Social Networking for Business
Choosing the Right Tools and Resources to Fit Your Needs

Rawn Shah
Determining where to focus innovation efforts is a challenging open-ended and uphill battle. Most businesspeople look for answers from product and technical leadership balanced against the current business strategy. This often hinders a wider look at what needs and opportunities exist.

In large multinational organizations such as IBM, with many different product lines, research interests, and industry foci, this is multiplied. IBM’s answer was simple: Ask everyone. In 2006, its InnovationJam online event drew 150,000 business partners, employees, and even family members to focus on a number of high-level innovation themes. IBM has conducted such InnovationJams since 2001, but this was by far the largest. Thousands of users brainstormed, discussed, and debated ideas within each theme online to improve how people stay healthy, work toward a better planet, and improve finance and commerce. By committing $100 million to build new businesses for each theme, IBM created smarter healthcare payment systems, real-time language services, and a 3D Internet project.

Gathering input for innovation initiatives and corporate social responsibility isn’t new, but IBM’s approach was an innovation in itself for its time—the company cast a wide net and invited a multitude of perspectives, expertise areas, and deliberation to arrive at the best ideas.

IBM isn’t the only company working with groups of users on complex, subjective business problems. In its drive to provide innovative customer support, Verizon, a leading wireless phone and communications carrier, encourages a core of tech-savvy customers to answer
deep-level technical support questions for others at no cost. The company is taking advantage of a known phenomenon of users’ desire to help others as they themselves tinker on the systems. With the expertise of Lithium Technologies, a consultancy in Emeryville, California, Verizon is quickly learning how to shape its community toward the focused business goal of customer support.

Amazon.com, the well-known retailer of books and other products online, is discovering other ways to involve the collective energies of many individuals in helping it sell more. Through customer reviews, recommendations of similar products, and categorization of items based on how people really see products fitting together, Amazon is driving return-customer sales.

The list goes on: Best Buy is asking its workforce to predict future prices for its inventory of products. Disney reaches an increasingly online generation of children ages 6–11 with a safe online world of Club Penguin designed just for them. Busy executives—Jonathan Schwartz (CEO of Sun Microsystems), Bill Marriott (Chairman and CEO of Marriott International), Bob Lutz (Vice Chairman of General Motors), and David W. Hill, Yao Ying Jia, and Tomoyuki Takahashi (design executives at computer manufacturer Lenovo)—now communicate regularly through Internet blogs to customers, shareholders, and other industry watchers. Chacha.com provides fee-based services that enable mobile and online users to ask any question, which Chacha.com hands to its collections of experts to find and provide answers. Many businesses are now actively investigating how to harness the collaborative strength of their customers through online sites such as MySpace, Facebook, Second Life, and Twitter. Other businesses help their employees or business partners discover skilled resources, share expertise, or even develop new products and projects within their company.

From internal innovation to customer support, and even to developing new business services, all these companies are finding different ways to structure groups of people to work on common goals to solve business problems. You have probably used these tools, or others have used them to try to reach you. Like it or not, you will need to understand how they work, how they impact your business, or even how to turn them to your financial advantage. However, these companies aren’t “managing people” in the classic sense of task assignments, job roles, and team projects today. The approach they’re taking falls into a new field of software- and group-assisted business processes called social computing. (See the sidebar “Social Networking, Social Media, Social Computing: What’s the Difference?”)

According to the 2006 Global CEO Study by the IBM Institute for Business Value, CEOs expect that the top three primary sources of new ideas and innovation will come from business partners, general employees (other than internal research and development), and clients; 75% of CEOs agree that collaboration is a key influencer of innovation. A McKinsey report describes it as follows:

Although collaboration is at the heart of modern business processes, most companies are still in the dark about how to manage it...they do a poor job of shedding light on the largely invisible networks that help employees get things done across functional, hierarchical, and business unit boundaries.

By framing collaboration toward specific goals and methods instead of a large, amorphous concept, social computing helps develop and direct innovative development in an organization. At the same time, social computing is shaking up a fundamental aspect of business: how people communicate and work together to produce results. It has an impact on many areas of business and management: It changes team and organizational unit structures, who can participate in and influence business decisions, decision-making processes, and the business environment that encourages people to work together effectively.

Social Networking, Social Media, Social Computing: What’s the Difference?

Generally, *computation* means applying a defined set of procedures to solve a particular problem. In *social computing*, people become part of the overall computation system by examining, analyzing, and addressing the issues. Problems well suited for social computing are often the same ones that are difficult or unfeasible to solve using only software analysis and formulaic calculations: They’re problems that require ingenuity or associative thinking, relationships and trust between people, and subjective knowledge.

This is social in the sense that it relies on groups of people interacting in some way. Although many people interact simply to keep in touch with friends or for their own personal entertainment, we’re interested in how social computing techniques apply to business relationships and interactions that lead to results.

The role of software in social computing is to support the way people can interact and to frame the steps for them to work on loosely defined problems. The software helps users communicate, keep track of their interactions and relationships, collectively make choices and decisions, and filter the business results within the vast tracts of content and messages that these interactions produce. Not all social-software applications support all types of social computation. And software is only one necessary tool. Social computing also depends on human factors, such as the tasks people perform, how they interact, and what encourages them to participate.

Social computing accelerates the key business element of collaboration. It incorporates different approaches to collaboration—supported by IT infrastructure, well-defined user experiences, and tasks formulated to different business areas—while considering the culture of how people interact and collaborate. *Social networking* is a popular term referring to all kinds of social software tools. It also refers specifically to how users build networks of relationships to explore their interests and activities with others. The difference between social networking and social computing will become more apparent in later chapters. *Social media*, another popular term,
refers to the online content, or methods to create, share, or build on such content through social means. By definition, a social environment is a virtual place where the interactions between the people involved in social computing take place. It has no one particular shape or form; instead, think of it as the vessel wherein ideas and interactions mix together into a complex recipe. Successful social computing involves determining the right ingredients, recipe, and preparation techniques that deliver the expected result.

These changes require new ways of thinking about how people work together in an organization. More important, larger business and customer trends are impacting the nature of how modern enterprises operate that in turn reinforces the need to apply social computing to business management processes.

Reshaping the Way We Work

Two main trends are changing how we work: an increased pace of business across the globe, and the way users are taking to online environments. These trends are meeting at a nexus that blatantly pushes organizations to investigate and implement more social interaction and online collaboration through social environments.

The speed of business is calling for strategic improvements in business agility through faster innovation, exploration of new and emerging markets, and increased partnering activities. To keep pace, organizations are focusing their strategic IT assets to institute faster computer networks for an increasingly flexible, mobile, and distributed workforce, enabling them to communicate complex information within the organization and with partners and customers. Although e-mail and Web access to support communications have become common in most organizations, corporate users are looking for better ways to organize their enterprise data, manage their business relationships, communicate detailed content, and discover new information, customers, and the expertise to guide them. For companies with a distributed workforce, simply keeping track of who works in their organization and what time zone they’re in becomes a time-consuming task in itself.
The other significant trend is a swirl of changing online user behavior. A new wave of employees who have been active online from a young age are now entering the workforce and exemplify these changes particularly well. These “digital natives” have grown up Internet aware, actively using online software, visiting Web sites, and connecting and developing relationships over the virtual world of the Internet. According to the Pew Internet and American Life Project, 75% of adults age 18–24 and 57% age 25–34 have a profile on a social network site.\(^5\) Eighty percent say that being a networked worker improves their ability to do their job, and 73% indicate that it improves their ability to share ideas with coworkers.\(^6\)

How these digital natives use computers is also resulting in an increasing reliance on cloud computing: an emerging IT system in which data and applications reside entirely online instead of on any single computer or device. In the United States, 69% of users are moving to Web-based tools to manage their e-mail, photos, and files.\(^7\) They use the Internet to research information about products, organizations, and even other people to guide their decisions. Their information can now also move with them as they change jobs. Their focus has shifted from “What’s on my computer?” to “What information do I have access to?”

In a world where computers are everywhere, from the massive supercomputer systems in the largest corporations to Internet-capable household appliances, it seems that people are taking back some of the power previously relinquished to faceless devices and organizations. The tools of this new order are social interaction and collaboration—ironically, facilitated by the same computers that previously locked us away into fixed processes, compartmentalized information, and isolated workspaces.

Businesses should take note of where the two trends of the speed of business and enhanced online user behavioral changes merge turbulently. Employees, customers, and partners are getting used to working online, connecting to each other, and sharing on a level far beyond what e-mail access and the static content on Web sites provide. People are using these tools to collaborate in more ways than one-on-one communications. They are voicing their opinions to a larger audience through more channels of communication, across organizational lines both within and beyond the company. They are trying to overcome organizational silos, facilitate idea sharing and innovation, and build stronger relationships with fellow employees. By supporting these drives with software, social computing is now reshaping the process of organizational decision making.

This kind of collaborative effort points to new ways of looking at how employees work across teams, departments, geographies, time zones, and skill sets. It can happen anywhere at any time: directly between members who knowingly engage each other, indirectly between those who contribute to a group, or even incidentally in a shared environment when people working for their own goals reveal some bit of knowledge that can help others. Such interactions can last a few minutes, a few hours, a few days, or a few weeks, or might even continue to exist indefinitely as long as a need exists. Collaboration can bring together skills and knowledge in more permutations than members might have imagined.

Such complex networks of people across the enterprise and beyond (for instant, short, or even long-duration projects) hint at a new way of defining a “team” effort and how to manage and lead such effort. These groups might involve participants independent of the organizational structure, or they might stand entirely beyond the organization. Yet they can produce useful work and information that can help a cause.

These do not follow the traditional behaviors of high- and low-performing teams, as Jon R. Katzenbach and Douglas K. Smith described in the business classic *The Wisdom of Teams*. Instead, a

revised look at the basis for high-performing individuals and groups now includes those who demonstrate social intelligence\(^9\) and find the best ways to incorporate the wisdom of crowds.\(^{10}\) Instead of focusing on direct people management, social computing centers on driving results through influence and indirect leadership. Working in this mode requires an understanding of the context of the social environment and applying the right techniques.

Social computing methods raise new questions about how to conduct business in the Internet age: What business problems can social computing methods address? Do they offer new opportunities or approaches to providing value to customers? Do these changes require new business models or changes to existing ones? To answer these questions, we need to look at how organizations are applying these social computing methods.

Integrating into Business Processes and Activities

Verizon’s social computing applies to customer-support processes. Amazon focuses on increasing sales. IBM’s InnovationJam combines research goals and corporate social responsibility activities. Best Buy’s project combines market intelligence, inventory management, and sales planning. Other social environments, such as for Disney and Chacha.com, are business services to customers.

Amazon’s recommendation system and IBM’s InnovationJams are substeps of the overall business process—in these cases, the innovation process and the retail-sales process. In other instances, social computing methods are parallel or ancillary supportive steps to existing business processes, such as Verizon still providing official customer service in addition to the community-driven approach. Disney and Chacha.com’s social computing activities comprise entire areas of business and include many processes within.

Social computing methods can seemingly apply anywhere in a single business and across industries. The recurring pattern seems to

be the set of social computing methods and the decision-making processes they support.

First, we need to recognize that many approaches exist to social computing. Each approach seeks to get a group of people to focus on a certain task. However, the way people interact in the group, and the approach to driving results, can vary with the task. Understanding the right mix of shared experience, leadership model, and task helps set the right context for a social computing project. This context sheds light on the expectations for the social computing project to both your organization and the potential participants. Getting results out of a social environment also requires an understanding of the culture of the social group and a plan for enabling the members of the group to participate in and act on the goals. You will also need ways to describe how these social computing activities deliver and impact your own business processes.

Summary

Businesses, large and small, are finding ways to involve employees, customers, and partners in shared, online, collaborative activities that perform distinct business functions. Such social computing methods replace pure computer hardware–based methods for analyzing complex information and supporting decision-making processes. These methods guide a diverse group of participants to focus on tasks that take advantage of the experience, expertise, and subjective analysis skills that they bring to the group. They can apply to a wide range of business areas and industries by providing collective effort and wisdom to support the underlying decision-making steps in these processes.

Achieving results from social computing involves looking beyond simply gathering a group of people together online. With the high-powered support available, it can be relatively easy to bring people to the stage. The challenge lies in getting a widely diverse group to contribute to the actual performance of social computing. This takes a coherent effort to create a defined context for the social computing activity, generate an enablement plan to guide it, and establish a measurement approach to show how both the participants and the organization benefit.
A

About.com, 71
activities, integrating into, 8-9
administrative tasks, CMs
 (community managers), 133-134
advocates, recruiting, 114-116
aggregation, social tasks, 48-49
alignment, belonging, 102
Amazon Web Services Mechanical Turk project, 157
Amazon.com, 2, 158
 Mechanical Turk, 56
Anderson, Chris, 33
Apache Foundation, 35, 162
architecture, cultural impact of, 94
 social experience models, 94-97
 social leadership models, 97-98
 social tasks, 99
Ariely, Dan, 89
artifacts, 86
auctions, crowdsourcing, 55
audiences
 grouping into domains, 78-81
 identifying, 159
Austin, Manila, 151
autonomous aggregation, social tasks, 48

B

Battelle, John, 33
Bazaarvoice, 62
behaviors
 changing online user behavior, 6
 relationship with culture, 88-90
beliefs, 86
belonging, 101-103
beneficiaries of social tasks,
 identifying, 47
Berteau, Stefan, 137
Best Buy, 2
 TagTrade, 52
Bhargava, Rohit, 93
blogs, 26
 delegated leadership model, 33
BoingBoing.Net, 33
brainstorming, social
 brainstorming, 50-51
BranchIt Corporation, 58
BranchIt Software, 158
BrightKite, 60, 158
BurdaStyle, 45, 157
business development, CMs
 (community managers), 136-137
business processes,
 integrating into, 8-9
business strategy, social computing and, 161-162
Businessweek.com, 32
BzzAgent, 142

C

categorizing information
derived social content generation, 71-72
direct social content creation, 70-71
folksonomies and social tagging, 68-70
sharing collections, 67-68
center of excellence social systems, 82
centralized leadership, 27
centralized models, 29, 32
centralized social systems, 82
Chacha.com, 2, 74
changes in the way we work, 5-8
characteristics of CMs (community managers), 120-122
choosing
 leadership models, 37-40
 social experiences, 154-155
closed workgroups, 18
Club Penguin (Disney), 46, 85
CMs (community managers), 119
 characteristics of, 120-122
 conversations, 134
 organizations, role in, 127-129
 personality traits and habits, 125-127
 responsibilities of, 129
 administrative tasks, 133-134
 business development, 136-137
 communications and promotion, 135-136
 member and relationship development, 129-132
 topic and activity development, 132-133
social experiences, 124
value of, 120-122
what they are not, 124-125
CNN.com, 32
Coach, 19
codevelopment, 53
crowdsourcing, 54-55
distributed human computation, 56
open source development, 56-57
cognitive social capital, 140
collaboration, 3, 7
collections, sharing, 67-68
combative aggregation, social tasks, 49
command social systems, 82
commitment, 101
 creating models for identifying, 103-108
 levels of, 104-108
 maturing over lifecycles, 108-109
 self-reporting, 103
communications, CMs (community managers), 135-136
communities, 17-18
community managers. See CMs (community managers)
complexity of social environments, 21
computation, 4
consensus, aggregation (social tasks), 48
content quality control, 26
conversations, CMs (community managers), 134
creating information
 derived social content generation, 71-72
 direct social content creation, 70-71
 folksonomies and social tagging, 68-70
 sharing collections, 67-68
cross-boundary domain, 79-80
crowdsourcing, 54-55
cultural metrics, 147

culture
 cultural impact of social architecture
 overview, 94
 social experience models, 94-97
 social leadership models, 97-98
 social tasks, 99
defining for social environment
 behavior and rituals, 88-90
 ideology and values, 87-88
 imagery, 90-92
 maturity of social environments, 93
 overview, 86-87
 storytelling, 92-93
overview, 85-86
shaping social environments, 160-161
customizing experiences, 11-12

D
decentralized social systems, 82
defining
 culture
 behavior and rituals, 88-90
 ideology and values, 87-88
 imagery, 90-92
 maturity of social environments, 93
 overview, 86-87
 storytelling, 92-93
social tasks, 157-158
delegated models, 32, 34
deliberative aggregation, social tasks, 49
Denning, Stephen, 92
derived social content generation, 71-72
derived social recommendations, 65-66
Developer Network (SAP), 16
Digg model, 40
Digg.com, 40, 62
digital natives, 6
dimensions of measurement, 143
direct social content creation, 70-71
direct social recommendations, 63-65
Disney, 2
 Club Penguin, 46, 85
distributed computing, 56
distributed human computation, 56
Doctorow, Cory, 33
domains, grouping audiences into, 78-81
Dopplr, 59, 158

E
ecosystems, social ecosystems
 grouping tools, 78
 heterogeneous ecosystems, 76
 homogenous ecosystems, 75-77
 multitenancy, 76
 multtool environments, 77-78
 social domains, 78-81
 social systems, 81-83
emoticons, 91
encouragement, 112
 membership reward programs, 112-114
 recognition, 114-116
 recruiting evangelists and advocates, 114-116
 training and mentoring programs, 116-117
engagement, belonging, 102
engagement metrics, 147
enterprise domain, 79
evangelists, recruiting, 114-116
Everquest (i), 85
experience models
 impact on culture, 94-97
 leadership models and, 38
experiences
 customizing, 11-12
 grouping, 159
 individual experiences, 13
 personal experiences, 19

F

Facebook, poking, 91
filtering information, social Q&A systems, 73-74
finding people, 58
 location-centered social interactions, 59-60
 relationship mapping and mining, 58
focus groups, 151
folksonomies, 68-70
Forrester Research, 82
Fraunfelder, Mark, 33

G

General Electric, 76
Gladwell, Malcolm, 41
GoingOn, 159
GoingOn.com, 78
Google
 Knol, 71
 Pagerank algorithm, 150
Google Analytics, 149
Google Knol, 141
governance, 40
 leadership models, 28-31
grouping
 audiences into domains, 78-81
 experiences, 159
 instances, 75-77
 tools, 77-78
groups, 14
groupthink, 69

H

habits of CMs (community managers), 125-127
Hamel, Gary, 119
Harley-Davidson, 160
heterogeneous ecosystems, 76
Hierarchy of Needs
 (Maslow), 104
Hill, David W., 2
Hollywood Stock Exchange, 52
homogenous ecosystems, 75-77

I

IBIS, 86, 94-96
IBM, 76
 InnovationJams, 1, 162
 Lotus Quickr, 155
 wikis, 23
IBM Lotus Atlas for Connections, 158
IBM Lotus Connections, 69
IBM Lotus Quickr, 15
IBM LotusLive, 77, 159
idea generation, social tasks, 50
 prediction markets, 52-53
 social brainstorming, 50-51
idea outsourcing, 55
Identi.ca, 64
identifying
 audiences, 159
 beneficiaries of social tasks, 47
 commitment, 103-108
 influentials, 42
ideology, 87-88
IEEE (Institute for Electrical and Electronic Engineers), 34
IKM (Institute for Knowledge Management), 109
imagery, 90-92
imagination, belonging, 102
independent aggregation, social tasks, 48
individual experiences, 13
individuals, 18, 26
 blogs, 26
influencers, 41-42
 leadership models, 41-42
information creation and categorization
 derived social content generation, 71-72
 direct social content creation, 70-71
 folksonomies and social tagging, 68-70
 sharing collections, 67-68
 social Q&A systems, 73-74
InnoCentive, 141, 162
InnovationJams, 1
instances, grouping, 75-77
Institute for Knowledge Management (IKM), 109
integrating into business processes and activities, 8-9
Intel, 76
interviews, 150-152
Ito, Joi, 119

J
Jardin, Xeni, 33
Jia, Yao Ying, 2

K
Katzenbach, Jon R., 7
KGB.com, 74
Knol, 71
Krishnan, M. S., 11

L
last.fm, 11
leaders
 influencers, 41-42
 social experiences, 19
The Leader’s Guide to Storytelling (Denning), 92
leadership models
 choosing, 37-40
 experience models and, 38
governance, 28-31
impact on culture, 97-98
influencers, 41-42
selecting, 29
 centralized models, 29, 32
 delegated models, 32-34
 representative model, 34
 starfish model, 35
 swarm model, 36-37
Wikipedia, 26
Lerman, Katrina, 151
levels of commitment, 104-108
LinkedIn, 13-14, 73, 88
Lithium Technologies, 2
location-centered social interactions, 59-60
logos, 90
LotusLive, 77
Lutz, Bob, 2

M
Mahalo, 71
managers, relationships with, 139
mapping
 maturity of social environments, 110
 relationships, 58
MarketWatch.com, 66
Marriott, Bill, 2
Mars Incorporated, 45
Maslow, Abraham, 104
mass collaboration experience, 12
mass collaborations, 18
Masterfoods, 45
maturing over lifecycles, commitment, 108-109
maturity of social environments, 93
measuring, 140, 142
 dimensions of measurement, 143
 mechanisms and methods, 149
 qualitative measurement through surveys and,
quantitative analytical measurement mechanisms, 149-150
metrics
social experiences and, 147-149
types of, 144-147
social capital, 140
Mechanical Turk, 56
mechanisms for measuring, 149
qualitative measurement through surveys and interviews, 150, 152
quantitative analytic measurement mechanisms, 149-150
members, 19
relationship development, CMs (community managers), 129-132
membership reward programs, encouragement, 112-114
mentoring programs, 116-117
merit badges, 91
methods for measuring, 149
qualitative measurement through surveys and interviews, 150-152
quantitative analytic measurement mechanisms, 149-150
metrics, 109, 141-142
cultural metrics, 147
engagement metrics, 147
social experiences and, 147-149
social-software metrics, 143
structural metrics, 146, 150
task metrics, 146
traffic metrics, 146, 150
types of, 144-147
Microsoft, MSN Encarta, 25
mining, relationships, 58
modeling, social experiences, 17-20
models, social leadership models, 156-157
MSN Encarta, 25
multifunction environments, 77-78
multitenancy, 76
multitool environments, 77-78
The Music Genome Project, 15, 155
music websites
last.fm, 11
Pandora.com, 15

N
NASA, 65
Netflix, 65
network diagrams, 66
networks, relationship networks, 13
LinkedIn, 13-14
newbies, 89
Ning.com, 77
Nupedia, 25

O
online encyclopedias, 25
online qualitative review systems, 62-63
online user behavior, 6
open source development, 56-57
Oracle ACES, recognition, 115
organizations
CMs (community managers), role in, 127-129
transparency in, 27
Owyang, Jeremiah, 82

P
Pandora.com, 15
personal experiences, 19
Personality Not Included (Bhargava), 93
personality traits of CMs (community managers), 125-127
Pescovitz, David, 33
plogs (product blogs), 21
Plurk, 64
INDEX

poking on Facebook, 91
PostSecret, 33
PowerReviews, 62
Prahalad, CK, 11
Predictably Irrational (Ariely), 89
prediction, 109
prediction markets, 52-53
product blogs (plogs), 21
promoting activities, CMs
(community managers), 135-136
Propsper.com, 141
proxies, 140
public-facing domain, 79

Q
Q&A systems, 73-74
qualitative measurements, 150-152
qualitative reviews, 62-63
quantitative analytic measurement mechanisms, 149-150

R
recognition, 114-116
recommendations
derived social recommendations, 65-66
direct social recommendations, 63-65
recruiting, 114-116
relational social capital, 140
relationship, mapping and mining, 58
relationship networks, 13
LinkedIn, 13-14
relationships
developing with members, CMs (community managers), 129-132
with managers, 139
representative model, leadership, 34
reshaping work, 5-8
responsibilities of CMs (community managers), 129
administrative tasks, 133-134
business development, 136-137
communications and promotion, 135-136
member and relationship development, 129-132
topic and activity development, 132-133
reviews, 62-63
reward programs, encouragement, 112-114
rituals, 88-90
roles of CMs (community managers), in organizations, 127-129

S
sandboxes, 89
SAP Developer Network, 16, 162
Schein, Edgar, 86
Schwartz, Jonathan, 2
Scientific American, 33, 156
selecting leadership models, 29
centralized models, 29, 32
delegated models, 32-34
representative model, 34
starfish model, 35
swarm model, 36-37
self-reporting, commitment, 103
sharing, collections, 67-68
Slashdot.org, 39
Slideshare, 12, 155
sliding filters, 66
Smith, Douglas K., 7
social architecture, cultural impact of, 94
social experience models, 18, 94-97
social leadership models, 97-98
social tasks, 99
social brainstorming, 50-51
social capital, 140
social computing, 3, 153-154
 business strategy and, 161-162
defined, 4
social culture. See culture
social domains, 159
 grouping audiences into, 78-81
social ecosystems
 grouping tools, 78
 heterogeneous ecosystems, 76
 homogenous ecosystems, 75-77
 multitenancy, 76
 multitool environments, 77-78
 social domains, 78-81
social experiences, 5, 47
 culture forces, 160-161
 for a complex world, 21
 grouping experiences and identifying audience domains, 159
 mapping maturity of, 110
 social experiences, choosing, 154-155
 social leadership model, 156-157
 social tasks, defining, 157-158
 transparency in, 27
social experience models, 17-20
 impact on culture, 94-97
social experiences
 benefits of, 20
 choosing, 154-155
 CMs (community managers), 124
 communities, 17
 leaders, 19
 metrics and, 147-149
 workgroups, 14
social gestures, 91
social interactions, location centered, 59-60
social leadership models, 156-157
 impact on culture, 97-98
social media, defined, 4
social networks, 18
social Q&A systems, 73-74
social recommendations
 derived social recommendations, 65-66
 direct social recommendations, 63-65
social software, trouble with, 22
social software tools, IBM Lotus Quickr, 15
social systems, 81-83
social tagging, 68-70
social tagging (folksonomy)
 method, 37
social tasks, 45-46
 aggregation, 48-49
 beneficiaries, identifying, 47
 codevelopment, 53
 crowdsourcing, 54-55
 distributed human computation, 56
 open source, 57
 open source development, 56-57
defining, 157-158
derived social content generation, 71-72
direct social content creation, 70-71
finding people, 58
 location-centered social interactions, 59-60
 relationship mapping and mining, 58
folksonomies and social tagging, 68-70
idea generation, 50
 prediction markets, 52-53
 social brainstorming, 50-51
impact on culture, 99
recommendations
 derived social recommendations, 65-66
 direct social recommendations, 63-65
reviews, 62-63
sharing collections, 67-68
social Q&A systems, 73-74
templates, 49
social-software metrics, 143
socially driven prototyping, 55
sorted lists, 66
speed of business, 5
sponsors, benefits of social experiences, 20
The Starfish and the Spider, 35
starfish model, leadership, 35
storytelling, 92-93, 160
Strout, Aaron, 81
structural metrics, 146, 150
structural social capital, 140
SurveyMonkey, 150
surveys, 150, 152
swarm model, leadership, 35-37

tag clouds, 66
TagTrade, 52
Takahasi, Tomoyuki, 2
task metrics, 146
tasks. See social tasks
teams, defining, 7
templates, social tasks, 49
third-party domain, 80-81
tools, grouping, 77-78
traffic metrics, 146, 150
training programs, 116-117
transparency, 27
treemaps, 66
Twitter, 64

U
U.S. Air Force Knowledge Network, 79-80
underlying assumptions, 86

V
value of CMs (community managers), 120-122
values, 87-88
Verizon, 1, 8
Verizon Wireless, 159, 162
virtual goods, 91
visible workgroups, 18
Vovici, 150

W
Wales, Jimmy, 25
Watts, Duncan, 41
Web2list.com, 46
Wenger, Etienne, 102
Wikipedia, 25, 71, 141
WikiQuote, 71
wikis, 22, 38
IBM, 23
Wiktionary, 71
word-of-mouth marketing, 63-65
Wordpress.com, 76
work, reshaping, 5-8
workgroups, 14-15
closed workgroups, 18
visible workgroups, 18

Y
Yahoo! Answers, 74

Z
Zoominfo, 158
Zoominfo.com, 71