

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Forcier, Jeff, 1982-
Python web development with Django / Jeff Forcier, Paul Bissex, Wesley Chun.

p. cm.
Includes index.
ISBN-10: 0-13-235613-9 (pbk. : alk. paper)
ISBN-13: 978-0-13-235613-8 (pbk. : alk. paper) 1. Web site development. 2. Django

(Electronic resource) 3. Python (Computer program language) 4. Web sites—Authoring pro-
grams. I. Bissex, Paul. II. Chun, Wesley. III. Title.

TK5105.8885.D54F68 2009
006.7’6—dc22

2008037134

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-235613-8
ISBN-10: 0-13-235613-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing October 2008

Editor-In-Chief
Mark Taub

Acquisitions Editor
Debra Williams
Cauley

Development
Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor and
Copy Editor
Jovana
San Nicolas-Shirley

Indexer
Cheryl Lenser

Proofreader
Geneil Breeze

Publishing
Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Compositor
Jake McFarland

Preface

Welcome to Django!
Greetings, and welcome to Django! We’re glad to have you along on our journey.You
will discover a powerful Web application framework that lets you do everything
rapidly—from designing and developing the original application to updating its features
and functionality without requiring major changes to the codebase.

About This Book
Several Django books are already on the market, but ours differs from most in that we
focus equally on three areas: Django basics, a variety of example applications, and
advanced Django topics. Our intent is to make this the most well-rounded book on the
subject, one you find useful regardless of background, and which will give you a com-
plete picture of the framework and what you can do with it.

Chapter Guide
In Figure 0.1, you see recommended starting points for your reading depending on your
Python and Django experience. Of course, we recommend a cover-to-cover treatment,
but the diagram will help if time is not on your side. Regardless of your experience, you
are always welcome to look at the applications because reading and studying code is one
of the best ways to learn.We also provide this chapter-by-chapter reading guide to
further help direct you to where you need to read.

Part I, “Getting Started”
Part I covers the basic material needed to introduce users new to Django and/or
Python, although we recommend Chapter 3,“Starting Out,” even to advanced readers.

Chapter 1, “Practical Python for Django”
This chapter is an introduction for readers who are new to Python. In one comprehen-
sive chapter, we show you not only the syntax, but also go a bit more in-depth and
expose you to Python’s memory model and data types, especially constructs commonly
used in Django.

Know Python
and Django

well but want
advanced

usage

Chp 11
Advanced

Django
Programming

Chp 12
Advanced

Django
Deployment

Part IV: Advanced

Chp 7
Photo Gallery

Chp 8
CMS

Chp 9
Liveblog

Chp 10
Pastebin

Part III: Applications

Appendices
A-F

Brand New
to Django

and Python

Know Python
and some

Django already

Part II: Django in Depth

Chp 5
Views

Chp 6
Templates

Chp 4
Models

Know Python
but new

to Django

Part I: Getting Started

Chp 2
Impatient

(blog)

Chp 3
Starting

Out

Chp 1
Practical
Python

Figure 0.1 Suggested reading guide based on your Python and/or
Django experience

Chapter 2, “Django for the Impatient: Building a Blog”
This is a chapter for those who want to skip any Python introduction and want to dive
immediately into a Django application that can be completed in 15-20 minutes. It gives
a good overview of what’s possible with the framework.

Chapter 3, “Starting Out”
For those with a bit more patience, this chapter serves as an introduction to all the foun-
dations of developing Web-based applications (useful both for newbies and experienced

coders alike). Once the formalities are over, we describe how each concept fits into the
world of Django as well as what its philosophies are and how it may differ from other
Web application frameworks.

Part II, “Django in Depth”
Part II covers all the basic components of the framework, laying the foundation for the
example applications in Part III,“Django Applications by Example.”

Chapter 4, “Defining and Using Models”
In Chapter 4, learn how to define and work with your data model, including the basics
of Django’s object-relational mapper (ORM) from simple fields up to complex relations.

Chapter 5, “URLs, HTTP Mechanisms, and Views”
This chapter goes into detail on how Django handles URL processing and the rest of
the HTTP protocol, including middleware layers, as well as how to use Django’s time-
saving generic views, and how to write custom or partially custom views from scratch.

Chapter 6, “Templates and Form Processing”
Chapter 6 covers the final major piece of the framework, where we explore Django’s
template language and its form-handling mechanisms. It covers how to display data to
your users and get data back from them.

Part III, “Django Applications by Example”
In Part III, we create four distinct applications, each highlighting a different aspect or
component of Django development, both to introduce new general ideas and to expand
on the concepts found in Parts I and II.

Chapter 7, “Photo Gallery”
In Chapter 7, learn how to apply the “Don’t Repeat Yourself ” convention to your URL
structure and create a new thumbnail-creating image form field, while you make a sim-
ple photo gallery application.

Chapter 8, “Content Management System”
Chapter 8 contains two related approaches to creating a CMS or CMS-like system and
covers the use of a number of “contrib” Django applications.

Chapter 9, “Liveblog”
Chapter 9 covers writing a “liveblog”—a site that makes use of advanced JavaScript
techniques, serves as a backdrop for applying AJAX to a Django project, and shows how
easy it is to use any AJAX toolkit you want.

Chapter 10, “Pastebin”
In Chapter 10, learn the power of Django’s generic views as we create a pastebin using
almost no custom logic whatsoever.

Part IV, “Advanced Django Techniques and Features”
Part IV is a collection of advanced topics, ranging from customizing Django’s admin
application to writing command-line scripts that interface with your Django applica-
tions.

Chapter 11, “Advanced Django Programming”
Chapter 11 covers a number of topics related to fleshing out your own application’s
code, such as RSS generation, extending the template language, or making better use of
the Django admin application.

Chapter 12, “Advanced Django Deployment”
In Chapter 12, learn a number of tricks related to deploying Django applications or
working with your app from outside your Django project’s core code, such as command-
line scripts, cron jobs, testing, or data import.

Part V, “Appendices”
Part V fills in the remaining gaps or addresses topics relevant to the rest of the book but
that don’t fit in well as full chapters. Learn the basics of the Unix command line, Django
installation and deployment strategies, tools for development, and more.

Appendix A, “Command Line Basics”
Appendix A is an introduction to the Unix command line for those who haven’t been
exposed to it before now.Trust us—it’s useful!

Appendix B, “Installing and Running Django”
In Appendix B, learn how to install all the necessary components for running Django,
including the various options for database and Web servers, as well as some tips on spe-
cific deployment strategies.

Appendix C, “ Tools for Practical Django Development”
Appendix C outlines some basic development tools you may or may not be familiar
with, including source control, text editors, and more.

Appendix D, “Finding, Evaluating, and Using Django Applications”
Good developers write code, but great developers reuse somebody else’s code! In
Appendix D, we share some tips on the where and how of finding reusable Django
applications.

Appendix E, “Django on the Google App Engine”
Appendix E provides an exclusive look at how Google’s new App Engine leverages
Django, and you can also learn how to enable your Django applications to run under the
App Engine framework.

Appendix F, “Getting Involved in the Django Project”
In Appendix F, learn how to contribute to Django and become a part of the community.

Conventions
Throughout this book, we use bold to introduce new or important terms, italics for
emphasis, http://links/ for URLs, and monospacing to delineate Python and command
line material such as variable names or commands. Multiline blocks of code or command
examples are in monospaced blocks, like so:

>>> print “This is Python!”

This is Python!

We have made use of all three major platforms—Mac OS X, Linux, and Windows—
when writing this book and the example applications. In addition, we’ve used all major
browsers (although not all may be present in our screenshots), namely Firefox, Safari,
Opera, and Internet Explorer.

Book Resources
You can contact the authors collectively at authors@withdjango.com. Our Web site,
http://withdjango.com, contains a large amount of auxiliary material and is referenced
in a number of places throughout the book.

http://withdjango.com

Introduction

If you’re a Web developer, a programmer who creates Web sites, then Django just might
change your life. It has certainly changed ours.

Anyone with even a little experience building dynamic Web sites knows the pain of
reinventing certain standard features over and over.You need to create database schemas.
You need to get data into and out of the database.You need to parse URLs.You need to
sanitize input.You need to provide content-editing tools.You need to attend to security
and usability.And so on.

Where Web Frameworks Come From
At some point you realize the wastefulness of reimplementing all these features on every
new project; you decide to code your own libraries from scratch to provide them—or,
more likely, you extract those libraries from your latest and greatest creation.Thereafter,
when you start a new project, the first thing you do is install your library code. It saves
you work and time.

However, there are still rough spots. Clients want features that aren’t provided by your
library code, so you add these. Different clients need different things, so you end up with
different versions of your library installed on different servers. Maintenance becomes hell.

So then, seasoned with experience, you take your base library and all the best add-ons
from your various projects and combine them. For most projects you no longer have to
tweak your library code directly; you alter a configuration file instead.Your codebase is
bigger and more complicated, but it’s also more powerful.

Congratulations, you’ve written a Web framework.
And as long as you (or your team, or your company, or your clients) keep on using it,

you’re responsible for keeping it working.Will the next upgrade of your OS, your Web
server, or your programming language break it? Will it be flexible enough to accommo-
date future changes without great pain? Does it support difficult but important features
like session management, localization, and database transactions? And how’s your test
coverage?

2 Introduction

A Better Way
You have this book in your hands because you want something better.You want a power-
ful, flexible, elegant, well-tested framework you don’t have to maintain yourself.

You want to write your code in a real programming language; one that is powerful,
clean, mature, and extensively documented.You want it to have a great standard library
and a huge selection of high-quality third-party packages for whatever needs arise, from
generating a CSV or a pie chart to scientific computations or image file processing.

You want a framework that has a vibrant, helpful community of users and developers;
one that is designed to function smoothly as an integrated stack, but whose components
are loosely coupled, so you can make substitutions if circumstances require.

In short, you want Python, and you want Django.We wrote this book to help you
learn and use Django in real-world settings as easily, quickly, and smartly as possible.

We’re Not in Kansas Anymore
Django was originally written by Adrian Holovaty and Simon Willison at World Online,
the Web arm of a family-owned media company in Lawrence, Kansas. It was born out of
a need to quickly develop database-driven applications tied into news content.

After proving itself in the field, Django was released as an open source project in July
2005—a time, ironically, when it was widely felt that Python had far too many Web frame-
works—and rapidly gained a strong following.Today, it is one of the leaders not just
among Python frameworks, but among Web frameworks in general.

Django is still heavily used at World Online of course, and some of its core developers
work there and use it daily. But since Django’s open source release, companies and organ-
izations around the world have picked it up for use in projects large and small.A partial
list includes

n The Washington Post
n The Lawrence Journal-World
n Google
n EveryBlock
n Newsvine
n Curse Gaming
n Tabblo
n Pownce

There are, of course, thousands of other Django sites that are not (yet) household
names. It’s inevitable that as Django spreads and grows that an increasing number of pop-
ular sites will be powered by it.We hope that yours is one of them.

3Web Development Is Better with Python and Django

Web Development Is Better with Python and
Django
Web development is generally messy business.You have to contend with browser incom-
patibilities, rogue bots, bandwidth and server limitations, and an overall architecture that
seems to defy thorough testing.

Of course, we believe our book is an excellent introduction to the basics of Django,
but we also aim to address many of those messy spots—the 20 percent of your work that
can take 80 percent of your time.We’ve worked with, listened to, and helped many devel-
opers using Django and have kept their questions and challenges in mind while writing
this book.

If we didn’t think that Django and Python were great, we wouldn’t have gone to the
trouble of writing a whole book about them. But when there are limitations you should
know about or sharp edges you should watch out for, we’ll tell you. Our goal is to help
you get things done.

2
Django for the Impatient:

Building a Blog

Django bills itself as “the Web framework for perfectionists with deadlines.” So let’s put
ourselves on deadline and see how fast we can produce a simple blog using Django. (We’ll
address your perfectionist side later.)

Note
This chapter assumes you’ve already installed Django on your system. If you haven’t, consult
Appendix B, “Installing and Running Django.”

All the work in this chapter is done on the command line in your shell of choice
(bash, tcsh, zsh, Cygwin, or what have you). So open your terminal and cd to a directory
that is on your PYTHONPATH environment variable. On a Unix-based system such as Linux,
Mac OS X, FreeBSD, and so on, you can issue an echo $PYTHONPATH command to see its
contents; from a Win32 Command window, type echo %PYTHONPATH%.You can read more
about paths in both the installation and Python chapters.

We recommend you try to follow along and actually build the blog as you go. If that’s
not practical—if you aren’t near a computer, or you’re just impatient—simply reading it is
illuminating too.That’s especially true if you have experience with one or more other
modern Web frameworks, since many of the basic concepts are familiar.

If you are following along on your own computer, and you reach a point where the
results you’re getting don’t match what you see here, stop and re-examine the step you
just completed, and then review the two or three steps before that. Look for a spot where
you could have skipped over a seemingly unimportant detail or didn’t understand a spe-
cific instruction. If no light bulbs come on, delete your sample project and start over.The
authors used this method when learning Django; in addition to being faster than staring
blankly at error messages for hours, the repetition of the steps leading up to your trouble
spot really help with your retention!

58 Chapter 2 Django for the Impatient: Building a Blog

Creating the Project
The easiest way to organize your Django code when you are starting out is to use what
Django calls a project:A directory of files that constitute, usually, a single Web site. Django
comes with a utility called django-admin.py to streamline tasks such as the creation of
these project directories. On Unix, it has a default installation into the /usr/bin directory,
and if you’re on Win32, it goes into the Scripts folder right in your Python installation,
for example, C:\Python25\Scripts. In either case, you need to make sure that
django-admin.py is in your PATH so it can be executed from the command line.

To create the project directory for your blog project, issue this django-admin.py
command:

django-admin.py startproject mysite

On a Win32 box, you need to open a DOS Command window first. It can be accessed
via Start -> Programs -> Accessories -> Command Prompt.Also, instead of a $, you
see something like C:\WINDOWS\system32> as a shell prompt.

Now take a look at the contents of the directory to see what this command has created
for you. It should look something like this on Unix:

$ cd mysite

$ ls -l

total 24

-rw-r--r-- 1 pbx pbx 0 Jun 26 18:51 __init__.py

-rwxr-xr-x 1 pbx pbx 546 Jun 26 18:51 manage.py

-rw-r--r-- 1 pbx pbx 2925 Jun 26 18:51 settings.py

-rw-r--r-- 1 pbx pbx 227 Jun 26 18:51 urls.py

If you were developing on a Win32 platform, opening an Explorer window to that
folder looks something like Figure 2.1, if we created a folder named C:\py\django with
the intention of putting our project there.

Figure 2.1 mysite folder on Win32

59Running the Development Server

Note
As you probably know if you’re an advanced Python user, that __init__.py file makes this
project directory a Python package—a collection of related Python modules. Its status as a
package enables us to use Python’s dot-notation to address individual pieces of our project,
such as mysite.urls. (You can read more about packages in Chapter 1, “Practical Python
for Django.”)

Besides __init__.py, the startproject command has created three other files.

n manage.py is a utility for working with this Django project.You can see from its
permissions flags in the directory listing that it is executable.We run it in a moment.

n settings.py is a file containing default settings for your project.These include
database information, debugging flags, and other important variables.Any value in
this file is available to any of your project’s installed apps—we show you the useful-
ness of that as we progress through this chapter.

n urls.py is what’s known in Django as a URLconf, a configuration file that maps
URL patterns to actions your applications perform. URLconfs are an exciting and
powerful feature of Django.

Note
Every file created by the startproject command is Python source code. There’s no XML,
no .ini files, and no funky configuration syntax. Django pursues a “pure Python” philosophy
wherever possible. This gives you a lot of flexibility without adding complexity to the frame-
work. For example, if you want your settings file to import settings from some other file or to
calculate a value instead of having it hardcoded, there’s no barrier—it’s just Python.

Running the Development Server
At this point, you haven’t built your blog application yet, but nonetheless there are some
Django conveniences in place for your use. One of the handiest is Django’s built-in Web
server. It’s a server designed not for deploying public sites, but for quick development.
Advantages of using it include

n You don’t need to install Apache, Lighttpd, or whatever other Web server software
you’d use in actual production—great if you’re working on a fresh server or a non-
server development machine or just playing around.

n It automatically detects when you make changes to your Python source files and
reloads those modules.This is a huge time-saver compared to manually restarting
your Web server every time you edit your code, which is what’s required with most
Python Web server setups.

n It knows how to find and display static media files for the admin application, so you
can work with it right away.

60 Chapter 2 Django for the Impatient: Building a Blog

Running the development (or “dev”) server is as simple as issuing a single command.
We’re going to use our project’s manage.py utility, a thin wrapper script that saves us the
work of telling django-admin.py to use our specific project settings file.The command to
run the dev server is

./manage.py runserver # or ".\manage.py runserver" on win32

You should see something like the following with a slight difference for Win32 plat-
forms where the quit key combination is CTRL-BREAK instead of CONTROL-C:

Validating models...

0 errors found.

Django version 1.0, using settings 'mysite.settings'

Development server is running at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Open that link in your browser, and you should see Django’s “It Worked!” screen, as
shown in Figure 2.2.

Meanwhile, if you look in your terminal session, you see the dev server has logged
your GET request.

[07/Dec/2007 10:26:37] "GET / HTTP/1.1" 404 2049

The four chunks of the log line are from left to right: timestamp, request, HTTP
response code, and byte count. (Your byte count is likely to be slightly different.) The
response code is 404 (“Not Found”) because your project has no URLs defined yet.The
It Worked! page is Django’s friendly way of telling you that.

Tip
If your server isn’t working at this point, retrace your steps. Be ruthless! It’s probably easier
to delete your whole project and start following this chapter again from the beginning than it
is to laboriously check every file and every line of code.

Figure 2.2 Django’s initial It worked! screen

61Creating the Blog Application

When you’ve successfully got the server running, we can move on to setting up your
first Django application.

Creating the Blog Application
Now that we have a project, we can create applications (or “apps” in Django-speak)
within it.To create our blog app, we’ll use manage.py again.

./manage.py startapp blog # or ".\manage.py startapp blog" on win32

It’s just as simple as starting a project. Now we have a blog directory inside our project
directory. Here’s what’s in it, first in Unix format, and then in a screenshot of Windows
Explorer (see Figure 2.3).

$ ls -l blog/

total 16

-rw-r--r-- 1 pbx pbx 0 Jun 26 20:33 __init__.py

-rw-r--r-- 1 pbx pbx 57 Jun 26 20:33 models.py

-rw-r--r-- 1 pbx pbx 26 Jun 26 20:33 views.py

Like your project, your app is a package too.The models.py and views.py files have
no real code in them; they’re merely placeholders. For our simple blog, in fact, we don’t
need to touch the dummy views.py file at all.

To tell Django this new app is part of your project, you need to edit settings.py
(which we can also refer to as your “settings file”). Open your settings file in your editor
and find the INSTALLED_APPS tuple near the bottom.Add your app in dotted module
form to that tuple in a line that looks like this (note the trailing comma):

'mysite.blog',

Django uses INSTALLED_APPS to determine the configuration of various parts of the
system, including the automatic admin application and the testing framework.

Figure 2.3 mysite\blog folder on Win32

62 Chapter 2 Django for the Impatient: Building a Blog

Designing Your Model
We’ve now arrived at the core of your Django-based blog application: the models.py file.
This is where we’ll define the data structures of the blog. Following the principle of Don’t
Repeat Yourself (DRY), Django gets a lot of mileage out of the model information you
provide for your application. Let’s create a basic model, and then see all the stuff Django
does for us using that information.

Open up models.py in your favorite text editor (bonus points if it has a Python mode
with syntax coloring).You see this placekeeper text:

from django.db import models

Create your models here.

Delete the comment, and then add the following lines:

class BlogPost(models.Model):

title = models.CharField(max_length=150)

body = models.TextField()

timestamp = models.DateTimeField()

That’s a complete model, representing a “BlogPost” object with three fields. (Actually,
strictly speaking it has four fields—Django automatically creates an auto-incrementing,
unique id field for each model by default.)

You can see our newly minted class, BlogPost, is a subclass of
django.db.models.Model.That’s Django’s standard base class for data models, which is
the core of Django’s powerful object-relational mapping system.Also, you notice our fields
are defined like regular class attributes with each one being an instance of a particular field
class.Those field classes are also defined in django.db.models, and there are many more
types—ranging from BooleanField to XMLField—than the three we’re using here.

Setting Up the Database
If you don’t have a database server installed and running, we recommend SQLite as the
fastest and easiest way to get going. It’s fast, widely available, and stores its database as a sin-
gle file in the filesystem.Access controls are simply file permissions. For more on how to
set up a a database for use with Django, see Appendix B.

If you do have a database server—PostgreSQL, MySQL, Oracle, MSSQL—and want to
use it rather than SQLite, then use your database’s administration tools to create a new
database for your Django project.We name this database “djangodb” in our examples, but
you can name it whatever you like.

Either way, with your (empty) database in place, all that remains is to tell Django how
to use it.This is where your project’s settings.py file comes in.

63Setting Up the Database

Using a Database Server
Many people use Django with a relational database server such as PostgreSQL or MySQL.
There are six potentially relevant settings here (though you may need only two):
DATABASE_ENGINE, DATABASE_NAME, DATABASE_HOST, DATABASE_PORT, DATABASE_USER,
and DATABASE_PASSWORD.Their names make their respective purposes pretty obvious. Just
plug in the correct values corresponding to the database server you are using with Django.
For example, settings for MySQL look something like this:

DATABASE_ENGINE = "mysql"

DATABASE_NAME = "djangodb"

DATABASE_HOST = "localhost"

DATABASE_USER = "paul"

DATABASE_PASSWORD = "pony" # secret!

Note
We haven’t specified DATABASE_PORT because that’s only needed if your database server is
running on a nonstandard port. For example, MySQL’s server uses port 3306 by default.
Unless you’ve changed the setup, you don’t have to specify DATABASE_PORT at all.

For details on creating a new database and database user (which is required for database
servers), see Appendix B.

Using SQLite
SQLite is a popular choice for testing and even for deployment in scenarios where there
isn’t a great deal of simultaneous writing going on. No host, port, user, or password infor-
mation is needed because SQLite uses the local filesystem for storage and the native
filesystem permissions for access control. So only two settings are needed to tell Django to
use your SQLite database.

DATABASE_ENGINE = "sqlite3"

DATABASE_NAME = "/var/db/django.db"

Note
When using SQLite with a real Web server such as Apache, you need to make sure the
account owning the Web server process has write access both for the database file itself
and the directory containing that database file. When working with the dev server like we are
here, permissions are typically not an issue because the user (you) running the dev server
also owns the project files and directories.

SQLite is also one of the most popular choices on Win32 platforms because it comes
free with the Python distribution. Given we have already created a C:\py\django direc-
tory with our project (and application), let’s create a db directory as well.

DATABASE_ENGINE = 'sqlite3'

DATABASE_NAME = r'C:\py\django\db\django.db'

64 Chapter 2 Django for the Impatient: Building a Blog

If you are new to Python, you notice the subtle difference in the first example; we used
double quotes around sqlite3, whereas in the Win32 version, we used single quotes. Rest
assured it has nothing to do with differing platforms—Python does not have a character
type, so single quotes and double quotes are treated the same. Just make sure you open and
close a string with the same type of quote!

You should also have noticed a small “r” in front of the folder name. If you’ve read
Chapter 1, then you know this means to designate the object as a “raw string,” or one that
takes all characters of a string verbatim, meaning do not translate special character combi-
nations. For example, \n usually means a newline character, but in a raw string, it means
(literally) two characters: a backslash followed by an n. So the purpose of a raw string is
specifically for DOS file paths, telling Python to not translate special characters (if there
are any).

Creating the Tables
Now you tell Django to use the connection information you’ve given it to connect to the
database and set up the tables your application needs.The command to do this is simply:

./manage.py syncdb # or ".\manage.py syncdb" on win32

You see some output that starts like this as Django sets up the database:

Creating table auth_message

Creating table auth_group

Creating table auth_user

Creating table auth_permission

Creating table django_content_type

Creating table django_session

Creating table django_site

Creating table blog_blogpost

When you issue the syncdb command, Django looks for a models.py file in each of
your INSTALLED_APPS. For each model it finds, it creates a database table. (There are
exceptions to this later when we get into fancy stuff such as many-to-many relations, but
it’s true for this example. If you are using SQLite, you also notice the django.db database
file is created exactly where you specified.)

The other items in INSTALLED_APPS, the ones that were there by default, all have mod-
els too.The output from manage.py syncdb confirms this, as you can see Django is creat-
ing one or more tables for each of those apps.

That’s not all the output you got from the syncdb command, though.You also got
some interactive queries related to the django.contrib.auth app.

You just installed Django's auth system, which means you don't have any superusers
defined.

Would you like to create one now? (yes/no): yes

Username (Leave blank to use 'pbx'):

E-mail address: pb@e-scribe.com

65Setting Up the Automatic admin Application

Password:

Password (again):

Superuser created successfully.

Installing index for auth.Message model

Installing index for auth.Permission model

Now you’ve got one superuser (hopefully yourself) in the auth system.This comes in
handy in a moment, when we add in Django’s automatic admin application.

Finally, the process wraps up with a couple lines relating to a feature called fixtures,
which we come back to in Chapter 4,“Defining and Using Models.”These enable you to
preload data in a freshly created application. For now, we’re not using that feature, so
Django moves on.

Loading 'initial_data' fixtures...

No fixtures found.

Your initial database setup is now complete.The next time you run the syncdb com-
mand on this project (which you do any time you add an application or model), you see a
bit less output because it doesn’t need to set up any of those tables a second time or
prompt you to create a superuser.

Setting Up the Automatic admin Application
The automatic back-end application, or admin, has been described as Django’s “crown
jewel.” For anyone who has tired of creating simple “CRUD” (Create, Read, Update,
Delete) interfaces for Web applications, it’s a godsend.We get much deeper into the admin
in “Customizing the Admin” in Chapter 11,“Advanced Django Programming.” For now,
let’s just turn it on and poke around.

Because it’s an optional part of Django, you need to specify in your settings.py file
you’re using it—just like you did with your own blog app. Open settings.py and add
the following line to the INSTALLED_APPS tuple, just underneath
'django.contrib.auth'.

'django.contrib.admin',

Every time you add a new application to your project, you should run the syncdb
command to make sure the tables it needs have been created in your database. Here we
can see adding the admin app to INSTALLED_APPS and running syncdb triggers the cre-
ation of one more table in our database:

$./manage.py syncdb

Creating table django_admin_log

Installing index for admin.LogEntry model

Loading 'initial_data' fixtures...

No fixtures found.

Now that the app is set up, all we need to do is give it a URL so we can get to it.You
should have noticed these two lines in your automatically generated urls.py.

66 Chapter 2 Django for the Impatient: Building a Blog

Uncomment this for admin:

(r'^admin/', include('django.contrib.admin.urls')),

Remove the # character from the second line (and you can remove the first, comment-
only line at the same time) and save the file.You’ve told Django to load up the default
admin site, which is a special object used by the contrib admin application.

Finally, your applications need to tell Django which models should show up for editing
in the admin screens.To do so, you simply need to define the default admin site men-
tioned previously and register your BlogPost model with it. Open the
mysite/blog/models.py file, make sure the admin application is imported, and then add
a line registering your model at the bottom.

from django.db import models

from django.contrib import admin

class BlogPost(models.Model):

title = models.CharField(max_length=150)

body = models.TextField()

timestamp = models.DateTimeField()

admin.site.register(BlogPost)

This simple use of the admin is the tip of the iceberg; it’s possible to specify many dif-
ferent admin-related options by making a special Admin class for a given model, and then
registering the model with that class.We do this shortly, and you also see examples of
advanced admin use in later chapters, especially in Parts III,“Django Applications by
Example,” and IV,“Advanced Django Techniques and Features.”

Trying Out the admin
Now that we’ve set up our Django site with the admin app and registered our model with
it, we can take it for a spin. Issue the manage.py runserver command again. Now, go to
http://127.0.0.1:8000/admin/ in your Web browser. (Don’t worry if your dev server
address is different; just add an admin/ onto it, whatever it is.) You should see a login
screen, as shown in Figure 2.4.

Type the “superuser” name and password you created earlier. Once you’ve logged in,
you see the admin home page, as shown in Figure 2.5.

We’ll tour this interface later in the book; for now, just confirm your application, Blog,
is showing up as seen in the screenshot. If it’s not, recheck the previous steps.

Tip
The three most common causes for “My app doesn’t show up in the admin,” problems are
1) forgetting to register your model class with admin.site.register, 2) errors in the
app’s models.py, and 3) forgetting to add the app to the INSTALLED_APPS tuple in your
settings.py file.

67Trying Out the admin

Figure 2.4 The admin login screen

Figure 2.5 The admin home page

What’s a blog without content? Click the Add button to the right of Blog Posts.The
admin presents a form for adding a new post, as shown in Figure 2.6.

Give your post a title and some scintillating content. For the timestamp, you can click
the Today and Now shortcut links to fill in the current date and time.You can also click
the calendar or clock icons to pull up handy date and time pickers.

When you’re done writing your masterpiece, click the Save button.You see a screen
with a confirmation message (“The blog post ‘BlogPost object’ was added successfully”)
and a list of all your blog posts—a grand total of one at this point, as shown in Figure 2.7.

Why is the post given the awkward name of “BlogPost object”? Django is designed to
flexibly handle an infinite variety of content types, so it doesn’t take guesses about what

68 Chapter 2 Django for the Impatient: Building a Blog

Figure 2.6 Adding new content via the admin

Figure 2.7 Successfully saving your first blog entry

field can be the best handle for a given piece of content.Throughout Part 3’s example
applications, you see examples of defining how to specify a particular field, or specially
constructed string, to be used for your objects’ default labels.

Now go ahead and add a second post with different content by clicking on the Add
Blog Post + button to the upper-right.When you are returned to the list view, you just
see another BlogPost row added to the page. If you refresh the page or go away and come
back to your application, the output has not improved any—you just do not feel satisfied
with seeing all the entries generically labeled as “BlogPost object,” as shown in Figure 2.8.
You are not alone if you’re thinking,“There has got to be a way to make it look more
useful!”

However, we don’t have to wait until then to clean up the list display in our admin
view. Previously, we enabled the admin tool with the bare minimum of configuration,

69Trying Out the admin

Figure 2.8 Not the most useful summary page

namely registering our model with the admin app all by itself. However, with an extra
two lines of code and a modification of the registration call, we can make the presentation
of the listing much nicer and more usable. Update your mysite/blog/models.py file
with a new BlogPostAdmin class and add it to the registration line, so your models.py
looks like this:

from django.db import models

from django.contrib import admin

class BlogPost(models.Model):

title = models.CharField(max_length=150)

body = models.TextField()

timestamp = models.DateTimeField()

class BlogPostAdmin(admin.ModelAdmin):

list_display = ('title', 'timestamp')

admin.site.register(BlogPost, BlogPostAdmin)

The development server notices your changes and reloads your models file. If you are
monitoring your command shell, you see some output to this effect.

If you refresh the page, you now see much more useful output based on the new
list_display variable you added to your BlogPostAdmin class (see Figure 2.9).

Try clicking on the Title and Timestamp column headers that have appeared—each one
affects how your items are sorted. For example, click once on Title to sort in ascending
order by title; click the Title header a second time to change to descending order.

The admin has many other useful features that can be activated with just a line or two
of code: searching, custom ordering, filters, and more.As we’ve mentioned a few times
already, Parts III and IV cover or demonstrate many of these topics in greater detail.

70 Chapter 2 Django for the Impatient: Building a Blog

Figure 2.9 Much better

Making Your Blog’s Public Side
With the database and admin side of our application taken care of, it’s time to turn to the
public-facing pages.A page, from Django’s perspective, has three typical components:

n A template that displays information passed to it (in a Python-dictionary-like
object called a Context)

n A view function that fetches information to be displayed, typically from a database
n A URL pattern that matches an incoming request with your view function,

optionally passing parameters to the view as well

We’ll tackle these three in that order. In a sense this is building from the inside out—
when Django processes a request, it starts with the URL patterns, then calls the view, and
then returns the data rendered into a template.

Creating a Template
Django’s template language is easy enough to read that we can jump right in to example
code.This is a simple template for displaying a single blog post:

<h2>{{ post.title }}</h2>

<p>{{ post.timestamp }}</p>

<p>{{ post.body }}</p>

It’s just HTML (though Django templates can be used for any kind of textual output)
plus special template tags in curly braces.These are variable tags, which display data
passed to the template. Inside a variable tag, you can use Python-style dot-notation to
access attributes of the objects you pass to your template. For example, this template
assumes you have passed it a BlogPost object called “post.”The three lines of the template
fetch the BlogPost object’s title, timestamp, and body fields, respectively.

71Making Your Blog’s Public Side

Let’s enhance the template a bit so it can be used to display multiple blog posts, using
Django’s for template tag.

{% for post in posts %}

<h2>{{ post.title }}</h2>

<p>{{ post.timestamp }}</p>

<p>{{ post.body }}</p>

{% endfor %}

The original three lines are unchanged; we’ve simply added a block tag called for that
renders a template section once for each of a sequence of items.The syntax is deliberately
similar to Python’s loop syntax. Note that unlike variable tags, block tags are enclosed in
{% ... %} pairs.

Save this simple five-line template in a file called archive.html, and put that file in a
directory called templates inside your blog app directory.That is, the path to your tem-
plate file should be:

mysite/blog/templates/archive.html

The name of the template itself is arbitrary (we could have called it foo.html), but the
templates directory name is mandatory. By default, when searching for templates, Django
looks for a templates directory inside each of your installed applications.

Creating a View Function
Now we’ll write a simple view function that fetches all our blog posts from the database
and displays them using our template. Open up the blog/views.py file and type the
following:

from django.template import loader, Context

from django.http import HttpResponse

from mysite.blog.models import BlogPost

def archive(request):

posts = BlogPost.objects.all()

t = loader.get_template("archive.html")

c = Context({ 'posts': posts })

return HttpResponse(t.render(c))

Skipping over the import lines for the moment (they just load up the function and
classes we need), here’s the breakdown of the view function, line by line:

n Line 5: Every Django view function takes a django.http.HttpRequest object as its
first argument. It can also take other arguments that get passed in via the URLconf,
which is a feature you are using a lot.

n Line 6:When we created our BlogPost class as a subclass of django.db.models.Model,
we inherited the full power of Django’s object-relational mapper.This line is a sim-
ple example of using the ORM (Object-Relational Mapper; see Chapters 3,
“Starting Out,” and 4 for more) to get all the BlogPost objects in the database.

72 Chapter 2 Django for the Impatient: Building a Blog

n Line 7:To create our template object t, we only need to tell Django the name of
the template. Because we’ve stored it in the templates directory of our app, Django
can find it without further instruction.

n Line 8: Django templates render data that is provided to them in a context, a dic-
tionary-like object. Our context c has only a single key and value.

n Line 9: Every Django view function returns a django.http.HttpResponse object.
In the simplest case, we pass the constructor a string.The template render method
returns a string, conveniently.

Creating a URL Pattern
Only one more piece is needed for our page to work—like anything else on the Web, it
needs a URL.

We could create the needed URL pattern directly inside mysite/urls.py, but that
creates a messy coupling between our project and our app.We can use our blog app some-
where else, so it would be nice if it were responsible for its own URLs.We do this in two
simple steps.

The first step is much like enabling the admin. In mysite/urls.py, there’s a com-
mented example line that is almost what we need. Edit it so it looks like this:

url(r'^blog/', include('mysite.blog.urls')),

This catches any requests that begin with blog/ and passes them to a new URLconf
you’re about to create.

The second step is to define URLs inside the blog application package itself. Make a
new file, mysite/blog/urls.py, containing these lines:

from django.conf.urls.defaults import *

from mysite.blog.views import archive

urlpatterns = patterns('',

url(r'^$', archive),

)

It looks a lot like our base URLconf.The action happens in line 5. First, note the
blog/ part of the request URL, which our root URLconf was matching, is stripped—our
blog application is reusable and shouldn’t care if it’s mounted at blog/ or news/ or
what/i/had/for/lunch/.The regular expression in line 5 matches a bare URL, such as
/blog/.

The view function, archive, is provided in the second part of the pattern tuple. (Note
we’re not passing a string that names the function, but an actual first-class function object.
Strings can be used as well, as you see later.)

Let’s see it in action! Is the dev server still running? If not, fire it up with manage.py
runserver, and then go to http://127.0.0.1:8000/blog/ in your browser.You should see a
simple, bare-bones rendering of any blog posts you have entered, complete with title,
timestamp, and post body.

73Finishing Touches

Finishing Touches
Using the key concepts laid out so far, you could go forward and refine this primitive blog
engine in a number of ways. Let’s step through a few of them to make this project feel just
a little more polished.

Template Niceties
Our template is plain to say the least. Because this is a book on Web programming not
Web design, we leave the aesthetic touches to you, but template inheritance is another
feature of the template system that can make your life easier, especially as your page styles
proliferate.

Our simple template is completely self-contained. But what if our site had a blog, a
photo archive, and a links page, and we wanted all these to be based on a common base?
Experience tells you the wrong way to do this would be to copy and paste your way to
three kind-of-identical self-contained templates.The right way in Django is to create a
base template, and then extend this template to generate the other, specific templates. In
your mysite/blog/templates directory, create a template called base.html containing
the following:

<html>

<style type="text/css">

body { color: #efd; background: #453; padding: 0 5em; margin: 0 }

h1 { padding: 2em 1em; background: #675 }

h2 { color: #bf8; border-top: 1px dotted #fff; margin-top: 2em }

p { margin: 1em 0 }

</style>

<body>

<h1>mysite.example.com</h1>

{% block content %}

{% endblock %}

</body>

</html>

Not exactly valid XHTML Strict, but it’ll do.The detail to notice is the {% block ...
%} tag.This defines a named area that subtemplates can change.To make your blog app use
this template, change your archive.html template so it references this new base template
and its “content” block.

{% extends "base.html" %}

{% block content %}

{% for post in posts %}

<h2>{{ post.title }}</h2>

<p>{{ post.timestamp }}</p>

<p>{{ post.body }}</p>

{% endfor %}

{% endblock %}

74 Chapter 2 Django for the Impatient: Building a Blog

The {% extends ... %} tag tells Django to look for a template named base.html,
and plug the content of any named blocks in this template into the corresponding blocks
in that template.You should now see something like Figure 2.10 (hopefully your blog
posts are more exciting, though).

Date-Based Ordering
You should have noticed your blog posts are not being presented in traditional reverse-
chronological order. It’s easy for us to tell Django to do that; in fact, we have a choice as
to where we want to tell it to do so.We can add a default ordering to our model, or we
can add it to the BlogPost.objects.all() query in our view code. In this case the
model is a better location because we most often want posts ordered reverse chronologi-
cally. If we set our preferred ordering in the model, any part of Django that accesses our
data uses that ordering.

To set default ordering for your model, give it an inner class called Meta and set the
ordering attribute in that class.

class Meta:

ordering = ('-timestamp',)

Take a look at your blog home page (/blog/).The newest post should now be on top.
The string -timestamp is a concise way of telling Django,“order by the ‘timestamp’ field,
and do it in descending order.” (If we omitted the “-”, they’d be presented in ascending
date order instead.)

Figure 2.10 The blog, lightly styled

75Summary

Note
Don’t omit the trailing comma inside the parentheses! It makes this a single-item tuple,
rather than just a parenthesized string. Django expects a tuple here; you’re allowed to spec-
ify as many fields for ordering as you want. If you added 'title' after the comma, and you
had two posts titled “A” and “B” with the same timestamp, post “A” would come first.

Timestamp Formatting Via a Template Filter
That timestamp is handy, but its ISO8601 format is a little nerdy. Let’s humanize it a bit
by using a cool feature of the Django template system: filters.

Because this is a presentation detail, not a data structure or business logic detail, the
appropriate place for it is in the template. Open your archive.html file and change the
“post.timestamp” line to

<p>{{ post.timestamp|date }}</p>

To apply a filter to a variable, you simply tack it on to the end of the variable name—
inside the curly brackets—using a vertical bar, or “pipe,” character. Reload your blog
home page. Now your dates appear in a more liberal-arts-friendly form (“July 7 “).

If the default style of the date filter isn’t to your liking, you can pass it an argument
using strftime-type formatting. However, rather than using the conversion codes from
Python’s time module, it uses the same formatting directives as PHP’s date function. For
example, if you want to display the day of the week but omit the year, change the line to
pass an argument to the date filter.

<p>{{ post.timestamp|date:"l, F jS" }}</p>

This particular format string gives you dates in the style “Friday, July 6th.” Make sure
you don’t leave any space on either side of that colon—the Django template engine is
particular about this.

Summary
Of course, we could continue adding features to our blog engine forever (many people
do!), but hopefully you’ve seen enough to give you a taste of the power of Django. In the
course of building this skeletal blog app you’ve seen a number of Django’s elegant, labor-
saving features:

n The built-in Web server, which makes your development work more self-contained
and automatically reloads your code if you edit it

n The pure-Python approach to data model creation, which saves you from having to
write or maintain SQL code or XML description files

n The automatic admin application, which provides full-fledged content-editing fea-
tures even for nontechnical users

n The template system, which can be used to produce HTML, CSS, JavaScript, or any
textual output format

76 Chapter 2 Django for the Impatient: Building a Blog

n Template filters, which can alter the presentation of your data (such as dates) with-
out messing with your application’s business logic

n The URLconf system, which gives you great flexibility in URL design while keep-
ing application-specific portions of URLs in the application, where they belong

Just to give you an idea of what’s ahead, the following are some things we could pro-
ceed to do to our blog using Django’s built-in features:

n Publish Atom or RSS feeds of our latest posts (see Chapter 11)
n Add a search feature so that users can locate blog posts containing specific terms

(see the CMS example app in Chapter 8,“Content Management System”)
n Adopt Django’s “generic views” to avoid having to write any code in views.py at all

(see the Pastebin example app in Chapter 10,“Pastebin”)

You’ve completed your whirlwind tour of Django basics. Chapter 3, fleshes out with a
broad look at Django’s key components and the philosophies behind them, as well as pro-
vides a recap of some Web development principles central not only to Django itself, but
to the lessons we offer in later parts of the book. Chapter 4, takes you down into the
details of the framework, where you find answers to the questions of “how, why, and what
about ...?” that probably arose as you walked through the previous examples. After
Chapter 4, you have a solid enough understanding to follow along and build several
example applications: a content management system, a pastebin, a photo gallery, and an
Ajax-powered “live blog.”

Index

Symbols
& (ampersand) operator (Django), 109

>> append operator, 291

* (asterisk)

in functions (Python), 40-42, 132
repetition/duplication, 16

@ (at sign), function decorators, 44

^ (carat), in URLconfs, 118

: (colon), sequence slicing, 15

, (comma), in tuples, 24

$ (dollar sign)

in URLconfs, 118
variable (jQuery), 214

** (double asterisk), in functions (Python),
40-42, 132

(hash mark), comments, 10

% (percent sign), string format operator,
22-24

| (pipe)

operators (Django), 109, 290
template filters, 137

+ (plus sign), concatenation, 16

~Q, in keyword composition (Django),
109-110

< redirection operator, 291

> redirection operator, 291

A
ab (benchmarking tool), 265

abstract base classes (Django), 97-99

access control. See authentication
decorators (Python), 240

accessing App Engine objects in Django
applications, 330

add-ons for Python, 300

Easy Install, 300
IPython, 300-301

admin application (Django)

changing list display, 68-69
creating blog posts, 67-69
customizing, 235-236

with authentication decorators,
239-240

base templates, extending, 237-238
with fieldsets setting, 236-237
views, creating, 238-239

login, 66-67
model options, 101-102
setup, 65-66
troubleshooting, 66

admin views in CMS example application,
193-195

Ajax (Asynchronous Javascript And XML),
205. See also JavaScript

advantages of, 206
explained, 205-206
libraries (liveblog example application)

installing, 213-214
selecting, 207-208
setup and testing, 214-215

requirements for usage, 212
XML versus JSON, 212-213

all function (Python), 25-26

all method (Django), 104

alternative templating (Django), 258-260

ampersand (&) operator (Django), 109

animation with Ajax. See Ajax

anonymous functions (Python), 38

in Django, 39
lambda keyword, 38-39

any function (Python), 25-26

Apache Web server

hooking Django into, 304-305
installing, 304
serving static files, 305-306

App Engine. See Google App Engine

append method (Python), 18

append operator (>>), 291

applications (Django)

blog project example
admin application, 65-69
applications, creating, 61
databases, setup, 62-65
development runserver, running,

59-61
models, 62, 74
projects, creating, 58-59
templates, creating, 70-75
URL patterns, creating, 72
view functions, creating, 71-72

CMS example application, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192

340 accessing App Engine objects in Django applications

model definition for, 186-189
search functionality in, 199-201
templates for, 196-198
urls.py file, 192-193
user management, 201
views.py file, 196
workflow management, 202

converting to App Engine
applications, 328

accessing App Engine objects, 330
adding data, 331-332
copying App Engine code, 328
integrating App Engine Helper for

Django, 329-330
linking to App Engine code, 329
testing, 330

creating, 61
for Google App Engine, 333-334

evaluating, 322-323
finding, 321-322
Flatpages, 182

enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185

installing, 323
liveblog example application

Ajax libraries, installing, 213-214
Ajax libraries, selecting, 207-208
Ajax libraries, setup and testing,

214-215
Ajax requirements, 212
directory structure of, 208-211

planning, 206-207
view function, creating, 216-217
view function, using via JavaScript,

217-218
XML versus JSON, 212-213

pastebin example application, 221-222
cleaning up with cron jobs,

231-232
limited number of items displayed,

229-230
models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URLs, designing, 225

photo gallery example application, 159
file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161
PIL (Python Imaging Library),

installing, 162-163
templates, 173-179
ThumbnailImageField class,

building, 164-169
ThumbnailImageField class,

usage, 169
URLs setup, 169-173

sharing, 323
testing, 274-279

doctest module (Python), 275
models, testing, 276-278
running tests, 276
tools for, 278-279
unittest module (Python), 276

341applications (Django)

args/kwargs convention. See * (asterisk);
**(double asterisk)

arguments for commands, 286, 288-289

arithmetic operators (Python), 11, 13

arrays. See lists (Python)

AssertionError exception (Python), 32

assigning environment variable values, 291

associative arrays. See dictionaries (Python)

asterisk (*)

in functions (Python), 40-42, 132
repetition/duplication, 16

Asynchronous Javascript And XML. See Ajax

at sign (@), function decorators, 44

AttributeError exception (Python), 32

attributes (Django)

adding to fields, 167-168
calculated attributes, 90
of request objects, 124-125

augmented assignment operators (Python),
11, 14

authentication decorators (Python) for
admin application, 239-240

B
backend types for caching (Django), 272

db, 273
file, 273
memcached, 273-274

base classes, 44

base templates

creating, 73-74
extending, 237-238

baselines (server performance), determining,
265-266

base_site.html template (admin application),
extending, 238

benchmarking server performance, 265-266

BigTable system, 326

binary directories, 293

bitwise operators (Python), 14

block tag (Django), 71, 139-141

block template tag (Django), 73

blog project example

admin application
changing list display, 68-69
creating blog posts, 67-69
login, 66-67
setup, 65-66
troubleshooting, 66

applications, creating, 61
databases, setup, 62-65
development runserver, running,

59-61
models

default ordering, setting, 74
designing, 62

projects, creating, 58-59
templates

base templates, creating, 73-74
creating, 70-71
filters, applying, 75

URL patterns, creating, 72
view functions, creating, 71-72

342 args/kwargs convention

blogs. See also blog project example

Django blog aggregator, 338
liveblogs, defined, 205

bool function (Python), 12

Boolean data type (Python), 12

Boolean operators (Python), 11

BooleanField class (Django), 92

bound forms (Django), 147-149

branches (version control systems), 314

BSD/MIT-style licenses, GPL (GNU Public
License) versus, 321

built-in functions (Python), 14

C
CACHE_BACKEND setting, arguments

for, 272

cache_control decorator (Django), 269

cache_page decorator (Django), 268

cache-related headers (Django), controlling,
268-269

cache template tag (Django), 271

cache type (Django), setting, 266

caching (Django), 226, 265

backend types, 272
db, 273
file, 273
memcached, 273-274

baseline, determining, 265-266
cache type, setting, 266
middleware, adding, 266
strategies for, 267

cache-related headers, controlling,
268-269

cache template tag, 271

object cache, 269-270
per-view caching, 268
site-wide caching, 267

testing, 266-267
calculated attributes, 90

calendar module (Python), 254

callable views (Django), 121-122

calling functions (Python), 34-35

* and ** in, 40
by reference/value. See mutability
keyword arguments in, 35

carat (^), in URLconfs, 118

cascades (SQL), support for, 113

Cascading Style Sheets (CSS), 79

casting Python data types. See numeric
functions (Python)

centralized version control systems, 315

changes (in version control systems)

committing, 317
merging, 314

changesets, recording, 317

CharField class (Django), 91

charts, generating, 246-248

CherryPy, 306

choosing. See selecting

class keyword (Python), 44

classes (Django)

abstract base classes, 97-99
BooleanField, 92
CharField, 91
EmailField, 91
Field, 91
FileField, 92

343classes (Django)

ForeignKey, 93
Form, 142
Http404, 131
ImageField, testing, 163-165. See also

photo gallery example
ImageFieldFile, 167-168
IPAddressField, 91
Manager, 104-105
ManyToManyField, 95
Meta, 100-101
ModelChoiceField, 146
ModelForm, 143
ModelMultipleChoiceField, 146
NullBooleanField, 92
OneToOneField, 96
Q, 109-110
QueryDict, 123
QuerySet, 104-105

as database query, 105-106
joining databases, 108-109
keyword composition with Q

and ~Q, 109-110
as list container, 106
modifying SQL queries, 111-112
as nested queries, 106-107
removing duplicates, 108
sorting query results, 108

TextField, 91
URLField, 91
Widget, 152

classes (Python)

creating, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiating, 45, 52
subclassing, 46

clean up. See cron jobs

clear method (Python), 28

CMS (Content Management System)

custom example application, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192
model definition for, 186-189
search functionality in, 199-201
templates for, 196-198
urls.py file, 192-193
user management, 201
views.py file, 196
workflow management, 202

explained, 181
Flatpages application, 182

enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185

344 classes (Django)

codebase (Django), testing, 279-281

coding style (Python), 53

documentation strings, 54-55
indentation, 53
single-line suites, 54
spaces versus tabs, 53

colon (:), sequence slicing, 15

columns (in database tables), 78

comma (,), in tuples, 24

comma-separated values (CSV) files,
generating, 245-246

command line. See also utility scripts

arguments and options, 288-289
environment variables, 291-293
input and output, 289-291
Mac OS X, using in, 285
operational overview, 285-287
paths, 293-294
Unix program names, 287-288
Windows, using in, 285

commands

arguments and options, 286-289
Django

dumpdata, 104
loaddata, 104
manage.py shell, 10
runserver, 60
sql, 103
sqlall, 103
sqlclear, 103
sqlcustom, 103, 113

sqlindexes, 103
sqlrest, 103
startapp, 61
startproject, 58
syncdb, 64, 103

Python
del, 27
print, 8-9

commenting system (Django), 203

comments (Python), 10

committing changes in version control
systems, 317

communication methods (in Web
development), 78

comparison operators (Python), 11

complex data type (Python), 13

concatenating sequences (Python), 16-17

conditionals (Python), 29

configuration files (Nagios), generating,
243-244

configuring

feeds (Django), 240-241
pure Google App Engine

applications, 326
constraining relationships, 96

constructors. See instantiation (Python)

contact information (vCard generation),
244-245

containers, QuerySet class (Django) as, 106

Content Management System. See CMS

context processors (Django), 136

contexts for templates (Django), 135-136

345contexts for templates (Django)

contributing to Django community, 337-338

controllers (in MVC architecture), 80

converting

Markdown content to HTML, 191
Python data types. See numeric

functions (Python)
cookies, 124

COOKIES data structure (Django), 124

copying

App Engine code to projects, 328
objects (Python), mutability and,

51-52
repositories (version control

systems), 317
sequences (Python), 16

create_update.create_object generic view
(Django), 130

create_update.update_object generic view
(Django), 130

cron jobs

in pastebin example application,
231-232

utility script for, 262-263
CRUD operations, 128

CSS (Cascading Style Sheets), 79

CSV (comma-separated values) files,
generating, 245-246

csv module (Python), 245-246

custom classes (photo gallery example)

building, 164-169
using, 169

custom datatypes (SQL), support for, 113

custom filters (Django), creating, 256-258

custom functions (SQL), support for, 113

custom managers (Django), 248

for CMS example application, 189
default object set, changing, 248-249
methods

creating, 249-250
naming, 249

custom queries (SQL), support for, 115

custom template tags (Django), creating,
250-253

custom views (Django), 131-132

customizing

admin application (Django), 235-236
with authentication decorators,

239-240
base templates, extending, 237-238
with fieldsets setting, 236-237
views, creating, 238-239

codebase (Django), 264
generic views (Django) with

dictionaries, 225
CVS (Concurrent Versions System), 313

Cygwin, 285

D
data aggregation, 90

data caching (Django), 226

data import/export, utility script for,
263-264

data normalization in forms (Django), 150

data storage methods (in Web
development), 78

346 contributing to Django community

data types (Python)

Boolean, 12
complex, 13
conversion. See numeric functions

(Python)
Decimal, 13
dictionaries, 26-28
float, 12
int, 12
iterables, 14
long, 12
numeric, 12-13
sequences, 14-15

concatenation, 16-17
copying, 16
functions for, 25-26
lists, 14, 17-19
operations on, 16
slicing, 15-16
strings, 14, 19-24
tuples, 15, 24-25

for variables, 10-11
databases, 78

Django
creating and updating, 103-104
non-Django SQL features, usage

of, 112-115
querying, 104-112
synchronization, 103

MySQL, 310-311
Oracle, 311
PostgreSQL, 309-310

setup, 62
for SQLite, 63-64
table creation, 64-65

SQLite, 308
support for, 311

DATABASE_ENGINE setting, 63

DATABASE_HOST setting, 63

DATABASE_NAME setting, 63

DATABASE_PASSWORD setting, 63

DATABASE_PORT setting, 63

DATABASE_USER setting, 63

date-based ordering of models, setting, 74

date_based.* generic views (Django), 130

db cache type (Django), 272-273

decentralized version control systems,
315-316

Decimal data type (Python), 13

declaring functions (Python), 34

* and ** in, 41-42
default arguments in, 35-36

decorators

Django
cache_control, 269
cache_page, 268
stringvalue, 258

Python
authentication decorators for

admin application, 239-240
for functions, 39, 42-44

deep copying (Python), 52

default arguments in functions (Python),
35-36

347default arguments in functions (Python)

default object set in ORM system (Django),
changing, 248-249

default ordering (in models), setting, 74

default widgets (Django), overriding,
153-154

defining

forms (Django), 142-143
initial SQL files, 113
models (Django), 91

CMS example application, 186-189
pastebin example application,

222-223
del command (Python), 27

delete method (Django), 168

order of operations, 169
deleting

directories, 287
duplicates in query results

(Django), 108
files, 286
older items (pastebin example

application), 231-232
thumbnail images (photo gallery

example), 168-169
designing URLs (Django) for pastebin

example application, 225

Development Console, 328

development runserver, 303

running, 59-61
development version of Django, 302

dictionaries (Python), 26-28

COOKIES data structure, 124
as default function arguments, 36

in Django, 28
customizing generic views

with, 225
FILES data structure, 125
GET and POST data structures,

123-124
META data structure, 125
REQUEST data structure, 124
session data structure, 124

directories

binary directories, 293
listing contents of, 286
liveblog example application, 208-211
preparing for file uploads (photo

gallery example), 161-162
removing, 287
shared applications directory,

creating, 323
site-packages directory, installing

applications to, 323
display of admin application, changing,

236-237

displaying forms (Django), 150-152

distinct method (Django), 108

division operators (Python), 13

Django. See also Django applications

admin application
changing list display, 68-69
creating blog posts, 67-69
customizing, 235-240
login, 66-67
setup, 65-66
troubleshooting, 66

anonymous functions (Python) in, 39

348 default object set in ORM system (Django), changing

architectural overview, 82
block tags, 71
blog aggregator, 338
caching, 226, 265

backend types, 272-274
baseline, determining, 265-266
cache type, setting, 266
middleware, adding, 266
strategies for, 267-271
testing, 266-267

codebase
customizing, 264
testing, 279-281

community, contributing to, 337-338
core philosophies of, 82

DRY (Don’t Repeat Yourself), 84
modularity, 84-85
as Pythonic, 84
rapid development, 85

custom managers, 248
default object set, changing,

248-249
methods, creating, 249-250
methods, naming, 249

databases, setup, 62-65
decorators

cache_control, 269
cache_page, 268
stringvalue, 258

described, 7
development of, 2
dictionaries in, 28, 225

documentation, 338
downloadable file generation, 243

charts and graphs, 246-248
CSV (comma-separated values)

files, 245-246
Nagios configuration files, 243-244
vCards, 244-245

downloading
development version, 302
packaged releases, 302

exception handling, 33
filters, 229
fixtures, 65, 113-115
forms, 142

data normalization, 150
defining, 142-143
displaying, 150-152
filling out, 147-149
model-based forms, 143-146
subclassing, 146-147
validating, 149-150
widgets, 152-154

function objects (Python) in, 37-38
hooking into Apache Web server with

mod_python, 304-305
imports (CMS example application),

188
installing, 302-303
interactive interpreter (Python) usage,

9-10
keyword arguments (Python) in, 42
managers, 249

349Django

models
admin options, 101-102
classes (Python) and, 46-47
CMS example application, 186-189
creating and updating databases,

103-104
default ordering, setting, 74
defining, 91
designing, 62
encapsulation of methods, 89-90
enumerate function (Python) in, 30
field types, 91-92
inheritance, 97-100
Meta class, 100-101
non-Django SQL features, usage

of, 112-115
ORM (Object-Relational

Mapper), advantages of, 89-91
photo gallery example, 160-161
portability, 90
primary keys, 92-93
query syntax, ease of use, 90
querying databases, 104-112
registering, 66
relationships, 93-96
security, 90
uniqueness, enforcing, 93

MVC (Model-View-Controller)
architecture in, 80

projects, creating, 58-59
raw strings, 22
superusers, creating, 65

Syndication application, 240
feeds, configuring, 240-241
feeds, URLs for, 242
Universal Feed Parser, 242-243

templates, 70, 135
base templates, creating, 73-74
for CMS example application,

196-198
contexts, 135-136
creating, 70-71
embedding JavaScript actions

in, 215
extending, 250-260
filters, 75, 137-138
for Flatpages application, 184
inclusion, 141
inheritance, 139-141
language syntax, 136-137
liveblog example application, 209
photo gallery example, 173-179
tags, 136, 138-141

tuples in, 24-25
URL patterns, 70

creating, 72
URLs, 117

callable views, 121-122
HTTP request-response model,

122-127
include function, 120-121
multiple patterns objects, 119-120
url method, 119
URLconfs, 59, 117-118

350 Django

utility scripts, 261
cron jobs, 262-263
data import/export, 263-264

variable tags, 70
view functions, 70

creating, 71-72
liveblog example application,

216-218
views, 127

custom views, 131-132
generic views, 128-131, 221. See

also pastebin example
as Python functions, 128

Django applications.

blog project example
admin application, 65-69
applications, creating, 61
databases, setup, 62-65
development runserver, running,

59-61
models, 62, 74
projects, creating, 58-59
templates, creating, 70-75
URL patterns, creating, 72
view functions, creating, 71-72

CMS example application, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192

model definition for, 186-189
search functionality in, 199-201
templates for, 196-198
urls.py file, 192-193
user management, 201
views.py file, 196
workflow management, 202

converting to App Engine
applications, 328

accessing App Engine objects, 330
adding data, 331-332
copying App Engine code, 328
integrating App Engine Helper for

Django, 329-330
linking to App Engine code, 329
testing, 330

creating, 61
for Google App Engine, 333-334

evaluating, 322-323
finding, 321-322
Flatpages, 182

enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185

installing, 323
liveblog example application

Ajax libraries, installing, 213-214
Ajax libraries, selecting, 207-208
Ajax libraries, setup and testing,

214-215
Ajax requirements, 212

351Django applications

directory structure of, 208-211
planning, 206-207
view function, creating, 216-217
view function, using via JavaScript,

217-218
XML versus JSON, 212-213

pastebin example application, 221-222
cleaning up with cron jobs,

231-232
limited number of items displayed,

229-230
models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URLs, designing, 225

photo gallery example application, 159
file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161
PIL (Python Imaging Library),

installing, 162-163
templates, 173-179
ThumbnailImageField class,

building, 164-169
ThumbnailImageField class,

usage, 169
URLs setup, 169-173

sharing, 323
testing, 274-279

doctest module (Python), 275
models, testing, 276-278
running tests, 276
tools for, 278-279
unittest module (Python), 276

django-admin.py utility, directory location
of, 58

django.shortcuts module (Python), 131-132

djangogigs.com, 338

djangopeople.net, 338

Djangopluggables.com, 322

DjangoResources page (Django project
wiki), 322

DjangoSites.org, 322

__doc__ attribute (Python), 54

docstrings. See documentation strings
(Python)

doctest module (Python), 275

documentation (Django), 338

documentation strings (Python), 54-55

Dojo, 207

dollar sign ($)

in URLconfs, 118
variable (jQuery), 214

double asterisk (**), in functions (Python),
40-42, 132

downloadable files, generating, 243

charts and graphs, 246-248
CSV (comma-separated values) files,

245-246
Nagios configuration files, 243-244
vCards, 244-245

downloading

Django
development version, 302
packaged releases, 302

Google App Engine Helper for
Django, 327

Google App Engine SDK, 327
Python, 295
Python-Markdown module, 190

352 Django applications

dpaste.com, 222

DRY (Don’t Repeat Yourself) principle, 62, 84

URLs setup (photo gallery example),
169-173

dummy cache type (Django), 272

dumpdata command (Django), 104

duplicates in query results (Django),
removing, 108

dynamic content, 78

dynamic instance attributes (Python), 45,
52-53

dynamic URLs (Django), 118

dynamic Web development. See Web
development

E
Easy Install (Python add-on), 300

Eclipse IDE, 320

editing

INSTALLED_APPS tuple, 61
settings.py file, 61, 65
urls.py file, 65

editors. See text editors

elif statement (Python), 29

else statement (Python), 29

Emacs, 319

EmailField class (Django), 91

embedding

Django applications, 323
JavaScript actions, 215

enabling Flatpages application, 182-184

encapsulation of methods (Django), 89-90

encoding variable (request objects), 125

enumerate function (Python), 25-26, 29

in Django models, 30

environment (command line), 291

environment variables, 291-293

error handling in Flatpages application, 184.
See also exception handling

escaping HTML, 197

evaluating Django applications, 322-323

example applications

blog project
admin application, 65-69
applications, creating, 61
databases, setup, 62-65
development runserver, running,

59-61
models, 62, 74
projects, creating, 58-59
templates, creating, 70-75
URL patterns, creating, 72
view functions, creating, 71-72

CMS, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192
model definition for, 186-189
search functionality in, 199-201
templates for, 196-198
urls.py file, 192-193
user management, 201
views.py file, 196
workflow management, 202

353example applications

liveblog
Ajax libraries, installing, 213-214
Ajax libraries, selecting, 207-208
Ajax libraries, setup and testing,

214-215
Ajax requirements, 212
directory structure of, 208-211
planning, 206-207
view function, creating, 216-217
view function, using via JavaScript,

217-218
XML versus JSON, 212-213

pastebin, 221-222
cleaning up with cron jobs,

231-232
limited number of items displayed,

229-230
models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URLs, designing, 225

photo gallery, 159
file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161
PIL (Python Imaging Library),

installing, 162-163
templates, 173-179
ThumbnailImageField class,

building, 164-169
ThumbnailImageField class,

usage, 169
URLs setup, 169-173

except clause (Python), 30-31

exception handling (Python)

in Django, 33
Http404 class, 131

exceptions, list of, 32-33
raise statement, 32-33
try-except blocks, 30-31
try-finally blocks, 31-32

exclude method (Django), 104

expanding environment variable values, 292

exporting data, utility script for, 263-264

expressions (Python), statements (Python)
versus, 38. See also regular expressions
(Python)

extend method (Python), 51

extending

base templates (admin application),
237-238

template system (Django), 250
alternative templating, 258-260
custom filters, 256-258
custom tags, 250-253
inclusion tags, 253-256

extends tag (Django), 74, 139-141

extra method (Django), 111-112

F
factory functions (Python), 14

False value (Python), 12

FastCGI, 307-308

feeds (Django)

configuring, 240-241
Universal Feed Parser, 242-243
URLs for, 242

354 example applications

feeds.py file, configuring, 240-241

Field class (Django), 91

field types (Django), 91-92

fields (Django), adding attributes to,
167-168

fieldsets setting (admin application),
236-237

file cache type (Django), 272-273

file extensions (Python), 10

file uploads, preparing for (photo gallery
example), 161-162

FileField class (Django), 92

files (Python)

initialization, 166-167
methods for, 33-34
removing, 286

FILES data structure (Django), 125

filling out forms (Django), 147-149

filter method (Django), 104

filtering

lists (Django) in pastebin example
application, 229-230

queries (Django), 106-107
QuerySets (Django) in generic

views, 129
filters (Django)

custom filters, creating, 256-258
safe, 197
slice, 229
in templates, 75, 137-138

finally clause (Python), 31-32

finding Django applications, 321-322

fixtures (Django), 65, 113-115

Flatpages application, 182

enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185

flexibility of Django, 84-85

float data type (Python), 12

floor division (Python), 13

flow control (Python), 28

conditionals, 29
loops, 29

flup module, 307-308

for loops (Python), 29

for template tag (Django), 71

foreign keys (Django), 93-94

ForeignKey class (Django), 93

Form class (Django), 142

form display options in admin application
(Django), 102

formatting

with filters, 75
strings (Python), 22-24

forms (Django), 142

data normalization, 150
defining, 142-143
displaying, 150-152
filling out, 147-149
model-based forms, 143

modifying, 145-146
saving, 143-145

subclassing, 146-147
validating, 149-150
widgets, 152-154

355forms (Django)

fromkeys method (Python), 28

functions (Django)

get_list_or_404, 131
get_object_or_404, 131
include, 120-121
patterns, 117
render_to_response, 131
serialize, 216

functions (JavaScript), setInterval, 217

functions (Python), 34. See also methods
(Python)

* and ** in, 40-42, 132
anonymous functions, 38

in Django, 39
lambda keyword, 38-39

as objects, 36
in Django, 37-38
references, 36-37

bool, 12
calling, 34-35
declaring, 34
decorators, 39, 42-44
default arguments in, 35-36
enumerate, 29

in Django models, 30
help, 54
keyword arguments in, 35
match, 48
numeric functions, 14
reversed, 18
search, 47
for sequences, 25-26
sorted, 18
views (Django) as, 128

G
generator expressions (Python), 19

generic views (Django), 128-130, 221. See
also pastebin application

CMS example application, 196
customizing with dictionaries, 225
modifying, 130-131

GET data structure (Django), 123-124

get method (Django), 104

get method (Python), 27-28

getJSON method (jQuery), 217

get_list_or_404 function (Django), 131

get_object_or_404 function (Django), 131

Git, 315

GitHub.com, 322

Google App Engine, 325. See also Google
App Engine Helper for Django

advantages of using, 325-326
converting Django applications to App

Engine applications, 328
accessing App Engine objects, 330
adding data, 331-332
copying App Engine code, 328
integrating App Engine Helper for

Django, 329-330
linking to App Engine code, 329
testing, 330

creating Django applications for,
333-334

limitations of, 326-327
objects, accessing in Django

applications, 330
pure applications for, 326
tutorial, 327
Web sites for information, 334-335

356 fromkeys method (Python)

Google App Engine Helper for Django,
327-328

downloading, 327
integrating into Django applications,

329-330
Google App Engine SDK, downloading, 327

Google Code, 322

Google SiteSearch box, 199

Gorbatchev, Alex, 230

GPL (GNUPublic License), BSD/MIT-style
licenses versus, 321

graphs, generating, 246-248

GUI animation with Ajax. See Ajax

H
handlers. See exception handling (Python)

hash mark (#), comments, 10

hash tables. See dictionaries (Python)

headers (Django), cache-related, controlling,
268-269

help function (Python), 54

help system for command line, 287

highlighted syntax in pastebin example
application, 230-231

Holovaty, Adrian, 2

HTML (HyperText Markup Language), 79

converting Markdown content to, 191
escaping, 197

HTTP (HyperText Transfer Protocol), 78

HTTP request-response model (Django), 122

middleware, 126-127
request objects, 123-125
response objects, 125-126

Http404 class (Django), 131

Http404 error, raising, 33

HttpRequest object (Django), 123-125

HttpResponse object (Django), 125-126

changing MIME type in, 245

I
IBM DB2, 311

id attribute (Python), 50

IDs, timestamps versus, 216

if statement (Python), 29

IIS, 306

ImageField class (Django), testing, 163-165.
See also photo gallery example

ImageFieldFile class (Django), 167-168

immutable variables (Python), as default
function arguments, 36

ImportError exception (Python), 32

importing

data, utility script for, 263-264
modules (Python), 48-49

imports (Django), CMS example
application, 188

imports (Python), 166

improper slicing, sequences (Python), 16

in operator (Python), 16

include function (Django), 120-121

include tag (Django), 141

inclusion of templates (Django), 141

inclusion tags (Django), creating, 253-256

indentation (Python), 9, 11, 53

IndentationError exception (Python), 32

index pages, defining URLs for, 118

IndexError exception (Python), 32

357IndexError exception (Python)

inheritance (Django), 97

with abstract base classes, 97-99
multi-table inheritance, 99-100
of templates, 139-141

__init__ initializer (Python), 45, 52

__init__.py file, 59

initial SQL files, defining, 113

initializing

files (Python), 166-167
objects (Python), 52

inner classes (Python), 46

input on command line, 289-291

insert method (Python), 18

INSTALLED_APPS tuple, editing, 61

installing

Ajax libraries (liveblog example
application), 213-214

Apache Web server with
mod_python, 304

Django, 302-303
applications, 323
testing installation, 303

PIL (Python Imaging Library), photo
gallery example, 162-163

Python
on Mac OS X, 296
testing installation, 299
on Unix/Linux, 296
on Windows, 296-298

instantiation (Python), 45, 52

int data type (Python), 12

integrating App Engine Helper for Django
into Django applications, 329-330

interactive interpreter (Python), 8-9

Django usage with, 9-10
IOError exception (Python), 32

IPAddressField class (Django), 91

IPython (Python add-on), 300-301

IRC channel for Django information, 338

isupper method (Python), 21

is_valid method (Django), 149

items method (Python), 28

iterables (Python), 14

iteritems method (Python), 28

iterkeys method (Python), 28

itervalues method (Python), 28

J
JavaScript, 79. See also Ajax

actions, embedding, 215
libraries. See Ajax libraries
using view functions via (liveblog

example application), 217-218
JavaScript Object Notation. See JSON

joining

databases, 108-109
Django community, 337-338

jQuery, 207

installing (liveblog example
application), 213-214

setup and testing (liveblog example
application), 214-215

JSON (JavaScript Object Notation), 79, 212

Python interoperability with, 213
XML versus, 212-213

358 inheritance (Django)

K
key argument (Python), 38

key collision (Python), 27

KeyboardInterrupt exception (Python), 32

KeyError exception (Python), 32

keys method (Python), 28

keyword arguments (Python), 41

in Django, 42
in functions, 35

keyword composition (Django), 109-110

L
lambda keyword (Python), 38-39

in authentication decorators, 240
landing pages, defining URLs for, 118

language syntax for templates (Django),
136-137

layout of admin application, changing,
236-237

len function (Python), 25-26

libraries (Ajax), liveblog example application

installing, 213-214
selecting, 207-208
setup and testing, 214-215

licensing, BSD/MIT-style licenses versus
GPL (GNU Public License), 321

lighttpd, 306

limit_choices_to argument (Django), 96

line termination characters in
files (Python), 34

linking App Engine code to projects, 329

Linux, installing Python on, 296

list comprehensions (Python), 18-19

list display in admin application, changing,
68-69

list formatting options in admin application
(Django), 102

list function (Python), 25

listcomps. See list comprehensions (Python)

listing directory contents, 286

lists (Django)

filtering in pastebin example
application, 229-230

QuerySet class as, 106
lists (Python), 14, 17-18

as default function arguments, 36
generator expressions, 19
list comprehensions, 18-19
sorting, 18, 51

list_detail.object_detail generic view
(Django), 129

list_detail.object_list generic view
(Django), 129

liveblog example

Ajax libraries
installing, 213-214
selecting, 207-208
setup and testing, 214-215

Ajax requirements, 212
directory structure of, 208-211
planning, 206-207
view function

creating, 216-217
using via JavaScript, 217-218

XML versus JSON, 212-213

359liveblog example

liveblogs, defined, 205

load tag (Django templates), 253

loaddata command (Django), 104

loading modules (Python), 49

locmem cache type (Django), 266, 272

login for admin application, 66-67

long data type (Python), 12

loops (Python), 29

loose coupling of Django, 84-85

M
Mac OS X

installing Python on, 296
Unix command-line tools, using

in, 285
mailing lists for Django information, 338

Mako templating engine, 259-260

man system (command-line help), 287

manage.py shell command (Django), 10

manage.py utility, 59

applications, creating, 61
databases, creating and updating,

103-104
development runserver, running, 60

Manager class (Django), 104-105

managers (Django)

custom manager, 248
default object set, changing,

248-249
methods, creating, 249-250
methods, naming, 249

objects, 249
many-to-many relationships, 94-95

many-to-one relationships, 93

ManyToManyField class (Django), 95

mapping types (Python), dictionaries, 26-28

Markdown (light markup language) in CMS
example application, 190-192

match function (Python), 48

matching, searching versus (Python regular
expressions), 48

max function (Python), 25-26

membership in sequences (Python), 16

memcached cache type (Django), 272-274

Mercurial, 315

operational overview, 316-318
merging changes in version control

systems, 314

Meta class (Django), 100-101

META data structure (Django), 125

Meta inner class (Python), 46

method variable (request objects), 125

methods (Django)

all, 104
for custom managers

creating, 249-250
naming, 249

delete, 168
order of operations, 169

distinct, 108
encapsulation, 89-90
exclude, 104
extra, 111-112
filter, 104
get, 104
is_valid, 149

360 liveblogs, defined

order_by, 108
process_request, 126-127
process_response, 127
reverse, 108
save, 143-145, 168
select_related, 108-109
url, 119
values, 108
values_list, 108

methods (jQuery), getJSON, 217

methods (Python). See also functions (Python)

for dictionaries, 27-28
for files, 33-34
for lists, 18
mutability and, 50-51
for strings, 19, 21

Microsoft SQL Server, 311

middleware (Django), 126-127

for caching, adding, 266
MIME type in HttpResponse object,

changing, 245

min function (Python), 25-26

MochiKit, 207

model-based forms (Django), 143

modifying, 145-146
saving, 143-145

Model-View-Controller. See MVC architecture

ModelChoiceField class (Django), 146

ModelForm class (Django), 143

ModelMultipleChoiceField class (Django), 146

models (Django)

admin options, 101-102
classes (Python) and, 46-47

databases
creating and updating, 103-104
non-Django SQL features, usage

of, 112-115
querying, 104-112

default ordering, setting, 74
defining, 91

CMS example application, 186-189
pastebin example application,

222-223
designing, 62
encapsulation of methods, 89-90
enumerate function (Python) in, 30
field types, 91-92
inheritance, 97

with abstract base classes, 97-99
multi-table inheritance, 99-100

Meta class, 100-101
ORM (Object-Relational Mapper),

advantages of, 89-91
photo gallery example, 160-161
portability, 90
primary keys, 92-93
query syntax, ease of use, 90
registering, 66
relationships, 93

constraining relationships, 96
foreign keys, 93-94
many-to-many relationships, 94-95
one-to-one relationships, 96

security, 90
testing, 276-278
uniqueness, enforcing, 93

361models (Django)

models (in MVC architecture), 79-81

models.py file, 61

liveblog example application, 209
models, designing, 62
pastebin example application, 222-223
photo gallery example, 160-161

modifying

generic views (Django), 130-131
model-based forms (Django), 145-146

modularity of Django, 84-85

modules (Python)

calendar, 254
csv, 245-246
django.shortcuts, 131-132
doctest, 275
importing, 48-49
loading, 49
operator, 110
packages, 49-50
Python-Markdown module,

downloading, 190
re, 47
StringIO, 245
unittest, 276

mod_python module

hooking Django into, 304-305
installing, 304
serving static files, 305-306

mod_wsgi module, 306-307

MooTools, 207

multi-table inheritance (Django), 99-100

multiple patterns objects (Django), 119-120

mutability of objects (Python), 50

copying objects and, 51-52
method calls and, 50-51

mutable variables (Python), as default
function arguments, 36

MVC (Model-View-Controller) architecture,
79-80

in Django, 80
models in, 80-81
templates in, 81-82
views in, 81

Myghty templating engine, 259

MySQL, 310-311

N
Nagios configuration files, generating,

243-244

named arguments, positional arguments
versus, 119

NameError exception (Python), 32

namespace. See environment
(command line)

naming conventions

managers/manager methods
(Django), 249

partial templates (Django), 255
negative indices in Python sequences, 15

nested classes. See inner classes (Python)

nested queries (Django), 106-107

Nginx, 306

non-Django SQL features, usage of, 112-115

None value (Python), 12

nonmembership in sequences (Python), 16

362 models (in MVC architecture)

normalization. See data normalization

not in operator (Python), 16

NULL. See None value (Python)

NullBooleanField class (Django), 92

numeric data types (Python), 12-13

numeric functions (Python), 14

numeric operators (Python), 13-14

O
object cache (Django), 269-270

object-oriented programming (OOP) in
Python, 44

class definitions, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiation, 45, 52
subclassing, 46

Object-Relational Mapper. See ORM

objects (Django), printing, 137

objects (Python)

dynamic instance attributes, 52-53
functions as, 36

in Django, 37-38
references, 36-37

initializing, 52
mutability, 50

copying objects and, 51-52
method calls and, 50-51

objects manager (Django), 249

one-to-one relationships, 96

OneToOneField class (Django), 96

online resources. See Web sites

OOP (object-oriented programming) in
Python, 44

class definitions, 44-45
Django models nad, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiation, 45, 52
subclassing, 46

open method (Python), 33

operator module (Python), 110

operators (Python), 11

numeric, 13-14
for sequences, 16

options for commands, 286, 288-289

Oracle, 311

order of operations for delete method
(Django), 169

ordering of models, setting, 74

order_by method (Django), 108

ORM (Object-Relational Mapper), 78

advantages of, 89-91
custom managers (Django), 248

default object set, changing,
248-249

methods, creating, 249-250
methods, maning, 249

output on command line, 289-291

overriding default widgets (Django), 153-154

P
packaged releases of Django, 302

packages (Python), 49-50, 59

pagination, Django support for, 202

363pagination, Django support for

partial templates (Django), naming, 255

pastebin example, 221-222

cleaning up with cron jobs, 231-232
limiting number of items displayed,

229-230
models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URLs, designing, 225

path variable (request objects), 125

paths, 293-294

binary directories, 293
updating for Python, 296-298

patterns function (Django), 117

patterns objects (Django), using multiple,
119-120

per-view caching (Django), 268

percent sign (%), string format operator,
22-24

permissions, database access, 63

photo gallery example, 159

file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161
PIL (Python Imaging Library),

installing, 162-163
templates, 173-179
ThumbnailImageField class

building, 164-169
usage, 169

URLs setup, 169-173
PIL (Python Imaging Library), installing

(photo gallery example), 162-163

pipe (|)

operator (Django), 109, 290
template filters (Django), 137

pipes (command line), 289-291

plain text templating (Django), 258

planning liveblog example application,
206-207

plus sign (+), concatenation, 16

pop method (Python), 28

popitem method (Python), 28

portability of models (Django), 90

positional arguments, named arguments
versus, 119

POST data structure (Django), 123-124

PostgreSQL, 309-310

pound sign (#), comments, 10

presentation methods (in Web
development), 79

primary keys (Django), 92-93

print command (Python), 8-9

printing

environment state, 291
objects (Django), troubleshooting, 137

process_request method (Django), 126-127

process_response method (Django), 127

program names in Unix, 287-288

project management software, 318-319

projects (Django), creating, 58-59

prompts (command line), 286

Prototype, 207

.py file extension, 10

PyCha, 246-248

PyDev, 320

364 partial templates (Django), naming

Python

add-ons, 300
Easy Install, 300
IPython, 300-301

classes
creating, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiating, 45, 52
subclassing, 46

coding style, 53
documentation strings, 54-55
indentation, 53
single-line suites, 54
spaces versus tabs, 53

comments, 10
data types

Boolean, 12
complex, 13
Decimal, 13
dictionaries, 26-28
float, 12
int, 12
iterables, 14
lists, 14, 17-19
long, 12
numeric, 12-13
sequences, 14-17, 25-26
strings, 14, 19-24
tuples, 15, 24-25

described, 7

dictionaries
COOKIES data structure, 124
FILES data structure, 125
GET and POST data structures,

123-124
META data structure, 125
REQUEST data structure, 124
session data structure, 124

downloading, 295
exception handling

in Django, 33
exceptions, list of, 32-33
raise statement, 32-33
try-except blocks, 30-31
try-finally blocks, 31-32

expressions, statements versus, 38
file extensions, 10
files

initialization, 166-167
methods for, 33-34

flow control, 28
conditionals, 29
loops, 29

functions, 34
* and ** in, 40-42, 132
anonymous functions, 38-39
calling, 34-35
declaring, 34
decorators, 39, 42-44
default arguments in, 35-36
keyword arguments in, 35
numeric functions, 14
as objects, 36-38
views (Django) as, 128

365Python

indentation, 9, 11
installing

on Mac OS X, 296
testing installation, 299
on Unix/Linux, 296
on Windows, 296-298

interactive interpreter, 8-9
Django usage with, 9-10

JSON interoperability with, 213
modules

calendar, 254
csv, 245-246
importing, 48-49
loading, 49
packages, 49-50
StringIO, 245

object-oriented programming (OOP)
in, 44

class definitions, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiation, 45, 52
subclassing, 46

objects
dynamic instance attributes, 52-53
initializing, 52
mutability, 50-52

operators, 11
numeric operators, 13-14

packages, 59
regexes in URLconfs, 118

regular expressions, 47
re module, 47
searching versus matching, 48

sequences
tuples, 48
unpacking in functions, 40

source code, examining, 165
strings, raw strings, 64
symbols, lack of, 11
tuples, two-tuples, 236
updating path to, 296-298
variables, 10-11
versions of, 8, 295
viewing version number, 295

Python Extensions for Windows, 296

Python Imaging Library (PIL), installing
(photo gallery example), 162-163

Python-Markdown module,
downloading, 190

python-mode (Emacs), 319

Pythonic, Django as, 84

PYTHONPATH environment variable, 57

Q
Q class (Django), 109-110

~Q, in keyword composition (Django),
109-110

queries (Django), building dynamically, 42

query syntax

of models (Django), ease of use, 90
of databases (Django), 104-112

QueryDict class (Django), 123

366 Python

QuerySet class (Django), 104-105

as database query, 105-106
joining databases, 108-109
keyword composition with Q

and ~Q, 109-110
as list container, 106
modifying SQLqueries, 111-112
as nested queries, 106-107
removing duplicates, 108
sorting query results, 108

QuerySets (Django), filtering in generic
views, 129

quote marks, types of, 64

R
raise statement (Python), 32-33

raising Http404 error, 33

range function (Python), 25-26

rapid development in Django, 85

raw strings (Django), 22

raw strings (Python), 22, 64

in regular expressions, 47
raw_post_data variable (request objects), 125

RCS (Revision Control System), 313

re module (Python), 47

read method (Python), 34

readlines method (Python), 34

recording changesets, 317

redirection (command line), 289-291

redirection operators (<>), 291

references of function objects (Python),
36-37

regexes (Python), in URLconfs, 118

registering

as Django developer, 338
models (Django), 66

regression testing, 279

regular expressions (Python), 47

re module, 47
searching versus matching, 48

relationships between models (Django), 93

constraining relationships, 96
foreign keys, 93-94
many-to-many relationships, 94-95
one-to-one relationships, 96

removing. See deleting

render_to_response function (Django), 131

repetition/duplication of sequences
(Python), 16

repositories (version control systems),
copying, 317

repr function (Python), 25

REQUEST data structure (Django), 124

request middleware (Django), 126-127

request objects (Django), 123-125

requests (Web development), 78

response middleware (Django), 127

response objects (Django), 125-126

responses (Web development), 78

reverse method (Django), 108

reverse method (Python), 51

reversed function (Python), 18, 26, 51

root URLs (Django), regexes for, 118

rows (in database tables), 78

367rows (in database tables)

rstrip method (Python), 21, 34

running development runserver, 59-61

runserver command (Django), 60

S
safe filter (Django), 197

save method (Django), 143-145, 168

saving

model-based forms (Django), 143-145
thumbnail images (photo gallery

example), 168-169
SCCS (Source Code Control System), 313

schema definition with initial SQL files, 113

scripts. See utility scripts (Django)

search function (Python), 47

search functionality in CMS example
application, 199-201

searching, matching versus (Python), 48

security of models (Django), 90

selecting Ajax libraries (liveblog example
application), 207-208

select_related method (Django), 108-109

Selenium, 279

Selenium Core, 279

Selenium IDE, 279

Selenium RC, 279

self keyword (Python), 44

sequences (Python), 14-15

concatenation, 16-17
copying, 16
functions for, 25-26

lists, 14, 17-18
generator expressions, 19
list comprehensions, 18-19
sorting, 18, 51

operations on, 16
slicing, 15-16
strings, 14, 19-21

formatting, 22-24
string designators, 22

tuples, 15, 24
in Django, 24-25
single-element tuples, 48

unpacking in functions, 40
serialize function (Django), 216

server performance, benchmarking, 265-266

server variables for request objects (Django),
124-125

session data structure (Django), 124

sessions, 124

setdefault method (Python), 27-28

setInterval function (JavaScript), 217

settings.py file, 59

database settings, 63
editing, 61, 65

setup of Ajax libraries (liveblog example
application), 214-215

shallow copies (Python), 16, 51

shared applications directory, creating, 323

sharing Django applications, 323

shell (Python). See interactive interpreter
(Python)

368 rstrip method (Python)

shortcuts for custom views (Django),
131-132

simple.direct_to_template generic view
(Django), 129

single-element tuples (Python), 48

single-line suites (Python), 54

site-packages directory, installing
applications to, 323

site-wide caching (Django), 267

slice filter (Django), 229

slicing sequences (Python), 15-16

sort method (Python), 18, 51

sorted function (Python), 18, 26, 51

sorting

lists (Python), 18
query results (Django), 108

source code (Python), examining, 165

source control. See version control systems

spaces (Python), tabs (Python) versus, 53

spam in pastebins, 228

Sphinx, 203

split method (Python), 21

splitlines method (Python), 21

SQL (Structured Query Language), 78

non-Django SQL features, usage of,
112-115

sql command (Django), 103

SQL databases. See databases

sqlall command (Django), 103

sqlclear command (Django), 103

sqlcustom command (Django), 103, 113

sqlindexes command (Django), 103

SQLite, 308

setup for blog project example, 63-64
sqlrest command (Django), 103

ssi tag (Django), 141

startapp command (Django), 61

startproject command (Django), 58

statements (Python)

for conditionals, 29
expressions (Python) versus, 38
for loops, 29
raise, 32-33

static class members, 44

static content, 78

static files, serving in Apache Web server,
305-306

stderr stream, 290

stdin stream, 290

stdout stream, 290

str function (Python), 25

string designators (Python), 22

StringIO module (Python), 245

strings in URLs, 192

strings (Python), 14, 19-21

concatenation, 16-17
formatting, 22-24
raw strings, 64

in regular expressions, 47
string designators, 22

stringvalue decorator (Django), 258

strip method (Python), 21

Structured Query Language. See SQL

style of coding. See coding style (Python)

369style of coding

subclassing

forms (Django), 146-147
in Python, 46

Subversion, 314-315

sum function (Python), 26

superusers (Django), creating, 65

symbolic groups (Python), 118

symbols (Python), lack of, 11

syncdb command (Django), 64, 103

synchronization of databases (Django), 103

Syndication application (Django), 240

feeds
configuring, 240-241
Universal Feed Parser, 242-243
URLs for, 242

Syntax Highlighter, 230

syntax highlighting (pastebin example
application), 230-231

SyntaxError exception (Python), 33

T
tables (in databases), 78

creating, 64-65
tabs (Python), spaces (Python) versus, 53

tag libraries (Django), 252

tags (Django templates), 136, 138-139

block, 139-141
extends, 139-141
include, 141
ssi, 141

template languages, 79

template system (Django), extending, 250

alternative templating, 258-260
custom filters, 256-258
custom tags, 250-253
inclusion tags, 253-256

template tags (Django), cache, 271

templates (Django), 70, 135

base templates
creating, 73-74
extending, 237-238

CMS example application, 196-198
contexts, 135-136
creating, 70-71

for pastebin example application,
223-225

embedding JavaScript actions in, 215
filters, 137-138

applying, 75
Flatpages application, 184
inclusion, 141
inheritance, 139-141
language syntax, 136-137
liveblog example application, 209
partial templates, naming, 255
photo gallery example, 173-179
tags, 136, 138-139

block, 139-141
extends, 139-141
include, 141
ssi, 141

templates (in MVC architecture), 81-82

templatetags directory (Django), 252

370 subclassing

Terminal application, 285

testing

Ajax libraries (liveblog example
application), 214-215

applications (Django), 274-275
doctest module (Python), 275
models, testing, 276-278
running tests, 276
tools for, 278-279
unittest module (Python), 276

caching (Django), 266-267
codebase (Django), 279-281
converted App Engine

applications, 330
feeds (Django), 242-243
Flatpages application, 184-185
ImageField class (Django), photo

gallery example, 163-165
installation (Django), 303
pastebin example application, 226-229
Python installation, 299

text editors, 319-320

TextField class (Django), 91

TextMate, 320

third-party applications. See Django
applications

third-party tools. See add-ons

throwing exceptions (Python), raise
statement, 32-33

ThumbnailImageField class (photo gallery
example)

building, 164-169
usage, 169

timestamps, IDs versus, 216

toolkits (Ajax). See libraries (Ajax)

tools for testing applications (Django),
278-279

Trac, 319

triggers (SQL), support for, 113

triple quotes, in Python strings, 22-24

troubleshooting. See also testing

admin application problems, 66
printing objects (Django), 137

True value (Python), 12

trunk (version control systems), 314

try-except blocks (Python), 30-31

try-finally blocks (Python), 31-32

tuple function (Python), 25

tuples (Python), 15, 24

in Django, 24-25
single-element tuples, 48
two-tuples, 236

Twill, 279

two-tuples (Python), 236

type attribute (Python), 50

TypeError exception (Python), 33

types (Python). See data types (Python)

U
unbound forms (Django), 147-149

UnboundLocalError exception (Python), 33

unicode function (Python), 25

Unicode strings (Python), 22

uniqueness of models (Django),
enforcing, 93

371uniqueness of models (Django), enforcing

unittest module (Python), 276

Universal Feed Parser, 242-243

Unix

command line. See command line
installing Python on, 296
program names explained, 287-288

unnamed functions. See anonymous
functions (Python)

unpacking sequences (Python) in
functions, 40

update method (Python), 28, 51

updating path for Python, 296-298

uploading files, preparing for (photo gallery
example), 161-162

upper method (Python), 18

url method (Django), 119

URL patterns (Django), 70

CMS example application, 192-193
creating, 72

URLconfs (Django), 59, 117-118

URLField class (Django), 91

URLs (Django), 117

callable views, 121-122
designing for pastebin example

application, 225
for feeds, 242
HTTP request-response model, 122

middleware, 126-127
request objects, 123-125
response objects, 125-126

include function, 120-121
multipled patterns objects, 119-120

setup (photo gallery example),
169-173

strings in, 192
url method, 119
URLconfs, 59, 117-118

urls.py file, 59

CMS example application, 192-193
editing, 65
liveblog example application, 208

user management in CMS example
application, 201

user variable (request objects), 125

utility scripts (Django), 261

cron jobs, 262-263
data import/export, 263-264

V
“vacuuming.” See cron jobs

validating forms (Django), 149-150

value attribute (Python), 50

ValueError exception (Python), 33

values method (Django), 108

values method (Python), 28

values_list method (Django), 108

varargs (Python), 41

variable arguments (Python), 41

variable tags (Django), 70

variables (Python), 10-11

environment variables, 57, 291-293
mutable/immutable variables, as

default function arguments, 36
vCards, generating, 244-245

372 unittest module (Python)

version control systems, 313-314

centralized version control, 315
decentralized version control, 315-316
merging changes in, 314
operational overview, 316-318
trunk and branches approach, 314

version numbers (Python), viewing, 295

view functions (Django), 70

creating, 71-72
liveblog example application,

216-217
using via JavaScript (liveblog example

application), 217-218
viewing Python version number, 295

views (Django), 127

callable views, 121-122
CMS example application

admin views, 193-195
generic views, 196

creating for admin application,
238-239

custom views, 131-132
generic views, 128-130, 221. See also

pastebin example
customizing with dictionaries, 225
modifying, 130-131

as Python functions, 128
views (in MVC architecture), 79-81

views (SQL), support for, 113

views.py file, 61

in CMS example application, 196
Vim, 320

vObject module, 244

void. See None value (Python)

W
Web development

communication methods, 78
data storage methods, 78
Django core philosophies, 82

DRY (Don’t Repeat Yourself), 84
modularity, 84-85
as Pythonic, 84
rapid development, 85

MVC (Model-View-Controller)
architecture, 79-80

in Django, 80
models in, 80-81
templates in, 81-82
views in, 81

presentation methods, 79
Web frameworks, development of, 1

Web Server Gateway Interface (WSGI),
306-307

Web servers

Apache with mod_python
hooking Django into, 304-305
installing, 304
serving static files, 305-306

development runserver, 303
running, 59-61

FastCGI, 307-308
WSGI (Web Server Gateway

Interface), 306-307
Web sites

finding Django applications, 321-322
Google App Engine information,

334-335
to register as Django developer, 338

373Web sites

while loops (Python), 29

Widget class (Django), 152

widgets (Django), 152-154

Willison, Simon, 2

Windows

installing Python on, 296-298
Unix command-line tools, using

in, 285
workflow management in CMS example

application, 202

wrappers. See decorators

write method (Python), 34

writelines method (Python), 34

WSGI (Web Server Gateway Interface),
306-307

X–Z
XHTML, 79

XML, 79

JSON versus, 212-213
xrange function (Python), 26

Yahoo! User Interface (YUI), 208

YAML file, 326

YUI (Yahoo! User Interface), 208

zip function (Python), 26

374 while loops (Python)

	Introduction
	Where Web Frameworks Come From
	A Better Way
	We’re Not in Kansas Anymore
	Web Development Is Better with Python and Django

	2 Django for the Impatient: Building a Blog
	Creating the Project
	Running the Development Server
	Creating the Blog Application
	Designing Your Model
	Setting Up the Database
	Setting Up the Automatic admin Application
	Trying Out the admin
	Making Your Blog’s Public Side
	Finishing Touches
	Summary

	Colophon

