
Foreword
The success of Ajax is a curious one. It’s hard to point to a particular release, product,
or article that signaled the arrival of what we now call Ajax. It seemed to have just
happened. Even the article by Jesse James Garret which gave us the name Ajax, laid no
claim to its invention, but instead pointed to it as a curious phenomenon worthy of a
second look. And now that we’re all so aware of its presence, we can’t really come to
any agreement on exactly what it is “Ajax” means. Listen to 20 experts speak on the
subject and you’ll hear no less than 22 different definitions. And if I had to summarize
their opinions, I would be forced to conclude that Ajax is simultaneously the best and
worst thing to happen in software in the last 15 years. Yet despite the fact that we
don’t know where it came from or what it is or whether it’s good or not, everyone in
the software industry seems eager to launch their next product with a sleek new Ajax
interface. From the technologist’s perspective, it doesn’t seem to make sense. Browsers
are limited in their capabilities, difficult to develop with, and plagued with inconsis-
tencies. They rightly point out that from their perspectives, it looks like a pretty bad
proposition.

But the beautiful thing about Ajax is that it is not being driven by the technologist
alone. There is another force working to temper to the technologist’s obsession with
architectural beauty—it’s users’ ever-increasing expectation that software should sim-
plify, not complicate, their lives. So while the technologist bemoans the browser as a
crufty place to develop software, the user praises it for familiarity and comfort. It
reduces all the complexities of Internet connectivity down to a few key concepts:
address, link, forward, back, and search. This is the language of the Web and users are
happy with this restrictive view of technology. And why shouldn’t they be? In addi-
tion to being familiar to them, the added constraints have forced software developers
to think more carefully about what users want. The overwhelming theme in successful
Ajax development is to do what makes sense for the user, despite the technology avail-
able to you. And while this is clearly a very healthy approach that leads to innovation
in application development, the price we must pay as software developers is paid in
increased pain and frustration.

Increasingly as I hear about new projects there is a common chorus of “and, of course,
the UI is going to be very Ajaxy.” Generally, I can gauge how much progress they’ve
made by the level of affection they still feel for the project. Those who are just begin-
ning are thrilled with the prospect of being able to work in an area that is getting so
much attention. They’ll talk about the process of selecting a framework and maybe
some rough descriptions of the early UI mockups. At this point, they’ve built a few
small examples without a great deal of fuss. It is very easy to conclude at this point
that the frustrations of working in a browser are exaggerated and contented by the
technological conquest, they decide to treat themselves to one of those fashionable
espresso drinks. A few months later, when I run into them, they’re starting to be a bit

xiii

00_0132344815_FM.qxd 10/18/07 8:49 AM Page xiii

xiv Google Web Toolkit Solutions

more evasive about the project. They’ll inevitably tell me how a few tasks that initially
seemed so easy proved to be a bit more challenging. “We were planning to have this
update in real time, but it just took way too long to load.” I can start to detect that
their faith weakening and I try to offer them words of support, but I know the test
of endurance is just beginning. This is when I usually advise that they give up the
espresso drinks in favor of tea. Tea provides a more sustaining and gentle dose of
caffeine; coffee will betray you in your time of need. Putting the finishing touches on a
good Ajax application is, most definitely, a time of need. Often though they remain
optimistic that their nearing the end of the real challenges they usually laugh off the
suggestion.

The real meltdown starts when projects start to answer the question: What do our
users think? Most people wisely answer this question with user testing or early beta
releases. Others, perhaps the same crowd that doesn’t wash fruit before eating it,
charge ahead with a full release confident they’ve anticipated the exact needs of their
users. It is these people that I pity most. At this point, both sets of developers realize a
few things. First, some of the decisions they made to avoid harder problems were
actually bad decisions for users. Secondly, they realize that there is no testing like
actual use. Now these realizations are not unique to UI’s built-in Ajax. I don’t know of
a single successful project that has avoided this particular stop along the way. What is
unique to Ajax applications is that it now becomes increasingly hard to resolve these
issues because there are so many elements that seem to conspire against you.

This is usually where the browsers behavioral differences start to show up. Users are
reporting that on one browser, their menus are showing up in the wrong location.
On another browser the text is wrapping. On yet another browser, it all works great
except after about 15 minutes of use the whole thing begins to flicker annoyingly
when anything changes. Second, you find that use patterns are not exactly what you
had expected and parts of the UI must be changed—which would be fine, except the
flexible expressiveness of Javascript that had once been so charming now seems
downright offensive and rude. I have tried on numerous occasions to seamlessly refac-
tor large JavaScript code bases and have never been pleased with the results. On top
of all of these complications, one fact remains: your application must be good for
users. So beyond the immediate frustrations I’m describing, the primary goal of maxi-
mizing user experience still remains. And when you do launch your application, this
is the only thing anyone will ever see. Did you make an application that serves the
needs of your users?

This is Google Web Toolkit’s mission in a nutshell; make it much easier for developers
to confidently answer “Yes” to that question. We grew tired of attacking the headaches
of Ajax development in Sisyphean manner tirelessly shoving the browsers around
without ever really gaining any momentum or mechanical advantage. That approach
inevitably leads to a situation where you eventually know what is good for the user,
but can never quite reach it because you’re effectively building a house without the

00_0132344815_FM.qxd 10/18/07 8:49 AM Page xiv

luxury of a hammer. GWT makes the most of existing tools. There are some good ham-
mers in software engineering, so it was a little bewildering to us why none could be
used effectively in Ajax development. We’re pretty adamant that the way to ensure
that web applications continue to improve is to leverage the good engineering tools
and practices that already exist. So rather than bemoaning the status quo, GWT allows
you to write your Ajax code in Java, leveraging concepts and patterns that have
become very familiar to UI developers; develop using proven development environ-
ments that include good code completion and refactoring tools like Eclipse; debug
your apps by running them in a real browser, using a solid debugger; then use a com-
piler to translate all that Java code to tiny, high-performance JavaScript that automati-
cally works around most browser quirks without so much as a nod from the develop-
er. And of course, make it possible to slip seamlessly into JavaScript when the need
arises to do things we never even anticipated. GWT is not about trends and language
wars, it’s about pragmatism and sound solutions.

This is why it pleases me greatly to see that David Geary’s GWT Solutions holds true
to its name and focuses on concrete and practical solutions. This is very much in keep-
ing with the spirit of GWT. It is not enough to talk about design patterns and elegance
of code without following through with why such things are relevant to your users.
David does a very nice job here of giving us something that goes beyond the contrived
example. Each of the solutions work well on two levels. First they take us through the
process of building good user interfaces in GWT making apparent the common pat-
terns and even calling attention to many of the likely pitfalls. But secondly, each of the
solutions is actually reusable in the form that he presents it. I will not be surprised to
see many of his examples showing up in future GWT applications. I think readers will
agree with the effectiveness of this approach. In fact, to hold the solutions to the same
crucial metric that I apply to GWT itself: Will Google Web Toolkit Solutions aid you in
creating applications that serve the needs of your users? I would have answer, Yes.

Kelly Norton, Google

xv

00_0132344815_FM.qxd 10/18/07 8:49 AM Page xv

