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Figure 1.1 Areas of the squares illustrate the available licensed and unlicensed spectrum bandwidths
in popular UHF, microwave, 28 GHz LMDS, and 60 GHz mmWave bands in the USA. Other countries
around the world have similar spectrum allocations [from [Rap02]].
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Figure 1.2 Wireless spectrum used by commercial systems in the USA. Each row represents a 
decade in frequency. For example, today’s 3G and 4G cellular and WiFi carrier frequencies are mostly
in between 300 MHz and 3000 MHz, located on the fifth row. Other countries around the world
have similar spectrum allocations. Note how the bandwidth of all modern wireless systems (through
the first 6 rows) easily fits into the unlicensed 60 GHz band on the bottom row [from [Rap12b] U.S.
Dept. of Commerce, NTIA Office of Spectrum Management].
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Figure 1.3 Expected atmospheric path loss as a function of frequency under normal atmospheric
conditions (101 kPa total air pressure, 22◦ Celsius air temperature, 10% relative humidity, and
0 g/m3 suspended water droplet concentration) [Lie89]. Note that atmospheric oxygen interacts
strongly with electromagnetic waves at 60 GHz. Other carrier frequencies, in dark shading, exhibit
strong attenuation peaks due to atmospheric interactions, making them suitable for future short-
range applications or “whisper radio” applications where transmissions die out quickly with distance.
These bands may service applications similar to 60 GHz with even higher bandwidth, illustrating the
future of short-range wireless technologies. It is worth noting, however, that other frequency bands,
such as the 20-50 GHz, 70-90 GHz, and 120-160 GHz bands, have very little attenuation, well below
1 dB/km, making them suitable for longer-distance mobile or backhaul communications.
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2.5 mm

3.5 mm

Figure 1.4 Block diagram (top) and die photo (bottom) of an integrated circuit with four transmit
and receive channels, including the voltage-controlled oscillator, phase-locked loop, and local oscillator
distribution network. Beamforming is performed in analog at baseband. Each receiver channel contains
a low noise amplifier, inphase/quadrature mixer, and baseband phase rotator. The transmit channel also
contains a baseband phase rotator, up-conversion mixers, and power amplifiers. Figure from [TCM+11],
courtesy of Prof. Niknejad and Prof. Alon of the Berkeley Wireless Research Center [ c© IEEE].
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Figure 1.5 Third-generation 60 GHz WirelessHD chipset by Silicon Image, including the SiI6320 
HRTX Network Processor, SiI6321 HRRX Network Processor, and SiI6310 HRTR RF Transceiver. 
These chipsets are used in real-time, low-latency applications such as gaming and video, and provide 
3.8 Gbps data rates using a steerable 32 element phased array antenna system (courtesy of Silicon 
Image) [EWA+11] [©c IEEE]. 
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Figure 1.6 Achievable transit frequency (fT ) of transistors over time for several semiconductor
technologies, including silicon CMOS transistors, silicon germanium heterojunction bipolar transistor
(SiGe HBT), and certain other III-V high electron mobility transistors (HEMT) and III-V HBTs.
Over the last decade CMOS (the current technology of choice for cutting edge digital and analog
circuits) has become competitive with III-V technologies for RF and mmWave applications [figure
reproduced from data in [RK09] c© IEEE].
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Figure 1.7 Wireless personal area networking. WPANs often connect mobile devices such as mobile
phones and multimedia players to each other as well as desktop computers. Increasing the data-rate
beyond current WPANs such as Bluetooth and early UWB was the first driving force for 60 GHz
solutions. The IEEE 802.15.3c international standard, the WiGig standard (IEEE 802.11ad), and the
earlier WirelessHD standard, released in the 2008–2009 time frame, provide a design for short-range
data networks (≈ 10 m). All standards, in their first release, guaranteed to provide (under favorable
propagation scenarios) multi-Gbps wireless data transfers to support cable replacement of USB, IEEE
1394, and gigabit Ethernet.
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Figure 1.8 Multimedia high-definition (HD) streaming. 60 GHz provides enough spectrum resources
to remove HDMI cables without sophisticated joint channel/source coding strategies (e.g., compres-
sion), such as in the wireless home digital interface (WHDI) standard that operates at 5 GHz
frequencies. Currently, 60 GHz is the only spectrum with sufficient bandwidth to provide a wireless
HDMI solution that scales with future HD television technology advancement.
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wired network

WLAN access point

Figure 1.9 Wireless local area networking. WLANs, which typically carry Internet traffic, are a popu-
lar application of unlicensed spectrum. WLANs that employ 60 GHz and other mmWave technology
provide data rates that are commensurate with gigabit Ethernet. The IEEE 802.11ad and WiGig
standards also offer hybrid microwave/mmWave WLAN solutions that use microwave frequencies for
normal operation and mmWave frequencies when the 60 GHz path is favorable. Repeaters/relays will
be used to provide range and connectivity to additional devices.
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Figure 1.10 Wireless backhaul and relays may be used to connect multiple cell sites and subscribers
together, replacing or augmenting copper or fiber backhaul solutions.
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Figure 1.11 United States spectrum and bandwidth allocations for 2G, 3G, and 4G LTE-A (long-term
evolution advanced). The global spectrum bandwidth allocation for all cellular technologies does not
exceed 780 MHz. Currently, allotted spectrum for operators is dissected into disjoint frequency bands,
each of which possesses different radio networks with different propagation characteristics and building
penetration losses. Each major wireless provider in each country has, at most, approximately 200 MHz
of spectrum across all of the different cellular bands available to them [from [RSM+13] c© IEEE].
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Figure 1.12 Illustration of a mmWave cellular network. Base stations communicate to users (and
interfere with other cell users) via LOS, and NLOS communication, either directly or via heteroge-
neous infrastructure such as mmWave UWB relays.
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SIRCIM 6.0: Impulse response parameters

N
or

m
al

iz
ed

 li
ne

ar
 p

ow
er

0
0

0.2

0.4

0.6

0.8

1

100 200 300
Excess delay (nanoseconds)

400 500
0

0.1

0.2

Dist
an

ce 
(m

ete
rs)

Path loss reference distance = 1 meter
Topography = 20% obstructed LOS
RMS delay spread = 65.9 nanosecocnds
Operating frequency = 60.0 GHz
Building plan = open

Figure 1.13 Long delay spreads characterize wideband 60 GHz channels and may result in severe
inter-symbol interference, unless directional beamforming is employed. Plot generated with Simu-
lation of Indoor Radio Channel Impulse Response Models with Impulse Noise (SIRCIM) 6.0 [from
[DMRH10] c© IEEE].
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Figure 1.14 Comparison between optical and electrical performance in terms of cost and power
for short cabled interconnects. The results show that optical connections are preferred to electrical
copper connections for higher data rates, assuming wires are used [adapted from [PDK+07] c© IEEE].
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Figure 1.15 MmWave wireless will enable drastic changes to the form factors of today’s computing
and entertainment products. Multi-Gbps data links will allow memory devices and displays to be
completely tetherless. Future computer hard drives may morph into personal memory cards and may
become embedded in clothing [Rap12a][Rap09][RMGJ11].
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Figure 1.16 Future users of wireless devices will greatly benefit from the pervasive availability of
massive bandwidths at mmWave frequencies. Multi-Gbps data transfers will enable a lifetime of con-
tent to be downloaded on-the-fly as users walk or drive in their daily lives [Rap12a][Rap09][RMGJ11].



From Rappaport et al., Millimeter Wave Wireless Communications,  
ISBN-13: 978-0-13-217228-8. Copyright © 2015 Pearson Education, Inc.

PTG-Rappaport Rappaport Ch01 2014/8/12 10:20 Page 24 #24

24 Chapter 1 � Introduction

cloud

10-50 Gbps
links

Hundreds of
wireless post-it

notes

Desk

OfficeBookshelf

10-50 Gbps links

Passive
wireless-to-
fiber node

1-10 Tbps link
1-10 Tbps link

Desktop
computer with

wireless
memory

connectivity

Desk

Hundreds of
wireless post-it

notes with
books/movies

OfficeB
oo

ks
he

lf

Passive wireless-
to-fiber node

Figure 1.17 The office of the future will replace wiring and wired ports with optical-to-RF inter-
connections, both within a room and between rooms of a building. UWB relays and new distributed
wireless memory devices will begin to replace books and computers. Hundreds of devices will be
interconnected with wide-bandwidth connections through mmWave radio connections using adap-
tive antennas that can quickly switch their beams [Rap11] [from [RMGJ11] c© IEEE].
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Vehicular radar

Vehicular-to-infrastructure communication

Figure 1.18 Different applications of mmWave in vehicular applications, including radar, vehicle-
to-vehicle communication, and vehicle-to-infrastructure communication.
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seat back entertainment wireless Internet access

Figure 1.19 Different applications of mmWave in aircraft including providing wireless connec-
tions for seat-back entertainment systems and for wireless cellular and local area networking. Smart
repeaters and access points will enable backhaul, coverage, and selective traffic control.
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Figure 2.32 Reference system architecture for a communication network. The Physical Layer
(PHY) is considered the lowest layer, and the Application Layer is the highest layer. We propose
a new layer, called the Hardware Layer, that is below PHY, in order to account for complexities
involved with the creation of new hardware and devices for mmWave communications.
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Figure 3.1 The attenuation (dB/km) in excess of free space propagation due to absorption in air at
sea level across the sub-terahertz frequency bands. The far left (unshaded) bubble shows extremely
small excess attenuation in air for today’s UHF and microwave consumer wireless networks, and other
bubbles show interesting excess attenuation characteristics that are dependent on carrier frequency
[from [RMGJ11], c© IEEE].
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Figure 3.2 Rain attenuation as a function of frequency and rain rate in the mmWave spectrum
[from [AWW+13][RSM+13][ZL06] c© IEEE].
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Figure 3.5 Indoor penetration measurements at 72 GHz in a building in Brooklyn, New York. The
TX location is marked by a triangle, the RX locations are shown as numbered dots. The primary ray
paths for signal penetration are shown with arrows [reproduced from [NMSR13] c© IEEE].
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Figure 3.6 Example of a diffraction object blocking the line-of-sight (LOS) path between trans-
mitter and receiver. At millimeter wave frequencies, objects such as trees and people may induce
fading and scattering as they move.
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Figure 3.11 Scatter plots of measured 28 GHz cellular path loss in New York City
[SR13][RSM+13][AWW+13][SWA+13]. The plots illustrate the reduction in path loss that can be
achieved when a mobile handset using 10◦ steerable beams combines individual multipath signals
arriving at different angles from the same transmitter. In (a), the single best beam pointing direc-
tion is used to make a link at each RX location. In (b), the two best beam pointing directions
are non-coherently combined (where the powers in each unique beam are simultaneously added). In
(c) and (d), the two and three best beams, respectively, are coherently added (where the total voltage
in each unique beam is simultaneously added and then squared to produce power).

PTG-Rappaport Rappaport Ch03 2014/8/12 10:22 Page 134 #38

LOS: σ = 6.63dB
NLOS: σ = 9.45dB
nLOS = 3.76

nNLOS = 4.69

LOS: σ = 6.30dB
NLOS: σ = 9.36dB
nLOS = 3.57

nNLOS = 4.51

LOS: σ = 6.52dB
NLOS: σ = 9.31dB
nLOS = 3.28

nNLOS = 4.30

LOS: σ = 6.22dB
NLOS: σ = 9.28dB
nLOS = 3.03

nNLOS = 4.08

120

(a)

(b)

(c)

(d)

n = 5

n = 4

n = 3

nNLOS = 4.69

nLOS = 3.76

Path loss corresponding to one best power versus distance

TX-RX Separation (m)

Pa
th

 lo
ss

 a
bo

ve
 5

m
 r

ef
er

en
ce

 (
dB

)

100

100105

80

60

40

20

0

120

n = 5

n = 4

n = 3

nNLOS= 4.51

nLOS= 3.57

Path loss corresponding to non-coherently combined two best powers versus distance

TX-RX Separation (m)

Pa
th

 lo
ss

 a
bo

ve
 5

m
 r

ef
er

en
ce

 (
dB

)

100

100105

80

60

40

20

0

120

n = 5

n = 4

n = 3

nNLOS= 4.30

nLOS= 3.28

Path loss corresponding to coherently combined two best powers versus distance

TX-RX Separation (m)

Pa
th

 lo
ss

 a
bo

ve
 5

m
 r

ef
er

en
ce

 (
dB

)

100

100105

80

60

40

20

0

120

n = 5

n = 4

n = 3

nNLOS= 4.08

nLOS= 3.03

Path loss corresponding to coherently combined three best powers versus distance

TX-RX Separation (m)

Pa
th

 lo
ss

 a
bo

ve
 5

m
 r

ef
er

en
ce

 (
dB

)

100

100105

80

60

40

20

0

Figure 3.11 Scatter plots of measured 28 GHz cellular path loss in New York City
[SR13][RSM+13][AWW+13][SWA+13]. The plots illustrate the reduction in path loss that can be
achieved when a mobile handset using 10◦ steerable beams combines individual multipath signals
arriving at different angles from the same transmitter. In (a), the single best beam pointing direc-
tion is used to make a link at each RX location. In (b), the two best beam pointing directions
are non-coherently combined (where the powers in each unique beam are simultaneously added). In
(c) and (d), the two and three best beams, respectively, are coherently added (where the total voltage
in each unique beam is simultaneously added and then squared to produce power).
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Figure 3.12 Four polar plots of 28 GHz propagation at track positions 1, 5, 10, and 21 along a
21-step linear track with λ/2 step sizes show two lobes of received power across azimuth. Measure-
ments are for a partially obstructed NLOS RX environment in downtown Brooklyn using 24.5 dBi
horn antennas at both the TX and RX. The TX was placed on the rooftop of NYU’s Rogers Hall
135 m away from the RX. Each dot represents the received power level at a particular RX azimuth
angle. For NLOS RX locations, a threshold of 20 dB below maximum power level was defined for a
threshold (shown as a solid-line circle) to determine lobe statistics, whereas 10 dB was used for the
LOS threshold [reproduced from [SWA+13] c© IEEE].
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Figure 3.13 Frequency-selective fading occurs about the 38 GHz carrier frequency in outdoor urban
NLOS channels. Note the periodic 50 MHz fades in frequency about the carrier correspond to a RMS
delay spread that is approximately 20 ns. Here we see a channel that has deep fades as low as 30 dB
from the peak channel gain.
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Figure 3.14 When a channel frequency representation such as that shown in Fig. 3.13 is considered
over 1 MHz subbands (i.e., we evaluate the average channel gain at 1 MHz intervals and compare
these small intervals to the overall average channel gain across the band), we see that fading is
not severe for outdoor urban cellular mmWave channels. The time delay spread and the number of
resolvable multipath components directly contribute to the fading characteristics across the occupied
spectrum. Directional antennas change small-scale fading from today’s common Rayleigh fading
characteristics (for omnidirectional antennas) into much narrower fade depths over much wider
frequency bands.
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Figure 3.15 Differences in RMS delay spread and their distribution at 38 and 60 GHz in various
outdoor environments [from [RBDMQ12] c© IEEE].
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Figure 3.16 Greater transmitter antenna heights resulted in decreased 90% RMS delay spread
compared with situations in which the 38 GHz transmitter is near the ground, and the worst-case
RMS delay spread was found to be 225 ns on a Texas college campus using the tallest transmitter
antenna height [from [RSM+13] [RGBD+13] c© IEEE].
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Figure 3.17 MmWave applications in which the transmitter and receiver are close to the ground
(such as peer-to-peer or vehicle-to-vehicle) will provide a wide distribution of angles at which links
may be established [from [RBDMQ12][RGBD+13] c© IEEE].
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Figure 3.18 The antenna pointing angles found with a 37.625 GHz carrier and highly directional
antennas at the receiver and transmitter. The transmitter was elevated to 18 m [from [RBDMQ12]
[RGBD+13] c© IEEE].
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Figure 3.19 Steeper azimuth pointing angles are associated with higher RMS delay spreads for out-
door peer-to-peer channels. The measurements from this plot were taken with 25 dBi 7◦ beamwidth
horns at the transmitter and receiver, and with link distances from 19 to 129 m [from [RBDMQ12]
c© IEEE].
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Figure 3.20 Steeper antenna pointing angles are associated with higher RMS delay spreads. These
measurements were taken at 38 GHz with at 25 dBi TX antennas, and a 25 dBi or 13.3 dBi RX
antennas. Link distances ranged just beyond 900 m [from [RQT+12] c© IEEE].
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Figure 3.21 Due to the very high value for the break-point distance, LOS links at mmWave
frequencies are very close to free space in terms of path loss. This plot was generated with highly
directional antennas at the receiver and transmitter with 25 dBi gain and 7◦ beamwidths at 60 GHz
[from [RBDMQ12] c© IEEE]. Note that the oxygen absorption causes the path loss exponent to be
slightly greater than 2.0.
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Figure 3.22 This plot shows measured path loss values for 38 GHz peer-to-peer applications with
highly directional 25 dBi 7◦ beamwidth horn antennas [from [RBDMQ12] c© IEEE].
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Figure 3.23 When a highly directional antenna is used at the receiver, LOS links will be very close
to free space but NLOS links may be more heavily attenuated. This plot is for 38 GHz and the
measurements used the same highly directional antennas at both the transmitter and receiver [from
[RQT+12] c© IEEE].
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Figure 3.24 This plot was generated from measurements using a 25 dBi 7◦ beamwidth horn TX
antenna and a less directional 13.3 dBi 40◦ beamwidth horn at the receiver. NLOS paths are signif-
icantly stronger as the receiver cannot filter out multipath as effectively as when a more directional
antenna is used [RQT+12] c© IEEE].
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Figure 3.25 28 GHz omnidirectional close-in free space reference distance (d0 = 1 m) and floating
intercept path loss models for a non-line of sight (NLOS) urban environment with a receiver antenna
1.5 m above ground. A comparison is made to path loss in a 1.9 GHz urban NLOS environment as
reported in [BFR+92] [FBRSX94].
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Figure 3.26 28 GHz omnidirectional path loss model from which the TX and RX antenna gains have
been removed. The close-in free space reference distance model with respect to a 1 m free space
reference distance, and the floating intercept (α, β) model from [RRE14] is shown for distances
ranging from 30 to 200 m.
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Figure 3.27 28 GHz omnidirectional path loss model from which the TX and RX antenna gains
have been removed. The close-in free space reference distance model with respect to a 1 m free
space reference distance is shown. Note that one point at 100 m had excessive path loss due to the
fact that the antennas were not aligned on boresight at this location. By removing this single point,
it is evident that the LOS path loss exponent is very close to 2.
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Figure 3.28 28 GHz Manhattan single beam path loss measurements as a function of T-R sep-
aration distance using 24.5 dBi horn antennas with 10.9◦ half-power beam width at both the TX
and RX and 15 dBi (28.8 degree HPBW) horn antennas at both the TX and RX. NLOS path losses
include LOS non-boresight and truly NLOS measurements. Co-polarized and cross-polarized LOS
measured path losses are also shown. The close-in free space reference distance model with respect
to a 1 m free space reference distance is shown. All data points represent path loss values calculated
from recorded PDP measurements.
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Figure 3.29 73 GHz omnidirectional path loss model from which the TX and RX antenna gains
have been removed for a combination of cellular and backhaul (hybrid) RX antenna heights. The
close-in free-space reference distance model for d0 = 1 m and the floating intercept (α, β) model
from [RRE14] over 30-200 m are shown.
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Figure 3.30 73 GHz omnidirectional path loss model from which the TX and RX antenna gains
have been removed for mobile RX antenna heights of 2 m. The close-in free-space reference distance
model for d0 = 1 m and the floating intercept model (α, β) model from [RRE14] over 30-200 m
are shown. A comparison is made to path loss in a 1.9 GHz urban NLOS environment as reported in
[BFR+92].
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Figure 3.31 73 GHz omnidirectional path loss model from which the TX and RX antenna gains
have been removed for backhaul RX antenna heights of 4.06 m. The close-in free-space reference
distance model for d0 = 1 m and the floating intercept (α, β) model from [RRE14] over 30-200 m
are shown.
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Figure 3.32 New York City cellular RX height (2 m) path loss measurements at 73 GHz as a func-
tion of T-R separation distance using vertically polarized 27 dBi, 7◦ half-power beam width TX and
RX antennas. All data points represent path loss values calculated from recorded PDP measurements.
Crosses indicate all NLOS pointing angle data points, diamonds indicate best NLOS pointing angle
data points for each RX location and each T-R combination, and circles indicate LOS data points.
The measured path loss values are relative to a 1 m free-space close-in reference distance. NLOS PLEs
are calculated for the entire data set and also for the best recorded link. LOS PLEs are calculated for
strictly boresight-to-boresight scenarios. n values are PLEs and σ values are shadow factors. The solid
line spanning 30 to 200 m is the omnidirectional (α, β) model from [RRE14] [ALS+14] depicted in
Fig. 3.30.
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Figure 3.33 New York City backhaul measurements with RX heights of 4.06 m path losses at
73 GHz as a function of T-R separation distance using vertically polarized 27 dBi, 7◦ half-power beam
width TX and RX antennas. All data points represent path loss values calculated from recorded PDP
measurements. Crosses indicate all NLOS pointing angle data points, diamonds indicate best NLOS
pointing angle data points for each RX location and each T-R combination, and circles indicate
LOS data points. The measured path loss values are relative to a 1 m free-space close-in reference
distance. NLOS PLEs are calculated for the entire data set and also for the best recorded link. LOS
PLEs are calculated for strictly boresight-to-boresight scenarios. n values are PLEs and σ values
are shadow factors. The solid line spanning 30 to 200 m is the omnidirectional (α, β) model from
[RRE14] depicted in Fig. 3.31.
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Figure 3.34 Illustration of some of the key temporal modeling parameters used for modeling the
temporal clusters in an omnidirectional SSCM wideband mmWave channel. This example shows five
time clusters, with time durations ranging from 2 to 31 ns, and voids between clusters ranging from
2.7 to 23.9 ns [SR14a].
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Figure 3.35 Illustration of some of the key spatial modeling parameters used to model the
spatial lobes in an omnidirectional SSCM wideband mmWave channel. The polar plot (in the
azimuthal/horizontal plane only) shows five distinct lobes with various lobe azimuth spreads and
AOAs. Each dot is a lobe angular segment simulated for a particular discrete pointing angle and
represents the total integrated received power over a particular beam width (and corresponds to the
area under a PDP for the particular RX pointing angle). The lobe power is the sum of powers from
each segment within the lobe (e.g., the sum of powers from each lobe segment in a lobe).
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Figure 3.36 Path loss for 60 GHz for peer-to-peer applications and communication from a ground-
based transmitter to a receiver in a vehicle. These measurements used highly directional 25 dBi 7◦

beamwidth antennas as the transmitter and receiver [from [BDRQL11] c© IEEE].
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Figure 3.37 These measurements used highly directional 25 dBi 7◦ beamwidth antennas at the
transmitter and receiver. When the transmitter communicates to a receiver inside a vehicle, much
lower RMS delay spreads result than when the transmitter and receiver are in the open [from
[BDRQL11] c© IEEE].



From Rappaport et al., Millimeter Wave Wireless Communications,  
ISBN-13: 978-0-13-217228-8. Copyright © 2015 Pearson Education, Inc.

PTG-Rappaport Rappaport Ch03 2014/8/12 10:22 Page 172 #76

172 Chapter 3 � Radio Wave Propagation for MmWave

Excess time

Tcurser−t

AOA’s of rays are
clustered

Clustered in space

Pre-curser
power-growth

Number
of post-curser

rays Nb

Cluster arrival
rate Λ

Post-curser
power-decay

Post-curser MPC
arrival rate λbPre-Curser MPC

arrival rate λ f

NLOS clusterCluster decay
rate Γ Γe

Channel impulse
response

LOS component
gain of β

φ

Number
of pre-curser

rays Nf

γf

t−Tcurser

γf

Receiveing antenna

Clustered in time
−t

e

e

Figure 3.38 Representation of key parameters used to specify multipath channels. Statistics of
the key channel parameters are generated from measured data, as collected by wideband channel
sounders, to determine the temporal and spatial channel models that can be used by researchers and
standard bodies for modem design and signaling protocols.
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Metal guard ring
Slotted metal

Figure 4.6 There are several considerations for on-chip antennas related to CMOS production
rules: 1) All metal layers must meet a minimum fill requirement. This is reflected in the figure by the
fact that there are no large portions of the chip left empty (the lighter-shaded portions of the figure).
2) A metal guard ring must often surround the chip to prevent damage during dicing. 3) Large
areas of metal must be slotted to meet design rules. 4) Metal structures must meet a minimum size
requirement, which in practice is usually satisfied by most designs.
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Figure 4.10 This figure indicates that the efficiency of on-chip antennas is reduced greatly by a
thick substrate [from [KSK+09] c© IEEE].
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Figure 4.12 For low resistivity substrates, the loss due to currents carried by substrate dopants
(i.e., conductive losses) is the major loss mechanism hurting performance [from [LKCY10] c© IEEE].
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Figure 4.18 [MHP+09] presented these plots for the design of a planar dipole antenna on a
625 µm GaAs substrate with relative permittivity of 12.9 and 625 µm thick [reproduced from
[MHP+09] c© IEEE].
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Figure 4.26 This figure shows that a patch antenna typically radiates above the top metal layer
of the antenna. The top figure illustrates the metal slots that are usually required for on-chip patch
antennas due to their large size. In the lower figure, [CGLS09] used two parallel metal strips on the
edge of the patch to increase bandwidth. [This figure is a combination of figures from the literature
([SCS+08] above, [CGLS09] below) c© IEEE.]
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Figure 4.27 There are various methods for feeding an in-package patch from a packaged chip.
The ball connector (left) may, for example, be used in a flip chip connection. [KLN+11] found that
this type of ball connector improves with a smaller radius of the ball and a smaller metal pad for the
ball (represented here as a small rectangular piece of metal below the ball) [right portion from
[HRL10] c© IEEE].
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Figure 4.34 This element was cascaded periodically below an on-chip microstrip antenna to form
an AMC to achieve a gain of −1.5 dBi [from [CGLS09] c© IEEE].
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Figure 4.58 A probe station is often used to characterize mmWave antennas. These measurements
may be inaccurate due to radiation from probes and scattered fields from the many surrounding metal
objects [from [MBDGR11] c© IEEE].
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Figure 4.59 The two antennas were swept in angle across each other. The chips on which the
antennas were fabricated are represented by squares, and the antennas are represented by smaller
black boxes [from [MBDGR11] c© IEEE].
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Figure 4.60 The de-embedding method indicates that the on-chip Yagi pattern was distorted by
the presence of other nearby metal structures [from [MBDGR11] c© IEEE].
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Figure 4.61 Simulations confirmed measurements that indicated the distortion of the antenna
pattern was caused by surrounding metal structures. This indicates that isolation between integrated
antennas and other nearby structures on the chip or in the package is key to successful design [from
[MBDGR11] c© IEEE].
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Figure 5.7 The S-parameters of a transmission line can be used to determine the effective relative
permittivity and loss tangent of a CMOS process. The effects of the probe pads must be de-embedded
for this measurement to be accurate [from [GJRM10] c© IEEE].
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Figure 5.8 The effective relative permittivity may be measured in a number of ways and is a vital
parameter for the design of passive structures [from [GJRM10] c© IEEE].
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Figure 5.9 The effective loss tangent is a vital parameter to predict loss of passive structures [from
[GJRM10] c© IEEE].
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Figure 5.26 A common ground plane is evident in this layout. Portions of the metal have been
removed in order to meet metal fill requirements [based on a figure from [MTH+08] c© IEEE].
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Figure 5.42 The amplifier accepts energy in only a certain range of frequencies.
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Figure 5.43 The value of S21 gain is only high in a certain band of frequencies.
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Figure 5.44 A direct conversion architecture for a transmitter and receiver. This is a popular
architecture for today’s cellphones. In many designs, the VCO is part of a phase-locked loop (PLL).
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Figure 5.46 The non-linearity of most devices results in the compression of the output power of
the fundamental harmonic.
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Figure 5.50 The bias point of the amplifier determines the amplifier’s class. Class A amplifiers
conduct current over the entire period. Class B amplifiers conduct over half the period, Class C
conduct over less than half the period, and Class AB conduct over more than half the period, but
less than the entire period.
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Figure 5.60 Based on the nature of the LO signal magnitude and bias point, we may treat the
transconductance of the cascode as a square wave that switches on and off. This figure shows how
the gain of the switching mixer is gated by the LO voltage to create the switching effect of the mixer.
This approach is used in double balanced mixers, such as Gilbert cells.
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Figure 5.63 The open-loop gain (top) and phase shift (bottom) of the oscillator in Fig. 5.62.
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Figure 5.65 The gain and phase of a simple LC tank oscillator.
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Figure 5.71 For real-world oscillator circuits, the output spectrum will be polluted by power at
frequencies other than the intended operating frequency.
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Figure 5.72 Noise events, such as the noise impulse represented here, will affect both the amplitude
and phase of a circuit. In general, the amplitude impulse response of the circuit will act to remove
amplitude noise over time. But phase noise persists, as is evident when we compare the phase of the
noisy waveform to the noiseless waveform.
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Figure 5.73 The output spectrum of an LC oscillator becomes more spectrally pure as the quality
factor of the tank increases.
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Figure 5.76 The transfer characteristics of a subharmonic oscillator.
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Figure 5.76 The transfer characteristics of a subharmonic oscillator.
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Figure 5.86 For a system with high signal path efficiency and high non-path power consumption,
we see that the energy expenditure per bit is dominated by non-path power, indicating little advantage
to shortening transmission distances [from [MR14b] c© IEEE].
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Figure 5.87 When signal path components are less efficient, as illustrated here, then shorter trans-
mission distances start to become advantageous, as signal path power starts to represent a larger
portion of the power expenditure per bit [from [MR14b] c© IEEE].
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Figure 5.88 A higher frequency system that can provide a much higher bit rate capacity without
substantially increasing non-path power consumption may result in a net reduction in the energy
price per bit [from [MR14b] c© IEEE].
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Figure 5.89 Lower efficiencies of signal path components motivate the use of shorter transmission
distances [from [MR14b] c© IEEE].
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Figure 6.1 An arbitrary baseband analog signal having an approximate bandwidth of 100 MHz.
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Figure 6.2 The spectrum of the arbitrary analog waveform shown in Fig. 6.1. The spectrum has
been normalized such that the strongest spectral component has an amplitude of 0 dB.
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Figure 6.3 A zoomed-in version of the arbitrary signal in Fig.6.1 showing how it has been sampled.
The bandwidth (BW) of the original signal is 100 MHz, and the sampling rate is 400 MHz.
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Figure 6.4 The result of sampling the signal in Fig. 6.1 in the time domain is to make the spectrum
periodic in the frequency domain.
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Figure 6.5 If the signal of Fig. 6.1 with a baseband bandwidth of 100 MHz is sampled at 100 MHz, 
the result is an aliased signal. In the frequency domain, overlapping copies of the original signal’s 
spectrum completely distort the resulting sampled signal.
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Figure 6.6 Quantizing the signal of Fig. 6.1 with 4 bits reduces the dynamic range to 24 dB.
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Figure 6.7 An example of sampling with jitter, where uncertainty in the time interval between
samples results in decreased dynamic range.
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Figure 7.2 Amplitude thresholding and quantization for a 3-bit ADC with uniform quantization
levels in the receiver. In a wireless communications receiver, ADCs quantize both the in-phase and
quadrature channels independently. Automatic gain control (AGC) is used to normalize the energy
of the received complex baseband signal so that the ADC thresholds and quantization levels can be
fixed (i.e., do not depend on fading). As shown in Chapter 3, fading will be less pronounced with
directional antennas.
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Figure 7.3 AM-PM and AM-PM measurements and modified Rapp model for a CMOS 65 nm
PA. For more detail on mmWave PA statistics, please consult the tables provided in Chapter 5 [plot
created with data from [EMT+09] c© IEEE].
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Figure 7.4 Measured power spectral density of single sideband (SSB) VCO output for desired signal
at 67.3 GHz. PSD measurements normalized to desired carrier output power (represented by dBc/Hz).
A similar figure is shown in Chapter 5. Here, however, we have included a comparison to a pole/zero
model that facilitates physical layer performance simulations [data taken from [FRP+05] and smoothed
to create the plot c© IEEE].
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Figure 7.5 Different phase noise effects and their contribution to the power spectral density in the
Leeson model [Lee66].
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Figure 7.6 Bit error rate as a function of SNR for OFDM and SC-FDE in AWGN and LOS
channels with QPSK constellations. The coding options are RS(255,239) and LDPC(672,336). The
802.15.3c spectral mask is added to the AWGN channel to demonstrate bandwidth conservation of
each modulation strategy. Hardware impairments are not considered.
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Figure 7.7 Bit error rate as a function of SNR for OFDM and SC-FDE in LOS CM1.3 channels
with 16-QAM constellations. Hardware impairments are not considered.
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Figure 7.8 Bit error rate as a function of SNR for OFDM and SC-FDE in NLOS CM2.3 channels
with QPSK constellations. No hardware impairments are considered.
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Figure 7.9 Bit error rate as a function of SNR for OFDM and SC-FDE in NLOS CM2.3 channels
with 16-QAM constellations. No hardware impairments are considered.
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Figure 7.10 Bit error rate as a function of SNR for OFDM and SC-FDE in LOS CM1.3 channels
and CMOS PA non-linearity with QPSK constellations.
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Figure 7.11 Bit error rate as a function of SNR for OFDM and SC-FDE in LOS CM1.3 channels
and CMOS PA nonlinearity with 16-QAM constellations.
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Figure 7.12 Bit error rate as a function of SNR for OFDM and SC-FDE in NLOS CM2.3 channels
and CMOS PA non-linearity with QPSK constellations.
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Figure 7.13 Bit error rate as a function of SNR for OFDM and SC-FDE in NLOS CM2.3 channels
and CMOS PA non-linearity with 16-QAM constellations.
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Figure 7.14 Bit error rate as a function of SNR for OFDM and SC-FDE in LOS CM1.3 channels
and 5-bit ADC samples with QPSK constellations.
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Figure 7.15 Bit error rate as a function of SNR for OFDM and SC-FDE in LOS CM1.3 channels
and 5-bit ADC samples with 16-QAM constellations.
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Figure 7.16 Illustration of how length-N complementary Golay sequence pair, aN and bN , may
be used to construct a training sequence that enables channel impulse response estimation through
complementary correlation. Pre- and post-fixes are added before and after Ns repetitions of each
complementary sequence to prevent excess multipath from disrupting zero-sidelobe properties. At the
receiver we correlate with the channel distorted versions of each N -length complementary sequence
and add them together to yield an estimate of a single tap. Delayed correlations are computed for
each tap, and each of the Ns repetitions is used to improve estimate robustness in the presence of
noise.
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Figure 7.18 Capacity comparison with 1-, 2-, 3-, and, ∞-bit ADC precision for a discrete memory-
less channel with perfect synchronization [SDM09].
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Figure 7.19 Analog and mixed signal equalization architectures can reduce the ADC bit resolu-
tion of the overall receiver (assuming that synchronization and other receiver functionality can be
maintained). Mixed signal equalization can be considered a DFE with an analog feedback filter and
a digital feedforward filter.
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Figure 7.20 LOS MIMO channel with arbitrary uniform linear array (ULA) alignment and Nr =
Nt = 8 elements on each ULA. The range reference of the link is denoted by r, and the total antenna
array lengths at the receiver and transmitter are Lr and Lt, respectively.
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Figure 8.7 A multilevel codebook proposed in [HKL+11] for wireless backhaul. Higher levels of
the codebook have narrower beams, thus enhanced resolution [from [HKL+11, Figure 2] c© IEEE].
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1st time slot
2nd time slot

Full duplex Half duplex Multi-hop

Figure 8.9 Different relay configurations with source, relay, and destination. In theory, a commu-
nication link with a relay may exploit both the direct link from the source to the destination and
the indirect link through the relay. With a full duplex relay, the relay listens and retransmits at the
same time. A practical example of a full duplex relay is a repeater. With a half duplex relay, the relay
either transmits or receives and communication may be broken into two phases: transmission from
the source, and transmission from the relay. In a multi-hop channel, the relay is half duplex and the
source to destination link is not exploited (from [Hea10]).
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Figure 8.12 Coverage range and data rate at the physical layer for a 5 GHz link and 60 GHz
link under two different channel conditions: LOS and NLOS. It can be seen that the microwave link
provides higher coverage at the expense of smaller data rates. A multi-band protocol could obtain
the rate benefits of 60 GHz and the coverage benefits of lower frequencies [from [YP08, Figure 1]
c© IEEE].
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Figure 8.13 Different strategies for supporting video in mmWave systems. (a) Pixel partition-
ing. (b) Frame format. (c) Uncompressed video with automatic repeat request. (d) Unequal error
protection. (e) Error concealment using Reed-Solomon codes. [From [SOK+08, Figure 13] c© IEEE]
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Figure 8.13 Different strategies for supporting video in mmWave systems. (a) Pixel partition-
ing. (b) Frame format. (c) Uncompressed video with automatic repeat request. (d) Unequal error
protection. (e) Error concealment using Reed-Solomon codes. [From [SOK+08, Figure 13] c© IEEE]



From Rappaport et al., Millimeter Wave Wireless Communications,  
ISBN-13: 978-0-13-217228-8. Copyright © 2015 Pearson Education, Inc.

PTG-Rappaport Rappaport Ch08 2014/8/12 10:25 Page 499 #29

8.6 Multiband Considerations 499

Backhaul connections between all base stations

Microwave
link
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Figure 8.14 A model for coexistence between mmWave and microwave cellular where the
microwave cellular network forms an umbrella network to facilitate the management of many
mmWave communication links and to simplify functions like handoff. On the left side, a mobile
device may connect either to a microwave or mmWave base station or to both simultaneously using
the phantom cell concept. Interference on the microwave frequencies comes from other microwave
base stations and on the millimeter wave frequencies from other millimeter wave small cells. As
shown in Chapter 3 and elsewhere, the directionality of the beam patterns reduces the impact of
mmWave interferers [BAH14][SBM92][RRE14][RRC14][ALS+14].



From Rappaport et al., Millimeter Wave Wireless Communications,  
ISBN-13: 978-0-13-217228-8. Copyright © 2015 Pearson Education, Inc.

PTG-Rappaport Rappaport Ch08 2014/8/12 10:25 Page 502 #32

502 Chapter 8 � Higher Layer Design Considerations for MmWave

-5 0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

SINR threshold in dB

SI
N

R
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

Rc = 50 m

Rc = 100 m

Rc = 200 m

Rc = 300 m

(a) (b)

50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. cell radius Rc in meters

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 w
it

h 
SI

N
R

> 
10

 d
B

Figure 8.15 SINR coverage probability with different base station densities, where Rc =
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1/πλ
and λ is the density of base stations.
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Figure 8.16 Comparison of cell throughput of mmWave networks and microwave networks.
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Figure 9.1 International frequency allocation for 60 GHz wireless communication systems.
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Figure 9.7 Neighbor piconet. The parent piconet (controlled by the set-top box) manages coexis-
tence with the neighbor piconet (controlled by the personal computer).
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Figure 9.8 Channelization in IEEE 802.15.3c provides four different channels for mmWave PHY.
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Figure 9.15 OFDM symbol formatting in the HSI PHY in IEEE 802.15.3c. The sub-carrier fre-
quency spacing is 5.15625 MHz for all 512 sub-carriers. Three null DC tones prevent carrier feed
through as well as ADC/DAC offset problems. The guard tones are usually nulled to meet spectral
mask requirements, although customized guard tone values may optimize front end effects.
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Figure 9.16 OFDM symbol formatting for the HRP. The sub-carrier frequency spacing is ≈ 4.96
MHz for all 512 sub-carriers. Three DC tones and all guard tones are nulled.
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Figure 9.18 OFDM symbol formatting for the LRP. The sub-carrier frequency spacing is 2.48 MHz
for all 128 sub-carriers. There are 37 data and null subcarriers, each with a subcarrier width of 2.48
MHz, resulting in an occupied bandwidth of 91.76 MHz (∼ 92 MHz). The specified spectral mask
passband bandwidth (at 10 dB down) is 98 MHz, allowing for roll-off in the LRP mode. Three DC
tones and all guard tones are nulled.
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Figure 9.24 UEP Type 3 through skewing of 16-QAM. Here, the minimum distance between
in-phase constellation points (where MSB bits are mapped) is increased by a factor 1.25.
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Figure 9.29 Four levels of patterns in antenna beamforming codebook for eight-element uniform
linear array (patterns visualized on the azimuthal plane (top view) for a vertical array orientation)
[802.15.3-09].
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Figure 9.30 High-resolution beam cluster in 3-dimensional space.



From Rappaport et al., Millimeter Wave Wireless Communications,  
ISBN-13: 978-0-13-217228-8. Copyright © 2015 Pearson Education, Inc.

PTG-Rappaport Rappaport Ch09 2014/8/12 10:26 Page 549 #43

9.3 IEEE 802.15.3c 549

Q

I

Standard
OOK

DAMI
OOK

Q

I

Figure 9.32 OOK and DAMI constellations for optional use within the SC-PHY [802.15.3-09].
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Figure 9.33 Layering of WirelessHD device.
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Figure 9.34 WirelessHD packetizer diagram [Wir10].
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Figure 9.35 Protocol structure of ECMA-387 [ECMA08].
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Figure 9.36 Out-out-band (OOB) control channel layered architecture in ECMA-387 [ECMA08].
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Figure 9.46 Transmissions by source STA, amplify-and-forward relay, and destination STA in a
link switching example in normal mode.
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Figure 9.53 Static tone pairing (STP) in MCS 13-17. Even and odd sub-carriers are paired (out
of 336 sub-carriers total) and mapped to maximize the minimum sub-carrier distance between even
and odd sub-carriers (168 sub-carrier distance).
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Figure 9.54 Dynamic tone pairing (DTP) in MCS 13-17. For DTP, the group pair index (GPI) is
given to the PHY and is defined by the transmitter. The mapping GPI is hence a permutation where
GPI : {0, 1, . . . , 41} → {0, 1, . . . , 41} and GPI : k �→ Gk. Note that although the even elements of
each group have a fixed mapping, the odd elements may be mapped more generally. In other words,
Gk may vary for a fixed k, depending on the link configuration. The ends of the DTP transformed
sub-carriers are not shown to maintain generality, although one of the 42 groups must be mapped
to the last DTP group in practice.


