
CHAPTER 1

Objectives
■ To declare boolean type and write Boolean expressions (§3.2).

■ To distinguish between conditional and unconditional && and ||operators (§3.2.1).

■ To use Boolean expressions to control selection statements (§§3.3–3.5).

■ To implement selection control using if and nested if statements (§3.3).

■ To implement selection control using switch statements (§3.4).

■ To write expressions using the conditional operator (§3.5).

■ To display formatted output using the System.out.printf method and to format
strings using the String.format method (§3.6).

■ To know the rules governing operand evaluation order,
operator precedence, and operator associativity (§§3.7–3.8).

SELECTION STATEMENTS

CHAPTER 3

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 67

68 Chapter 3 Selection Statements

TABLE 3.1 Comparison Operators
Operator Name Example Answer

< less than 1 < 2 true

<= less than or equal to 1 <= 2 true

> greater than 1 > 2 false

>= greater than or equal to 1 >= 2 false

== equal to 1 == 2 false

!= not equal to 1 != 2 true

why selection?

pseudocode

comparison operators

compare characters

== vs. =

3.1 Introduction
In Chapter 2, “Primitive Data Types and Operations,” if you assigned a negative value for
radius in Listing 2.1, ComputeArea.java, the program would print an invalid result. If the
radius is negative, you don’t want the program to compute the area. Like all high-level pro-
gramming languages, Java provides selection statements that let you choose actions with two
or more alternative courses. You can use selection statements in the following pseudocode
(i.e., natural language mixed with programming code) to rewrite Listing 2.1:

if the radius is negative
the program displays a message indicating a wrong input;

else
the program computes the area and displays the result;

Selection statements use conditions. Conditions are Boolean expressions. This chapter first
introduces Boolean types, values, operators, and expressions.

3.2 boolean Data Type and Operations
Often in a program you need to compare two values, such as whether i is greater than j. Java
provides six comparison operators (also known as relational operators), shown in Table 3.1,
which can be used to compare two values. The result of the comparison is a Boolean value:
true or false. For example, the following statement displays true:

System.out.println(1 < 2);

Boolean variable

Note
You can also compare characters. Comparing characters is the same as comparing the Unicodes
of the characters. For example, ‘a’ is larger than ‘A’ because the Unicode of ‘a’ is larger than the
Unicode of ‘A.’

Caution
The equality comparison operator is two equal signs (==), not a single equal sign (=). The latter
symbol is for assignment.

A variable that holds a Boolean value is known as a Boolean variable. The boolean data
type is used to declare Boolean variables. The domain of the boolean type consists of two
literal values: true and false. For example, the following statement assigns true to the
variable lightsOn:

boolean lightsOn = true;

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 68

3.2 boolean Data Type and Operations 69

TABLE 3.2 Boolean Operators
Operator Name Description

! not logical negation

&& and logical conjunction

|| or logical disjunction

^ exclusive or logical exclusion

TABLE 3.3 Truth Table for Operator !
p !p Example

true false !(1 > 2) is true, because (1 > 2) is false.

false true !(1 > 0) is false, because (1 > 0) is true.

Boolean operators, also known as logical operators, operate on Boolean values to create a
new Boolean value. Table 3.2 contains a list of Boolean operators. Table 3.3 defines the not
(!) operator. The not (!) operator negates true to false and false to true. Table 3.4
defines the and (&&) operator. The and (&&) of two Boolean operands is true if and only if
both operands are true. Table 3.5 defines the or (||) operator. The or (||) of two Boolean
operands is true if at least one of the operands is true. Table 3.6 defines the exclusive or (^)
operator. The exclusive or (^) of two Boolean operands is true if and only if the two
operands have different Boolean values.

Boolean operators

TABLE 3.4 Truth Table for Operator &&
p1 p2 p1 && p2 Example

false false false (2 > 3) && (5 > 5) is false, because
false true false either (2 > 3) or (5 > 5) is false.

true false false (3 > 2) && (5 > 5) is false, because
(5 > 5) is false.

true true true (3 > 2) && (5 >= 5) is true, because
(3 > 2) and (5 >= 5) are both true.

TABLE 3.5 Truth Table for Operator ||

p1 p2 Example

false false false (2 > 3)||(5 > 5) is false, because (2 > 3)
false true true and (5 > 5) are both false.

true false true (3 > 2)||(5 > 5) is true, because (3 > 2)
true true true is true.

p1 ˜̃ p2

TABLE 3.6 Truth Table for Operator ^
p1 p2 Example

false false false (2 > 3)^(5 > 1) is true, because (2 > 3)
false true true is false and (5 > 1) is true.

true false true (3 > 2)^(5 > 1) is false, because both
true true false (3 > 2) and (5 > 1) are true.

p1 p2

LIANMC03_0132221586.QXD 11/18/06 12:18 PM Page 69

70 Chapter 3 Selection Statements

conditional operator

short-circuit operator

unconditional operator

Listing 3.1 gives a program that checks whether a number is divisible by 2 and 3, whether a
number is divisible by 2 or 3, and whether a number is divisible by 2 or 3 but not both:

LISTING 3.1 TestBoolean.java

1 import javax.swing.JOptionPane;
2
3 public class TestBoolean {
4 public static void main(String[] args) {
5 int number = 18;
6
7 JOptionPane.showMessageDialog(null,
8 "Is " + number +
9 " divisible by 2 and 3? " +
10 (number % 2 == 0 number % 3 == 0)
11 + " divisible by 2 or 3? " +
12 (number % 2 == 0 number % 3 == 0) +
13 " divisible by 2 or 3, but not both? "
14 + (number % 2 == 0 number % 3 == 0));
15 }
16 }

^
\n

||
\n

&&
\n

A long string is formed by concatenating the substrings in lines 8–14. The three \n characters
display the string in four lines. (number % 2 == 0 && number % 3 == 0) (line 10)
checks whether the number is divisible by 2 and 3. (number % 2 == 0 || number %
3 == 0) (line 12) checks whether the number is divisible by 2 or 3. (number % 2 == 0 ^
number % 3 == 0) (line 14) checks whether the number is divisible by 2 or 3, but not both.

3.2.1 Unconditional vs. Conditional Boolean Operators
If one of the operands of an && operator is false, the expression is false; if one of the
operands of an || operand is true, the expression is true. Java uses these properties to
improve the performance of these operators.

When evaluating p1 && p2, Java first evaluates p1 and then evaluates p2 if p1 is true;
if p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first evaluates p1
and then evaluates p2 if p1 is false; if p1 is true, it does not evaluate p2. Therefore, && is
referred to as the conditional or short-circuit AND operator, and || is referred to as the con-
ditional or short-circuit OR operator.

Java also provides the & and | operators. The & operator works exactly the same as the &&
operator, and the | operator works exactly the same as the || operator with one exception:
the & and | operators always evaluate both operands. Therefore, & is referred to as the
unconditional AND operator, and | is referred to as the unconditional OR operator. In some
rare situations when needed, you can use the & and | operators to guarantee that the right-
hand operand is evaluated regardless of whether the left-hand operand is true or false. For
example, the expression (width < 2) & (height–– < 2) guarantees that (height––
< 2) is evaluated. Thus the variable height will be decremented regardless of whether
width is less than 2 or not.

LIANMC03_0132221586.QXD 11/18/06 12:20 PM Page 70

3.2 boolean Data Type and Operations 71

FIGURE 3.1 The program determines whether a year is a leap year.

Boolean literals

leap year

Tip
Avoid using the & and |operators. The benefits of the & and | operators are marginal. Using
them will make the program difficult to read and could cause errors. For example, the expression
(x != 0) & (100 / x) results in a runtime error if x is 0. However, (x != 0) && (100 / x)
is fine. If x is 0, (x != 0) is false. Since && is a short-circuit operator, Java does not evaluate
(100 / x) and returns the result as false for the entire expression (x != 0) && (100 / x).

Note
The & and | operators can also apply to bitwise operations. See Appendix G, “Bit Manipula-
tions,” for details.

Note
As shown in the preceding chapter, a char value can be cast into an int value, and vice versa.
A Boolean value, however, cannot be cast into a value of other types, nor can a value of other
types be cast into a Boolean value.

Note
true and false are literals, just like a number such as 10, so they are not keywords, but you
cannot use them as identifiers, just as you cannot use 10 as an identifier.

3.2.2 Example: Determining Leap Year
This section presents a program that lets the user enter a year in a dialog box and checks
whether it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100 or if it is divisible by 400. So
you can use the following Boolean expression to check whether a year is a leap year:

(year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)

Listing 3.2 gives the program. Two sample runs of the program are shown in Figure 3.1.

bitwise operations

LISTING 3.2 LeapYear.java

1 import javax.swing.JOptionPane;
2
3 public class LeapYear {
4 public static void main(String args[]) {
5 // Prompt the user to enter a year

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 71

72 Chapter 3 Selection Statements

(a) (b) (c) (d)

FIGURE 3.2 The program generates an addition question and grades the student’s answer.

leap year?

show message dialog

generate number1
generate number2

show question

6
7
8 // Convert the string into an int value
9 int year =
10
11 // Check if the year is a leap year
12 boolean isLeapYear =
13 (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
14
15 // Display the result in a message dialog box
16
17
18 }
19 }

3.2.3 Example: A Simple Math Learning Tool
This example creates a program to let a first grader practice addition. The program random-
ly generates two single-digit integers number1 and number2 and displays a question such
as "What is 7 + 9?" to the student, as shown in Figure 3.2(a). After the student types
the answer in the input dialog box, the program displays a message dialog box to indicate
whether the answer is true or false, as shown in Figure 3.2(b).

year + " is a leap year? " + isLeapYear);
JOptionPane.showMessageDialog(null,

Integer.parseInt(yearString);

String yearString = JOptionPane.showInputDialog("Enter a year");

display result

There are many good ways to generate random numbers. For now, generate the first integer
using System.currentTimeMillis() % 10 and the second using System.current-
TimeMillis() * 7 % 10. Listing 3.3 gives the program. Lines 5–6 generate two numbers,
number1 and number2. Line 11 displays a dialog box and obtains an answer from the user. The
answer is graded in line 15 using a Boolean expression number1 + number2 == answer.

LISTING 3.3 AdditionTutor.java

1 import javax.swing.*;
2
3 public class AdditionTutor {
4 public static void main(String[] args) {
5 int number1 = (int)(System.currentTimeMillis() % 10);
6 int number2 = (int)(System.currentTimeMillis() * 7 % 10);
7
8 String answerString = JOptionPane.showInputDialog
9 ("What is " + number1 + " + " + number2 + "?");
10
11 int answer = Integer.parseInt(answerString);
12
13 JOptionPane.showMessageDialog(null,
14 number1 + " + " + number2 + " = " + answer + " is " +
15 ());
16 }
17 }

number1 + number2 == answer

show input dialog

convert to int

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 72

3.3 if Statements 73

Statement(s)

Boolean
Expression

true

false

(a)

area = radius * radius * PI;
System.out.println("The area for the circle of" +
 " radius" + radius + "is" + area);

(radius >= 0)

true

false

(b)

FIGURE 3.3 An if statement executes statements if the booleanExpression evaluates
to true.

3.3 if Statements
The example in Listing 3.3 displays a message such as " is false." If you wish
the message to be " is incorrect," you have to use a selection statement.

This section introduces selection statements. Java has several types of selection statements:
simple if statements, if ... else statements, nested if statements, switch statements,
and conditional expressions.

3.3.1 Simple if Statements
A simple if statement executes an action if and only if the condition is true. The syntax for
a simple if statement is shown below:

if (booleanExpression) {
statement(s);

}

The execution flow chart is shown in Figure 3.3(a).

6 + 2 = 7
6 + 2 = 7

if statement

If the booleanExpression evaluates to true, the statements in the block are executed.
As an example, see the following code:

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}

The flow chart of the preceding statement is shown in Figure 3.3(b). If the value of radius
is greater than or equal to 0, then the area is computed and the result is displayed; otherwise,
the two statements in the block will not be executed.

Note
The booleanExpression is enclosed in parentheses for all forms of the if statement. Thus,
for example, the outer parentheses in the following if statements are required.

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 73

74 Chapter 3 Selection Statements

if ((i > 0) && (i < 10)) {
 System.out.println("i is an " +
 + "integer between 0 and 10");
}

if ((i > 0) && (i < 10))
System.out.println("i is an " +
 + "integer between 0 and 10");

Equivalent

Outer parentheses required Braces can be omitted if the block contains
a single statement

(a) (b)

if (radius >= 0);
{
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

if (radius >= 0) { };
{
 area = radius * radius * PI;
 System.out.println("The area "
 + " is " + area);
}

Equivalent

Logic Error

(a) (b)

Empty Body

The braces can be omitted if they enclose a single statement.

Caution
Forgetting the braces when they are needed for grouping multiple statements is a common pro-
gramming error. If you modify the code by adding new statements in an if statement without
braces, you will have to insert the braces if they are not already in place.

The following statement determines whether a number is even or odd:

// Prompt the user to enter an integer
String intString = JOptionPane.showInputDialog(

"Enter an integer:");

// Convert string into int
int number = Integer.parseInt(intString);

if (number % 2 == 0)
System.out.println(number + " is even.");

if (number % 2 != 0)
System.out.println(number + " is odd.");

Caution
Adding a semicolon at the end of an if clause, as shown in (a) in the following code, is a com-
mon mistake.

This mistake is hard to find because it is neither a compilation error nor a runtime error, it is a
logic error. The code in (a) is equivalent to (b) with an empty body.

This error often occurs when you use the next-line block style. Using the end-of-line block
style will prevent this error.

3.3.2 if ... else Statements
A simple if statement takes an action if the specified condition is true. If the condition is
false, nothing is done. But what if you want to take alternative actions when the condition
is false? You can use an if ... else statement. The actions that an if ... else state-
ment specifies differ based on whether the condition is true or false.

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 74

3.3 if Statements 75

Statement(s) for the true case Statement(s) for the false case

Boolean
Expression

true false

FIGURE 3.4 An if ... else statement executes statements for the true case if the
boolean expression evaluates to true; otherwise, statements for the false case are
executed.

Here is the syntax for this type of statement:

if (booleanExpression) {
statement(s)-for-the-true-case;

}
else {

statement(s)-for-the-false-case;
}

The flow chart of the statement is shown in Figure 3.4.

if-else statement

If the booleanExpression evaluates to true, the statement(s) for the true case is
executed; otherwise, the statement(s) for the false case is executed. For example, consider
the following code:

if (radius >= 0) {
area = radius * radius * PI;
System.out.println("The area for the circle of radius " +

radius + " is " + area);
}
else {

System.out.println("Negative input");
}

If radius >= 0 is true, area is computed and displayed; if it is false, the message
"Negative input" is printed.

As usual, the braces can be omitted if there is only one statement within them. The braces
enclosing the System.out.println("Negative input") statement can therefore be
omitted in the preceding example.

Using the if … else statement, you can rewrite the code for determining whether a num-
ber is even or odd in the preceding section, as follows:

if (number % 2 == 0)
System.out.println(number + " is even.");

else
System.out.println(number + " is odd.");

This is more efficient because whether number % 2 is 0 is tested only once.

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 75

76 Chapter 3 Selection Statements

Equivalent

This is better

(a) (b)

if (score >= 90.0)
 grade = 'A';
else
 if (score >= 80.0)
 grade = 'B';
 else
 if (score >= 70.0)
 grade = 'C';
 else
 if (score >= 60.0)
 grade = 'D';
 else
 grade = 'F';

if (score >= 90.0)
 grade = 'A';
else if (score >= 80.0)
 grade = 'B';
else if (score >= 70.0)
 grade = 'C';
else if (score >= 60.0)
 grade = 'D';
else
 grade = 'F';

FIGURE 3.5 A preferred format for multiple alternative if statements is shown in (b).

nested if statement

3.3.3 Nested if Statements
The statement in an if or if ... else statement can be any legal Java statement, includ-
ing another if or if ... else statement. The inner if statement is said to be nested inside
the outer if statement. The inner if statement can contain another if statement; in fact, there
is no limit to the depth of the nesting. For example, the following is a nested if statement:

if (i > k) {
if (j > k)

System.out.println("i and j are greater than k");
}
else

System.out.println("i is less than or equal to k");

The if (j > k) statement is nested inside the if (i > k) statement.
The nested if statement can be used to implement multiple alternatives. The statement

given in Figure 3.5(a), for instance, assigns a letter grade to the variable grade according to
the score, with multiple alternatives.

matching else with if

The execution of this if statement proceeds as follows. The first condition (score >=
90.0) is tested. If it is true, the grade becomes 'A'. If it is false, the second condition
(score >= 80.0) is tested. If the second condition is true, the grade becomes 'B'. If that
condition is false, the third condition and the rest of the conditions (if necessary) continue
to be tested until a condition is met or all of the conditions prove to be false. If all of the
conditions are false, the grade becomes 'F'. Note that a condition is tested only when all
of the conditions that come before it are false.

The if statement in Figure 3.5(a) is equivalent to the if statement in Figure 3.5(b). In fact,
Figure 3.5(b) is the preferred writing style for multiple alternative if statements. This style
avoids deep indentation and makes the program easy to read.

Note
The else clause matches the most recent unmatched if clause in the same block. For example,
the following statement in (a) is equivalent to the statement in (b).

The compiler ignores indentation. Nothing is printed from the statements in (a) and (b). To
force the else clause to match the first if clause, you must add a pair of braces:

int i = 1; int j = 2; int k = 3;
if (i > j) {

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 76

3.3 if Statements 77

if (number % 2 == 0)
 even = true;
else
 even = false;

boolean even
 = number % 2 == 0;

This is better

Equivalent

(a) (b)

if (even == true)
 System.out.println(
 "It is even.");

if (even)
 System.out.println(
 "It is even.");

This is better(a) (b)

Equivalent

assign boolean variable

test boolean value

if (i > k)
System.out.println("A");

else
System.out.println("B");

This statement prints B.

Tip
Often new programmers write the code that assigns a test condition to a boolean variable like
the code in (a):

}

The code can be simplified by assigning the test value directly to the variable, as shown in (b).

Caution
To test whether a boolean variable is true or false in a test condition, it is redundant to use
the equality comparison operator like the code in (a):

if (i > j)
 if (i > k)
 System.out.println("A");
else
 System.out.println("B");

int i = 1;
int j = 2;
int k = 3;

if (i > j)
 if (i > k)
 System.out.println("A");
 else
 System.out.println("B");

int i = 1;
int j = 2;
int k = 3;

(a) (b)

Equivalent

This is better
with correct
indentation

Instead, it is better to use the boolean variable directly, as shown in (b). Another good reason
to use the boolean variable directly is to avoid errors that are difficult to detect. Using the
operator instead of the == operator to compare equality of two items in a test condition is a com-
mon error. It could lead to the following erroneous statement:

if (even = true)
System.out.println("It is even.");

This statement does not have syntax errors. It assigns true to even so that even is always
true.

=

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 77

78 Chapter 3 Selection Statements

TABLE 3.7 2002 U.S. Federal Personal Tax Rates
Married filing jointly or Married filing

Tax rate Single filers qualifying widow/widower separately Head of household

10% Up to $6,000 Up to $12,000 Up to $6,000 Up to $10,000

15% $6,001–$27,950 $12,001–$46,700 $6,001–$23,350 $10,001–$37,450

27% $27,951–$67,700 $46,701–$112,850 $23,351–$56,425 $37,451–$96,700

30% $67,701–$141,250 $112,851–$171,950 $56,426–$85,975 $96,701–$156,600

35% $141,251–$307,050 $171,951–$307,050 $85,976–$153,525 $156,601–$307,050

38.6% $307,051 or more $307,051 or more $153,526 or more $307,051 or more

(a) (b) (c)

FIGURE 3.6 The program computes the tax using if statements.

Tip
If you use an IDE such as JBuilder, NetBeans, or Eclipse, please refer to Learning Java Effectively
with JBuilder/NetBeans/Eclipse in the supplements. This supplement shows you how to use a
debugger to trace a simple if-else statement.

3.3.4 Example: Computing Taxes
This section uses nested if statements to write a program to compute personal income tax.
The United States federal personal income tax is calculated based on filing status and taxable
income. There are four filing statuses: single filers, married filing jointly, married filing sep-
arately, and head of household. The tax rates for 2002 are shown in Table 3.7. If you are, say,
single with a taxable income of $10,000, the first $6,000 is taxed at 10% and the other $4,000
is taxed at 15%. So your tax is $1,200.

debugging in IDE

Your program should prompt the user to enter the filing status and taxable income and com-
putes the tax for the year 2002. Enter 0 for single filers, 1 for married filing jointly, 2 for married
filing separately, and 3 for head of household. A sample run of the program is shown in Figure 3.6.

Your program computes the tax for the taxable income based on the filing status. The fil-
ing status can be determined using if statements outlined as follows:

if (status == 0) {
// Compute tax for single filers

}
else if (status == 1) {

// Compute tax for married file jointly
}
else if (status == 2) {

// Compute tax for married file separately
}

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 78

3.3 if Statements 79

import class

input dialog

convert string
to int

input dialog

convert string
to double

compute tax

else if (status == 3) {
// Compute tax for head of household

}
else {

// Display wrong status
}

For each filing status, there are six tax rates. Each rate is applied to a certain amount of tax-
able income. For example, of a taxable income of $400,000 for single filers, $6,000 is taxed at
10%, (27950 – 6000) at 15%, (67700 – 27950) at 27%, (141250 – 67700) at 35%, and
(400000 – 307050) at 38.6%.

Listing 3.4 gives the solution to compute taxes for single filers. The complete solution is
left as an exercise.

LISTING 3.4 ComputeTaxWithSelectionStatement.java

1 import javax.swing.JOptionPane;
2
3 public class ComputeTaxWithSelectionStatement {
4 public static void main(String[] args) {
5 // Prompt the user to enter filing status
6 String statusString = JOptionPane.showInputDialog(
7 "Enter the filing status:\n" +
8 "(0-single filer, 1-married jointly,\n" +
9 "2-married separately, 3-head of household)");

10 int status = Integer.parseInt(statusString);
11
12 // Prompt the user to enter taxable income
13 String incomeString = JOptionPane.showInputDialog(
14 "Enter the taxable income:");
15 double income = Double.parseDouble(incomeString);
16
17 // Compute tax
18
19
20 { // Compute tax for single filers
21 if (income <= 6000)
22 tax = income * 0.10;
23 else if (income <= 27950)
24 tax = 6000 * 0.10 + (income - 6000) * 0.15;
25 else if (income <= 67700)
26 tax = 6000 * 0.10 + (27950 - 6000) * 0.15 +
27 (income - 27950) * 0.27;
28 else if (income <= 141250)
29 tax = 6000 * 0.10 + (27950 - 6000) * 0.15 +
30 (67700 - 27950) * 0.27 + (income - 67700) * 0.30;
31 else if (income <= 307050)
32 tax = 6000 * 0.10 + (27950 - 6000) * 0.15 +
33 (67700 - 27950) * 0.27 + (141250 - 67700) * 0.30 +
34 (income - 141250) * 0.35;
35 else
36 tax = 6000 * 0.10 + (27950 - 6000) * 0.15 +
37 (67700 - 27950) * 0.27 + (141250 - 67700) * 0.30 +
38 (307050 - 141250) * 0.35 + (income - 307050) * 0.386;
39 }
40 { // Compute tax for married file jointly
41 // Left as exercise
42 }

else if (status == 1)

if (status == 0)

double tax = 0;

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 79

80 Chapter 3 Selection Statements

(a) (b) (c) (d)

FIGURE 3.7 The program generates a subtraction question and grades the student’s answer.

exit method

random() method

43 { // Compute tax for married separately
44 // Left as exercise
45 }
46 { // Compute tax for head of household
47 // Left as exercise
48 }
49
50 System.out.println("Error: invalid status");
51
52 }
53
54 // Display the result
55 JOptionPane.showMessageDialog(null, "Tax is " +
56 (int)(tax * 100) / 100.0);
57 }
58 }

The import statement (line 1) makes the class javax.swing.JOptionPane available for
use in this example.

The program receives the filing status and taxable income. The multiple alternative if
statements (lines 22, 42, 45, 48, 51) check the filing status and compute the tax based on the
filing status.

Like the showMessageDialog method, System.exit(0) (line 53) is also a static
method. This method is defined in the System class. Invoking this method terminates the pro-
gram. The argument 0 indicates that the program is terminated normally.

Note
An initial value of 0 is assigned to tax (line 20). A syntax error would occur if it had no initial value
because all of the other statements that assign values to tax are within the if statement. The com-
piler thinks that these statements may not be executed and therefore reports a syntax error.

3.3.5 Example: An Improved Math Learning Tool
This example creates a program for a first grader to practice subtraction. The program ran-
domly generates two single-digit integers number1 and number2 with number1 > number2
and displays a question such as “What is ” to the student, as shown in Figure 3.7(a).
After the student types the answer in the input dialog box, the program displays a message
dialog box to indicate whether the answer is correct, as shown in Figure 3.7(b).

9–2?

System.exit(0);

else {

else if (status == 3)

else if (status == 2)

exit program

message dialog

To generate a random number, use the random() method in the Math class. Invoking
this method returns a random double value d such that 0.0 ≤ d < 1.0 So (int)
(Math.random() * 10) returns a random single-digit integer (i.e., a number between 0 and 9).

The program may work as follows:

■ Generate two single-digit integers into number1 and number2.

■ If number1 < number2, swap number1 with number2.

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 80

3.4 switch Statements 81

import class

random numbers

input dialog

message dialog

■ Prompt the student to answer "what is number1 – number2?"

■ Check the student’s answer and display whether the answer is correct.

The complete program is shown in Listing 3.5.

LISTING 3.5 SubtractionTutor.java

1 import javax.swing.JOptionPane;
2
3 public class SubtractionTutor {
4 public static void main(String[] args) {
5 // 1. Generate two random single-digit integers
6 int number1 = (int)(Math.random() * 10);
7 int number2 = (int)(Math.random() * 10);
8
9 // 2. If number1 < number2, swap number1 with number2
10 {
11 int temp = number1;
12 number1 = number2;
13 number2 = temp;
14 }
15
16 // 3. Prompt the student to answer "what is number1 – number2?"
17 String answerString = JOptionPane.showInputDialog
18 ("What is " + number1 + " - " + number2 + "?");
19 int answer = Integer.parseInt(answerString);
20
21 // 4. Grade the answer and display the result
22 String replyString;
23
24 replyString = "You are correct!";
25
26 replyString = "Your answer is wrong.\n" + number1 + " - "
27 + number2 + " should be " + (number1 - number2);
28 JOptionPane.showMessageDialog(null, replyString);
29 }
30 }

To swap two variables number1 and number2, a temporary variable temp (line 11) is used to
first hold the value in number1. The value in number2 is assigned to number1 (line 12), and
the value in temp is assigned to number2.

3.4 switch Statements
The if statement in Listing 3.4 makes selections based on a single true or false condition.
There are four cases for computing taxes, which depend on the value of status. To fully
account for all the cases, nested if statements were used. Overuse of nested if statements
makes a program difficult to read. Java provides a switch statement to handle multiple con-
ditions efficiently. You could write the following switch statement to replace the nested if
statement in Listing 3.4:

switch (status) {
case 0: compute taxes for single filers;

break;
case 1: compute taxes for married file jointly;

break;

else

if (number1 - number2 == answer)

if (number1 < number2)

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 81

82 Chapter 3 Selection Statements

Compute tax for single filers

Compute tax for married file jointly

Compute tax for married file separately

Compute tax for head of household

Default actions

status is 0

status is 1

status is 2

status is 3

default

break

break

break

break

FIGURE 3.8 The switch statement checks all cases and executes the statements in the
matched case.

case 2: compute taxes for married file separately;
break;

case 3: compute taxes for head of household;
break;

default: System.out.println("Errors: invalid status");
System.exit(0);

}

The flow chart of the preceding switch statement is shown in Figure 3.8.

This statement checks to see whether the status matches the value 0, 1, 2, or 3, in that
order. If matched, the corresponding tax is computed; if not matched, a message is displayed.
Here is the full syntax for the switch statement:

switch (switch-expression) {
case value1: statement(s)1;

break;
case value2: statement(s)2;

break;
…
case valueN: statement(s)N;

break;
default: statement(s)-for-default;

}

The switch statement observes the following rules:

■ The switch-expression must yield a value of char, byte, short, or int type
and must always be enclosed in parentheses.

■ The value1, and valueN must have the same data type as the value of the
switch-expression. Note that value1, , and valueN are constant expres-
sions, meaning that they cannot contain variables in the expression, such as 1 + x.

Á
Á ,

switch statement

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 82

3.5 Conditional Expressions 83

without break

fall-through behavior

■ When the value in a case statement matches the value of the switch-expression,
the statements starting from this case are executed until either a break statement or the
end of the switch statement is reached.

■ The keyword break is optional. The break statement immediately ends the
switch statement.

■ The default case, which is optional, can be used to perform actions when none of
the specified cases matches the switch-expression.

■ The case statements are checked in sequential order, but the order of the cases
(including the default case) does not matter. However, it is good programming style
to follow the logical sequence of the cases and place the default case at the end.

Caution
Do not forget to use a break statement when one is needed. Once a case is matched, the state-
ments starting from the matched case are executed until a break statement or the end of the
switch statement is reached. This phenomenon is referred to as the fall-through behavior. For
example, the following code prints character a three times if ch is 'a':

truech is 'c'

ch is 'b'

ch is 'c'

false

true

false

false

true

System.out.println(ch)

System.out.println(ch)

System.out.println(ch)

switch (ch) {
case 'a': System.out.println(ch);
case 'b': System.out.println(ch);
case 'c': System.out.println(ch);

}

Tip
To avoid programming errors and improve code maintainability, it is a good idea to put a com-
ment in a case clause if break is purposely omitted.

3.5 Conditional Expressions
You might want to assign a value to a variable that is restricted by certain conditions. For
example, the following statement assigns 1 to y if x is greater than 0, and –1 to y if x is less
than or equal to 0.

if (x > 0)
y = 1

else
y = -1;

Alternatively, as in this example, you can use a conditional expression to achieve the same
result.

y = (x > 0) 1 -1;:?

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 83

84 Chapter 3 Selection Statements

TABLE 3.8 Frequently Used Specifiers
Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

printf

specifier

Conditional expressions are in a completely different style, with no explicit if in the state-
ment. The syntax is shown below:

booleanExpression ? expression1 : expression2;

The result of this conditional expression is expression1 if booleanExpression is true;
otherwise the result is expression2.

Suppose you want to assign the larger number between variable num1 and num2 to max.
You can simply write a statement using the conditional expression:

max = (num1 > num2) ? num1 : num2;

For another example, the following statement displays the message "num is even" if num
is even, and otherwise displays "num is odd."

System.out.println((num % 2 == 0) ? "num is even" : "num is odd");

Note
The symbols ? and : appear together in a conditional expression. They form a conditional oper-
ator. This operator is called a ternary operator because it uses three operands. It is the only ter-
nary operator in Java.

3.6 Formatting Console Output and Strings
You already know how to display console output using the println method. JDK 1.5 intro-
duced a new printf method that enables you to format output. The syntax to invoke this
method is

System.out.printf(format, item1, item2, ..., itemk)

where format is a string that may consist of substrings and format specifiers. A format spec-
ifier specifies how an item should be displayed. An item may be a numeric value, a character,
a boolean value, or a string. Each specifier begins with a percent sign. Table 3.8 lists some fre-
quently used specifiers.

conditional
expression

Here is an example:

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 84

3.6 Formatting Console Output and Strings 85

TABLE 3.9 Examples of Specifying Width and Precision
Example Output

%5c Output the character and add four spaces before the character item.

%6b Output the boolean value and add one space before the false value and two
spaces before the true value.

%5d Output the integer item with width at least 5. If the number of digits in the item
is <5, add spaces before the number. If the number of digits in the item is >5,
the width is automatically increased.

%10.2f Output the floating-point item with width at least 10 including a decimal point
and two digits after the point. Thus there are 7 digits allocated before the
decimal point. If the number of digits before the decimal in the item is <7, add
spaces before the number. If the number of digits before the decimal in the item
is >7, the width is automatically increased.

%10.2e Output the floating-point item with width at least 10 including a decimal point,
two digits after the point and the exponent part. If the displayed number in
scientific notation has width less than 10, add spaces before the number.

%12s Output the string with width at least 12 characters. If the string item has less
than 12 characters, add spaces before the string. If the string item has more
than 12 characters, the width is automatically increased.

Items must match the specifiers in order, in number, and in exact type. For example, the spec-
ifier for count is %d and for amount is %f. By default, a floating-point value is displayed
with six digits after the decimal point. You can specify the width and precision in a specifier,
as shown in the examples in Table 3.9.

You can put the minus sign (–) in the specifier to specify that the item is left-justified in
the output within the specified field. For example, the following statement

System.out.printf("%8d%-8s\n", 1234, "Java");
System.out.printf("%-8d%-8s\n", 1234, "Java");

displays

1234Java
1234 Java

Caution
The items must match the specifiers in exact type. The item for the specifier %f or %e must be a
floating-point type value such as 40.0, not 40. Thus an int variable cannot match %f or %e.

Tip
The % sign denotes a specifier. To output a literal % in the format string, use %%.

You can print formatted output to the console using the printf method. Can you display for-
matted output in a message dialog box? To accomplish this, use the static format method in
the String class to create a formatted string. The syntax to invoke this method is

String.format(format, item1, item2, ..., itemk)

This method is similar to the printf method except that the format method returns a for-
matted string, whereas the printf method displays a formatted string. For example,

String s = String.format("count is %d and amount is %f", 5, 45.56));

creates a formatted string "count is 5 and amount is 45.560000".

left justify

formatting strings

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 85

86 Chapter 3 Selection Statements

TABLE 3.10 Operator Precedence Chart
Precedence Operator

Highest Order var++ and var—— (Postfix)

+, - (Unary plus and minus), ++var and ——var (Prefix)

(type) (Casting)

! (Not)

*, /, % (Multiplication, division, and remainder)

+, - (Binary addition and subtraction)

<, <=, >, >= (Comparison)

==, != (Equality)

& (Unconditional AND)

^ (Exclusive OR)

| (Unconditional OR)

&& (Conditional AND)

|| (Conditional OR)

Lowest Order =, +=, –=, *=, /=, %= (Assignment operator)

a - b + c - d
equivalent

((a - b) + c) - d

precedence

The following statement displays a formatted string in a message dialog box:

JOptionPane.showMessageDialog(null,
String.format("Sales tax is %1.2f",

24.3454));

3.7 Operator Precedence and Associativity
Operator precedence and associativity determine the order in which operators are evaluated.
Suppose that you have this expression:

3 + 4 * 4 > 5 * (4 + 3) – 1

What is its value? How does the compiler know the execution order of the operators? The expres-
sion in the parentheses is evaluated first. (Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When evaluating an expression without parentheses,
the operators are applied according to the precedence rule and the associativity rule. The prece-
dence rule defines precedence for operators, as shown in Table 3.10, which contains the opera-
tors you have learned so far. Operators are listed in decreasing order of precedence from top to
bottom. Operators with the same precedence appear in the same group. (See Appendix C, “Oper-
ator Precedence Chart,” for a complete list of Java operators and their precedence.)

associativity If operators with the same precedence are next to each other, their associativity determines
the order of evaluation. All binary operators except assignment operators are left-associative.
For example, since and are of the same precedence and are left-associative, the expression-+

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 86

3.8 Operand Evaluation Order 87

a = b += c = 5
equivalent

a = (b += (c = 5))

from left to right

Assignment operators are right-associative. Therefore, the expression

Suppose a, b, and c are 1 before the assignment; after the whole expression is evaluated,
a becomes 6, b becomes 6, and c becomes 5. Note that left associativity for the assignment
operator would not make sense.

Applying the operator precedence and associativity rule, the expression 3 + 4 * 4 > 5 *
(4 + 3) - 1 is evaluated as follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

(1) inside parentheses first

(2) multiplication

(3) multiplication

(4) addition

(5) subtraction

(6) greater than
false

Tip
You can use parentheses to force an evaluation order as well as to make a program easy to read.
Use of redundant parentheses does not slow down the execution of the expression.

3.8 Operand Evaluation Order
The precedence and associativity rules specify the order of the operators but not the order in
which the operands of a binary operator are evaluated. Operands are evaluated strictly from
left to right in Java. The left-hand operand of a binary operator is evaluated before any part
of the right-hand operand is evaluated. This rule takes precedence over any other rules that
govern expressions. Consider this expression:

a + b * (c + 10 * d) / e

a, b, c, d, and e are evaluated in this order. If no operands have side effects that change the
value of a variable, the order of operand evaluation is irrelevant. Interesting cases arise when
operands do have a side effect. For example, x becomes 1 in the following code because a is
evaluated to 0 before ++a is evaluated to 1.

int a = 0;
int x = a + (++a);

But x becomes 2 in the following code because ++a is evaluated to 1, and then a is evaluated
to 1.

int a = 0;
int x = ++a + a;

The order for evaluating operands takes precedence over the operator precedence rule. In the
former case, (++a) has higher precedence than addition (+), but since a is a left-hand

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 87

88 Chapter 3 Selection Statements

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 16 > 5 * (4 + 3) - 1

19 > 5 * (4 + 3) - 1

19 > 5 * 7 - 1

19 > 35 – 1

19 > 34

(1) 4 * 4 is the first subexpression that can
 be evaluated from the left.

(2) 3 + 16 is evaluated now.

(3) 4 + 3 is now the leftmost subexpression
 that should be evaluated.

(4) 5 * 7 is evaluated now.

(5) 35 – 1 is evaluated now.

(6) 19 > 34 is evaluated now.

false

CHAPTER SUMMARY

■ Java has eight primitive data types. The preceding chapter introduced byte, short,
int, long, float, double, and char. This chapter introduced the boolean type
that represents a true or false value.

■ The Boolean operators &&, &, ||, |, !, and ^ operate with Boolean values and vari-
ables. The relational operators (<, <=, ==, !=, >, >=) work with numbers and characters,
and yield a Boolean value.

■ When evaluating p1 && p2, Java first evaluates p1 and then evaluates p2 if p1 is
true; if p1 is false, it does not evaluate p2. When evaluating p1 || p2, Java first
evaluates p1 and then evaluates p2 if p1 is false; if p1 is true, it does not evaluate

boolean expression 68
boolean value 68
boolean type 68
break statement 81, 101
conditional operator 84
fall-through behavior 83

operand evaluation order 87
operator associativity 86
operator precedence 86
selection statement 73
short-circuit evaluation 70

evaluation rule

operand of the addition (+), it is evaluated before any part of its right-hand operand (e.g., ++a
in this case).

In summary, the rule of evaluating an expression is:

■ Rule 1: Evaluate whatever subexpressions you can possibly evaluate from left to
right.

■ Rule 2: The operators are applied according to their precedence, as shown in Table
3.10.

■ Rule 3: The associativity rule applies for two operators next to each other with the
same precedence.

Applying the rule, the expression 3 + 4 * 4 > 5 * (4 + 3) - 1 is evaluated as
follows:

The result happens to be the same as applying Rule 2 and Rule 3 without applying Rule 1.
In fact, Rule 1 is not necessary if no operands have side effects that change the value of a vari-
able in an expression.

KEY TERMS

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 88

Review Questions 89

p2. Therefore, && is referred to as the conditional or short-circuit AND operator, and
|| is referred to as the conditional or short-circuit OR operator.

■ Java also provides the & and | operators. The & operator works exactly the same as the
&& operator, and the | operator works exactly the same as the || operator with one
exception: the & and | operators always evaluate both operands. Therefore, & is referred
to as the unconditional AND operator, and | is referred to as the unconditional OR
operator.

■ Selection statements are used for building selection steps into programs. There are
several types of selection statements: if statements, if ... else statements, nested
if statements, switch statements, and conditional expressions.

■ The various if statements all make control decisions based on a Boolean expression.
Based on the true or false evaluation of the expression, these statements take one
of two possible courses.

■ The switch statement makes control decisions based on a switch expression of type
char, byte, short, int, or boolean.

■ The keyword break is optional in a switch statement, but it is normally used at the
end of each case in order to terminate the remainder of the switch statement. If the
break statement is not present, the next case statement will be executed.

■ The operands of a binary operator are evaluated from left to right. No part of the
right-hand operand is evaluated until all the operands before the binary operator are
evaluated.

■ The operators in arithmetic expressions are evaluated in the order determined by the
rules of parentheses, operator precedence, and associativity.

■ Parentheses can be used to force the order of evaluation to occur in any sequence.
Operators with higher precedence are evaluated earlier. The associativity of the oper-
ators determines the order of evaluation for operators of the same precedence.

■ All binary operators except assignment operators are left-associative, and assignment
operators are right-associative.

REVIEW QUESTIONS

Section 3.2 boolean Data Type and Operations
3.1 List six comparison operators.

3.2 Assume that x is 1, show the result of the following Boolean expressions:

(true) && (3 > 4)
!(x > 0) && (x > 0)
(x > 0) || (x < 0)
(x != 0) || (x == 0)
(x >= 0) || (x < 0)
(x != 1) == !(x == 1)

3.3 Write a Boolean expression that evaluates to true if a number stored in variable
num is between 1 and 100.

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 89

90 Chapter 3 Selection Statements

3.4 Write a Boolean expression that evaluates to true if a number stored in variable
num is between 1 and 100 or the number is negative.

3.5 Assume that x and y are int type. Which of the following are correct Java
expressions?

x > y > 0
x = y && y
x /= y
x or y
x and y
(x != 0) || (x = 0)

3.6 Can the following conversions involving casting be allowed? If so, find the con-
verted result.

boolean b = true;
i = (int)b;
int i = 1;
boolean b = (boolean)i;

3.7 Suppose that x is 1. What is x after the evaluation of the following expression?

(x > 1) & (x++ > 1)

3.8 Suppose that x is 1. What is x after the evaluation of the following expression?

(x > 1) && (x++ > 1)

3.9 Show the output of the following program:

public class Test {
public static void main(String[] args) {
char x = 'a';
char y = 'c';

System.out.println(++y);
System.out.println(y++);
System.out.println(x > y);
System.out.println(x - y);

}
}

Section 3.3 if Statements
3.10 Suppose x = 3 and y = 2, show the output, if any, of the following code. What

is the output if x = 3 and y = 4? What is the output if x = 2 and y = 2? Draw
a flowchart of the following code:

if (x > 2) {
if (y > 2) {
int z = x + y;
System.out.println("z is " + z);

}
}
else
System.out.println("x is " + x);

3.11 Which of the following statements are equivalent? Which ones are correctly indented?

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 90

Review Questions 91

if (i > 0) if
(j > 0)
x = 0; else
if (k > 0) y = 0;
else z = 0;

(a) (b)

if (i > 0) {
 if (j > 0)
 x = 0;
 else if (k > 0)
 y = 0;
}
else
 z = 0;

if (i > 0)
 if (j > 0)
 x = 0;
 else if (k > 0)
 y = 0;
 else
 z = 0;

(c) (d)

if (i > 0)
 if (j > 0)
 x = 0;
 else if (k > 0)
 y = 0;
else
 z = 0;

if (income <= 10000)
 tax = income * 0.1;
else if (income <= 20000)
 tax = 1000 +
 (income – 10000) * 0.15;

if (income <= 10000)
 tax = income * 0.1;
else if (income > 10000 &&
 income <= 20000)
 tax = 1000 +
 (income – 10000) * 0.15;

3.12 Suppose x = 2 and y = 3, show the output, if any, of the following code. What
is the output if x = 3 and y = 2? What is the output if x = 3 and y = 3? (Hint:
please indent the statement correctly first.)

if (x > 2)
if (y > 2) {
int z = x + y;
System.out.println("z is " + z);

}
else
System.out.println("x is " + x);

3.13 Are the following two statements equivalent?

3.14 Which of the following is a possible output from invoking Math.random()?

323.4, 0.5, 34, 1.0, 0.0, 0.234

3.15 How do you generate a random integer i such that 0 ≤ i < 20?

How do you generate a random integer i such that 10 ≤ i < 20?

How do you generate a random integer i such that 10 ≤ i ≤ 50?

Section 3.4 switch Statements
3.16 What data types are required for a switch variable? If the keyword break is not

used after a case is processed, what is the next statement to be executed? Can you
convert a switch statement to an equivalent if statement, or vice versa? What are
the advantages of using a switch statement?

3.17 What is y after the following switch statement is executed?

x = 3; y = 3;
switch (x + 3) {
case 6: y = 1;
default: y += 1;

}

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 91

92 Chapter 3 Selection Statements

3.18 Use a switch statement to rewrite the following if statement and draw the flowchart
for the switch statement:

if (a == 1)
x += 5;

else if (a == 2)
x += 10;

else if (a == 3)
x += 16;

else if (a == 4)
x += 34;

Section 3.5 Conditional Expressions
3.19 Rewrite the following if statement using the conditional operator:

if (count % 10 == 0)
System.out.print(count + "\n");

else
System.out.print(count + " ");

Section 3.6 Formatting Console Output and Strings
3.20 What are the specifiers for outputting a boolean value, a character, a decimal integer,

a floating-point number, and a string?

3.21 What is wrong in the following statements?

(a) System.out.printf("%5d %d", 1, 2, 3);
(b) System.out.printf("%5d %f", 1);
(c) System.out.printf("%5d %f", 1, 2);

3.22 Show the output of the following statements.

(a) System.out.printf("amount is %f %e\n", 32.32, 32.32);
(b) System.out.printf("amount is %5.4f %5.4e\n", 32.32, 32.32);
(c) System.out.printf("%6b\n", (1 > 2));
(d) System.out.printf("%6s\n", "Java");
(e) System.out.printf("%-6b%s\n", (1 > 2), "Java");
(f) System.out.printf("%6b%-s\n", (1 > 2), "Java");

3.23 How do you create a formatted string?

Sections 3.7–3.8
3.24 List the precedence order of the Boolean operators. Evaluate the following

expressions:

true | true && false
true || true && false
true | true & false

3.25 Show and explain the output of the following code:

(a) int i = 0;
System.out.println(——i + i + i++);
System.out.println(i + ++i);

(b) int i = 0;
i = i + (i = 1);
System.out.println(i);

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 92

Programming Exercises 93

think before coding

document analysis and design

(c) int i = 0;
i = (i = 1) + i;
System.out.println(i);

3.26 Assume that int a = 1 and double d = 1.0, and that each expression is inde-
pendent. What are the results of the following expressions?

a = (a = 3) + a;
a = a + (a = 3);
a += a + (a = 3);
a = 5 + 5 * 2 % a––;
a = 4 + 1 + 4 * 5 % (++a + 1);
d += 1.5 * 3 + (++d);
d -= 1.5 * 3 + d++;

PROGRAMMING EXERCISES

Section 3.2 boolean Data Type and Operations

Pedagogical Note
For each exercise, students should carefully analyze the problem requirements and the design
strategies for solving the problem before coding.

Pedagogical Note
Instructors may ask students to document analysis and design for selected exercises. Students
should use their own words to analyze the problem, including the input, output, and what needs
to be computed and describe how to solve the problem using pseudocode. This has two benefits:
(1) it mandates students to think before typing code; (2) it fosters writing skills.

Debugging Tip
Before you ask for help, read and explain the program to yourself, and trace it using several repre-
sentative inputs by hand or using an IDE debugger. You learn how to program by debugging your
own mistakes.

Note
Do not use selection statements for Exercises 3.1–3.6.

3.1* (Validating triangles) Write a program that reads three edges for a triangle and
determines whether the input is valid. The input is valid if the sum of any two
edges is greater than the third edge. For example, if your input for three edges is 1,
2, 1, the output should be:

Can edges 1, 2, and 1 form a triangle? false

If your input for three edges is 2, 2, 1, the output should be:

Can edges 2, 2, and 1 form a triangle? true

3.2 (Checking whether a number is even) Write a program that reads an integer and
checks whether it is even. For example, if your input is 25, the output should be:

Is 25 an even number? false

If your input is 2000, the output should be:

Is 2000 an even number? true

learn from mistakes

LIANMC03v3_0132221586.QXD 5/15/06 7:41 PM Page 93

94 Chapter 3 Selection Statements

3.3* (Using the &&, || and ^ operators) Write a program that prompts the user to enter
an integer and determines whether it is divisible by 5 and 6, whether it is divisible
by 5 or 6, and whether it is divisible by 5 or 6, but not both. For example, if your
input is 10, the output should be

Is 10 divisible by 5 and 6? false
Is 10 divisible by 5 or 6? true
Is 10 divisible by 5 or 6, but not both? true

3.4** (Learning addition) Write a program that generates two integers under 100 and
prompts the user to enter the addition of these two integers. The program then
reports true if the answer is correct, false otherwise. The program is similar to
Listing 3.3.

3.5** (Addition for three numbers) The program in Listing 3.3 generates two integers
and prompts the user to enter the addition of these two integers. Revise the pro-
gram to generate three single-digit integers and prompt the user to enter the addi-
tion of these three integers.

3.6* (Using the console input) Rewrite Listing 3.2, LeapYear.java, using the console
input.

Section 3.3 Selection Statements
3.7 (Monetary units) Modify Listing 2.7 to display the non-zero denominations

only, using singular words for single units like 1 dollar and 1 penny, and plural
words for more than one unit like 2 dollars and 3 pennies. (Use 23.67 to test
your program.)

3.8* (Sorting three integers) Write a program that sorts three integers. The integers are
entered from the input dialogs and stored in variables num1, num2, and num3,
respectively. The program sorts the numbers so that num1 ≤ num2 ≤ num3.

3.9 (Computing the perimeter of a triangle) Write a program that reads three edges for
a triangle and computes the perimeter if the input is valid. Otherwise, display that
the input is invalid. The input is valid if the sum of any two edges is greater than
the third edge (also see Exercise 3.1).

3.10 (Computing taxes) Listing 3.4 gives the source code to compute taxes for single
filers. Complete Listing 3.4 to give the complete source code.

3.11* (Finding the number of days in a month) Write a program that prompts the user to
enter the month and year, and displays the number of days in the month. For exam-
ple, if the user entered month 2 and year 2000, the program should display that
February 2000 has 29 days. If the user entered month 3 and year 2005, the pro-
gram should display that March 2005 has 31 days.

3.12 (Checking a number) Write a program that prompts the user to enter an integer and
checks whether the number is divisible by both 5 and 6, neither, or just one of
them. Here are some sample outputs for inputs 10, 30, and 23.

10 is divisible by 5 or 6, but not both
30 is divisible by both 5 and 6
23 is not divisible by either 5 or 6

3.13 (An addition learning tool) Listing 3.5, SubtractionTutor.java, randomly generates
a subtraction question. Revise the program to randomly generate an addition ques-
tion with two integers less than 100.

LIANMC03_0132221586.QXD 11/29/06 6:45 PM Page 94

