out that the parser is rewriting our HTML.The parser is doing
even more work that we can see here. It is associating various event handler functions to
events that might occur on this DOM element. For instance, when the user enters or
changes the value in the field, Dojo functions get called, which perform validation.And
Dojo even creates objects that correspond to the HTML tags.We can’t tell that this is
happening just from seeing the HTML markup, but behind the scenes, that is exactly
what Dojo is doing.

Let’s review the other special Dojo attributes. Each Dojo widget has a set of proper-
ties that control its behavior.These properties are set by various Dojo widget attribute
values.

n The required=”true” attribute setting tells Dojo that this field must be entered.
n The propercase=”true” attribute setting tells Dojo to reformat the field value

entered by the user. In this case, the setting for propercase tells Dojo to make
sure that the first letter is capitalized and subsequent letters are in lowercase. In
other words, Dojo will put the entered value into the format for a typical proper
noun.

292.2 Tutorial Step 2—Adding Client-side Validation

n The promptMessage=”Enter first name.” attribute setting tells Dojo to dis-
play a message next to the field to instruct the user on what kind of data can be
entered into the field.The prompt message displays while the field is in focus.

n The invalidMessage=”First name is required.” attribute setting causes
Dojo to display a message next to the field if it fails the validation. In our case, if
the user does not enter a value, then a message will appear.

n The trim=”true” attribute setting tells Dojo to remove any leading or trailing
spaces from the entered value before sending it to the server.

Now let’s run the page and see how it behaves. Because this is the first field on the
page, the field gets focus, and the cursor immediately is placed on the input area for the
“First Name” field.

30 Chapter 2 Using Dojo for Client-side Validation

Notice that we get a message box that says “Enter first name.” Dojo calls this a Tool Tip,
and it has dynamic behavior. It is only displayed when the field has focus (the cursor is
in the field), and once the field loses focus, the message disappears.The message appears
on top of any visible element below it, so there is no need to leave room for it when
designing your page.

Try entering different values in the field and then press <tab> to leave the field. For
example, enter “ joe “ and watch it be transformed into “Joe” with leading and trailing
spaces removed and the first letter of the name capitalized.

NOTE:
You might not agree with the various validations I have chosen. For example, one early
review of this text pointed out that “LaToya” would be a hard name to validate. You could
probably make a case for different validations, and I could probably agree with you. But I’ve
chosen the ones I have not only to represent my example application, but also to highlight
certain Dojo features—so I’m sticking to them!

2.2.2 Validating the Last Name Field
The last name field has the same validations as the first name field does.There is

nothing extra to do for this field and nothing new to learn. Just replace the <input> tag
for Last Name with the following code.

<input type="text" id="lastName" name="lastName"

dojoType="dijit.form.ValidationTextBox"

required="true"

propercase="true"

promptMessage="Enter last name."

invalidMessage="Last name is required."

trim="true"

/>

2.2.3 Validating the User Name Field
We are going to allow the user to manage his or her own account information in our

application.To provide some security we need the user to make up a user name that he
or she can use later to sign on to the system.This field will be required, and we’d like it
to always be entered in lowercase.To validate this field, we’ll use the same Dojo widget
that we’ve already used, dijit.form.ValidationTextBox, but we’ll use a new attrib-
ute called lowercase to force the transformation of the entered data into all lowercase
letters.

There are some additional validations we’d like to do on this field. For instance, is this
user name already assigned to someone else? We could check the server for existing val-
ues. However, because this validation requires interaction with the server, we’ll save it for
step 3 of the tutorial and focus on only the client-side validation right now.

The following HTML markup is needed to enable validation for this field.

<input type="text" id="userName" name="userName"

dojoType="dijit.form.ValidationTextBox"

required="true"

promptMessage="Enter user name."

trim="true"

lowercase="true"

/>

2.2.4 Validating the Email Address Field
We need to communicate with our customers so we’ll get their email addresses.This

will be a required field.We’ll also make it all lowercase for consistency. In addition, we’d
like to make sure that the value entered in this field is also in the correct format for an
email address.There is no way to know if it is a working email until we actually try to
send something to it, but at least we can make sure that it contains a “@” character and
appears to reference a valid domain.

How can we specify the desired format? By using a specialized pattern matching lan-
guage known as regular expressions, we can specify a pattern of characters to check the value
against.We need to build a regular expression to validate for email addresses.At this point
in our discussions, let’s not go on a long detour to discuss the building of these expressions.

NOTE:
Some great information on building regular expressions can be found at the Mozilla
Developer Center at http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:
Global_Objects:RegExp.

312.2 Tutorial Step 2—Adding Client-side Validation

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference:Global_Objects:RegExp

The following is regular expression that can be used to validate most formats of email
addresses—most because it is surprisingly difficult to validate for all possible email
addresses.This is because of some of the unusual variations such as domains longer than
four characters such as “.museum” or addresses consisting of a sub-domain. But the fol-
lowing regular expression will work for most.

[\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b]+

NOTE:
For more information on validating email addresses, the following link will get you to a Dojo
Forum article describing a regular expression for email: http://dojotoolkit.org/forum/dijit-
dijit-0-9/dijit-support/text-validation.

The ValidationTextBox contains a special property for validating against regular
expressions.The attribute to use is regExp—just specify the regular expression as its
value. Replace the <input> tag for email with the following code in “form.html” to
specify validation for the email address field.

<input type="text" id="email" name="email" size="30"

dojoType="dijit.form.ValidationTextBox"

required="true"

regExp="\b[a-zA-Z0-9._%-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}\b"

promptMessage="Enter email address."

invalidMessage="Invalid Email Address."

trim="true"

/>

Validating email addresses is a really interesting subject.There are quite a few variants
to the simple name@company.com format that we often see. For a really thorough dis-
cussion of email, you should review the RFC rules.The following link will get you to
the Wikipedia page that describes email, from which you can link to the official RFC
documents: http://en.wikipedia.org/wiki/E-mail_address.

2.2.5 Validating the Address Field
The address field will contain the first line of the user’s mailing address.We’ll make it
required.We will use the ValidationTextBox, and we have seen all of the attributes
already. Replace the <input> tag for address with the following code.

<input type="text" id="address" name="address" size="30"

dojoType="dijit.form.ValidationTextBox"

required="true"

promptMessage="Enter address."

invalidMessage="Address is required."

trim="true"

/>

32 Chapter 2 Using Dojo for Client-side Validation

http://dojotoolkit.org/forum/dijit-dijit-0-9/dijit-support/text-validation
http://dojotoolkit.org/forum/dijit-dijit-0-9/dijit-support/text-validation
http://en.wikipedia.org/wiki/E-mail_address

There are many additional validations that can be performed on address data, the
most important being to ensure that the address is an actual address. Standard abbrevia-
tions such as “St” for “Street” could also be allowed.These additional validations could
be done by a number of web services available from the U.S. Postal Service, but that is
really outside the scope of this tutorial.

2.2.6 Validating the City Field
The city field will contain the value for the city in the user’s mailing address.We’ll make
it required.We will use the ValidationTextBox. Replace the <input> tag for address
with the following code.

<input type="text" id="city" name="city" size="30"

dojoType="dijit.form.ValidationTextBox"

required="true"

promptMessage="Enter city."

invalidMessage="City is required."

trim="true"

/>

2.2.7 Validating the Zip Code Field
The zip code field is part of the mailing address and is required.There are some addi-

tional validations we can apply. Our hypothetical company is a U.S. corporation and only
provides service to U.S. customers, so we’ll limit our address to valid U.S. addresses,
which means that the zip code must be in one of two forms. Either it is a 5-digit num-
ber, or it is a 5-digit number followed by a dash and then followed by a 4-digit number.
If we can come up with a regular expression to test for either format, then we’re golden!

Replace the <input> tag for zip code with the following to enable Dojo validation
for this field.

<input type="text" id="zipCode" name="address" size="30"

dojoType="dijit.form.ValidationTextBox"

trim="true"

required="true"

regExp="\d{5}([\-]\d{4})?$"

maxlength="10"

promptMessage="Enter zip code."

invalidMessage="Invalid zip code (NNNNN) or (NNNNN-NNNN)."

/>

An interesting feature of the preceding code is that we’ve got two overlapping valida-
tions.The maxlength attribute prevents the value from being over 10 digits, but so does
that regular expression.What are the implications of this? One could argue that it is inef-
ficient because both validations will be executed. But they each operate differently on
the page, which might justify using both. If the user tries to enter a zip code that is 12

332.2 Tutorial Step 2—Adding Client-side Validation

digits long, he will be notified as he tries to type the eleventh digit, rather than after typ-
ing all 12 digits and pressing tab to leave the field. By using both techniques, the error is
detected sooner.

NOTE:
This chapter has stopped short of describing validations for the “Start Service” and
“Comments” fields. This is because we will use more advanced Dojo widgets to validate
these fields, which are described in Chapter 4, “Using Dojo Widgets.”

Summary
The Dojo widget dijit.form.ValidationTextBox provides many common client-side
validations. Include the ValidationTextBox by referencing it in the <input> tag for the
field that needs the validation.

dojoType="dijit.form.ValidationTextBox"

Remember to tell the page that it needs the JavaScript code for the widget by coding a call
to the require method somewhere after the call to the Dojo parser.

dojo.require("widget dijit.form.ValidationTextBox");

Additional attributes in the <input> tag specify behavior for the ValidationTextBox. A
few are listed here:

require="true" makes the field required.

trim="true" removes leading blanks.

lowercase="true" converts field to all lower case letters.

We’ve now completed step 2 of the tutorial. The changes we’ve implemented have added
client-side validation to our form. We were able to add validation almost exclusively through
modifying the HTML—only a small amount of JavaScript was necessary to include the Dojo
validation code. Client-side validation is an extremely powerful capability and makes our
page much more usable. Yet by using Dojo, we obtain this power without the corresponding
cost of writing a lot of JavaScript.

In this chapter we’ve focused on functionality that doesn’t require a call to the server.
In the next chapter the server will play a role.We’ll make calls to the server using the
XMLHttpRequest to get data and perform validations. Now that’s Ajax!

34 Chapter 2 Using Dojo for Client-side Validation

A
AccordianContainer widget, 87

action attribute, 59

adding

client-side validation, 26
address fields, 32-33
city fields, 33
email address fields, 31-32
First Name fields, 27-30
Last Name fields, 30-31
to standard HTML data entry

forms, 13
User Name fields, 31
zip code fields, 33

server-side features to standard HTML
data entry forms, 13

server-side validation, 36
assigning even handler functions,

36-38
making calls to servers, 38-42

widgets to web pages, 51
dijit, 52

address fields

standard HTML data entry forms, 8
validating, 32-33

AIR (Adobe Integrated Runtime), 196

Ajax, 51

history of, 190
remoting, 259-260

Ajax libraries, 35

Ajax Remoting, 268

forms, 269-270
dojo.formToJson, 274
dojo.formToObject, 270
dojo.formToQuery, 272-273
dojo.objectToQuery, 271-272
dojo.queryToObject, 274

Ajax requests, 35

animation, 283-285

dojo.animateProperty, 285-286
fades, 284
fading background colors, 283
standard animation effects, 286

dojo.fx.chain, 290-291
dojo.fx.combine, 291
dojo.fx.fadeIn, 290
dojo.fx.fadeOut, 289
dojo.fx.slideTo, 287
dojo.fx.toggler, 291-292
dojo.fx.wipeIn, 288-289
dojo.fx.wipeOut, 287-288

AOL, CDN (Content Delivery Network), 19

AOP (Aspect Oriented Programming), 251,
256-257

dojo.connect, 257
API (Application Program Interface), 205

dojo.declare, 231-233
Aspect Oriented Programming. See AOP

assigning

event handler functions, 36-38
event handlers

with dojo.connect, 252-253
usage examples, 253-254

attribute selectors, 280

attributes, 77

action, 59
autoComplete, 44
class, 74
constraints, 54
dojoType, 52-53
execute, 61
forceValidOption, 44
onChange, 45

special Dojo attributes, 29
ValidationTextBox, 34

B
behavioral methods, 78

binding Dojo data stores to widgets, 49

build.txt, 202

buildRendering, 82

Burke, James, 205

Button widget, 83

C
calls to servers, making, 38-42

Cascading Style Sheets (CSS), 137, 214

CDN (Content Delivery Network), 19

CheckBox widget, 84

city fields

standard HTML data entry forms, 10
validating, 33

class attribute, 74

class attribute selectors, 280

classes, 229-230

dijit.form._FormWidget class, 92-93
methods, 93-94
properties, 93

dijit.layout._LayoutWidget, 138
dojo.declare API, 231-233
dojo.extends, 234
dojo.mixin, 233
inheritance, 231
superclasses, 231

client-side validation, adding, 26

address fields, 32-33
city fields, 33
email address fields, 31-32
First Name fields, 27-30

304 Ajax requests

Last Name fields, 30-31
To standard HTML data entry

forms, 13
User Name fields, 31
zip code fields, 33

code for Dojo Toolkit, including, 19-20

code changes, reviewing in tutorials, 21-22

ColorPalette widget, 89

ComboBox widget, 44

ComboButton widget, 84

comments fields, standard HTML data entry
forms, 11-12

components of Dojo widgets, 70

HTML tags, 70-74
JavaScript, 76-78
styles, 74-76

console.log, 38

console.log method, 299

constraints attribute, 54

Content Delivery Network (CDN), 19

ContentPane widget, 87

counter, 225

create method, Widget, 81

CSS (Cascading Style Sheet), 137, 214

CSS selectors, 279

attribute selectors, 280
class attribute selectors, 280
dojo.query, 282-283
element ID selectors, 279-282
selector grouping, 279
simple selectors, 279
structural selectors, 280

D
data

getting data entered by users, 39-40
sending to servers, 40-41, 45-49

data sources, exposing, 46-48

data validation, improving, 4

DateTextBox widget, 53-55, 86

decimal values, 283

DHTML (dynamic HTML), 189-190

Dialog widget, 89

dijit, 52, 69

first-level directories, 201
dijit.byID(), 52

dijit.ColorPalette, 172

dijit.Dialog, 164-165

dijit.Editor, 184

dijit.form.Button, 96-97

dijit.form.CheckBox, 104-105

dijit.form.ComboBox, 128-129

dijit.form.ComboButton, 100-101

dijit.form.CurrencyTextBox, 120-121

dijit.form.DateTextBox, 125-127

dijit.form.DropDownButton, 98-99

dijit.form.FilteringSelect, 131-132

dijit.form.Form, 133-134

dijit.form.MappedTextBox, 114-115

dijit.form.NumberSpinner, 179-180

dijit.form.NumberTextBox, 118-119

dijit.form.RadioButton, 106-107

dijit.form.RangeBoundTextBox, 116-117

dijit.form.Slider, 176-178

dijit.form.Textarea, 183

dijit.form.TextBox, 108-110

dijit.form.TimeTextBox, 122-124

dijit.form.ToggleButton, 102-103

dijit.form.ValidationTextBox, 111-113

dijit.form._FormWidget, 80

dijit.form._FormWidget class, 92-93

methods, 93-94
properties, 93

305dijit.form._FormWidget class

dijit.InlineEditBox, 181-182

dijit.layout.AccordionContainer, 150-151

dijit.layout.ContentPane, 140-142

dijit.layout.LayoutContainer, 143-144

dijit.layout.SplitContainer, 145-147

dijit.layout.StackContainer, 148-149

dijit.layout.TabContainer, 152-154

dijit.layout._Layout, 80

dijit.layout._LayoutWidget, 138

methods, 139
dijit.Menu, 157-161

dijit.MenuItem, 157

dijit.MenuSeparator, 157

dijit.PopupMenuItem, 158

dijit.ProgressBar, 170-171

dijit.Toolbar, 162-163

dijit.Tooltip, 168

dijit.TooltipDialog, 166-167

dijit.Tree, 173-175

dijit._Container, 80

dijit._Templated, 79, 83

dijit._Widget, 79-82

methods, 80-81
directories

first-level directories, 201
second-level directories, 202-203

DIV tags, 137

Document Object Model. See DOM

document.getElementById, 278

doh.register(), 296

doh.run, 296

Dojo, 4, 12

description of, 192-193
downloading, 19
future of, 197
goals for using, 4-5

history of, 191
licensing, 195
people who should use Dojo, 194-195
problems Dojo will solve, 193-194
purpose of, 191-192

dojo, first-level directories, 201

Dojo base module, 205

dojo.array module, 208
dojo.color module, 208-209
dojo.connect module, 206
dojo.declare module, 206
dojo.Deferred module, 207
dojo.event module, 209
dojo.json module, 207
dojo.lang module, 205-206
dojo._base.fx module, 216-217
dojo._base.html module, 209-211
dojo._base.NodeList module, 211-214
dojo._base.query module, 214-215
dojo._base.xhr module, 215-216

Dojo core modules, 217-219

features of, 219-220
Dojo data stores, 48-49

binding to widgets, 49
Dojo event objects, 255

Dojo form widgets, 91

creating, 60-61
dijit.form.Button, 96-97
dijit.form.CheckBox, 104-105
dijit.form.ComboBox, 128-129
dijit.form.ComboButton, 100-101
dijit.form.CurrencyTextBox, 120-121
dijit.form.DateTextBox, 125-127
dijit.form.DropDownButton, 98-99
dijit.form.FilteringSelect, 131-132
dijit.form.Form, 133-134

306 dijit.InlineEditBox

dijit.form.MappedTextBox, 114-115
dijit.form.NumberTextBox, 118-119
dijit.form.RadioButton, 106-107
dijit.form.RangeBoundTextBox,

116-117
dijit.form.TextBox, 108-110
dijit.form.TimeTextBox, 122-124
dijit.form.ToggleButton, 102-103
dijit.form.ValidationTextBox, 111-113
dijit.form._FormWidget class, 92-93

methods, 93-94
properties, 93

explanation of documentation, 94-95
Dojo layout widgets, 138

dijit.layout.AccordionContainer,
150-151

dijit.layout.ContentPane, 140-142
dijit.layout.LayoutContainer, 143-144
dijit.layout.SplitContainer, 145-147
dijit.layout.StackContainer, 148-149
dijit.layout.TabContainer, 152-154
dijit.layout_LayoutWidget, 138

methods, 139
Dojo Menu widgets, 156

dijit.ColorPalette, 172
dijit.Dialog, 164-165
dijit.Editor, 184
dijit.form.NumberSpinner, 179-180
dijit.form.Slider, 176-178
dijit.form.Textarea, 183
dijit.InlineEditBox, 181-182
dijit.Menu, 157-161
dijit.MenuItem, 157
dijit.MenuSeparator, 157
dijit.PopupMenuItem, 158
dijit.ProgressBar, 170-171
dijit.Toolbar, 162-163

dijit.Tooltip, 168
dijit.TooltipDialog, 166-167
dijit.Tree, 173-175

Dojo objects. See objects

Dojo packaging system, 219

Dojo Toolkit, including code for, 19-20

Dojo unit testing framework, 294

creating new unit tests, 294-296
registering unit tests, 296
reviewing results of unit tests, 297
running unit tests, 296

Dojo widgets, 52

components of, 70
HTML tags, 70-74
JavaScript, 76-78
styles, 74-76

creating your own, 90
DateTextBox widget, 53-55
defined, 68-70
hierarchy of, 78-80

dijit._Templated, 83
dijit._Widget, 80-82

Rich Text Editor widget, 55-58
specialized widgets, 80
TextBox widget, 74
visual overview of, 83

form widgets, 83-86
layout widgets, 86-87
specialized widgets, 88-90

dojo.addOnLoad, 251

dojo.animateProperty, 285-286

dojo.array module, 208

dojo.byID(), 52

dojo.color module, 208-209

dojo.connect

AOP, 257
assigning event handlers, 252-253

307dojo.connect

dojo.connect module, 206

dojo.date.locale functions, 218

dojo.declare, 77

API for, 231-233
objects, 229

dojo.declare module, 206

dojo.Deferred module, 207

dojo.disconnect, 254

dojo.editor, 55

dojo.event module, 209

dojo.every, 63

dojo.exists, 236

dojo.extends, 234

dojo.formToJson, 274

dojo.formToObject, 270

dojo.formToQuery, 272-273

dojo.fromJson, 247-248

usage examples, 248
dojo.fx.chain, 290-291

dojo.fx.combine, 291

dojo.fx.fadeIn, 290

dojo.fx.fadeOut, 289

dojo.fx.slideTo, 287

dojo.fx.toggler, 291-292

dojo.fx.wipeIn, 288-289

dojo.fx.wipeOut, 287-288

dojo.getObject, 236

dojo.isObject, 237

dojo.json module, 207

dojo.lang functions, 206

dojo.lang module, 205-206

dojo.mixin, 233

dojo.objectToQuery, 271-272

dojo.query, selectors, 282-283

dojo.queryToObject, 274

dojo.require function, 53

dojo.setObject, 236

dojo.string.pad, 239-241

usage examples, 241
dojo.string.substitute, 239-243

usage examples, 243-244
dojo.toJson, 246

usage examples, 246-247
dojo.xhrGet, 40-41, 261-263

handleAs, 264
dojo.xhrPost, 264-268

error handling, 268-269
dojo._base.fx module, 216-217

dojo._base.html module, 209-211

dojo._base.NodeList module, 211-214

dojo._base.query module, 214-215

dojo._base.xhr module, 215-216

dojoType attribute, 52-53

dojox, first-level directories, 201

DOM (Document Object Model), 193,
277-278

identifying DOM elements, 278-279
CSS selectors, 279-282
dojo.query, 282-283

dot notation, objects, 234-235

downloading

Dojo, 19
what you get when downloading,

199-200
source files for tutorials, 15-18

DropDownButton widget, 83

dual licensing, 195

dynamic HTML (DHTML), 189

E
Editor widget, 57

EIAO (Everything Is An Object), 234

element ID selectors, 279-282

308 dojo.connect module

element nodes, 278

email address fields

standard HTML data entry forms, 8
validating, 31-32

encapsulation, objects, 224-225

error conditions, remoting requests, 267

error handling, dojo.xhrPost, 268-269

event handler functions, assigning, 36-38

event handlers, 252

assigning
with dojo.connect, 252-253
usage examples, 253-254

removing, 254
event models, 249

events, 251
defined, 250-251

events, 251

defined, 250-251
representing as objects, 254-255

Everything Is An Object (EIAO), 234

execute attribute, 61

exposing data sources, 46-48

extension points, 78

eye candy, 14

F
fades, 284

fading background colors, 283

features, Dojo core modules, 219-220

fields

address fields, validating, 32-33
city fields, validating, 33
email address fields, validating, 31-32
First Name fields, validating, 27-30
Last Name fields, validating, 30-31

standard HTML data entry forms
address fields, 8
city fields, 10
comments fields, 11-12
email address fields, 8
name fields, 6-7
service date fields, 11
state fields, 8-9
zip code fields, 10-11

User Name fields, validating, 31
validating, 25-26
zip code fields, validating, 33

FilteringSelect widget, 84

Firebug, 28

Firefox plug-ins, Selenium, 298

First Name fields, validating, 27-30

first-level directories, 201

focus() method, 62

forceValidOption attribute, 44

form element widgets, 92

form elements, checking for validity, 62

form fields, validating, 25-26

form submissions, intercepting, 61

forms, 91, 269-270

dojo.formToJson, 274
dojo.formToObject, 270
dojo.formToQuery, 272-273
dojo.objectToQuery, 271-272
dojo.queryToObject, 274
processing, 59-60

checking that all form elements are
valid, 62

creating Dojo Form widgets, 60-61
intercepting form submissions, 61
submitting forms to servers, 63-64

309forms

standard HTML data entry forms, 5-6
address fields, 8
city fields, 10
comments fields, 11-12
email address fields, 8
name fields, 6-7
service date fields, 11
state fields, 8-9
user names, 7
zip code fields, 10-11

standard HTML data entry forms. See
standard HTML data entry forms

form widgets, 83-86

functional testing, 298

G
Garrett, Jesse James, 190

getValue method, 45

goals

for tutorials, 4
for using Dojo, 4-5

Google Maps, 190

Google Web Toolkit (GWT), 196

grouping selectors, 279

GWT (Google Web Toolkit), 196

H
handleAs, XHR request, 264

hierarchy of Dojo widgets, 78-80

dijit._Templated, 83
dijit._Widget, 80-82

history

of Ajax, 190
of Dojo, 191
of JavaScript, 189-191

HTML tags, Dojo widgets, 70-74

I
icons, Rich Text Editor Widget, 57

identifying DOM elements, 278-279

CSS selectors, 279-282
dojo.query, 282-283

idioms, 228

improving

data validation, 4
performance, 4

incrementCounter, 225

inheritance, classes, 231

InlineEditBox widget, 88

integration testing, 298

intercepting form submissions, 61

ioArgs, 263

isValid() method, 62

J-K
JavaScript

Dojo widgets, 76-78
history of, 189-191
validating form fields, 26

JavaScript Object Notation. See JSON

JavaScript prototypes, objects, 227-228

JSON (JavaScript Object Notation), 47,
207, 244

dojo.fromJson, 247-248
usage examples, 248

dojo.toJson, 246
usage examples, 246-247

JSON format, 46

L
Last Name field, validating, 30-31

layout widgets, 86-87, 137

LayoutContainer widgets, 86

310 forms

libraries, Ajax libraries, 35

licensing

Dojo, 195
dual licensing, 195

logging, 298-299

advanced logging, 300
logging message types, 301
timers, 300

basic logging, 299-300
logging message types, 301

M
makeInactive, 230

Menu widget, 88

Menu widgets, 156

dijit.ColorPalette, 172
dijit.Dialog, 164-165
dijit.Editor, 184
dijit.form.NumberSpinner, 179-180
dijit.form.Slider, 176-178
dijit.form.Textarea, 183
dijit.InlineEditBox, 181-182
dijit.Menu, 157-161
dijit.MenuItem, 157
dijit.MenuSeparator, 157
dijit.PopupMenuItem, 158
dijit.ProgressBar, 170-171
dijit.Toolbar, 162-163
dijit.Tooltip, 168
dijit.TooltipDialog, 166-167
dijit.Tree, 173-175

message types, logging, 301

methods

behavioral methods, 78
dijit.form.FormWidget, 93-94
dijit.layout._LayoutWidget, 139

dijit.MenuItem, 157
dijit._Widget, 80-81
focus(), 62
getValue, 45
isValid(), 62
submit(), 63

modules, 203-204

Dojo base module, 205
dojo.array module, 208
dojo.color module, 208-209
dojo.connect module, 206
dojo.declare module, 206
dojo.Deferred module, 207
dojo.event module, 209
dojo.json module, 207
dojo.lang module, 205-206
dojo._base.fx module, 216-217
dojo._base.html module, 209-211
dojo._base.NodeList module,

211-214
dojo._base.query module, 214-215
dojo._base.xhr module, 215-216

Dojo core modules, 217-219
features of, 219-220

naming conventions and name space,
204-205

N
name space, modules, 204-205

naming conventions, modules, 204-205

NodeList object, functions, 212

nodes, 278

NumberSpinner widget, 85

311NumberSpinner widget

O
object graphs, 234-235

Object Oriented (OO) Analysis and
Design, 223

objects, 223-224

creating, 224
Dojo objects, 228

dojo.declare, 229
dojo.exists, 236
dojo.getObject, 236
dojo.isObject, 237
dojo.setObject, 236

dot notation, 234-235
encapsulation, 224-225
JavaScript prototypes, 227-228
object graphs, 234-235
representing events as, 254-255
templates, 225-226

onChange attribute, 37-38, 45

OO (Object Oriented language), 223

P
page layout, 137-138

performance, improving, 4

“poor man’s debugger,” 299

postCreate, 82

postMixInProperties, 82

processing

forms, 59-60
checking that all form elements are

valid, 62
creating Dojo Form widgets, 60-61
intercepting form submission, 61
submitting forms to servers, 63-64

standard HTML data entry forms, 14
ProgressBar widget, 88

properties

dijit.form.FormWidget, 93
dijit.MenuItem, 157

Prototype, 196

prototype chaining, 228

prototypes, JavaScript prototypes (objects),
227-228

R
RadioButton widget, 84

registering unit tests, 296

remoting, 259-260

defined, 260
XMLHttpRequest, 260-261

dojo.xhrGet, 261-264
dojo.xhrPost, 264-269

remoting requests, error conditions, 267

removing event handlers, 254

rendering, 277

representing events as objects, 254-255

requests, Ajax requests, 35

responses from servers, handling, 41-42

retrieving data from servers, 43

getting value of state and sending to
servers, 45-49

selecting widgets, 43-44
reviewing results of unit tests, 297

RGB (Red/Blue/Green), 283

RIAs (Rich Internet Applications), 195-196

Rich Text Editor widget, 55-58

icons, 57
running

pages, tutorials, 22
unit tests, 296

312 object graphs

S
script tag, 61

script.aculo.us, 196

second-level directories, 202-203

selecting widgets, retrieving data from
servers, 43-44

Selenium, 298

sending data to servers, 40-41, 45-49

serialization, 246

server-side features, adding to standard
HTML data entry forms, 13

server-side validation, adding, 36

assigning event handlers and
functions, 36-38

making calls to servers, 38-42
servers

handling responses from, 41-42
making calls to, 38-42
retrieving data from, 43

getting value of state and sending
to servers, 45-49

selecting widgets, 43-44
sending data to, 40-41, 45-49
submitting forms to, 63-64

service date fields, standard HTML data
entry forms, 11

setTimeOut, 284

simple CSS selectors, 279

Slider widget, 85

source code, tutorials, 14

source files, downloading or creating for
tutorials, 15-18

special Dojo attributes, 29

specialized Dojo widgets, adding to standard
HTML data entry forms, 14

specialized widgets, 80, 88-90, 155-156

Menu widgets, 156
dijit.ColorPalette, 172
dijit.Dialog, 164-165
dijit.Editor, 184
dijit.form.NumberSpinner,

179-180
dijit.form.Slider, 176-178
dijit.form.Textarea, 183
dijit.InlineEditBox, 181-182
dijit.Menu, 157-161
dijit.MenuItem, 157
dijit.MenuSeparator, 157
dijit.PopupMenuItem, 158
dijit.ProgressBar, 170-171
dijit.Toolbar, 162-163
dijit.Tooltip, 168
dijit.TooltipDialog, 166-167
dijit.Tree, 173-175

SplitContainer widget, 86

StackContainer widget, 87

standard animation effects, 286

dojo.fx.chain, 290-291
dojo.fx.combine, 291
dojo.fx.fadeIn, 290
dojo.fx.fadeOut, 289
dojo.fx.slideTo, 287
dojo.fx.toggler, 291-292
dojo.fx.wipeIn, 288-289
dojo.fx.wipeOut, 287-288

standard HTML data entry forms, 5-6

address fields, 8
city fields, 10
client-side validation, adding, 13
comments fields, 11-12
email address fields, 8

313standard HTML data entry forms

including Dojo in forms, 12-13
name fields, 6-7
processing, 14
server-side features, adding, 13
service date fields, 11
specialized Dojo widgets, adding, 14
state fields, 8-9
user names, 7
zip code fields, 10-11

state fields, standard HTML data entry
forms, 8-9

stress testing, 298

strings, 239-240

dojo.string.pad, 240-241
usage examples, 241

dojo.string.substitute, 241-243
usage examples, 243-244

structural selectors, 280

style sheets, including, 20-21

styles, Dojo widgets, 74-76

submit() method, 63

submitting forms to servers, 63-64

superclasses, 231

T
TabContainer widget, 87

templates, object templates, 225-226

testing, 293-294

Dojo unit testing framework, 294
creating new unit tests, 294-296
registering unit tests, 296
reviewing results of unit tests, 297
running unit tests, 296

functional testing, 298
integration testing, 298

stress testing, 298
unit testing, 294

text strings. See also strings

JSON, 245
dojo.fromJson, 247-248
dojo.toJson, 246-247

Textarea widget, 85

TextBox widget, 74, 85

timers, logging, 300

ToggleButton widget, 84

Tool Tips, 30

Toolbar widget, 88

Tooltip widget, 89

TooltipDialog widget, 89

Tree widget, 89

tutorials

adding client-side validation, 26
address field, 32-33
city field, 33
email address field, 31-32
First Name field, 27-30
Last Name field, 30-31
User Name field, 31
zip code field, 33

Dojo widgets, 52
DateTextBox Widget, 53-55
Rich Text Editor widget, 55-58

goals for, 4
including Dojo, 15

code for Dojo Toolkit, 19-20
downloading or creating source

files, 15-18
style sheets, 20-21

introduction to, 3-4

314 standard HTML data entry forms

processing forms
checking that all forms elements

are valid, 62
creating Dojo Form widgets, 60-61
intercepting form submission, 61
submitting forms to servers, 63-64

retrieving data from servers, 43
getting value of state and sending

to the server, 45-49
selecting widgets for city field,

43-44
reviewing all code changes, 21-22
running the new page, 22
server-side validation, adding, 36-42
source code, 14

U
unit testing, 294

Dojo unit testing framework, 294
creating new unit tests, 294-296
registering unit tests, 296
reviewing results of unit tests, 297
running unit tests, 296

usage examples

assigning event handlers, 253-254
dojo.formToObject, 270
dojo.fromJson, 248
dojo.string.pad, 241
dojo.string.substitute, 243-244
dojo.toJson, 246-247

User Name field, validating, 31

user names, standard HTML data entry
forms, 7

userNameOnChange(), 37-38

users, getting data entered by, 39-40

util, first-level directories, 201

V
validating form fields, 25-26

validation

checking all form elements, 62
server-side validation, adding, 36-42

ValidationTextBox widget, 85

ValidationTextBox, 32

visual overview of Dojo widgets, 83

form widgets, 83-86
layout widgets, 86-87
specialized widgets, 88-90

W
web pages, adding widgets to, 51

dijit, 52
widgets, 52, 68

adding to web pages, 51
dijit, 52

binding to Dojo data stores, 49
ComboBox, 44
DateTextBox, 53-55
defined, 67-68
Dojo form widgets. See Dojo form

widgets
Dojo layout widgets. See Dojo layout

widgets
Dojo widgets. See Dojo widgets
form element widgets, 92
Form widgets, creating, 60-61
Rich Text Editor, 55-58
selecting for retrieving data from

servers, 43-44
specialized Dojo widgets, 14
specialized widgets. See specialized

widgets

315widgets

X-Y
XHR (XMLHttpRequest), 260-261

dojo.xhrGet, 261-263
handleAs, 264

dojo.xhrPost, 264-268
error handling, 268-269

XHR objects, 51

xhrGet(), 63

xhrPost, 265

XMLHttpRequest (XHR), 215, 260-261

dojo.xhrGet, 261-263
handleAs, 264

dojo.xhrPost, 264-268
error handling, 268-269

Z
zip code fields

standard HTML data entry forms,
10-11

validating, 33

316 XHR (XMLHttpRequest)

	Foreword
	2 Using Dojo for Client-side Validation
	2.1 Validating Form Fields
	2.2 Tutorial Step 2—Adding Client-side Validation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X-Y
	Z

