
i
i

i
i

i
i

i
i

Preface

This book aims to serve as a guide to the Xen hypervisor. The interface to
paravirtualized guests is described in detail, along with some description of the
internals of the hypervisor itself.

Any book about an open source project will, by nature, be less detailed than
the code of the project that it attempts to describe. Anyone wishing to fully un-
derstand the Xen hypervisor will find no better source of authoritative information
than the code itself. This book aims to provide a guided tour, indicating features
of interest to help visitors find their way around the code. As with many travel
books, it is to be hoped that readers will find it an informative read whether or
not they visit the code.

Much of the focus of this book is on the kernel interfaces provided by Xen.
Anyone wishing to write code that runs on the Xen hypervisor will find this mate-
rial relevant, including userspace program developers wanting to take advantage
of hypervisor-specific features.

Overview and Organization

This book is divided into three parts. The first two describe the hypervisor inter-
faces, while the last looks inside Xen itself.

Part I begins with a description of the history and current state of virtualiza-
tion, including the conditions that caused Xen to be created, and an overview of
the design decisions made by the developers of the hypervisor. The remainder of
this part describes the core components of the virtual environment, which must
be supported by any non-trivial guest kernel.

The second part focuses on device support for paravirtualized and
paravirtualization-aware kernels. Xen provides an abstract interface to devices,
built on some core communication systems provided by the hypervisor. Virtual
equivalents of interrupts and DMA and the mechanism used for device discov-
ery are all described in Part II, along with the interfaces used by specific device
categories.

xvii

i
i

i
i

i
i

i
i

xviii Preface

Part III takes a look at how the management tools interact with the hypervisor.
It looks inside Xen to see how it handles scheduling of virtual machines, and how
it uses CPU-specific features to support unmodified guests.

An appendix provides a quick reference for people wishing to port operating
systems to run atop Xen.

Typographical Conventions

This book uses a number of different typefaces and other visual hints to describe
different types of material.

Filenames, such as /bin/sh, are all shown in this font. This same convention
is also used for structures which closely resemble a filesystem, such as paths in
the XenStore.

Variable or function names, such as example(), used in text will be typeset
like this . Registers, such as EAX, and instructions, such as POP will be shown
in uppercase lettering. Single line listings will appear like this:

eg = examp l e f u n c t i o n (arg1) ;

Longer listings will have line numbers down the left, and a gray background, as
shown in Listing 1. In all listings, bold is used to indicate keywords, and italicized
text represents strings and comments.

Listing 1: An example listing [from: example/hello.c]

 #inc lude <s t d i o . h>

 i n t main (vo id)
 {
 /∗ P r i n t h e l l o wor ld ∗/
 p r i n t f (” He l l o World !\ n”) ;
 re tu rn 0 ;
 }

Listings which are taken from external files will retain the line numbers of the
original file, allowing the referenced section to be found easily by the reader. The
captions contain the original source in square brackets. Those beginning with
example/ are from the example sources. All others, unless otherwise specified,
are from the Xen sources.

Comments from files in the Xen source code have been preserved, complete
with errors. Since the Xen source code predominantly uses U.K. English for
comments, and variable and function names, this convention has been preserved
in examples from this book.

During the course of this book, a simple example kernel is constructed. The
source code for this can be downloaded from:

i
i

i
i

i
i

i
i

Preface xix

http://www.prenhallprofessional.com/title/9780132349710.
Output from command-line interaction is shown in the following way:

$ gcc hello.c
$./a.out
Hello World!

A $ prompt indicates commands that can be run as any user, while a # is used
to indicate that root access is likely to be required.

Use as a Text

In addition to the traditional uses for hypervisors, Xen makes an excellent teaching
tool. Early versions of Xen only supported paravirtualized guests, and newer ones
continue to support these in addition to unmodified guests. The architecture
exposed by the hypervisor to paravirtualized guests is very similar to x86, but
differs in a number of ways. Driver support is considerably easier, with a single
abstract device being exposed for each device category, for example. In spite of
this, a number of things are very similar. A guest operating system must handle
interrupts (or their virtual equivalent), manage page tables, schedule running
tasks, etc.

This makes Xen an excellent platform for development of new operating sys-
tems. Unlike a number of simple emulated systems, a guest running atop Xen
can achieve performance within 10% that of the native host. The simple device
interfaces make it easy for Xen guests to support devices, without having to worry
about the multitude of peripherals available for real machines.

The similarity to real hardware makes Xen an ideal platform for teaching op-
erating systems concepts. Writing a simple kernel that runs atop Xen is a signifi-
cantly easier task than writing one that runs on real hardware, and significantly
more rewarding than writing one that runs in a simplified machine emulator.

An operating systems course should use this text in addition to a text on
general operating systems principles to provide the platform-specific knowledge
required for students to implement their own kernels.

Xen is also a good example of a successful, modern, microkernel (although it
does more in kernelspace than many microkernels), making it a good example for
contrasting with popular monolithic systems.

Acknowledgments

First, I have to thank Mark Taub for the opportunity to write this book. Since
first contacting Mark in 2002, he has given me the opportunity to work on several

http://www.prenhallprofessional.com/title/9780132349710

i
i

i
i

i
i

i
i

xx Preface

projects. This included working with Mark Sobell, from whom I learned a lot
about writing.

I also have to thank Debra Williams Cauley who coordinated everything for
this book, along with the rest of her team who helped to transform it into the
form you are now seeing.

I began writing this book near the end of the third year of my Ph.D., and
would like to thank my supervisor, Professor Min Chen, for his forbearance when
my thesis became a lower priority than getting this book finished. I would also
like to thank the other members of the Swansea University Computer Science
Department who kept me supplied with coffee while I was writing.

For technical assistance, I could have had no one more patient than Keir Fraser
who answered my questions in great detail by email and in person when I visited
XenSource. Without his help, this book would have taken a lot longer to write.
A number of other people at XenSource and at the Spring 2007 XenSummit also
provided valuable advice. I’d like to thank all of the people doing exciting things
with Xen for helping to make this book so much fun to write.

I would also like to thank Glenn Tremblay of Marathon Technologies Corp.
who performed a detailed technical review. While I can’t guarantee that this
book is error free, I can be very sure it wouldn’t have been without his assistance.
Glenn is a member of a growing group of people using Xen as a foundation for
their own products, and I hope his colleagues find this book useful.

This book was written entirely in Vim. Subversion was used for revision track-
ing and the final manuscript was typeset using LATEX. Without the work of Bram
Moolenaar, Leslie Lamport, Donald Knuth, and many others, writing a book using
Free Software would be much harder, if not impossible.

Finally, I would like to thank all of the members of the Slashdot community
for helping me to procrastinate when I should have been writing.

